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Abstract. We give a proof of Theorem 2.1 in [KOY, p.39], namely
of the following assertion. Let Q : Rn → C

N×N be measurable with

sup
x∈Rn

|x||Q(x)| ≤ C for some 0 < C <
n− 1

2
.

Then any solution u ∈ H1
loc(R

n)N∩L2(Rn, r−1dx)N of (α·p+Q)u = 0
is identically zero.
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Our original argument in [KOY, p.42 f.] started with the claim that there exists
a sequence of functions (uj) in C∞

0 (Rn)N with

r−1/2uj → r−1/2u, r1/2(αp)uj → r1/2(αp)u (1)

in L2(Rn)N . When Fritz Gesztesy (Baylor, TX) and Michael Pang (Columbia,
MO) asked us how to find such a sequence, we realised that the proof had
to proceed somewhat differently. We thank Professors Gesztesy and Pang for
making us aware that the claim (1) should be avoided.
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Proof of Theorem 2.1. The argument in [KOY, p.43] yields

∫

Rn

r |αpϕ|2 ≥
(

n− 1

2

)2 ∫

Rn

|ϕ|2
r

(ϕ ∈ C∞

0 (Rn)N ). (2)

Let χ ∈ C∞

0 ([0,∞)) be a cutoff function with 0 ≤ χ ≤ 1 and

χ(r) = 1 (0 ≤ r ≤ 1), χ(r) = 0 (r ≥ 2).

Let ℓ ∈ N and χℓ(r) := χ(r/ℓ). Our assumption that u ∈ H1
loc(R

n)N implies
χℓu ∈ H1(Rn)N . Using the Friedrichs mollifiers, we can find a sequence (uℓ

j) in

C∞

0 (Rn)N with support in a ball of radius 2ℓ+ 1 around the origin such that

‖uℓ
j − χℓu‖L2(Rn)N + ‖(αp)uℓ

j − (αp)(χℓu)‖L2(Rn)N −→ 0

as j → ∞. In view of (2) we have

(2ℓ+ 1)

∫

Rn

|(αp)(uℓ
j − uℓ

k)|2 ≥
∫

Rn

r
∣

∣(αp) (uℓ
j − uℓ

k)
∣

∣

2

≥
(

n− 1

2

)2 ∫

Rn

|uℓ
j − uℓ

k|2
r

,

i.e., (uℓ
j/
√
r) is a Cauchy sequence in L2(Rn)N . The limit gℓ satisfies

∫

(gℓ)tϕ̄ = lim
j→∞

∫

(uℓ
j)

t

√
r

ϕ̄ =

∫

χℓu
t

√
r
ϕ̄.

for any ϕ ∈ C∞

0 (Rn)N . Hence gℓ = r−1/2χℓu and

∫

Rn

r |αp (χℓu)|2 ≥
(

n− 1

2

)2 ∫

Rn

χ2
ℓ

|u|2
r

. (3)

Finally, from our assumption r−1/2u ∈ L2(Rn)N we have r1/2(αp)u ∈
L2(Rn)N ) and the existence of a subsequence of (χℓ) (denoted with the same
letter again) such that

√
rαp (χℓu) =

√
rχℓ αp u− i

√
r

ℓ
χ′(r/ℓ)αru

→
√
r (αp)u

as ℓ → ∞. From (3) we finally obtain

C2

∫

Rn

|u|2
r

≥
∫

Rn

r|αp u|2 ≥
(

n− 1

2

)2 ∫

Rn

|u|2
r

,

which proves u = 0
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