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Abstract. We introduce a relation on real conjugacy classes of SL(2)-
orbits in a Mumford-Tate domain D. The relation answers the ques-
tion when is one R–split polarized mixed Hodge structure more singu-
lar/degenerate than another? The relation is compatible with natural
partial orders on the sets of nilpotent orbits in the corresponding Lie
algebra and boundary orbits in the compact dual.

A generalization of the SL(2)-orbit theorem to such domains leads to an
algorithm for computing this relation. The relation is then worked out in
several examples and special cases, including period domains, Hermitian
symmetric domains, and complete flag domains.

Although the above relation is not in general a partial order, it leads (via
cubical sets) to a poset of equivalence classes of multivariable nilpotent
orbits on D. The elements of this poset encode the possible degeneracy
relations amongst the polarized mixed Hodge structures that arise in a
several-variable degeneration of Hodge structure. We conclude with an
example illustrating a link to mirror symmetry for Calabi-Yau VHS.
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1 Introduction

1.1 Objective

The purpose of this article is to use representation theory to better understand
the constraints on several-variable degenerations of Hodge structure, and hence
(via the period map) on degenerations of algebraic varieties along a local normal
crossing divisor. Polarizable nilpotent cones σ = R>0〈N1, . . . , Nr〉 in a reductive
Lie algebra gR are the basic objects underlying such degenerations: any unipotent
variation of Hodge structure over (∆∗)r is approximated on the universal cover by
a (Hodge-theoretic) nilpotent orbit θ(z) = e

∑
zjNjF •

∞, where the Nj ∈ gQ are the
monodromy logarithms. It is these cones that we would like to somehow classify,
for polarized variations with arbitrary Hodge numbers and Mumford-Tate group
G.
We recall that G ≤ Aut(V,Q) is the reductive, connected Q-algebraic group fixing
all Hodge tensors of a polarized Hodge structure (V,Q, ϕ) on a Q-vector space V .
However, the Lie group G(R) of real points need not be topologically connected;
and we shall primarily work with the identity connected component G(R)+, of
which the (connected) Mumford-Tate domain D := G(R)+.ϕ ∼= G(R)+/G0(R)
is an orbit. The domain D is an analytic open subset of its compact dual Ď =
G(C).F •

ϕ . Given a period map Φ : (∆∗)r → Γ\D with generic M-T (Mumford-
Tate) groupG, the approximating nilpotent orbit θ(z) has the property that θ(z) ∈
D when all Im(zj)≫ 0 (θ is polarized), and F •

∞ ∈ Ď satisfies NjF •
∞ ⊆ F •−1

∞ (θ is
horizontal).
Our present goal is to construct a “combinatorially computable” finite poset com-
prising suitable equivalence-classes of these {θ}, in such a way as to render trans-
parent the relation between the stratification of a cone σ (in a given class) by its
faces and the stratification of Nilp(gR) and ∂D ⊂ Ď by G(R)+-orbits. To obtain a
reasonable classification, we shall jettison much of the rational structure, allowing
the Nj to be real so that we may act by G(R)+ on the set of all such {θ}. Un-
fortunately, for r > 1, what remains is still a “wild” problem – for instance, this
action typically has infinitely many orbits. In order to find some structure in the
situation, we are therefore led to study equivalence classes modulo the action of
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G(R)+ on each face of σ individually. The full strength of the multivariate SL(2)-
orbit theory, adapted to M-T domains, must be brought to bear to determine how
the resulting equivalence-classes of faces may fit together – that is, which limiting
MHS-types can admissibly degenerate into which.
In order to describe these goals (and our results) more precisely, we shall introduce
the main objects of study ΨD, ND, and ∆D in the next subsection. The initial
stimulus for this paper was to relate work by the third author on ΨD [Rob15]
to work of the first two authors on ∆D [KP14] and Hodge-theoretic boundary
components [KP16], and to the study of the partial order on ∆D for adjoint
domains in [KR17].
Before going further, we briefly address why we work in the more general setting
of Mumford-Tate domains [GGK12], rather than sticking to period domains (i.e.
to the case G = Aut(V,Q)). While long familiar in the setting of Shimura varieties
(cf. [Ker14, FL13]), period maps into such subdomains are increasingly common
in algebraic geometry, whether in the context of “occult” period maps arising
from cyclic covers (e.g. [ACT11, LPZ18]), or from other motivations related to
arithmetic or exceptional groups (e.g. [dSKP16, Kat15, Yun14]). In these and
related settings, it is important to be able to compute the restrictions imposed by
the M-T group on the LMHS types and on their degeneracies into one another.
Also significant is that the definitions and results are simply more natural in the
representation-theoretic language. For instance, while the relations ≤,� on the set
ΨD are not partial orders in general (or for most period domains), they actually
yield a linear order when D is Hermitian symmetric (§6), and for “complete flag”
domains ≤ (but not �) yields a partial order (§7). Moreover, while some of the
results for period domains can be stated in terms of Hodge numbers (e.g. Theorem
5.18), we are unaware of such a formulation for the secondary poset in §8.

1.2 Definitions

Let D = G(R)+/G0(R) be a Mumford–Tate domain parameterizing weight k, Q–
polarized Hodge structures F on V . (Henceforth we shall drop the superscript
bullets on these Hodge flags.) By the 1-variable case of Schmid’s Nilpotent Orbit
Theorem [Sch73], a period map Φ : ∆∗ → Γ\D (or rather, its lift Φ̃ : H → D) is
asymptotically approximated by a nilpotent orbit

z 7→ ezNF . (1.1)

Here F is a point in the compact dual Ď = G(C)/P of D, N is a nilpotent
element of the Lie algebra gR of G(R)+, z ∈ C, and ezNF ∈ D for Id z ≫ 0. The
“naïve limit”

F∞ := lim
Id z→∞

ezNF

of the nilpotent orbit lies in the analytic closure D of D in the compact dual.

1.2.1 Polarized mixed Hodge structures

Recall that, given F ∈ Ď and a nilpotent N ∈ gR, the map (1.1) is a nilpotent
orbit on D if and only if (F,N) is a polarized mixed Hodge structure (PMHS)
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on D, cf. [Sch73, (6.16)] and [CKS86, (3.13)]. Associated to N is a monodromy
weight filtration W = W (N)[−k] on V , see §A.7. Then (F,N) is a PMHS if
and only if NF p ⊂ F p−1 (∀p), F induces a weight-m HS on each GrWm V , and
Qℓ(u, v) = Q(u,N ℓv) polarizes each primitive subspace (GrWk+ℓV )prim (∀ℓ ≥ 0).

1.2.2 Horizontal SL(2)’s

A particularly nice class of nilpotent orbits are those arising from horizontal SL(2)s.
Schmid’s SL(2)–Orbit Theorem [Sch73] asserts that every one-variable nilpotent
orbit is asymptotically approximated by a horizontal SL(2)–orbit. (The several-
variable SL(2)–Orbit Theorem is due to Cattani, Kaplan and Schmid [CKS86].)
The horizontal SL(2)–orbits on D are the nilpotent orbits on D with the prop-
erty that the PMHS is R–split (which is to say, the associated actual MHS
(F,W (N)[−k]) is R–split).
Set

B̃R(D) :=
{
(F,N) ∈ Ď ×Nilp(gR) | (F,N) is an R–split PMHS on D

}
.

Let Nilp(gR) ⊂ gR denote the set of nilpotent endomorphisms. Then we have maps

B̃R(D)

Nilp(gR) Ď ,

φ∞π (1.2)

where π is the projection (F,N) 7→ N onto the second factor, and

(F∞ = ) φ∞(F,N) := lim
y→+∞

exp(iy N)F ∈ D

is the naïve limit map. (Here and throughout, we denote
√
−1 by a boldface i.)

In the case of horizontal SL(2)’s, the latter is related to the PMHS by

Proposition 1.3 ([KP14, §5.1]). When the nilpotent orbit is an SL(2)–orbit, F
and F∞ lie in the same G(R)+–orbit.

1.2.3 Congruence classes

The groupG(R)+ acts on bothD and Nilp(gR) (via the adjoint action in the second
case1). The Schmid and Cattani–Kaplan–Schmid orbit theorems, and their rôle
in the analysis of degenerations of Hodge structure, lead us to consider the set

ΨD := {G(R)+–conjugacy classes of pairs (F,N) ∈ Ď ×Nilp(gR)

such that (F,N) is an R–split PMHS on D}

introduced in [Rob15]. Setting

1In an unfortunate clash of nomenclature, these orbits are also called “nilpotent orbits” in
representation theory.
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∆ :=
{
G(R)+–orbits in the analytic closure D ⊂ Ď

}
,

N := {G(R)+–conjugacy classes in Nilp(gR)} ,

the maps of (1.2) descend to well-defined maps

ΨD

N ∆

φ∞π (1.4)

on the quotients.
Given [F,N ] ∈ ΨD, we say that φ∞([F,N ]) ∈ ∆ is the boundary orbit polarized by
[F,N ] and that N is a polarizing nilpotent. Let

∆D := φ∞(ΨD) ⊂ ∆

denote the polarizable boundary strata, and

ND := π(ΨD) ⊂ N

the (conjugacy classes of) polarizing nilpotents. Thus we obtain a subdiagram

ΨD

ND ∆D

φ∞π (1.5)

of (1.4). Surprisingly, we have

Theorem 1.6. The map φ∞ : ΨD →∆D is a bijection.

Theorem 1.6 is proved in §2.4. In contrast, the map π : ΨD → ND generally fails
to be injective; see Example 7.14.

1.3 Motivation

On each of ΨD, ∆ and N, we introduce “relations”, which for the latter two
sets are partial orders given by “containment in closure”. Schmid’s several-variable
Nilpotent Orbit Theorem leads to a notion of a “polarizable relation.” Very roughly,
these are the relations that are “Hodge–theoretically realizable.”
It is these polarizable relations which are our main object of study, along with the
relationships between ΨD, ∆ and N, especially as encoded in Hodge-theoretically
natural maps (1.4) preserving the relations. Our efforts are motivated by the
expectation that the polarizable relations will reflect the boundary structure of a
partial compactification Γ\D. Given an extension M → Γ\D of a period map,
this would in turn provide some information on the boundaryM\M of the moduli
space.
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Example 1.7 (Period domain for h = (g, g)). A familiar classical example is the
period domain parameterizing weight 1 Hodge structures. In this case ΨD consists
of g + 1 elements, the relations are all polarized and define a linear order. In
particular, we may enumerate the elements [Fa, Na] ∈ ΨD, 0 ≤ a ≤ g, so that the
linear order may be visualized as

[F0, N0] → [F1, N1] → [F2, N2] → · · · → [Fg, Ng] ,

where each arrow → represents a generating relation < of the linear order. Spe-
cializing to g = 2, we have [F0, N0] → [F1, N1] → [F2, N2]. Geometrically, these
polarized relations are realized by degenerations of the form

Weight one Hodge structures are discussed in greater detail in Examples 5.4 and
5.19.

1.4 Relations

We may define partial orders on ∆ and N by “inclusion in closure.” That is, given
N ∈ N, let N denote the analytic closure of N in Nilp(gR); likewise, given O ∈∆,
let O denote the analytic closure of O in Ď. Given Ni ∈ N, we write

N1 ≤ N2 if N1 ⊂ N 2 .

We give ∆ the “opposite” partial order: given Oi ∈∆, we write

O1 ≤ O2 if O2 ⊂ O1 .

(This is the choice that will be compatible with inclusions of nilpotent cones.) As
subsets, both ∆D ⊂∆ and ND ⊂ N inherit partial orders.
In §2 we define a relation (also denoted ≤) on ΨD. In general transitivity fails for
this relation, so that it is not a partial order (Examples 1.18 and 5.22). Nonethe-
less, the maps of (1.4) preserve the relations.

Theorem 1.8. The surjections φ∞ : ΨD → ∆D and π : ΨD → ND preserve the
relations ≤.

The theorem is proved in §2.3.

1.5 Polarized relations

In §3 we introduce the notion of a “polarized relation”; these are the relations
in the partial orders that may be realized Hodge theoretically. Geometrically,
a polarized relation � arises as follows (for example): consider a variation of
Hodge structure Φ : ∆∗ ×∆∗ → Γ\D defined over a product of punctured discs.
Then Schmid’s Nilpotent Orbit Theorem associates to the limits limz→0 Φ(w, z)
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and limw,z→0 Φ(w, z) two conjugacy classes [F1, N1], [F2, N2] ∈ ΨD with polarized
relation [F1, N1] � [F2, N2]. More generally, suppose that σ is a nilpotent cone
underlying a (possibly several variable) nilpotent orbit eCσF . Let Γσ denote the
faces of σ, and define a partial order on Γσ by declaring σ1 ≤ σ2 if σ1 ⊂ σ2. Then
we construct a commutative diagram associated to the nilpotent orbit:

Γσ

ND ΨD ∆D .

ψ◦π◦ φ◦
∞

π φ∞

(1.9)

Theorem 1.10. The map ψ◦ : Γσ → ΨD preserves the relations ≤.

Theorem 1.10 is proved in §3.5.1. From Theorems 1.8 and 1.10, and the commu-
tativity of (1.9), we obtain

Corollary 1.11. The maps φ◦∞ : Γσ → ∆D and π◦ : Γσ → ND are morphisms
of posets.

We note that, in general, the full nilpotent orbit is needed to define φ◦∞ and ψ◦: the
cone σ by itself gives only π◦. (The issue is that the associated boundary component
B̃(σ) may have multiple connected components; see §3 and also Example 7.14.)

Definition 1.12. A relation in any one of ΨD, ∆D or ND is polarized if it is the
image of a relation on Γσ.

The key computational tool used to identify polarizable relations is Theorem 3.11:
any polarized relation � may be realized by commuting horizontal SL(2)’s. This
result relies, in turn, on the multivariable SL(2)-orbit theorem. This theorem is
proved by Cattani, Kaplan and Schmid [CKS86] in the case that D is a period
domain. We extend their result to arbitrary Mumford-Tate domains in §4.

Remark 1.13. The polarized relations � form a partial order only in very special
cases; in general, transitivity fails; see Examples 1.18 and 5.22. The special cases
include: (i) Hermitian symmetric D (Examples 5.19 and 5.20, and Theorem 1.14),
(ii) period domains with contact horizontal distribution (Example 5.21). In both
cases all relations are polarized.

1.5.1 Period domains

In §5 we consider the case that D is a period domain. The main result here
is a simple, combinatorial characterization of polarized relations in terms of the
possible Hodge substructures on the primitive cohomology (Theorem 5.18). A
number of examples are worked out here. (In this section only, we work modulo
the full automorphism group Aut(VR, Q), rather than the connected component.
Of course, this only makes a difference for even weight.)

1.5.2 The classical case

In §6 we study the “classical case” that D is Hermitian symmetric. (This includes
Example 1.7 above.)
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Theorem 1.14. If D is Hermitian symmetric, then (i) the relation ≤ on ΨD is a
linear order, and (ii) all relations are polarized.

The theorem is proved in §6.2. Moreover, in this case there exists a single nilpotent
cone σ that realizes every polarizable relation on ΨD (Remark 6.3).

1.5.3 The case of minimal isotropy

In §7 we turn to the case that the isotropy subgroup G0(R) of D is a torus. As
discussed there, this case may be viewed as “maximally nonclassical.”

Theorem 1.15. Suppose that G0(R) of D is a torus. Then ΨD is indexed by the
subsets of the simple roots S of gC, and the relation [F1, N1] ≤ [F2, N2] ∈ ΨD holds
if and only if S1 ⊆ S2. In particular, ≤ yields a partial order on ΨD. Moreover, a
relation is polarized if and only if the corresponding subsets S1 ⊂ S2 ⊂ S have the
property that the elements of S1 are strongly orthogonal to the elements of S2\S1.
Accordingly, � is also a partial order on ΨD.

The theorem is proved in §7 (cf. Proposition 7.4 and Corollary 7.5).

1.6 Examples

Example 1.16 (Period domain for h = (2,m, 2)). An interesting nonclassical case
that has much in common with the classical case is the period domain parameter-
izing weight two polarized Hodge structures with Hodge numbers h = (2,m, 2).
This period domain is “nearly classical” in the sense that the horizontal subbundle
T hD ⊂ TD has corank 1 (while T hD = TD holds in the classical case). In this
case the relations on Ψ̄D define a partial (but nonlinear) order, and the maps of
(1.5) are isomorphisms of posets. Moreover the relations are all polarizable. Each
set consists of six elements, which we enumerate 0, I, II, . . . ,V, where “0” corre-
sponds to D (i.e. pure HS) and “V” to Hodge-Tate LMHS. The partial order may
be visualized as below, where each arrow “→” (suggesting degeneration) represents
a generating relation “<” (suggesting inclusions of cones):

0 I

II

III

IV V (1.17)

So, for example, here we have I < II and II < IV (so that I < IV by transitivity),
but there is no relation between II and III. (These period domains parameterize
Hodge structures of Horikawa surfaces. Green, Griffiths and Laza [GGL] have
identified geometric degenerations realizing each of the arrows in (1.17). As in
Example 1.7, the algebraic varieties become successively more singular as we move
to the right.) To juxtapose with the classical case:

(a′) The partial order is nonlinear (Example 5.6).
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(b′) All the relations are polarized (Example 5.14).

(c′) There does exist a single nilpotent cone with the property that every polar-
ized relation on ΨD is realized by some face of σ [BPR17, §5.3].

This example is discussed in greater detail in Examples 5.6, 5.14 and 5.21.

In general, the structure of the polarizable relations on ΨD, ∆D and ND is not
a simple as Examples 1.7 and 1.16 may suggest. The following example (which is
a special case of Examples 5.8 and 5.22) hints at the more complicated structures
that may arise.

Example 1.18 (Period domain for h = (1, 2, 2, 1)). As in the two examples above
the maps of (1.5) are bijections. However, as we will discuss below, the relation on
ΨD is not a partial order. The set ΨD consists of eight elements, which we denote

ΨD = {I0 , I1 , I2 , II0 , II1 , III0 , IV1 , IV2}

in order to be consistent with the notation of Examples 5.8 and 5.22. The polarized
relations ≺ on ΨD are indicated below by the arrows →.

I0 I1 I2

II0 II1 IV2

III0

IV1

Notice that the polarized relations are not transitive (and so fail to constitute a
partial order): II0 ≺ II1 ≺ IV2, but II0 6≺ IV2. The remaining (unpolarized)
relations are

I1 < IV1

I2 < III0 , IV2

II0 < III0 , IV1 , IV2 .

Note that the relation < is not transitive: I1 < I2 and I2 < III0, but I1 6< III0.

1.7 Secondary poset

The secondary poset Ψ̃pol
D of equivalence classes of multivariable nilpotent orbits

is constructed in §8.1. This, finally, is the object promised in §1.1, which classifies
how admissible degeneracies may be assembled into cones.
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We first define a partially ordered set Ψ̃D whose elements are morphisms (for any
r ∈ N) from the power sets (P{1, . . . , r},⊆) to (ΨD,�) satisfying certain root-
theoretic admissibility conditions, and which are ordered by an obvious notion of
inclusion. These elements are called admissible n-cubes. We then define two sub-
posets Ψ̃D ⊇ Ψ̃str

D ⊇ Ψ̃pol

D , with Ψ̃pol

D indexing the “types” of multivariable nilpotent
orbits that really do occur. (The reason for defining Ψ̃D at all is that it is straight-
forward to compute, whereas the two refinements are not.) In §8.2 we compute
these posets in the case where G(R) is the simple, noncompact, exceptional real
Lie group G2 of rank two, the interesting case being that with Hodge numbers
(2, 3, 2).
Finally, in §8.3 we describe how mirror symmetry can be used in some special
cases to check that a given admissible n-cube in Ψ̃D belongs to Ψ̃pol

D . Much
to our surprise (and great interest), since the initial posting of this article, the
classification of admissible 2-cubes for Calabi-Yau variations has been put to use
in work on quantum gravity [GPV18, GLP19].

1.8 Technical remarks

(i) A given connected Mumford-Tate domain arises from a Hodge representa-
tion (of G) on a vector space V . In the paper, we frequently pass to the
adjoint representation (on g), which factors through Gad. However, this af-
fects neither the (connected) M-T domain nor its boundary components, cf.
[KP16, §1].

(ii) Given a Mumford-Tate (algebraic) group G and field K ⊇ Q, we write GK
for the base-change (an algebraic group) and G(K) for the group of K-valued
points, which we interpret as a Lie group when K = R or C. While G is
always connected (i.e. irreducible), G(R) need not be, as in the case of
SO(p, q). On the other hand, if G0 ≤ GR is the isotropy group of a HS ϕ,
then G0(R) is always connected as a Lie group. (Being the centralizer of
a torus in G, G0 connected as an algebraic group. As G0(R) is compact,
each of its elements is semisimple, hence – by the algebraic connectedness –
contained in some real torus T ≤ G0(R), which being compact is an (S1)r.)

(iii) On the other hand, in §5, for even-weight period domains, we use a groupG =
O(V,Q) which (with two irreducible components) is not even algebraically
connected. In this situation, the Lie group G(R) ∼= O(p, q) has four compo-
nents, and G0(R) has two. Moreover, the domain D̃ = G(R).ϕ = D∐D′ has
two components. The reason why the resulting (G(R)-)equivalence-classes
are quotients of those for D, is that SO(V,Q)/SO(V,Q)+ already gives iden-
tifications between ΨD and ΨD′ , etc.

(iv) We will make frequent use of an identification ΨD ∼= Lϕ,t/W0 (cf. (2.6)),
which is stated and proved in [Rob15, Thm. 5.5] under the assumption that
the horizontal distribution on D is bracket-generating. That this assumption
is unnecessary may be seen at once in light of [Rob14, Prop. 3.10], which
yields a (unique) subdomain D = G(R)+.ϕ through ϕ ∈ D which is maxi-
mal for the bracket-generating property and contains every horizontal SL(2)
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through ϕ. By [Rob15], we have ΨD
∼= Lϕ,t/W0, where W0 is the Weyl group

of G0(R) and L is the same as for D. Quotienting both sides by the (larger)
Weyl group of G0(R) then yields the identification in the general case.

The proofs in the paper make some use of representation theory; the necessary
background is reviewed in the appendix.
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2 The relation on ΨD

Recall that ΨD is the finite set consisting of G(R)+-conjugacy classes of pairs
(F,N) ∈ Ď × Nilp(gR) defining R-split PMHSs (or equivalently, of horizontal
SL(2)-orbits). In this section, we shall use inclusions of Levi subalgebras in gR
to define the relation alluded to in §1.4, and prove Theorem 1.8 establishing the
compatibility of the relation with the partial orders on ND and ∆D.

2.1 Parameterization of ΨD

To define the relation on ΨD we must first summarize the characterization of
ΨD given by Robles in [Rob15]. The description is representation theoretic and
involves the notions of Weyl groups, Levi subalgebras and distinguished grading
elements; the reader wishing to review these notions will find definitions and some
discussion in the appendix.
Fix a Hodge structure ϕ ∈ D. From this point on, we will

assume that G0(R) is the stabilizer of ϕ in G(R)+.

Let
gC =

⊕

p∈Z

gpϕ (2.1)

denote the induced weight zero Hodge decomposition.2 Recall that

[gpϕ, g
q
ϕ] ⊂ gp+qϕ . (2.2)

Moreover,
g0ϕ,R := g0ϕ ∩ gR

is a compact real form of g0ϕ, and the Lie algebra of G0(R).
Let E

′
ϕ ∈ End(gC) be the endomorphism acting on gpϕ by p1. Then (2.2) implies

that E
′
ϕ is a derivation of gC. Since gC is semisimple, there exists a semisimple

2Traditionally, gpϕ is denoted g
p,−p
ϕ .
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1306 Kerr, Pearlstein and Robles

element Eϕ ∈ gC such that E′ϕ = ad(Eϕ). Note that Eϕ is a grading element (§A.3).
Moreover, Eϕ ∈ igR [Rob14, §2.3].
Fix a compact Cartan subalgebra t ⊂ gR containing iEϕ. We have

t ⊂ g0ϕ,R . (2.3)

Given a Levi subalgebra lR ⊂ gR, recall the projection πss
l : lC → lssC onto the

semisimple factor, cf. (A.4). Define3

Lϕ,t :=

{
ϕ–stable Levi subalgebras lR ⊂ gR such that t ⊂ lR and

2 πss
l (Eϕ) is a distinguished grading element of lssC

}

. (2.4)

Note that
Eϕ ∈ lC for all lR ∈ Lϕ,t , (2.5)

and that πss
l (Eϕ) is always a grading element of lssC . Moreover, t is always an

element of Lϕ,t (cf. A.8). Let W0 denote the Weyl group of g0ϕ. Then W0 acts on
Lϕ,t and

ΨD ≃ Λϕ,t := Lϕ,t/W0 . (2.6)

Given [lR] ∈ Λϕ,t, the corresponding [F,N ] ∈ ΨD is described as follows. (See
[Rob15] for details.) The Cartan subalgebra t ⊂ gR determines a Cartan decom-
position gR = kR ⊕ k⊥R with kR ⊃ t a maximal compact subalgebra. In fact,

kC = ⊕ g2pϕ and k⊥C = ⊕ g2p+1
ϕ . (2.7)

Definition 2.8. A Ðoković–Kostant–Sekiguchi triple (DKS–triple) is a standard
triple (§A.6) {E,Z,E} ⊂ gC such that Z = −Z ∈ kC and E,E ∈ k⊥C .

Lemma 2.9 ([Rob15]). Given lR ∈ Lϕ,t, there exists a DKS–triple {E,Z,E} ⊂ lssC
with neutral element

Z = 2 πss
l (Eϕ) ∈ it ⊂ g0ϕ (2.10)

and E ∈ g−1
ϕ .

Given a DKS–triple as in Lemma 2.9, set

̺ := exp iπ4 (E+ E) ∈ LC . (2.11)

Then the conjugacy class of ΨD associated with [lR] ∈ Λϕ,t by (2.6) is represented
by

(F,N) = ̺−1 · (ϕ,E) ∈ B̃R(D) . (2.12)

Moreover, both F = ̺−1 · ϕ and

φ∞(F,N) = ̺ · ϕ ∈ Ď (2.13)

lie in the same G(R)+–orbit O ∈∆D.
Observe that

[Fϕ, 0] ∈ ΨD

is a well-defined element; we call this the trivial element. Note that it corresponds
to the Cartan:

[Fϕ, 0] ←→ [lR] = [t] . (2.14)
3See the choice of conventions in §A.8.
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2.1.1 The diagonal Levi

There is a second Levi subalgebra l̃R ⊃ lR that will be used to define the relation
on ΨD. The R–split PMHS (F,W (N)) induces a Deligne bigrading gC = ⊕gp,q(F,N).

To be precise, setting E
′ = Ad−1

̺ (Eϕ) and Y = Ad−1
̺ (Z), we have

gp,q = {ξ ∈ gC | [E′, ξ] = p ξ , [Y, ξ] = (p+ q)ξ } , (2.15)

cf. [Rob15, (5.12)]. The Levi subalgebra lC is contained in the “diagonal” Levi
subalgebra

l̃C := ⊕ g
p,p
(F,N) , (2.16)

which is also defined over R. Moreover, since

Adρ−1 [2Eϕ − Z,Adρ(ξ)] = [2E′ − Y, ξ]

and ξ ∈ lC ⇐⇒ Adρ(ξ) ∈ lC ,

l̃C = {ξ ∈ gC | [2Eϕ − Z , ξ] = 0} . (2.17)

That is, 2Eϕ−Z is an element of the centralizer of l̃C in gC. It is a general property
of Levi subalgebras that they contain their centralizers. That is,

2Eϕ − Z ∈ z̃ , (2.18a)

where z̃ denotes the center of l̃C. Since Z ⊂ lssC ⊂ l̃ssC , it follows that

Z = 2πss
l̃
(Eϕ) . (2.18b)

2.1.2 Sub-Hodge structures

This is a convenient point to record two remarks on the induced Hodge structure
on l that will be used in subsequent proofs. (Identical remarks hold for the diagonal
Levi l̃ of (2.16).) See [Rob15, §3.1.3 & §4.2] and [GGR17, §V.E] for proofs and
further discussion. Let L ⊂ G be the algebraic subgroup with Lie subalgebra l ⊂ g.

(a) Note that ϕ induces a real sub-Hodge structure on lR, since E ∈ lR stabilizes lR.
The Hodge decomposition lC = ⊕ lp,−pϕ is given by lp,−pϕ = lC ∩ gp,−pϕ . Its L(R)+-
orbit Dl may be identified with the subdomain L(R)+ ·ϕ ⊂ D, with compact dual
Ďl = L(C) · Fϕ = L(C) · F ⊂ Ď (with F as in (2.12)).
The semisimple factor lss = [l, l] likewise inherits a real sub-Hodge structure (with
Lss(R)+-orbit Dlss), as it is stabilized by lR (∋ Eϕ). Since Lss(R)+ ·ϕ = L(R)+ ·ϕ,
we may identify Dlss with Dl (as complex manifolds, but not as homogeneous
manifolds).
(b) More generally, if (F,W (N)) is polarized mixed Hodge structure on gR with
N ∈ lR, and F ∈ Ďl, then (lC∩F , l∩W (N)) is a polarized mixed Hodge structure
on lR, which is R–split if (F,W (N)) is.
As a nilpotent endomorphism, N is necessarily contained in the semisimple factor
lssR , and the mixed Hodge representation necessarily stabilizes lssC ⊂ lC (because
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L(C) does). So we obtain a polarized mixed Hodge structure on lssR . In particular,
if [F,N ] ∈ ΨD, and we set F ′ = lssC ∩ F , then [F ′, N ] ∈ ΨDlss

.
Let Wl denote the Weyl group of lssC . Since lC is a Levi subgroup of gC, we
have Wl ⊂ W. Set W0

l = Wl ∩ W0. Likewise, set t′ = lssR ∩ t. Applying the
characterization above we see that ΨDlss

≃ Lϕ|
l
,t′/W

0
l .

2.2 The relation on ΨD

Given [l] ∈ ΨD, recall the diagonal Levi subalgebra l̃ of (2.16).

Definition 2.19. Write [l1] ≤ [l2] if l1 ⊂ w(̃l2) for some w ∈W0.

Remark 2.20. Recall the trivial element [Fϕ, 0] ∈ ΨD of (2.14). It follows directly
from (2.4), (2.14) and Definition 2.19 that

[Fϕ, 0] ≤ [F,N ] for all [F,N ] ∈ ΨD .

We call these the trivial relations.

2.3 Proof of Theorem 1.8

Suppose that [F1, N1] ≤ [F2, N2] ∈ ΨD. Then without loss of generality, we may
assume that the representatives li of [li] ∈ Λϕ,t were chosen so that

l1 ⊂ l̃2 .

Let L1 ⊂ L2 ⊂ G be the associated connected algebraic subgroups with Lie alge-
bras l1 ⊂ l̃2.
We also assume that (Fi, Ni) are given by (2.12). Set

Ni := π([Fi, Ni]) = Ad(G(R)+) ·Ni ∈ ND

and
Oi := φ∞([Fi, Ni]) = G(R)+ · Fi ∈ ∆D .

We want to show that O1 ≤ O2 and N1 ≤ N2.

Proof of O1 ≤ O2. By (2.5), Eϕ ∈ l1 ⊂ l̃2. As discussed in §2.1.2, the restrictions
of ϕ to l1 and l̃2, respectively, are Hodge structures. Their respective orbits (by
L1(R)

+ and L2(R)
+) are naturally identified with

D1 := L1(R)
+ · ϕ and D2 := L2(R)

+ · ϕ .

Note that
F1 ∈ D1 and F2 ∈ D2 .

Moreover, L1 ⊂ L2 ⊂ G implies D1 ⊂ D2, so that

F1 ∈ D2 . (2.21)
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It is clear from the definition (2.16) of l̃ that the polarized mixed Hodge structure
(̃l2 ∩ F2, N2 |̃l2) is Hodge–Tate. It follows that the L2(R)

+–orbit

C2 := L2(R)
+ · F2

polarized by the mixed Hodge structure is the unique closed L2(R)
+–orbit in the

compact dual Ď2 = L2(C) · ϕ of D2 (cf. [KP14, Corollary 4.3]), hence contained
in the closure of all L2(R)

+-orbits [Wol69]. Then (2.21) implies

C2 ⊂ L2(R)+ · F1 .

Whence

O2 = G(R)+ · F2 = G(R)+ · L2(R)
+ · F2

= G(R)+ · C2 ⊂ G(R)+ · L2(R)+ · F1

⊂ G(R)+ · L2(R)+ · F1 = G(R)+ · F1 = O1 .

Proof of N1 ≤ N2. The Ðoković–Kostant–Sekiguchi correspondence [Rob15, Sec-
tion 2.6] preserves the closure order on orbits [BS98, Oht91]. So it suffices to show
that

KC · E1 ⊂ KC · E2 . (2.22)

Let l̃2,C = ⊕l̃p2,ϕ be the Eϕ–eigenspace decomposition. From (2.1) we see that
l̃
p
2,ϕ = l̃2,C ∩ gpϕ. Then (2.7) implies l̃02,ϕ ⊂ kC, and Lemma 2.9 implies Ei ∈ l̃−1

2,ϕ.
Let L0

2(R) ⊂ L2(R)
+ be the connected Lie group with Lie algebra l̃02,ϕ. We claim

that
L0
2(C) · E1 ⊂ L0

2(C) · E2. (2.23)

This implies (2.22) and will complete the proof. Note that the Jacobi identity
implies [̃l02, l̃

−1
2 ] ⊂ l̃−1

2 . So L0
2(C) preserves l̃−1

2 . Therefore, to prove (2.23), it
suffices to show that L0

2(C) · E2 is Zariski dense in l̃−1
2 .

Let W (E2) denote the Jacobson–Morosov filtration of l̃2,C (§A.7). Then (2.17) and
(A.9) imply l̃2,C ∩ g≤0

ϕ = W0(E2). This implies that E2 : l̃02 → l̃−1
2 is a surjection.

It follows that the rank of the map

L0
2(C) → l̃−1

2 sending g 7→ g · E2

is equal to the dimension of l̃−1
2 . Whence L0

2(C) · E2 = l̃−1
2 and (2.23) follows.

2.4 Proof of Theorem 1.6

Let [F1, N1], [F2, N2] ∈ ΨD and assume that

φ∞([F1, N1]) = φ∞([F2, N2]) . (2.24)
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Recall that φ∞ : ΨD →∆D is induced by the map B̃R(D)→ Ď, also denoted φ∞,
of (1.2). Since the latter map is G(R)+–equivariant, and (2.24) holds, we may
assume without loss of generality that

F∞ := φ∞(F1, N1) = φ∞(F2, N2) . (2.25)

Let gC = ⊕ g
p,q
(Fi,Ni)

denote the Deligne bigradings of the R–split PMHS
(Fi,W (Ni)). Recall that

F a∞ =
⊕

q≤−a

g
p,q
(Fi,Ni)

,

cf. the proof of [CKS86, (3.12)]. Define g
p,q
∞,i := g

−q,−p
(Fi,Ni)

. Then gC = ⊕ g
p,q
∞,i is

the unique bigrading of gC associated to the pair (F∞, t) by Kerr and Pearlstein
[KP14, Lemma 3.2]. Therefore, gp,q(F1,N1)

= g
p,q
(F2,N2)

, so that

l̃1 = l̃2 .

Then Lemma 2.26 implies [l1] = [l2], establishing injectivity.

Lemma 2.26. Let l1, l2 ∈ Lϕ,t. If l̃1 = l̃2, then [l1] = [l2].

Proof of Lemma 2.26. Set
l̃ := l̃1 = l̃2 . (2.27)

Let L(R)+ ⊂ G(R)+ be the Lie subgroup with Lie algebra l̃, and let L0(R) =
L(R) ∩G0(R).
From (2.10) and (2.18b) we see that Z1 = Z2. Set Z = Z1 = Z2. By Lemma
2.9, there exist two DKS–triples {Ei,Z,Ei} ⊂ li,C, where i = 1, 2, containing Z

as the neutral element. Set ̺i = exp iπ4 (Ei + Ei) ∈ L(C). Recall (2.6) that
(Fi, Ni) = ̺−1

i (ϕ,Ei) represents the conjugacy class [Fi, Ni] ∈ ΨD corresponding
to [li] ∈ Λϕ,t. We will prove the lemma by showing that

[F1, N1] = [F2, N2] . (2.28)

The Cayley transform of the DKS–triple {Ei,Z,Ei} is the triple {N+
i , Yi, Ni} =

Ad−1
̺i {Ei,Z,Ei} ⊂ li,R, see [Rob15, §2.7]. Note that

N+
1 − N1 = iZ = N+

2 − N2 .

Rao’s Theorem [CM93, Theorem 9.4.6] asserts that the two Cayley triples
{N+

i , Yi, Ni} are conjugate under L0(R). That is, N1 = AdgN2 for some
g ∈ L0(R). Since we are working modulo the action of G(R)+ we may assume
that

N1 = N2 =: N . (2.29)

Then Kostant’s Theorem asserts that Y1 and Y2 are conjugate under an element
of the centralizer Z(N) = {g ∈ G(R)+ | Adg(N) = N} of N , cf. [Kos59, Theorem
3.6] or [CM93, Theorem 3.4.10]. So, without loss of generality we may assume
that

Y1 = Y2 =: Y . (2.30)
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The nilnegative and neutral elements, Ni and Yi, uniquely determine the nilpositive
element N+

i of the standard triple. Whence (2.29) and (2.30) imply

N+
1 = N+

2 =: N+ .

One may check that Ei + Ei = N+
i + Ni [Rob15, (2.27)]. Consequently ̺1 = ̺2

and F1 = F2.

An easy consequence of Lemma 2.26 (proof left to the reader) is the following:

Corollary 2.31. The relation < on ΨD satisfies the antisymmetry property: that
is, if [l1] ≤ [l2] and [l1] ≥ [l2], then [l1] = [l2].

As we shall see, the transitivity property can fail.

3 Nilpotent cones and polarized relations

To a multivariable nilpotent orbit ez1N1+···+zℓNℓF on D, one can associate 2ℓ

single-variable nilpotent orbits in 1-to-1 correspondence with the faces of the un-
derlying nilpotent cone σ. In this section we will show that inclusions of these
faces are compatible with ≤ on ΨD (Theorem 1.10), leading to the notion of “po-
larized relation” � on ΨD discussed in §1.5. We will also show that all polarized
relations are realized by multivariable SL(2)-orbits (Theorem 3.11), which leads
to an algorithm for computing �.

3.1 Nilpotent cones

Given a nilpotent cone

σ = spanR>0
{N1, . . . , Nℓ} ⊂ gR

underlying a nilpotent orbit, let Γσ denote the partially ordered set comprising the
faces of σ, including both σ and the trivial vertex {0}, with partial order τ ′ ≤ τ if
and only if τ ′ is a face of τ . Of course the {τ} also underlie nilpotent orbits (see
(3.2) below). Recall

Theorem 3.1 ([Rob15, Corollary 4.9]). Let σ be any cone underlying a nilpotent
orbit and choose a Hodge flag F ∈ Ď so that (F,W (σ)) is an R–split polarized
mixed Hodge structure (equivalently, F ∈ B̃R(σ)). Fix N ∈ σ. Then σ is contained
in the orbit of N under a subgroup L0,0(R)+ ⊂ G(R)+ that stabilizes F .

Applying Theorem 3.1 to the cone τ , we see that τ is contained in a conjugacy
class Nτ ∈ ND. In particular, we obtain a well-defined map

π◦ : Γσ → ND .

In order to define the map Γσ → ∆D we must choose a connected component
B̃R(σ)

◦ of

B̃R(σ) :=
{
F ∈ Ď | (F,W (σ)[−k]) is an R–split PMHS

}
.
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This choice determines a connected component of B̃R(τ)
◦ of B̃R(τ) as follows. Fix

F ∈ B̃R(σ)
◦. Define Jτ ⊂ {1, . . . , ℓ} by

τ = spanR>0
{Nj | j ∈ Jτ} .

Set
B̃(τ) :=

{
F ∈ Ď | (F,W (τ)[−k]) is an PMHS

}
,

and note that
Fτ := exp

(

i
∑

j 6∈Jτ

Nj

)

F ∈ B̃(τ) . (3.2)

Recall the smooth map
δτ : B̃(τ) → B̃R(τ)

of [CKS86, (2.20) and (2.24)]. (As checked in [KP16, §4], this is compatible with
the Mumford-Tate group G.) Define B̃R(τ)

◦ to be the connected component con-
taining δτ (Fτ ).
Let Nτ ∈ τ and F̃τ ∈ B̃R(τ)

◦. We define

φ◦∞ : Γσ → ∆D (3.3)

by φ◦∞(τ) := G(R)+ · lim
Im(z)→∞

ezNτ F̃τ , and

ψ◦ : Γσ → ΨD (3.4)

by ψ◦(τ) := [F̃τ , Nτ ]. Both are independent of the choice of Nτ , F̃τ . For φ◦∞, this
is Remark 5.6 of [KP14], but we can easily see it for both, by invoking

Theorem 3.5 ([KP16, §5]). The connected component B̃R(τ)
◦ is homogeneous

under the action of a Lie subgroup MB(τ)(R)
+ ⊂ G(R)+ that point-wise fixes the

elements of τ .

From Theorems 3.1 and 3.5, we see that any second choice of (F̃ ′
τ , N

′
τ ) is necessarily

of the form (F̃ ′
τ , N

′
τ ) = gh · (F̃τ , Nτ ) = (g · F̃τ , h ·Nτ) with g ∈MB(τ)(R)

+ fixing τ
point-wise, and h ∈ L0

τ (R) fixing F̃τ ; thus, ψ◦(τ) = [F̃τ , Nτ ] ∈ ΨD is well-defined.
Moreover, it is clear from the definitions that π◦ and φ◦∞ factor through ψ◦; in
particular, φ◦∞ is well-defined. We remark that by Proposition 1.3, we could also
have defined φ◦∞(τ) := G(R)+ ·F̃τ . We now obtain the commutative diagram (1.9).

3.2 Polarized relations

Corollary 1.11 suggests a refinement of the relations on ∆D, ND and ΨD. Given
[F,N ], [F ′, N ′] ∈ ΨD, we write [F ′, N ′] � [F,N ] if there exists a nilpotent cone σ
underlying a nilpotent orbit, a face σ′ ∈ Γσ and a choice of connected component
B̃(σ)◦ such that ψ◦(σ′) = [F ′, N ′] and ψ◦(σ) = [F,N ]. It follows at once from the
definition and Theorem 1.10 that

[F ′, N ′] � [F,N ] implies [F ′, N ′] ≤ [F,N ] .

Documenta Mathematica 24 (2019) 1295–1360



Polarized Relations on Horizontal SL(2)’s 1313

Remark 3.6. It also follows directly from the definition that the trivial relations
(Remark 2.20) are all polarized.

Given σ as above, we shall also write O′ � O if O′ = φ◦∞(σ′) and O = φ◦∞(σ), and
N ′ � N when N ′ = π◦(σ′) and N = π◦(σ). As above,

O′ � O implies O′ ≤ O ,

and
N ′ � N implies N ′ ≤ N .

Definition 3.7. On ∆D, ND, or ΨD, we call � a polarized relation, and say that
the polarized relation is realized by σ. More heuristically, one should think of the
polarized relations� as those relations ≤ which may be realized Hodge theoretically.

Unlike the usual relations on ND resp. ∆D, the polarizable ones all “come from
ΨD”, a fact which shall be (together with Theorem 3.11 and §3.4.2) useful in
the general Mumford-Tate domain case (where ΨD is the more computationally
accessible object).

3.3 Polarized relations and commuting horizontal SL(2)’s

As we will now discuss, when identifying the polarized relations it suffices to con-
sider those coming from commuting horizontal SL(2)’s (Theorem 3.11).
To every nilpotent orbit

(z1, . . . , zℓ) 7→ exp(
∑

j

zjNj)F ∈ Ď (3.8)

Cattani, Kaplan and Schmid [CKS86] associate a canonical Lie group homomor-
phism

υ : SL(2,C)× · · · × SL(2,C)
︸ ︷︷ ︸

ℓ terms

→ G(C) (3.9)

(which is defined over R). The homomorphism υ determines a second nilpotent
orbit

(z1, . . . , zℓ) 7→ exp(
∑

j

zjN̂j)F̂ ∈ Ď (3.10)

that asymptotically approximates the first. The relationship between (3.9) and
(3.10) is that the N̂j are the images υ∗nj of nilnegative elements in standard triples
{n+

j ,yj ,nj} spanning pair-wise commuting sl(2)s. (See §A.6 for the definitions of
standard triples and nilnegative elements.) Let

σ̂ = spanR>0
{N̂1, . . . , N̂ℓ}

be the associated nilpotent cone. Note that the {N̂j} depend on our choice of
ordering of the {Nj}. In particular, reindexing the Nj may yield a different set of
{N̂j} and thus a different cone σ̂.

Documenta Mathematica 24 (2019) 1295–1360



1314 Kerr, Pearlstein and Robles

Theorem 3.11. If a polarized relation is realized by the cone σ, then it is also
realized by a cone σ̂. That is, all polarized relations on ∆D, ND and ΨD may be
realized by horizontal commuting SL(2)’s.

Theorem 3.11 is proved in §3.5.2. It immediately follows that all such relations
are realized by 2-variable SL(2)-orbits, by taking an appropriate slice of σ̂.

3.4 Classification of horizontal SL(2)–orbits

In order to use Theorem 3.11 to study the polarized relations in ND and ∆D it
is necessary to understand the cones σ̂ that arise from two-variable SL(2)–orbits;
that is, it is necessary to have a good understanding of the orbits in Cattani,
Kaplan and Schmid’s theorem. The single-variable horizontal SL2(C)–orbits of
Schmid’s theorem [Sch73] are classified in [Rob15]; this classification is briefly
reviewed in §3.4.1. We then explain in §3.4.2 how to obtain a classification of the
several-variable orbits by induction.

3.4.1 Classification of one–variable SL(2)–orbits

Recall that the upper half-plane H ⊂ C is homogeneous under the action of
SL(2,R). There is a well–known equivalence

B̃R(D) ←→ {SL2(R)–equivariant embeddings H →֒ D} , (3.12)

cf. [CK82, CKS86, CK77, Sch73, Usu93]; these embeddings are the the horizontal
SL(2)–orbits on D. There is a natural action of G(R) on the right-hand side of
(3.12); let ΥD denote the set of G(R)–conjugacy classes. The equivalence (3.12)
is G(R)–equivariant, and we have a natural identification ΨD ≃ ΥD. That is,
ΥD ≃ Λϕ,t. Briefly, and recalling the notation of §§2.1, A.6 & A.9, a representative
υ : SL(2,C)→ G(C) of the conjugacy class [υ] ∈ ΥD corresponding to [lR] ∈ Λϕ,t
may be described as follows. (See [Rob15] for further discussion.) First recall that
υ is determined by the image of the differential υ∗ at the identity 1 ∈ SL(2,C).
Second, as a linear map, the differential is determined by the image of the basis

ē := 1
2

(
−i 1
1 i

)

, z :=

(
0 −i
i 0

)

, e := 1
2

(
i 1
1 −i

)

of sl(2,C). The class [υ] ∈ ΨD corresponding to [lR] is given by

υ∗{ē, z, e} = {E,Z,E} ,

where the right-hand side is the DKS–triple of Lemma 2.9.

3.4.2 Classification of several-variable SL(2)–orbits

A simple inductive argument yields a classification of the several variable orbits.
(Note that we only need to classify the two-variable ones.) One proceeds as follows:
Fix a Hodge structure ϕ and suppose that a1, a2 ⊂ gR are two commuting sl(2)’s
that are horizontal at ϕ. The algebras a1 and a2 commute if and only if a2 is
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contained in the trivial isotypic component Γ̃ ⊂ gR of a1. The trivial isotypic
component Γ̃ is a reductive Lie algebra, and a2 is contained in the semisimple
factor Γ = [Γ̃, Γ̃]. Moreover, Γ inherits a polarized Hodge structure from gR by
Γp,−pϕ := gp,−pϕ ∩ ΓC; the polarization on Γ is just the restriction of that on g.
Clearly a2 ⊂ Γ is horizontal with respect to this induced Hodge structure on Γ
if and only if a2 ⊂ gR is horizontal with respect to the original Hodge structure
ϕ on gR. To summarize, the inductive classification of an n–tuple {a1, . . . , an} of
commuting sl(2)’s that are horizontal with respect to ϕ proceeds as follows:

(1) Apply [Rob15] to classify all sl(2)’s a1 ⊂ gR that are horizontal with respect
to the Hodge structure ϕ.

(2) Let Γ1 := Γ ⊂ gR be the semisimple factor of the trivial isotypic component
of a1. Apply [Rob15] to classify all sl(2)’s a2 ⊂ Γ1 that are horizontal with
respect to the induced Hodge structure ϕ1 on Γ1. At this point we have a
classification (up to the adjoint action of GR) of commuting, horizontal pairs
{a1, a2}.

(3) The inductive hypothesis: suppose 2 ≤ k ≤ n, {a1, . . . , ak} is a k–tuple of
commuting sl(2)’s. Then ak ⊂ Γk−1, where Γk−1 is (the semisimple factor of)
the trivial isotypic component for the adjoint action of ak−1 on Γk−2. (Our
convention is that Γ0 = gR.) As part of the inductive hypotheses we further
suppose that Γp,−pk−1 = Γk−1,C ∩ gp,−pϕ defines a polarized Hodge structure on
Γk−1, where the polarization is the restriction of that on gR, and that ak is
horizontal with respect to this Hodge structure.

(4) The induction: let Γk ⊂ Γk−1 be the (semisimple factor of the) trivial isotypic
component for the adjoint action of ak on Γk. As above Γp,−pk = Γk,C∩gp,−pϕ

defines a polarized Hodge structure on Γk. Let ak+1 ⊂ Γk be any sl(2) that
is horizontal with respect to this Hodge structure. Then {a1, . . . , ak+1} is a
(k + 1)–tuple of commuting sl(2)’s that are horizontal with respect to the
original Hodge structure ϕ.

Remark 3.13. Of course, in order for this algorithm to be useful it is necessary
that we be able to compute Γ ⊂ gR. This is generally straightforward in explicit
examples (see §8.2). And it is in general understood how to determine at least the
isomorphism class of Γ; see, for example, [—Dok88, §15].

Remark 3.14. The number n of commuting horizontal sl(2)’s is bounded by the
real rank of gR [BPR17].

In order to give the n–variable nilpotent orbit exp(
∑
zkNk) · F corresponding to

the tuple {a1, . . . , an}, it suffices to describe the Nk ∈ gR and F ∈ ∂D ⊂ Ď. First,
let υk : SL(2)→ G be the embedding of the horizontal SL(2) with Lie algebra ak.
Then

Nk = vk,∗

(
0 0
1 0

)

= 1
2 vk,∗(ē+ e− iz) .

Set

N+
k := vk,∗

(
0 1
0 0

)

= 1
2 vk,∗(ē+ e+ iz) ,
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and ̺k := exp iπ4 (N
+
k +Nk). Then

F = ̺n · · · ̺1 · ϕ .

3.5 Proofs

3.5.1 Proof of Theorem 1.10

Let σ, Nσ ∈ σ, and Fσ ∈ B̃R(σ)
◦ be given; we may assume that (Fσ, Nσ) arises

from lσ ∈ Lϕ,t via (2.12). As in §2, write l̃σ,C = ⊕gp,p(Fσ,Nσ)
. Note that Ďl̃ :=

L̃(C)·Fϕ = L̃(C)·Fσ is the compact dual of the “real M-T domain” Dl̃ = L̃(R)+ ·ϕ,
all ϕ′ in which factor through L̃(R)+.
Next, choose τ ∈ Γσ, Nτ ∈ τ , and define Fτ := e−iδei

∑
j /∈Jτ

NjFσ ∈ B̃R(τ)
◦

(notations as in §3.1). Then ψ◦(τ) = [Fτ , Nτ ] and ψ◦(σ) = [Fσ, Nσ], and we want
to show that ψ◦(τ) ≤ ψ◦(σ). Equivalently, if lτ ∈ Lϕ,t is a Levi representing
ψ◦(τ), it suffices to show that lτ ⊂ wl̃σ for some w ∈W0.
We construct such an lτ as follows.
First, observe that σ ⊂ g

(−1,−1)
(Fσ ,Nσ)

⊂ l̃σ, so that Nτ ∈ τ ⊂ σ ⊂ l̃σ,R. Next, since Cτ ⊂
l̃σ,C, we have F̃τ := ei

∑
j /∈Jτ

NjFσ ∈ Ďl̃, so that the mixed-Hodge representation
ϕ̃ associated to (F̃τ ,W (Nτ )) (cf. [GGK12, §I.C]) factors through L̃(C). The
Deligne splitting element δ which produces Fτ = e−iδF̃τ commutes with all (r, r)
morphisms of R-MHS, not just of g but of all tensor spaces T a,bg. Equivalently,
δ kills all (p, p) tensors, hence belongs to l̃σ, and so Fτ remains in Ďl̃. Applying
§2.1.2(b) to l̃σ and (Fτ ,W (Nτ )), and setting F ′

τ := l̃ssC ∩ Fτ , (F ′
τ , Nτ ) defines a

PMHS on l̃ssR .
Let l′τ ∈ Lϕ|l̃σ ,t′ represent the class of [F ′

τ , Nτ ] ∈ ΨDss
l̃

≃ Lϕ|
l̃σ
,t′/W

0
l̃σ

. In particu-

lar, l′τ is a Levi subgroup of l̃ssσ , and lτ := zσ ⊕ l′τ is an element of Lϕ,t. We claim
that this element represents [Fτ , Nτ ].
Consider the commutative diagram

ΨD
l̃ssσ

ΨD

Lϕ|
l̃σ
,t′ Lϕ,t .⊕zσ

/W0
l̃σ

/W0

with top row induced by the inclusions (of Ďl̃ssσ
⊂ Ď and l̃ssσ ⊂ g). This obviously

sends [F ′
τ , Nτ ] 7→ [Fτ , Nτ ], and the claim follows. Since lτ ⊂ l̃σ by construction,

we are done.

3.5.2 Proof of Theorem 3.11

We will show that for every pair of faces τ ≤ τ ′ ∈ Γσ there exists a homomorphism
(3.9) and associated cone σ̂ (depending on τ and τ ′) with faces τ̂ < τ̂ ′ ∈ Γσ̂ so
that

φ◦∞(τ) = φ̂◦∞(τ̂ ) ,

φ◦∞(τ ′) = φ̂◦∞(τ̂ ′) .
(3.15)
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This is precisely the assertion that every polarized relation on ∆D may be realized
by commuting horizontal SL(2)’s. As φ∞ : ΨD → ∆D is a bijection (Theorem
1.6), it then follows from the commutativity of (1.9) and the definition of “�”
that every polarized relation on ΨD may be realized by commuting horizontal
SL(2)’s. Finally, invoking the commutativity of (1.9) again, we conclude that
every polarized relation on ND may be realized by commuting, horizontal SL(2)’s.
Recall the notation preceding the statement of Theorem 3.11, and set

τj = spanR>0
{N1, . . . , Nj}

τ̂j = spanR>0
{N̂1, . . . , N̂j} .

Take B̃(σ)◦ and B̃(σ̂)◦ to be the connected components containing F and F̂ ,
respectively, and consider the corresponding maps φ◦∞ defined on Γσ, and φ̂◦∞
defined on Γσ̂. To establish (3.15), it clearly suffices to show that

φ◦∞(τj) = φ̂◦∞(τ̂j) , (3.16)

as our ordering of the {Nj} is arbitrary.
The assertion (3.16) is precisely the statement that

lim
y→∞

exp(i yNj)F and lim
y→∞

exp(i y N̂j)F̂

lie in the same G(R)+–orbit Oj ⊂ D for some (and therefore every, by Theorem
3.5) Nj ∈ τj and N̂j ∈ τ̂j . This is a direct consequence of Cattani, Kaplan and
Schmid’s [CKS86, Theorem 4.20.vii-viii], as extended to Mumford-Tate domains
in §4.

Remark 3.17. Parts (v)-(vi) [resp. (vi)] of [CKS86, Theorem 4.20] may be used
to give a direct (but more complicated) argument for the realization of polarized
relations on ΨD [resp. ND] by commuting horizontal SL(2)’s.

4 SL(2)-orbit theorem for MT domains

In this section, we prove the extension of the multivariable SL(2)-orbit theorem
to Mumford-Tate domains, which is needed in the proof of Theorem 3.11 above.
More precisely, we show that if θ is a nilpotent orbit which takes values in a
Mumford–Tate domain DM with Mumford–Tate group M then all of the con-
structs of Theorem (4.20) in [CKS86] can be done using analytic functions and
representations with values in M(R)+ and filtrations in the compact dual ĎM .

4.1 Splittings

Let VR be a finite dimensional R-vector space and (F,W ) be a mixed Hodge
structure on VC = VR ⊗ C. Let VC =

⊕

p,q I
p,q
(F,W ) denote the associated Deligne

bigrading of (F,W ) (cf. [CKS86, (2.14)]). By [CKS86, Prop. 2.20], there exists a
unique real endomorphism δ of VC such that δ(Ip,q) ⊆⊕

a<p,b<q I
a,b
(F,W ) and

(F̃ ,W ) = (e−iδF,W ) (4.1)
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is a mixed Hodge structure which is split over R. Moreover, every (r, r)-morphism
of (F,W ) commutes with δ.
Lemma 6.60 of [CKS86] gives a further construction of a real endomorphism ζ
of VC in terms of universal Lie polynomials involving the Hodge components of
δ with respect to (F,W ). In particular ζ commutes with all (r, r)-morphisms of
(F,W ). The mixed Hodge structure

(F̂ ,W ) = (eζe−iδF,W ) (4.2)

is called the sl2 or canonical splitting of (F,W ).
Let D be a (connected) classifying space of pure Hodge structures of weight k
on VC which are polarized by Q, and Ď be the corresponding compact dual. Let
G := Aut(V,Q)◦ (algebraic identity component), so that G(K) ∼= Sp(VK , Q) or
SO(VK , Q) for K = R or C (with Lie algebra gK), and D (resp. Ď) is a G(R)+-
(resp. G(C)-) orbit. Recall from above:

Definition 4.3 ((1.14), [CKS86]). A nilpotent orbit is a map θ : Cn → Ď of the
form θ(z) = exp(

∑

j zjNj)F where N1, . . . , Nn are commuting nilpotent elements
of gR which are horizontal at F ∈ Ď for which there exists α ∈ R such that
θ(z) ∈ D whenever Im(z1), . . . , Im(zn) > α.

IfN is a nilpotent endomorphism of VC we letW (N) denote the monodromy weight
filtration of N centered at zero. Let θ(z) = ezNF be a 1-variable nilpotent orbit
and W = W (N)[−k]. Then, by Schmid’s 1-variable SL2-orbit theorem [Sch73],
(F,W ) is a mixed Hodge structure relative to whichN is a (−1,−1)-morphism. Let
(F̃ ,W ) denote the Deligne splitting (4.1) of (F,W ) and Ỹ denote the semisimple
endomorphism of VR which acts by multiplication by p+ q − k on Ip,q

(F̃ ,W )
.

Lemma 4.4. If (N,F ) determines a 1-variable nilpotent orbit then (N, Ỹ ) is an
sl2-pair with associated triple (N, Ỹ , Ñ+). Moreover, (i) N commutes with δ and
ζ, (ii) N is horizontal at F̃ , (iii) δ, ζ, Ỹ , Ñ+ ∈ gR and (iv)

eiyN F̃ = exp(−(1/2) log(y)Ỹ )eiN F̃ ∈ D (4.5)

for all y > 0.

Proof. See [CKS86, (3.10)] for the statement that (N, Ỹ ) is an sl2-pair. Since N
is a (−1,−1)-morphism of (F,W ) it commutes with δ and ζ. See [CKS86, (3.11)]
for the fact that δ, Ỹ and Ñ+ belong to gR. For the statement that ζ ∈ gR, see
[CKS86, (6.60)]. Equation (4.5) is [CKS86, Lemma 3.12].

Corollary 4.6. Let (N,F ) determine a nilpotent orbit, (F̂ ,W ) denote the sl2-
splitting of (F,W ) and Ŷ = Ad(eζ)Ỹ , N+ = Ad(eζ)Ñ+. Since ζ ∈ gR and
commutes with N , it follows that (N, Ŷ ,N+) is an sl2-triple, Ŷ , N+ ∈ gR, and
N is horizontal at F̂ . Moreover, (4.5) remains valid with F̃ replaced by F̂ and Ỹ

replaced by Ŷ . In particular, θ̂(z) = ezN F̂ is a nilpotent orbit which takes values
in D for Im(z) > 0.
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Let {N1, . . . , Nn} be commuting nilpotent elements of gR. For j = 1, . . . , n let
Cj = {∑j

ℓ=1 aℓNℓ | a1, . . . , aj > 0 }. By [CK82], if {N1, . . . , Nn} underlie a
nilpotent orbit then every element N ∈ Cj determines the same monodromy weight
filtration W j =W (N)[−k].

Lemma 4.7. If (N1, . . . , Nn;F ) determine a nilpotent orbit θn : Cn → Ď then
(F,Wn) is a mixed Hodge structure. Define (Fn,W

n) to be the sl2-splitting of

(F,Wn). Then, θ̂n(z) = e
∑n

ℓ=1 zℓNℓFn is a nilpotent orbit with values in D for
Im(z1), ..., Im(zn) > 0.

Proof. Let N ∈ Cn. Then, (N,F ) defines a 1-variable nilpotent orbit and hence
(F,Wn) is a mixed Hodge structure. By Corollary 4.6 it follows that θ̂(z) = ezNFn
is a nilpotent orbit which takes values in D for Im(z) > 0. As the choice of
N ∈ Cn was arbitrary, it follows that θ̂n is a nilpotent orbit with values in D for
Im(z1),...,Im(zn) > 0.

Given θn and θ̂n as in Lemma 4.7, set θn−1(z1, . . . , zn−1) = θ̂n(z1, . . . , zn−1, i).
Then, θn−1 is a nilpotent orbit which takes values in D for Im(z1),...,Im(zn−1) > 0.
Application of Lemma 4.7 to θn−1 produces a nilpotent orbit θ̂n−1 with associ-
ated limit mixed Hodge structure (Fn−1,W

n−1). Iterating this process produces
nilpotent orbits

θj(z1, . . . , zj) = θj+1(z1, . . . , zj, i) (4.8)

and
θ̂j(z1, . . . , zj) = e

∑j
ℓ=1 zℓNℓFj (4.9)

with values in D for Im(z1), ..., Im(zj) > 0, terminating at the constant orbit
θ0 = θ̂0 = θ̂1(i) = F0 ∈ D. Let W 0 be the trivial filtration of weight k on HC and
Y(j) denote the semisimple endomorphism which acts as multiplication by p+q−k
on Ip,q(Fj ,W j). By Corollary 4.6, Y(j) ∈ gR. In [CKS86], Fj is denoted F̃j.

Theorem 4.10. The elements Y(0), . . . , Y(n) commute. Define Hj = Y(j) − Y(j−1)

for j > 0 and let N0
j denote the projection of Nj onto ker(adY(j−1)) with respect

to the decomposition of gR into the eigenspaces of adY(j−1). Then,

(N0
1 , H1), . . . , (N

0
n, Hn) (4.11)

are commuting sl2-pairs. In particular, N0
1 = N1 since Y(0) = 0.

Proof. The assertion that the elements Y(0), . . . , Y(n) commute is part of [CKS86,
Thm. 4.20]. An alternative algebraic proof was sketched by Deligne in [Del]. More
precisely, let Y j be the grading of W j which acts on Ip,q(Fj ,W j) as multiplication by
p+ q. By Deligne’s results, [Y n−1, Y n] = 0. Moreover N0

n and Hn = Y n−Y n−1 =
Y(n)−Y(n−1) form an sl2-pair which commutes with N1, . . . , Nn−1. Proceeding by
downward induction gives the system of commuting sl2-pairs (4.11). To recover
the fact that Y(0), . . . , Y(n) commute, observe that Y(j) =

∑j
ℓ=1Hℓ for j > 0 since

Y 0 = k1.
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Corollary 4.12. N0
j commutes with Y(ℓ) for ℓ < j. Moreover, we have the

following dictionary with [CKS86]: Y(j) ↔ Ŷj, Hj ↔ Ŷj and N0
j ↔ N̂−

j . In

particular, the sl2-pairs (4.11) generate the representation ρ : (SL2)
n → G(R)+ of

[CKS86, Thm. 4.20].

Proof. By part (ii) of [CKS86, Thm. 4.20], Ŷj = Y(j) since F̃j = Fj . If ℓ < j

then [N0
j , Y(ℓ)] = 0 since Y(ℓ) =

∑ℓ
r=1Hr and [N0

j , Hr] = 0 for r = 1, . . . , ℓ. By
part (iii) of [CKS86, Thm. 4.20], it follows that N̂−

j = N0
j . By equation (4.18)

of [CKS86], Ŷr =
∑

j≤r Ŷj and hence Ŷr = Ŷr − Ŷr−1 = Y(r) − Y(r−1) = Hr.

Remark 4.13. The proof that Deligne’s construction gives the sl2-splitting along
nilpotent orbits appears in [BP13]. A survey of Deligne’s results appears in §6
of [BPR17].

Suppose now that VR admits a rational form VQ relative to which Q is rational.
Let DM be a (connected) Mumford–Tate subdomain of D with Mumford–Tate
group M and compact dual ĎM . By Proposition (VI.B.11) of [GGK12], DM is a
closed subset of D in the analytic topology. For K = R or C let mK be the Lie
algebra of MK .

Lemma 4.14. Suppose that N ∈ mR and F ∈ ĎM determine a nilpotent orbit θ :
C→ Ď such that θ(z) ∈ DM for Im(z) > α. Then (cf. Lemma 4.4, Corollary 4.6),
δ, ζ, Ỹ , Ŷ , Ñ+, N+ ∈ mR and θ̂(z) = ezN F̂ is a nilpotent orbit which takes values
in DM for Im(z) > 0.

Remark 4.15. In general ĎM ∩ D can have multiple (finitely many) connected
components; DM is, by definition, one of these. If we only assumed in Lemma
4.14 that θ(z) ∈ DM for Im(z) > α, then the conclusion would be that θ̂(z) takes
values in one of these components (not necessarily DM ) for Im(z) > 0.

Proof. An analytic proof that Ỹ and Ñ+ belong to mR following the methods
of [Sch73] appears in Proposition (IV.A.13) of [GGK12]. An algebraic proof that
Ỹ and Ñ+ belong to mR is given in [KP16]. Let W = W (N)[−k]. The fact that
δ and its Hodge components relative to (F,W ) belong to mR is stated on [KP16,
p. 682]. Since ζ is given by universal Lie polynomials in the Hodge components
of δ, it follows that ζ ∈ mR, and hence so do Ŷ = Ad(eζ)Ỹ and N+ = Ad(eζ)Ñ+.
By Corollary 4.6, θ̂ is a nilpotent orbit such that θ̂(z) ∈ D for Im(z) > 0. Let
eξ = eζe−iδ and define ξ(y) by the formula eξ(y) = Ad(exp((1/2) log(y)Ŷ ))eξ.
Then limy→∞ ξ(y) = 0 because Ŷ is a grading of W and ξ(Wℓ) ⊂ Wℓ−2 for each
index ℓ. Likewise, because Ŷ preserves F̂ and [Ŷ , N ] = −2N we have

exp((1/2) log(y)Ŷ )eiyNF = e−ξ(y)eiN F̂

Accordingly, as the left hand side of this equation takes values in DM whereas the
right hand side limits to eiN F̂ ∈ D, it follows that eiN F̂ ∈ DM since DM is a
closed subset of D. Consequently, eiyN F̂ = exp(−(1/2) log(y)Ŷ )eiN F̂ ∈ DM for
y > 0.
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Theorem 4.16. Let (N1, . . . , Nn;F ) define a nilpotent orbit θn : Cn → Ď. Sup-
pose that N1, . . . , Nn ∈ mR, F ∈ ĎM and there exists α > 0 such that θ(z) takes
values in DM for Im(z1), . . . , Im(zn) > α. Then, the sl2-pairs (4.11) take values in
mR and hence the representation ρ of Corollary 4.12 takes values in MR. Moreover
the filtrations F1, . . . , Fn ∈ ĎM and F0 ∈ DM .

Proof. For any N ∈ Cn, the pair (N,F ) determines a nilpotent orbit ezNF with
values in DM for Im(z) sufficiently large. Therefore, ezN F̂ = ezNFn takes values
in DM for Im(z) > 0 by Lemma 4.14, and hence Ŷ = Y(n) ∈ mR. Iterating as in
(4.9) shows that each Y(j) ∈ mR. Likewise, since N0

j is the projection of Nj ∈ mR to
ker(adY(j−1)) with respect to the eigenspaces of adY(j−1), it follows that N0

j ∈ mR.
Finally, since the orbits (4.9) take values in DM and N1, . . . , Nn ∈ mR it follows
that Fj ∈ ĎM and F0 ∈ DM .

Equation (4.9) of [CKS86] defines a choice of reference Hodge structure on sl2,C.
Part (i) of [CKS86, Thm. 4.20] asserts that if ρ is the representation attached to
a nilpotent orbit θn as in Theorem 4.10 and Corollary 4.12, then

ρ∗ : (sl2,C)
⊕n → gC (4.17)

is morphism of Hodge structure of type (0, 0) when gC is equipped with the Hodge
structure induced by F0 ∈ D. In the setting of Theorem 4.16 above, mC is a Hodge
substructure of gC relative to F0 ∈ DM . Therefore, by the strictness of morphisms
of Hodge structures, it follows that ρ∗ defines a morphism of Hodge structure to
mC ⊂ gC.
Part (i) of [CKS86, Thm. 4.20] also asserts that F̃r = (Πrj=1 e

−iN̂−
j )eiN̂

−
1 F̃1. In the

setting of Theorem 4.16, F̃r and F̃1 belong to ĎM and e−iN̂−
1 , . . . , e−iN̂−

r ∈ MC.
Thus, in the setting of Theorem 4.16, the constructs of parts (i) to (iii) of [CKS86,
Thm. 4.20] only involve representations with values in M and filtrations in ĎM .

4.2 Univariate Orbits

Parts (iv) to (ix) of [CKS86, Thm. 4.20] involve analytic functions with values in
G(R)+. In this section, we show that for 1-variable nilpotent orbits with values in
DM , these functions take values in MR.
Let (N,F ) determine a nilpotent orbit θ : C → Ď, and define F̂ , δ, ζ, N+ and
Ŷ as in Corollary 4.6; then we have Fb := eiN F̂ ∈ D. Let G0(R) denote the
stabilizer of Fb in G(R), and g0R be the Lie algebra of G0(R). Let gC = ⊕p gp,−p be
the Hodge decomposition induced by Fb on gC. As above, write g0,0 =: g0. Then
g0R = g0 ∩ gR and hence

g′ = (
⊕

p6=0

gp,−p) ∩ gR (4.18)

is an Ad(G0(R))-invariant vector space complement to g0R in gR. Let ∇ denote the
associated connection on the principal bundle

G0(R)→ G(R)+ → G(R)+/G0(R) ∼= D (4.19)
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Suppose that θ(z) ∈ D for Im(z) > a and let h : (a,∞) → G(R)+ be a lifting of
y 7→ θ(iy) which is tangent to ∇, i.e.

(i) θ(iy) = h(y)Fb for y > a;

(ii) h−1(y)h′(y) ∈ g′.

Set W = W (N)[−k]. Then, §3 and §6 of [CKS86] can be summarized as the
following version of the 1-variable SL2-Orbit theorem:

Theorem 4.20. Let (N,F ) define a nilpotent orbit θ : C→ Ď such that θ(z) ∈ D
for Im(z) > a. Then, there exists a real-analytic function g : (a,∞) → G(R)+

such that

(a) θ(iy) = g(y)eiyN F̂ = g(y) exp(−(1/2) log(y)Ŷ )Fb for y > a;

(b) h(y) = g(y) exp(−(1/2) log(y)Ŷ ) satisfies conditions (i) and (ii) above;

(c) g(y) and g−1(y) have convergent power series about ∞ of the form

g(y) = 1 + g1y
−1 + g2y

−2 + · · ·
g−1(y) = 1 + f1y

−1 + f2y
−2 + · · ·

with gk, fk ∈ ker(adN)k+1;

(d)

eiδe−ζ = 1 +
∑

k>0

1

k!
(−i)k(adN)kgk

Moreover, gk and fk can be expressed as universal Lie polynomials over
Q(
√
−1) in the Hodge components of δ with respect to (F̂ ,W ) and adN+.

Suppose now that N ∈ mR and F ∈ ĎM determine a nilpotent orbit θ : C → Ď
such that θ(z) ∈ DM for Im(z) > a. Then, Fb ∈ DM by Lemma 4.14, and δ, ζ,
Ŷ , N+ ∈ mR. Let M0(R) = G0(R) ∩M(R) be the stabilizer of Fb in M(R) with
Lie algebra m0

R. Then m0
R = g0 ∩mR and m′

R = g′ ∩mR is an Ad(M0(R))-invariant
complement to m0

R in mR. We therefore obtain a corresponding connection ∇m on
the principal bundle

M0(R)→M(R)+ →M(R)+/M0(R) ∼= DM (4.21)

Let g : (a,∞)→ G(R)+ be the function constructed from θ by Theorem 4.20. By
parts (c) and (d), it follows that g(y) ∈M(R)+. By part (b), it then follows that
h is an M(R)+-valued function which satisfies conditions (i) and (ii). Moreover,
since h takes values in M(R)+, condition (ii) implies that

h−1(y)h′(y) ∈ g′ ∩mR = m′

Thus, h is a lift of θ which is tangent to ∇m. In summary, in the case of a 1-
variable nilpotent orbit with values in DM , the analytic functions g and h of the
SL2-orbit theorem take values in M(R)+, the filtrations belong to ĎM , and all of
the Lie algebra theoretic data takes values in mR.
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4.3 Several Variable Orbits

Let (N1, . . . , Nn;F ) determine a nilpotent orbit θn : Cn → Ď such that θ(z) ∈ D
if Im(z1), . . . , Im(zn) > β. Fix α > β and set c = β/α. Then, given y ∈ Rn with
coordinates y1, . . . , yn > α, the map

θn,y(w) = θn(wy1, . . . , wyn) (4.22)

is a nilpotent orbit such that θn,y(w) ∈ D if Im(w) > c. Let gn,y : (c,∞)→ G(R)+

be the function attached to θn,y(w) by Theorem 4.20 and observe that c < 1.
Define

gn(y1, . . . , yn) = gn,y(1) ∈ G(R)+, y1, . . . , yn > α (4.23)

as on [CKS86, p. 496].
To continue, we recall that for 1 ≤ j ≤ n − 1 the orbits θj defined by (4.8) take
values in D for Im(z1), . . . , Im(zj) > 0. Given y ∈ Rj with coordinates y1, . . . , yj
let

θj,y(w) = θj(wy1, . . . , wyj) (4.24)

and gj,y : (0,∞) → G(R)+ be the function attached to θj,y(w) by Theorem 4.20.
Define

gj(y1, . . . , yj) = gj,y(1) (4.25)

as in [loc. cit.]. Finally, define hr(y1/yr, . . . , yr−1/yr; yr) (also as in [loc. cit.]) via
the formula

gr(y1, . . . , yr) = hr(y1/yr, . . . , yr−1/yr; yr) exp((1/2) log(yr)Y(r)) (4.26)

(recall Y(r) ↔ Ŷr in our dictionary with [CKS86]).
Suppose now that N1, . . . , Nn ∈ mR and F ∈ ĎM define a nilpotent orbit
θn : Cn → Ď such that θn(z) ∈ DM if Im(z1), . . . , Im(zn) > β. Then, θn,y(w)
takes values in DM for Im(w) > c and hence the function gn defined by (4.23)
takes values in M(R)+. Likewise, θj,y(w) take values in DM for Im(w) > 0,
and hence the function gj defined by (4.25) takes values in M(R)+. Finally, since
Y(1), . . . , Y(n) take values in mR by Theorem 4.16, equation (4.26) defines a function
with values in M(R)+.

4.4 Supplements

Let (N1, . . . , Nn;F ) determine a nilpotent orbit θn : Cn → Ď and (Hj , N
0
j ) denote

the associated sl2-pairs (4.11). Recall that Hj = Y j − Y j−1 where Y 0, . . . , Y n

commute and Y 0 = k1 (proof of Theorem 4.10). Given positive real numbers
y1, . . . , yn let yn+1 = 1 and tj = yj+1/yj. Define yAj = exp(log(yj)A). Then, a
reindexing argument shows that

t(y) = Πnj=1 t
(1/2)Y j

j = y
−(k/2)
1 Πnj=1 y

−Hj/2
j . (4.27)
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The function t(y) appears in equations [BP13, (6.1)] and [HP15, (1.12)]. The

scalar factor y−(k/2)
1 can be omitted when considering the adjoint action of t(y)

on gC or the action of t(y) on Ď. In the notation of [CK89], yk/21 t(y) = e−1(t).
Let ∆n denote the unit polydisc with coordinates (s1, . . . , sn) and ∆∗n be the
complement of the divisor s1 · · · sn = 0. Let (z1, . . . , zn) be Cartesian coordinates
on Cn and zj = xj + iyj. Let Hn be the product of upper half-planes defined by
y1, . . . , yn > 0 and I ′ ⊂ Hn be the set defined by y1 ≥ y2 ≥ · · · ≥ yn ≥ 1. Let
Hn → ∆∗n be the covering map defined by sj = e2πizj . Recall that a period map
Φ : ∆∗r → Γ\DM lifts to a holomorphic, horizontal map Φ̃ : Hn → DM . Let
mC = ⊕p,q mp,q denote the Deligne bigrading of mC induced by the limit mixed
Hodge structure of Φ.

Theorem 4.28. Let Φ̃ : Hn → DM be a lift of a period map Φ : ∆∗n → Γ\DM

with unipotent monodromy. Let t(y) be the function (4.27) attached to the nilpotent

orbit θ(z) = e
∑

j zjNjF∞ of Φ. Then, the image of I ′ under the map z ∈ Hn 7→
t(y)−1e−

∑
j xjNj Φ̃(z) is a relatively compact subset of DM .

Proof. For period maps into D, this is [CK89, Thm. 4.7]. The analog for period
maps of admissible variations of mixed Hodge structure is [BP13, Thm. 7.1]. Let
ψ(s) = e−

∑
j zjNj Φ̃(z) and q = ⊕p<0,q m

p,q. The hypothesis that Φ : ∆∗n →
Γ\DM forces yk/21 t(y) to take values in M(R)+. Moreover, we can write ψ(s) =
eΓ(s)F∞ for a unique q-valued holomorphic function Γ(s) on a neighborhood of
s = 0 (cf. [CK89, (2.5)]). With these two observations in hand, the proof now
follows verbatim from [CK89, Thm. 4.7] or [BP13, Lemma 7.1].

Theorem 4.29. In the setting of Theorem 4.28 there exist constants α, β1, . . . , βn
and C such that if Im(z1), . . . , Im(zn) > α then θ(z) ∈ DM and

d(Φ̃(z), θ(z)) < C

n∑

j=1

Im(zj)
βje−2πIm(zj)

where d denotes the M(R)+-invariant metric on DM induced by the Hodge metric.

Proof. This follows verbatim from the proofs in §5 and §6 of [HP15] since yk/21 t(y)

takes values in M(R)+ and ψ(s) = eΓ(s)F∞ with Γ(s) taking values in q ⊂ mC.
Alternatively, one can revisit the proof given in [CKS86] for period maps into D.
The main point is to use the fact that M(R)+ acts transitively by isometries and
a careful analysis of the 1-variable case.

Theorem 4.30. Let K be a subfield of R, and assume that VR arises by extension of
scalars from a finite dimensional K-vector space VK such that Q : VK ⊗VK → K.
Let gK denote the Lie algebra of infinitesimal isometries of Q over K, and suppose
that in the setting of Theorem 4.10, Y(n) and N1, . . . , Nn ∈ gK . Then, each of the
sl2-pairs (4.11) consists of elements of gK.

Proof. Since N1 + · · · + Nj ∈ gl(VK) it follows that W j arises by extension of
scalars from an increasing filtration of VK . The data (Wn−1, Nn, Y

n) is therefore
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a Deligne system as defined in §6 of [BPR17] where Y n = Y(n)+k1. Consequently,
Y n−1 is defined overK, and hence so areHn = Y n−Y n−1 and Y(n−1) = Y n−1−k1.
Accordingly N0

n = degree zero eigencomponent of Nn with respect to adY(n−1) is
also defined overK. Iterating this construction shows that each pair (4.11) consists
of elements of gK .

Corollary 4.31. In the setting of Theorem 4.16, if Y(n) and N1, . . . , Nn ∈ mQ

then each of the sl2-pairs (4.11) consists of elements of mQ.

Proof. The pairs (4.11) belong to mR ∩ gQ.

5 Period domains

5.1 Period domains versus Mumford–Tate domains

The next three sections focus on the computation of polarized relations on ΨD in
three special cases. In this section, we consider the period domain parameterizing
all Hodge structures on V polarized by Q with Hodge numbers h = {hp,n−p}0≤p≤n.
(To avoid some pathologies, we shall assume in the even weight case n = 2m that
both hm,m, and some other hp,2m−p with p odd, are nonzero.) In this case it turns
out that the conjugacy classes and relations introduced above may be enumerated
“hieroglyphically” by Hodge diamonds:

(i) The conjugacy classes of nilpotent elements are classified by partially signed
Young diagrams, and a theorem of Ðoković’s characterizes the partial order
in terms of these diagrams; see [BPR17, §2] and the references therein.

(ii) It is implicit in the work of Deligne, Cattani, Kaplan and Schmid (and the
representation theoretic classification of (i)) that the conjugacy classes of
horizontal SL(2)s are classified by the possible Hodge diamonds (Proposition
5.2 below).

(iii) Together (ii) and Theorem 3.11 yield a relatively simple test to determine
when a relation ≤ on these SL(2)s is polarized (Theorem 5.18 below).

However, there is a caveat: in even weight, we must coarsen the equivalence re-
lation. Recall that an even-weight period domain is a union of two connected
components

D̃ = D ∐D′

on which the full orthogonal group G̃(R) = O(VR, Q) acts transitively. Actually
G(R) = SO(VR, Q) acts transitively, and G is the generic Mumford-Tate group,4

but (i)-(iii) only pertain to conjugacy classes for G̃(R), as we shall see. This is all
in contrast to the general M-T domain setting treated in the rest of this paper,
where our use of results from the literature (incl. [KP16, Rob15]) require us to
work with a connected domain, and with SL(2)s, ∂D, and Nilp(gR) modulo the
action of the identity connected component G(R)+.
To define more precisely the the objects of study in this section, for even or odd
weight, write G̃ := Aut(V,Q) with (algebraic) identity component G := G̃◦, ϕ :

4G̃ is not connected as an algebraic group!

Documenta Mathematica 24 (2019) 1295–1360



1326 Kerr, Pearlstein and Robles

S1 → G(R)+ a Hodge structure on V (with Hodge numbers h) polarized by Q,
and

Ď = G̃(C).Fϕ ⊇ D̃ = G̃(R).ϕ ⊇ D = G(R)+.ϕ.

(For odd weight, D̃ = D, G̃ = G, and G(R) = G(R)+ = Sp(r,R).) Denote by
ΨD̃ the G(R)+-conjugacy classes of R-split PMHS on D̃, and set π(ΨD̃) =: ND̃,
φ∞(ΨD̃) =: ∆D̃. Then we may further quotient these objects by G̃(R)/G(R)+ ∼=
Z/2Z× Z/2Z to define

ΨD

ND ∆D.

φ∞π

When n is odd, these are the same as the un-barred objects. For n even, we
have ΨD̃ = ΨD ∐ ΨD′ ; and G(R)/G(R)+ ∼= Z/2Z swaps D and D′, giving an
identification between ΨD and ΨD′ . So ΨD is the further quotient of ΨD by the
action of G̃(R)/G(R) ∼= Z/2Z, and this quotient can indeed be nontrivial. We will
encounter this phenomenon when D admits a polarized mixed Hodge structure
(F,W (N)) with the property that the N–strings are all of even length, and each
length occurs with even multiplicity;5 see Example 5.7.
Before we turn to (ii) and (iii), here is a first glimpse of why G̃(R)-conjugacy classes
are the natural object when n is even. While φ∞ gives bijections ΨD → ∆D and
ΨD′ → ∆D′ , the fact that ∆D̃ = ∆D ∪∆D′ need not be a disjoint union means
that ΨD̃ ։ ∆D̃ need not be a bijection, and the problem may not be resolved
after quotienting by G(R)/G(R)+ (for example, if one has a pair of boundary
orbits exchanged by g ∈ G(R)\G(R)+). However, in view of Corollary 5.3 below,
ΨD →∆D is always a bijection.

5.2 Hodge–Deligne numbers

Let (F,W (N)) be a polarized mixed Hodge structure on D, and let VC = ⊕Ip,q
denote the Deligne bigrading. The Deligne–Hodge numbers of the PMHS are

ip,q := dimC I
p,q .

It is sometimes convenient to view these dimensions as giving a function

✸(F,N) : Z× Z → Z≥0 sending (p, q) 7→ ip,q .

We call the function ✸(F,N) the Hodge diamond of (F,N). Recall that the p–th
column of the Hodge diamond must sum to hp,n−p; that is,

∑

q

ip,q = hp,n−p . (5.1a)

5These PMHS correspond to the “very even” partitions in the classification [BPR17] of N.
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The Hodge diamond is also symmetric about the lines p = q and p+ q = n: that
is,

ip,q = iq,p = in−q,n−p . (5.1b)

Moreover, the Hodge–Deligne numbers must be nondecreasing as they approach
the diagonal p+ q = n along a line p− q = k, with −n ≤ k ≤ n fixed. That is,

ip−1,q−1 ≤ ip,q if p+ q ≤ n . (5.1c)

(By the symmetry (5.1b) this implies ip,q ≥ ip+1,q+1 if p+ q ≥ n.)
The following proposition asserts that the possible Hodge diamonds enumerate the
elements of ΨD.

Proposition 5.2. Any function f : Z × Z → Z≥0 satisfying (5.1) may be real-
ized as the Hodge diamond ✸(F,N) of an R–split polarized mixed Hodge structure
(F,W (N)) on the period domain D. Moreover, ✸(F1, N1) = ✸(F2, N2) if and only
if [F1, N1] = [F2, N2] ∈ ΨD.

As demonstrated in Example 5.7 (see also the examples of [Rob15]), Proposition
5.2 is in general false for ΨD. The proof of the proposition makes use of the notion
of primitive subspaces; these are introduced in §5.3, and the proof is given on page
1331.

Corollary 5.3. φ∞ induces a bijection from ΨD to ∆D.

Proof. Let HD denote the set of Hodge diamonds of LMHS/naive limits; by Prop.
5.2, these are just the functions ✸ = {ip,q} satisfying (5.1). Construct a map
h : ∆D → HD by sending a representative flag F on V to the function

hF (p, q) := dim

(
F p ∩ F q

F p ∩ F q+1 + F p+1 ∩ F q

)

.

This is evidently well-defined. If (F,W ) is R-split, then hF is precisely its Hodge
diamond.
Now given an R-split PMHS (F,N) with corresponding sl2-triple (N, Y,N+),
homomorphism ρ : SL2(R) → G(R)+, and naive limit F̂ := limy→∞ eiyNF ,
(F̂ ,−N+) is an R-split PMHS representing the same element of ΨD (hence
ΨD). Indeed, this is just the image of (F,N) by ρ

((
0 1

−1 0

))
. We therefore have

✸(F,N) = ✸(F̂ ,−N+) = hF̂ = (h◦φ∞)(F,N), which is to say that the composite

ΨD
φ∞

։ ∆D
h→ HD

yields the bijection ✸ of Prop. 5.2. This forces φ∞ to be a bijection.

We finish this subsection by illustrating Prop. 5.2. In all the examples that follow,
π : ΨD → ND is seen to be an isomorphism (as the map from possible Hodge
diamonds to partially signed Young diagrams is one-to-one). For a situation where
this is not the case, see Example 7.14. (Because this example is of odd weight, of
course ΨD = ΨD and ND = ND.)
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Example 5.4 (Curves of genus g). Suppose that h = (g, g). The possible Hodge
diamonds, which we denote Ia = ✸(Fa, Na), are

✲

✻

r

a
r

g − a

r

g − a
r

a

0 ≤ a ≤ g.

The partially signed Young diagram classifying the conjugacy class Na ∈ N of Na
is

+−
.
.
.

+−

.

.

.

}

a rows

}

g − a rows

See [BPR17, §2.5] for a discussion of how one obtains the Young diagram from the
Hodge diamond. Let Na = π(Ia) ∈ ND. Ðoković’s [BPR17, Theorem 2.21] yields

Na < Nb if and only if a < b .

Likewise, setting Oa = φ∞(Ia) ∈∆D, we have

Oa < Ob if and only if a < b ;

see §6.2.

Example 5.5 (K3 surfaces). Suppose that h = (1,m, 1), with m ≥ 1. The three
possible Hodge diamonds are depicted below. (The first is the trivial [D, 0] ∈ ΨD.)
In this example we omit the labels ip,q as they may easily be deduced from the
Hodge numbers h and (5.1).

0 I II

✲

✻r
r

r ✲

✻
r

r

r

r

r

✲

✻

r

r

r

−
−
+
.
.
.

}

m − 2
boxes

+
.
.
.

}

m − 4
boxes

−+−
+
.
.
.

}

m − 3
boxes

The second row of the table depicts the partially signed Young diagram classifying
the conjugacy class N ∈ ND of N . Ðoković’s [BPR17, Theorem 2.21] yields
N0 < NI < NII. If m = 1 then there is no type ‘I’. (Remark that “0,I,II” in our
nomenclature correspond to types “I,II,III” in Kulikov’s classification.)

Example 5.6 (Surfaces with contact IPR). Suppose that h = (2,m, 2) with m ≥ 4.
(In this case the horizontal subbundle T hD ⊂ TD is a contact distribution. In
particular, the horizontal subbundle is of corank one, and so very close to the
classical Hermitian symmetric case in which T hD = TD.) Then the six possible
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Hodge diamonds are listed in the first row of the table below. (The first is the
trivial [D, 0] ∈ ΨD.) Again, we omit the labels ip,q as they may easily be deduced
from the Hodge numbers h and (5.1).

0 I II III IV V

✲

✻r
r

r ✲

✻
r

r

r

r

r

r

r

✲

✻

r

r

r

r

r

✲

✻
r

r

r

r

r

✲

✻

r

r

r

r

r

r

r

✲

✻

r

r

r

−
−
−
−
+
...

}
m − 4
boxes

−
−
+
...

}
m − 6
boxes

−+−
−
−
+
...

}
m − 5
boxes

+
...

}
m − 8
boxes

−+−

+
...

}
m − 7
boxes

−+−
−+−
+
...

}
m − 6
boxes

The second row of the table depicts the partially signed Young diagram classifying
the conjugacy class N ∈ ND of N . Ðoković’s [BPR17, Theorem 2.21] yields

0 < NI <

{
NII

NIII

}

< NIV < NV .

Example 5.7 (h = (2, 4, 2)). Here we specialize Example 5.6 to m = 4. In order
to illustrate our assertion that Prop. 5.2 can fail for ΨD, we consider the pairs
(F,N) modulo the connected identity component SO(4, 4)+ ( O(4, 4). In this
case the conjugacy classes are classified by (2.6), not Proposition 5.2. We find
that there are six nontrivial conjugacy classes, rather than the five of Example
5.6: the O(4, 4)–conjugacy class III splits into two SO(4, 4)+–conjugacy classes.

To describe these six conjugacy classes, we follow the notation of §A.1. Then
Eϕ = S

2. This implies that the the Weyl subgroup W0 ⊂ W is generated by
the simple reflections {(1), (3), (4)}. We will let S′ denote the simple roots of a
representative lR of the element [lR] ∈ Λϕ,t indexing the conjugacy class. Finally,
we employ the short-hand (a1, . . . , a4) to indicate the distinguished Z = πss

l (Eϕ) =
a1S

1 + · · ·+ a4S
4. Then the six nontrivial SO(4, 4)+–conjugacy classes [F,N ] are

HD lssR Z S
′

I su(1, 1) (−1, 2,−1,−1) {α2}
II su(1, 1) ⊕ su(1, 1) (−2, 2, 0, 0) {α2 , α2 + α3 + α4}
III su(1, 1) ⊕ su(1, 1) (0, 2, 0,−2) {α2 , α1 + α2 + α3}
III su(1, 1) ⊕ su(1, 1) (0, 2,−2, 0) {α2 , α1 + α2 + α4}
IV su(1, 1)⊕3 (−1, 2, 1,−1) {α2 , α1 + α2 + α3 , α2 + α3 + α4}
V su(2, 1) 2Eϕ {α2 , α1 + · · ·+ α4}

Example 5.8 (Calabi–Yau 3-folds). Suppose that h = (1,m,m, 1). There are 4m
possible Hodge diamonds, including the trivial one; they are listed in the first row
of the table below.
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Ia IIb IIIc IVd

✲

✻
r

ra′

ra ra′

ra

r

(a+ a′ = m)

✲

✻
r

rb

rb′

r

r

rb′

rb

r

(b+ b′ = m− 1)

✲

✻

r rc r

c′

r

r

r

c′

rc r

(c + c′ = m− 1)

✲

✻

r

rd

rd′

rd′

rd

r

(d + d′ = m)

+− ⊗a

⊗2a′ + 2

+−
−+

⊗b
⊗2
⊗2b′

+−

⊗2
⊗c
⊗2c′ − 2

−+−+
+−

⊗1
⊗d− 1
⊗2d′

Above we have 0 ≤ a ≤ m, 0 ≤ b ≤ m − 1, 0 ≤ c ≤ m − 2 and 1 ≤ d ≤ m. The
second row of the table depicts the partially signed Young diagram classifying the
conjugacy class N ∈ N of N . Ðoković’s [BPR17, Theorem 2.21] yields

NIa < NIb NIIa < NIIb NIIIa < NIIIb NIVa < NIVb
if and only if a < b ;

NIa < NIIb if and only if a ≤ b ;
NIa ,NIIa < NIIIb if and only if a ≤ b+ 2 ;

NIa ,NIIa < NIVb
if and only if a ≤ b ;

NIIIa < NIVb
if and only if a+ 2 ≤ b .

Remark 5.9. The enumeration of ΨD (or a quotient thereof) by “numerically ad-
missible” Hodge diamonds is particular to period domains. Besides the greater
constraints on degenerations in a M-T domain, there is the fact that a general
such domain may have no “standard representation” (as for exceptional groups).
Even when G is classical, and a M-T group, the standard representation may not
be realizable as a Hodge representation (e.g. Sp(a, b) [GGK12]).

5.3 Primitive subspaces

The N–primitive subspace P (N) of V is defined by

P (N) :=

n⊕

k=0

P (N)n+k ,

where
P (N)n+k,C :=

⊕

p+q=n+k

P (N)p,q , and

P (N)p,q := ker{Nk+1 : Ip,q → I−p−1,−q−1} .
(5.10)

Recall that the weight n+k N–primitive subspace P (N)n+k is defined over R, and

V =
⊕

0 ≤ k
0 ≤ a ≤ k

NaP (N)n+k . (5.11)

In particular, the decomposition (5.10) determines the Deligne bigrading VC =
⊕ Ip,q of (F,W (N)). Moreover, (5.10) is a weight n + k Hodge decomposition of
P (N)k,Q polarized by

QNk (·, ·) := Q(·, Nk·) .
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The N–primitive Hodge–Deligne numbers are the

jp,q := dimC P (N)p,q .

The weight n+ k primitive part of ✸(F,N) is the function

✸
prim
n+k (F,N) : Z× Z → Z≥0 sending (p, q) 7→ jp,q ,

which is supported on p+ q = n+ k. The primitive part of ✸(F,N) is the sum

✸
prim(F,N) =

n∑

k=0

✸
prim
n+k (F,N)

of the weight n+ k primitive parts. We will call any such ✸
prim(F,N) a primitive

sub-diamond for the period domain D.6 From (5.11) we see that

✸
prim(F,N) determines ✸(F,N) (and visa versa). (5.12)

To be more precise, given f : Z × Z → Z≥0 define f [k, k] : Z × Z → Z≥0 by
(p, q) 7→ f(p+ k, q + k). Then (5.11) implies

✸(F,N) =
∑

0 ≤ k
0 ≤ a ≤ k

✸
prim
n+k (F,N)[a, a] .

From Proposition 5.2 we then obtain

Corollary 5.13. The conjugacy class [F,N ] ∈ ΨD is determined by the primitive
sub-diamond ✸

prim(F,N).

Example 5.14 (Surfaces with contact IPR). The primitive sub-diamonds for the
five nontrivial [F,N ] ∈ ΨD of Example 5.6 are depicted below.

I II III IV V

✲

✻
r1

r

m − 2

r1

r1

r1

✲

✻
r1

rm− 1

r

1r

1 ✲

✻

r

m− 4

r

2r

2

✲

✻
r1

r

m− 3
r1

r1

✲

✻

rm− 2

r2

Proof of Proposition 5.2. Given a function f : Z × Z → Z≥0 satisfying (5.1), the
pair (F,N) may be constructed as follows. For convenience, and without loss of
generality, we assume that n ≥ 0 and that f(p, q) 6= 0 only when 0 ≤ p, q ≤ n. Fix
a direct sum decomposition VC = ⊕ Ip,q0 so that dimC I

p,q
0 = f(p, q) and Ip,q0 = Iq,p0

for all p, q. Then (5.1) implies one may define a nilpotent N0 ∈ End(VR) so that
N(Ip,q0 ) ⊂ Ip−1,q−1

0 for all p, q, and so that

Np+q−n
0 : Ip,q0 → In−q,n−p0

is an isomorphism for all p+ q ≥ n.

6Note that it is not, in fact, a diamond: (5.1) will fail whenever N 6= 0.
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Suppose that Q is symmetric (n is even) and of signature (a, b) over R. Then
it follows from (5.1) and the classification of nilpotent elements in so(a, b) (see
[BPR17, §2]), that there exists a symmetric, bilinear form Q0 on VR of signature
(a, b) such thatN0 ∈ End(VR, Q0). More precisely, given a basis {vp,qi } (vp,qi = vq,pi )
for each P (N0)

p,q := ker(Np+q−n+1
0 ) ⊂ Ip,q0 , we can set

Q0(N
jvp,qi , Np+q−n−jvp

′,q′

i ) := iq−p+2jδkk′δpp′δqq′ .

It is then the case that Q0 is conjugate to Q under the action of some g ∈ Aut(VR).
Set Ip,q = g(Ip,q0 ) and N = Adg(N0). Then VC = ⊕ Ip,q is the Deligne bigrading of
an R–split mixed Hodge structure (F,W ) that is polarized by N . The symplectic
case works in the same way. This establishes the first assertion of the proposition.
For the second assertion, let VC = ⊕Ip,qi denote the respective Deligne splittings of
(Fi,W (Ni)) for i = 1, 2. It is clear that equality of the equivalence classes [Fi, Ni]
implies equality of the Hodge diamonds ✸(Fi, Ni), since any g ∈ G(R) with the
property g · (F1, N1) = (F2, N2) will satisfy g(Ip,q1 ) = Ip,q2 . We will establish
the converse by constructing an explicit g ∈ Aut(VR, Q) with the properties that
AdgN1 = N2 and g(Ip,q1 ) = Ip,q2 . The latter implies F2 = g ·F1, so that (F2, N2) =
g · (F1, N1), completing the proof.
By (5.12), the hypothesis ✸(F1, N1) = ✸(F2, N2) is equivalent to equality
jp,q1 = jp,q2 of the primitive Hodge numbers. Given p ≥ q with p + q = n + k,
fix bases B

p,q
i = {vp,qi,1 , . . . , vp,qi,jp,q} of the primitive spaces P (Ni)

p,q so that

QNi

k (Cvp,qi,a , v
p,q
i,b ) = δab. (Here C denotes the Weil operator on P (Ni)n+k.) If

p = q, then we may assume that B
p,p
i ⊂ VR is real. Then (5.11) implies

⋃

k≥0

⋃

0 ≤ ℓ ≤ k
p + q = n + k

N ℓ
i

{

B
p,q
i ∪ B

p,q
i

}

are bases of VC, i = 1, 2. So we may define g ∈ Aut(VC) by

g
(
N ℓ

1 v
p,q
1,a

)
:= N ℓ

2 v
p,q
2,a and g

(

N ℓ
1 v

p,q
1,a

)

:= N ℓ
2 v

p,q
2,a .

By construction g is defined over R and preserves Q – that is, g ∈ Aut(VR, Q) –
and has the properties AdgN1 = N2 and g(Ip,q1 ) = Ip,q2 .

Remark 5.15. Implicit in the proof of Proposition 5.2 is the following, very useful
fact:

There is a natural injection
∏

k≥0 Aut(P (N)k, Q
N
k ) →֒ Aut(VR, Q).

Given h ∈ ∏
Aut(P (N)k, Q

N
k ), (5.11) allows us to define g ∈ Aut(VR, Q) by

g(N ℓv) := N ℓh(v), where v ∈ P (N)k and 0 ≤ ℓ ≤ k. This is in fact what makes
Theorem 5.18 below work for period domains (as opposed to general Mumford-
Tate domains).
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5.4 Primitive subspaces and polarized relations

Now suppose that [F1, N1] � [F2, N2] ∈ ΨD, where (in the even weight case)
“�” just means the quotient relation. Then Theorem 3.11 asserts that there exist
commuting SL(2)’s

υ : SL(2,C)× SL(2,C) → G(C)

with the following properties:
(i) There exist commuting DKS–triples

{E1,Z1,E1} and {E′
,Z′,E′}

spanning the first and second summands, respectively, of the Lie algebra
sl(2,C) ⊕ sl(2,C). Let’s distinguish the first and second factors of υ by
denoting them SL(2,C)1 and SL(2,C)′, respectively.

(ii) The sum

{E2 = E1 + E
′
, Z2 = Z1 + Z

′ , E2 = E1 + E
′}

is also a DKS–triple.

(iii) For i = 1, 2, the Cayley transform

{N+
i , Yi, Ni} := Ad−1

̺i {Ei,Z,Ei} ⊂ gR

is a standard triple containing the nilpotent Ni as the nilnegative element,
and

Fi = ̺−1
i · ϕ .

Here ̺i = exp iπ4 (Ei + Ei) is defined as in (2.11).
What we want to do in this section is explain how ✸(F2, N2) is obtained from the
action of SL(2)′ on P (N1).
Let VC = ⊕ Ip,q1 denote the Deligne bigrading of the mixed Hodge structure
(F1,W (N1)), and let jp,q1 = dimC P (N1)

p,q denote the primitive Deligne–Hodge
numbers. Recall that

⊕

p+q=k

Ip,q1 = {v ∈ VC | Y1(v) = k v}

is a Y1–eigenspace.

(a) The fact that the two SL(2)’s commute implies that P (N1)n+k is preserved
under the action of SL(2)′. In fact, setting N = N1 in (5.11) yields

VR =
⊕

0 ≤ k
0 ≤ a ≤ k

Na
1P (N1)n+k , (5.16)

so that the action of SL(2)′ on P (N1) determines the action of SL(2)′ on all
of V .
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(b) The restriction υ to the second factor yields a representation

υ′ : SL(2,C) →
n⊕

k=0

Aut(P (N1)n+k , Q
N1

k ) .

Composing this map with the obvious projection yields a horizontal SL(2)

υk : SL(2,C)′ → Aut(P (N1)n+k , Q
N1

k )

on the period domain Dk for the weight n+ k, QN1

k –polarized Hodge struc-
tures on P (N1)n+k with Hodge numbers {jp,q1 | p+ q = n+ k}.

(c) Set ̺′ = exp iπ4 (E
′
+ E′) and (F ′, N ′) = (̺′)−1(ϕ,E′). The final observations

of (b) imply that (F ′, N ′) determines a polarized mixed Hodge structure
(F ′
k,W (N ′

k)) on P (N1)n+k with F ′
k ∈ Ďk and N ′

k ∈ End(P (N1)n+k , Q
N1

k ),
for each k = 0, . . . , n. Let ✸(F ′

k, N
′
k) denote the Hodge diamond.

(d) The commutativity of the two horizontal SL(2)’s and (5.16) imply

✸(F2, N2) =
∑

0 ≤ k
0 ≤ a ≤ k

✸(F ′
k, N

′
k)(a) , (5.17)

where ✸(a)(p, q) := ✸(p+ a, q + a).

Theorem 5.18. Let D be a period domain parameterizing weight n, Q–polarized
Hodge structures on VR. Let [F1, N1], [F2, N2] ∈ ΨD. Then [F1, N1] � [F2, N2] if
and only if ✸(F2, N2) can be expressed as a sum (5.17) for Hodge diamonds (that
is, functions subject to (5.1) (applied to Dk)) ✸(F ′

k, N
′
k) on the period domains Dk

parameterizing weight n + k, QN1

k –polarized Hodge structures on P (N1)n+k with
Hodge numbers {jp,q1 | p+ q = n+ k}.
Remark. This observation was made independently by Mark Green and Phillip
Griffiths [GG] in the case that n = 2.

Proof. ( =⇒ ): Necessity was established in the discussion preceding the statement
of the proposition, using Theorem 3.11. Alternatively, this is just admissibility of
the degeneration of MHS along a face of the nilpotent cone – i.e. existence of
M(N ′,W (N1)) (=W (N2)).
(⇐= ): To establish sufficiency note that the converse to items (a) and (b) above
holds. More precisely, if we are given

• a horizontal υ1 : SL(2,C)1 → G(C), and

• for each k = 0, . . . , n, a horizontal υ′k : SL(2,C)→ Aut(P (N1)k, Q
N1

k ) on Dk,

then we may use the injection of Remark 5.15 to assemble these v′k into a sec-
ond horizontal υ′ : SL(2,C)′ → G(C) commuting with υ1 (Remark 5.15). This
observation, taken with Proposition 5.2 and (5.12), yields sufficiency.

The following four examples illustrate the application of Theorem 5.18.
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Example 5.19 (Curves of genus g). The polarized relations amongst the [F,N ] ∈
ΨD of Example 5.4 are

Ia ≺ Ib ⇐⇒ a < b .

Example 5.20 (K3 surfaces). The polarized relations amongst the three [F,N ] ∈
ΨD of Example 5.5 are 0 ≺ I ≺ II.
Example 5.21 (Surfaces with contact IPR). The polarized relations amongst the
five nontrivial [F,N ] ∈ ΨD of Example 5.6 are

I ≺ II , III , IV , V ;

II , III ≺ IV , V ;

IV ≺ V .

In this case the polarized relations are transitive, and so define a partial order that
we may more compactly express as

0 ≺ I ≺
{

II
III

}

≺ IV ≺ V .

In particular, all the relations on ND are polarized.
Example 5.22 (Calabi–Yau 3-folds). The polarized relations amongst the 4m ele-
ments of ΨD in Example 5.8 are

Ia ≺ Ib
IIa ≺ IIb
IIIa ≺ IIIb
IVa ≺ IVb







⇐⇒ a < b ,

and
Ia ≺ IIb , IIIb ⇐⇒ a ≤ b , a < m ,
Ia ≺ IVd ⇐⇒ a < d , a < m ,
IIb ≺ IIIc ⇐⇒ 2 ≤ b ≤ c+ 2 ,
IIb ≺ IVd ⇐⇒ 1 ≤ b ≤ d− 1 ,
IIIc ≺ IVd ⇐⇒ c+ 2 ≤ d .

Comparing with the result of Example 5.8, we find that not all the relations
on ND are polarized. Furthermore, the polarized relation fails to be transitive:
II0 ≺ II1 ≺ IV2, but II0 6≺ IV2, and so is not a partial order.

6 The classical case

In this section we study the “classical case” that D is Hermitian symmetric, and
T hD = D. This includes the cases that D is the period domain parameterizing
polarized Hodge structures with Hodge numbers (g, g) or (1,m, 1) (which cor-
responds to curves and principally polarized abelian varieties, and K3–surfaces,
respectively).
It will be helpful to first review commuting horizontal SL(2)’s associated with
strongly orthogonal roots. (The discussion in §6.1 is terse; see [KR17, §6] for more
detail.)
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6.1 Roots and horizontal SL(2)’s

Let R ⊂ h∗ denote the roots of gC. Given a root α ∈ R, let gα ⊂ gC denote the
root space. Then gα is 1–dimensional, and [gα, gβ ] is nonzero if and only if α+ β
is a root.
Let

slα(2,C) := gα ⊕ [gα, g−α] ⊕ g−α ≃ sl(2,C)

denote the associated 3–dimensional subalgebra. If α(Eϕ) = 1, then we can choose
a DKS–triple {Eα,Zα,Eα} spanning the subalgebra slα(2,C) so that Eα ∈ g−α ⊂
g−1
ϕ and Zα ∈ it ⊂ g0ϕ (which imply Eα ∈ gα ⊂ g1ϕ). Note that slα(2,C) determines

a horizontal SL(2)

υ : SL(2,C) → SLα(2,C) ⊂ G(C)

at ϕ (§A.9). The DKS–triple yields a Cayley transform

̺α := exp iπ4 (Eα + Eα) . (6.1)

We say that two roots α, β ∈ R are strongly orthogonal if the two subalgebras slα2
and sl

β
2 commute. (Equivalently, neither α ± β are roots.) In particular, a set of

strongly orthogonal roots {β1, . . . , βs} ∈ R satisfying βi(Eϕ) = 1 yields commuting
horizontal SL(2)’s

υ :
∏

SL(2,C) →
∏

i

SLβi(2,C) ⊂ G(C)

at ϕ ∈ D. The corresponding nilpotent cone

σ = spanR>0
{N1, . . . , Ns}

is given by
Ni := Ad−1

̺i Ei ∈ gR .

Moreover, given a subset I ⊂ {1, . . . , s}, we see from (2.11), (2.12) and (2.13) that
the orbit OI ∈∆D polarized by the face

σI := spanR>0
{Ni | i ∈ I}

passes through the point
FI,∞ = φ∞(FI , NI) ,

where
NI :=

∑

i∈I

Ni ∈ σI

and
FI := ̺−1

I · ϕ with ̺I :=
∏

i∈I

̺i ∈ G(C) .
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6.2 The case that D is Hermitian symmetric

In the case that D is Hermitian symmetric the infinitesimal period relation is
trivial. As a result every G(R)+–orbit O ⊂ D is polarized; that is,

D =
⊔

O⊂∆D

O .

Our proof of Theorem 1.14 makes use of

Theorem 6.2 (Korányi–Wolf). Assume that D is Hermitian symmetric.

(a) The G(R)+–orbits O ⊂ D are linearly ordered. That is, they may be enu-
merated so that

D < O1 < · · · < Os .

(b) Moreover, there exists a set {β1, . . . , βs} ⊂ R of strongly orthogonal roots
such that βi(Eϕ) = 1 and the orbit Oi passes through the point ̺i ◦ · · · ̺2 ◦
̺1(ϕ) ∈ Ď, where ̺i is the Cayley transform (6.1) associated with βi.

Proof of Theorem 6.2. See [FHW06, Theorem 3.2.1], and the references therein
(especially [KW65, WK65]).

Proof of Theorem 1.14. Assertion (i) of the theorem follows directly from The-
orems 1.8, 1.6 and 6.2(a). Likewise, part (ii) of the theorem is an immediate
consequence of Theorem 6.2(b) and the discussion of §6.1. (In fact, the com-
plete statement of [FHW06, Theorem 3.2.1] implies that φ∞(FI , NI) ∈ Oi, where
(FI , NI) is as defined in §6.1 and |I| = i.)

Remark 6.3. It is a consequence of the properties of Cayley transforms that we
may choose a (noncompact) real Cartan hR ⊂ gR so that the root spaces gβi are
defined over R. Moreover, we may choose root vectors Ni ∈ g

βi

R so that every
polarized relation in ΨD is realized by some face of the cone

σ = spanR>0
{N1, . . . , Ns} .

For general domains, not necessarily Hermitian symmetric, no such single cone will
exist. Special cases in which such a cone does exist include the “nearly classical”
case that D is a period domain parameterizing polarized Hodge structures with
h = (2,m, 2) (Examples 5.6, 5.7, 5.14 and 5.21), see [BPR17, §5.3] and [KR17,
§5.7].
See [KR17, §6] for a thorough discussion of Cayley transforms, the construction
of nilpotent cones (underlying nilpotent orbits) from sets of strongly orthogonal
noncompact roots, the corresponding polarized O ∈ ∆D and the polarized rela-
tionships between these orbits.
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7 The other extreme: the case that G0(R) is a torus

Here we study the case where the stabilizer G0(R) of the Hodge structure ϕ ∈ D is
a torus, and T hD is bracket-generating. Under the latter assumption, this is as far
from classical as it is possible to be in the following sense: the IPR is trivial when
D is Hermitian symmetric; that is, T hD = D has the maximal possible rank. In
contrast, the length of the filtration

T hD ⊂ [T hD,T hD] ⊂
[
T hD, [T hD,T h]

]
⊂ · · · ⊂ TD

is maximized (under the bracket-generating assumption) by the case G0(R) = T
as D ranges over all Mumford–Tate domains with automorphism group G(R)+.
This length may be thought of as measuring the degree to which the subbundle
T hD fails to be involutive. In the Hermitian symmetric case T hD is involutive,
while in the case that G0(R) is a torus T hD is maximally non-involutive in the
sense above.
Recall (2.3) that the Lie algebra g0ϕ,R of G0(R) contains the compact Cartan sub-
algebra t ⊂ gR. Here we consider the case that the equality

g0ϕ,R = t (7.1)

holds. Equivalently, the Weyl subgroup W0 of §2 is trivial, so that

Lϕ,t = Λϕ,t .

The complexification h = t ⊗ C is a Cartan subalgebra of gC. The equality (7.1)
holds if and only if the stabilizer of Fϕ ∈ Ď in G(C) is a Borel subgroup B; that
is, Ď = G(C)/B. Equivalently, there exists a choice of simple roots S ⊂ h∗ of gC
such that

α ∈ R satisfies α(Eϕ) = 1 if and only if α ∈ S . (7.2)

(This equivalence requires the hypothesis that the IPR is bracket–generating. See
[Rob15, §3.1.2] and the references therein for further discussion.)
Let P(S) denote the power set of the simple roots S = {α1, . . . , αr} ⊂ h∗ of gC.
Define a partial order ≤ on P(S) by declaring S1 ≤ S2 if and only if S1 ⊆ S2. We
say the relation S1 ≤ S2 is polarized if the elements of S1 are strongly orthogonal
(§6.1) to the elements of S2\S1; in this case we write S1 � S2. Note that � is also
a partial order, since given S1 ⊆ S2 ⊆ S3 with S1 [resp. S2] strongly orthogonal to
S2 \S1 [resp. S3 \S2], we have S1 strongly orthogonal to S2 \S1 ∪S3 \S2 = S3 \S1.
Remark 7.3. If αi, αj ∈ S are two simple roots of gC, then αi −αj is never a root.
So αi and αj are strongly orthogonal if and only if αi + αj is not a root.

Proposition 7.4. There is a natural bijection between Lϕ,t = Λϕ,t ≃ ΨD and the
power set P(S) that preserves both the relations ≤ and the polarized relations �.

Corollary 7.5. The relations ≤ and � on ΨD are partial orders.
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Proof. Step 1. First we will establish the bijection

Lϕ,t ↔ P(S) . (7.6)

Fix a Levi subalgebra t ⊂ lR ⊂ gR. Let R′ ⊂ R denote the roots of lC. Let
b ⊂ gC be the Lie algebra of B. Note that b′ = b ∩ lssC is a Borel subalgebra of lssC .
Equivalently, lssC admits a choice of simple roots S′ ⊂ R′ with the properties

β ∈ S
′ implies β(Eϕ) > 0 , (7.7a)

β ∈ R
′ and β(Eϕ) = 1 implies β ∈ S

′ . (7.7b)

Let lssC = ⊕ lp be the Eϕ–eigenspace decomposition. Then (7.7a) holds if and only
if l0 is the Cartan subalgebra h′ = h ∩ lssC ; in particular,

dim l0 = dim h′ = |S′| . (7.8)

Note that
l1 =

⊕

β ∈ R
′

β(Eϕ) = 1

gβ ⊂ lssC .

Recollect that Z is a distinguished grading element of lssC if and only if dim l0 =
dim l1 (§A.8). Equations (7.2), (7.7b) and (7.8) imply that this is equivalent to
S′ ⊂ S. This establishes the bijection (7.6).
For later use we note that the argument above establishes

l1 =
⊕

β∈S′

gβ . (7.9)

Step 2. Given two Levis l1, l2 ∈ Lϕ,t, let S1, S2 ⊂ S denote the corresponding
simple roots. Note that l1 ⊂ l2 if and only if S1 ⊂ S2. So to prove that the
bijection (7.6) preserves the relations it suffices to show that

l̃ = l for all l ∈ Lϕ,t . (7.10)

Both b ∩ l and b ∩ l̃ are Borel subalgebras of l and l̃, respectively. These Borel
subalgebras uniquely determine simple roots S′ ⊂ S̃ ⊂ R of l and l̃, respectively,
with the property that

2α(Eϕ) = α(Z) > 0 , (7.11)

for all α ∈ S̃ (cf. §A.1 and (2.17)). By definition Z ∈ lssC . If l̃ 6= l, then there exists
a fundamental weight ωi of l̃ss so that ωi(Z) = 0 (§A.5(a)). However, (7.11) and
§A.5(b) imply no such ωi exists. This establishes (7.10).
Step 3. It remains to show that (7.6) preserves the polarized relations. First
suppose [F1, N1] ≺ [F2, N2] ∈ ΨD. Let l1 ⊂ l2 ∈ Lϕ,t denote the corresponding
Levis and S1 ⊂ S2 ⊂ S their simple roots. We need to show the roots of S1 are
strongly orthogonal to the roots of S′ = S2\S1.
By Theorem 3.11 the polarized relation [F1, N1] ≺ [F2, N2] may be realized by
commuting horizontal SL(2)’s. Equivalently, there exist commuting DKS–triples

{E1,Z1,E1} and {E′
,Z′,E′} (7.12)
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(these span the two commuting horizontal sl(2,C)’s) such that

E2 = E1 + E
′
, Z2 = Z1 + Z

′ , E2 = E1 + E
′

is a third DKS–triple and

Fi = ̺−1
i ϕ and Ni = Ad−1

̺i Ei

with ̺i given by (2.11), for i = 1, 2, cf. (2.12)
Let {E,Z,E} be any one of the three DKS–triples above. By virtue of the isomor-
phism ΥD ≃ Λϕ,t of §3.4.1, each triple determines a Levi l ∈ Lϕ,t. Let Sl ⊂ S

denote the simple roots. Then E ∈ l−1 and (7.9) imply that

E =
∑

α∈Sl

E
α , E

α ∈ g−α

is a sum of simple root vectors. The Bala–Carter Theorem [BC76a, BC76b] asserts
that lC is the minimal Levi subalgebra containing E. This forces Eα 6= 0 for all
α ∈ Sl.
Therefore,

E1 =
∑

α∈S1

E
α and E

′ =
∑

β∈S′

E
β , (7.13)

and the E
α and E

β are nonzero. A necessary condition for the two DKS–triples
to commute is [Eα,Eβ ] = 0 for all α ∈ S1 and β ∈ S2\S1. Equivalently (§A.1),
α + β is not a root. By Remark 7.3, this implies the roots of S1 and S′ = S2\S1
are strongly orthogonal.
Conversely, if S1 and S

′ = S2\S1 are strongly orthogonal, the Levis l1, l′ ∈ Lϕ,t with
simple roots S1 and S′ we have two horizontal DKS–triples (7.12) at ϕ satisfying
(7.13). We claim that the two DKS–triples commute. It is immediate from the
definition of strong orthogonality that {E1,E1} and {E′

,E′} commute. The Jacobi
identity then implies that Z1 = [E1,E1] commutes with {E′

,E′} and that Z′ =

[E
′
,E′] commutes with {E1,E1}.

Example 7.14 (Weight 7 and h = (1, . . . , 1)). Let D be the period domain param-
eterizing Hodge structures of weight n = 7 with Hodge numbers h = (1, . . . , 1).
In this case the full automorphism group G(R) = Sp8R is connected, and G0(R)
is a torus. By Proposition 7.4 the elements of [F,N ] ∈ ΨD are indexed by subsets
S′ ⊂ S. For each subset we give the corresponding Hodge diamond, the distin-
guished semisimple element Z, the codimension of the G(R)–orbit O = φ∞([F,N ])
in Ď (see [KP14, §4]), and the partially signed Young diagram classifying the
nilpotent conjugacy class N = π([F,N ]) ∈ N (see [BPR17, §2.3]). Making use
of Proposition 7.4, we can read the relations ≤ and � on ΨD off from the simple
roots S′. Finally, in order order to specify Z, we let {S1, . . . , S4} denote the basis
of h dual to the simple roots S = {α1, . . . , α4} ⊂ h∗. Then Eϕ = S

1 + · · ·+ S
4. We

will employ the shorthand
∑

i aiS
i = (a1, . . . , a4) to denote the grading element

Z = 2 πss
l (Eϕ).
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✲
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S′ = ∅, Z = 0

codimO = 0

✲

✻r
r

r

r

r

r

r

r

S′ = {α4}
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+ −

✲

✻
r

r

r

r

r

r

r
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− +

− +

✲

✻r
r

r

r

r

r

r
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+ −

+ −

✲

✻r
r

r

r

r

r

r

r
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codimO = 1

− +

− +

✲

✻
r

r

r

r

r

r

r

r

S′ = {α1, α3}

Z = (2,−2, 2,−2)

codimO = 2

− +

− +

− +

− +

✲

✻
r

r

r

r

r

r

r

r

S′ = {α1, α4}

Z = (2,−1,−1, 2)

codimO = 2

+ −

− +

− +

✲

✻r
r

r

r

r

r

r

r

S′ = {α2, α4}

Z = (−1, 2,−2, 2)

codimO = 2

+ −

+ −

+ −

✲

✻
r

r

r

r

r

r

r

r

S′ = {α1, α2}

Z = (2, 2,−2, 0)

codimO = 3

✲

✻r

r

r

r

r

r

r

r

S′ = {α2, α3}

Z = (−2, 2, 2,−4)

codimO = 3

✲

✻r
r

r

r

r

r

r

r

S′ = {α3, α4}

Z = (0,−3, 2, 2)

codimO = 4

− + − +

✲

✻
r

r

r

r

r

r

r

r

S′ = {α1, α3, α4}

Z = (2,−4, 2, 2)

codimO = 5
− + − +

− +

− +

✲

✻
r

r

r

r

r

r

r

r

S′ = {α1, α2, α4}

Z = (2, 2,−3, 2)

codimO = 5 + −

✲

✻

r

r

r

r

r

r

r

r

S′ = {α1, α2, α3}

Z = (2, 2, 2,−6)

codimO = 6

− + − +

− + − +

✲

✻r

r

r

r

r

r

r

r

S′ = {α2, α3, α4}

Z = (−5, 2, 2, 2)

codimO = 9 + − + − + −

✲

✻

r

r

r

r

r

r

r

r

S′ = {α1, α2, α3, α4}

Z = (2, 2, 2, 2)

codimO = 16

− + − + − + − +
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Note that the two [F,N ] indexed by S′ = {α1} and S′ = {α3}, respectively, have
the same Young diagram. That is, π({α1}) = π({α3}). Likewise π({α1, α2}) =
π({α2, α3}). Thus, π fails to be injective.

Example 7.15 (Weight 5 and h = (1, . . . , 1)). In this example we answer a ques-
tion asked of the authors by E. Cattani: given an inclusion DM = M(R)+.ϕ ⊂
G(R)+.ϕ = D of M-T domains, and a nilpotent N ∈ mQ such that the (pre-
)boundary component B̃(N) is nonempty, must B̃M (N) be nonempty? Here
B̃(N) ⊂ D̃ is the set of flags for which ezNF is a nilpotent orbit in D, and
B̃M (N) ⊂ ĎM is the subset yielding nilpotent orbits on DM .
Assume G(R) is connected; then according to [GGK12, (VI.B.11)], we have ĎM ∩
D = M(R).ϕ. Clearly if this is connected, then it is DM , and B̃M (N) = B̃(N) ∩
ĎM . We show that even in this case the answer can be negative.
Let D be the period domain for HS of weight 5 with all Hodge numbers 1, on
(V,Q) = ⊕2

i=0(Vi, Qi), where the (Vi, Qi) are isomorphic symplectic planes. Let
ϕ = ⊕2

i=0ϕi be the sum of these CM HS of respective types (i, 5 − i) + (5 − i, i),
with M-T groups Ti (compact 1-tori non-isomorphic over Q). Set M = SL(V0)×
T1 × T2, and put N :=

(
0 0
1 0

)
in the sl(V0)-factor of m; then DM = M(R).ϕ is a

1-dimensional subdomain with trivial horizontal distribution hence no boundary
components. That is, B̃M (N) = ∅.
Next let ϕ′ = ⊕2

i=0ϕ
′
i ∈ D be the CM HS given by ϕ′

0 = (ϕ2)
1
3 , ϕ′

1 = ϕ1,
ϕ′
2 = (ϕ0)

3; i.e. the Hodge numbers on V0 and V2 have been swapped. Then
D′
M :=M(R).ϕ′ is a horizontal 1-dimensional subdomain (with different compact

dual!), which is a nilpotent orbit in D under N . So B̃(N) 6= ∅.
As in the last example, ΨD ։ ND is not bijective. One wonders the extent to
which this is responsible for the negative answer.

See Example 8.13 for another domain with G0(R) a torus.

8 The secondary poset and further examples

In this final section we turn at last to the classification of nilpotent orbits and
cones as promised in the Introduction. The secondary poset and its refinements
are defined in §8.1, with the remaining subsections devoted to examples.

8.1 Admissible n-cubes and polarizable cones

Returning once more to the subject of §3, let σ = R>0〈N1, . . . , Nn〉 ⊂ gR be a
nilpotent cone7 underlying a nilpotent orbit; assume in particular that rk(σ) = n so
that σ is simplicial. Let Ck denote the poset consisting of functions ǫ : {1, . . . , n} →
{0, 1}, with the natural partial order: ǫ ≤ ǫ′ ⇐⇒ ǫ(j) ≤ ǫ′(j) (∀j). Write 0 and
1 for the constant functions, and ǫi for δij ; and set |ǫ| := ∑n

i=1 ǫ(i). Recalling the
map ψ◦ : Γσ → ΨD defined in (3.4), we may consider the composite

µσ : Cn
∼=→ Γσ

ψ◦

→ ΨD,

7More precisely, we mean a nilpotent cone together with an ordering of its generators, but
will quotient this ordering out below.
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which maps 0 7→ [{0}] (the trivial Levi), and relations ≤ to polarized relations �.

Definition 8.1. An ordered n-cube is a map µ : Cn → ΨD with:

(a) µ−1[{0}] = {0}; and

(b) ǫ ≤ ǫ′ =⇒ µ(ǫ) � µ(ǫ′).

We shall term µ polarizable if µ = µσ for some (n-dimensional, simplicial) polar-
izable nilpotent cone σ.

The obvious question here is how to find the polarizable ordered n-cubes (hard)
among the ordered n-cubes (easy, once (ΨD,�) is known). In particular, how
much can be deduced from “combinatorial” (finite) methods alone? To this end,
we introduce an integer invariant on ΨD, defined as follows.
Given a Levi ℓ ∈ Lϕ,t, with F,N, l̃ = ⊕l̃p,p = ⊕gp,p(F,N) as in (2.16), choose a
decomposition Rl̃ = R+

l̃
∪R−

l̃
of the roots so that R+

l̃
contains the weights of the

{̃lp,p}p>0; and let

• W+

l̃
:=

{

w ∈ Wl̃

∣
∣
∣w(R+

l̃
) ⊃ R+

l̃0,0

}

,

• ∆(w) := w(R+

l̃
) ∩R−

l̃
,

• W#

l̃
:=

{

w ∈ W+

l̃

∣
∣
∣∆(w) ⊂ Rl̃−1,−1

}

, and

• W#

l̃
(d) :=

{

w ∈ W#

l̃

∣
∣
∣ |∆(w)| = d

}

.

Definition 8.2. The capacity of l is the nonnegative integer

cap(l) := max
{

d
∣
∣
∣W#

l̃
(d) 6= ∅

}

.

Since this is invariant under the Weyl group W0, it yields a function

cap : ΨD → Z≥0.

Definition 8.3. An ordered n-cube is admissible if |ǫ| ≤ cap(µ(ǫ)) for each ǫ ∈ Cn.
It is convenient to choose a system of representatives lǫ ∈ Lϕ,t with [lǫ] = µ(ǫ) and
ǫ′ ≤ ǫ =⇒ l̃ǫ′ ⊆ l̃ǫ. (Note that this is possible by Theorem 1.10.) For each lǫ,
write Nǫ for a corresponding nilpotent (and Ni := Nǫi); in particular, recall that
this must belong to an open orbit of L0,0

ǫ (R)+ on l−1,−1
ǫ . (For simplicity, here we

can simply restrict the Hodge-Tate grading on l̃1 associated to (F,W (N1)) to all
lǫ, l̃ǫ.) Set Iǫ := {i ∈ {1, . . . , n} |ǫ(i) = 1}.
Definition 8.4. An ordered n-cube is strongly admissible if, for each ǫ, there exist
{gǫi ∈ L̃0,0

ǫ (R)+}i∈Iǫ such that:

(a) the {N ǫ
i := Ad(g

ǫ
i )Ni}i∈Iǫ commute and are linearly independent; and

(b) σǫǫ′ =
∑

R>0ǫ
′(i)N

ǫ
i ⊂ L̃0,0

ǫ (R)+.Nǫ′ (∀ǫ′ ≤ ǫ).
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This condition is more subtle and difficult to check than admissibility, as we shall
see in §8.2. In a sense it is the full “first Hodge-Riemann bilinear relation” for
n-cubes; that is, the only remaining obstacle to polarizability is a “positivity con-
dition”.

Theorem 8.5. For ordered n-cubes,

polarizability =⇒ strong admissibility =⇒ admissibility.

Proof. To deal with the first implication, suppose µ = µσ, with σ =
∑

R>0.N
′
i ,

and take Nσ ∈ σ, Fσ ∈ B̃R(σ)
◦. It will suffice to check (a) and (b) in Definition 8.4

for ǫ = 1, since the faces of σ are polarizable. We may assume (as in the proof of
Theorem 1.10) that (Fσ , Nσ) arises from l1 via (2.12). Writing l1 = ⊕lp,p1 for the
corresponding decomposition, it is clear that Nσ ∈ l

−1,−1
1 =⇒ σ ⊂ l̃

−1,−1
1 =⇒

σ ⊂ L̃0,0
1 (R)+.Nσ. More generally, σǫ′ =

∑
R>0ǫ

′(i)N ′
i ⊂ L̃0,0

1 (R)+.Nǫ′ follows
from ψ◦(σǫ′) = µσ(ǫ

′) = [lǫ′ ], since Nǫ′ is general in l
−1,−1
ǫ′ and σǫ′ ⊂ σ̄ ⊂ l̃

−1,−1
1 . In

particular, there exist γi ∈ L̃0,0
1 (R)+ such that γiN ′

i = Ni, and (taking N1
i := N ′

i ,

g
1
i := γ−1

i ) (a) and (b) are immediate.
For the second implication, observe that for each ǫ, (a) in Definition 8.4 says
that l̃−1,−1

ǫ contains an abelian subalgebra of dimension |ǫ|. But by the proof of
Theorem 3.32 of [Rob14], we have

ker

{

δ :

k∧

l̃−1,−1
ǫ → l̃−2,−2

ǫ ⊗
k−2∧

l̃−1,−1
ǫ

}

=
⊕

w∈W#

l̃ǫ
(k)

span
{

L̃0,0
ǫ (R)+.n̂w

}

(8.6)

where n̂w ⊂
∧k

l̃−1,−1
ǫ is the top exterior power of nw = ⊕δ∈∆(w)(̃l

−1,−1
ǫ )δ. The

left-hand side of (8.6) is nonzero iff an abelian subalgebra of dimension k exists,
while the right-hand side is nonzero iff (cap(µ(ǫ)) =) cap(lǫ) ≥ k.

The symmetric group Sn acts on Cn (by (s.ǫ)(j) = ǫ(s−1j)) and hence on the set
of ordered n-cubes (by (s.µ)(ǫ) = µ(s−1.ǫ)); obviously, polarizability, admissibility
and strong admissibility are stable under Sn.

Definition 8.7. An n-cube [µ] is an Sn-equivalence class of ordered n-cubes.

Now for each I = {i1, . . . , ik} ⊆ {1, . . . , n} there is an inclusion Ck
ıI→֒ Cn defined

by

(ıIǫ)(i) :=

{
ǫ(j) , i = ij
0 , i /∈ I.

There is a natural inclusion relation on the set of ordered cubes: given an ordered
k-cube µ′ and ordered n-cube µ, we write µ′ ≤ µ iff k ≤ n and µ′ = ı∗Iµ for some
I.

Definition 8.8. The secondary poset Ψ̃D (or Ψ̃adm
D ) is the set of all admissible

cubes [µ], with the inclusion relation. Note that it is a poset by construction (even
though neither (ΨD,�) nor (ΨD,≤) may be posets). Write Ψ̃pol

D ⊆ Ψ̃str
D ⊆ Ψ̃D for

the sub-posets of polarizable and strongly admissible cubes.
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Example 8.9. The following n-cubes always belong to Ψ̃pol
D :

(a) the trivial 0-cube µ0.

(b) the k-cubes arising from SL(2)×k-orbits. (We mention this since the com-
putation of (ΨD,�) produces a lot of SL(2)×2-orbits in view of Theorem
3.11.)

(c) for any polarized relation [l′] � [l] in ΨD, the 2-cube with µ(ǫ1) = [l′],
µ(ǫ2) = µ(1) = [l]. (Call this µ[l′]�[l].)

(d) for any [l] ∈ ΨD, with k ≤ cap(l), the k-cube with µ(ǫ) = [l] (∀ǫ 6= 0). (Call
this µk[l].)

Here (b) is immediate and (c) is essentially by the definition of polarized relations;
while (d) is seen as follows: writing [l] = [F,N ], L̃0,0(R)+.N is an open cone in
l̃
−1,−1
R hence contains a simplicial abelian (nilpotent) k-cone σ ∋ N . (See the last
step of the above proof.) Possibly shrinking this cone about N , we obtain the
required positivity statement (that F ∈ B̃(σ)) as well as µσ = µk[l]. Note that
cones of types (c) and (d) typically don’t arise from multi-SL(2)’s.

Corollary 8.10. Ψ̃···
D is finite, and (Ψ̃···

D ,≤) surjects onto (ΨD,�) [resp. (ND,�
), (∆D,�)] via the map Θ : µ 7→ µ(1) [resp. π ◦ Θ, φ∞ ◦ Θ]. (Here “ · · · ” is
“adm”, “str”, or “pol”; and “surjects” means that every “ ≤” maps to a “ �” and
that every “ �” is obtained in this way.) Note that unlike π and φ∞, these are
actual morphisms of posets.

Proof. Finiteness is immediate from the fact that cap[l] ≤ cap[g] < ∞ for any
[l] ∈ ΨD. The surjectivity statement follows from (b) in Definition 8.1 and Example
8.9(b).

The computation of Ψ̃pol
D and its maps to ND and ∆D might plausibly be regarded

as a full solution,8 as far as the “finite” classification of nilpotent cones and their
interaction with the G(R)+-orbits on Nilp(gR) and Ď are concerned. Moreover,
Ψ̃D can be computed combinatorially, and comes remarkably close.

Example 8.11. (G = F4) To see in particular that Ψ̃D goes far beyond the multi–
SL(2)’s involved in the construction of (ΨD,�), consider the case where D is the
F4-adjoint (contact) domain [KR17] parametrizing weight-two Hodge structures
with Hodge numbers (6, 14, 6). (Letting α1, α2, α3, α4 denote the simple roots, the
grading element corresponding to D is E = S

1.) Taking for l the Levi (of type A2)
with simple roots α1 and α1+3α2+4α3+α4, we have dim l−1,−1 = 2 = dim(lss)0,0,
but l̃ = g with l̃−1,−1 = 14. Since D is contact, the capacity is 1

2 · 14 = 7; and
so while the multi–SL(2)-orbits have dimension at most rk(G) = 4, we expect to
find many admissible 7-cubes with some of these polarizable (including µ7

[l], as
guaranteed by Example 8.9(d)).

8However, there are invariants of nilpotent cones which are not well-defined on elements of

Ψ̃pol
D

, such as the M-T group of the associated boundary component, or the Looijenga-Lunts
group; this suggests a further refinement of the secondary poset, which we expect to address in
a future work.
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Remark 8.12. The attentive reader will have noticed that we have said nothing
about G(R)+-conjugacy classes of polarizable nilpotent cones, concentrating in-
stead on the coarser issue of what combinations of G(R)+-conjugacy classes of
1-variable nilpotent orbits can appear on the faces. (This is of course valuable,
as it determines, for an injective period map (∆∗)n → Γ\D, the possible combi-
nations of LMHS-types on the coordinate-(∆∗)k’s.) The trouble is that the more
refined classification certainly wouldn’t be “finite”, as the above example illustrates
well: the space of abelian 7-dimensional subspaces in l̃−1,−1 has dimension at least
7(14− 7) −

(
7
2

)
= 28 (since dim l̃−2,−2 = 1), while the maximum dimension of an

orbit of L̃0,0(R)+ on Gr(7, l̃−1,−1) is dim P̃l0,0 = dim l̃0,0 − 1 = 21.

While we will not carry out large-scale computations of Ψ̃···
D in this paper, in the

remainder of this section we will present two examples which highlight aspects of
the computation of Ψ̃str

D and Ψ̃pol
D once Ψ̃D is known.

8.2 Some exceptional Mumford–Tate domains

Let G(R) be the (connected) noncompact real form of the exceptional, simple Lie
group G2 of rank two. There are three Mumford–Tate domains D (with bracket-
generating IPR) for this group; they may be viewed as parameterizing Hodge
structures on VR = R7 with Hodge numbers h = (1, . . . , 1), h = (1, 2, 1, 2, 1) and
h = (2, 3, 2), respectively. In this section we will describe the the set ΨD, the
relations < and the polarized relations ≺ for each of these domains, and comment
on the secondary posets Ψ̃D ⊇ Ψ̃str

D ⊇ Ψ̃pol
D introduced in §8.1. The description of

ΨD will be given by the isomorphism (2.6). To that end we recall the notation of
§§A.1 and A.2, and that to describe a Levi l ∈ Lϕ,t representing [F,N ] ∈ ΨD it
suffices to give simple roots S′ ⊂ R for lC (§A.4).

Example 8.13 (Hodge numbers h = (1, 1, 1, 1, 1, 1, 1)). In this case we may choose
our simple roots so that Eϕ = S

1 + S
2, so that the subgroup W0 ⊂ W is trivial.

The poset ΨD and the polarized relations are described in Proposition 7.4; the
three nontrivial elements are:

I II III

✸(F,N) :

✲

✻r

r

r

r

r

r

r ✲

✻
r

r

r

r

r

r

r

✲

✻

r

r

r

r

r

r

r

S′ : {α2} {α1} {α1 , α2}
Z : −S1 + 2S2 2S1 − 3S2 2S1 + 2S2

The nontrivial relations are
I, II < III ,

but none of them are polarized. Note that for the corresponding orbits in D, one
has D < OI < OII < OIII [KP14].
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Turning to the secondary poset, Ψ̃D = Ψ̃str
D = Ψ̃adm

D consists of the trivial 0-cube
µ0 and the 1-cubes µ1

[l]. Denoting the latter by µ1, µ2, µ3, the poset is nothing
but

µ1

µ0

77♦♦♦♦♦♦
//

''❖
❖❖

❖❖
❖ µ3

µ2.

Example 8.14 (Hodge numbers h = (1, 2, 1, 2, 1)). In this case we may choose
our simple roots so that Eϕ = S

1. The subgroup W0 ⊂ W is generated by the
simple reflection {(2)}. There is only one nontrivial element in ΨD. It is given by
S
′ = {α1} with Z = 2S1 − 3S2 and Hodge diamond

✲

✻
r

r

r

r

r

r

r

For Ψ̃D = Ψ̃str
D = Ψ̃pol

D , we simply have

µ0
// µ1.

Example 8.15 (Hodge numbers h = (2, 3, 2)). (Note that this Mumford–Tate do-
main is a subdomain of the period domain in Example 5.6 when m = 3.) In
this case we may choose our simple roots so that Eϕ = S

2, so that the subgroup
W0 ⊂ W is generated by the simple reflection (1). The three nontrivial elements
of ΨD, and their Hodge diamonds, are

I II III

✸(F,N)
✲

✻
r

r

r

r

r

r

r

✲

✻

r

r

r

r

r

r

r

✲

✻

r

r

r

S
′ {α2} {2α1 + α2} {α1, α2}
Z −S1 + 2S2 S

1 2S2

To see that the nontrivial relations are

I , II < III

we recall Definition 2.19 and note that

◦ l̃I = {S1 = 0};
◦ l̃II = {S1 − 2S2 = 0} and (1)̃lII = {S1 − S

2};
◦ l̃III = g.

The relations trivially form a partial order. To see that the relations are all
polarized, observe that the roots SI are strongly orthogonal to the roots SII; and
therefore determine commuting sl(2)’s with ZI + ZII = ZIII.
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It is in this case that the computation of Ψ̃D ⊃ Ψ̃str
D ⊃ Ψ̃pol

D raises interesting
issues. Introducing the notation

〈µ(ǫ1) | µ(1) | µ(ǫ2)〉
for admissible 2-cubes, µ12 := 〈I | III | II〉 is automatically polarizable by Example
8.9(b). The remaining 2-cubes

µ11 := 〈I | III | I〉 and µ22 := 〈II | III | II〉
in Ψ̃D are not obviously polarizable.
To specialize Definition 8.4 to a 2-cube µ, suppose we have nilpotents N , N1, N2

as described there (with the Hodge-Tate grading imposed on l̃). Then µ is strongly
admissible if and only if

there exist independent, commuting Ñi ∈ L̃0,0(R)+.Ni (i = 1, 2)

such that R>0〈Ñ1, Ñ2〉 ⊂ L̃0,0(R)+.N.
(8.16)

It is clear that we may take Ñ1 = N1 without loss of generality.
Claim 8.17. (a) µ22 is strongly admissible, and (b) µ11 is not.

Proof. Relabel root spaces gα = R〈Xα〉 of g = l̃ = ⊕l̃p,p so that gα1 ⊂ l̃0,0 =
R〈Xα2 , Xα2+α1 , Xα2+2α1 , Xα2+3α1〉, and L̃0,0(R)+ ∼= GL2(R)

+ acts on l
−1,−1
R

through Sym3(R2). We choose lI, lII so that l̃
−1,−1
I = 〈Xα2〉 and l̃

−1,−1
II =

〈Xα2+2α1〉.
We begin with (b), taking N1 = N2 = Xα2 . A general GL2(R)

+-conjugate of N2

is
Ñ2 = a3Xα2 + 3a2bXα2+α1 + 3ab2Xα2+2α1 + b3Xα2+3α1 .

We require 0 = [N1, Ñ2] = b3X2α2+3α1 , hence b = 0; but then Ñ2 = a3Xα2 is not
independent from N1. So criterion (8.16) is not satisfied.
For (a), we have N1 = N2 = Xα2+2α1 . A general GL2(R)

+-conjugate of N2 is
Ñ2 =

∑3
j=0 AjXα2+jα1 where A0 = a2c, A1 = 2abc+ a2d, A2 = 2abd + b2c, and

A3 = b2d with ad− bc > 0. Such [A] satisfy9

(A2A1 − 9A0A3)
2 = 4(A2

2 − 3A1A3)(A
2
1 − 3A0A2), (8.18)

whose complement is the orbit in P̃l−1,−1 of N (the type III nilpotents). In par-
ticular, if we take (a, b, c, d) = (1, 1,− 1

3 ,
2
3 ) =⇒ [A] = [− 1

3 : 0 : 1 : 2
3 ], then

Ñ2 = − 1
3Xα2 +Xα2+2α1 +

2
3Xα2+3α1 is independent of N1, and commutes with it.

Moreover, we claim that any sum r1N1 + r2Ñ2 (r1, r2 > 0) does not satisfy (8.18),
hence is of type III (as required by (8.16)). To see this, take r2 = 1, r1 = r > 0
and write

4
(
(1 + r)2 − 3 · 0 · 23

) (
02 − 3(−1

3 )(1 + r)
)
−
(
0(1 + r) − 9(−1

3 )(23 )
)2

= 4(1 + r)3 − 4 > 0

for r > 0.
9The equation defines the closure of the orbit of Xα2+2α1 in P̃l−1,−1; this includes the (twisted

cubic) orbit of Xα2 .
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Thus we have completely determined Ψ̃str:

µ1
//

''❖
❖❖

❖❖
❖ µ13

µ0

77♣♣♣♣♣♣
//

''◆
◆◆

◆◆
◆ µ3

77♦♦♦♦♦♦

''❖
❖❖

❖❖
❖ µ12

µ2

77♦♦♦♦♦♦
//

''❖
❖❖

❖❖
❖ µ23

µ22

whose only possible difference with Ψ̃pol is whether µ22 belongs to the latter.
That it does in fact belong, may be seen by a limiting argument. Begin by fixing
σ0 = R>0〈N1, N2(0)〉 (N1 = Xα2+2α1 , N2(0) = Xα2) and F • ∈ ∂D ⊂ Ď such that
(F •,W• := W (N1 + N2(0))•) is R-split Hodge-Tate (guaranteed by µ12 ∈ Ψ̃pol

D ),
so that eCσ0F • is a σ0-nilpotent orbit. For t < 0 set N2(t) := Xα2 − 3t2Xα2+2α1 −
2t3Xα2+3α1 , which corresponds to (a, b, c, d) = (1, t, 1,−2t) in the proof hence is
of type II, and commutes with N1. Then σt = R>0〈N1, N2(t)〉 is of type III, and
any Nt ∈ σt induces W (Nt)• = W•. That Nt polarizes (F •,W•), so that eCσtF •

is a σt-nilpotent orbit, is now immediate since σt limits to σ0 and this (positivity)
statement holds for σ0.

More generally, the methods of [BPR17, §3] may be useful for determining Ψ̃pol

in some situations. In the case of Calabi-Yau Hodge structures, there is another
tool, which we will describe in the next section.

8.3 Mirror symmetry and geometric realization

We conclude by revisiting the period domain for h = (1, 2, 2, 1) briefly treated in
Example 1.18, referring to Example 5.8 for the Hodge diamonds. By [Rob14], the
capacity of a given [l] ∈ ΨD is the maximal dimension of an abelian subalgebra of l̃
contained in l̃−1,−1. This easily allows us to determine that cap(I2) = 2 = cap(II1)
and cap(IV2) = 3, while the other four nontrivial elements have capacity 1.
Suppose one wishes to determine the 2-cubes of Ψ̃pol

D . (We shall say nothing about
the 3-cubes.) The first step would be to apply Example 8.9, which yields the
following (partial) list of polarizable 2-cubes:

(b) 〈I1 | IV2 | IV1〉, 〈III0 | IV2 | II1〉, 〈I1 | II1 | II0〉, 〈I1 | I2 | I1〉 (the multi-SL(2)’s:
apply the algorithm of §3.4.2);

(c) one for each arrow not originating from I0: e.g. 〈II0 | II1 | II1〉;

(d) one for each type of capacity at least 2: e.g. 〈I2 | I2 | I2〉 .

The remaining admissible 2-cubes are evidently:

• 〈I1 | II1 | I1〉, 〈II0 | II1 | II0〉, 〈I1 | IV2 | I1〉, 〈II1 | IV2 | II1〉, 〈II1 | IV2 | IV1〉

which one can show as in §8.2 (using criterion (8.16)) are not strongly admissible
hence not polarizable; and
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• 〈IV1 | IV2 | IV1〉, 〈IV1 | IV2 | III0〉, 〈I1 | IV2 | III0〉, 〈I1 | IV2 | II1〉,
〈III0 | IV2 | III0〉

which are strongly admissible.

Claim 8.19. 〈IV1 | IV2 | III0〉 and 〈I1 | IV2 | III0〉 are polarizable (in fact “mo-
tivic”).

Proof. We shall invoke Iritani’s A-model Z-VHS [Iri11] in a special case described
in [BKV17], first briefly recasting the latter in more Hodge-theoretic language.
Recall that for a unipotent VHS Φ over (∆∗)ℓ, the lift Φ̃ : Hℓ → D may be written
uniquely in local normal form

Φ̃(z) = e
∑
zjNjeµ(q)F •

lim, (8.20)

where qj := exp (2πizj) and µ : ∆ℓ → ⊕p<0; qg
p,q
lim is holomorphic with µ(0) = 0.

Here we take Φ to be of type (1, ℓ, ℓ, 1), with underlying local system V (with basis
γz); and F •

lim to be expressed by writing the Hodge basis ω = {ω3;ω2
i ;ω

1
i ;ω

0}ℓi=1

(ωp· ∈ V p,plim) with respect to a basis γ̃0 of e−
∑
ziNiV at q = 0, as a matrix Ωlim =

γ̃0 [1]ω. Likewise, (8.20) will be interpreted as an equality of matrices with Φ̃(z) =

γz [1]ω, where 1 is the identity transformation of the even cohomology of a certain
CY 3-fold X◦. In particular, ω will be a fixed basis of Heven(X◦), while the integral
basis γz varies.
Let ∆̂◦ ⊂ R4 be the convex hull of (0, 0, 0, 1), (0, 0, 1, 0), and ∆◦× (−2,−3), where
∆◦ ⊂ R2 is a reflexive polytope. A general anticanonical (CY 3-fold) hypersurface
X◦ in the associated toric variety P∆̂◦ has a natural (torically induced) elliptic
fibration with section, over P∆◦ = G2

m ∪ (∪ri=1Ci); and {Ci}r−2
i=0 ⊂ H4(X◦) is a

basis10 with dual {Ji}r−2
i=0 ⊂ H2(X◦). Together these give rise to a basis O :=

{OX◦ ,OJ0 , . . . ,OJr−2 ,OC0 , . . . ,OCr−2 ,Op} of Knum
0 (X◦), and we set

ψ(q) :=
∑

k 6=0

Nkqk00 · · · q
kr−2

r−2

where Nk is the genus-0 Gromov-Witten invariant of class
∑
ki[Ci]. (Write ψi =

∂ψ
∂qi

etc. for partial derivatives.) The Hodge basis is given by ω3 = [X◦], ω2
i = [Ji],

ω1
i = [Ci], ω0 = [p].

Now use the transcendental characteristic class

Γ̂(X◦) = 1− 1
24ch2(X

◦)− 2ζ(3)
(2πi)3 ch3(X

◦) ∈ K0(X
◦)

to define a transformation Γ : Knum
0 (X◦)→ Heven(X◦,Q) by ξ 7→ [Γ̂(X◦)] ∪ ch(ξ),

with matrix M := ω[Γ]O. Setting

Σq :=







1 0 0 0
0 1 0 0
−ψk ψkl 1 0
2ψ ψl 0 1






, Nj := log[O(−Jj)⊗ ]O ,

10so ℓ = r − 1; it turns out that r is the number of integer points on the boundary of ∆ ⊂ R2

(the dual of ∆◦).
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the VHS over (∆∗)r−1 defined (via (8.20)) by

Ωlim :=M−1 , µ(q) := log(M−1ΣqM)

is polarized byQ(α, β) := (−1) 1
2 deg(α)

∫

X◦ α∪β. Its motivic (geometric) realization
as H3(Xt) (mirror family of CY 3-folds) is due to Iritani. It is worked out in detail
in [BKV17], where in particular one finds (in terms of intersection numbers on X◦)
that

Nj =







0 0 0 0

−δjk 0 0 0
− 1

2J
2
j Jk −JjJkJl 0 0

− 1
3J

3
j − 1

2J
2
j Jl −δlj 0






. (8.21)

Via the motivic interpretation, there is also a (codim. 1) conifold monodromy
locus intersecting all the coordinate axes (as one variable leaves ∆∗ whilst the
others remain small), with monodromy Nc of rank 1.
Specializing (8.21) to ∆◦ = hull{(2,−1), (−1, 2), (−1,−1)}, so that r = 3 and the
Hodge numbers are (1, 2, 2, 1), we find

N0 =






0 0 0 0 0 0

−1 0 0 0 0 0
0 0 0 0 0 0

− 9
2

−9 −3 0 0 0

− 3
2

−3 −1 0 0 0

−3 − 9
2

− 3
2

−1 0 0




 and N1 =






0 0 0 0 0 0

0 0 0 0 0 0
−1 0 0 0 0 0

− 1
2

−3 −1 0 0 0

0 −1 0 0 0 0

0 − 1
2

0 0 −1 0






The elements of ND ≃ ΨD are distinguished by the list of ranks of N , N2, N3;
for N0, N1, Nc, resp. N0 +N1, these are (3, 2, 1) [IV1], (4, 2, 0) [III0], (1, 0, 0) [I1],
resp. (4, 2, 1) [IV2]. Since I1 cannot degenerate to III0 or IV1, III2 is the only
possibility for N0+Nc or N1+Nc. Only the (N0, Nc) pair yields a case previously
known to be polarizable.

It turns out that two of the other strongly admissible 2-cubes have been shown to
be polarizable: 〈III0 | IV2 | III0〉 by [GL]; and 〈IV1 | IV2 | IV1〉 in [BPR17, 6.67].
Determining the status of 〈I1 | IV2 | II1〉 is left as an exercise to the reader!

A Representation Theory Background

This is a laconic summary of representation theoretic results that are used in the
paper. For the material in §§A.1 and A.5 we recommend any standard reference,
such as [FH91, Hum78, Kna02]; for the material in §§A.2, A.3 and A.4 we recom-
mend [ČS09]; for the material in §§A.6 and A.8 we recommend [CM93]; and for
the material in §A.9 we recommend [Sch73].

A.1 Roots

Let gC be a complex semisimple Lie algebra. A Cartan subalgebra h ⊂ gC is a
maximal abelian subalgebra consisting of semisimple elements. There exist roots
R ⊂ h∗ so that

gC = h ⊕
⊕

α∈R

gα ,
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where
gα := {ξ ∈ gC | [h, ξ] = α(h) ∀ h ∈ h}

is the one–dimensional root space of α. One may always choose a basis S =
{α1, . . . , αr} of h∗ with the property that S ⊂ R and every root α ∈ R may be
expressed as α = miαi with the mi either all nonnegative or all nonpositive; α is
a positive or negative root, respectively. The positive roots are denoted R+. Note
that R+ and R− := −R+ are disjoint and we have R = R+ ∪R−.
Let {S1, . . . , Sr} ⊂ h denote the basis dual to the simple roots S = {α1, . . . , αr} ⊂
h∗ of gC.
Every parabolic subgroup P ⊂ G(C) may be realized as the stabilizer of a flag F
in a G(C)–homogeneous compact dual Ď. Recall the decomposition (2.1); when
P stabilizes a Hodge structure ϕ ∈ D, the Lie algebra of P is

p = g≥0
ϕ .

A Borel subgroup B is a minimal parabolic subgroup. The standard example of a
Borel subalgebra is

b = h ⊕
⊕

α∈R+

gα . (A.1)

Conversely, given a Borel subalgebra b ⊂ gC, it is always possible to choose a
Cartan h ⊂ b, and given such a Cartan, there is a unique choice of simple roots S

so that (A.1) holds.

A.2 Weyl group

Fix a complex semisimple Lie algebra gC. Given a Cartan subalgebra h ⊂ gC,
let W ⊂ Aut(h∗) denote the Weyl group of gC.11 Given a choice of simple roots
S = {α1, . . . , αr} ⊂ h∗, let (i) ∈ W denote the simple reflection in the hyperplane
orthogonal to αi, and let (i1 · · · iℓ) denote the composition (i1)◦ · · · ◦ (iℓ) of simple
reflections. Recall that W is generated by the simple reflections (i) subject to the
following relations: (i)2 = 1 for all i; and for all i 6= j:

(ij)2 = 1, if αi and αj are not adjacent in the Dynkin diagram of gC;
(ij)3 = 1, if αi and αj are joined by a single bond in the diagram;
(ij)4 = 1, if αi and αj are joined by a double bond;
(ij)6 = 1, if αi and αj are joined by a triple bond.

See Figure A.1 for the Dynkin diagrams. Note that (i)αi = −αi. For i 6= j the
action of the simple reflection (i) on the simple root αj can be read off the Dynkin
diagram as follows

r r
i j

❀ (i)αj = αj
r r
i j

❀ (i)αj = αj + αi
r r〉i j

❀ (i)αj = αj + αi and (j)αi = αi + 2αj
r r〉i j

❀ (i)αj = αj + αi and (j)αi = αi + 3αj
11For a suitable realization of gC as a matrix subalgebra of glnC, we may identify h with the

subalgebra of diagonal matrices in gC.
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Figure A.1: Dynkin diagrams

r r r ♣ ♣ ♣ r r r

1 2 r − 1 r
sl(r + 1,C)

r r r ♣ ♣ ♣ r r r〉
1 2 r − 1 r

so(2r + 1,C)

r r r ♣ ♣ ♣ r r r〈
1 2 r − 1 r

sp(2r,C)

r r r ♣ ♣ ♣ r r

r

r

✏✏✏
PPP

1 2

r

r − 1

so(2r,C)

r r r r r

r

1 3 4 5 6
2

E6

r r r r r r

r

1 3 4 5 6 7
2

E7

r r r r r r r

r

E8
1 3 4 5 6 7 8

2

r r r r〉 F4
1 2 3 4

r r〈 G2
1 2

Example A.2 (Special Linear Algebra). Let gC ≃ slnC be the algebra of trace–free
linear maps Cn → Cn. Fix a basis of {e1, . . . , en} of Cn and let {e1, . . . , en} be the
dual basis of (Cn)∗ so that {ei⊗ej | i 6= j}∪{ei⊗ei−ei+1⊗ei+1 | 1 ≤ i ≤ n−1} is
a basis of slnC. Then the diagonal subalgebra h = {h =

∑

i hi ei⊗ ei |
∑

i h
i = 0}

is a Cartan subalgebra. Define εi ∈ h∗ by εi(h) = hi. Then the roots are ∆ =
{εi − εj | i 6= j} ⊂ h∗, and the Weyl group is the symmetric group Sn permuting
the εi.

Remark A.3. Fix a set of simple roots S ⊂ h∗ for gC. If S′ ⊂ h∗ is a second set of
simple roots, then there exists a unique w ∈W such that S′ = wS.

A.3 Grading elements

A grading element is any semisimple element Z ∈ gC acting on gC (via the adjoint
action) by integer eigenvalues. That is,

gℓ = {ξ ∈ gC | [Z, ξ] = ℓ ξ}

is nonzero only if ℓ ∈ Z, and gC admits a Z–eigenspace decomposition

gC = gk ⊕ · · · ⊕ g−k .

Note that the Jacobi identity implies

[ga, gb] ⊂ ga+b .

In fact, g≥0 is a parabolic subalgebra. Every parabolic subalgebra p may be re-
alized in this fashion. Two distinct grading elements may determine the same
parabolic. However, given a parabolic p, and a choice of Cartan and Borel subal-
gebra h ⊂ b ⊂ p, there exists a unique grading element Z ∈ h with p = g≥0 and
such that g1 generates g+ as an algebra.
We may always choose a Cartan subalgebra h of gC so that

Z ∈ h ⊂ g0 .

Documenta Mathematica 24 (2019) 1295–1360



1354 Kerr, Pearlstein and Robles

We may further choose simple roots S ⊂ h∗ of gC so that

α(Z) ≥ 0 for all α ∈ S .

For further discussion of grading elements in the context of Hodge theory, see
[Rob14, §2.2–2.3].

A.4 Levi subalgebras

A Levi subalgebra lC ⊂ gC arises as the commutator

lC = {ξ ∈ gC | [Z, ξ] = 0}

of a semisimple element Z ∈ gC acting on gC with integer eigenvalues. Note that
both h and gC are Levi subalgebras. More generally, Levi subalgebras are reductive
subalgebras and as such

lC = z ⊕ lssC (A.4a)

decomposes as a direct sum of its center z with the semisimple factor lssC = [lC, lC].
Moreover, the decomposition (A.4a) is orthogonal with respect to the Killing form
on lC. (The Killing form on lC may be identified with restriction to lC of the Killing
form on gC.) Let

πss
l : lC → lssC (A.4b)

denote the projection to the semisimple factor.
Any Levi lC contains a Cartan subalgebra h ∋ Z of gC. Moreover, any set of simple
roots S′ for lssC may be realized as a subset of simple roots S ⊂ h∗ for gC. More
precisely, h′ = h ∩ lssC is a Cartan subalgebra of lssC , and any set of simple roots

S′ ⊂ (h′)∗ for lssC may be realized as S̃

∣
∣
∣
h′

for some subset S̃ ⊂ S of simple roots

S ⊂ h∗ of gC. In general, we will abuse notation and write S′ ⊂ S.

Remark A.5. It follows from Remark A.3 and the discussion above that the number
of Levi subalgebras containing a fixed Cartan h is finite.

Given a real form gR of gC, we will say that a real subalgebra lR ⊂ gR is a real
Levi subalgebra if the complexification lC = lR ⊗ C is a Levi subalgebra of gC.

A.5 Fundamental weights

Given a Cartan and Levi subalgebra h ⊂ lC there is a simple test to determine
when an element ζ ∈ h lies in lssC . A choice of simple roots S = {α1, . . . , αr} for
gC determines a set of fundamental weights {ω1, . . . , ωr}. We will need only two
elementary properties of fundamental weights.

(a) If S′ ⊂ S is a set of simple roots for the semisimple factor lssC of a Levi
subalgebra lC, then ζ ∈ h lies in lssC if and only if ωi(ζ) = 0 for every αi ∈ S\S′.

(b) Each ωi = qij αj is a linear combination of the simple roots with positive

coefficients 0 < qij ∈ Q.
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A.6 Standard triples

A standard triple in g is a set of three elements {N+, Y,N} ⊂ g such that

[Y,N+] = 2N+ , [N+, N ] = Y and [Y,N ] = −2N .

The elements N+, Y,N are, respectively, the nilpositive, neutral and nilnegative
elements of the triple. The neutral element Y of a standard triple is a grading
element [CM93].

Example A.6. The matrices

n+ =

(
0 1
0 0

)

, y =

(
1 0
0 −1

)

and n =

(
0 0
1 0

)

(A.7)

form a standard triple in sl(2,R); while the matrices

ǫ = 1
2

(
i 1
1 −i

)

, z =

(
0 i

−i 0

)

and ǫ = 1
2

(
−i 1
1 i

)

(A.8)

form a standard triple in su(1, 1). The one-dimensional subalgebra spanned by iz is
a maximal compact Cartan subalgebra of gR = sl(2,R), and (A.8) is a DKS–triple
(page 1306).

A.7 Jacobson–Morosov filtrations

Given a nilpotent N ∈ End(V ), the Jacobson–Morosov Theorem asserts that N
may be realized as the nilnegative element of a standard triple {N+, Y,N} ⊂
End(V ). The vector space decomposes as a direct sum

V =
⊕

ℓ∈Z

Vℓ

of Y –eigenspaces with integer eigenvalues [Hum78, II.7]. The Jacobson–Morosov
filtration W (N) of V is defined by

Wℓ(N) :=
⊕

m≤ℓ

Vm . (A.9)

It is the unique increasing filtration of V with the properties that
(i) N(Wℓ(N)) ⊂Wℓ−2(N), and

(ii) the induced map N ℓ :Wℓ(N)/Wℓ−1(N)→W−ℓ(N)/W−ℓ−1W (N) is a vector
space isomorphism for all ℓ ≥ 0.

In particular, W (N) does not depend on our choice of standard triple.
Given k ∈ Z, we define W (N)[−k] to be the filtration

Wℓ(N)[−k] = Wℓ−k(N) .

When there exists F ∈ Ď of weight k (viewed as a filtration on VC) such that
z 7→ ezNF is a nilpotent orbit, Wℓ(N)[−k] is the monodromy weight filtration.
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A.8 Distinguished grading elements

A grading element Y ∈ gC is distinguished if the Y –eigenspace decomposition
gC = ⊕ℓgℓ, given by

gℓ = {ξ ∈ gC | [Y, ξ] = ℓξ} ,
satisfies two conditions:

(a) dim g0 = dim g2, and

(b) g2 generates g+ as an algebra.

Bala and Carter [BC76a, BC76b] showed that a distinguished grading element
Y can be realized as the neutral element of a standard triple; see also [CM93].
However, it is not the case that every neutral element of a standard triple is a
distinguished grading element. In fact, the neutral element Y of a standard triple
{N+, Y,N} ⊂ gC is a distinguished grading element if and only if there exists
no proper Levi subalgebra lC ( gC containing N (equivalently, containing the
standard triple).
Note that we include the “trivial” case g = {0}, Y = 0, with the trivial DKS-
and standard triples; this means in particular that Lϕ,t in (2.4) contains t as an
element.

A.9 Horizontal SL(2)s

Recall the notation (A.8), and the decomposition (2.1). A horizontal SL(2) at
ϕ ∈ D is given by a representation υ : SL(2,C)→ G(C) such that

υ(SL(2,R)) ⊂ G(R)+ (A.10a)

and
υ∗ǫ ∈ g1ϕ , υ∗z ∈ g0ϕ , υ∗ǫ ∈ g−1

ϕ . (A.10b)

Note that (A.10b) completely determines υ, and

{E,Z,E} = υ∗{ǫ, z, ǫ}

is a DKS–triple (page 1306).
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