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Abstract. We study the behaviour of automorphic L-invariants as-
sociated to cuspidal representations of GL(2) of cohomological weight
0 under abelian base change and Jacquet-Langlands lifts to totally
definite quaternion algebras. Under a standard non-vanishing hy-
pothesis on automorphic L-functions and some technical restrictions
on the automorphic representation and the base field we get a sim-
ple proof of the equality of automorphic and arithmetic L-invariants.
This together with Spieß’ results on p-adic L-functions yields a new
proof of the exceptional zero conjecture for modular elliptic curves -
at least, up to sign.
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Introduction

In his seminal article [12] Darmon defined automorphic L-Invariants of modular
forms of weight 2. His definition was inspired by Teitelbaum’s work (cf. [22])
on L-invariants for automorphic forms on definite quaternion groups. The
construction was generalized to various settings, for example: to modular forms
of higher weight by Orton (cf. [19]), to Hilbert modular forms of parallel weight
2 by Spieß (cf. [21]) and to automorphic forms of parallel weight 2 on quaternion
groups over fields with narrow class number 1 by Guitart, Masdeu and Şengün
(cf. [17]).
An advantage of these automorphic L-invariants over their arithmetic counter-
parts is that they can directly be related to derivatives of p-adic L-functions.
However, this raises the question of whether one can show that automorphic
and arithmetic L-invariants agree without using that both types of invariants
show up in exceptional zero formulae. Furthermore, it is natural to ask whether
automorphic L-invariants behave well under various automorphic operations
like base change and Jacquet-Langlands lifts. In the present note we want to
give partial answers to these questions.
Let π be a cuspidal automorphic representation of GL2 of parallel weight 2 over
a number field F . Under a standard simultaneous non-vanishing hypothesis on
L-functions and some technical assumptions we prove that L-invariants of π

• behave as expected under abelian base change (see Corollary 3.7),

• are independent of the sign at infinity (see Theorem A) and

• agree up to sign with L-invariants of Jacquet-Langlands lifts of π to
totally definite quaternion groups (see Theorem B).

Via the Cerednik-Drinfeld uniformization of Shimura curves one can relate L-
invariants of automorphic representations on totally definite quaternion groups
directly to arithmetic L-invariants (cf. [7], Theorem 4.10). Thus, combining
our results with Spieß’ work on p-adic L-functions gives a new proof of the
exceptional zero formula for modular elliptic curves over totally real fields in
certain situations (see Corollary 4.3). Note that even in the case F = Q the
proof is different from previous ones, as it relies neither on Hida families nor
on Kato’s Euler system.
The article is structured as follows: The first section is a collection of prelimi-
naries on p-adic fields. We introduce L-invariants of p-adic periods and recall
Breuil’s construction (cf. [9]) of extensions of the Steinberg representation.
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In the second section we define automorphic L-invariants and state known
results. Here, we follow Spieß’ approach rather closely.

In Section 3.1 we show that, if E/F is an abelian extension, its Galois group
acts on the set of automorphic L-invariants of the base change πE of π to E as
expected. This together with an Artin formalism for p-adic L-functions is used
in Section 3.2 to prove the invariance of L-invariants under base change. If the
base field is totally imaginary, the L-invariant does not depend on a choice of
sign at infinity by definition. For an arbitrary number field the independence
of the sign at infinity follows by considering a base change to a suitable totally
imaginary extension.

In case F is totally real and E/F is an imaginary quadratic extension, in which
the primes under consideration are split, there are two different constructions
of anticyclotomic p-adic L-functions. One can either restrict the p-adic L-
function of the base change πE , which was constructed by Deppe in [14], to
the anticyclotomic direction or one can use quaternionic Stickelberger elements
associated to the Jacquet-Langlands lift πB of π to a quaternion algebra B, in
which E can be embedded. Comparing leading terms formula for quaternionic
Stickelberger elements (see [7], Theorem 4.5) with Bergunde’s generalization
of Spieß’ exceptional zero formula for the p-adic L-function of πE (see [6],
Theorem 4.17) we relate L-invariants of the base change πE to L-invariants of
the Jacquet-Langlands lift πB - at least up to sign (see Section 3.3).

Finally, in order to prove the above mentioned Theorem B we use various
non-vanishing results to twist into a situation, where the previous established
results apply. This in turn implies the equality of automorphic and arith-
metic L-invariants for modular elliptic curves over totally real fields up to sign.
Moreover, we utilize the transcendence of the Tate periods of elliptic curves to
remove the ambiguity of sign once one base changes to an imaginary quadratic
extension as above (see Theorem C). Note that the equality of automorphic L-
invariants under Jacquet-Langlands lifts was proven before in several instances
(see for example [8] or [13]). But our methods differ vastly from previous ones
as we do not make any use of Hida families.

Notations. Throughout the article we fix a prime p. All rings are assumed to
be commutative and unital. The group of invertible elements of a ring R will
be denoted by R∗.

If R is a ring and G is a group, we write R[G] for the group algebra of G with
coefficients in R. Given a group G and a group homomorphism ǫ : G → R∗

we let R(ǫ) be the R[G]-module which underlying R-module is R itself and
on which G acts via the character ǫ. If M is another R[G]-module, we put
M(ǫ) = M ⊗R R(ǫ).

If X and Y are topological spaces, we write C(X,Y ) for the space of continuous
maps from X to Y . The cardinality of a finite set X will be denoted by |X |.

If E/F is a finite extension of fields, we let NE/F : E∗ → F ∗ be the relative
norm and TrE/F : E → F the relative trace map.
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1 Preliminaries

Throughout this section we fix a finite extension F of Qp with valuation ring
O. We write ord: F ∗ → Z for the normalized valuation, i.e. ord(̟) = 1 holds
for any uniformizer ̟ of F .

1.1 p-adic periods and L-invariants

We fix a ring of integers R of an algebraic number field. In the following, we
write the group law of the R-module F ∗ ⊗R multiplicatively.

Definition 1.1.(a) An element of F ∗ ⊗ R is called a (p-adic) period if it is
not in the kernel of the map

ord⊗ idR : F ∗ ⊗R −→ R.

(b) Let q ∈ F ∗ ⊗ R be a period. Given a finite extension Ω of Qp and a
continuous homomorphism λ : F ∗ → Ω we define the L-invariant of q with
respect to λ by

Lλ(q) := (ord⊗ idR)(q)
−1 · (λ⊗ idR)(q) ∈ Ω⊗R.

By definition we have Lλ(q
n) = Lλ(q) for every n ∈ R−{0}. If x ∈ F ∗−O∗, we

write logx : F
∗ → F for the branch of the p-adic logarithm such that logx(x) = 0

and set Lx(q) = Llogx
(q).

The proof of the following lemma is a straightforward computation.

Lemma 1.2. Let q ∈ F ∗ ⊗R be a period.

(a) For elements x, y ∈ F ∗ −O∗ the formula

Ly(q) = Lx(q)− Lx(y)

holds.

(b) Let q̃ ∈ F ∗ ⊗ R be another period. Then the following conditions are
equivalent:

(i) There exist n,m ∈ R − {0} such that qn = q̃m

(ii) Lλ(q) = Lλ(q̃) for all continuous homomorphism λ : F ∗ → Ω and all
finite extensions Ω of Qp

(iii) There exists an element x ∈ F ∗ −O∗ such that Lx(q) = Lx(q̃)
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The following simple but cumbersome lemma will be needed later to ensure
that the number of certain badly behaved cases is finite (see Theorem B). It
should be skipped while reading the article for the first time.

Lemma 1.3. Let qB ∈ F ∗ ⊗R be a period and K an intermediate extension of
F/Qp. There exists a quadratic polynomial f ∈ K[T ] such that for all periods
q, q′ ∈ F ∗ ⊗R and elements x, x′ ∈ F ∗ −O∗ with

• Lx(q) = −Lx(q
B),

• Lx′(q′) = −Lx′(qB) and

• Lp(NF/K(q))2 = Lp(NF/K(q′))2

we have:
f(Lp(NF/K(x))) = f(Lp(NF/K(x′))).

Proof. By Lemma 1.2 (a) we get Lp(q) = −Lp(q
B)+2Lp(x). Since p ∈ Qp ⊆ K

this implies

Lp(NF/K(q)) = TrF/K(Lp(q))

= TrF/K(−Lp(q
B) + 2Lp(x))

= −Lp(NF/K(qB)) + 2Lp(NF/K(x)).

We can do the same calculation for q′ and x′. Therefore, the equation in the
third condition yields

Lp(NF/K(x))2 − Lp(NF/K(qB))Lp(NF/K(x))

=Lp(NF/K(x′))2 − Lp(NF/K(qB))Lp(NF/K(x′)),

which is the quadratic identity we were after.

1.2 Extensions of the Steinberg representation

Given a prodiscrete group A we define the A-valued (continuous) Steinberg
representation St(A) of PGL2(F ) as the space of continuous A-valued functions
on P1(F ) modulo constant functions.

For a continuous group homomorphism λ : F ∗ → A we define Ẽ(λ) as the set
of pairs (Φ, r) ∈ C(GL2(F ), A)× Z with

Φ

(
g ·

(
t1 u
0 t2

))
= Φ(g) + r · λ(t1)

for all t1, t2 ∈ F ∗, u ∈ F and g ∈ GL2(F ). The group GL2(F ) acts on Ẽ(λ) via

g.(Φ(−), r) = (Φ(g−1 · −), r). The subspace Ẽ(λ)0 of tuples of the form (Φ, 0)
with constant Φ is GL2(F )-invariant. We get an induced PGL2(F )-action on

the quotient E(λ) = Ẽ(λ)/Ẽ(λ)0.
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Lemma 1.4. Let π : PGL2(F ) → P1(F ), g 7→ g.∞, be the canonical projection.
The following sequence of Z[PGL2(F )]-modules is exact:

0 −→ St(A)
(π∗,0)
−−−−→ E(λ)

(0,idZ)
−−−−→ Z −→ 0

We write bλ for the associated cohomology class in H1(PGL2(F ), St(A)).

Proof. See Lemma 3.11 (a) of [21]. Note that we use a slightly different exten-
sion than the one in loc. cit.

2 Automorphic L-invariants

For the rest of the article we fix a number field F with ring of integers OF . If v
is a place of F , we denote by Fv the completion of F at v. If p is a finite place,
we let OFp

denote the valuation ring of Fp and write ordp for the normalized
valuation. For a rational place l ≤ ∞ we denote by Sl = Sl(F ) the set of places
of F lying above l.
Given a finite (possibly empty) set S of places of F we define the “S-truncated
adeles” AS

F as the restricted product of the completions Fv over all places

v which are not in S. We often write A
S,∞
F instead of A

S∪S∞

F . If G is an
algebraic group over F and v is a place of F , we write Gv = G(Fv) and put
GS =

∏
v∈S Gv. If K ⊆ G(A) is a subgroup, we define KS as the image of K

under the quotient map G(AF ) → G(AS
F ).

Further, we fix an inner form G of the algebraic group GL2 /F . We will denote
the centre of G by Z and put PG = G /Z. If G is split, we always identify G and
GL2. Similarly, if v is a place of F at which G is split we choose an isomorphism
of Gv with GL2(Fv). Given a place l ≤ ∞ of Q we write Sl(G) ⊆ Sl for the set
of places of F above l at which G is split. We put

dG =

{
|S∞(G)| − 1 if G is split,

|S∞(G)| else.

Following Spieß (cf. [21]) we define automorphic L-invariants attached to cus-
pidal automorphic representations of G(AF ) which are cohomological with re-
spect to the trivial coefficient system. For split G all omitted proofs can essen-
tially be found in Section 4 and 5 of loc. cit. See also [14], Section 4, for the
case of a non-trivial central character and [7] respectively [6] for the case that
the group G is non-split.

2.1 Modular symbols

We write Div(P1(F )) for the free abelian group on P1(F ) and Div0(P
1(F )) for

the kernel of the map

Div(P1(F )) → Z,
∑

P

mPP 7→
∑

P

mP .
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The GL2(F )-action on P1(F ) induces an action on Div0(P
1(F )). We put

DG =

{
Div0(P

1(F )) if G is split,

Z else.

Given a place p ∈ Sp(G) and a prodiscrete abelian group A we write Stp(A)
for the A-valued continuous Steinberg representation of Gp. For a subset S ⊆
Sp(G) we put StS(A) =

⊗
p∈S Stp(A). Moreover, if A = Z with the discrete

topology we simply write StS = StS(Z). Given the data

• a ring R and an R-module N (equipped with the trivial G(F )-action),

• subsets S0 ⊆ S ⊆ Sp(G),

• an open compact subgroup K ⊆ G(AS,∞
F ) and

• a locally constant idele class character ω : IF /F
∗ → R∗ such that ωv is

trivial for all v ∈ S ∪ S∞

we define A(K,ω, S0;N)S to be the space of all functions

Φ: G(AS,∞
F ) −→ HomZ(StS0

,HomZ(DG, N))

such that Φ(gzk) = ω(z)Φ(g) for all z ∈ Z(AS,∞
F ), k ∈ K and g ∈

GL2(A
S,∞
F ). By our assumptions the natural G(F )-action on A(K,ω, S0;N)S

factors through PG(F ).

Definition 2.1. For a datum as above and a continuous character ǫ : PG∞ →
{±1} we let

Mi
G(K,ω, S0;N)S,ǫ = Hi(PG(F ),A(K,ω, S0, N)S(ǫ))

be the space of N -valued S-augmented S0-special modular symbols of level K,
central character ω and sign ǫ. Furthermore, we consider

Mi
G(ω, S0;N)S,ǫ = lim

−→
K

Mi
G(K,ω, S0;N)S,ǫ

with its natural G(AS,∞
F )-action.

Proposition 2.2. Given a datum as above we have:

(a) The R-module Mi
G(K,ω, S0;R)S,ǫ is finitely generated for all i ≥ 0 if R is

Noetherian.

(b) If N is a flat R-module, then the canonical map

Mi
G(K,ω, S0;R)S,ǫ ⊗R N → Mi

G(K,ω, S0;N)S,ǫ

is an isomorphism for all i ≥ 0.

Proof. If G = PGL2 and the field F is totally real, this is Proposition 4.6
of [21]. The proof also works in our more general setup.
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2.2 Definition and basic properties

Let π = ⊗vπv be a cuspidal representation of G(AF ), which is cohomological
with respect to the trivial coefficient system. By a result of Clozel (cf. [11])
there exists a smallest subfield Qπ ⊆ C over which π∞ can be defined and Qπ

is a finite extension of Q. Let Rπ be the ring of integers of Qπ and Vπ the
model of π∞ over Qπ. The Archimedean components of the central character
ωπ of π are trivial. Therefore, ωπ takes values in Q∗

π. If S ⊆ Sp(G) is a subset,

Ω a Qπ-algebra and M an Ω[GL2(A
S,∞
F )]-module we put

Mπ = HomΩ[G(AS,∞

F
)](V

S
π ⊗ Ω,M).

Let Sp(π) ⊆ Sp(G) denote the subset of those primes p ∈ Sp(G) such that
πp is the Steinberg representation. As a straightforward generalization of [21],
Proposition 4.8, we get:

Proposition 2.3. Let Ω be a Qπ-algebra, ǫ : PG∞ → {±1} a character and S
a subset of Sp(π). Then, we have

Mi
G(ωπ, S; Ω)

S,ǫ
π

∼=

{
Ω if i = dG,

0 if i ≤ dG − 1.

For the remainder of this section we fix a place p̃ ∈ Sp(π). Let Ω be a finite
extension of Qp. Every element in Hom(Stp̃,Rπ) can be uniquely extended to
a continuous functional on Stp̃(Ω⊗Rπ). Thus we get a pairing

A(K,ωπ, S;Rπ)
S × Stp̃(Ω) −→ A(K,ωπ , S − {p̃} ;Rπ)

S ⊗ Ω

for every open compact subgroup K ⊆ G(AS,∞
F ) and every subset S ⊆ Sp(π)

which contains p̃. Hence, using Proposition 2.2 (b) we get a cup product pairing

Mi
G(ωπ, S; Ω⊗Rπ)

S,ǫ ×Hj(PGL2(F ), Stp̃(Ω))

∪
−−→Mi+j

G (ωπ, S − {p̃} ; Ω⊗Rπ)
S,ǫ

which commutes with the G(AS,∞
F )-action.

Let λ : F ∗
p̃
→ Ω be a continuous homomorphism and bλ ∈ H1(PGL2(F ), Stp̃(Ω))

be the (restriction of the) cohomology class associated to λ in Section 1.2.
Taking the cup product with bλ induces a map

bλ(π)
ǫ : MdG

G (ωπ, S; Ω⊗Rπ)
S,ǫ
π

∪bλ−−−→ MdG+1
G (ωπ, S − {p̃} ; Ω⊗Rπ)

S,ǫ
π .

Similarly as in Lemma 5.2 of [21] one can prove the following lemma.

Lemma 2.4. Let ordp̃ : F
∗
p̃

→ Z ⊆ Ω be the normalized valuation. Then

bordp̃
(π)ǫ is an isomorphism of free Ω⊗Rπ-modules of rank one.
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Definition 2.5. The (automorphic) L-invariant Lλ(π, p̃)
ǫ ∈ Ω⊗Rπ of π at p

with respect to λ and sign ǫ is defined by the relation

bλ(π)
ǫ = Lλ(π, p̃)

ǫ · bordp̃
(π)ǫ.

In case λ = logp ◦NFp̃/Qp
we put Lcyc(π, p̃)ǫ = Lλ(π, p̃)

ǫ. In case λ = logx with
x ∈ F ∗

p̃
−O∗

p̃
we put Lx(π, p̃)

ǫ = Lλ(π, p̃)
ǫ. If ǫ is the trivial character, we drop

it from the notation.

It is easy to see that Lλ(π, p̃)
ǫ is independent of the choice of set S ⊆ Sp(π)

containing p̃. Note that in case that F is totally imaginary, automorphic L-
invariants do not depend on a choice of sign at infinity.

Proposition 2.6 (Invariance under twists). Let χ : IF /F
∗ → C∗ be a locally

constant character with χp̃ = 1. Then we have the following equality:

Lλ(π, p̃)
ǫ = Lλ(π ⊗ χ, p̃)ǫχ∞

Proof. A special case of the assertion is proven in [21], Lemma 5.5. The same
proof works in the more general setting.

Lemma 2.7 (Automorphic periods). There exists a period q(π, p̃)ǫ ∈ F ∗
p̃
⊗Rπ

such that

Lλ(π, p̃)
ǫ = Lλ(q(π, p̃)

ǫ)

holds for all continuous homomorphism λ : F ∗
p̃
→ Ω and all finite extensions Ω

of Qp.

Proof. In case that the central character is trivial the automorphic period is
constructed in the proof of [7], Theorem 4.5. The construction can be general-
ized verbatim to our situation.

3 Exercises in base change

From now on we fix a cuspidal automorphic representation π of GL2(AF ),
which is cohomological with respect to the trivial coefficient system. We want
to study the behaviour of automorphic L-invariants attached to π under base
change. To this end let E be a finite abelian extension of F with Galois group
G. We will always identify characters of G with idele class characters via the
Artin reciprocity map.

Let πE the base change of π to GL2(AE). By the cyclic base change theorem of
Arthur and Clozel (cf. [2]) we know that πE is an automorphic representation.
If π is Steinberg at a prime p of F , we have that πE is Steinberg at all primes
of E that divide p (see [2], Lemma 6.12). Therefore, πE is cuspidal if πp is
Steinberg for at least one finite place p of F . Thus, we may always assume that
πE is cuspidal.
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3.1 Galois action

The Galois group G acts on GL2(A
∞
E ) via its action on the coefficients. If q is

a prime of E and σ is an element of G, we set qσ = σ−1(q). If λ : E∗
q → Ω is a

continuous homomorphism with values in a finite extension of Qp, we put

λσ : E∗
qσ

σ
−−→ E∗

q

λ
−−→ Ω.

For every locally discrete group A the isomorphism P1(Eqσ )
σ
−→ P1(Eq) induces

an isomorphism
σ∗ : Stqσ (A) −→ Stq(A).

Similarly, we get an isomorphism

σ∗ : Div0(P
1(E)) −→ Div0(P

1(E)),
∑

P

mPP 7−→
∑

P

mPσ(P ).

Given a finite set S = {q1, . . . , qr} of finite place we put Sσ = {qσ1 , . . . , q
σ
r }. If

ǫ : PGL2(E∞) → {±1} is a locally constant character, we set

ǫσ : PGL2(E∞)
σ

−−→ PGL2(E∞)
ǫ

−−→ {±1} .

Let Sp(πE) ⊆ Sp(E) denote the set of all primes q of E which divide p and
such that πE,q is Steinberg. Given subsets S0 ⊆ S ⊆ Sp(πE), an open compact

subgroup K ⊂ GL2(A
S,∞
E ), a locally constant character ǫ : PGL2(E∞) → {±1}

and an Rπ-module N the map

σ : A(K,ωπE
, S0;N)S(ǫ) −→ A(σ−1(K), ωπE

, Sσ
0 ;N)S

σ

(ǫσ)

given by
(σ.Φ)(g)(f)(D) = Φ(σ(g))(σ∗(f))(σ∗D)

for g ∈ GL2(A
Sσ ,∞
E ), f ∈ StSσ

0
and D ∈ Div0(P

1(E)), is an isomorphism, which
is compatible with the homomorphism

PGL2(E) −→ PGL2(E), g 7−→ σ(g).

Therefore, we get a map in cohomology

Mi
GL2,E

(ωπE
, S0;Rπ ⊗ Ω)S,ǫ

σ
−−→ Mi

GL2,E
(ωπE

, σ−1(S0);Rπ ⊗ Ω)S
σ,ǫσ ,

which is compatible with the isomorphism

GL2(A
S,∞
E ) −→ GL2(A

Sσ,∞
E ), g 7−→ σ−1(g).

Lemma 3.1 (Galois invariance). Let ǫ : PGL2(E∞) → {±1} be a locally con-
stant character, q ∈ S(πE) a prime and λ : E∗

q → Ω a continuous character
with values in a finite extension of Qp. Then the equality

Lλ(πE , q)
ǫ = Lλσ (πE , q

σ)ǫ
σ

holds for all σ ∈ G.
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Proof. The diagram

Mi
GL2,E

(ωπE
, {q} ;Rπ ⊗ Ω)

{q},ǫ
πE

×

H1(PGL2(E), Stq(Ω))

Mi+1
GL2,E

(ωπE
, ∅;Rπ ⊗ Ω)

{q},ǫ
πE

Mi
GL2,E

(ωπE
, {qσ} ;Rπ ⊗ Ω)

{qσ},ǫσ

πE

×

H1(PGL2(E), Stqσ(Ω))

Mi+1
GL2,E

(ωπE
, ∅;Rπ ⊗ Ω)

{qσ},ǫσ

πE

∪ ∪

σ

σ∗

σ

is commutative and thus, the claim follows from the Galois invariance of πE .

We can view a character of PGL2(F∞) also as a character of PGL2(E∞) by
precomposing it with the norm.

Corollary 3.2. Let ǫ : PGL2(F∞) → {±1} be a locally constant character
and q ∈ Sp(πE) a prime. The automorphic period q(π, q)ǫ of Lemma 2.7 can
be chosen to be invariant under the decomposition group Gq ⊆ G of q.

Proof. For σ ∈ Gq the previous lemma implies that

Lλ(q(π, q)
ǫ) = Lλ(σ(q(π, q)

ǫ))

holds for every continuous character λ : E∗
q → Ω with values in a finite exten-

sion of Qp and any choice of automorphic period q(π, q)ǫ. By Lemma 1.2 (b)
there exist non-zero m,n ∈ Rπ such that (q(π, q)ǫ)n = (σ(q(π, q)ǫ))m. Consid-
ering the p-adic valuations of both periods we see that m = n and therefore,
(q(π, q)ǫ)m is invariant under σ.

3.2 Artin formalism - the cyclotomic case

The L-function of πE factors as a product of twists of the L-function of π:

L(πE , s) =
∏

χ : G→C∗

L(π, χ, s)(3.1)

Let us assume that π is p-ordinary, i.e. πp is either an ordinary, unramified
principal series representation or an unramified twist of the Steinberg repre-
sentation for all p ∈ Sp. Then, Deppe constructs in [14] a multi-variable p-adic
L-function Lp(π, s). It fulfils the interpolation property

Lp(π, χ) = τ(χ)
∏

p∈Sp

e(πp, χp)L(π, 1/2)(3.2)

for all idele class characters of finite order which are unramified outside all
places above p and ∞. Here τ(χ) is the Gauss sum of τ and e(πp, χp) is an
explicit modified Euler factor. The modified Euler factor e(πp, χp) vanishes
if and only if πp ⊗ χp is of the following type: either it is isomorphic to the
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Steinberg representation or to a parabolic induction from a character of the
form

(F ∗
p )

2 −→ C∗, (t1, t2) 7−→ χ2(t2).

We call these exceptional principal series. Note that if the central character of
π is trivial, no exceptional principal series can occur.
We write Lcyc

p (π, s) for the restriction of the p-adic L-function to the cyclotomic
Zp-extension. If E/F is unramified at all places p ∈ Sp, the representation πE

is also p-ordinary and thus, we can consider the p-adic L-function associated to
πE . The product formula (3.1) together with the interpolation property (3.2)
yields

Lcyc
p (πE , s) =

∏

χ : G→C∗

Lcyc
p (π ⊗ χ, s).(3.3)

Lemma 3.3. Assume that

• π is p-ordinary,

• E/F is unramified at all primes p ∈ Sp,

• Sp(π) = {p̃} and every q ∈ Sp(πE) lies above p̃

• no local component of πE at a prime above p is an exceptional principal
series and

• L(πE , 1/2) 6= 0.

Then we have the following equality:
∏

χ : G→C
∗

χp̃=1

fp̃ · L
cyc(π ⊗ χ, p̃) =

∏

q∈Sp(πE)

Lcyc(πE , q),

where fp̃ is the inertia degree of p̃ in E/F .

Proof. The vanishing of the modified Euler factor for the Steinberg represen-
tation implies that

ords=0 L
cyc
p (π ⊗ χ, s) ≥ 1

if χp̃ is trivial. Hence, by applying the r = |Sp(πE)|-th derivative to (3.3) we
get

1

r!

dr

dsr
Lcyc
p (πE , s)

∣∣∣∣
s=0

=
∏

χ : G→C∗

χp̃=1

d

ds
Lcyc
p (π ⊗ χ, s)

∣∣∣∣
s=0

·
∏

χ : G→C∗

χp̃ 6=1

Lcyc
p (π ⊗ χ, 0).

By the main theorem of [21], or rather its generalization to arbitrary number
fields by Bergunde (see [6], Theorem 4.17), we get

d

ds
Lcyc
p (π ⊗ χ, s)

∣∣∣∣
s=0

= Lcyc(π ⊗ χ, p̃) ·
∏

p∈Sp−{p̃}

e(πp, χp)L(π, χ, 1/2)

Documenta Mathematica 24 (2019) 1225–1243



Functoriality of Automorphic L-Invariants 1237

if χp̃ is trivial, and

1

r!

dr

dsr
Lcyc
p (πE , s)

∣∣∣∣
s=0

=
∏

q∈Sp(πE)

Lcyc(πE , q) ·
∏

q∈Sp(E)\Sp(πE)

e(πE,q, 1) · L(πE , 1/2).

Note, that in [21] and [6] the representation π is assumed to have trivial central
character. But the proof carries over to our more general setup.
The above formulas together with (3.1), (3.2) and our non-vanishing assump-
tion on the special L-value imply that

∏

q∈Sp(πE)

Lcyc(πE , q) =
∏

χ : G→C∗

χp̃=1

Lcyc(π ⊗ χ, p̃) ·
∏

χ : G→C∗

χp̃ 6=1

e(πp̃, χp̃).

We conclude by using e(πp̃, χp̃) = 1−χp̃(̟p̃) and the formula
∏n−1

i=1 1− ζin = n
for a primitive n-th root of unity ζn.

Remark 3.4. By slightly extending Deppe’s construction, i.e. allowing ramified
twists of ordinary representations at places in Sp, one may allow E/F to be
ramified at primes above p. One can also relax the ordinarity condition by
applying recent work of Barrera, Dimitrov and Jorza (see [4]).
If F = Q and E is an imaginary quadratic field in which the prime p is in-
ert, Barrera and Williams have proven the above lemma for modular forms of
arbitrary weight (see [5], Proposition 10.02).

In order to be able to twist to a situation, in which we can use the above lemma,
we need to assume the following simultaneous non-vanishing hypothesis.

Hypothesis (SNV). Let π′ be a cuspidal automorphic representation of
GL2(F ), which is cohomological with respect to the trivial coefficient sys-
tem. For every pair of locally constant characters η : A∗

F /F
∗ → {±1} and

ǫ : F ∗
∞ → {±1} there exists a locally constant character χǫ : A∗

F /F
∗ → C∗ such

that

• χǫ
∞ = ǫ,

• χǫ
p is trivial for all p ∈ Sp and

• L(π′, χǫ, 1/2) · L(π′, ηχǫ, 1/2) 6= 0.

Remark 3.5. In the case F = Q Akbary proved in [1] that there always ex-
ist infinitely many Dirichlet characters χ̃ such that the third condition holds.
Unfortunately, he can not put restrictions on the local behaviour of χ̃. On the
other hand by a classic result of Rohrlich (cf. [20]) Hypothesis (SNV) holds if
η is the trivial character.

The following result partially answers conjecture 5.4 of [21].
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Theorem A (Invariance of sign). Assume that Hypothesis (SNV) holds and
that π is p-ordinary. Then for all p̃ ∈ Sp(π) the automorphic L-invariant
Lcyc(π, p̃)ǫ does not depend on the character ǫ.

Proof. By twisting with an appropriate character, which is unramified at p,
we may assume that Sp(π) = {p̃} and that no local component of π at a
prime above p is an exceptional principal series. Let E′ be a totally imaginary
quadratic extension of F , which is inert at p̃ and split at all other primes in Sp.
Let η be the associated quadratic idele class character. We choose a character
χ (respectively χǫ) as in Hypothesis (SNV) with respect to the trivial character
(respectively ǫ). We may view χ (respectively χǫ) as an idele class character on
A∗

E′ by composing it with the norm map to A∗
F . We get the chain of equalities

Lcyc(π, p̃)
2.6
= Lcyc(π ⊗ χ, p̃)

3.3
=

1

2
· Lcyc(πE′ ⊗ χ, p̃)

2.6
=

1

2
· Lcyc(πE′ ⊗ χǫ, p̃)

3.3
= Lcyc(π ⊗ χǫ, p̃)

2.6
= Lcyc(π, p̃)ǫ,

which proves the claim.

Remark 3.6. In the case F = Q the independence of L-invariants of the sign
at infinity was proven by Breuil (see Corollary 4.5.4 of [10]) using completed
cohomology and by Bertolini, Darmon and Iovita (see Theorem 6.8 of [8]) using
Hida families.

The above theorem together with Lemma 3.1 and Proposition 2.6 immediately
gives the following strengthening of Lemma 3.3.

Corollary 3.7 (Invariance under base change). Assume that Hypothesis
(SNV) holds or that F is totally imaginary. Under the assumptions of Lemma
3.3 we have

(fp̃ · L
cyc(π, p̃))gp̃ = Lcyc(πE , q)

gp̃ ,

where q is a prime of E lying above p̃ and gp̃ is the number of such primes.

Remark 3.8. In certain situations one can relax some of the assumptions in
the corollary above. For example, in case E/F is quadratic it is enough to
assume that Hypothesis (SNV) holds, that π is p-ordinary and that E/F is
unramified at all primes in Sp.

Conjecture 3.9. Let p̃ ∈ Sp(π) be a prime. Then

ep̃fp̃ · L
cyc(π, p̃) = Lcyc(πE , q)

holds for all primes q of E above p̃, where ep̃ denotes the ramification index of
p̃ in E.
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3.3 Artin formalism - the anticyclotomic case

From now we assume that F is totally real and that E is a totally imaginary
quadratic extension with Galois group generated by σ. We fix a prime p̃ ∈
Sp(π), which we assume to be split in E. The places of E above p̃ will be
denoted by q1 and q2. We choose an element u ∈ (OE [q

−1
1 ])∗ − O∗

E , where
OE [q

−1
1 ] denotes the ring of q1-integers.

Lemma 3.10. Assume that

• L(πE , 1/2) 6= 0 and

• there exists a Jacquet-Langlands lift πB of π to the unit group of a totally
definite quaternion algebra B/F that is split at p̃ and in which E can be
embedded.

Then we have the following equality:

Lu/σ(u)(πB , p̃)
2 = Lu/σ(u)(πE , q1) · Lσ(u)/u(πE , q2) = Lu/σ(u)(πE , q1)

2

Proof. The second equality follows directly from Lemma 3.1. The proof of the
first equality is similar to that of Lemma 3.3. We give only a quick sketch of it.
Let G(p̃) be Galois group of the maximal anticyclotomic extension of E which
is unramified outside q1 and q2. Up to torsion G(p̃) is isomorphic to

(O∗
E,q1

×O∗
E,q2

)/O∗
F,p̃ = (O∗

F,p̃ ×O∗
F,p̃)/O

∗
F,p̃

∼= O∗
F,p̃.

Hence, by taking the p-adic logarithm we get up to torsion an isomorphism
between G(p̃) and OF,p̃.
Let Lanti

p̃
(πE , s) be the p-adic L-function, which interpolates the special values

L(πE ⊗ χ, 1/2) for characters χ : G(p̃) → C∗. It can be constructed by taking
a projective limit of Stickelberger elements associated to πE and the split ex-
tension E ×E (see [6], Definition 4.2). Note that this is not quite a restriction
of Deppe’s p-adic L-function since we do not modify the Euler factors at other
primes above p.
Comparing interpolation properties we get the equality

Lanti
p̃

(πE , s) = Lanti
p̃

(πB , s)L
anti
p̃

(πB ,−s),

where Lanti
p̃

(πB , s) is the p-adic L-function constructed via Stickelberger ele-

ments associated to πB and the non-split extension E/F (see [7], Definition
3.2, or [6], Definition 4.2). Using the main result of [6] about leading terms
of Stickelberger elements for both sides of the equation we get the desired
identity.

Remark 3.11. The results of [7] and [6] are valid for arbitrary quaternion
algebras. But, in general it is harder to give an explicit description of G(p̃) if the
quadratic extension is not totally imaginary. Still, under suitable assumptions
we expect similar results to the one above. For the sake of simplicity we chose
to work only with totally imaginary extensions.
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4 Conclusions

Until the end of the article we assume that F is a totally real number field.

Theorem B (Invariance under Jacquet-Langlands lifts). Assume that Hypoth-
esis (SNV) holds. Let p̃ ∈ Sp(π) be a prime. If

• π is p-ordinary,

• [Fp̃ : Qp] = 1 or p does not split in F and

• there exists a Jacquet-Langlands lift πB of π to the unit group of a totally
definite quaternion algebra B/F , which is split at p̃,

we have
Lcyc(π, p̃) = ±Lcyc(πB , p̃).

Proof. Let E be a totally imaginary quadratic extension of F , which is split at
p̃. We may use Hypothesis (SNV) to assume that L(πE , 1/2) 6= 0, Sp(π) = p̃

and all primes in Sp(πE) lie above p̃. Let q be one of those primes. By Corollary
3.7 and our assumptions we have

Lp(NFp̃/Qp
(q(πE , q)))

2 = Lp(NFp̃/Qp
(q(π, p̃)))2.(4.1)

By Lemma 3.10 we have Lu/σ(u)(q(πE , q)) = ±Lu/σ(u)(q(πB , p̃)), where u ∈ E∗

is the element defined at the beginning of section 3.3 and σ is the generator of
the Galois group of E/F .
If we assume that the sign is negative for every such extension E, then by
Lemma 1.3 the p-adic numbers Lp(NFp̃/Qp

(u/σ(u))) would all fulfil a certain
quadratic equation. Hence, there would be only finitely many possible values
for these numbers. In case, Fp̃ = Qp this is obviously absurd since there are
infinitely many extensions E/F . In general, we cannot control the kernel of
the local norm map NFp̃/Qp

. But, if p does not split in F , we may consider
extensions of the form E = FK whereK/Q is an imaginary quadratic extension
in which p is split. Then, the element u ∈ E∗ can be chosen to lie in K∗. Hence,
we have

Lp(NFp̃/Qp
(u/σ(u))) = [Fp̃ : Qp]Lp(u/σ(u))

and we can argue as before.
In both cases we conclude that there exists an extension E/F such that

Lu/σ(u)(q(πE , q)) = Lu/σ(u)(q(πB , p̃)).

Thus, we also have Lp(q(πE , q)) = Lp(q(πB , p̃)) by Lemma 1.2 (b). This to-
gether with equation (4.1) proves the claim.

Remark 4.1. In the case F = Q Bertolini, Darmon and Iovita show the actual
equality of the above L-invariants (cf. [8]). They use methods introduced by
Greenberg and Stevens in [16]. More precisely, they relate both L-invariants to
the logarithmic derivative of the Up-eigenvalue in a Hida family passing through
the given modular form.
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Corollary 4.2. Assume that hypothesis (SNV) holds. Let A/F be a p-
ordinary modular elliptic curve, which has split multiplicative reduction at a
prime p̃ ∈ Sp. Let qA,p̃ be the Tate period of A at p̃ and π the automorphic
representation of PGL2 /F associated to A. Suppose that either [Fp̃ : Qp] = 1
holds or that p does not split in F . Then, the following equality holds:

Lp(NFp̃/Qp
(qA,p̃))

2 = Lcyc(π, p̃)2

Proof. Using similar twisting arguments as before we may replace F by a totally
real quadratic extension. Therefore, there exists a Jacquet-Langlands lift of π
to a totally definite quaternion algebra and we get Lcyc(π, p̃)2 = Lcyc(πB , p̃)

2.
By Theorem 4.10 of [7] the automorphic period q(πB , p̃) is equal to the Tate
period of A.

Combining the above comparison of L-invariants with [21], Theorem 5.7, yields
the following partial answer to Hida’s exceptional zero conjecture (cf. [18]).

Corollary 4.3 (Exceptional zero conjecture). Let A/F be a p-ordinary
modular elliptic curve and Lp(A, s) its associated p-adic L-function. Write
Sp(A) ⊆ Sp for the subset of primes, at which A has split multiplicative reduc-
tion and r = |Sp| for its cardinality. Assume that Hypothesis (SNV) holds and
that Fp = Qp for all primes p ∈ Sp(A). Then we have

L(r)
p (A, 0) = ±r!

∏

p∈Sp(A)

Lp(qA,p) ·
∏

p∈Sp−Sp(A)

ep(A) · L(A, 1),

where qA,p is the Tate period of A at p ∈ Sp(A) and ep(A) = e(πp, 1) is the
modified Euler factor at p ∈ Sp − Sp(A).

Generalizations of Hida’s conjecture to arbitrary number fields have been pro-
posed by Deppe (cf. [14], Conjecture 4.15) and Disegni (cf. [15]). Similarly as
in Corollary 4.3, one can use the following theorem together with Bergunde’s
generalization of Spieß’ theorem to arbitrary number fields (see [6], Theorem
4.17) to give partial answers to these conjectures.

Theorem C (CM extensions). Assume that Hypothesis (SNV) holds. Let A/F
be a p-ordinary modular elliptic curve, which has split multiplicative reduction
at a prime p̃ ∈ Sp with [Fp̃ : Qp] = 1. Let qA,p̃ be the Tate period of A at p̃
and π the automorphic representation of PGL2 /F associated to A. Then, the
equality

Lp(qA,p̃) = Lcyc(πE , q)

holds for every totally imaginary quadratic extension E, in which p̃ splits, and
every prime q above p̃.

Proof. Let E be as in the theorem, u ∈ E∗ an element as defined at the
beginning of Section 3.3 and σ the generator of the Galois group of E/F . By
similar arguments as in the proof of Theorem B we know that

Lu/σ(u)(q(πE , q)) = ±Lu/σ(u)(qA,p̃).
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Assume that the sign is negative. Then, we have the chain of equalities

Lp(qA,p̃)
2 4.2
= Lcyc(π, p̃)2

3.7
= Lcyc(πE , q)

2

= Lp(q(πE , q))
2

1.2
= (−Lp(qA,p̃) + 2Lp(u/σ(u))

2.

Since Lp(u/σ(u)) 6= 0 this implies that

Lp(u/σ(u)) = Lp(qA,p̃).

But this is absurd since u/σ(u) is algebraic by definition while by a theorem of
Barré-Sirieix, Diaz, Gramain and Philibert (cf. [3]) qA,p̃ is transcendental.
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