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Abstract. We prove a unicity result for the Non-Commutative
L-Functions for p-Adic Representations over Totally Real Fields-
functions appearing in the non-commutative Iwasawa main conjecture
over totally real fields. We then consider continuous representations
ρ of the absolute Galois group of a totally real field F on adic rings
in the sense of Fukaya and Kato. Using our unicity result, we show
that there exists a unique sensible definition of a non-commutative
L-function for any such ρ that factors through the Galois group of a
possibly infinite totally real extension. We also consider the case of
CM-extensions and discuss the relation with the equivariant main con-
jecture for realisations of abstract 1-motives of Greither and Popescu.
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1 Introduction

Let F∞/F be an admissible p-adic Lie extension (in the sense of [Kak13]) of a
totally real field F that is unramified over an open dense subscheme U of the
spectrum X of the algebraic integers of F and write G ∶= Gal(F∞/F ) for its Ga-
lois group. We further assume that p is invertible on U . The non-commutative
main conjecture of Iwasawa theory for F∞/F predicts the existence of a non-
commutative p-adic L-function LF∞/F (U,Zp(1)) living in the first algebraic
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1414 Malte Witte

K-group K1(Zp[[G]]S) of the localisation at Venjakob’s canonical Ore set S of
the profinite group ring

Zp[[G]] ∶= lim←Ð
H◁G
open

Zp[[G/H]].

This L-function is supposed to satisfy the following two properties:

(1) For reasons that become more transparent in Section 9, we denote by
f!f
∗Zp(1) the étale sheaf on U corresponding to the first Tate twist of

the Galois module Zp[[G]]♯, on which an element σ of the absolute Galois
group GalF acts by right multiplication with σ−1 . Then LF∞/F (U,Zp(1))
is a characteristic element for the total complex RΓc(U,f!f∗Zp(1)) of
étale cohomology with proper support with values in this sheaf.

(2) It interpolates the values of the complex L-functions LX−U(ρ, s) for all
Artin representations ρ factoring through G.

We refer to Theorem 14.1 for a more precise formulation.
Under the assumption that

(a) p ≠ 2,

(b) the Iwasawa µ-invariant of any totally real field is zero,

the non-commutative main conjecture is now a theorem, first proved by Ritter
and Weiss [RW11]. Almost simultaneously, Kakde [Kak13] published an alter-
native proof, building upon unpublished work of Kato [Kat06] and the seminal
article [Bur15] by Burns. The book [CSSV13] is a comprehensive introduction
to Kakde’s work. The vanishing of the µ-invariant is still an open conjecture.
We refer to [Mih16] for a recent attempt to settle it.
It turns out that properties (1) and (2) are not sufficient to guarantee the
uniqueness of LF∞/F (U,Zp(1)). It is only well-determined up to an element of
a subgroup

ŜK1(Zp[[G]]) ⊂ K1(Zp[[G]]S).

The first objective of this article is to eradicate this indeterminacy. Under the
assumptions (a) and (b) we show in Theorem 14.2 that if one lets F∞ vary over
all admissible extensions of F and requires a natural compatibility property for
the elements LF∞/F (U,Zp(1)), there is indeed a unique choice of such a family.
In the course of their formulation of a very general version of the equivariant
Tamagawa number conjecture, Fukaya and Kato introduced in [FK06] a certain
class of coefficient rings which we call adic rings for short. This class includes
among others all finite rings, the Iwasawa algebras of p-adic Lie groups and
power series rings in a finite number of indeterminates. Our second objective
concerns continuous representations ρ of the absolute Galois group GalF over
some adic Zp-algebra Λ. Assume that ρ is smooth at ∞ in the sense that it
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factors through the Galois group of some (possibly infinite) totally real exten-
sion of F unramified over U . As a consequence of Theorem 14.2, we show in
Theorem 14.4 and Corollary 14.9 that there exists a unique sensible assignment
of a non-commutative L-function

LF∞/F (U,ρ(1)) ∈ K1(Λ[[G]]S)

to any such ρ. In the sequel [Wit] to the present article, we will use our result
to prove the existence of the ζ-isomorphism for ρ as predicted by Fukaya’s and
Kato’s central conjecture [FK06, Conj. 2.3.2].

In fact, Corollary 14.9 applies more generally to perfect complexes F ● of Λ-
adic sheaves on U which are smooth at ∞. Moreover, we consider L-functions
LF∞/F (W,Rk∗F ●) for the total derived pushforward Rk∗F ●, where k∶U →

W is the open immersion into another dense open subscheme W of X . The
extension F∞/F may be ramified overW −U , but places over p remain excluded
from W . We also prove the existence of a dual non-commutative L-function
L⊛
F∞/F (W,k!F

●) such that L⊛
F∞/F (W,k!F

●)−1 is a characteristic element for the

complex RΓ(W,k!f!f∗F ●) and satisfies the appropriate interpolation property.
If ρ is a continuous representation as above and ρ̌ the dual representation over
the opposite ring Λop, then L⊛

F∞/F (U,ρ) is the image of LF∞/F (U, ρ̌(1)) under
the canonical isomorphism

K1(Λop[[G]]S) ≅ K1(Λ[[G]]S).

As we explain in Corollary 15.3, all of this can be easily extended to the
case that F∞ is a CM field. In this form, our main result also includes non-
commutative generalisations of the type of main conjectures that are treated
in [GP15] by Greither and Popescu.

We give a short overview on the content of the article. A central in-
put to the proof of Theorem 14.2 is Section 2, in which we show that
ŜK1(Zp[[Gal(F∞/F )]]) vanishes for sufficiently large extensions F∞/F . The
results of this section apply not only to admissible extensions and might be
useful in other contexts as well. In Section 3 we recall the essence of the K-
theoretic machinery behind the formulation of the main conjecture. We also
add some new material, which is needed in the later sections. In Section 4
we prove a technical result that will later be used to relate the cohomology of
f!f
∗F ● over U to the cohomology of F ● over the integral closure of U in the cy-

clotomic extension of F . Section 5 contains the construction of the isomorphism
K1(Λop[[G]]S) ≅ K1(Λ[[G]]S) on the level of Waldhausen categories. First,
we explain in full generality how to identify the K-groups of a biWaldhausen
category with those of its opposite category and show that this identification is
compatible with localisation sequences. Then, we specialise to the case of rings
and explain how to identify the opposite category of the category of strictly
perfect complexes over Λ[[G]] with the category of strictly perfect complexes
over Λop[[G]]. Section 6 contains an investigation of the base change properties
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of certain splittings of the boundary map

d∶K1(Zp[[G]]S) → K0(Zp[[G]], S),

extending results from [Bur09] and [Wit13b]. With the help of these splittings
we are able to produce characteristic elements with good functorial properties,
which we call non-commutative algebraic L-functions, following Burns. Sec-
tion 7 recalls the definition of a Waldhausen category modeling the derived
category of perfect complexes of Λ-adic sheaves and the explanation of the
property of being smooth at ∞. In Section 8 we consider local and global du-
ality theorems for smooth Λ-adic sheaves. In Section 9 we recall the notion of
admissible extensions and the definition of the complexes f!f

∗F ● induced by the
procovering f ∶UF∞ → U . We then show in Section 10 that our hypothesis (b) on
the vanishing of the µ-invariant implies that for any perfect complex of Λ-adic
sheaves F ● smooth at ∞ and any admissible extension F∞/F , the complexes
RΓc(W,Rk∗F ●(1)) have S-torsion cohomology. We also prove a unconditional
local variant thereof. This local variant permits us to introduce the notion of
non-commutative Euler factors by producing canonical characteristic elements
for the complexes RΓ(x, i∗Rk∗F ●(1)) for any closed point i∶x → W of W .
Comparing Euler factors with the non-commutative algebraic L-functions of
these complexes, we obtain certain elements in K1(Λ[[G]]), which we call local
modification factors. In the same way, we also introduce the notion of dual
non-commutative Euler factors by producing canonical characteristic elements
for the complexes RΓ(x, i!k!F ●) and the corresponding dual local modification
factors. The investigation of the Euler factors and local modification factors
is carried out in Section 11 and Section 12, first in general, then in the spe-
cial case of the cyclotomic extension. This is followed by a short reminder on
L-functions of Artin representations in Section 13.
Section 14 contains the main results of this article. We use Kakde’s non-
commutative L-functions and the non-commutative algebraic L-function of the
complex RΓc(U,f!f∗Zp(1)) to define global modification factors. Changing
the open dense subscheme U is reflected by adding or removing local modi-
fication factors. This compatibility allows us to pass to field extensions with
arbitrarily large ramification. We can then use the results of Section 2 to prove
the uniqueness of the family of modification factors for all pairs (U,F∞) with
F∞/F admissible and unramified over U . The corresponding non-commutative
L-functions are the product of the global modification factors and the non-
commutative algebraic L-functions. We then extend in Theorem 14.4 the defi-
nition of global modification factors to Λ-adic sheaves smooth at∞ by requiring
a compatibility under twists with certain bimodules. In the same way, we con-
struct global dual modification factors in Theorem 14.5. In Theorem 14.7 we
show that the global modification factors are also compatible under changes
of the base field F . The non-commutative L-functions for the complexes F ●
are then defined as the product of the algebraic L-function and the modifi-
cation factors. Corollary 14.9 subsumes the transformation properties of the
non-commutative L-functions.
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In Section 15 we extend our results to the case of CM-extensions of F . In the
following Section 16 we consider the cohomology of the complexes featuring in
our main conjecture. In the final Section 17 we establish the link between our
conjecture and the formulation of Greither and Popescu. In an appendix we
prove a technical result on localisations in polynomial rings with not necessarily
commutative coefficients.

Notational conventions

All rings in this article will be associative with identity; a module over a ring
will always refer to a left unitary module. If R is a ring, Rop will denote the
opposite ring and R× its group of units. We will sometimes write f ⟳M for
an endomorphism f of an object M . The symbols N, Z, C have their usual
meanings. For a prime number p, Zp denotes the ring of p-adic integers and
Qp its fraction field. We write ∶= to denote the definition of a symbol, reserving
the symbol = for expressing an identity. Isomorphisms are denoted by ≅, weak
equivalences and quasi-isomorphisms by ∼. Cofibrations and quotient maps in
Waldhausen categories are denoted by↣ and↠. Graded objects are denoted by
P ● or P●, with Pn and Pn referring to the component in degree n, respectively.
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2 On the first special K-group of a profinite group algebra

Let p be a fixed prime number. In this section only, p is allowed to be even. For
any profinite group G, we write N(G) for its lattice of open normal subgroups
and Gr ⊂ G for subset of p-regular elements, i. e. the union of all q-Sylow-
subgroups for all primes q ≠ p. Note that

Gr = lim←Ð
U∈N(G)

(G/U)r

is a closed subset of G. The group G acts continuously on Gr by conjugation.
For any profinite G-set S we write Zp[[S]] for the compact G-module which is
freely generated by S as compact Zp-module.
We want to analyse the completed first special K-group

ŜK1(Zp[[G]]) ∶= lim←Ð
U∈N(G)

SK1(Zp[G/U])

of the profinite group algebra

Zp[[G]] ∶= lim←Ð
U∈N(G)

Zp[G/U].

Note that ŜK1(Zp[[G]]) is a subgroup of the completed first K-group

K̂1(Zp[[G]]) ∶= lim←Ð
U∈N(G)

K1(Zp[G/U]).

If G has an open pro-p-subgroup which is topologically finitely generated, then

K̂1(Zp[[G]]) = K1(Zp[[G]])

by [FK06, Prop. 1.5.3]. In the case that G is a pro-p p-adic Lie group a thorough
analysis of ŜK1(Zp[[G]]) has been carried out in [SV13]. Note in particular
that there are examples of torsionfree p-adic Lie groups with non-trivial first
special K-group. Some of the results of loc. cit. can certainly be extended
to the case that G admits elements of order prime to p. We will not pursue
this further. Instead, we limit ourselves to the following results relevant to our
application.
Recall from [Oli88, Thm. 10.12] that there is a canonical surjective homomor-
phism

H2(G,Zp[[Gr]]) → ŜK1(Zp[[G]]).

where
H2(G,Zp[[Gr]]) ∶= lim←Ð

U∈N(G)
H2(G/U,Zp[(G/U)r])

denotes the second continuous homology group of Zp[[Gr]]. We writeX(Gr) ∶=
Map(Gr,Qp/Zp) for the Pontryagin dual of Zp[[Gr]], such that the Pontryagin
dual of H2(G,Zp[[Gr]]) is H2(G,X(Gr)).
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Lemma 2.1. Let G =H ⋊Γ be a semi-direct product of a finite normal subgroup
H ⊂ G and Γ ≅ Zp. Then H2(G,X(Gr)) and ŜK1(Zp[[G]]) are finite.

Proof. Note that X(Gr) =X(Hr) is of finite corank over Zp. The Hochschild-
Serre spectral sequence induces an exact sequence

0→ H1(Γ,H1(H,X(Hr)))→ H2(G,X(Hr))→ H0(Γ,H2(H,X(Hr)))→ 0

where both H1(H,X(Hr)) and H2(H,X(Hr)) are finite p-groups. The lemma
is an immediate consequence.

We are interested in the following number theoretic situation. Assume that
K is an algebraic number field and K∞ is a Zp-extension of K. In particular
K∞/K is unramified in the places (including the archimedean places) of K that
do not lie over p. Let L∞ be a finite extension of K∞ which is Galois over K.
Write

G ∶= Gal(L∞/K),
H ∶= Gal(L∞/K∞),
Γ ∶= Gal(K∞/K)

for the corresponding Galois groups. We fix a splitting Γ → G such that we
may write G as the semi-direct product of H and Γ and let L be the fixed field
of a p-Sylow subgroup of G containing Γ. Write L(p) for the maximal Galois

p-extension of L inside a fixed algebraic closure K of K. Note that L(p) = L(p)∞
is the subfield of K fixed by the closed subgroup GalL(p) generated by all q-
Sylow subgroups of the absolute Galois group GalL for all primes q ≠ p. Hence,
GalL(p) ⊂ GalL∞ is a characteristic subgroup and therefore, L(p)/K is a Galois
extension. The following is an adaption of the proof of [FK06, Prop. 2.3.7].

Proposition 2.2. Set G ∶= Gal(L(p)/K). Then H2(G,X(Gr)) =
ŜK1(Zp[[G]]) = 0.

Proof. Note that the projection G → G induces a canonical isomorphism
X(Gr) =X(Hr) and that X(Hr) is of finite corank over Zp. We have

Hi(Gal(L(p)/L),X(Hr)) = H
i(GalL,X(Hr))

for all i according to [NSW00, Cor. 10.4.8] applied to the class of p-groups and
the set of all places of L. Moreover, H2(GalL,X(Hr)) = 0 as a consequence of
the fact that H2(GalF ,Qp/Zp) = 0 for any number field F [FK06, Prop. 2.3.7,
Claim].
Since [L ∶K] is prime to p, the restriction map

H2(G,X(Hr)) → H2(Gal(L(p)/L),X(Hr))

is split injective. In particular, H2(G,X(Hr)) = 0 as claimed.
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Note that if L∞/K is unramified in a real place of K and p ≠ 2, then L(p)/K is
unramified in this real place as well. For the sake of completeness we also deal
with the case p = 2 and consider for a set of real places Σ of K such that L∞/K
is unramified over Σ the maximal subfield L

(2)
Σc of L(2) which is unramified over

Σ. Note that L
(2)
Σc /K is still Galois over K.

Proposition 2.3. Set G ∶= Gal(L(2)Σc /K). Then H2(G,X(Gr)) =

ŜK1(Z2[[G]]) = 0.

Proof. Let L′ be the subfield fixed by the intersection of the centre of G with
Γ and let Y ∶=Map(Gal(L′/K),X(Hr)) be the induced module. We obtain a
canonical surjection Y → X(Hr) with kernel Z. For any discrete G-module A
we have

H3(G,A) = ⊕
v∈Σc

R

H3(GalKv
,A)

where v runs through set Σc
R
of real places of K not in Σ and GalKv

= Z/2Z
denotes the Galois group of the corresponding local fieldKv = R [NSW00, Prop.
10.6.5]. By the proof of the (p = 2)-case in [FK06, Prop. 2.3.7, Claim] we have
H2(GalKv

,X(Hr)) = 0 such that

H3(G, Z) → H3(G, Y )

is injective and hence,

H2(Gal(L(2)Σc /L′),X(Hr)) ≅ H2(G, Y )→ H2(G,X(Hr))

is a surjection. Moreover, GalL′ acts trivially on X(Hr) such that it suffices to
show that

H2(Gal(L(2)Σc /L′),Q2/Z2) = 0.

By the proof of [NSW00, Thm. 10.6.1] we obtain an exact sequence

0→ H1(Gal(L(2)Σc /L′))→ H1(Gal(L(2)/L′)) →

⊕
v∈Σc

R
(L′)

H1(GalL′v) → H2(Gal(L(2)Σc /L′)) → H2(Gal(L(2)/L′))

where we have omitted the coefficients Q2/Z2 and Σc
R
(L′) denotes the real

places of L′ lying over Σc
R
. But

H2(Gal(L(2)/L′)) = H2(GalL′) = 0

by [NSW00, Cor. 10.4.8] and [Sch79, Satz 1.(ii)]. Moreover, L′ is dense in
the product of its real local fields such that for each real place v of L′, we
find an element a in L′ which is negative with respect to v and positive with
respect to all other real places. The element of H1(Gal(L(2)/L′)) corresponding
via Kummer theory to a square root of a maps to the non-trivial element of
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H1(GalL′v) = Z/2Z and to the trivial element for all other real places. This
shows that

H1(Gal(L(2)Σc /L′))→ ⊕
v∈Σc

R
(L′)

H1(GalL′v)

must be surjective.

Corollary 2.4. Let K∞/K be a Zp-extension of a number field K and L∞/K∞
be a finite extension such that L∞/K is Galois with Galois group G. Assume
further that L∞/K is unramified in a (possibly empty) set of real places Σ of
K. Then there exists a finite extension L′∞/L∞ such that

(i) [L′∞ ∶ L∞] is a power of p,

(ii) L′∞/K is Galois with Galois group G′,

(iii) L′∞/K is unramified over Σ,

(iv) The canonical homomorphism ŜK1(Zp[[G′]]) → ŜK1(Zp[[G]]) is the zero
map.

In particular, L′∞ may be chosen to be totally real if L∞ is totally real.

Proof. With L as above, set G ∶= Gal(L(p)/K) if p ≠ 2 and G ∶= Gal(L(2)Σc /K)
if p = 2 and set H ∶= kerG → Gal(K∞/K). According to Lemma 2.1,
ŜK1(Zp[[G]]) is finite and so, the image of

ŜK1(Zp[[G]]) = lim←Ð
U∈N(G)

ŜK1(Zp[[G/U ∩H]]) → ŜK1(Zp[[G]])

will be equal to the image of ŜK1(Zp[[G/U0 ∩H]]) for some U0 ∈N(G). We let
L′∞ be the fixed field of U0 ∩H. Then L′∞ clearly satisfies (i), (ii), and (iii).
Since ŜK1(Zp[[G]]) = 0 by Prop. 2.2 and Prop. 2.3, it also satisfies (iv).

Remark 2.5. The extension L′∞/K will be unramified outside a finite set of
primes, but we cannot prescribe the ramification locus. However, assume L∞/K
is unramified outside the set S of places of K and that the Leopoldt conjecture

holds for every finite extension F of K inside the maximal p-extension L
(p)
S

which is unramified outside S, i. e. that

H2(Gal(L(p)S /F ),Qp/Zp) = 0.

Then the same method of proof shows that we can additionally chose L′∞ to

lie in L
(p)
S .
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3 K-theory of adic rings

For the convenience of the reader, we repeat the essentials of the K-theoretic
framework introduced in [Wit14].
The formulation of the non-commutative Iwasawa main conjecture involves
certain K-groups. We are mainly interested in the first K-group of a certain
class of rings introduced by Fukaya and Kato in [FK06]. It consists of those
rings Λ such that for each n ≥ 1 the n-th power of the Jacobson radical Jac(Λ)n

is of finite index in Λ and

Λ = lim←Ð
n≥1

Λ/Jac(Λ)n.

By definition, Λ carries a natural profinite topology. We will write IΛ for the
set of open two-sided ideals of Λ, partially ordered by inclusion. In extension
of the definition for commutative rings [Gro60, Ch. 0, Def. 7.1.9], these rings
should be called compact adic rings. We will call these rings adic rings for
short, as in [Wit14]. We do not intend to insinuate any relation to Huber’s
more recent concept of adic spaces with this denomination.
Classically, the first K-group of Λ may be described as the quotient of the group

Gl∞(Λ) ∶= limÐ→
d

Gld(Λ)

by its commutator subgroup, but for the formulation of the main conjecture,
it is more convenient to follow the constructions of higher K-theory. Among
the many roads to higher K-theory, Waldhausen’s S-construction [Wal85] turns
out to be particularly well-suited for our purposes.
To construct the K-groups of Λ, one can simply apply the S-construction to the
category of finitely generated, projective modules over Λ, but the true beauty of
Waldhausen’s construction is that we can choose among a multitude of different
Waldhausen categories that all give rise to the same K-groups. Below, we will
study a number of different Waldhausen categories whose K-theory agrees with
that of Λ.
We recall that for any ring R, a complex M ● of R-modules is called DG-flat if
every module Mn is flat and for every acyclic complex N ● of right R-modules,
the total complex (N ⊗RM)

●
is acyclic. In particular, any bounded above

complex of flat R-modules isDG-flat. The notion ofDG-flatness can be used to
define derived tensor products without this boundedness condition. Unbounded
complexes will turn up naturally in our constructions. As usual, the complex
M ● is called strictly perfect if Mn is finitely generated and projective for all n
and Mn = 0 for almost all n. A complex of R-modules is a perfect complex if
it is quasi-isomorphic to a strictly perfect complex.

Definition 3.1. For any ring R, we write SP(R) for the Waldhausen category
of strictly perfect complexes and P(R) for the Waldhausen category of perfect
complexes of left R-modules. In both categories, the weak equivalences are
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given by quasi-isomorphisms. The cofibrations in P(R) are all degree-wise
injections, the cofibrations in SP(R) are the degree-wise split injections.

It is a standard fact resulting from the Waldhausen approximation theorem
[TT90, 1.9.1] that the inclusion functor SP(R)→ P(R) induces isomorphisms

Kn(SP(R)) ≅ Kn(P(R))

between the Waldhausen K-groups of these categories. Moreover, they agree
with the Quillen K-groups Kn(R) of R by the Gillet-Waldhausen theorem
[TT90, Thm. 1.11.2, 1.11.7].
If S is another ring and M ● is a complex of S-R-bimodules which is strictly
perfect as complex of S-modules, then the tensor product with M ● is a Wald-
hausen exact functor from SP(R) to SP(S) and hence, it induces homomor-
phisms Kn(R)→ Kn(S). Note, however, that the tensor product withM ● does
not give a Waldhausen exact functor from P(R) to P(S), as it does not pre-
serve weak equivalences nor cofibrations. In the context of homological algebra,
this problem can be solved by passing to the derived category, but there is no
general recipe how to construct the K-groups of R on the basis of the derived
category alone. As a consequence, in order to view certain homomorphisms
between K-groups as being induced from a Waldhausen exact functor, one has
make a suitable choice of the underlying Waldhausen categories.
If Λ is an adic ring, we will mainly work with the following variant taken from
[Wit14]. Its main advantage is that it works well with our later definition of
adic sheaves in Section 7 and that it allows a direct construction of most of the
relevant Waldhausen exact functors.

Definition 3.2. Let Λ be an adic ring. We denote by PDG
cont(Λ) the fol-

lowing Waldhausen category. The objects of PDG
cont(Λ) are inverse system

(P ●I )I∈IΛ
satisfying the following conditions:

1. for each I ∈ IΛ, P
●
I is a DG-flat perfect complex of Λ/I-modules,

2. for each I ⊂ J ∈ IΛ, the transition morphism of the system

ϕIJ ∶ P
●
I → P ●J

induces an isomorphism of complexes

Λ/J ⊗Λ/I P ●I ≅ P ●J .

A morphism of inverse systems (fI ∶P ●I → Q●I)I∈IΛ
in PDG

cont(Λ) is a weak
equivalence if every fI is a quasi-isomorphism. It is a cofibration if every fI is
injective and the system (cokerfI) is in PDG

cont(Λ).

Definition 3.3. Let Λ′ be another adic ring and M ● a complex of Λ′-Λ-
bimodules which is strictly perfect as complex of Λ′-modules. We define ΨM●

to be the following Waldhausen exact functor

ΨM● ∶PDG
cont(Λ)→ PDG

cont(Λ′), P ● → ( lim←Ð
J∈IΛ

Λ′/I⊗Λ′(M ⊗Λ PJ)
●)I∈IΛ′

.
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If P ● is a strictly perfect complex of Λ-modules, we may identify it with the
system

(Λ/I ⊗Λ P
●)I∈IΛ

in PDG
cont(Λ). By [Wit14, Prop. 3.7], the corresponding Waldhausen exact

functor
SP(Λ)→ PDG

cont(Λ)

induces isomorphisms

Kn(SP(Λ)) ≅ Kn(PDG
cont(Λ))

between the K-groups of the Waldhausen categories. Hence, Kn(PDG
cont(Λ))

also coincide with the Quillen K-groups of the adic ring Λ and the homomor-
phism

ΨM● ∶Kn(Λ)→ Kn(Λ′)
induced by the Waldhausen exact functor ΨM● coincides with the homomor-
phism induced by

SP(Λ)→ SP(Λ′), P ● ↦ (M ⊗Λ P )
●
.

The essential point in this observation is that IΛ is a countable set and that
all the transition maps ϕIJ are surjective such that passing to the projective
limit

lim←Ð
I∈IΛ

P ●I

is a Waldhausen exact functor from PDG
cont(Λ) to the Waldhausen category

P(Λ) of perfect complexes of Λ-modules. We write

Hi((P ●I )I∈IΛ
) ∶= Hi( lim←Ð

I∈IΛ

P ●I )

for its cohomology groups and note that

Hi((P ●I )I∈IΛ
) = lim←Ð

I∈IΛ

Hi(P ●I )

[Wit08, Prop. 5.2.3].
We will also need to consider localisations of certain adic rings: Note that for
any adic Zp-algebra Λ and any profinite group G such that G has an open
pro-p-subgroup which is topologically finitely generated, the profinite group
algebra Λ[[G]] is again an adic ring [Wit14, Prop. 3.2]. Assume further that
G = H ⋊ Γ is the semi-direct product of a closed normal subgroup H which is
itself topologically finitely generated and a subgroup Γ which is isomorphic to
Zp. We set

S ∶= SΛ[[G]] ∶=

{f ∈ Λ[[G]] ∣Λ[[G]]
⋅f
Ð→ Λ[[G]] is perfect as complex of Λ[[H]]-modules}

(3.1)
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and call it Venjakob’s canonical Ore set. We may generalise the results of
[CFK+05, §2] as follows.

Lemma 3.4. Let

P ●∶P −1
∂
Ð→ P 0

be a complex of length 2 in SP(Λ[[G]]). Then the following are equivalent:

1. P ● is perfect as a complex of Λ[[H]]-modules.

2. P −1 and P 0 are isomorphic as Λ[[G]]-modules and H0(P ●) is finitely
generated as Λ[[H]]-module.

3. H−1(P ●) = 0 and H0(P ●) is finitely generated as Λ[[H]]-module.

4. H−1(P ●) = 0 and H0(P ●) is finitely generated and projective as Λ[[H]]-
module.

Proof. Clearly, (4) implies (1).
We prove that (1) implies (2). Assume that P ● is perfect as complex of Λ[[H]]-
modules. Then the class of P ● is trivial in K0(Λ[[G]]) by [Wit13b, Cor. 3.3].
As Λ[[G]] is compact and semi-local, K0(Λ[[G]]) is the free abelian group over
the isomorphism classes of indecomposable, projective Λ[[G]]-submodules of
Λ[[G]]. Hence, P −1 and P 0 must be isomorphic. Moreover, as P ● is quasi-
isomorphic to a strictly perfect complex of Λ[[H]]-modules, the highest non-
vanishing cohomology group of P ● is a finitely presented Λ[[H]]-module.
We prove that (2) implies (3). It is sufficient to show that

H−1(Λ/I[[G/U]]⊗Λ[[G]] P ●) = 0

for every open two-sided ideal I of Λ and every open subgroup U of H that
is normal in G. Hence, we may assume that Λ and H are finite. Then ∂

is a homomorphism of the torsion Zp[[Γ]]-modules P −1 and P 0. As the two
modules are isomorphic over Zp[[Γ]] and coker∂ is finite, ∂ must be a pseudo-
isomorphism. Hence, ker∂ ist finite, as well. But P −1 is finitely generated and
projective as Λ[[Γ]]-module and therefore, it has no finite Λ[[Γ]]-submodules.
We conclude that ∂ is injective.
We prove that (3) implies (4). Note that

Λ/I[[H/U]]⊗Λ[[H]] H0(P ●) ≅ Λ/I[[G/U]]⊗Λ[[G]] H0(P ●)

≅ H0(Λ/I[[G/U]]⊗Λ[[G]] P ●) ≅ H0(Λ/I[[H/U]]⊗Λ[[H]] P ●)

for any I ∈ IΛ and any open subgroup U ⊂H which is normal in G. We conclude
that H0(P ●) is finitely generated and projective as Λ[[H]]-module if and only if
H0(Λ/I[[H/U]]⊗Λ[[H]]P ●) is finitely generated and projective as Λ/I[[H/U]]-
module for every I and U . Hence, one may reduce to the case that Λ and H
are finite. By replacing G by an appropriate open subgroup of G containing
H , we may assume that Γ is central in G, such that we may identify Λ[[G]]
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with the power series ring Λ[[H]][[t]] over Λ[[H]] in one indeterminate t. For
any finite right Λ[[H]]-module N , the Zp[[t]]-module N ⊗Λ[[H]] P −1 cannot
contain non-trivial finite Zp[[t]]-submodules. Moreover, P −1 and P 0 are flat
Λ[[H]]-modules such that P ● is a flat resolution of H0(P ●) as Λ[[H]]-module.
Hence, we have

Tor
Λ[[H]]
i (N,H0(P ●)) = 0

for i > 1 and
Tor

Λ[[H]]
1 (N,H0(P ●)) ⊂N ⊗Λ[[H]] P 0

is a finite Zp[[t]]-submodule. Therefore,

Tor
Λ[[H]]
1 (N,H0(P ●)) = 0

and H0(P ●) is finite and projective.

Lemma 3.5. If Λ and H are finite and γ ∈ Γ is a topological generator of Γ,
then

T ∶= {(γ − 1)n ∣ n ∈ N}

is a left and right denominator set in Λ[[G]] consisting of left and right non-
zero divisors in the sense of [GW04, Ch. 10] such that the left and right local-
isation

Λ[[G]]T .

exists. Moreover, S is equal to the set of elements of Λ[[G]] that become units
in Λ[[G]]T . In particular, S is also a left and right denominator set and

Λ[[G]]S = Λ[[G]]T .

Proof. Set t ∶= γ − 1. Viewing Λ[[G]] as a skew power series ring over Λ[[H]]
in t, it is clear that left and right multiplication with tn on Λ[[G]] is injective
with finite cokernel.
According to Lemma 3.4 we have s ∈ S if and only if Λ[[G]]/Λ[[G]]s is finite.
In particular, we have T ⊂ S. Considering Λ[[G]]/Λ[[G]]s as a finite Zp[[t]]-
module we see that it is annihilated by a power of t. We conclude that there
exists an integer n ≥ 0 such that for any a ∈ Λ[[G]] there exists a b ∈ Λ[[G]]
such that

tna = bs.

Applying this to elements of T ⊂ S, we see that T and S are left denominator
set consisting of left and right non-zero divisors such that all elements of S are
units in Λ[[G]]T = Λ[[G]]S .
Applying the same arguments to s ∈ Λ[[G]] with Λ[[G]]/sΛ[[G]] finite, we see
that T is also a right denominator set.
Assume that s ∈ Λ[[G]] becomes a unit in Λ[[G]]T . Then kernel and cokernel
of

Λ[[G]]
⋅s
Ð→ Λ[[G]]
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are annihilated by powers of t. Considering Λ[[G]] as a finitely generated
Zp[[t]]-module annihilated by a power of p, we conclude that the cokernel is
finite, which implies that s ∈ S. Since T is a right denominator set, the same
is then true for

S = Λ[[G]] ∩Λ[[G]]×T .

Lemma 3.6. Assume that Λ[[H]] is noetherian. Then:

1. S = {f ∈ Λ[[G]] ∣Λ[[G]]/Λ[[G]]f is a f. g. left Λ[[H]]-module}.

2. S = {f ∈ Λ[[G]] ∣Λ[[G]]/fΛ[[G]] is a f. g. right Λ[[H]]-module}.

3. S is a left and right denominator set consisting of left and right non-zero
divisors.

4. A perfect complex of left Λ[[G]]-modules is perfect as complex of Λ[[H]]-
modules if and only its cohomology groups are S-torsion.

Proof. Lemma 3.4 implies that the elements of S are right non-zero divisors
and that (1) holds. Under the assumption that Λ[[H]] is noetherian, we know
by [Wit13b, Cor. 2.21] that S is a left denominator set. Assertion (4) follows
from [Wit13b, Thm. 2.18]. Write (Λ[[G]])op and Λop for the opposite rings of
Λ[[G]] and Λ, respectively. Consider the ring isomorphism

♯∶ (Λ[[G]])op → Λop[[G]]

that maps g ∈ G to g−1. To prove the remaining assertions, it is sufficient to
show that ♯ maps SΛ[[G]] ⊂ (Λ[[G]])op to SΛop[[G]].
If Λ and H are finite and γ ∈ Γ is a topological generator, then ♯ maps t ∶= γ −1
to t′ ∶= γ−1 − 1 and hence, it maps T ∶= {tn ∣ n ∈ N} to T ′ ∶= {t′n ∣ n ∈ N}. Using
Lemma 3.5 for T and T ′, we conclude that ♯(SΛ[[G]]) = SΛop[[G]].
In the general case, write

Λop[[G]] = lim←Ð
U,I

Λop/I[[G/H ∩U]]

where the limit runs over all open two-sided ideals I of Λ and all open normal

subgroups U of G and note that Λop[[G]]
⋅s♯

Ð→ Λop[[G]] is perfect over Λop[[H]]

if and only if (Λ/I)op[[G/H ∩ U]]
⋅s♯

Ð→ (Λ/I)op[[G/H ∩U]] is perfect over the
finite ring (Λ/I)op[[H/H ∩U]] for all I and U .

For general Λ and H , the set S is no longer a left or right denominator set, as
the following example shows.
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Example 3.7. Assume that either Λ = Fp is the finite field with p elements and
H is the free pro-p group on two topological generators with trivial action of Γ
or Λ = Fp⟨⟨x, y⟩⟩ is the power series ring in two non-commuting indeterminates
x, y and H is trivial. In both cases, Λ[[G]] = Fp⟨⟨x, y⟩⟩[[t]] is the power series
ring over Fp⟨⟨x, y⟩⟩ with t commuting with x and y and the set S is the set of
those power series f(x, y, t) with f(0,0, t) ≠ 0. Set s ∶= x − t ∈ S. If S were a
left denominator set, we could find

a ∶=
∞

∑
i=0

ait
i ∈ Fp⟨⟨x, y⟩⟩[[t]], b ∶=

∞

∑
i=0

bit
i ∈ S

such that as = by, i. e.

a0x = b0y, aix − ai−1 = biy for i > 0.

The only solution for this equation is a = b = 0, which contradicts the assump-
tion b ∈ S.

Nevertheless, using Waldhausen K-theory, we can still give a sensible definition
of K1(Λ[[G]]S) even if Λ[[G]]S does not exist.

Definition 3.8. We write SP
wH (Λ[[G]]) for the full Waldhausen subcate-

gory of SP(Λ[[G]]) of strictly perfect complexes of Λ[[G]]-modules which are
perfect as complexes of Λ[[H]]-modules.
We write wHSP(Λ[[G]]) for the Waldhausen category with the same objects,
morphisms and cofibrations as SP(Λ[[G]]), but with a new set of weak equiv-
alences given by those morphisms whose cones are objects of the category
SP

wH (Λ[[G]]).

The same construction also works for PDG
cont(Λ[[G]]):

Definition 3.9. We write PDG
cont,wH(Λ[[G]]) for the full Waldhausen sub-

category of PDG
cont(Λ[[G]]) of objects (P ●J)J∈IΛ[[G]]

such that

lim←Ð
J∈IΛ[[G]]

P ●J

is a perfect complex of Λ[[H]]-modules.
We write wHPDG

cont(Λ[[G]]) for the Waldhausen category with the same
objects, morphisms and cofibrations as PDG

cont(Λ[[G]]), but with a new set
of weak equivalences given by those morphisms whose cones are objects of the
category PDG

cont,wH(Λ[[G]]).

From the approximation theorem [TT90, 1.9.1] and [Wit14, Prop. 3.7] we con-
clude that

Kn(SP
wH(Λ[[G]])) ≅ Kn(PDG

cont,wH(Λ[[G]])),

Kn(wHSP(Λ[[G]])) ≅ Kn(wHPDG
cont(Λ[[G]]))
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We may then set for all n ≥ 0

Kn(Λ[[G]], S) ∶= Kn(PDG
cont,wH(Λ[[G]])),

Kn+1(Λ[[G]]S) ∶= Kn+1(wHPDG
cont(Λ[[G]])).

(3.2)

If Λ[[H]] is noetherian, these groups agree with their usual definition [Wit14,
§ 4].
A closely related variant of SPwH (Λ[[G]]) is the following Waldhausen cate-
gory.

Definition 3.10. Let SP(Λ[[H]],G) be the Waldhausen category of
complexes of Λ[[G]]-modules which are strictly perfect as complexes of
Λ[[H]]-modules. Cofibrations are the injective morphisms with cokernel in
SP(Λ[[H]],G); the weak equivalences are given by the quasi-isomorphisms.

In other words, SP(Λ[[H]],G) is the Waldhausen category of bounded com-
plexes over the exact category of Λ[[G]]-modules which are finitely generated
and projective as Λ[[H]]-modules and hence, the groups Kn(SP(Λ[[H]],G))
agree with the Quillen K-groups of this exact category. Unfortunately, we
cannot prove in general that Kn(SP(Λ[[H]],G)) agrees with Kn(Λ[[G]], S).
However, we shall see below that we always have a surjection

K0(SP(Λ[[H]],G)) → K0(Λ[[G]], S).

This is sufficient for our applications.

Lemma 3.11. Let P ● be a complex of projective compact Λ[[G]]-modules that
is bounded above. Assume that there exists a bounded above complex K● of
finitely generated, projective Λ[[H]]-modules that is quasi-isomorphic to P ● as
complex of Λ[[H]]-modules. Then there exists in the category of complexes of
Λ[[G]]-modules an injective endomorphism

ψ∶Λ[[G]] ⊗Λ[[H]] K● → Λ[[G]] ⊗Λ[[H]] K●

and a quasi-isomorphism
f ∶P ● → cokerψ.

such that cokerψ is a bounded above complex of Λ[[G]]-modules which are
finitely generated and projective as Λ[[H]]-modules.
In particular, if P ● is perfect as complex of Λ[[H]]-modules, then P ● is perfect
as complex of Λ[[G]]-modules and cokerψ is in SP(Λ[[H]],G).

Proof. Since K● is a bounded above complex of finitely generated projective
Λ[[H]]-modules, there exists a quasi-isomorphism α∶K● → P ● of complexes of
Λ[[H]]-modules, which is automatically continuous for the compact topologies
on K● and P ●. Every projective compact Λ[[G]]-module is also projective in
the category of compact Λ[[H]]-modules. Hence, there exists a weak equiv-
alence β∶P ● → K● in the category of complexes of compact Λ[[H]]-modules
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such that α ○ β and β ○ α are homotopic to the identity. Fix a topological
generator γ ∈ Γ and set

g∶K● →K●, x↦ β(γα(x)),

ψ∶Λ[[G]] ⊗Λ[[H]]K● → Λ[[G]]⊗Λ[[H]] K●, λ⊗ x↦ λ⊗ x − λγ−1 ⊗ g(x).

Then ψ is a Λ[[G]]-linear complex morphism. Moreover, cokerψ is finitely
generated over Λ[[H]] in each degree. Indeed, if we set t ∶= γ − 1 and let
(e1, . . . , em) denote a generating system of the Λ[[H]]-module Kn in degree n,
then (tk⊗ei)k∈N0,i=1,...,m is a topological generating system of Λ[[G]]⊗Λ[[H]]Kn

over Λ[[H]]. But

tk ⊗ v = tk−1 ⊗ (g(v) − v) +ψ(γtk−1 ⊗ v)

for all v ∈ Kn, such that cokerψ is already generated by the images of 1 ⊗
e1, . . . ,1⊗ em.

From Lemma 3.4 we conclude that ψ is injective and that cokerψ is finitely
generated and projective over Λ[[H]] in each degree. Set Q● ∶= cokerψ. Since
P ● is a bounded above complex of projective compact Λ[[G]]-modules, there
exists a quasi-isomorphism f completing the homotopy-commutative diagram

0 // Λ[[G]]⊗̂Λ[[H]]P ●
λ⊗̂x↦λ⊗̂x−λγ−1⊗̂γx

//

id⊗̂β∼

��

Λ[[G]]⊗̂Λ[[H]]P ●
λ⊗̂x↦λx

//

id⊗̂β∼

��

P ●

f∼

��

// 0

0 // Λ[[G]] ⊗Λ[[H]]K●
ψ

// Λ[[G]]⊗Λ[[H]] K● // Q● // 0

in the category of complexes of compact Λ[[G]]-modules. Here,
Λ[[G]]⊗̂Λ[[H]]P ● denotes the completed tensor product. The exactness of the
first row follows from [Wit13b, Prop. 2.4]. If we can choose K● to be a strictly
perfect complex of Λ[[H]]-modules, then P ● is also quasi-isomorphic to the
cone of ψ, which is strictly perfect as complex of Λ[[G]]-modules. Moreover,
cokerψ is a bounded complex and hence, an object of SP(Λ[[H]],G).

Proposition 3.12. Let γ ∈ Γ be a topological generator. The functor

Cγ ∶SP(Λ[[H]],G) → SP
wH(Λ[[G]]),

P ● ↦ Cone(Λ[[G]] ⊗Λ[[H]] P ●
λ⊗p↦λ⊗p−λγ−1⊗γp
ÐÐÐÐÐÐÐÐÐÐÐ→ Λ[[G]] ⊗Λ[[H]] P ●)

is well defined and Waldhausen exact. It induces a surjection

Cγ ∶K0(SP(Λ[[H]],G)) → K0(SP
wH(Λ[[G]]))

which is independent of the choice of γ.
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Proof. From [Wit13b, Prop. 2.4] we conclude that

0→ Λ[[G]] ⊗Λ[[H]] P ●
id−(⋅γ−1⊗γ⋅)
ÐÐÐÐÐÐÐ→ Λ[[G]]⊗Λ[[H]] P ●

λ⊗p↦λp
ÐÐÐÐ→ P ● → 0

is an exact sequence of complexes of Λ[[G]]-modules for any P ● in
SP(Λ[[H]],G). In particular, the strictly perfect complex of Λ[[G]]-modules
Cγ(P ●) is quasi-isomorphic to P ● in the category of complexes of Λ[[G]]-
modules and therefore perfect as complex of Λ[[H]]-modules. Thus, Cγ(P ●)
is an object of SPwH(Λ[[G]]). The Waldhausen exactness of the functor Cγ
follows easily from the Waldhausen exactness of the cone construction.
Consider the Waldhausen category P

wH (Λ[[G]]) of perfect complexes of
Λ[[G]]-modules which are also perfect as complexes of Λ[[H]]-modules. The
approximation theorem [TT90, 1.9.1] implies that the inclusion

ι∶SPwH(Λ[[G]]) → P
wH (Λ[[G]])

induces isomorphisms

Kn(SPwH(Λ[[G]])) ≅ Kn(PwH (Λ[[G]]))

for all n. The functorial quasi-isomorphism Cγ(P ●)
∼

Ð→ P ● in P
wH (Λ[[G]])

implies that the homomorphism of K-groups induced by ι ○Cγ agrees with the
homomorphism induced by the inclusion ι′∶SP(Λ[[H]],G) → P

wH (Λ[[G]]).
Since K0(PwH(Λ[[G]])) is generated by the quasi-isomorphism classes of com-
plexes inP

wH (Λ[[G]]), we deduce from Lemma 3.11 that ι′ induces a surjection

K0(SP(Λ[[H]],G)) → K0(PwH (Λ[[G]])).

In the light of Proposition 3.12, we will write

[P ●] ∶= [Cγ(P ●)] ∈ K0(Λ[[G]], S)

for any P ● in SP(Λ[[H]],G).

Remark 3.13. In order to deduce from the approximation theorem (applied to
the opposite categories) that Cγ induces isomorphisms

Kn(SP(Λ[[H]],G)) ≅ Kn(SPwH (Λ[[G]]))

for all n, it would suffice to verify that for every complex P ● in SP(Λ[[H]],G)
and every morphism f ∶K● → P ● in P

wH (Λ[[G]]), there exists a morphism

f ′∶Q● → P ● in SP(Λ[[H]],G) and a quasi-isomorphism w∶K●
∼

Ð→ Q● in
P
wH (Λ[[G]]) such that f = f ′ ○w.

Thanks to a result of Muro and Tonks [MT08], the groups K0(W) and K1(W)
of any Waldhausen category W can be described as the cokernel and kernel of
a homomorphism

∂∶D1(W) → D0(W) (3.3)
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between two nil-2-groups (i. e. [a, [b, c]] = 1 for any three group elements a, b, c)
that are given by explicit generators and relations in terms of the structure of
the underlying Waldhausen category. As additional structure, there exists a
pairing

D0(W) ×D0(W)→ D1(W), (A,B) ↦ ⟨A,B⟩

satisfying

∂ ⟨A,B⟩ = B−1A−1BA,

⟨∂a, ∂b⟩ = b−1a−1ba,

⟨A,B⟩ ⟨B,A⟩ = 1,

⟨A,BC⟩ = ⟨A,B⟩ ⟨A,C⟩ .

In other words, D●(W) is a stable quadratic module in the sense of [Bau91].
In particular, X ∈ D0(W) operates from the right on a ∈ D1(W) via

aX ∶= a ⟨X,∂a⟩ .

More explicitly, D0(W) is the free nil-2-group generated by the objects of W
different from the zero object, while D1(W) is generated by all weak equiva-
lences and exact sequences in W subject to the following list of relations:

(R1) ∂[α] = [B]−1[A] for a weak equivalence α∶A
∼

Ð→ B,

(R2) ∂[∆] = [B]−1[C][A] for an exact sequence ∆∶A ↣ B↠ C.

(R3) ⟨[A], [B]⟩ = [B ↣ A⊕B ↠ A]−1[A↣ A⊕B ↠ B] for any pair of objects
A,B.

(R4) [0↣ 0↠ 0] = 1D1
,

(R5) [βα] = [β][α] for weak equivalences α∶A
∼

Ð→ B, β∶B
∼

Ð→ C,

(R6) [∆′][α][γ][A] = [β][∆] for any commutative diagram

A∆∶ // //

∼α

��

B // //

∼β

��

C

∼γ

��

A′∆′∶ // // B′ // // C′

(R7) [Γ1][∆1] = [∆2][Γ2][A] for any commutative diagram

A∆1∶ // // B

Γ1 ∶

// //
��

��

C

Γ2∶

��

��

A∆2∶ // //

��
��

D // //

��
��

E

��
��

0 // // F F
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[MT07, Def. 1.2], [Wit14, Def. A.4].
In particular, K0(Λ[[G]], S) is the abelian group generated by the symbols
[P ●] with P ● in PDG

cont,wH (Λ[[G]]) modulo the relations

[P ●] = [Q●] if P ● and Q● are weakly equivalent,

[P ●2 ] = [P
●
1 ] + [P

●
3 ] if 0→ P ●1 → P ●2 → P ●3 → 0 is an exact sequence.

If f ∶P ● → P ● is an endomorphism which is a weak equivalence in
PDG

cont(Λ[[G]]), we can assign to it a class [f ⟳ P ●] in K1(Λ[[G]]). By
the classical definition of the first K-group as factor group of the general lin-
ear group it is clear that these classes generate K1(Λ[[G]]). It then follows
from the splitting of the K-theory localisation sequence [Wit13b, Cor. 3.3] that
the classes [f ⟳ P ●] of endomorphisms f ∶P ● → P ● which are weak equiv-
alences in wHPDG

cont(Λ[[G]]) generate K1(Λ[[G]]S). The relations that
are satisfied by these generators can be read off from the above relations for
D1PDG

cont,wH (Λ[[G]]).

Remark 3.14. Some authors prefer the theory of determinant functors and
Deligne’s category of virtual objects [Del87] as an alternative model for the 1-
type of the K-theory spectrum. We refer to [MTW15] for the precise connection
of the two approaches.

Let Λ and Λ′ be two adic Zp-algebras and G = H ⋊ Γ, G = H ′ ⋊ Γ′ be profi-
nite groups, such that H and H ′ contain open, topologically finitely generated
pro-p subgroups and Γ ≅ Zp ≅ Γ

′. Suppose that K● is a complex of Λ′[[G′]]-
Λ[[G]]-bimodules, strictly perfect as complex of Λ′[[G′]]-modules and assume
that there exists a complex L● of Λ′[[H ′]]-Λ[[H]]-bimodules, strictly per-
fect as complex of Λ′[[H ′]]-modules, and a quasi-isomorphism of complexes
of Λ′[[H ′]]-Λ[[G]]-bimodules

L●⊗̂Λ[[H]]Λ[[G]]
∼

Ð→K●.

Here,

L●⊗̂Λ[[H]]Λ[[G]] ∶= lim←Ð
I∈IΛ′[[G′]]

lim←Ð
J∈IΛ[[G]]

L/IL● ⊗Λ[[H]] Λ[[G]]/J

denotes the completed tensor product.
In the above situation, the Waldhausen exact functor

ΨK● ∶PDG
cont(Λ[[G]]) → PDG

cont(Λ′[[G′]]) (3.4)

takes objects of the category PDG
cont,wH(Λ[[G]]) to objects of the cate-

gory PDG
cont,wH′ (Λ′[[G′]]) and weak equivalences of wHPDG

cont(Λ[[G]])
to weak equivalences of wH′PDG

cont(Λ′[[G′]]) [Wit14, Prop. 4.6]. Hence, it
also induces homomorphisms between the corresponding K-groups. In partic-
ular, this applies to the following examples:

Example 3.15. [Wit14, Prop. 4.7]
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1. Assume G = G′, H = H ′. For any complex P ● of Λ′-Λ[[G]]-bimodules,
strictly perfect as complex of Λ′-modules, let K● be the complex

P [[G]]δ
●
∶= Λ′[[G]] ⊗Λ′ P

●

of Λ′[[G]]-Λ[[G]]-bimodules with the right G-operation given by the
diagonal action on both factors. This applies in particular for any com-
plex P ● of Λ′-Λ-bimodules, strictly perfect as complex of Λ′-modules and
equipped with the trivial G-operation.

2. Assume Λ = Λ′. Let α∶G → G′ be a continuous homomorphism such that
α maps H to H ′ and induces a bijection of G/H and G′/H ′. Let K● be
the Λ[[G′]]-Λ[[G]]-bimodule Λ[[G′]].

3. Assume that G′ is an open subgroup of G and set H ′ ∶= H ∩ G′. Let
Λ = Λ′ and let K● be the complex concentrated in degree 0 given by the
Λ[[G′]]-Λ[[G]]-bimodule Λ[[G]].

Example 3.16. The assumptions in Example 3.15.(2) are in fact stronger than
necessary. We may combine it with the following result. Assume that G is an
open subgroup of G′ such that H ∶=H ′∩G =H ′ and Γ = (Γ′)p

n

. Let Λ = Λ′ and
let K● be the Λ[[G′]]-Λ[[G]]-bimodule Λ[[G′]]. Fix a topological generator
γ′ ∈ Γ′ and let L● be the Λ[[H]]-Λ[[H]]-sub-bimodule of Λ[[G′]] generated as
left Λ[[H]]-module by 1, γ′, (γ′)2, . . . , (γ′)p

n
−1. Then L● is a strictly perfect

complex of Λ[[H]]-modules concentrated in degree 0 and the canonical map

L●⊗̂Λ[[H]]Λ[[G]]
∼

Ð→K●, ℓ⊗̂λ↦ ℓλ

is an isomorphism of Λ′[[H ′]]-Λ[[G]]-bimodules such that [Wit14, Prop. 4.6]
applies. In combination with Example 3.15.(2) this implies that any continuous
group homomorphism α∶G → G′ such that α(G) /⊂ H ′ induces Waldhausen
exact functors between all three variants of the above Waldhausen categories.

Example 3.17. As a special case of Example 3.15.(1), assume that Λ = Zp
and that ρ is some continuous representation of G on a finitely generated and
projective Λ′-module. Let ρ♯ be the Λ′-Zp[[G]]-bimodule which agrees with ρ
as Λ′-module, but on which g ∈ G acts from the right by the left operation of
g−1 on ρ. We thus obtain Waldhausen exact functors

Φρ ∶= ΨΛ′[[Γ]] ○Ψρ♯[[G]]δ (3.5)

from all three variants of the Waldhausen category PDG
cont(Zp[[G]]) to the

corresponding variant of PDG
cont(Λ′[[Γ]]). If Λ′ is a commutative adic Zp-

algebra, then the image of

[Zp[[G]] ⋅gÐ→ Zp[[G]]] ∈ K1(Zp[[G]]), g ∈ G,

under the composition of Φρ with

det∶K1(Λ′[[Γ]]) ≅Ð→ Λ′[[Γ]]×
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is ḡ det(ρ(g))−1, where ḡ denotes the image of g under the projection G → Γ.
Note that this differs from [CFK+05, (22)] by a sign. So, our evaluation at ρ
corresponds to the evaluation at the representation dual to ρ in terms of the
cited article.

4 A property of S-torsion complexes

In this section, we prove Proposition 4.1, which is an abstract generalisation of
[Wit13a, Prop. 2.1]. We will apply this proposition later in Section 10.
With the notation of the previous section, fix a topological generator γ ∈ Γ and
set t ∶= γ − 1. Assume for the moment that Λ is a finite Zp-algebra and that H
is a finite group. By Lemma 3.5, we have

Λ[[G]]S = limÐ→
n≥0

Λ[[G]]t−n

as Λ[[G]]-modules.
Assume that pi+1 = 0 in Λ. Then

(pn+i
k
) = 0

in Λ whenever pn ∤ k. Hence,

γp
n+i

− 1 = (t + 1)pn+i − 1 = tpn pi

∑
k=1

(pn+i
kpn
)tpn(k−1),

tp
n+i

= (γ − 1)pn+i − (1 − 1)pn+i = pi

∑
k=1

(pn+i
kpn
)(γkpn − 1)(−1)pn(pi−k)

= (γpn − 1) p
i

∑
k=1

(pn+i
kpn
)(−1)pn(pi−k) k−1∑

ℓ=0

γℓp
n

and therefore,

Λ[[G]]S = limÐ→
n≥0

Λ[[G]](γpn − 1)−1.
Since H was assumed to be finite, the same is true for the automorphism group
of H . We conclude that γp

n

is a central element of G and Γp
n

⊂ G a central
subgroup for all n ≥ n0 and n0 large enough. Set

Nn ∶=
p−1

∑
k=0

γp
nk.

The homomorphism

Λ[[G]](γpn − 1)−1 → Λ[[G/Γpn]], λ(γpn − 1)−1 ↦ λ +Λ[[G]](γpn − 1)
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induces an isomorphism Λ[[G]](γpn − 1)−1/Λ[[G]] ≅ Λ[[G/Γpn]] such that the
diagram

Λ[[G]](γpn − 1)−1/Λ[[G]] ⊂
//

≅

��

Λ[[G]](γpn+1 − 1)−1/Λ[[G]]
≅

��

Λ[[G/Γpn]] ⋅Nn
// Λ[[G/Γpn+1]]

commutes. Hence, we obtain an isomorphism of (left and right) Λ[[G]]-modules

Λ[[G]]S/Λ[[G]] ≅ limÐ→
n

Λ[[G/Γpn]].
We note that this isomorphism may depend on the choice of the topological
generator γ.
For any strictly perfect complex P ● of Λ[[G]]-modules, we thus obtain an exact
sequence

0→ P ● → Λ[[G]]S ⊗Λ[[G]] P ● → lim
Ð→
n

Λ[[G/Γpn]]⊗Λ[[G]] P ● → 0.

If P ● is also perfect as a complex of Λ[[H]]-modules such that the cohomol-
ogy of P ● is S-torsion by Lemma 3.6, then we conclude that there exists an
isomorphism

P ●[1] ≅ lim
Ð→
n

Λ[[G/Γpn]]⊗Λ[[G]] P ●

in the derived category of complexes of Λ[[G]]-modules. In particular, the
righthand complex is perfect as complex of Λ[[G]]-modules and of Λ[[H]]-
modules. This signifies that its cohomology modules

Hk(lim
Ð→
n

Λ[[G/Γpn]]⊗Λ[[G]] P ●) ≅ limÐ→
n

Hk(Λ[[G/Γpn]]⊗Λ[[G]] P ●) ≅ Hk+1(P ●)
are finite as abelian groups.
We now drop the assumption that Λ and H are finite. Let I ⊂ J be two open
ideals of Λ and U ⊂ V be the intersections of two open normal subgroups of G
with H . Then the diagram

0 // Λ/I[[G/U]] //

��

Λ/I[[G/U]]S //

��

lim
Ð→
n

Λ/I[[G/UΓp
n]] //

��

0

0 // Λ/J[[G/V ]] // Λ/J[[G/V ]]S // lim
Ð→
n

Λ/J[[G/V Γp
n]] // 0

commutes and the downward pointing arrows are surjections. Tensoring with
P ● and passing to the inverse limit we obtain the exact sequence

0→ P ● → lim←Ð
I,U

Λ/I[[G/U]]S ⊗Λ[[G]] P ● → lim←Ð
I,U

limÐ→
n

Λ/I[[G/UΓp
n]]⊗Λ[[G]] P ● → 0.
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If P ● is also perfect as a complex of Λ[[H]]-modules, then complex in the
middle is acyclic and we obtain again an isomorphism

P ●[1] ≅ lim←Ð
I,U

limÐ→
n

Λ/I[[G/UΓp
n]]⊗Λ[[G]] P ●

in the derived category of complexes of Λ[[G]]-modules and hence, isomor-
phisms of Λ[[G]]-modules

Hk+1(P ●) ≅ lim←Ð
I,U

limÐ→
n

Hk(Λ/I[[G/UΓp
n]]⊗Λ[[G]] P ●).

Here, we use that the modules in the projective system on the righthand side
are finite and thus lim←Ð-acyclic.

Finally, assume that (Q●J)J∈IΛ[[G]]
is a complex in PDG

cont,wH(Λ[[G]]). Then
we can find a strictly perfect complex of Λ[[G]]-modules P ● and a weak equiv-
alence

f ∶ (Λ[[G]]/J ⊗Λ[[G]] P ●)J∈IΛ[[G]]
→ (Q●J)J∈IΛ[[G]]

in PDG
cont,wH(Λ) [Wit08, Cor. 5.2.6]. Moreover, this complex P ● will also

be perfect as a complex of Λ[[H]]-modules. For I ∈ IΛ, U the intersection of
an open normal subgroup of G with H and a positive integer n such that Γp

n

is central in G/U we set

JI,U,n ∶= kerΛ[[G]] → Λ/I[[G/UΓp
n]],

such that the JI,U,n form a final subsystem in IΛ[[G]]. We conclude:

Proposition 4.1. For (Q●J)J∈IΛ[[G]]
in PDG

cont,wH(Λ[[G]]) there exists an
isomorphism

R lim←Ð
J∈IΛ[[G]]

Q●J[1] ≅ Rlim←Ð
I,U

limÐ→
n

Q●JI,U,n

in the derived category of Λ[[G]]-modules and isomorphisms of Λ[[G]]-modules

lim←Ð
J∈IΛ[[G]]

Hk+1(Q●J) ≅ lim←Ð
I,U

limÐ→
n

Hk(Q●JI,U,n
).

Remark 4.2. For any (Q●J)J∈IΛ[[G]]
in PDG

cont(Λ[[G]]) we obtain in the same
way a distinguished triangle

R lim←Ð
J∈IΛ[[G]]

Q●J → Rlim←Ð
I,U

⎛
⎝Λ/I[[G/U]]S ⊗L

Λ/I[[G/U]] R lim←Ð
n

Q●JI,U,n

⎞
⎠→ Rlim←Ð

I,U

limÐ→
n

Q●JI,U,n

in the derived category of complexes of Λ[[G]]-modules.
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5 Duality on the level of K-groups

Assume that W is a biWaldhausen category in the sense of [TT90, Def. 1.2.4].
In particular, the opposite category W

op is a biWaldhausen category as well
and there are natural isomorphisms

I ∶Kn(W) ≅ Kn(Wop), (5.1)

simply because the topological realisations of the bisimplicial sets N.wS.W and
N.wS.Wop resulting from Waldhausen’s S-construction agree [TT90, §1.5.5].
However, the obvious identifications

NmwSnW ≅ NmwSnW
op

respect the boundary and degeneracy maps only up to reordering, so that we
do not obtain an isomorphism of the bisimplicial sets themselves.
In order to understand the isomorphism (5.1) in terms of the presentation of
K1(W) given by (3.3), we will construct a canonical isomorphism

I ∶D●(W)→ D●(Wop).
For any morphism α∶A → B in W, write αop∶B → A for the corresponding
morphism in the opposite category W

op. Further, note that by the definition
of biWaldhausen categories, if A ↣ B ↠ C is an exact sequence in W, then
the dual sequence C ↣ B ↠ A is exact in W

op. We then set

I([A]) ∶= [A] for objects A in W,

I([f ∶A ∼

Ð→ B]) ∶= [fop∶B
∼

Ð→ A]−1 for weak equivalences f ,

I([A↣ B ↠ C]) ∶= [C ↣ B ↠ A] ⟨[A], [C]⟩ for exact sequences A↣ B ↠ C.

Proposition 5.1. For any biWaldhausen category W, the above assignment
defines an isomorphism of stable quadratic modules

I ∶D●(W)→ D●(Wop).
Proof. It is sufficient to check that I respects the relations (R1)–(R7) in the
definition of D●(W). This is a straight-forward, but tedious exercise.

Next, we investigate in how far I respects the boundary homomorphism of
localisation sequences. For this, we consider the same situation as in [Wit14,
Appendix], but with all Waldhausen categories replaced by biWaldhausen cat-
egories. Assume that wW is a biWaldhausen category with weak equivalences
w that is saturated and extensional in the sense of [TT90, Def. 1.2.5, 1.2.6].
Let vW be a the same category with the same notion of fibrations and cofi-
brations, but with a coarser notion of weak equivalences v ⊂ w and let vWw

denote the full biWaldhausen subcategory of vW consisting of those objects
which are weakly equivalent to the zero object in wW. We assume that Cyl
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is a cylinder functor in the sense of [Wit14, Def. A.1] for both wW and vW

and that it satisfies the cylinder axiom for wW. We will write Cone and Σ for
the associated cone and shift functors, i. e.

Cone(α) ∶= Cyl(α)/A for any morphism α∶A → B,

ΣA ∶= Cone(A→ 0) for any object A.

Further, we assume that CoCyl is a cocylinder functor for both wW and vW

in the sense that the opposite functor CoCylop is a cylinder functor for wW
op

and vW
op. Again, we assume that CoCylop satisfies the cylinder axiom for

wW
op. We will write CoCone and CoΣ for the associated cocone and coshift

functors.
Recall from [Wit14, Thm. A.5] that the assignment

d(∆) ∶= 0
for every exact sequence ∆ in wW,

d(α) ∶= −[Cone(α)] + [Cone(idA)]
for every weak equivalence α∶A

∼

Ð→ A′ in wW

(5.2)

defines a homomorphism d∶D1(wW) →K0(vWw) such that the sequence

K1(vW) → K1(wW) d
Ð→ K0(vWw) → K0(vW)→ K0(wW) → 0

is exact.

Lemma 5.2. For every weak equivalence α∶A → B in wW,

d(α) = −[CoCone(idB)] + [CoCone(α)]
in K0(vWw).
Proof. We first assume that A and B are objects of vWw. Then

B ↣ Cone(α)↠ ΣA,

A↣ Cone(idA)↠ ΣA,

are exact sequences in vW
W. Hence,

d(α) = −[B] − [ΣA] + [ΣA] + [A] = −[B] + [A] (5.3)

in K0(vWw).
For a general weak equivalence α∶A → B in wW, the natural morphism

Cone(α) → 0

is a weak equivalence in wW by the cylinder axiom. The commutative square

A A

∼α

��

A
∼

α
// B
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induces by the functoriality of the cone and shift functor a commutative dia-
gram with exact rows

A // //

∼α

��

Cone(idA) // //

∼α∗

��

ΣA

B // // Cone(α) // // ΣA

where all downward pointing arrows are weak equivalences in wW. Dually, we
also obtain a commutative diagram

CoΣB // // CoCone(α) // //

∼α∗

��

A

∼α

��

CoΣB // // CoCone(idB) // // B

where all downward pointing arrows are weak equivalences in wW.
From (R6) and (5.3) we conclude

−[Cone(α)] + [Cone(idA)] = d(α∗) = d(α)
= d(α∗) = −[CoCone(idB)] + [CoCone(α)]

as desired.

Remark 5.3. By basically the same argument, one also sees that d is indepen-
dent of the choice of the particular cylinder functor.

Proposition 5.4. With the notation as above, the diagram

D1(wW ) I
//

d

��

D1(wW op)
d

��

K0(vWw) I
// K0((vWw)op)

commutes.

Proof. This is a direct consequence of the definition of I and Lemma 5.2.

If R is any ring and P ● is a strictly perfect complex of left R-modules, then

(P ●)∗R ∶= HomR(P −●,R)
is a strictly perfect complex of left modules over the opposite ring Rop and

SP(R)op → SP(Rop) P ● ↦ (P ●)∗R
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is a Waldhausen exact equivalence of categories. We omit the R from ∗R if it is
clear from the context. By composing with the homomorphisms I, we obtain
isomorphisms

Kn(R) ≅ Kn(Rop).
Note that the isomorphism K1(R)→ K1(Rop) corresponds to the isomorphism
induced by the group isomorphism

Gl∞(R)→ Gl∞(Rop), A↦ (At)−1
that maps a matrix A to the inverse of its transposed matrix.
If S is a second ring and M ● a complex of R-S-bimodules which is strictly per-
fect as complex of R-modules, then (M ●)∗R is a complex of Rop-Sop-bimodules
which is strictly perfect as complex of Rop-modules and there exists for any
complex P ● in SP(S) a canonical isomorphism

(M∗R ⊗Sop P ∗S)● ≅ ((M ⊗S P )●)∗R . (5.4)

Hence, we obtain a commutative diagram

Kn(S)
≅

//

M●

��

Kn(Sop)
(M●)∗R
��

Kn(R)
≅

// Kn(Rop)
We now return to our previous setting: As before, Λ is an adic ring and G =
H ⋊ Γ is a profinite group such that H contains an open, topologically finitely
generated pro-p subgroup and Γ ≅ Zp.

Definition 5.5. We define

♯∶Λ[[G]]op → Λop[[G]], a↦ a♯,

to be the ring homomorphism that is the identity on the coefficients and maps
g ∈ G to g−1 and write Λop[[G]]♯ for Λop[[G]] considered as Λop[[G]]-Λ[[G]]op-
bimodule via ♯. Further, we let

⊛∶SP(Λ[[G]])op → SP(Λop[[G]]), P ● ↦ Λop[[G]]♯ ⊗Λ[[G]]op (P ●)∗.
denote the resulting Waldhausen exact equivalence of categories. We also write

⊛∶Kn(Λ[[G]]) → Kn(Λop[[G]]) (5.5)

for the homomorphisms obtained by composing I from (5.1) with the homo-
morphism

Kn(SP(Λ[[G]])op)→ Kn(SP(Λop[[G]]))
induced by the Waldhausen exact functor ⊛.
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Remark 5.6. The author does not know wether it is possible to produce
an extension of ⊛ to a Waldhausen exact functor PDG

cont(Λ[[G]])op →
PDG

cont(Λop[[G]]) inducing the same homomorphisms on K-theory. This
would avoid some technicalities that we need to deal with later on.

Lemma 5.7. Assume that K● is in SP(Λ[[G]]).
1. Let Λ′ be another adic Zp-algebra. For any complex P ● of Λ′-Λ[[G]]-

bimodules, strictly perfect as complex of Λ′-modules, set

(P ●)∗,♯ ∶= (P ●)∗Λ ⊗Λ[[G]]op (Λ[[G]]op)♯
such that (P ●)∗,♯ is a complex of Λ′op-Λop[[G]]-bimodules, with g ∈ G

acting by (g−1)∗. With P [[G]]δ● as in Example 3.15,

(ΨP [[G]]δ●(K●))⊛ ≅ Ψ(P ●)∗Λ,♯[[G]]δ((K●)⊛).
2. Let G′ =H ′⋊Γ′ be another profinite group such that H ′ contains an open,

topologically finitely generated pro-p subgroup and Γ′ ≅ Zp. Let α∶G → G′

be a continuous homomorphism such that α(G) /⊂ H ′. Consider Λ[[G′]]
as a Λ[[G′]]-Λ[[G]]-bimodule. Then

(ΨΛ[[G′]](K●))⊛ ≅ ΨΛop[[G′]]((K●)⊛).
3. Assume that G′ is an open subgroup of G and set H ′ ∶=H ∩G′. Consider

Λ[[G]] as a Λ[[G′]]-Λ[[G]]-bimodule. Then

(ΨΛ[[G]](K●))⊛ ≅ ΨΛop[[G]]((K●)⊛).
Proof. Using the canonical isomorphism (5.4), it remains to notice that

Λ′op[[G]]♯ ⊗Λ′[[G]]op (P [[G]]δ●)∗Λ′[[G]] ≅ (P ●)∗,♯[[G]]δ ⊗Λop[[G]] Λop[[G]]♯
as complexes of Λ′op[[G]]-Λ[[G]]op-bimodules to prove (1). The other two
parts are straightforward.

Proposition 5.8. The functor ⊛ extends to Waldhausen exact equivalences

⊛∶ (wHSP(Λ[[G]]))op → wHSP(Λop[[G]]),
⊛∶ (SPwH (Λ[[G]]))op → SP

wH(Λop[[G]])
and hence, it induces a commutative diagram

0 // K1(Λ[[G]]) //

⊛≅

��

K1(Λ[[G]]S)
⊛≅

��

d
// K0(Λ[[G]], S) //

⊛≅

��

0

0 // K1(Λop[[G]]) // K1(Λop[[G]]S) d
// K0(Λop[[G]], S) // 0

with exact rows.

Documenta Mathematica 24 (2019) 1413–1511



L-Functions for p-Adic Representations 1443

Proof. The exactness of the rows follows from [Wit13b, Cor. 3.3]. To extend ⊛,
it suffices to show that for any strictly perfect complex P ● of Λ[[G]]-modules
which is also perfect as complex of Λ[[H]]-modules, the complex (P ●)⊛ is
perfect as complex of Λop[[H]]-modules. By [Wit14, Prop. 4.8] we may check
this after tensoring with (Λ/Jac(Λ))op[[G/V ]] with V ⊂ G a closed normal pro-
p-subgroup which is open in H . Using Lemma 5.7, we may therefore assume
that Λ and H are finite.
By Lemma 3.6, S ∶= SΛ[[G]] ⊂ Λ[[G]] is a left and right denominator set and

♯ maps SΛ[[G]] to the set SΛop[[G]] ⊂ Λop[[G]]. Moreover (P ●)⊛ is perfect as
complex of Λop[[H]]-modules if and only if its cohomology is SΛop[[G]]-torsion.
As P ● has SΛ[[G]]-torsion cohomology and as

(Λ[[G]]S)op ⊗Λ[[G]]op (P ●)∗Λ[[G]] ≅ (Λ[[G]]S ⊗Λ[[G]] P ●)∗Λ[[G]]S ,
we conclude that (P ●)⊛ is indeed perfect as complex of Λop[[H]]-modules.

We may also extend ⊛ to the Waldhausen category SP(Λ[[H]],G) from Defi-
nition 3.10.

Definition 5.9. For any P ● in SP(Λ[[H]],G)op we set

(P ●)⊛ ∶= Λop[[H]]♯ ⊗Λ[[H]]op (P ●)∗Λ[[H]][−1].
and define a left action of γ ∈ Γ on (P ●)⊛ by

γ∶ (P ●)⊛ → (P ●)⊛, λ⊗ f ↦ γλγ−1 ⊗ γf(γ−1⋅)γ−1.
One checks that (P ●)⊛ is indeed an object of SP(Λop[[H]],G), such that we
obtain a Waldhausen exact equivalence of categories

⊛∶SP(Λ[[H]],G)op → SP(Λop[[H]],G).
Proposition 5.10. Let γ ∈ Γ be a topological generator. Then for any P ● in
SP(Λ[[H]],G)op we have a commutative diagram

Λop[[G]] ⊗Λop[[H]] (P ●)⊛[1]
α≅

��

id−⋅γ−1⊗γ
// Λop[[G]] ⊗Λop[[H]] (P ●)⊛[1]

α≅

��(Λ[[G]]⊗Λ[[H]] P ●)⊛ id−(⋅γ⊗γ−1⋅)⊛
// (Λ[[G]] ⊗Λ[[H]] P ●)⊛

in SP(Λop[[G]]) inducing a canonical isomorphism

Cγ−1(P ●)⊛ ≅ Cγ((P ●)⊛).
In particular, we have [P ●]⊛ = [(P ●)⊛]
in K0(Λop[[G]], S).
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Proof. For any degree n and any f ∈ (Pn)∗Λ[[H]] , we write

f̃ ∶Λ[[G]] ⊗Λ[[H]] Pn → Λ[[G]], λ⊗ p↦ λf(p).
We then set

Λop[[G]] ⊗Λop[[H]] Λop[[H]]♯ ⊗Λ[[H]]op (Pn)∗Λ[[H]]
≅α

��

λ⊗ µ⊗ f
❴

��

Λop[[G]]♯ ⊗Λ[[G]]op (Λ[[G]]⊗Λ[[H]] Pn)∗Λ[[G]] λ⊗ f̃µ♯

It is then straightforward to check that the above diagram commutes. The
cone of the first row is Cγ((P ●)⊛)[1], the cone of the second row is the ⊛-dual
of the cocone of

Λ[[G]]⊗Λ[[H]] P ●
id−(⋅γ⊗γ−1⋅)
ÐÐÐÐÐÐÐ→ Λ[[G]] ⊗Λ[[H]] P ●

in SP
wH(Λ[[G]]), which is the same as Cγ−1(P ●)[−1]. Finally, recall from

Proposition 3.12 that the class of Cγ(P ●) in K0(Λ[[G]], S) is independent of
the choice of the topological generator γ. Hence,

[P ●]⊛ = [Cγ(P ●)⊛] = [Cγ−1(P ●)⊛] = [Cγ((P ●)⊛)] = [(P ●)⊛].

6 Non-commutative algebraic L-functions

Let G =H ⋊ Γ as before. Recall the split exact sequence

0→ K1(Λ[[G]]) → K1(Λ[[G]]S) dÐ→ K0(Λ[[G]], S) → 0.

[Wit13b, Cor. 3.4], which is central for the formulation of the non-commutative
main conjecture: The map K1(Λ[[G]]) → K1(Λ[[G]]S) is the obvious one; the
boundary map

d∶K1(Λ[[G]]S)→ K0(Λ[[G]], S)
on the class [f] of an endomorphism f which is a weak equivalence in the
Waldhausen category wHPDG

cont(Λ[[G]]) is given by

d[f] = −[Cone(f)●]
where Cone(f)● denotes the cone of f [Wit14, Thm. A.5]. (Note that other
authors use −d instead.) For a fixed choice of a topological generator γ ∈ Γ, a
splitting sγ of d is given by

sγ([P ●]) ∶= [Λ[[G]]⊗̂Λ[[H]]P ●
x⊗̂y↦x⊗̂y−xγ−1⊗̂γy
ÐÐÐÐÐÐÐÐÐÐÐ→ Λ[[G]]⊗̂Λ[[H]]P ●]−1 (6.1)
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for any P ● in PDG
cont,wH(Λ[[G]]), where the precise defini-

tion of Λ[[G]]⊗̂Λ[[H]]P ● as an object of the Waldhausen category

wHPDG
cont(Λ[[G]]) is
Λ[[G]]⊗̂Λ[[H]]P ● = ( lim←Ð

J∈IΛ[[G]]

Λ[[G]]/I ⊗Λ[[H]] P ●J)I∈IΛ[[G]]

[Wit13b, Def. 2.12]. A short inspection of the definition shows that sγ only
depends on the image of γ in G/H . Following [Bur09], we may call sγ(−A) the
non-commutative algebraic L-function of A ∈ K0(Λ[[G]], S).
Proposition 6.1. Consider an element A ∈ K0(Λ[[G]], S).

1. Let Λ′ be another adic Zp-algebra. For any complex P ● of Λ′-Λ[[G]]-
bimodules which is strictly perfect as complex of Λ′-modules we have

ΨP [[G]]δ●(sγ(A)) = sγ(ΨP [[G]]δ●(A))
in K1(Λ′[[G]]S).

2. Let G′ =H ′ ⋊Γ′ such that H ′ has an open, topologically finitely generated
pro-p-subgroup and Γ′ ≅ Zp. Assume that α∶G → G′ is a continuous
homomorphism such that α(G) /⊂ H ′. Set r ∶= [G′ ∶ α(G)H ′]. Let γ′ ∈ Γ′

be a topological generator such that α(γ) = (γ′)r in G′/H ′. Then

ΨΛ[[G′]](sγ(A)) = sγ′(ΨΛ[[G′]](A))
in K1(Λ[[G′]]S).

3. Assume that G′ is an open subgroup of G and set H ′ ∶= H ∩ G′, r ∶=[G ∶ G′H]. Consider Λ[[G]] as a Λ[[G′]]-Λ[[G]]-bimodule. Then γr

generates G′/H ′ ⊂ G/H and

ΨΛ[[G]](sγ(A)) = sγr(ΨΛ[[G]](A))
in K1(Λ[[G]]S).

Proof. For (1), we first note that by applying the Waldhausen additivity the-
orem [Wal85, Prop. 1.3.2] to the short exact sequences resulting from stupid
truncation, we have

ΨP [[G]]δ● =∑
i∈Z

(−1)iΨP i[[G]]δ

as homomorphisms between the K-groups. Hence we may assume that P = P ●

is concentrated in degree 0. We now apply [Wit13b, Prop 2.14.1] to the Λ′[[G]]-
Λ[[G]]-bimodule M ∶= P [[G]]δ and its Λ′[[H]]-Λ[[H]]-sub-bimodule

N ∶= Λ′[[H]]⊗Λ′ P

(with the diagonal right action of H) and t1 ∶= t2 ∶= γ − 1, γ1 ∶= γ2 ∶= γ.
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For (2), we first assume that α induces an isomorphism G/H ≅ G/H ′ and that
γ′ = α(γ). We then apply [Wit13b, Prop 2.14.1] toM ∶= Λ[[G′]], N ∶= Λ[[H ′]],
and t1 ∶= γ − 1, t2 ∶= α(γ) − 1, γ1 ∶= γ, γ2 ∶= α(γ).
Next, we assume that G ⊂ G′, H = H ′, and γ = (γ′)r. This case is not covered
by [Wit13b, Prop 2.14] and therefore, we will give more details. Consider the
isomorphism of Λ[[G′]]-Λ[[G]]-bimodules

κ∶Λ[[G′]]⊗̂Λ[[H]]Λ[[G]]r → Λ[[G′]]⊗̂Λ[[H]]Λ[[G′]],
µ⊗̂
⎛⎜⎝
λ0
⋮

λr−1

⎞⎟⎠↦
r−1

∑
i=0

µ(γ′)−i⊗̂(γ′)i(λi).

Then the map µ⊗̂λ↦ µ⊗̂λ−µ(γ′)−1⊗̂γ′λ on the righthand side corresponds to
left multiplication with the matrix

A ∶=

⎛⎜⎜⎜⎜⎜⎝

id 0 ⋯ 0 −(⋅γ−1)⊗̂(γ⋅)
−id id ⋱ ⋮ 0
0 ⋱ ⋱ 0 ⋮

⋮ ⋱ ⋱ id 0
0 ⋯ 0 −id id

⎞⎟⎟⎟⎟⎟⎠
on the left-hand side. Let P ● be a complex in PDG

cont,wH(Λ[[G]]). Then κ
induces an isomorphism

κ∶ΨΛ[[G′]](Λ[[G]]⊗̂Λ[[H]](P ●)r) → Λ[[G′]]⊗̂Λ[[H]]ΨΛ[[G′]](P ●)
in wHPDG

cont(Λ[[G′]]) while A⟳ ΨΛ[[G′]](Λ[[G]]⊗̂Λ[[H]](P ●)r) is a weak
equivalence. Hence, [A]−1 = sγ′([ΨΛ[[G′]](P ●)])
in K1(Λ[[G′]]S). Moreover,

⎛⎜⎜⎜⎜⎜⎝

id 0 ⋯ ⋯ 0
id id ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ id 0
id ⋯ ⋯ id id

⎞⎟⎟⎟⎟⎟⎠
A =

⎛⎜⎜⎜⎜⎜⎝

id 0 ⋯ 0 −(⋅γ−1)⊗̂(γ⋅)
0 id ⋱ ⋮ −(⋅γ−1)⊗̂(γ⋅)
⋮ ⋱ ⋱ 0 ⋮

⋮ ⋱ id −(⋅γ−1)⊗̂(γ⋅)
0 ⋯ ⋯ 0 id − (⋅γ−1)⊗̂(γ⋅)

⎞⎟⎟⎟⎟⎟⎠
.

The relations (R1)–(R7) in the definition of D●(W) imply that the class of
a triangular matrix is the product of the classes of its diagonal entries in
K1(Λ[[G′]]S). Hence, [A]−1 = ΨΛ[[G′]](sγ[P ●]), as desired.
In the general case, we note that the image of α is contained in the subgroupG′′

of G′ topologically generated by (γ′)r and H ′ and recall that sγ only depends
on the image of γ in G/H . We are then reduced to the two cases already treated
above.
For (3), we first treat the case r = 1, i. e. G′ → G/H is a surjection. Hence,
we may assume γ ∈ G′. We then apply [Wit13b, Prop 2.14.1] to M ∶= Λ[[G]],
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N ∶= Λ[[H]], and t1 ∶= t2 ∶= γ − 1, γ1 ∶= γ2 ∶= γ as above. If r > 1 we can thus
reduce to the case that G′ is topologically generated by H and γr and apply
[Wit13b, Prop 2.14.2].
In [Wit13b], we use a slightly different Waldhausen category for the construc-
tion of the K-theory of Λ[[G]], but the proof of [Wit13b, Prop 2.14] goes
through without changes.

Example 6.2.

1. Assume that M is a Λ[[G]]-module which is finitely generated and pro-
jective as a Λ[[H]]-module. Then the complex

Cγ(M)∶ Λ[[G]] ⊗Λ[[H]]M´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
degree −1

id−(⋅γ−1⊗γ⋅)
ÐÐÐÐÐÐÐ→ Λ[[G]]⊗Λ[[H]]M´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

degree 0

is an object of PDG
cont,wH(Λ[[G]]) whose cohomology is M in degree

0 and zero otherwise. Moreover,

sγ([M]) = sγ([Cγ(M)]) = [id − (⋅γ−1 ⊗ γ⋅)⟳ Λ[[G]] ⊗Λ[[H]]M]−1
in K1(Λ[[G]]S). If Λ[[G]] is commutative, then the image of the element
sγ([M])−1 under

det∶K1(Λ[[G]]S)→ Λ[[G]]×S
is precisely the reverse characteristic polynomial

detΛ[[H]][t](id − (⋅t⊗ γ⋅)⟳ Λ[[H]][t]⊗Λ[[H]]M)
evaluated at t = γ−1 ∈ Γ. In fact, one may extend this to non-commutative
Λ[[H]] and G =H × Γ as well, using the results of the appendix.

2. If M = Λ[[G]]/Λ[[G]]f with

f ∶= tn +
n−1

∑
i=0

λit
i ∈ Λ[[G]]

a polynomial of degree n in t ∶= γ − 1 with λi ∈ Jac(Λ[[H]]), then M is
finitely generated and free as Λ[[H]]-module. A Λ[[H]]-basis is given by
the residue classes of 1, t, . . . , tn−1 ∈ Λ[[G]]. If we use this basis to identify
Λ[[G]] ⊗Λ[[H]] M with Λ[[G]]n, then the Λ[[G]]-linear endomorphism
id − (⋅γ−1 ⊗ γ⋅) is given by right multiplication with the matrix

A ∶=

⎛⎜⎜⎜⎜⎜⎝

γ−1t −γ−1 0 ⋯ 0
0 γ−1t ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ 0
0 ⋯ 0 γ−1t −γ−1

γ−1λ0 γ−1λ1 ⋯ γ−1λn−2 γ−1(t + λn−1)

⎞⎟⎟⎟⎟⎟⎠
.
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By right multiplication with

E ∶=

⎛⎜⎜⎜⎜⎜⎝

1 0 ⋯ ⋯ 0
t 1 ⋱ ⋮

t2 ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ 0
tn−1 ⋯ t2 t 1

⎞⎟⎟⎟⎟⎟⎠
one can transform A into

A′ ∶=

⎛⎜⎜⎜⎜⎜⎜⎝

0 −γ−1 0 ⋯ 0
⋮ 0 ⋱ ⋱ ⋮

⋮ ⋮ ⋱ ⋱ 0
0 0 ⋯ 0 −γ−1

γ−1f γ−1 (f−λ0

t
) ⋯ γ−1(t2 + λn−1t + λn−2) γ−1(t + λn−1)

⎞⎟⎟⎟⎟⎟⎟⎠
.

By left multiplication with

P ∶=

⎛⎜⎜⎜⎜⎜⎝

0 0 ⋯ 0 1
0 1 ⋱ ⋮ 0
⋮ ⋱ ⋱ 0 ⋮

0 ⋯ 0 1 0
1 0 ⋯ 0 0

⎞⎟⎟⎟⎟⎟⎠
one can exchange the first and last row of A′ to obtain a triangular matrix.
In K1(Λ[[G]]), we have

[ ⋅E⟳ Λ[[G]]n ] = 1,
[ ⋅P ⟳ Λ[[G]]n ] = [ −1⟳ Λ[[G]] ]n−1.

We conclude

sγ([M])−1 = [ ⋅A⟳ Λ[[G]]n ] = [ ⋅A′⟳ Λ[[G]]n ]
= [ ⋅P ⟳ Λ[[G]]n ]−1[ ⋅(−γ−1)⟳ Λ[[G]] ]n−1[ ⋅γ−1f ⟳ Λ[[G]] ]

= [ ⋅γ−nf ⟳ Λ[[G]] ].
The section sγ ∶K0(Λ[[G]], S) → K1(Λ[[G]]S) also commutes with the homo-
morphisms ⊛∶K0(Λ[[G]]) → K0(Λop[[G]]), ⊛∶K1(Λ[[G]]S) → K0(Λop[[G]]S)
from Definition 5.5 in the following sense.

Proposition 6.3. For any element A ∈ K0(Λ[[G]], S),
sγ−1(A)⊛ = sγ(A⊛)

in K1(Λop[[G]]S).
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Proof. Since K0(SP(Λ[[H]],G)) surjects onto K0(Λ[[G]], S) by Proposi-
tion 3.12, it suffices to prove the formula for Cγ(M) with M a Λ[[G]]-module
that is finitely generated and projective over Λ[[H]]. The equality is then a
direct consequence of the diagram in Proposition 5.10.

Remark 6.4. Note that

sγ([Cγ(M)]) = sγ−1([Cγ(M)])[−(⋅γ−1 ⊗ γ⋅)⟳ Λ[[G]]⊗Λ[[H]]M]
for any topological generator γ of Γ and any Λ[[G]]-module M that is finitely
generated and projective over Λ[[H]].
7 Perfect complexes of adic sheaves

We will use étale cohomology instead of Galois cohomology to formulate the
main conjecture. The main advantage is that we have a little bit more flexibility
in choosing our coefficient systems. Instead of being restricted to locally con-
stant sheaves corresponding to Galois modules, we can work with constructible
sheaves. An alternative would be the use of cohomology for Galois modules
with local conditions.
As Waldhausen models for the derived categories of complexes of constructible
sheaves, we will use the Waldhausen categories introduced in [Wit08, § 5.4–5.5]
for separated schemes of finite type over a finite field. The same constructions
still work with some minor changes if we consider subschemes of the spectrum
of a number ring.
Fix an odd prime p. Let F be a number field with ring of integers OF and
assume that U is an open or closed subscheme of X ∶= SpecOF . Recall that for
a finite ring R, a complex F ● of étale sheaves of left R-modules on U is called
strictly perfect if it is strictly bounded and each F n is constructible and flat.
It is perfect if it is quasi-isomorphic to a strictly perfect complex. We call it
DG-flat if for each geometric point of U , the complex of stalks is DG-flat.
Let Λ be an adic Zp-algebra.

Definition 7.1. The category PDG
cont(U,Λ) of perfect complexes of adic

sheaves on U is the following Waldhausen category. The objects of
PDG

cont(U,Λ) are inverse systems (F ●I )I∈IΛ
such that:

1. for each I ∈ IΛ, F ●I is DG-flat perfect complex of étale sheaves of Λ/I-
modules on U ,

2. for each I ⊂ J ∈ IΛ, the transition morphism

ϕIJ ∶ F
●
I → F ●J

of the system induces an isomorphism

Λ/J ⊗Λ/I F ●I
∼

Ð→ F ●J .
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Weak equivalences and cofibrations are defined as in Definition 3.2.

Definition 7.2. Any system F = (FI)I∈IΛ
in PDG

cont(U,Λ) consisting of
flat, constructible sheaves FI of Λ/I-modules on U , regarded as complexes
concentrated in degree 0, will be called a Λ-adic sheaf on U . If in addition,
the FI are locally constant, we call F a smooth Λ-adic sheaf. We write S(U,Λ)
and S

sm(U,Λ) for the full Waldhausen categories of PDG
cont(U,Λ) consisting

of Λ-adic sheaves and smooth Λ-adic sheaves, respectively.

Definition 7.3. If U is an open dense subscheme of SpecOF , we will call a
complex (F ●I )I∈IΛ

in PDG
cont(U,Λ) to be smooth at ∞ if for each I ∈ IΛ,

the stalk of F ●I in SpecF is quasi-isomorphic to a strictly perfect complex of
Λ/I-modules with trivial action of any complex conjugation σ ∈ GalF . The full
subcategory of PDG

cont(U,Λ) of complexes smooth at ∞ will be denoted by

PDG
cont,∞(U,Λ)

Since we assume p ≠ 2, it is immediate that if in an exact sequence

0→ F ● → G● → H ● → 0

in PDG
cont(U,Λ), the complexes F ● and H ● are smooth at∞, then so is G●. It

then follows from [Wit08, Prop. 3.1.1] that PDG
cont,∞(U,Λ) is a Waldhausen

subcategory of PDG
cont(U,Λ).

We will write ΛU for the smooth Λ-adic sheaf on U given by the system of
constant sheaves (Λ/I)I∈IΛ

on U . Further, if p is invertible on U , we will write
µpn for the sheaf of pn-th roots of unity on U , and

(F ●I )I∈IΛ
(1) ∶= (lim←Ð

n

µpn ⊗Zp
F ●I )I∈IΛ

for the Tate twist of a complex in PDG
cont(U,Λ).

We will consider Godement resolutions of the complexes in PDG
cont(U,Λ).

To be explicit, we will fix an algebraic closure F of F and for each place x of
F an embedding F ⊂ F x into a fixed algebraic closure of the local field Fx in x.
In particular, we also obtain an embedding of the residue field k(x) of x into

the algebraically closed residue field k(x) of F x for each closed point x of U .

We write x̂ for the corresponding geometric point x̂∶Spec k(x) → U over x and
let U0 denote the set of closed points of U .
For each étale sheaf F on U we set

(GU F )n ∶= ∏
u∈U0

û∗û
∗ ⋅ ⋅ ⋅ ∏

u∈U0

û∗û
∗

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n+1

F

and turn (GU F )● into a complex by taking as differentials

∂n∶ (GU F )n → (GU F )n+1
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the alternating sums of the maps induced by the natural transformation

F → ∏
u∈U0

û∗û
∗F .

The Godement resolution of a complex of étale sheaves is given by the total
complex of the corresponding double complex as in [Wit08, Def. 4.2.1]. The
Godement resolution of a complex (F ●I )I∈IΛ

in PDG
cont(U,Λ) is given by

applying the Godement resolution to each of the complexes F ●I individually.
We may define the total derived section functor

RΓ(U, ⋅)∶PDG
cont(U,Λ)→ PDG

cont(Λ)
by the formula

RΓ(U, (F ●I )I∈IΛ
) ∶= (Γ(U,GU F ●I ))I∈IΛ

.

This agrees with the usual construction if we consider (F ●I )I∈IΛ
as an object

of the ‘derived’ category of adic sheaves, e. g. as defined in [KW01] for Λ = Zp.
In addition, however, we see that RΓ(U, ⋅) is a Waldhausen exact functor and
hence, induces homomorphisms

RΓ(U, ⋅)∶Kn(PDG
cont(U,Λ))→ Kn(Λ)

for all n [Wit08, Prop. 4.6.6, Def. 5.4.13]. Here, we use the finiteness and the
vanishing in large degrees of the étale cohomology groups Hn(U,G) for con-
structible sheaves G of abelian groups in order to assure that RΓ(U, (F ●I )I∈IΛ

)
is indeed an object of PDG

cont(Λ). In particular, for each I ∈ IΛ, RΓ(U,F ●I )
is a perfect complex of Λ/I-modules. Note that we do not need to assume that
p is invertible on U (see the remark after [Mil06, Thm. II.3.1]).
If j∶U → V is an open immersion, we set

j!(F ●I )I∈IΛ
∶= (j!F ●I )I∈IΛ

,

R j∗(F ●I )I∈IΛ
∶= (j∗GU F ●I )I∈IΛ

.

for any (F ●I )I∈IΛ
∈ PDG

cont(U,Λ). While the extension by zero j! always gives
us a Waldhausen exact functor

j!∶PDG
cont(U,Λ)→ PDG

cont(V,Λ),
the total direct image

R j∗∶PDG
cont(U,Λ)→ PDG

cont(V,Λ)
is only a well-defined Waldhausen exact functor if p is invertible on V −U . If
V − U contains places above p, then R j∗(F ●I )I∈IΛ

is still a system of DG-flat
complexes compatible in the sense of Definition 7.1.(2), but for I ∈ IΛ the
cohomology of the complex of stalks of the complexes R j∗F ●I in the geometric
points over places above p is in general not finite, such that R j∗F ●I fails to be
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a perfect complex. In any case, we may consider R j∗ as a Waldhausen exact
functor from PDG

cont(U,Λ) to the Waldhausen category of complexes over
the abelian category of inverse systems of étale sheaves of Λ-modules, indexed
by IΛ.
The pullback f∗ along a morphism of schemes f and the pushforward f∗ along
a finite morphism of schemes are also defined as Waldhausen exact functors by
degreewise application. No Godement resolution is needed, since these functors
are exact on all étale sheaves.
As a shorthand, we set

RΓc(U, (F ●I )I∈IΛ
) ∶= R(X, j!(F ●I )I∈IΛ

)
for j∶U → X the open immersion into X = SpecOF . Under our assumption
that p ≠ 2, this agrees with the definition of cohomology with proper support
in [Mil06, §II.2]. If F is a totally real number field and (F ●I (−1))I∈IΛ

is smooth
at ∞, then it also agrees with the definition in [FK06, §1.6.3], but in general,
the two definitions differ by a contribution coming from the complex places.
For any closed point x of X and any complex F ● in PDG

cont(x,Λ), we set

RΓ(x̂,F ●) ∶= Γ(Spec k(x), x̂∗Gx F ●)
and let Fx ∈ Gal(k(x)/k(x)) denote the geometric Frobenius of k(x). We
obtain an exact sequence

0→ RΓ(x,F ●) → RΓ(x̂,F ●) id−Fx
ÐÐÐ→ RΓ(x̂,F ●)→ 0

in PDG
cont(Λ) [Wit08, Prop. 6.1.2]. Note that if x̂′ is the geometric point

corresponding to another choice of an embedding F ⊂ F x and if F′x denotes the
associated geometric Frobenius, then there is a canonical isomorphism

σ∶RΓ(x̂,F ●) → RΓ(x̂′,F ●)
such that

σ ○ (id − Fx) = (id − F′x) ○ σ. (7.1)

At some point, we will also make use of the categories PDG
cont(SpecFx,Λ) for

the local fields Fx together with the associated total derived section functors.
In this case, one can directly appeal to the constructions in [Wit08, Ch. 5].
We write F nr

x for the maximal unramified extension field of Fx in F x and note

that we have a canonical identification Gal(F nr
x /Fx) ≅ Gal(k(x)/k(x)).

Lemma 7.4. Let j∶U → V denote the open immersion of two open dense sub-
schemes of X and assume that i∶x→ V is a closed point in the complement of
U not lying over p. Write ηx∶SpecFx → U for the map to the generic point of
U . Then there exists a canonical chain of weak equivalences

RΓ(x̂, i∗R j∗F ●) ∼Ð→ RΓ(SpecF nr
x , η∗xGU F ●) ∼←Ð RΓ(SpecF nr

x , η∗xF ●) (7.2)
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in PDG
cont(Λ) compatible with the operation of the Frobenius on each complex

and hence, a canonical chain of weak equivalences

RΓ(x, i∗R j∗F ●) ∼Ð→ RΓ(SpecFx, η∗xGU F ●) ∼←Ð RΓ(SpecFx, η∗xF ●) (7.3)

in PDG
cont(Λ).

Proof. From [Mil80, Thm. III.1.15] we conclude that for each I ∈ IΛ, the
complex η∗xGU FI

● is a complex of flabby sheaves on SpecFx and that

RΓ(x̂, i∗R j∗F ●I )→ Γ(SpecF nr
x , η∗xGU FI

●)
is an isomorphism. Write GFx

for the Godement resolution on SpecFx with
respect to SpecF x → SpecFx. Then

η∗xGU F ●I → GFx
η∗xGU F ●I ← GFx

η∗xF ●I

are quasi-isomorphisms of complexes of flabby sheaves on SpecFx. Hence,
they remain quasi-isomorphisms if we apply the section functor Γ(SpecF nr

x ,−)
in each degree. Since the Frobenius acts compatibly on F nr

x and k(x), the
induced operation on the complexes is also compatible. The canonical exact
sequence

0→ Γ(SpecFx,−)→ Γ(SpecF nr
x ,−) id−Fx

ÐÐÐ→ Γ(SpecF nr
x ,−) → 0

on flabby sheaves on SpecFx implies that the morphisms in the chain (7.3) are
also quasi-isomorphisms.

Remark 7.5. Note that for x lying over p, the proof of the lemma remains still
valid, except that the complexes in the chain (7.2) do not lie in PDG

cont(Λ).
It will be useful to introduce an explicit strictly perfect complex weakly equiv-
alent to RΓ(SpecFx, η∗xF ) in the case that F is a Λ-adic sheaf on U . Assume
that x ∈ X does not lie over p. Let N be the compact Gal(Fx/Fx)-module

corresponding to η∗xF and write F
nr,(p)
x for the maximal pro-p extension of F nr

x

inside F x, such that Gal(F nr,(p)
x /F nr

x ) ≅ Zp.
We set N ′ ∶=NGal(Fx/Fnr,(p)

x ). Note that N ′ is a direct summand of the finitely
generated, projective Λ-module N , because the p-Sylow subgroups of the Galois

group Gal(F x/F nr,(p)
x ) are trivial by our assumption that p is different from

the characteristic of k(x). In particular, N ′ is itself finitely generated and
projective over Λ.

Fix a topological generator τ of Gal(F nr,(p)
x /F nr

x ) and a lift ϕ ∈ Gal(F nr,(p)
x /Fx)

of the geometric Frobenius Fx. Then τ and ϕ are topological generators of the

profinite group Gal(F nr,(p)
x /Fx) and

ϕτϕ−1 = τq
−1

with q = qx the number of elements of k(x) [NSW00, Thm. 7.5.3].
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Definition 7.6. We define a strictly perfect complex D●x̂(F ) of Λ-modules
with an action of Fx as follows: For k ≠ 0,1 we set Dk

x̂(F ) ∶= 0. As Λ-modules
we have D0

x̂(F ) = D1
x̂(F ) = N ′ and the differential is given by id − τ . The

geometric Frobenius Fx acts on D0
x̂(F ) via ϕ and on D1

x̂(F ) via
ϕ(τq − 1

τ − 1
) ∈ Λ[[Gal(F nr,(p)

x /Fx)]]×.
Lemma 7.7. There exists a weak equivalence

D●x̂(F ) ∼Ð→ RΓ(SpecF nr
x , η∗xF )

in PDG
cont(Λ) that is compatible with the operation of the geometric Frobenius

Fx on both sides.

Proof. Clearly, we have

Λ/I ⊗Λ D
●
x̂(F ) ≅D●x̂(FI)

for all I ∈ IΛ. We may therefore reduce to the case that Λ is a finite Zp-algebra.
By construction, the perfect complex of Λ-modules RΓ(F nr

x , η
∗
xF ) may be

canonically identified with the homogenous cochain complex

X●(Gal(Fx/Fx),N)Gal(Fx/Fnr
x )

(in the notation of [NSW00, Ch. I, §2]) of the finite Gal(F x/Fx)-module N .
Recall that the elements of Xn(Gal(F x/Fx),N) are continuous maps

f ∶Gal(F x/Fx)n+1 → N

and the operation of σ ∈ Gal(F x/Fx) on f ∈ Xn(Gal(Fx/Fx),N) is defined by

σf ∶Gal(F x/Fx)n+1 → N, (σ0, . . . , σn)↦ σf(σ−1σ0, . . . , σ−1σn).
The inflation map provides a quasi-isomorphism

X●(Gal(F nr,(p)
x /Fx),N ′)Gal(Fnr,(p)

x /Fnr
x ) ∼Ð→X●(Gal(F x/Fx),N)Gal(Fx/Fnr

x ),

which is compatible with the operation of Fx by a lift to Gal(F x/Fx) on both
sides.
We define a quasi-isomorphism

α∶D●x̂(F ) ∼Ð→X●(Gal(F nr,(p)
x /Fx),N ′)Gal(Fnr,(p)

x /Fnr
x )

compatible with the Fx-operation by

α(n)∶Gal(F nr,(p)
x /Fx)→ N ′, τaϕb ↦ τan for n ∈D0

x̂(F ),
α(n)∶Gal(F nr,(p)

x /Fx)2 → N ′, (τaϕb, τcϕd) ↦ τc − τa

1 − τ
n for n ∈D1

x̂(F ),
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with a, c ∈ Zp, b, d ∈ Ẑ. Note that

τc − τa

1 − τ
= τc

∞

∑
n=1

(a − c
n
)(τ − 1)n−1

is a well-defined element of Λ[[Gal(F nr,(p)
x /Fx)]] for any a, c ∈ Zp.

Assume again that U ⊂X is an open or closed subscheme. If Λ′ is another adic
Zp-algebra and M ● a complex of Λ′-Λ-bimodules which is strictly perfect as
complex of Λ′-modules, we may extend ΨM● to a Waldhausen exact functor

ΨM● ∶PDG
cont(U,Λ)→ PDG

cont(U,Λ′),
(P ●J)J∈IΛ

↦ ( lim←Ð
J∈IΛ

Λ′/I ⊗ΛM
● ⊗Λ PJ

●)I∈IΛ′

such that
ΨM● RΓ(U,P ●)→ RΓ(U,ΨM●(P ●))

is a weak equivalence in PDG
cont(Λ′) [Wit08, Prop. 5.5.7].

If i∶Σ → V is the embedding of a closed subscheme Σ of X into an open
subscheme V of X with complement j∶U → V and F is an étale sheaf of
abelian groups on V , then we may consider the sheaf

i!F ∶= ker(i∗F → i∗j∗j
∗F )

on Σ. Its global sections i!F (Σ) are the global sections of F on V with sup-
port on Σ. The right derived functor R i! can also be defined via Godement
resolution:

Lemma 7.8. Assume that p is invertible on Σ.

R i!∶PDG
cont(V,Λ) → PDG

cont(Σ,Λ), (F ●I )I∈IΛ
↦ (i!GV (F ●I ))I∈IΛ

is a Waldhausen exact functor and for every F ● in PDG
cont(V,Λ) there is an

exact sequence

0→ i∗R i
!F ● → GV (F ●)→ R j∗j

∗F ● → 0

in PDG
cont(V,Λ). In particular, if i∗F ● is weakly equivalent to 0, then there

exists a chain of weak equivalences

i∗R j∗j
∗F ● ∼ R i!F ●[1].

Proof. Note that for any abelian étale sheaf F on V , we habe j∗GV (F ) =
GU(F ). Moreover, by [AGV72b, Exp. XVII, Prop. 4.2.3], GU(F ) is a com-
plex of flasque sheaves in the sense of [AGV72b, Exp. V, Def. 4.1]. In par-
ticular, GV (F ) → j∗j

∗GV (F ) is surjective in the category of presheaves by
[AGV72a, Exp. V, Prop. 4.7]. If F ● is a complex of abelian sheaves, GV (F ●)
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is constructed as the total complex of the double complex obtained by taking
the Godement resolution of each individual sheaf. In particular, GV (F ●) is a
complex of possibly infinite sums of flasque sheaves. Note that infinite sums of
flasque sheaves are not necessarily flasque. Still, as étale cohomology of noethe-
rian schemes commutes with filtered direct limits, GV (F ●) → j∗j

∗GV (F ●) is
always surjective in the category of presheaves. This proves the exactness of
the above sequence. Moreover, it implies that GV (F ●) is a i!-acyclic resolution
of F ● such that i!GV preserves quasi-isomorphisms and injections. If F ● is
a perfect complex of sheaves of Λ-modules on V for any finite ring Λ, then
i!GV (F ●) is perfect since this is true for i∗GV (F ●) and i∗j∗j∗GV (F ●). Simi-
larly, we see that i!GV commutes with tensor products with finitely generated
right Λ-modules. In particular, R i! does indeed take values in PDG

cont(Σ,Λ)
for any adic ring Λ. Finally, if i∗F ● is weakly equivalent to 0, then we obtain
the chain of weak equivalences

i∗R j∗j
∗F ●

∼

←Ð Cone (R i!F ● → i∗GV (F ●)) ∼Ð→ R i!F ●[1].

8 Duality for adic sheaves

For any scheme Z, any ring R and any two étale sheaves of R-modules F , G

on Z, let
HomR,Z(F ,G)

denote the sheaf of R-linear morphisms F → G on Z. As before, we fix an
adic Zp-algebra Λ. Let U ⊂ X = SpecOF be an open or closed subscheme.
Unfortunately, we cannot present a construction of a Waldhausen exact functor

∗∶PDG
cont(U,Λ)op → PDG

cont(U,Λop)
that would give rise to the usual total derived Hom-functor F ↦

RHomΛ,U(F ,ΛU) on the ‘derived’ category of Λ-adic sheaves. Instead,
we will construct a Waldhausen exact duality functor on the Waldhausen
subcategory S

sm(U,Λ) of smooth Λ-adic sheaves.
For any smooth Λ-adic sheaf F ,

F ∗Λ ∶= (HomΛ/I,U(FI , (Λ/I)U))I∈IΛ

= (HomZ,U(HomZ,U((Λ/I)U , (Qp/Zp)U)⊗Λ/I FI , (Qp/Zp)U))I∈IΛ

is a smooth Λop-adic sheaf on U . In this way, we obtain a Waldhausen exact
equivalence

∗∶Ssm(U,Λ)op → S
sm(U,Λop)

and, by composing with I ∶Kn(Ssm(U,Λ)) ≅Ð→ Kn(Ssm(U,Λ)op), isomorphisms

∗∶Kn(Ssm(U,Λ))→ Kn(Ssm(U,Λop))
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for each n ≥ 0.
Assume that U is an open subscheme of X such that p is invertible on U . If
F is a smooth Λ-adic sheaf on U , we can find a strictly perfect complex of
Λ-modules P ● together with a weak equivalence

P ●
∼

Ð→ RΓc(U,F )
in PDG

cont(Λ). As a consequence of Artin-Verdier duality [Mil06, Thm.
II.3.1], we then also have a weak equivalence

(P ●)∗ ∼Ð→ RΓ(U,F ∗(1))[−3]. (8.1)

in PDG
cont(Λop).

We could proceed in the same way for local duality and duality over finite fields,
but instead, we prove the following finer results.

Lemma 8.1. Assume that U is an open subscheme of X such that p is invertible
on U and that i∶x→X is a closed point not lying over p. For any smooth Λ-adic
sheaf F on U , there exists a weak equivalence

D●x̂(F )∗ ∼Ð→ RΓ(SpecF nr
x , ηxF ∗(1))[−1]

in PDG
cont(Λop), compatible with the operation of F∗x on the left and of F−1x

on the right.

Proof. As in the proof of Lemma 7.7, we can replace RΓ(SpecF nr
x , ηxF ∗(1))

by the homogenous cochain complex

X●(Gal(F nr,(p)
x /Fx), (N ′)∗(1))Gal(Fnr,(p)

x /Fnr
x ).

By choosing a basis of the free Zp-module Zp(1), i. e. a compatible system of
pn-th roots of unity, we may identify the underlying Λ-modules of (N ′)∗ and

(N ′)∗(1). The operation of σ ∈ Gal(F nr,(p)
x /F nr

x ) on f ∈ (N ′)∗ is given by

σf ∶= f ○ (σ∗)−1.
The operation of F∗x on f ∈D1

x̂(F )∗ = (N ′)∗ is then given by

F
∗
x(f) ∶= (τ

−q − 1

τ−1 − 1
)ϕ−1f

and on g ∈D0
x̂(F )∗ = (N ′)∗ by

F
∗
x(g) ∶= ϕ−1g,

with ϕ, τ ∈ Gal(F nr,(p)
x /Fx) denoting our fixed topological generators and q ∈ Λ×

denoting the order of the residue field k(x). Set for b ∈ Ẑ
s(b) ∶= q−b ( τ−1 − 1

τ−q
−b
− 1
) ∈ Λ[[Gal(F nr,(p)

x /F nr
x )]]×
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and note that s satisfies the cocycle relation

s(b + 1) = q−1ϕs(b)(τ−q − 1
τ−1 − 1

)ϕ−1 = q−1ϕs(b)ϕ−1s(1).
We define a weak equivalence

β∶D●x̂(F )∗ ∼Ð→X●(Gal(F nr,(p)
x /Fx), (N ′)∗(1))Gal(Fnr,(p)

x /Fnr
x )[−1]

by
β(f)∶Gal(F nr,(p)

x /Fx)→ (N ′)∗(1), τaϕb ↦ τas(b)f
for f ∈ D1

x̂(F )∗ and by

β(g)∶Gal(F nr,(p)
x /Fx)2 → (N ′)∗(1), (τaϕb, τcϕd)↦ (τas(b) − τcs(d)

1 − τ−1
)g

for g ∈ D0
x̂(F )∗, a, c ∈ Zp, b, d ∈ Ẑ.

Using the cocycle relation for s, it is easily checked that

β ○ F∗x = F
−1
x ○ β,

as claimed.

In particular, if Q● denotes the cocone of

D●x̂(F ) id−Fx
ÐÐÐ→D●x̂(F ),

then Q● is a strictly perfect complex of Λ-modules and there exist weak equiv-
alences

Q●
∼

Ð→ RΓ(SpecFx, η∗xF ),
(Q●)∗ ∼Ð→ RΓ(SpecFx, η∗xF ∗(1))[−2]. (8.2)

in PDG
cont(Λop).

Let now G be a complex in S(x,Λ) = Ssm(x,Λ) and let

Gx̂ ∶= lim←Ð
I∈IΛ

(GI)x̂
be the stalk of G in the geometric point x̂ over x. Then Gx̂ is a finitely generated,
projective Λ-module, equipped with a natural operation of Fx. Clearly, the
natural morphism

Gx̂
∼

Ð→ RΓ(x̂,G) (8.3)

is a weak equivalence in PDG
cont(Λ) that is compatible with the operation of

Fx on both sides. In particular, the cocone C● of

Gx̂
id−Fx
ÐÐÐ→ Gx̂

is weakly equivalent to RΓ(x,G).
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Lemma 8.2. With G as above, there exists an isomorphism

(Gx̂)∗ ≅Ð→ (G∗)x̂
of finitely generated, projective Λ-modules, compatible with the operation of F∗x
on the left and of F−1x on the right.

Proof. LetR be any finite ring. Under the equivalence between the categories of
étale sheaves of R-modules on x and of discrete R[[Gal(k(x)/k(x))]]-modules,
given by F ↦ Fx̂, the dual sheaf F ∗R corresponds to the Rop-module (Fx̂)∗R
with σ ∈ Gal(k(x)/k(x)) acting on f ∶Fx̂ → R by f ○ (σ∗R)−1.
Consequently, we obtain a weak equivalence

(C●)∗ ∼Ð→ RΓ(x,G∗)[−1] (8.4)

in PDG
cont(Λop). If G = i∗F with F a smooth Λ-adic sheaf on U as above,

then by the exchange formula [Fu11, Thm. 8.4.7], there exists a chain of weak
equivalences

(i∗F )∗ = (RHomΛ/I,x(i∗FI , (Λ/I)x))I∈IΛ

∼ (RHomΛ/I,x(i∗FI ,R i
!(Λ/I)U(1)[−2]))I∈IΛ

∼ (R i! HomΛ/I,U(FI , (Λ/I)U(1))[−2])I∈IΛ

= R i!F ∗(1)[−2]
(8.5)

in PDG
cont(x,Λop).

9 Admissible extensions

As before, we fix an odd prime p and a number field F . Assume that F∞/F is a
possibly infinite Galois extension unramified over an open or closed subscheme
U = UF of X = SpecOF . Let G ∶= Gal(F∞/F ) be its Galois group. We also
assume that G has a topologically finitely generated, open pro-p-subgroup, such
that for any adic Zp-algebra Λ, the profinite group ring Λ[[G]] is again an adic
ring [Wit14, Prop. 3.2]. For any intermediate number field K of F∞/F , we
will write UK for the base change with XK ∶= SpecOK and fK ∶UK → U for
the corresponding Galois covering of U , such that we obtain a system of Galois
coverings (fK ∶UK → U)F⊂K⊂F∞ , which we denote by

f ∶UF∞ → U.

As in [Wit14, Def. 6.1] we make the following construction.

Definition 9.1. Let Λ be any adic Zp-algebra. For F ● ∈ PDG
cont(U,Λ) we

set
f!f
∗F ● ∶= ( lim←Ð

I∈IΛ

lim←Ð
F⊂K⊂F∞

Λ[[G]]/J ⊗Λ[[G]] fK !f
∗
KFI

●)J∈IΛ[[G]]
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Remark 9.2. The functor f!f
∗ corresponds to the composition of the restriction

and compact induction functors on the level of compact Galois modules. On
finite level, the extension by zero fK ! agrees with the direct image fK∗. We
use the notation of the extension by zero to emphasise its role as a left adjoint
of f∗K .

As in [Wit14, Prop. 6.2] one verifies that we thus obtain a Waldhausen exact
functor

f!f
∗∶PDG

cont(U,Λ)→ PDG
cont(U,Λ[[G]]).

In particular, if U is open and dense in X and if k∶U → W denotes the open
immersion into another open dense subscheme W of X , we obtain for each
complex F ● in PDG

cont(U,Λ) a complex

RΓc(W,Rk∗f!f∗F ●)
in PDG

cont(Λ[[G]]).
Remark 9.3. For U open and dense in X , set V ∶= U ∪(X−W ) and let j∶U → V

denote the corresponding open immersion. Write j′∶V → X and k′∶W → X

for the open immersions into X . For any étale sheaf G on U , the canonical
morphism

k′!k∗GU G ≅ j′∗j!GU G → j′∗GV j!G

is seen to be a quasi-isomorphism by checking on the stalks. Hence, for any F ●

in PDG
cont(U,Λ), there is a weak equivalence

RΓc(W,Rk∗f!f∗F ●) ∼Ð→ RΓ(V, j!f!f∗F ●).
We recall that the righthand complex is always in PDG

cont(Λ[[G]]). Hence,
the same is true for the left-hand complex without any condition on U and W ,
even if Rk∗f!f

∗F ● fails to be a perfect complex. In particular, we may use the
two complexes interchangeably in our results.

We recall how the functor f!f
∗ transforms under the change of the extension

F∞/F and under changes of the coefficient ring Λ.

Proposition 9.4. Let f ∶UF∞ → U be the system of Galois coverings of the open
or closed subscheme U of X associated to the extension F∞/F with Galois group
G which is unramified over U . Let further Λ be an adic Zp-algebra and F ● be
a complex in PDG

cont(U,Λ).
1. Let Λ′ be another adic Zp-algebra and let P ● be a complex of Λ′-Λ[[G]]-

bimodules, strictly perfect as complex of Λ′-modules. Then there exists a
natural isomorphism

ΨP [[G]]δ●f!f∗F ● ≅ f!f
∗ΨP ●f!f

∗F ●
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2. Let F ′∞ ⊂ F∞ be a subfield such that F ′∞/F is a Galois extension with
Galois group G′ and let f ′∶UF ′∞ → U denote the corresponding system of
Galois coverings. Then there exists a natural isomorphism

ΨΛ[[G′]]f!f∗F ● ≅ (f ′)!(f ′)∗F ●

in PDG
cont(U,Λ[[G′]]).

3. Let F ′/F be a finite extension inside F∞/F , let fF ′ ∶UF ′ → U denote the
associated étale covering of U and let g∶UF∞ → U ′F be the restriction of the
system of coverings f to UF ′ . Write G′ ⊂ G for the corresponding open
subgroup and view Λ[[G]] as a Λ[[G′]]-Λ[[G]]-bimodule. Then there
exists a natural isomorphism

ΨΛ[[G]]f!f∗F ● ≅ fF ′∗ (g!g∗)f∗F ′F ●
in PDG

cont(U,Λ[[G′]]).
4. With the notation of (3), let G● be a complex in PDG

cont(UF ′ ,Λ) and
view Λ[[G]] as a Λ[[G]]-Λ[[G′]]-bimodule. Then there exists a natural
isomorphism

ΨΛ[[G]]fF ′∗g!g∗G● ≅ f!f
∗(fF ′∗G●)

in PDG
cont(U,Λ[[G]]).

Proof. Part (1) − (3) are proved in [Wit14, Prop. 6.5, 6.7]. We prove (4).
First, note that for any finite Galois extension F ′′/F with F ′ ⊂ F ′′ ⊂ F∞ and
any I ∈ IΛ the canonical map

gF ′′ !g
∗
F ′′(Λ/I)UF ′

→ f∗F ′fF ′′ !f
∗
F ′′(Λ/I)U

induces an isomorphism

Λ/I[Gal(F ′′/F )]⊗Λ/I[Gal(F ′′/F ′)] gF ′′ !g∗F ′′(Λ/I)UF ′
≅ f∗F ′fF ′′ !f

∗
F ′′(Λ/I)U .

Hence,
ΨΛ[[G]](g!g∗ΛUF ′

) ≅ f∗F ′f!f∗ΛU
in PDG

cont(UF ′ ,Λ[[G]]). We further recall that in the notation of [Wit14,
Prop. 6.3], there exists an isomorphism

f!f
∗fF ′∗G● ≅ Ψf!f∗ΛU

fF ′∗G●.

The projection formula then implies

Ψf!f∗ΛU
fF ′∗G● ≅ fF ′∗(Ψf∗

F ′
f!f∗ΛU

(G●))
≅ fF ′∗(ΨΨΛ[[G]](g!g∗ΛU

F ′
)(G●))

≅ fF ′∗(ΨΛ[[G]](g!g∗G●))
as desired.
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To understand Part (1) of this proposition, note that if ρ is a representation of
G on a finitely generated and projective Λ-module and ρ♯ is the corresponding
Λ-Zp[[G]]-bimodule as in Example 3.17, then

M (ρ) ∶= Ψρ♯f!f∗(Zp)U (9.1)

is simply the smooth Λ-adic sheaf on U associated to ρ [Wit14, Prop. 6.8]. In
general,

ΨP̃ ●F
● ∶= ΨP ●f!f

∗F ● (9.2)

should be understood as the derived tensor product over Λ of the complex of
sheaves associated to P ● and the complex F ●.
Assume that F is a smooth Λ-adic sheaf on U . As before, we write

F ∗Λ ∶= (HomΛ/I,U(FI ,Λ/I))I∈IΛ/I
∈ PDG

cont(U,Λop)
for the Λ-dual of F and Λop[[G]]♯ for the Λop[[G]]-Λ[[G]]op-bimodule with
g ∈ G acting by g−1 from the right. We then have a natural isomorphism

f!f
∗F ∗Λ ≅ ΨΛop[[G]]♯(f!f∗F )∗Λ[[G]] . (9.3)

This can then be combined with the duality assertions (8.1), (8.2), and (8.4).
For example, we may find a strictly perfect complex of Λop[[G]]-modules P ●

and weak equivalences

P ●
∼

Ð→ RΓc(U,f!f∗F ∗Λ(1)),
(P ●)⊛ ∼

Ð→ RΓ(U,f!f∗F )[−3] (9.4)

if ℓ is invertible on U .
Let Fcyc denote the cyclotomic Zp-extension of F and let M be the maxi-
mal abelian p-extension of Fcyc unramified outside the places over p. Assume
that F is a totally real field. By the validity of the weak Leopoldt conjecture
for Fcyc, the Galois group Gal(M/Fcyc) is a finitely generated torsion mod-
ule of projective dimension less or equal 1 over the classical Iwasawa algebra
Zp[[Gal(Fcyc/F )]] [NSW00, Thm. 11.3.2]. Like in [Kak13], we will assume the
vanishing of its Iwasawa µ-invariant in the following sense:

Conjecture 9.5. For every totally real field F , the Galois group over Fcyc of
the maximal abelian p-extension of Fcyc unramified outside the places over p is
a finitely generated Zp-module.

In particular, for any totally real field F and any finite set Σ of places of F
containing the places over p, the Galois group over Fcyc of the maximal abelian
p-extension of Fcyc unramified outside Σ is also a finitely generated Zp-module,
noting that no finite place is completely decomposed in Fcyc/F [NSW00, Cor.

11.3.6]. We also observe that the Galois group Gal(F (p)Σ /Fcyc) of the maximal
p-extension of F unramified outside Σ is then a free pro-p-group topologically
generated by finitely many elements [NSW00, Thm. 11.3.7].
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Definition 9.6. Let F be a number field. An extension F∞/F inside F is
called admissible if

(1) F∞/F is Galois and unramified outside a finite set of places,

(2) F∞ contains the cyclotomic Zp-extension Fcyc,

(3) Gal(F∞/Fcyc) contains an open pro-p subgroup that is topologically
finitely generated.

An admissible extension F∞/F is called really admissible if F∞ and F are
totally real.

The notion of really admissible extensions is slightly weaker than the notion
of admissible extension used in [Kak13, Def. 2.1]: We do not need to require
Gal(F∞/F ) to be a p-adic Lie group. For example, as a result of the preceding

discussion, we see that we could choose F∞ = F
(p)
Σ for some finite set of places

Σ of F containing the places above p, provided that Conjecture 9.5 is valid.
If F∞/F is an admissible extension, we let G ∶= Gal(F∞/F ) denote its Galois
group and set H ∶= Gal(F∞/Fcyc), Γ ∶= Gal(Fcyc/F ). We may then choose a
continuous splitting Γ → G to identify G with the corresponding semi-direct
product G =H ⋊ Γ.
If a really admissible extension F∞/F is unramified over the open dense sub-
scheme U =W of X , Λ = Zp and F ● = (Zp)U(1), then

lim←Ð
I∈IZp[[G]]

RΓc(U,f!f∗(Zp)U(1))[−3]
is by Artin-Verdier duality and comparison of étale and Galois cohomology
quasi-isomorphic to the complex C(F∞/F ) featuring in the main conjecture
[Kak13, Thm. 2.11]. In particular,

RΓc(U,f!f∗(Zp)U(1))
is in fact an object of PDG

cont,wH(Zp[[G]]) under Conjecture 9.5. We will
generalise this statement in the next section.

10 The S-torsion property

Assume that F∞/F is an admissible extension that is unramified over the open
dense subscheme U of X = SpecOF and that k∶U →W is the open immersion
into another open dense subscheme of X . Note that p must be invertible on U ,
because the cyclotomic extension Fcyc/F is ramified in all places over p. We
also fix an adic Zp-algebra Λ. Our purpose is to prove:

Theorem 10.1. Assume that F∞/F is really admissible and that p is invertible
on W . Let F ● ∈ PDG

cont,∞(U,Λ) be a complex of Λ-adic sheaves smooth at
∞. If Conjecture 9.5 is valid, then the complexes

RΓc(W,Rk∗f!f∗F ●(1)), RΓ(W,k!f!f∗F ●)
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are in PDG
cont,wH(Λ[[G]]).

In the course of the proof, we will also need to consider the following local
variant, whose validity is independent of Conjecture 9.5.

Theorem 10.2. Assume that F∞/F is an admissible extension with k∶U →W

as above. Let i∶Σ →W denote a closed subscheme of W and assume that p is
invertible on Σ. For any complex of Λ-adic sheaves F ● in PDG

cont(U,Λ), the
complexes

RΓ(Σ, i∗Rk∗f!f∗F ●),RΓ(Σ,R i!k!f!f∗F ●)
are in PDG

cont,wH(Λ[[G]]).
Using [Wit14, Prop. 4.8] we may at once reduce to the case that Λ is a finite
semi-simple Zp-algebra and that F∞/Fcyc is a finite extension. It then suffices
to show that the complexes appearing in the above theorems have finite coho-
mology groups. We may then replace F ● by a quasi-isomorphic strictly perfect
complex. Using stupid truncation and induction on the length of the strictly
perfect complex we may assume that F is in fact a flat and constructible sheaf
(unramified in ∞). Note further that the cohomology groups

Hnc (W,Rk∗f!f∗F (1)) = lim←Ð
F⊂K⊂F∞

Hnc (WK ,Rk∗f
∗
KF (1)),

Hn(W,k!f!f∗F ) = lim←Ð
F⊂K⊂F∞

Hn(WK , k!f
∗
KF ),

Hn(Σ, i∗Rk∗f!f∗F ) = lim←Ð
F⊂K⊂F∞

Hn(ΣK , i∗Rk∗f∗KF )
Hn(Σ,R i!k!f!f∗F ) = lim←Ð

F⊂K⊂F∞

Hn(ΣK ,R i!k!f∗KF )
do not change if we replace F by a finite extension of F inside F∞. So, we
may assume that F∞ = Fcyc and that no place in Σ splits in F∞/F . Further,
we may reduce to the case that Σ consists of a single place x. In particular, x
does not split or ramify in F∞/F and x does not lie above p.
We consider Theorem 10.2 in the case that x ∈ U and write i′∶x → U for the
inclusion map. Under the above assumptions on x, there exists a chain of weak
equivalences

RΓ(x, i∗Rk∗f!f∗F ) ∼←Ð RΓ(x, i′∗f!f∗F ) ∼Ð→ RΓ(x, g!g∗i′∗F )
where g∶x∞ → x is the unique Zp-extension of x. We can now refer directly to
[Wit14, Thm. 8.1] or identify

Hn(x, g!g∗i′∗F ) = Hn(Galk(x),Fp[[Γ]]♯ ⊗Fp
M)

with Galk(x) the absolute Galois group of the residue field k(x) of x, M the
stalk of F in a geometric point over x and Fp[[Γ]]♯ being the Galk(x)-module
Fp[[Γ]] with σ ∈ Galk(x) acting by right multiplication with the image of
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σ−1 in Γ. It is then clear that the only non-vanishing cohomology group is
H1(Galk(x),Fp[[Γ]]♯ ⊗Fp

M), of order bounded by the order of M .
Write U ′ ∶= U − {x} and let ℓ∶U ′ → U denote the inclusion morphism. Then
there is an exact sequence

0→ R i!k!ℓ!ℓ
∗f!f

∗F → R i!k!f!f
∗F → R i!i∗i

∗k!F → 0.

Moreover, there exists a chain of weak equivalences

i′
∗
f!f
∗F

≅

Ð→ i∗k!f!f
∗F

∼

Ð→ R i!i∗i
∗k!f!f

∗F .

Since we already know that the groups Hn(x, i′∗f!f∗F ) are finite, it is sufficient
to prove that Hn(x,R i!k!f!f∗F ) is finite in the case that x ∈W −U .
Now we prove Theorem 10.2 in the case that x ∈ W − U . First, note that the
complex R i!Rk∗f!f

∗F is quasi-isomorphic to 0. Hence, there is a chain of
weak equivalences

i∗Rk∗f!f
∗F ∼ R i!k!f!f

∗F [1]
by Lemma 7.8. So, it suffices to consider the left-hand complex. By Lemma 7.4
and the smooth base change theorem there exists a chain of weak equivalences

RΓ(x, i∗Rk∗f!f∗F ) ∼ RΓ(SpecFx, h!h∗η∗xF ),
where Fx is the local field in x with valuation ring OFx

, ηx∶SpecFx → U is
the map to the generic point of U , and h∶Spec(Fx)cyc → SpecFx is the unique
Zp-extension of Fx inside F x. We may now identify

Hn(x, i∗Rk∗f!f∗F ) = Hn(GalFx
,Fp[[Γ]]♯ ⊗Fp

M)
with GalFx

the absolute Galois group of the local field Fx in x, M the fi-
nite GalFx

-module corresponding to η∗xF and Fp[[Γ]]♯ being the GalFx
-module

Fp[[Γ]] with σ ∈ GalFx
acting by right multiplication with the image of σ−1 in

Γ. The finiteness of the cohomology group on the righthand side is well-known:
We can use local duality to identify it with the Pontryagin dual of

H2−n(Gal(Fx)cyc ,M∨(1))
where M∨(1) is the first Tate twist of the Pontryagin dual of M .
Finally, we prove Theorem 10.1. Assume that F∞/F is really admissible, that
F is smooth at∞, and that p is invertible onW . We begin with the case of étale
cohomology with proper support. Letting i∶Σ →W denote the complement of
U in W , we have the exact excision sequence

0→ RΓc(W,k!k∗Rk∗f!f∗F (1))→ RΓc(W,Rk∗f!f∗F (1))
→ RΓc(W, i∗i∗Rk∗f!f∗F (1))→ 0

and chains of weak equivalences

RΓc(W,k!k∗Rk∗f!f∗F (1)) ∼ RΓc(U,f!f∗F (1)),
RΓc(W, i∗i∗Rk∗f!f∗F (1)) ∼ RΓ(Σ, i∗Rk∗f!f∗F (1)).
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By Theorem 10.2, we may thus reduce to the case W = U . Furthermore, we
may shrink U ad libitum. Hence, we may assume that F is locally constant on
U and smooth at ∞. Consequently, there exists a finite Galois extension F ′/F
such that F ′ is totally real, gF ′ ∶UF ′ → U is étale and g∗F ′F is constant. Then
F ′cyc/F is an admissible extension and

ρ ∶= g∗F ′F (UF ′)
may be viewed as a continuous representation of G = Gal(F ′cyc/F ) on a finitely
generated, projective Λ-module. Write g∶UF ′cyc → U for the corresponding
system of coverings of U and observe that there exists a weak equivalence

Φρ(RΓc(U, g!g∗(Zp)U(1))) ∼Ð→ RΓc(U,f!f∗F (1))
with Φρ being defined by (3.5) [Wit14, Prop. 5.9, 6.3, 6.5, 6.7]. Since Φρ takes
complexes in PDG

cont,wH(Zp[[G]]) to complexes in PDG
cont,wH(Λ[[Γ]]), it

remains to show that the cohomology groups Hnc (U, g!g∗(Zp)U(1)) are finitely
generated as Zp-modules. Now

Hnc (U, g!g∗(Zp)U(1)) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if n ≠ 2,3,

Gal(M/F ′cyc) if n = 2,

Zp if n = 3,

with M denoting the maximal abelian p-extension of F ′cyc unramified over U
[Kak13, p. 548]. At this point, we make use of Conjecture 9.5 on the vanishing
of the µ-invariant to finish the proof for the first complex.
We now turn to the second complex. We still assume that Λ is a finite ring.
Write Σ ∶=W −U , V ∶= U ∪ (X −W ) and j∶U → V , ℓ∶V → X , i∶Σ → X for the
natural immersions. As mentioned in Remark 9.3, the exists a chain of weak
equivalences

RΓc(V,R j∗f!f∗F ) ∼ RΓ(W,k!f!f∗F ).
Moreover, there is an exact sequence

0→ ℓ!R j∗f!f
∗F → R(ℓ ○ j)∗f!f∗F → i∗i

∗R j∗f!f
∗F → 0

Using Theorem 10.2 we may thus reduce to the case that V =X , W = U and F

locally constant on U and smooth at∞. Let P ● be a strictly perfect complex of
Λop[[G]]-modules quasi-isomorphic to RΓc(U,f!f∗F ∗Λ(1)). By what we have
proved above, P ● is also perfect as complex of Λop[[H]]-modules. By (9.4) we
obtain a weak equivalence

(P ●)⊛ ∼

Ð→ RΓ(U,f!f∗F ).
From Prop. 5.8 we conclude that RΓ(U,f!f∗F ) is in PDG

cont,wH(U,Λ[[G]]),
as claimed. This finishes the proof of Theorem 10.1.
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11 Non-commutative Euler factors

Assume as before that F∞/F is an admissible extension of a number field F

which is unramified over a dense open subscheme U of X and write f ∶UF∞ → U

for the system of Galois coverings of U corresponding to F∞/F . Let W be
another dense open subscheme of X containing U , but no place over p and let
k∶U → W denote the corresponding open immersion. We consider a complex
F ● in PDG

cont(U,Λ). As the complexes

RΓ(x, i∗Rk∗f!f∗F ●)
are in PDG

cont,wH(Λ[[G]]) for i∶x →W a closed point, we conclude that the
endomorphism

RΓ(x̂, i∗Rk∗f!f∗F ●) id−Fx
ÐÐÐ→ RΓ(x̂, i∗Rk∗f!f∗F ●)

is in fact a weak equivalence in wHPDG
cont(Λ[[G]]). Hence, it gives rise to

an element in K1(Λ[[G]]S).
Definition 11.1. The non-commutative Euler factor LF∞/F (x,Rk∗F ●) of
Rk∗F ● at x is the inverse of the class of the above weak equivalence in
K1(Λ[[G]]S):

LF∞/F (x,R k∗F ●) ∶= [id − Fx⟳ RΓ(x̂, i∗Rk∗f!f∗F ●)]−1
Note that LF∞/F (x,Rk∗F ●) is independent of our specific choice of a geometric
point above x. Indeed, by (7.1) and relation (R5) in the definition of D●(W),
we conclude that the classes [id − Fx] and [id − F′x] agree in K1(Λ[[G]]S).
Moreover, LF∞/F (x,Rk∗F ●) does not change if we enlargeW by adding points
not lying over p or shrink U by removing a finite set of points different from x.

Proposition 11.2. The non-commutative Euler factor is a characteristic ele-
ment for RΓ(x, i∗Rk∗f!f∗F ●):

dLF∞/F (x,Rk∗F ●) = −[RΓ(x, i∗Rk∗f!f∗F ●)]
in K0(Λ[[G]], S).
Proof. The complex RΓ(x, i∗Rk∗f!f∗F ●) is weakly equivalent to the cone of
the endomorphism

RΓ(x̂, i∗Rk∗f!f∗F ●) id−Fx
ÐÐÐ→ RΓ(x̂, i∗Rk∗f!f∗F ●)

shifted by one. Hence, the result follows from the explicit description of d given
in (5.2).

Definition 11.3. For a topological generator γ ∈ Γ, we define the local modi-
fication factor at x to be the element

MF∞/F,γ(x,Rk∗F ●) ∶= LF∞/F (x,Rk∗F ●)sγ([RΓ(x, i∗Rk∗f!f∗F ●)]).
in K1(Λ[[G]]).

Documenta Mathematica 24 (2019) 1413–1511



1468 Malte Witte

We obtain the following transformation properties.

Proposition 11.4. With k∶U →W as above, let Λ be any adic Zp-algebra and
let F ● be a complex in PDG

cont(U,Λ).
1. Let Λ′ be another adic Zp-algebra. For any complex P ● of Λ′-Λ[[G]]-

bimodules which is strictly perfect as complex of Λ′-modules we have

ΨP [[G]]δ●(LF∞/F (x,Rk∗F ●)) = LF∞/F (x,Rk∗ΨP̃ ●(F ●))
in K1(Λ′[[G]]S) and

ΨP [[G]]δ●(MF∞/F,γ(x,Rk∗F ●)) =MF∞/F,γ(x,Rk∗ΨP̃ ●(F ●))
in K1(Λ′[[G]]).

2. Let F ′∞/F be an admissible subextension of F∞/F with Galois group G′.
Then

ΨΛ[[G′]](LF∞/F (x,Rk∗F ●)) = LF ′∞/F (x,Rk∗F ●)
in K1(Λ[[G′]]S) and

ΨΛ[[G′]](MF∞/F,γ(x,Rk∗F ●)) =MF ′∞/F,γ(x,Rk∗F ●)
in K1(Λ[[G′]]).

3. Let F ′/F be a finite extension inside F∞/F . Set r ∶= [F ′ ∩ Fcyc ∶ F ].
Write fF ′ ∶UF ′ → U for the corresponding étale covering and xF ′ for the
fibre in SpecOF ′ above x. Let G′ ⊂ G be the Galois group of the admissi-
ble extension F∞/F ′ and consider Λ[[G]] as a Λ[[G′]]-Λ[[G]]-bimodule.
Then

ΨΛ[[G]](LF∞/F (x,Rk∗F ●)) = ∏
y∈xF ′

LF∞/F ′(y,Rk∗f∗F ′F ●)
in K1(Λ[[G′]]S) and

ΨΛ[[G]](MF∞/F,γ(x,R k∗F ●)) = ∏
y∈xF ′

MF∞/F ′,γr(y,Rk∗f∗F ′F ●)
in K1(Λ[[G′]]).

4. With the notation of (3), assume that G● is a complex in
PDG

cont(UF ′ ,Λ) and consider Λ[[G]] as a Λ[[G]]-Λ[[G′]]-bimodule.
Then

∏
y∈xF ′

ΨΛ[[G]](LF∞/F ′(y,Rk∗G●)) = LF∞/F (x,Rk∗fF ′∗G●)
in K1(Λ[[G]]S) and

∏
y∈xF ′

ΨΛ[[G]](MF∞/F ′,γr(y,Rk∗G●)) =MF∞/F ′,γ(x,Rk∗fF ′∗G●)
in K1(Λ[[G]]).
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Proof. Note that the functor Ψ commutes up to weak equivalences with RΓ,
i∗, and Rk∗ [Wit08, 5.5.7] and apply Proposition 9.4 and Proposition 6.1. Part(1) and (2) are direct consequences.
For Part (3), we additionally need the same reasoning as in the proof of [Wit14,
Thm. 8.4.(3)] to verify that for any G● in PDG

cont(UF ′ ,Λ)
[id−Fx⟳ RΓ(y×x x̂,Rk∗g!g∗G●)] = [id−Fy⟳ RΓ(ŷ,Rk∗g!g∗f∗F ′G●)] (11.1)
in K1(Λ[[G′]]S). Here, g∶UF∞ → UF ′ denotes the system of coverings induced
by f . This implies the formula for ΨΛ[[G]](LF∞/F (x,R k∗F ●)). Moreover, we
have a weak equivalence

ΨΛ[[G]]RΓ(x,Rk∗f!f∗F ●) ∼Ð→ RΓ(xF ′ ,Rk∗g!g∗f∗F ′F ●)
in PDG

cont(Λ[[G′]]). In particular,

sγr([ΨΛ[[G]]RΓ(x,Rk∗f!f∗F ●)]) = ∏
y∈xF ′

sγr([RΓ(y,Rk∗g!g∗f∗F ′F ●)])
from which the formula for ΨΛ[[G]](MF∞/F,γ(x,Rk∗F ●)) follows.
For Part (4) we use (11.1) to show

∏
y∈xF ′

ΨΛ[[G]](LF∞/F ′(y,Rk∗G●)) =
= ΨΛ[[G]]([id − Fx⟳ RΓ(xF ′ ×x x̂,Rk∗g!g∗G●)]−1)
= [id − Fx⟳ RΓ(x̂,Rk∗f!f∗fF ′∗G●)]−1
= LF∞/F (x,Rk∗fF ′∗G●).

On the other hand, we also have a weak equivalence

ΨΛ[[G]]RΓ(xF ′ ,Rk∗g!g∗G●) ∼Ð→ RΓ(x,Rk∗f!f∗fF ′∗G●),
thence the formula for the local modification factors.

If G is a smooth Λ-adic sheaf on U and x is a point in U , it makes sense to
consider the element

LF∞/F (x,Rk∗G∗Λ(1))⊛ ∈ K1(Λ[[G]], S)
as an alternative Euler factor, which does not agree with LF∞/F (x,Rk∗G) in
general. We shall show below that

LF∞/F (x,Rk∗G∗Λ(1))⊛ = [id − F−1x ⟳ RΓ(x̂,R i!k!f!f∗G)]
and take this as a definition for arbitrary complexes F ● in PDG

cont(U,Λ).
Definition 11.5. The dual non-commutative Euler factor of k!F

● at x ∈W is
the element

L⊛F∞/F (x, k!F ●) ∶= [id − F−1x ⟳ RΓ(x̂,R i!k!f!f∗F ●)]
in K1(Λ[[G]]S).
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Proposition 11.6. The inverse of the dual non-commutative Euler factor is
a characteristic element for RΓ(x,R i!k!f!f∗F ●):

dL⊛F∞/F (x, k!F ●) = [RΓ(x,R i!k!f!f∗F ●)]
in K0(Λ[[G]], S).
Proof. The complex RΓ(x, i∗Rk∗f!f∗F ●) is weakly equivalent to the cone of
the endomorphism

RΓ(x̂,R i!k!f!f∗F ●) id−F
−1
x

ÐÐÐÐ→ RΓ(x̂,R i!k!f!f∗F ●)
shifted by one. Hence, the result follows from the explicit description of d given
in [Wit14, Thm. A.5].

Definition 11.7. For a topological generator γ ∈ Γ, the dual local modification
factor k!F

● at x is the element

M⊛
F∞/F,γ(x, k!F ●) ∶= L⊛F∞/F (x, k!F ●)sγ−1([RΓ(x,R i!k!f!f∗F ●)])−1.

We obtain the following transformation properties.

Proposition 11.8. With k∶U →W as above, let Λ be any adic Zp-algebra and
let F ● be a complex in PDG

cont(U,Λ).
1. Let Λ′ be another adic Zp-algebra. For any complex P ● of Λ′-Λ[[G]]-

bimodules which is strictly perfect as complex of Λ′-modules we have

ΨP [[G]]δ●(L⊛F∞/F (x, k!F ●)) = L⊛F∞/F (x, k!ΨP̃ ●(F ●))
in K1(Λ′[[G]]S) and

ΨP [[G]]δ●(M⊛
F∞/F,γ(x, k!F ●)) =M⊛

F∞/F,γ(x, k!ΨP̃ ●(F ●))
in K1(Λ′[[G]]).

2. Let F ′∞/F be an admissible subextension of F∞/F with Galois group G′.
Then

ΨΛ[[G′]](L⊛F∞/F (x, k!F ●)) = L⊛F ′∞/F (x, k!F ●)
in K1(Λ[[G′]]S) and

ΨΛ[[G′]](M⊛
F∞/F,γ(x, k!F ●)) =M⊛

F ′∞/F,γ(x, k!F ●)
in K1(Λ[[G′]]).
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3. Let F ′/F be a finite extension inside F∞/F . Set r ∶= [F ′ ∩ Fcyc ∶ F ].
Write fF ′ ∶UF ′ → U for the corresponding étale covering and xF ′ for the
fibre in SpecOF ′ above x. Let G′ ⊂ G be the Galois group of the admissi-
ble extension F∞/F ′ and consider Λ[[G]] as a Λ[[G′]]-Λ[[G]]-bimodule.
Then

ΨΛ[[G]](L⊛F∞/F (x, k!F ●)) = ∏
y∈xF ′

L⊛F∞/F ′(y, k!f∗F ′F ●)
in K1(Λ[[G′]]S) and

ΨΛ[[G]](M⊛
F∞/F,γ(x, k!F ●)) = ∏

y∈xF ′

M⊛
F∞/F ′,γr(y, k!f∗F ′F ●)

in K1(Λ[[G′]]).
4. With the notation of (3), assume that G● is a complex in

PDG
cont(UF ′ ,Λ) and consider Λ[[G]] as a Λ[[G]]-Λ[[G′]]-bimodule.

Then

∏
y∈xF ′

ΨΛ[[G]](L⊛F∞/F ′(y, k!G●)) = L⊛F∞/F (x, k!fF ′∗G●)
in K1(Λ[[G]]S) and

∏
y∈xF ′

ΨΛ[[G]](M⊛
F∞/F ′,γr(y, k!G●)) =M⊛

F∞/F ′,γ(x, k!fF ′∗G●)
in K1(Λ[[G]]).

Proof. The arguments are the same as in the proof of Prop. 11.4.

Proposition 11.9.

1. Let G be a smooth Λ-adic sheaf on U . Then

(LF∞/F (x,Rk∗G∗Λ(1)))⊛ = L⊛F∞/F (x, k!G) =
=

⎧⎪⎪⎨⎪⎪⎩
[−Fx⟳ RΓ(x̂, i∗f!f∗G(−1))]−1LF∞/F (x,G(−1))−1 if x ∈ U

[−Fx⟳ RΓ(x̂, i∗Rk∗f!f∗G)]LF∞/F (x,Rk∗G) if x ∈W −U

in K1(Λ[[G]], S) and
(MF∞/F,γ(x,Rk∗G∗Λ(1)))⊛ =M⊛

F∞/F,γ(x, k!G)
in K1(Λ[[G]]).

2. Let G be a Λ-adic sheaf on x ∈ U . Then

(LF∞/F (x, i∗G∗Λ))⊛ = L⊛F∞/F (x, i∗G)
= [−Fx⟳ RΓ(x̂, i∗f!f∗i∗G)]−1LF∞/F (x, i∗G)−1

in K1(Λ[[G]], S) and
(MF∞/F,γ(x, i∗G∗Λ))⊛ =M⊛

F∞/F,γ(x, i∗G)
in K1(Λ[[G]]).
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Proof. We only need to prove the formulas for the non-commutative Euler
factors, the formulas for the local modification factors then follow from Propo-
sition 6.3.
We begin by proving (1) in the case that x ∈W −U . By (9.3), combined with
Lemma 7.7 and Lemma 7.4, we have

LF∞/F (x, i∗Rk∗G∗Λ(1)) =
= ΨΛop[[G]]♯([id − Fx⟳ RΓ(x̂, (i∗Rk∗f!f∗G)∗Λ[[G]](1))]−1)
= ΨΛop[[G]]♯([id − Fx⟳D●x̂((Rk∗f!f∗G)∗Λ[[G]](1))]−1).

From the Definition 5.5 of ⊛, Lemma 8.1, and again Lemma 7.4, we conclude

(ΨΛop[[G]]♯([id − Fx⟳D●x̂((Rk∗f!f∗G)∗Λ[[G]](1))]−1))⊛ =
= [id − F∗Λ[[G]]opx ⟳ D●x̂((Rk∗f!f∗G)∗Λ[[G]](1))∗Λ[[G]]op ]
= [id − F−1x ⟳ RΓ(x̂, i∗Rk∗f!f∗G)]−1
= [−F−1x ⟳ RΓ(x̂, i∗Rk∗f!f∗G)]−1LF∞/F (x,Rk∗G).

Finally, [id − F−1x ⟳ RΓ(x̂, i∗Rk∗f!f∗G)]−1 = L⊛F∞/F (x, k!G)
by Lemma 7.8.
The validity of the first equality in (2) follows similarly from Lemma 8.2 and
the exchange formula (8.5):

(LF∞/F (x, i∗G∗Λ))⊛ = ([id − Fx⟳ (i∗f!f∗i∗G∗Λ)x̂]−1)⊛
= ΨΛ[[G]]♯([id − F∗Λ[[G]]opx ⟳ ((i∗f!f∗i∗G∗Λ)x̂)∗Λ[[G]]op ])
= ΨΛ[[G]]♯([id − F−1x ⟳ RΓ(x̂, (i∗f!f∗i∗G∗Λ))∗Λ[[G]]op ])
= [id − F−1x ⟳ RΓ(x̂,R i!f!f∗(i∗G∗Λ))∗Λop ]
= L⊛F∞/F (x, i∗G)

Further, write ℓ∶U ′ → U for the complement of x in U . Then

R ℓ∗ℓ
∗f!f

∗i∗G ≅ R ℓ∗f!f
∗ℓ∗i∗G = 0

and hence,
R i!f!f

∗i∗G ≅ i∗f!f
∗i∗G,

from which the second equality in (2) follows.
For the proof of (1) in the case that x ∈ U , we observe that

(LF∞/F (x,G∗Λ(1)))⊛ = (LF∞/F (x,R ℓ∗ℓ∗G∗Λ(1)))⊛(LF∞/F (x, i∗R i!G∗Λ(1)))⊛
= (LF∞/F (x,R ℓ∗ℓ∗G∗Λ(1)))⊛(LF∞/F (x, i∗(i∗G)∗Λ))⊛
= L⊛F∞/F (x, ℓ!ℓ∗G)L⊛F∞/F (x, i∗G)
= L⊛F∞/F (x,G)

Documenta Mathematica 24 (2019) 1413–1511



L-Functions for p-Adic Representations 1473

by what we have proved above. For the second equality, we use that by absolute
purity [Mil06, Ch. II, Cor. 1.6], there exists chain of weak equivalences

i∗f!f
∗G(−1) ∼ R i!f!f∗G[2].

12 Euler factors for the cyclotomic extension

In the case F∞ = Fcyc, we can give a different description of LF∞/F (x,Rk∗F ●).
We will undergo the effort to allow arbitrary adic Zp-algebras Λ as coefficient
rings, but in the end, we will use the results only in the case that Λ is the
valuation ring in a finite extension of Qp. If one restricts to this case, some of
the technical constructions that follow may be skipped.
Let Λ[t] be the polynomial ring over Λ in the indeterminate t that is assumed
to commute with the elements of Λ. In the appendix we define a Waldhausen
category wtP(Λ[t]): The objects are perfect complexes of Λ[t]-modules and
cofibrations are injective morphism of complexes such that the cokernel is again
perfect. A weak equivalence is a morphism f ∶P ● → Q● of perfect complexes
of Λ[t]-modules such that Λ ⊗L

Λ[t] f is a quasi-isomorphism of complexes of

Λ-modules. Here, Λ is considered as a Λ-Λ[t]-bimodule via the augmentation
map and Λ⊗L

Λ[t] ⋅ denotes the total derived tensor product as functor between
the derived categories.
If Λ is noetherian, then the subset

St ∶= {f(t) ∈ Λ[t] ∣ f(0) ∈ Λ×} ⊂ Λ[t]
is a left and right denominator set, the localisation Λ[t]St

is semi-local and
Λ[t]→ Λ[t]St

induces an isomorphism

K1(wtP(Λ[t])) ≅ K1(Λ[t]St
)

(Proposition A.1). For commutative adic rings, which are always noetherian
[War93, Cor. 36.35], we may further identify

K1(Λ[t]St
) ≅ Λ[t]×St

via the determinant map. In general, St is not a left or right denominator set.
We then take

K1(Λ[t]St
) ∶= K1(wtP(Λ[t]))

as a definition.
For any adic Zp-algebra Λ and any γ ∈ Γ ≅ Zp, the ring homomorphism

evγ ∶Λ[t]↦ Λ[[Γ]], f(t)↦ f(γ).
induces a homomorphism

evγ ∶K1(Λ[t]St
)→ K1(Λ[[Γ]]S)
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with K1(Λ[[Γ]]S) as defined in (3.2) (Proposition A.2). In the noetherian
case, the proof boils down to a verification that evγ(St) ⊂ S with S denoting
Venjakob’s canonical Ore set (3.1).

Definition 12.1. For F ● = (F ●I )I∈IΛ
∈ PDG

cont(U,Λ) we define

L(x,Rk∗F ●, t) ∶= [id − tFx⟳ P ●]−1 ∈ K1(Λ[t]St
)

L⊛(x, k!F ●, t) ∶= [id − tF−1x ⟳ Q●] ∈ K1(Λ[t]St
)

where

P ● ∶= Λ[t]⊗Λ lim←Ð
I∈IΛ

RΓ(x̂, i∗Rk∗F ●),
Q● ∶= Λ[t]⊗Λ lim←Ð

I∈IΛ

RΓ(x̂,R i!k!F ●)

For any 1 ≠ γ ∈ Γ, we write L(x,Rk∗F ●, γ) and L⊛(x, k!F ●, γ) for the images
of L(x,Rk∗F ●, t) and L⊛(x, k!F ●, t) under

K1(Λ[t]St
) evγ

ÐÐ→ K1(Λ[[Γ]]S).
Since the endomorphism id−tFx is canonical, it follows easily from the relations
in the definition of D●(W) that L(x,F ●, t) does only depend on the weak
equivalence class of F ● and is multiplicative on exact sequences. So, it defines
a homomorphism

L(x,Rk∗(−), t)∶K0(PDG
cont(U,Λ))→ K1(Λ[t]St

).
The same is also true for L⊛(x, k!F ●, t).
Proposition 12.2. Let γx ∈ Γ be the image of Fx in Γ. Then

LFcyc/F (x,Rk∗F ●) = L(x,Rk∗F ●, γ−1x ),
L⊛Fcyc/F (x, k!F ●) = L⊛(x, k!F ●, γx).

Proof. Since p is invertible on W , the extension Fcyc/F is unramified over W .
By the smooth base change theorem applied to the étale morphism fK ∶WK →

W for each finite subextensionK/F of Fcyc/F and the quasi-compact morphism
k∶U →W there exists a weak equivalence

f!f
∗Rk∗F ●

∼

Ð→ Rk∗f!f
∗F ●

in PDG
cont(W,Λ). By the proper base change theorem, there exists also an

isomorphism
f!f
∗k!F

● ≅ k!f!f
∗F ●

Hence, we may assume x ∈ U =W .
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For any finite subextension K/F in Fcyc/F write xK for the set of places of
K lying over x and g∶xFcyc

→ x for the corresponding system of Galois covers.
(We note that this system might not be admissible in the sense of [Wit14,
Def. 2.6] for any base field F ⊂ k(x): for example if F = Q and x = (ℓ) with
ℓ ≠ p splitting in the cyclotomic Zp-extension of Q.) By the proper base change
theorem there exists an isomorphism

i∗f!f
∗F ● ≅ g!g

∗i∗F ●.

From Lemma 7.8 we can then also infer the existence of a weak equivalence

R i!f!f
∗F ●

∼

Ð→ g!g
∗R i!F ●.

We will now concentrate on the proof of the equality

LFcyc/F (x,F ●) = L(x,F ●, γ−1x ).
The proof of the equality for the dual Euler factors follows along the same lines,
with Fx replaced by F−1x and γ−1x replaced by γx.
By our choice of the embedding F ⊂ F x, we have a compatible system of
morphisms Speck(x) → xK for each K ⊂ Fcyc and hence, distinguished isomor-
phisms

α∶Z[Gal(K/F )]⊗Z Mx̂ → (gK !g
∗
KM )x̂

for the stalk Mx̂ in x̂ of any étale sheaf M on x. The action of the Frobenius Fx
on the righthand side corresponds to the operation of ⋅γ−1x ⊗Fx on the left-hand
side. By compatibility, we may extend α to an isomorphism

α∶ΨΛ[[Γ]]RΓ(x̂, i∗F ●) ≅ RΓ(x̂, g!g∗i∗F ●)
in PDG

cont(Λ[[Γ]]). Hence,
LFcyc/F (x,F ●) = [id − γ−1x ⊗ Fx⟳ ΨΛ[[Γ]]RΓ(x̂, i∗F ●)]−1

in K1(Λ[[Γ]]S). Furthermore, we may choose a strictly perfect complex of
Λ-modules P ● with an endomorphism f and a quasi-isomorphism

β∶P ● → lim←Ð
I∈IΛ

RΓ(x̂,G●)
under which f and Fx are compatible up to chain homotopy [Wit08,
Lemma 3.3.2]. The endomorphism

id − tf ∶Λ[t]⊗Λ P
● → Λ[t]⊗Λ P

●

is clearly a weak equivalence in wtP(Λ[t]). By [Wit08, Lemma 3.1.6], homo-
topic weak auto-equivalences have the same class in the first K-group. Hence,
we may conclude

[id − tf ⟳ Λ[t]⊗Λ P
●]−1 = L(x,Rk∗F ●, t)
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in K1(Λ[t]St
) and

L(x,Rk∗F ●, γ−1x ) = LFcyc/F (x,Rk∗F ●)
in K1(Λ[[Γ]]S).
We will make this construction a little more explicit in the case that F is a
Λ-adic sheaf on U . If x ∈ U , recall from (8.3) that there is a weak equivalence

Fx̂
∼

Ð→ RΓ(x̂, i∗Rk∗F )
in PDG

cont(Λ) compatible with the operation of the Frobenius Fx on both
sides.
Hence, we have

L(x,Rk∗F , t) = [Λ[t]⊗Λ Fx̂
id−tFx
ÐÐÐÐ→ Λ[t]⊗Λ Fx̂]−1 (12.1)

in K1(Λ[t]St
) and

LFcyc/F (x,Rk∗F ) = [Λ[[Γ]]⊗Λ Fx̂
id−γ−1x ⊗Fx

ÐÐÐÐÐÐ→ Λ[[Γ]]⊗Λ Fx̂]−1
in K1(Λ[[Γ]]S). In particular, if Λ is commutative, then the isomorphism

K1(Λ[t]St
) det
ÐÐ→ Λ[t]×St

sends L(x,Rk∗F , t) to the inverse of the reverse characteristic polynomial of
the geometric Frobenius operation on Fx̂.
If F is smooth in x ∈ U , then by absolute purity [Mil06, Ch. II, Cor. 1.6], there
exists chain of weak equivalences

F (−1)x̂ ∼ RΓ(x̂,R i!k!F )[2].
Hence,

L⊛(x, k!F , t) = [Λ[t]⊗Λ F (−1)x̂ id−tF−1x
ÐÐÐÐ→ Λ[t]⊗Λ F (−1)x̂] (12.2)

in K1(Λ[t]St
) and

L⊛Fcyc/F (x, k!F ) = [Λ[[Γ]] ⊗Λ F (−1)x̂ id−γx⊗F
−1
x

ÐÐÐÐÐÐ→ Λ[[Γ]]⊗Λ F (−1)x̂]
in K1(Λ[[Γ]]S). If F = i∗G for some G in PDG

cont(x,Λ), then there exists a
weak equivalence

Gx̂
∼

Ð→ RΓ(x̂,R i!k!F ).
Hence,

L⊛(x, k!F , t) = [Λ[t]⊗Λ Gx̂
id−tF−1x
ÐÐÐÐ→ Λ[t]⊗Λ Gx̂] (12.3)
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in K1(Λ[t]St
) and
L⊛Fcyc/F (x, k!F ) = [Λ[[Γ]]⊗Λ Gx̂

id−γx⊗F
−1
x

ÐÐÐÐÐÐ→ Λ[[Γ]]⊗Λ Gx̂]
in K1(Λ[[Γ]]S).
If x ∈ W −U , there exists by Lemma 7.4, Lemma 7.7 and Lemma 7.8 a chain
of weak equivalences

D●x̂(F ) ∼ RΓ(x̂, i∗Rk∗f!f∗F ) ∼ RΓ(x̂,R i!k!f!f∗F )[1]
compatible with the Frobenius operation.
We conclude that for x ∈W −U ,

L(x,Rk∗F , t) = [id − tFx⟳ Λ[t]⊗Λ D
0
x̂(F )]−1[id − tFx⟳ Λ[t]⊗Λ D

1
x̂(F )],

L⊛(x, k!F , t) = [id − tF−1x ⟳ Λ[t]⊗Λ D
0
x̂(F )]−1[id − tF−1x ⟳ Λ[t]⊗Λ D

1
x̂(F )]

in K1(Λ[t]St
) and
LFcyc/F (x,Rk∗F ) =[id − γ−1x ⊗ Fx⟳ Λ[[Γ]]⊗Λ D

0
x̂(F )]−1

[id − γ−1x ⊗ Fx⟳ Λ[[Γ]]⊗Λ D
1
x̂(F )],

L⊛Fcyc/F (x, k!F ) =[id − γx ⊗ F
−1
x ⟳ Λ[[Γ]]⊗Λ D

0
x̂(F )]−1

[id − γx ⊗ F
−1
x ⟳ Λ[[Γ]]⊗Λ D

1
x̂(F )].

Let N be the stalk of F in the geometric point SpecF , viewed as Gal(F x/Fx)-
module. If the image of Gal(F x/F nr

x ) in the automorphism group of N has

trivial p-Sylow subgroups, then NGal(Fx/Fnr
x ) = D0

x̂(F ) and the differential of
D●x̂(F ) is trivial. Our formula then simplifies to

L(x,Rk∗F , t) = [id − tFx⟳ Λ[t]⊗Λ N
Gal(Fx/Fnr

x )]−1
[id − tqxFx⟳ Λ[t]⊗Λ N

Gal(Fx/Fnr
x )],

L⊛(x, k!F , t) = [id − tF−1x ⟳ Λ[t]⊗Λ N
Gal(Fx/Fnr

x )]−1
[id − tq−1x F

−1
x ⟳ Λ[t]⊗Λ N

Gal(Fx/Fnr
x )],

where qx is the order of the residue field k(x). In particular, this is the case if
N is unramified in x.
Conversely, assume that the differential of D●x̂(F ) is an isomorphism. Since the
operation of Fx commutes with the differential, we then have

L(x,Rk∗F , t) = L⊛(x, k!F , t) = 1.
If Λ = OC is the valuation ring of a finite field extension C of Qp, then we
may replace C⊗OC

N by its semi-simplification (C⊗OC
N)ss as a Gal(F x/Fx)-

module and obtain a corresponding decomposition (C ⊗OC
D●x̂(F ))ss of the

complex D●x̂(F ). Note that

(C ⊗OC
N)ss = ((C ⊗OC

N)ss)Gal(Fx/Fnr
x ) ⊕ V
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with V Gal(Fx/Fnr
x ) = 0. In particular, on each simple part of (C ⊗OC

D●x̂(F ))ss,
the differential is either trivial or an isomorphism. We conclude

detL(x,Rk∗F , t) = det(id − tFx⟳ ((C ⊗OC
N)ss)Gal(Fx/Fnr

x ))−1
det(id − tqxFx⟳ ((C ⊗OC

N)ss)Gal(Fx/Fnr
x )),

detL⊛(x, k!F , t) = det(id − tF−1x ⟳ ((C ⊗OC
N)ss)Gal(Fx/Fnr

x ))−1
det(id − tq−1x F

−1
x ⟳ ((C ⊗OC

N)ss)Gal(Fx/Fnr
x )),

(12.4)

in the units (C[t](t))× of the localisation of C[t] at the prime ideal (t).
We can also give more explicit formulas for the local modification factors. We
will not make use of the following calculations in any other part of the text.
Let M be one of the finitely generated and projective Λ-modules Fx̂, F (−1)x̂,
D0
x̂(F ), D1

x̂(F ). ThenM comes equipped with a continuous action of the Galois

group Gal(k(x)/k(x)). Let k(x)cyc denote the unique Zp-extension of k(x) and
let r be the index of the image of Γ′ ∶= Gal(k(x)cyc/k(x)) in Γ = Gal(Fcyc/F ).
Fix a topological generator γ ∈ Γ.
Clearly,

[id − γ−1x ⊗ Fx⟳ Λ[[Γ]]⊗ΛM] = ΨΛ[[Γ]]([id − γ−1x ⊗ Fx⟳ Λ[[Γ′]]⊗ΛM])
in K1(Λ[[Γ]]S), while
ΨΛ[[Γ]](sγr([coker(id − γ−1x ⊗ Fx⟳ Λ[[Γ′]]⊗ΛM)])) =

sγ(ΨΛ[[Γ]]([coker(id − γ−1x ⊗ Fx⟳ Λ[[Γ′]]⊗ΛM)]))
= sγ([coker(id − γ−1x ⊗ Fx⟳ Λ[[Γ]]⊗ΛM)])

by Proposition 6.1. Hence, it suffices to consider the case that x does not split
in Fcyc/F . So, we assume from now on that r = 1.

The image of Gal(k(x)/k(x)cyc) in the automorphism group of M is a finite
commutative group ∆ of order d prime to p. Write

e∆ ∶=
1

d
∑
δ∈∆

δ

for the corresponding idempotent in the endomorphism ring. We thus obtain
a canonical decomposition

M ≅M ′ ⊕M ′′

of M with M ′ ∶= e∆M and M ′′ ∶= (id − e∆)M .
Since (id − δ)(id − e∆)m = (id − δ)m
for every δ ∈ ∆ and every m ∈ M , the action of ∆ on M ′′ is faithful. Since
d is prime to p, the action of ∆ on M ′′/Jac(Λ)M ′′ is still faithful. Indeed,
the kernel K of id − δ ⟳ M ′′ is a direct summand of M ′′ with K ≠ M ′′.
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The Nakayama lemma then implies K/Jac(Λ)K ≠ M ′′/Jac(Λ)M ′′ such that
δ⟳M ′′/Jac(Λ)M ′′ cannot be the identity.
Note that K is trivial if δ is a generator of ∆. In this case, id − δ ⟳
M ′′/Jac(Λ)M ′′ must be an automorphism. We may apply this to a suitable
pn-th power of Fx to infer that id − Fx ⟳ M ′′/Jac(Λ)M ′′ is an automor-
phism. By the Nakayama lemma for Λ[[Γ]] we conclude that the endomor-
phism id − γ−1x ⊗ Fx of Λ[[Γ]]⊗ΛM

′′ is also an automorphism.
The Λ-module M ′ can be seen as Λ[[Γ]]-module with γx acting as Fx and by
Example 6.2 we have

[id−γ−1x ⊗Fx⟳ Λ[[Γ]]⊗ΛM
′′] = sγx([coker(id−γ−1x ⊗Fx⟳ Λ[[Γ]]⊗ΛM

′)])−1
We conclude that

[id − γ−1x ⊗ Fx⟳ Λ[[Γ]]⊗ΛM]sγ([coker(id − γ−1x ⊗ Fx⟳ Λ[[Γ]] ⊗ΛM)]) =
[id−γ−1x ⊗Fx⟳ Λ[[Γ]]⊗ΛM

′′] sγ
sγx
([coker(id−γ−1x ⊗Fx⟳ Λ[[Γ]]⊗ΛM

′)]).
In particular, if x ∈ U and H0(Spec k(x)cyc, i∗F ) = 0, then

MFcyc/F,γ(x,Rk∗F ) = LFcyc/F (x,Rk∗F ).
If x ∈ U , H0(Spec k(x)cyc, i∗F ) = Fx̂ and γ = γx, then

MFcyc/F,γ(x,Rk∗F ) = 1.
The same considerations apply to the dual local modification factors.

Remark 12.3. Let V 0 denote the set of closed points of V . Note that the infinite
product

∏
x∈V 0

MFcyc/F,γ(x,Rk∗F )
does not converge in the compact topology of K1(Λ[[Γ]]). Indeed, by the
Chebotarev density theorem, we may find for each non-trivial finite subexten-
sions F ′/F of Fcyc/F an infinite subset S ⊂ U of closed points such that the
elements

MFcyc/F,γ(x,Rk∗F ) ∈ K1(Λ[[Γ]])
for x ∈ S have a common non-trivial image in K1(Λ/Jac(Λ)[[Gal(F ′/F )]]).
13 Artin representations

Let OC be the valuation ring of a finite extension field C of Qp inside the fixed
algebraic closure Qp and assume as before that Γ ≅ Zp. The augmentation map
ϕ∶OC[[Γ]] →OC extends to a map

ϕ∶K1(OC[[Γ]]S) det
ÐÐ→
≅

OC[[Γ]]×S → P1(C).
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Indeed, let a
s
∈ OC[[Γ]]×S . Since OC[[Γ]] is a unique factorisation domain and

the augmentation ideal is a principal prime ideal, we may assume that not
both a and s are contained in the augmentation ideal. Hence, we obtain a
well-defined element

ϕ(a
s
) ∶= [ϕ(a) ∶ ϕ(s)] ∈ P1(C) = C ∪ {∞},

with [x ∶ y] denoting the standard projective coordinates of P1(C). Note
that this map agrees with ϕ′ in [Kak13, §2.4]. We further note that deta⊛ =((deta)♯)−1 for any a ∈ K1(OC[[Γ]]S). Since ♯∶OC[[Γ]]S → OC[[Γ]]S maps
γ ∈ Γ to γ−1 and is given by the identity on OC , we conclude that

ϕ(a⊛) = ϕ(a)−1. (13.1)

Finally, note that the diagram

K1(OC[t]St
) det

//

t↦γ

��

(C[t](t))×
f
g
↦[f(1)∶g(1)]

��

K1(OC[[Γ]]S) ϕ
// P1(C)

commutes for any choice of γ ∈ Γ with γ ≠ 1. On the right downward pointing
map, f

g
denotes a reduced fraction.

From now on, we let F denote a totally real number field. Consider an Artin
representation ρ∶GalF → Gld(OC) (i. e. with open kernel) over OC . We will
write

ρ̌∶GalF → Gld(OC), g ↦ ρ(g−1)t

for the dual representation. Assume for simplicity that ρ is unramified over U :
For each x ∈ U , the restriction ρ ↾

Gal(Fx/Fnr
x ) of ρ to Gal(F x/F nr

x ) is trivial.

Then ρ corresponds to the smooth OC-adic sheaf M (ρ) on U ⊂W defined by
(9.1) and therefore, to an object in PDG

cont(U,OC). Analogously, ρ̌ corre-
sponds to M (ρ̌) =M (ρ)∗OC .

We set Σ ∶= Spec(OF ) −W , T ∶= W − U . Since the image of Gal(F x/Fx) in
Gld(OC) is finite, the base change of ρ ↾

Gal(Fx/Fx) to C is automatically a

semi-simple representation of Gal(F x/Fx) for any x ∈X . We let ρx denote the
representation of Gal(F nr

x /Fx) obtained from ρ ↾
Gal(Fx/Fx) by taking invariants

under Gal(F x/F nr
x ).
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From (12.1), (12.2), and (12.4) we conclude

ϕ(LFcyc/F (x,Rk∗M (ρ)(n)))
=

⎧⎪⎪⎨⎪⎪⎩
[1 ∶ det(1 − ρx(Fx)q−nx )] if x ∈ U ,

[det(1 − ρx(Fx)q1−nx ) ∶ det(1 − ρx(Fx)q−nx )] if x ∈ T,

ϕ(L⊛Fcyc/F (x,k!M (ρ)(n)))
=

⎧⎪⎪⎨⎪⎪⎩
[det(1 − ρ̌x(Fx)qn−1x ) ∶ 1] if x ∈ U ,

[det(1 − ρ̌x(Fx)qn−1x ) ∶ det(1 − ρ̌x(Fx)qnx)] if x ∈ T,

(13.2)

where qx denotes the number of elements of the residue field k(x). Classically,
one often demands that ρ is also unramified over T . Therefore, we stress that
the above considerations hold even if this is not the case. Note that det(1 −
ρx(Fx)q−nx ) = 0 if and only if n = 0 and ρx contains the trivial representation
as a subrepresentation.
For any open dense subscheme V of X , we write V 0 for the set of closed points
of V . Let α∶Qp → C be an embedding of Qp into the complex numbers. We
can then associate to the complex Artin representation α ○ ρ the classical Σ-
truncated T-modified Artin L-function with the product formula

LΣ,T(α ○ ρ, s) ∶= ∏
x∈U0

det(1 − α ○ ρx(Fx)q−sx )−1∏
x∈T

det(1 − α ○ ρx(Fx)q1−sx )
det(1 − α ○ ρx(Fx)q−sx )

for Re s > 1. Note that we follow the geometric convention of using the geo-
metric Frobenius in the definition of the Artin L-function as in [CL73]. With
this convention, we have

LΣ,T(α ○ ρ,n) = ∏
x∈W 0

α(ϕ(LFcyc/F (x,Rk∗M (ρ)(n))))
= ∏
x∈W 0

α(ϕ(L⊛Fcyc/F (x, k!M (ρ̌)(1 − n))))−1
for all n ∈ Z, n > 1.
By [CL73, Cor 1.4] there exists for each n ∈ Z, n < 0 a well defined number
LΣ,T(ρ,n) ∈ C such that

α(LΣ,T(ρ,n)) = LΣ,T(α ○ ρ,n) ∈ C
Consequently,

LΣ′,T′(ρ,n) = LΣ,T(ρ,n) ∏
x∈Σ′∪T′−Σ∪T

ϕ(LFcyc/F (x,Rk∗M (ρ)(n)))−1
if Σ ⊂ Σ′ and T ⊂ T′ with disjoint subsets Σ′ and T′ of X = SpecOF such that
ρ is unramified over X −Σ′ −T′ and all the primes over p are contained in Σ′.
Let κF ∶GalF → Z×p denote the cyclotomic character such that

σ(ζ) = ζκF (σ)
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for every σ ∈ GalF and ζ ∈ µp∞ . Further, we write ωF ∶GalF → µp−1 for the Te-
ichmüller character, i. e. the composition of κF with the projection Z×p → µp−1.

Finally, we set ǫF ∶= κFω
−1 and note that ǫF factors through Γ = Gal(Fcyc/F ).

Assume that ρ factors through the Galois group of a totally real field extension
of F . Then M (ρ) is smooth at ∞. Assume further that U = W , such that T
is empty. Under Conjecture 9.5 it follows from [Gre83] and from the validity
of the classical main conjecture that for every integer n there exist unique
elements

LFcyc/F (U,M (ρωnF )(1 − n)) ∈ K1(OC[[Γ]]S)
such that

Φǫn
F
(LFcyc/F (U,M (ρωnF )(1 − n))) = LFcyc/F (U,M (ρ)(1)),
ϕ(LFcyc/F (U,M (ρωnF )(1 − n))) = LΣ,∅(ρωnF ,1 − n) if n > 1.

(13.3)

with Φǫn
F
as defined in Example 3.17. Beware that Greenberg uses the arith-

metic convention for L-functions.

Definition 13.1. Let γ ∈ Γ be a topological generator. We define the global
modification factor for M (ρωnF )(1) and f ∶UFcyc

→ U to be the element

MFcyc/F,γ(U,M (ρ)(1)) ∶= LFcyc/F (U,M (ρ)(1))sγ([RΓc(U,f!f∗M (ρ)(1))])
in K1(OC[[Γ]]).
14 Non-commutative L-functions for Λ-adic sheaves

Throughout this section, we assume the validity of Conjecture 9.5. We recall
the main theorem of [Kak13].

Theorem 14.1. Let U ⊂ X be a dense open subscheme with complement Σ
and assume that p is invertible on U . Assume that F∞/F is a really ad-
missible extension which is unramified over U and that G ∶= Gal(F∞/F ) is
a p-adic Lie group. Then there exists unique elements L̃F∞/F (U, (Zp)U(1)) ∈
K1(Zp[[G]]S)/ŜK1(Zp[[G]]) such that

1.
dL̃F∞/F (U, (Zp)U(1)) = −[RΓc(U,f!f∗(Zp)U(1))],

2. For any Artin representation ρ factoring through G

Φρ(L̃F∞/F (U, (Zp)U(1))) = LFcyc/F (U,M (ρ)(1))
Proof. This is [Kak13, Thm. 2.11] translated into our notations. Recall that
our Φρκ−n

F
corresponds to Φρ̄κn

F
in the notation of the cited article. Moreover,

Kakde uses the arithmetic convention in the definition of L-values. Further,
note that the p-adic L-function LFcyc/F (U,M (ρ)(1)) is uniquely determined by
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the values ϕ(Φǫn
F
(LFcyc/F (U,M (ρ)(1)))) for n < 0 and n ≡ 0 mod p−1. Finally,

Kakde’s complex C(F∞/F ) corresponds to RΓc(U,f!f∗(Zp)U(1)) shifted by 3
and therefore, the images of the two complexes under d differ by a sign, but at
the same time, his definition of d differs by a sign from ours.

We will improve this theorem as follows. Let Ξ ∶= ΞF be the set of pairs (U,F∞)
such that U ⊂X is a dense open subscheme with p invertible on U and F∞/F
is a really admissible extension unramified over U .

Theorem 14.2. Let γ ∈ Γ ∶= Gal(Fcyc/F ) be a topological generator. There
exists a unique family of elements

(MF∞/F,γ(U, (Zp)U(1)))(U,F∞)∈Ξ
such that

1. MF∞/F,γ(U, (Zp)U(1)) ∈ K1(Zp[[Gal(F∞/F )]]),
2. if U ⊂ U ′ with complement Σ and (U,F∞), (U ′, F∞) ∈ Ξ, then

MF∞/F,γ(U ′, (Zp)U ′(1)) =
MF∞/F,γ(U, (Zp)U(1))∏

x∈Σ

MF∞/F,γ(x, (Zp)U ′(1)),

3. if (U,F∞), (U,F ′∞) ∈ Ξ such that F ′∞ ⊂ F∞ is a subfield, then

ΨZp[[Gal(F ′∞/F )]](MF∞/F,γ(U, (Zp)U(1))) =MF ′∞/F,γ(U, (Zp)U(1)),
4. if (U,F∞) ∈ Ξ and ρ∶Gal(F∞/F ) → Gln(OC) is an Artin representation,

then
Φρ(MF∞/F,γ(U, (Zp)U(1))) =MFcyc/F,γ(U,M (ρ)(1))

withMFcyc/F,γ(U,M (ρ)(1)) as in Definition 13.1.

Proof. Uniqueness: Assume that mk(U,F∞), k = 1,2 are two families with the
listed properties. Then

d(F∞) ∶=m2(U,F∞)−1m1(U,F∞)
does not depend on U as a consequence of (2).
Let (U,F∞) ∈ Ξ be any pair such that F∞/Fcyc is finite and write f ∶UF∞ → U

for the system of coverings of U associated to F∞/F . Then (4) implies that
the elements

mi(U,F∞)sγ(−[RΓc(U,f!f∗(Zp)U(1))])
both agree with L̃F∞/F (U, (Zp)U(1)) modulo ŜK1(Zp[[Gal(F∞/F )]]). Hence,

d(F∞) ∈ ŜK1(Zp[[Gal(F∞/F )]]).
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By Corollary 2.4, we may find a pair (U ′, F ′∞) ∈ Ξ such that F ′∞/F∞ is finite,
U ′ ⊂ U , and

ΨZp[[Gal(F∞/F )]]∶ ŜK1(Zp[[Gal(F ′∞/F )]])→ ŜK1(Zp[[Gal(F∞/F )]]) (14.1)

is the zero map. We conclude from (3) that d(F∞) = 1 for all (U,F∞) with
F∞/Fcyc finite. Now for any really admissible extension F∞/F ,

K1(Zp[[Gal(F∞/F )]]) = lim←Ð
F ′∞

K1(Zp[[Gal(F ′∞/F )]])

where F ′∞ runs through the really admissible subextensions of F∞/F with
F ′∞/Fcyc finite [FK06, Prop. 1.5.3]. We conclude that d(F∞) = 1 in general.
Existence: It suffices to construct the elements for (U,F∞) ∈ Ξ with F∞/Fcyc

finite. Choose (U ′, F ′∞) as above such that the map in (14.1) becomes trivial.
Pick any m ∈ K1(Zp[[Gal(F ′∞/F )]]) such that

msγ(−[RΓc(U,f!f∗(Zp)U(1))]) ≡
L̃F ′∞/F (U ′, (Zp)U ′(1)) mod ŜK1(Zp[[Gal(F ′∞/F )]])

Define

MF∞/F,γ(U, (Zp)U(1)) ∶= ΨZp[[Gal(F∞/F )]](m) ∏
x∈U−U ′

MF∞/F,γ(x, (Zp)U(1)).
By Proposition 6.1 and Proposition 11.4 we conclude that

MF∞/F,γ(U, (Zp)U(1))sγ(−[RΓc(U,f!f∗(Zp)U(1))]) ≡ L̃F∞/F (U, (Zp)U(1))
mod ŜK1(Zp[[Gal(F∞/F )]])

and thatMF∞/F,γ(U, (Zp)U(1)) satisfies
Φρ(MF∞/F,γ(U, (Zp)U(1))) =MFcyc/F,γ(U,M (ρ)(1))

for any Artin representation ρ∶Gal(F∞/F ) → Gln(OC). In particular, the
system (MF∞/F,γ(U, (Zp)U(1)))(F∞,U)∈Ξ
satisfies (1) and (4). By construction and again by Proposition 11.4, it is
independent of the choices of (U ′, F ′∞) and m and satisfies (2) and (3).
Corollary 14.3. There exists a unique family of elements

(LF∞/F (U, (Zp)U(1)))(U,F∞)∈Ξ
such that

1. LF∞/F (U, (Zp)U(1)) ∈ K1(Zp[[Gal(F∞/F )]]S),
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2. if (U,F∞) ∈ Ξ and f ∶UF∞ → U denotes the associated system of coverings,
then

dLF∞/F (U, (Zp)U(1)) = −[RΓc(U,f!f∗(Zp)U(1))]
3. if U ′ ⊂ U with complement Σ and (U ′, F∞), (U,F∞) ∈ Ξ, then

LF∞/F (U, (Zp)U(1)) = LF∞/F (U ′, (Zp)U ′(1))∏
x∈Σ

LF∞/F (x, (Zp)U(1)),

4. if (U,F∞), (U,F ′∞) ∈ Ξ such that F ′∞ ⊂ F∞ is a subfield, then

ΨZp[[Gal(F ′∞/F )]](LF∞/F (U, (Zp)U(1))) = LF ′∞/F (U, (Zp)U(1)),
5. if (U,F∞) ∈ Ξ and ρ∶Gal(F∞/F ) → Gld(OC) is an Artin representation,

then
Φρ(LF∞/F (U, (Zp)U(1))) = LFcyc/F (U,M (ρ)(1)).

Proof. Fix a topological generator γ ∈ Γ and set

LF∞/F (U, (Zp)U(1)) ∶=MF∞/F,γ(U, (Zp)U(1))sγ(−[RΓc(U,f!f∗(Zp)U(1))]).
If (ℓ(U,F∞))(U,F∞)∈Ξ is a second family with the listed properties, then

ℓ(U,F∞)sγ([RΓc(U,f!f∗(Zp)U(1))]) =MF∞/F,γ(U, (Zp)U(1))
by the uniqueness ofMF∞/F,γ(U, (Zp)U(1)).
Let Θ ∶= ΘF be the set of triples (U,F∞,Λ) such that U ⊂ X is a dense
open subscheme with p invertible on U , F∞/F is a really admissible extension
unramified over U and Λ is an adic Zp-algebra.

Theorem 14.4. Let γ ∈ Γ ∶= Gal(Fcyc/F ) be a topological generator. There
exists a unique family of homomorphisms

⎛
⎝

MF∞/F,γ(U, (−)(1))∶
K0(PDG

cont,∞(U,Λ))→ K1(Λ[[Gal(F∞/F )]])
⎞
⎠(U,F∞,Λ)∈Θ

such that

1. for any (U,F∞,Zp) ∈ Θ, MF∞/F,γ(U, (Zp)U(1)) is the element con-
structed in Theorem 14.2,

2. if j∶U ′ → U is an open immersion and (U ′, F∞,Λ), (U,F∞,Λ) ∈ Θ, then

MF∞/F,γ(U,F ●(1)) =MF∞/F,γ(U ′, j∗F ●(1)) ∏
x∈U−U ′

MF∞/F,γ(x,F ●(1)),
for any F ● in PDG

cont,∞(U,Λ).
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3. if (U,F∞,Λ), (U,F ′∞,Λ) ∈ Θ such that F ′∞ ⊂ F∞ is a subfield, then

ΨΛ[[Gal(F ′∞/F )]](MF∞/F,γ(U,F ●(1))) =MF ′∞/F,γ(U,F ●(1)),
for any F ● in PDG

cont,∞(U,Λ).
4. if (U,F∞,Λ), (U,F∞,Λ′) ∈ Θ and P ● is a complex of Λ′-Λ[[Gal(F∞/F )]]-

bimodules, strictly perfect as complex of Λ′-modules, then

ΨP [[Gal(F∞/F )]]δ●(MF∞/F,γ(U,F ●(1))) =MF∞/F,γ(U,ΨP̃ ●(F ●)(1))
for any F ● in PDG

cont,∞(U,Λ).
Proof. Applying (4) to the Λ/I-Λ[[G]]-bimodule Λ/I[[G]] for any open two-
sided ideal I of Λ and using

K1(Λ[[G]]) = lim←Ð
I∈IΛ

K1(Λ/I[[G]]),

we conclude that it is sufficient to consider triples (U,F∞,Λ) ∈ Θ with Λ a finite
ring. So, let Λ be finite. Since MF∞/F,γ(U,F ●(1)) depends only on the class

of F ● in K0(PDG
cont,∞(U,Λ)), we may assume that F ● is a bounded complex

of flat constructible étale sheaves of Λ-modules. Using (2) we may shrink U
until F ● is a complex of locally constant étale sheaves. Hence, there exists a(U,F ′∞,Λ) ∈ Θ such that F∞/F is a subextension of F ′∞/F and such that the
restriction of F ● to UK for some finite subextension K/F of F ′∞/F is a complex
of constant sheaves. By (3), we may replace F∞ by F ′∞. We may then find a
complex of Λ-Zp[[Gal(F∞/F )]]-bimodules P ●, strictly perfect as complex of Λ
modules and a weak equivalence

ΨP ●f!f
∗(Zp)U(1) ∼Ð→ F ●(1)

[Wit14, Prop. 6.8]. By (4), the only possible definition ofMF∞/F,γ(U,F ●(1))
is

MF∞/F,γ(U,F ●(1)) ∶= ΨP [[Gal(F∞/F )]]δ●(MF∞/F,γ(U, (Zp)U(1))).
It is then clear that this construction satisfies the given properties.

Theorem 14.5. Let γ ∈ Γ ∶= Gal(Fcyc/F ) be a topological generator. There
exists a unique family of homomorphisms

(M⊛
F∞/F,γ(U,−)∶K0(PDG

cont,∞(U,Λ))→ K1(Λ[[Gal(F∞/F )]]))(U,F∞,Λ)∈Θ
such that

1. for any (U,F∞,Zp) ∈ Θ,

M⊛
F∞/F,γ(U, (Zp)U) = (MF∞/F,γ(U, (Zp)U(1)))⊛
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2. if j∶U ′ → U is an open immersion and (U ′, F∞,Λ), (U,F∞,Λ) ∈ Θ, then

M⊛
F∞/F,γ(U,F ●) =M⊛

F∞/F,γ(U ′, j∗F ●) ∏
x∈U−U ′

M⊛
F∞/F,γ(x,F ●),

for any F ● in PDG
cont,∞(U,Λ).

3. if (U,F∞,Λ), (U,F ′∞,Λ) ∈ Θ such that F ′∞ ⊂ F∞ is a subfield, then

ΨΛ[[Gal(F ′∞/F )]](M⊛
F∞/F,γ(U,F ●(1))) =M⊛

F ′∞/F,γ(U,F ●),
for any F ● in PDG

cont,∞(U,Λ).
4. if (U,F∞,Λ), (U,F∞,Λ′) ∈ Θ and P ● is a complex of Λ′-Λ[[Gal(F∞/F )]]-

bimodules, strictly perfect as complex of Λ′-modules, then

ΨP [[Gal(F∞/F )]]δ●(M⊛
F∞/F,γ(U,F ●)) =M⊛

F∞/F,γ(U,ΨP̃ ●(F ●))
for any F ● in PDG

cont,∞(U,Λ).
Moreover, for any (U,F∞,Λ) ∈ Θ and any smooth Λ-adic sheaf F on U , we
have

M⊛
F∞/F,γ(U,F ) = (MF∞/F,γ(U,F ∗Λ(1)))⊛.

Proof. We proceed as in Theorem 14.4 and use Lemma 5.7.

Proposition 14.6. Assume that γ, γ′ are two topological generators of Γ. Then

MF∞/F,γ
MF∞/F,γ′

(U,F ●(1)) = sγ
sγ′
([RΓc(U,f!f∗F ●(1))])

M⊛
F∞/F,γ

M⊛
F∞/F,γ′

(U,F ●) = s(γ′)−1
sγ−1

([RΓ(U,f!f∗F ●)])
for any (U,F∞,Λ) ∈ Θ and any F ● in PDG

cont,∞(U,Λ).
Proof. By definition, these identities hold for the local modification factors and
by Corollary 14.3 and Proposition 6.3 they hold for F ● = (Zp)U . Hence,

MF∞/F,γ(U,F ●(1)) = sγsγ′ ([RΓc(U,f!f∗F ●(1))])MF∞/F,γ′(U,F ●(1))
M⊛

F∞/F,γ(U,F ●) = s(γ′)−1sγ−1
([RΓ(U,f!f∗F ●)])M⊛

F∞/F,γ′(U,F ●)
by the uniqueness assertion in Theorem 14.4 and Theorem 14.5.

Theorem 14.7. Let F ′/F be a finite extension of totally real fields. Set r ∶=[F ′ ∩ Fcyc ∶ F ] and let γ ∈ Gal(Fcyc/F ) be a topological generator. Assume
that (U,F∞,Λ) ∈ ΘF with F ′ ⊂ F∞ and write fF ′ ∶UF ′ → U for the associated
covering. Then
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1. for every F ● in PDG
cont,∞(U,Λ),

MF∞/F ′,γr(UF ′ , f∗F ′F ●(1)) = ΨΛ[[Gal(F∞/F )]]MF∞/F,γ(U,F ●(1)),
M⊛

F∞/F ′,γr(UF ′ , f∗F ′F ●) = ΨΛ[[Gal(F∞/F )]]M⊛
F∞/F,γ(U,F ●);

2. for every G● in PDG
cont,∞(UF ′ ,Λ),

MF∞/F,γ(U,fF ′∗G●(1)) = ΨΛ[[Gal(F∞/F )]]MF∞/F ′,γr(UF ′ ,G●(1)),
M⊛

F∞/F,γ(U,fF ′∗G●) = ΨΛ[[Gal(F∞/F )]]M⊛
F∞/F ′,γr(UF ′ ,G●).

Proof. We prove the identities for the global modification factors; the proof for
the global dual modification factors is the same.
We first note that for any complex P ● of Λ′-Λ[[Gal(F∞/F )]]-bimodules,
strictly perfect as complex of Λ′-modules, there exists an obvious isomorphism
of complexes of Λ′[[Gal(F∞/F ′)]]-Λ[[Gal(F∞/F )]]-bimodules

Λ′[[Gal(F∞/F )]]⊗Λ′[[Gal(F∞/F )]] P [[Gal(F∞/F )]]δ● ≅
P [[Gal(F∞/F ′)]]δ● ⊗Λ[[Gal(F∞/F ′)]] Λ[[Gal(F∞/F )]].

Hence,

ΨΛ′[[Gal(F∞/F )]]○ΨP [[Gal(F∞/F )]]δ● = ΨP [[Gal(F∞/F ′)]]δ● ○ΨΛ[[Gal(F∞/F )]] (14.2)

as homomorphisms from K1(Λ[[Gal(F∞/F )]]) to K1(Λ′[[Gal(F∞/F ′)]]).
Likewise, for a complex Q● of Λ′-Λ[[Gal(F∞/F ′)]]-bimodules, strictly perfect
as complex of Λ′-modules, we have an equality

ΨΛ′[[Gal(F∞/F )]] ○ΨQ[[Gal(F∞/F ′)]]δ● = ΨQ[[Gal(F∞/F )]]δ● ○ΨΛ[[Gal(F∞/F )]].
(14.3)

in Hom(K1(Λ[[Gal(F∞/F ′)]]),K1(Λ′[[Gal(F∞/F )]])).
In particular, we may reduce to the case of finite Zp-algebras Λ by choosing P ● =
Λ = Q● with the trivial action of Gal(F∞/F ) and Gal(F∞/F ′), respectively. By
Proposition 11.4.(4) we may then shrink U until F ● and G● may be assumed
to be strictly perfect complexes of locally constant étale sheaves. Using the
identities (14.2) and (14.3) again, we may reduce to the case Λ = Zp and
F ● = (Zp)U , G● = (Zp)UF ′

. We may then further reduce to the case that
F∞/F ′cyc is a finite extension.
Setting

q ∶=
MF∞/F ′,γr(UF ′ , f∗F ′(Zp)UF ′

(1))
ΨΛ[[Gal(F∞/F )]]MF∞/F,γ(U, (Zp)U(1)) ∈ K1(Λ[[Gal(F∞/F ′)]]),

q′ ∶=
MF∞/F,γ(U,fF ′∗(Zp)UF ′

(1))
ΨΛ[[Gal(F∞/F )]]MF∞/F ′,γr(UF ′ , (Zp)U(1)) ∈ K1(Λ[[Gal(F∞/F )]]),

it suffices to show that q = 1 and q′ = 1.
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Let g∶UF∞ → UF ′ denote the restriction of f ∶UF∞ → U . Write

M ∶= Zp[Gal(F∞/F ′)/Gal(F∞/F )]
for the Zp-Zp[[Gal(F∞/F )]]-bimodule freely generated as Zp-module by the
right cosets Gal(F∞/F )σ for σ ∈ Gal(F∞/F ) and on which τ ∈ Gal(F∞/F )
operates by right multiplication. From Proposition 9.4 we conclude

ΨZp[[Gal(F∞/F )]]RΓc(U,f!f∗(Zp)U(1)) ∼ RΓc(U,fF ′∗g!g∗f∗F ′(Zp)U(1))
∼ RΓc(UF ′ , g!g∗(Zp)UF ′

(1)),
ΨZp[[Gal(F∞/F )]]RΓc(UF ′ , g!g∗(Zp)UF ′

(1))
∼ ΨZp[[Gal(F∞/F )]]RΓc(U,fF ′∗g!g∗(Zp)UF ′

(1))
∼ RΓc(U,f!f∗fF ′∗(Zp)UF ′

(1))
∼ ΨM[[Gal(F∞/F )]]δ RΓc(U,f!f∗(Zp)U(1)).

Additionally, we note that

MF∞/F,γ(U,fF ′∗(Zp)U(1)) = ΨM[[Gal(F∞/F )]]δMF∞/F,γ(U, (Zp)U(1))
by Theorem 14.4.
From this and from Proposition 6.1, we conclude

q =
LF∞/F ′(UF ′ , (Zp)UF ′

(1))
ΨΛ[[Gal(F∞/F )]]LF∞/F (U, (Zp)U(1)) ,

q′ =
ΨM[[Gal(F∞/F )]]δLF∞/F (U, (Zp)U(1))
ΨΛ[[Gal(F∞/F )]]LF∞/F ′(UF ′ , (Zp)U(1)) .

Let C/Qp be a finite field extension and

ρ′∶Gal(F∞/F ′) → Gld(OC)
ρ∶Gal(F∞/F )→ Gld(OC)

be Artin representations. Write

ϕF ∶OC[[Gal(Fcyc/F )]]→ OC
ϕF ′ ∶OC[[Gal(F ′cyc/F ′)]]→OC

for the augmentation maps. We denote by IndFF ′ ρ
′ and ResF

′

F ρ the induced an
restricted representations, respectively.
Then for every n ∈ Z

ϕF ′ ○Φρ′ǫn
F ′
○ΨZp[[Gal(F∞/F )]] = ϕF ○ΦIndF

F ′
ρ′ǫn

F ′
= ϕF ○Φǫn

F
IndF

F ′
ρ′

as maps from K1(Zp[[Gal(F∞/F )]]S) to P1(C) and
ϕF ○Φρǫn

F
○ΨZp[[Gal(F∞/F )]] = ϕF ′ ○ΦResF

′

F
ρǫn

F
= ϕF ′ ○Φǫn

F ′
ResF

′

F
ρ
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as maps from K1(Zp[[Gal(F∞/F ′)]]S) to P1(C). From (13.3) and the trans-
formation properties of the complex Artin L-functions with respect to inflation
and restriction we conclude that for n < −1 and Σ ∶=X −U

ϕF ′ ○Φρ′ǫn
F ′
(ΨΛ[[Gal(F∞/F )]]LF∞/F (U, (Zp)U(1))) =
= LΣ,∅(ω−nF IndFF ′ ρ

′,1 + n)
= LΣF ′ ,∅(ρ′ω−nF ′ ,1 + n)
= ϕF ′ ○Φρ′ǫn

F ′
(LF∞/F ′(UF ′ , (Zp)UF ′

(1))),
ϕF ○Φρǫn

F
(ΨΛ[[Gal(F∞/F )]]LF∞/F ′(UF ′ , (Zp)UF ′

(1)) =
= LΣF ′ ,∅(ω−nF ′ ResF ′F ρ,1 + n)
= LΣ,∅(ω−nF IndF

′

F ResF
′

F ρ,1 + n)
= ϕF ○Φǫn

F
IndF ′

F
ResF

′

F
ρ(LF∞/F (U, (Zp)U(1))))

= ϕF ○Φρǫn
F
(ΨM[[Gal(F∞/F )]]δLF∞/F (U, (Zp)U(1))).

From [Bur15, Lemma 3.4] we conclude that Φρ′(q) = 1 in K1(OC[[Γ]]) and
thus ϕF ′(Φρ′(q)) = 1 in C for every Artin representation ρ′ of Gal(F∞/F ′). In
particular, with K running through the finite Galois extension fields of F in
F∞, the images of q in the groups K1(Qp[Gal(K/F )]) are trivial. This implies

q ∈ ŜK1(Zp[[Gal(F∞/F ′)]]).
Using Corollary 2.4 we find a suitable admissible extension L∞/F unramified
over U ′ ⊂ U such that

ΨZp[[Gal(F∞/F ′)]]∶ ŜK1(Zp[[Gal(L∞/F ′)]]) → ŜK1(Zp[[Gal(F∞/F ′)]])
is the zero map. As

q = ΨZp[[Gal(F∞/F ′)]] ( ML∞/F ′,γr(U ′F ′ , f∗F ′(Zp)U ′F ′ (1))
ΨΛ[[Gal(L∞/F )]]ML∞/F,γ(U ′, (Zp)U ′(1))) ,

we conclude q = 1. The proof that q′ = 1 follows the same pattern.

Definition 14.8. Let F be a totally real field, k∶U →W be an open immersion
of open dense subschemes of X = SpecOF such that p is invertible on W , and
Λ be an adic Zp-algebra. Fix a topological generator γ ∈ Gal(Fcyc/F ). For any
F ● in PDG

cont,∞(U,Λ), and any really admissible extension F∞/F unramified
over U , we set

MF∞/F,γ(W,Rk∗F ●(1)) ∶=MF∞/F,γ(U,F ●(1))
∏

x∈W−U

MF∞/F,γ(x,Rk∗f!f∗F ●(1)),
M⊛

F∞/F,γ(W,Rk∗F ●) ∶=M⊛
F∞/F,γ(U,F ●) ∏

x∈W−U

M⊛
F∞/F,γ(x, k!f!f∗F ●)
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in K1(Λ[[Gal(F∞/F )]]) and
LF∞/F (W,Rk∗F ●(1)) ∶=MF∞/F,γ(W,Rk∗F ●(1))

sγ(−[RΓc(W,Rk∗f!f∗F ●(1))]),
L⊛F∞/F (W,k!F ●) ∶=M⊛

F∞/F,γ(W,k!F ●)sγ−1([RΓ(W,k!f!f∗F ●)])
in K1(Λ[[Gal(F∞/F )]]S).
Note that we do not assume that F∞/F is unramified overW . If it is unramified
over W , then

RΓc(W,Rk∗f!f∗F ●(1)) = RΓc(W,f!f∗Rk∗F ●(1)),
RΓ(W,k!f!f∗F ●) = RΓ(W,f!f∗k!F ●)

and the two possible definitions of the elements MF∞/F,γ(W,Rk∗F ●(1))
and M⊛

F∞/F,γ(W,k!F ●) agree. Moreover, by Proposition 14.6,

LF∞/F (W,Rk∗F ●(1)) and L⊛
F∞/F (W,k!F ●) do not depend on the choice

of γ.

In the following corollary, we compile a list of the transformation properties of
LF∞/F (W,Rk∗F ●(1)) and L⊛

F∞/F (W,k!F ●).
Corollary 14.9. Let F be a totally real field, k∶U →W be an open immersion
of open dense subschemes of X = SpecOF such that p is invertible on W , and
Λ be an adic Zp-algebra. Fix a F ● in PDG

cont,∞(U,Λ), and a really admissible
extension F∞/F unramified over U .

1. Write f ∶UF∞ → U for the system of coverings associated to F∞/F . Then

dLF∞/F (W,Rk∗F ●(1)) = −[RΓc(W,Rk∗f!f∗F ●(1))],
dL⊛F∞/F (W,k!F ●) = [RΓ(W,k!f!f∗F ●)]

2. If G● and F ● are weakly equivalent in PDG
cont,∞(U,Λ), then

LF∞/F (W,Rk∗F ●(1)) = LF∞/F (W,Rk∗G●(1)),
L⊛F∞/F (W,k!F ●) = L⊛F∞/F (W,k!G●).

3. If 0 → F ′
●
→ F ● → F ′′

●
→ 0 is an exact sequence in PDG

cont,∞(U,Λ),
then

LF∞/F (W,Rk∗F ●(1)) = LF∞/F (W,Rk∗F ′
●(1))LF∞/F (W,Rk∗F ′′

●(1)),
L⊛F∞/F (W,k!F ●) = L⊛F∞/F (W,k!F ′●)L⊛F∞/F (W,k!F ′′●).
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4. If W ′ is an open dense subscheme of X on which p is invertible and
k′∶W →W ′ is an open immersion, then

LF∞/F (W ′,R(k′k)∗F ●(1)) =LF∞/F (W,Rk∗F ●(1))
∏

x∈W ′−W

LF∞/F (x,R(k′k)∗F ●(1)),
L⊛F∞/F (W ′, (k′k)!F ●) =L⊛F∞/F (W,k!F ●)

∏
x∈W ′−W

L⊛F∞/F (x, (k′k)!F ●).

5. If i∶x→ U is a closed point, then

LF∞/F (W,Rk∗i∗i∗F ●(1)) = LF∞/F (x,F ●(1)),
L⊛F∞/F (W,k!i∗R i!F ●) = L⊛F∞/F (x,F ●).

6. If F ′∞/F is a really admissible subextension of F∞/F , then
ΨΛ[[Gal(F ′∞/F )]](LF∞/F (W,Rk∗F ●(1))) = LF ′∞/F (W,Rk∗F ●(1)),

ΨΛ[[Gal(F ′∞/F )]](L⊛F∞/F (W,k!F ●)) = L⊛F ′∞/F (W,k!F ●).
7. If Λ′ is another adic Zp-algebra and P ● is a complex of Λ′-

Λ[[Gal(F∞/F )]]-bimodules, strictly perfect as complex of Λ′-modules,
then

ΨP [[Gal(F∞/F )]]δ●(LF∞/F (W,Rk∗F ●(1))) = LF∞/F (W,Rk∗ΨP̃ ●(F ●)(1)),
ΨP [[Gal(F∞/F )]]δ●(L⊛F∞/F (W,k!F ●)) = L⊛F∞/F (W,k!ΨP̃ ●(F ●)).

8. If F ′/F is a finite extension inside F∞ and fF ′ ∶UF ′ → U the associated
covering, then

ΨΛ[[Gal(F∞/F )]](LF∞/F (W,Rk∗F ●(1))) = LF∞/F ′(WF ′ ,Rk∗f
∗
F ′F

●(1)),
ΨΛ[[Gal(F∞/F )]](L⊛F∞/F (W,k!F ●)) = L⊛F∞/F ′(WF ′ , k!f

∗
F ′F

●).
9. With the notation of (8), if G● is in PDG

cont,∞(UF ′ ,Λ), then
ΨΛ[[Gal(F∞/F )]](LF∞/F ′(WF ′ ,Rk∗G●(1))) = LF∞/F (W,Rk∗fF ′∗G●(1)),

ΨΛ[[Gal(F∞/F )]](L⊛F∞/F ′(WF ′ , k!G
●)) = L⊛F∞/F (W,k!fF ′∗G●).

10. If F is a smooth Λ-adic sheaf on U which is smooth at ∞, then

L⊛F∞/F (W,k!F ) = (LF∞/F (W,Rk∗F ∗Λ(1)))⊛.
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11. If C/Qp is a finite field extension and ρ∶Gal(F∞/F ) → Gld(OC) is an
Artin representation, then

Φρǫ−n
F
(LF∞/F (W,Rk∗(Zp)U(1))) = LFcyc/F (W,Rk∗M (ρωnF )(1 − n)),

Φρǫn
F
(L⊛F∞/F (W,Rk∗(Zp)U)) = L⊛Fcyc/F (W,Rk∗M (ρω−nF )(n)),

for any integer n.

12. If C/Qp is a finite field extension and ρ∶GalF → Gld(OC) is an Artin
representation which factors through a totally real field and which is un-
ramified over U , then

ϕ(LFcyc/F (W,Rk∗M (ρωnF )(1 − n))) = LΣ,T(ρωnF ,1 − n),
ϕ(L⊛Fcyc/F (W,k!M (ρω−nF )(n))) = LΣ,T(ρ̌ωnF ,1 − n)−1

with Σ ∶=X −W , T ∶=W −U and any integer n > 1.

Proof. Properties (1)–(4) are clear by definition. For Property (5) we notice
that for y ∈W

LF∞/F (y,Rk∗i∗i∗F ●(1)) =
⎧⎪⎪⎨⎪⎪⎩
LF∞/F (x,F ●(1)) if y = x,

1 else.

Hence,

LF∞/F (W,Rk∗i∗i∗F ●(1)) = LF∞/F (U, i∗i∗F (1)) = LF∞/F (x,F ●(1))
by (4) and by Theorem 14.4.(2). The proof for the dual L-function is analogous.
Properties (6) and (7) follow from Theorem 14.4 or Theorem 14.5 combined
with Proposition 6.1 and either Proposition 11.4 or Proposition 11.8. For Prop-
erties (8) and (9) one applies Theorem 14.7. Property (10) follows from the
last part of Theorem 14.5 combined with Proposition 6.3 and Proposition 11.9.
Property (11) is just a special case of (7) in a different notation.
It remains to prove (12). The first identity is simply the combination of (13.3)
and (13.2). The second identity follows from (13.1), Property (10) and the first
identity.

15 CM-admissible extensions

Definition 15.1. Let F be a totally real number field and F∞/F an admissible
extension. We call F∞/F CM-admissible if F∞ is a CM-field, i. e. it is totally
imaginary and there exists a (unique) involution ι ∈ Gal(F∞/F ) such that the
fixed field F +∞ of ι is totally real.

Note that for a CM-admissible extension F∞/F with Galois group

G ∶= Gal(F∞/F ),
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the automorphism ι is uniquely determined and commutes with every other
field automorphism of F∞. As usual, we write

e− ∶=
1 − ι

2
, e+ ∶=

1 + ι

2
∈ Λ[[G]].

for the corresponding central idempotents.
The extension F +∞/F is Galois and hence, a really admissible extension. We
set G+ ∶= Gal(F +∞/F ). Moreover, we fix as before an immersion k∶U → W of
open dense subschemes of X = SpecF such that F∞/F is unramified over U
and p ≠ 2 is invertible on W . Let

f+∶UF+∞ → U

denote the restriction of the family of coverings f ∶UF∞ → U to UF+∞ .
If F∞ contains the p-th roots of unity and hence, the pn-th roots of unity for
all n ≥ 1, the cyclotomic character

κF ∶GalF → Z×p , gζ = ζκF (g), g ∈ GalF , ζ ∈ µp∞

factors through G ∶= Gal(F∞/F ). We then obtain for every odd n ∈ Z a ring
isomorphism

Λ[[G]] → Λ[[G+]] ×Λ[[G+]], G ∋ g ↦ (g+, κF (g)ng+),
where g+ denotes the image of g ∈ G in G+. The projections onto the two
components corresponds to the decomposition of Λ[[G]] with respect to e+
and e−.
We will construct the corresponding decomposition of A(Λ[[G]]), where

A ∈ {PDG
cont,wHPDG

cont,PDG
cont,wH}.

Write Λ(κnF )♯ for the Λ-Λ[[G]]-bimodule Λ with g ∈ G acting by κnF (g−1) from
the right and Λ(κnF )♯[[G]]δ for the Λ[[G]]-Λ[[G]]-bimodule Λ[[G]]⊗ΛΛ(κnF )♯
with the diagonal right action of G. According to Example 3.15, we obtain
Waldhausen exact functors

ΨΛ(κn
F
)♯[[G]]δ ∶A(Λ[[G]]) →A(Λ[[G]]).

Moreover, considering Λ[[G+]] as a Λ[[G+]]-Λ[[G]]-bimodule or as a Λ[[G]]-
Λ[[G+]]-bimodule, we obtain Waldhausen exact functors

ΨΛ[[G+]]∶A(Λ[[G]]) →A(Λ[[G+]]), ΨΛ[[G+]]∶A(Λ[[G+]]) →A(Λ[[G]]).
Note there exists isomorphisms of Λ[[G]]-Λ[[G]]-bimodules

e+Λ[[G]] ≅ Λ[[G+]]⊗Λ[[G+]] Λ[[G+]]
e−Λ[[G]] ≅ Λ(κnF )♯[[G]]δ ⊗Λ[[G]] e+Λ[[G]] ⊗Λ[[G]] Λ(κ−nF )♯[[G]]δ
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for every odd n ∈ Z such that the composition

ΨΛ[[G+]] ○ΨΛ[[G+]]∶A(Λ[[G]]) →A(Λ[[G]])
is just the projection onto the e+-component, whereas the projection onto the
e−-component may be written as

ΨΛ(κn
F
)♯[[G]]δ⊗Λ[[G]]Λ[[G+]]○ΨΛ[[G+]]⊗Λ[[G]]Λ(κ−nF )♯[[G]]δ ∶A(Λ[[G]]) →A(Λ[[G]]).

We further note that

ΨΛ(κn
F
)♯[[G]]δ(f!f∗F ●) ≅ f!f∗F ●(n).

If Λ′ is another adic Zp-algebra and P ● is a complex of Λ′-Λ[[G]]-bimodules,
strictly perfect as complex of Λ′-modules, we set

P ●+ ∶= P
●e+, P ●− ∶= P

●e− (15.1)

such that ι acts trivially on P ●+ and by −1 on P ●− . Both are again complex of Λ′-
Λ[[G]]-bimodules and strictly perfect as complex of Λ′-modules. In particular,
we have an isomorphism of complexes of Λ′[[G]]-Λ[[G]]-bimodules

P [[G]]δ● ≅ P+[[G]]δ● ⊕ P−[[G]]δ●.
Beware that P+[[G]]δ● differs from P [[G]]δ●e+. The element ι acts as ι ⊗ id
on the first complex and trivially on the second. In fact, we have

P+[[G]]δ●e+ = e+P+[[G]]δ●, P+[[G]]δ●e− = e−P+[[G]]δ●,
P−[[G]]δ●e+ = e−P−[[G]]δ●, P−[[G]]δ●e− = e+P−[[G]]δ●.

Moreover, the Waldhausen exact functors

PDG
cont(U,Λ)→ PDG

cont(U,Λ′), F ● ↦ ΨP̃+
●(F ●),

PDG
cont(U,Λ)→ PDG

cont(U,Λ′), F ● ↦ ΨP̃−
●(F ●)(1)

map complexes in PDG
cont,∞(U,Λ) to complexes in PDG

cont,∞(U,Λ′).
Throughout the rest of this section, we assume the validity of Conjecture 9.5.

Corollary 15.2. Assume that F∞/F is any CM-admissible extension unram-
ified over U . For any F ● in PDG

cont,∞(U,Λ), the complexes

e+RΓc(W,Rk∗f!f∗F ●(1)), e−RΓc(W,Rk∗f!f∗F ●),
e+RΓ(W,k!f!f∗F ●), e−RΓ(W,k!f!f∗F ●(1))

are in PDG
cont,wH(Λ[[G]]).
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Proof. Without loss of generality, we may enlarge F∞ by adjoining the p-th
roots of unity. The claim of the corollary is then an immediate consequence of
Theorem 10.1 applied to

ΨΛ[[G+]](RΓc(W,Rk∗f!f∗F ●(1))) ∼ RΓc(W,Rk∗(f+)!(f+)∗F ●(1)),
ΨΛ[[G+]](RΓ(W,k!f!f∗F ●)) ∼ RΓ(W,k!(f+)!(f+)∗F ●),

ΨΛ[[G+]]⊗Λ[[G]]Λ(κF )♯[[G]]δ(RΓc(W,Rk∗f!f∗F ●)) ∼
RΓc(W,Rk∗(f+)!(f+)∗F ●(1)),

ΨΛ[[G+]]⊗Λ[[G]]Λ(κ−1F )♯[[G]]δ(RΓ(W,k!f!f∗F ●(1))) ∼ RΓ(W,k!(f+)!(f+)∗F ●)

Assume that F∞/F is CM-admissible and that F∞ contains the p-th roots of
unity. For any F ● in PDG

cont,∞(U,Λ), we set

L+F∞/F (W,Rk∗F ●(1)) ∶= ΨΛ[[G+]](LF+∞/F (W,Rk∗F ●(1))),
L
⊛,+

F∞/F (W,k!F ●) ∶= ΨΛ[[G+]](L⊛F+∞/F (W,k!F ●)),
L−F∞/F (W,Rk∗F ●) ∶= ΨΛ(κ−1

F
)♯[[G]]δ⊗Λ[[G]]Λ[[G+]](LF+∞/F (W,Rk∗F ●(1))),

L
⊛,−

F∞/F (W,k!F ●(1)) ∶= ΨΛ(κF )♯[[G]]δ⊗Λ[[G]]Λ[[G+]](L⊛F+∞/F (W,k!F ●))
in K1(Λ[[G]]S). We extend this definition to CM-admissible subextensions
F ′∞/F with F ′∞ not containing the p-th roots of unity by taking the image of
the elements under

ΨΛ[[Gal(F ′∞/F )]]∶K1(Λ[[G]]S) → K1(Λ[[Gal(F ′∞/F )]]S).
Furthermore, for ε ∈ {+,−}, x ∈W and F ● in PDG

cont(U,Λ) we set

LεF∞/F (x,Rk∗F ●) ∶= ΨeεΛ[[G]](LF∞/F (x,Rk∗F ●)),
L
⊛,ε

F∞/F (x, k!F ●) ∶= ΨeεΛ[[G]](L⊛F∞/F (x, k!F ●)).
We will write −ε ∈ {+,−} for the opposite sign.
Assume that C/Qp is a finite field extension and ρ∶GalF → Gld(OC) is an Artin
representation unramified over U . If ρ(σ) = −id for every complex conjugation
σ ∈ GalF , then ρ factors through a CM-extension of F . In particular, M (ρω−1F )
is smooth on U and at ∞ and we may define elements

LFcyc/F (W,Rk∗M (ρωnF )(−n)), L⊛Fcyc/F (W,k!M (ρωnF )(1 − n)) (15.2)

by identifying M (ρωnF )(−n) with M (ρω−1F ωn+1F )(1 − (n + 1)). In particular,

ϕ(LFcyc/F (W,Rk∗M (ρωnF )(−n))) = LΣ,T(ρωnF ,−n),
ϕ(L⊛Fcyc/F (W,k!M (ρω−nF )(1 − n))) = LΣ,T(ρ̌ωnF ,−n)−1
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with Σ ∶= X −W , T ∶= W − U and any integer n > 0. If ρ is any Artin repre-
sentation that factors through a CM-extension, then we can decompose it as
in (15.1) into two subrepresentations ρ+ and ρ− such that

ρ+(σ) = id, ρ−(σ) = −id
for all complex conjugations σ ∈ GalF .

Corollary 15.3. Let F be a totally real field, k∶U →W be an open immersion
of open dense subschemes of X = SpecOF such that p is invertible on W , and
Λ be an adic Zp-algebra. Fix a F ● in PDG

cont,∞(U,Λ), and a CM-admissible
extension F∞/F unramified over U . If ε = +, we choose n to be an even integer.
We choose n to be odd if ε = −.

1. Write f ∶UF∞ → U for the system of coverings associated to F∞/F . Then

dLεF∞/F (W,Rk∗F ●(1 + n)) = −[eεRΓc(W,Rk∗f!f∗F ●(1 + n))],
dL
⊛,ε

F∞/F (W,k!F ●(n)) = [eεRΓ(W,k!f!f∗F ●(n))]
2. If G● and F ● are weakly equivalent in PDG

cont,∞(U,Λ), then
LεF∞/F (W,Rk∗F ●(1 + n)) = LεF∞/F (W,Rk∗G●(1 + n)),

L
⊛,ε

F∞/F (W,k!F ●(n)) = L⊛,εF∞/F (W,k!G●(n)).
3. If 0 → F ′

●
→ F ● → F ′′

●
→ 0 is an exact sequence in PDG

cont,∞(U,Λ),
then

LεF∞/F (W,Rk∗F ●(1 + n)) = LεF∞/F (W,Rk∗F ′
●(1 + n))

LεF∞/F (W,Rk∗F ′′
●(1 + n)),

L
⊛,ε

F∞/F (W,k!F ●(n)) = L⊛,εF∞/F (W,k!F ′●(n))L⊛,εF∞/F (W,k!F ′′●(n)).
4. If W ′ is an open dense subscheme of X on which p is invertible and

k′∶W →W ′ is an open immersion, then

LεF∞/F (W ′,R(k′k)∗F ●(1 + n)) =LεF∞/F (W,Rk∗F ●(1 + n))
∏

x∈W ′−W

LεF∞/F (x,R(k′k)∗F ●(1 + n)),
L
⊛,ε

F∞/F (W ′, (k′k)!F ●(n)) =L⊛,εF∞/F (W,k!F ●(n))
∏

x∈W ′−W

L
⊛,ε

F∞/F (x, (k′k)!F ●(n)).
5. If i∶x→ U is a closed point, then

LεF∞/F (W,Rk∗i∗i∗F ●(1 + n)) = LF∞/F (x,F ●(1 + n)),
L
⊛,ε

F∞/F (W,k!i∗R i!F ●(n)) = L⊛,εF∞/F (x,F ●(n)).
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6. If F ′∞/F is a CM-admissible subextension of F∞/F , then
ΨΛ[[Gal(F ′∞/F )]](LεF∞/F (W,Rk∗F ●(1 + n))) = LεF ′∞/F (W,Rk∗F ●(1 + n)),

ΨΛ[[Gal(F ′∞/F )]](L⊛,εF∞/F (W,k!F ●(n))) = L⊛,εF ′∞/F (W,k!F ●(n)).
If F ′∞/F is a really admissible subextension of F∞/F , then
ΨΛ[[Gal(F ′∞/F )]](L+F∞/F (W,Rk∗F ●(1 + n))) = LF ′∞/F (W,Rk∗F ●(1 + n)),

ΨΛ[[Gal(F ′∞/F )]](L⊛,+F∞/F (W,k!F ●(n))) = L⊛F ′∞/F (W,k!F ●(n)),
ΨΛ[[Gal(F ′∞/F )]](L−F∞/F (W,Rk∗F ●(1 + n))) = 1

ΨΛ[[Gal(F ′∞/F )]](L⊛,−F∞/F (W,k!F ●(n))) = 1.
7. If Λ′ is another adic Zp-algebra and P ● is a complex of Λ′-

Λ[[Gal(F∞/F )]]-bimodules, strictly perfect as complex of Λ′-modules,
then

ΨP+[[Gal(F∞/F )]]δ●(LεF∞/F (W,Rk∗F ●(1 + n))) =
LεF∞/F (W,Rk∗ΨP̃+●(F ●)(1 + n)),

ΨP−[[Gal(F∞/F )]]δ●(LεF∞/F (W,Rk∗F ●(1 + n))) =
L−εF∞/F (W,Rk∗ΨP̃−●(F ●)(1 + n)),

ΨP+[[Gal(F∞/F )]]δ●(L⊛,εF∞/F (W,k!F ●(n))) =
L
⊛,ε

F∞/F (W,k!ΨP̃+●(F ●(n))),
ΨP−[[Gal(F∞/F )]]δ●(L⊛,εF∞/F (W,k!F ●(n))) =

L
⊛,−ε

F∞/F (W,k!ΨP̃−●(F ●(n))).
8. If F ′/F is a finite extension inside F∞ such that F ′ is totally real and

fF ′ ∶UF ′ → U is the associated covering, then

ΨΛ[[Gal(F∞/F )]](LεF∞/F (W,Rk∗F ●(1 + n))) = LεF∞/F ′(WF ′ ,Rk∗f
∗
F ′F

●(1 + n)),
ΨΛ[[Gal(F∞/F )]](L⊛,εF∞/F (W,k!F ●)(n)) = L⊛,εF∞/F ′(WF ′ , k!f

∗
F ′F

●(n)).
9. With the notation of (8), if G● is in PDG

cont,∞(UF ′ ,Λ), then
ΨΛ[[Gal(F∞/F )]](LεF∞/F ′(WF ′ ,Rk∗G●(1 + n))) = LεF∞/F (W,Rk∗fF ′∗G●(1 + n)),

ΨΛ[[Gal(F∞/F )]](L⊛,εF∞/F ′(WF ′ , k!G
●(n))) = L⊛,ε

F∞/F (W,k!fF ′∗G●(n)).
10. If F is a smooth Λ-adic sheaf on U which is smooth at ∞, then

L
⊛,ε

F∞/F (W,k!F (n)) = (LεF∞/F (W,Rk∗F ∗Λ(1 − n)))⊛.
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11. If C/Qp is a finite field extension and ρ∶Gal(F∞/F ) → Gld(OC) is an
Artin representation, then

Φρ(LεF∞/F (W,Rk∗(Zp)U(1 + n))) = LFcyc/F (W,Rk∗M (ρε)(1 + n)),
Φρ(L⊛,εF∞/F (W,Rk∗(Zp)U(n))) = LFcyc/F (W,Rk∗M (ρε)(n)),

Proof. This is an easy consequence of the preceding remarks and Corollary 14.9.

16 Calculation of the cohomology

We retain the notation from the previous section. Our objective is to investigate
the cohomology of the complexes

RΓc(W,Rk∗f!f∗F (1)), RΓ(W,k!f!f∗F ), RΓ(Σ, i∗Rk∗f!f∗F )
for a Λ-adic sheaf F on U in order to tie the connection to classical objects in
Iwasawa theory.
The following two propositions are direct consequences of Proposition 4.1, The-
orem 10.2, and Corollary 15.2.

Proposition 16.1. Let F∞/F be any admissible extension unramified over U .
Assume that i∶x→W is a closed point not lying over p. Then

Hs(x, i∗Rk∗f!f∗F ) ≅ lim←Ð
F ′

Hs−1(xF ′cyc , i∗Rk∗F )
where F ′ runs through the finite subextensions of F∞/F and xF ′cyc = x×WWF ′cyc

contains the places of F ′cyc lying over x. In particular,

Hs(x, i∗Rk∗f!f∗F ) = 0
for s ≠ 1 if x ∈ U and for s ≠ 1,2 if x ∈W −U .

Proposition 16.2. Let F be totally real and F∞/F be a CM-admissible ex-
tension unramified over U . Assume that p is invertible on W and that F is
smooth at ∞. If Conjecture 9.5 is valid, then

e+H
s
c(W,Rk∗f!f∗F (1)) ≅ lim←Ð

F ′

e+H
s−1
c (WF ′cyc

,Rk∗F (1))
e−H

s
c(W,Rk∗f!f∗F ) ≅ lim←Ð

F ′

e−H
s−1
c (WF ′cyc

,Rk∗F )
e+H

s(W,k!f!f∗F ) ≅ lim←Ð
F ′

e+H
s−1(WF ′cyc

, k!F )
e−H

s(W,k!f!f∗F (1)) ≅ lim←Ð
F ′

e−H
s−1(WF ′cyc

, k!F (1))
where F ′ runs through the finite subextensions of F∞/F . In particular, if F is
smooth over U ,
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1. e+H
s
c(W,Rk∗f!f∗F (1)) = e−Hsc(W,Rk∗f!f∗F ) = 0 for s ≠ 2 if U ≠ W

and for s ≠ 2,3 if W = U .

2. e+H
s(W,k!f!f∗F ) = e−Hs(W,k!f!f∗F (1)) = 0 for s ≠ 2 if U ≠ W or if

U = W and F∞/Fcyc is infinite and for s ≠ 1,2 if U = W and F∞/F is
finite.

In particular, we obtain the following corollary. We will explain in the next
section in what sense this is a generalisation of [GP15, Thm. 4.6].

Corollary 16.3. Let F be totally real and F∞/F be a CM-admissible extension
unramified over U . Assume that p is invertible on W ≠ U and that F is smooth
over U and at ∞. If Conjecture 9.5 is valid, then

e+H
2
c(W,Rk∗f!f∗F (1)), e−H

2
c(W,Rk∗f!f∗F ),

e+H
2(W,k!f!f∗F ), e−H

2(W,k!f!f∗F (1))
are finitely generated and projective as Λ[[H]]-modules. In particular, they
have strictly perfect resolutions of length equal to 1 as Λ[[G]]-modules. Hence,
we may consider their classes in K0(Λ[[G]], S) and obtain

[e+H2
c(W,Rk∗f!f∗F (1))] = [e+RΓc(W,Rk∗f!f∗F (1))],
[e−H2

c(W,Rk∗f!f∗F )] = [e−RΓc(W,Rk∗f!f∗F )],
[e+H2(W,k!f!f∗F )] = [e+RΓ(W,k!f!f∗F )],

[e−H2(W,k!f!f∗F (1))] = [e−RΓ(W,k!f!f∗F (1))].
Proof. We give the argument for X ∶= e+H

2(W,k!f!f∗F ); the proof of the other
cases is essentially the same. The Λ[[G]]-module X is the only non-vanishing
cohomology group of the perfect complex of Λ[[G]]-modules

P ● ∶= lim←Ð
I∈IΛ[[G]]

e+RΓ(W,k!(f!f∗F )I).

Since for any simple Λ[[G]]-module M ,

M ⊗L

Λ[[G]] P ● ∼ e+RΓ(W,k!M ⊗Λ[[G]]/Jac(Λ[[G]]) (f!f∗F )Jac(Λ[[G]]))
has no cohomology except in degrees 1 and 2, we conclude that there exists
a strictly perfect complex Q● of Λ[[G]]-modules concentrated in degrees −1
and 0 and quasi-isomorphic to X . By Corollary 15.2, we know that Q● is also
perfect as complex of Λ[[H]]-modules. By Lemma 3.4, we conclude that X is
finitely generated and projective as Λ[[H]]-module.
We then have [X] = [Q●] = [e+RΓ(W,k!f!f∗F )]
in K0(Λ[[G]], S).
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17 Realisations of abstract 1-motives

As a central result of this section, we want to establish the link with the theory
of abstract 1-motives considered in [GP15].
Assume that F is any number field and let U ⊂ W be two open dense sub-
schemes of X = SpecOF . Write k∶U → W for the corresponding open immer-
sion. Fix a closed subscheme structure on the complement T of U in W and
write i∶T →W for the closed immersion. For any scheme S we write GmS for
the étale sheaf of units on S. Recalling that the stalk of GmW in a geometric
point over a closed point is given by the units of the strict henselisation of the
local ring in this closed point, we see that

GmW → i∗GmT.

is a surjection. We define GmW,T to be its kernel. Write η∶SpecF →W for the
generic point and set

PT ∶= ker η∗GmF → i∗i
∗(η∗GmF /GmW,T).

In other words, PT is the subsheaf of η∗GmF of elements congruent to 1 modulo
T. For any subscheme Z of W we let DivZ denote the sheaf of divisors on W
with support on Z. Hence, we obtain an exact 9-diagram

0

��

0

��

0

��

0 // GmW,T
//

��

GmW
//

��

i∗GmT
//

��

0

0 // PT
//

div

��

η∗GmF
//

��

i∗i
∗(η∗GmK/GmW,T) //

��

0

0 // DivU //

��

DivW //

��

DivT
//

��

0

0 0 0

The third row is clearly also exact in the category of presheaves on W . More-
over,

i∗i
∗(η∗GmF /GmW,T)(W ) =⊕

v∈T

F ×v /Uv,nv

where nv is the multiplicity of v in T, Fv is the completion of F at v and
Un,nv

⊂ Fv is the group of units f such that the valuation of 1 − f is larger
or equal to nv. From the weak approximation theorem we conclude that the
second row of the 9-diagram is also exact in the category of presheaves. The
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same is also true for the third column. Hilbert 90 and the Leray spectral
sequence then imply that

H1(W,PT) = H1(W,η∗GmF ) = 0.
We conclude that

H1(W,GmW,T) = cokerPT(W ) div
ÐÐ→ DivU(W )

is the ray class group ofW with respect to the modulus T. If K/F is a possibly
infinite algebraic extension of F , it follows from [AGV72a, VII, Cor. 5.8] that

H1(WK ,GmWK ,TK
) = coker⎛⎝PTK

(WK) → lim
Ð→
K′⊂K

DivUK′
(WK′)⎞⎠

with
lim
Ð→
K′⊂K

DivUK′
(WK′) =⊕

v

Γv,

where v ranges over the places of K lying over the closed points of U and Γv
denotes the value group of the associated, possibly non-discrete valuation.
Assume now that p is invertible on W . We then obtain an exact 9-diagram

0

��

0

��

0

��

0 // j!µpn //

��

µpn //

��

i∗i
∗µpn //

��

0

0 // GmW,T
//

pn

��

GmW
//

pn

��

i∗GmT
//

pn

��

0

0 // GmW,T
//

��

GmW
//

��

i∗GmT
//

��

0

0 0 0

and hence, an exact sequence

0→ j!µpn → PT

(pn,div)
ÐÐÐÐ→ PT ⊕DivU

( div
−pn

)
ÐÐÐÐ→ DivU → 0.

We take global sections on W . Since H1(W,PT) = 0 and since multiplication
by pn is injective on DivU(W ) we obtain

H1(W,j!µpn) = {f ∈ PT(W ) ∣ div(f) = p
nD,

D ∈ DivU(W ) }/{g
pn ∣ g ∈ PT(W )}.
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Note that this group does not depend on the subscheme structure of T. So, we
might as well consider it with the reduced scheme structure.
We now assume in addition that F is totally real and fix a CM-admissible
extension F∞/F such that F∞/Fcyc is finite. Passing to the direct limit over
all finite subextensions F ′/F of F∞/F , we obtain

H1(WF∞ , j!µpn) =
{f ∈ PTF∞

(WF∞) ∣ div(f) = p
nD,

D ∈ DivUF∞
(WF∞)}/{g

pn ∣ g ∈ PTF∞
(WF∞)}. (17.1)

Write Σ for the complement of W in SpecOF [ 1p ]. The Iwasawa-theoretic 1-

motive associated to (F∞,ΣF∞ ,TF∞) is the complex of abelian groups

MF∞
ΣF∞ ,TF∞

∶ DivΣF∞
(XF∞) δ

Ð→ H1(XF∞ ,GmXF∞ ,TF∞
)⊗Z Zp

sitting in degrees 0 and 1 [GP15, §3.1]. Its group of pn-torsion points is defined
to be

MF∞
ΣF∞ ,TF∞

[pn] ∶=
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(D,c)

RRRRRRRRRRRRRRRRR

D ∈ DivΣF∞
(XF∞),

c ∈ H1(XF∞ ,GmXF∞ ,TF∞
)⊗Z Zp,

δ(D) = pnc

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
⊗Z Z/(pn)

= H0(MF∞
ΣF∞ ,TF∞

⊗L

Z Z/(pn))
and its p-adic Tate module is given by

TpM
F∞
ΣF∞ ,TF∞

∶= lim←Ð
n

MF∞
ΣF∞ ,TF∞

[pn]
[GP15, Def. 2.2, Def. 2.3].

Remark 17.1. The complex of abelian groups MF∞
ΣF∞ ,TF∞

is an abstract 1-

motive in the sense of [GP15, Def. 2.1] only if H1(XF∞ ,GmXF∞ ,TF∞
) ⊗Z Zp

is divisible of finite corank. The proof of [GP15, Lemma 2.8] shows that this
is true if and only if H1(XF∞ ,GmXF∞

) ⊗Z Zp is divisible of finite corank. By
[NSW00, Thm. 11.1.8 ] this is equivalent to the Galois group Xnr(F∞) of the
maximal abelian unramified pro-p-extension of F∞ being a finitely generated
Zp-module. This is true if Xnr(F∞(µp)) is a finitely generated Zp-module. By
[Was97, Thm 13.24] the latter statement is equivalent to e−Xnr(F∞(µp)) being
finitely generated over Zp, which is in turn equivalent to the Galois group of the
maximal abelian pro-p-extension unramified outside the primes over p of the
maximal totally real subfield F∞(µp)+ being finitely generated over Zp [NSW00,

Cor. 11.4.4]. Hence,MF∞
ΣF∞ ,TF∞

is an abstract 1-motive under Conjecture 9.5.

Proposition 17.2. There is a short exact sequence

0→ H0(XF∞ ,GmXF∞ ,TF∞
)⊗ZZ/(pn)→ H1(WF∞ , k!µpn)→MF∞

ΣF∞ ,TF∞
[pn]→ 0.

Documenta Mathematica 24 (2019) 1413–1511



1504 Malte Witte

In particular, there are isomorphisms

e−H
1(WF∞ , k!µpn) ≅ e−MF∞

ΣF∞ ,TF∞
[pn],

e−H
1(WF∞ , k!(Zp)WF∞

(1)) ≅ e−TpMF∞
ΣF∞ ,TF∞

.

Proof. This follows from (17.1) and [GP15, Prop. 3.2, Cor. 3.4]. Note that
the proofs of these statements do not make use of the divisibility of the group
H1(XF∞ ,GmXF∞ ,TF∞

)⊗Z Zp.

Remark 17.3. We refer to [GP17] for related work of Greither and Popescu.

Writing again f ∶UF∞ → U for the system of coverings associated to F∞/F we
conclude from Proposition 16.2:

Corollary 17.4. Assume that F∞/F is unramified over U . Under Conjec-
ture 9.5, there are isomorphisms

e−H
2(W,k!f!f∗µpn) ≅ e−MF∞

ΣF∞ ,TF∞
[pn],

e−H
2(W,k!f!f∗(Zp)U(1)) ≅ e−TpMF∞

ΣF∞ ,TF∞
.

In particular,

dL⊛,−
F∞/F (W,k!(Zp)U(1)) = [e−TpMF∞

ΣF∞ ,TF∞
]

in K0(Zp[[Gal(F∞/F )]], S).
Proof. Combine Proposition 17.2 with Proposition 16.2 and use Corollary 15.3.

In particular, [GP15, Thm. 4.6] reduces to the special case F = (Zp)U of Corol-
lary 16.3. Moreover, if Gal(F∞/F ) is commutative, we may identify the Fitting
ideal and the characteristic ideal of e−TpMF∞

ΣF∞ ,TF∞
over Zp[[Gal(F∞/F )]].

The characteristic ideal may then be viewed as an element of

(Zp[[Gal(F∞/F )]]S)×/Zp[[Gal(F∞/F )]]× ≅ K0(Zp[[Gal(F∞/F )]], S).
Under this identification, it corresponds to the class [e−TpMF∞

ΣF∞ ,TF∞
]−1.

Furthermore, the interpolation property (11) in Corollary 15.3 shows that

the element L⊛,−
F∞/F (W,k!(Zp)U(1))−1 agrees with the element e+ + θ

(∞)
Σ,T with

Σ ∶= X −W , T ∶= W − U in the notation of [GP15, Def. 5.16]. In particular,
we recover the version of the equivariant main conjecture formulated in [GP15,
Thm. 5.6] as a special case of Corollary 17.4.
In the same way, one can also recover its non-commutative generalisation in
[Nic13, Thm. 3.3], which states that Nickel’s non-commutative Fitting invariant
of e−TℓMF∞

ΣF∞ ,TF∞
is generated by the reduced norm of L⊛,−

F∞/F,Σ,T(Zℓ(1)). By
the argument before [Nic13, Conj. 2.1], this is in fact equivalent to Cor. 17.4.
However, Nickel only considers the case that F∞/F is unramified over W .
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With some technical effort, one can further extend Prop. 17.2 and Cor. 17.4 by
allowing U to contain a finite number of points x such that F∞/F is ramified
over x, but with a ramification index prime to ℓ. The interested reader may
consult [Wit17, Ch. 5, Ch. 6] for a detailed exposition, which parallels the
discussion in [Wit13c] on the same phenomenon in the function field case.

Appendix: Localisation in polynomial rings

Let R be any associative ring with 1 and let R[t] be the polynomial ring
over R in one indeterminate t that commutes with the elements of R. Write
SP(R[t]) and P(R[t]) for the Waldhausen categories of strictly perfect and
perfect complexes of R[t]-modules. Consider R as a R-R[t]-bimodule via the
augmentation map

R[t]→ R, t↦ 0.

We then define full subcategories

SP
wt(R[t]) ∶= {P ● ∈ SP(R[t]) ∣R⊗R[t] P ● is acyclic},

P
wt(R[t]) ∶=

{P ● ∈ P(R[t]) ∣ P ● is quasi-isomorphic to a complex in SP
wt(R[t])}.

These categories are in fact Waldhausen subcategories of SP(R[t]) and
P(R[t]), respectively, since they are closed under shifts and extensions [Wit08,
3.1.1]. We can then construct new Waldhausen categories wtSP(R[t]) and
wtP(R[t]) with the same objects, morphisms, and cofibrations as SP(R[t])
and P(R[t]), but with weak equivalences being those morphisms with cone
in SP

wt(R[t]) and P
wt(R[t]), respectively. By the approximation theorem

[TT90, 1.9.1], the inclusion functor wtSP(R[t]) → wtP(R[t]) induces isomor-
phisms

Kn(wtSP(R[t])) ≅ Kn(wtP(R[t]))
for all n ≥ 0.
It might be reassuring to know that, if R is noetherian, we can identify these
K-groups for n ≥ 1 with the K-groups of a localisation of R[t]: Set

St ∶= {f(t) ∈ R[t] ∣ f(0) ∈ R×}
Proposition A.1. Assume that R is noetherian. Then St is a left (and right)
denominator set in the sense of [GW04, Ch. 10] such that the localisation
R[t]St

exists and is noetherian. Its Jacobson radical Jac(R[t]St
) is generated

by the Jacobson radical Jac(R) of R and t. In particular, if R is semi-local,
then so is R[t]St

.
Moreover, the category SP

wt(R[t]) consists precisely of those complexes P ● in
SP(R[t]) with St-torsion cohomology. In particular,

Kn(wtSP(R[t])) ≅ Kn(R[t]St
)

for n ≥ 1.
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Proof. Clearly, the set St consists of non-zero divisors, such that we only need
to check the Ore condition:

∀s ∈ St∶ ∀a ∈ R[t]∶ ∃x ∈ R[t]∶ ∃y ∈ St∶xs = ya.
Moreover, we may assume that s(0) = y(0) = 1. Write

s = 1 −
∞

∑
i=1

sit
i, a =

∞

∑
i=0

ait
i, x =

∞

∑
i=0

xit
i, y = 1 +

∞

∑
i=1

yit
i.

and assume that si = ai−1 = 0 for i > n. Comparing coefficients, we obtain the
recurrence equation

(∗) xi =
i−1

∑
j=0

xjsi−j +
i

∑
j=1

yjai−j + ai =
i

∑
j=1

yjbi−j + bi

with

bi ∶=
i−1

∑
j=0

bjsi−j + ai.

Write Bi ∶= (bi−n+1, . . . , bi) ∈ Rn with the convention that bi = 0 for i < 0. Then
for i ≥ n

Bi = Bi−1S = Bn−1S
i−n+1

with

S ∶=

⎛⎜⎜⎜⎝

0 . . . . . . sn
1 ⋱ sn−1
0 ⋱ 0 ⋮

⋮ 1 s1

⎞⎟⎟⎟⎠
.

Since R was assumed to be noetherian, there exists a m ≥ n and yn, . . . , ym ∈ R
such that

0 =
m

∑
j=n

yjBm−j +Bm =
m

∑
j=n

yjBi−j +Bi

for all i ≥m. Hence, we can find a solution (xi, yi)i=0,1,2... of equation (∗) with
xi = yi = 0 for i > m and yi = 0 for i < n. This shows that St is indeed a left
denominator set such that R[t]St

exists and is noetherian [GW04, Thm. 10.3,
Cor. 10.16].
Let N ⊂ R[t] be the semi-prime ideal of R[t] generated by t and the Jacobson
ideal Jac(R) of R. Then St is precisely the set of elements of Λ[t] which are
units modulo N . In particular, the localisation NSt

is a semi-prime ideal of
R[t]St

such that

R[t]St
/NSt

= R[t]/N = R/Jac(R)
[GW04, Thm. 10.15, 10.18]. We conclude Jac(R[t]St

) ⊂ NSt
. For the other

inclusion it suffices to note that for every s ∈ St and every n ∈ N , the element
s + n is a unit modulo N .
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The Nakayama lemma implies that for any noetherian ring R with Jacobson
radical Jac(R), a strictly perfect complex of R-modules P ● is acyclic if and
only if R/Jac(R) ⊗R P ● is acyclic. Hence, if P ● is a strictly perfect com-
plex of R[t]-modules, then R ⊗R[t] P ● is acyclic if and only if R[t]St

⊗R P
●

is acyclic. This shows that SP
wt(R[t]) consists precisely of those complexes

P ● in SP(R[t]) with St-torsion cohomology. From the localisation theorem in
[WY92] we conclude that the Waldhausen exact functor

wtSP(R[t]) → SP(R[t]St
), P ● ↦ R[t]St

⊗R[t] P ●

induces isomorphisms

Kn(wtSP(R[t])) ≅
⎧⎪⎪⎨⎪⎪⎩
Kn(R[t]St

) if n > 0,

im (K0(R[t]) → K0(R[t]St
)) if n = 0.

The set St fails to be a left denominator set if R = Fp⟨⟨x, y⟩⟩ is the power
series ring in two non-commuting indeterminates: a(1 − xt) = by has no solu-
tion with a ∈ R[t], b ∈ St. Note also that a commutative adic ring is always
noetherian [War93, Cor. 36.35]. In this case, St is the union of the comple-
ments of all maximal ideals of Λ[t] containing t and the determinant provides
an isomorphism

K1(wtSP(Λ[t])) ≅ K1(Λ[t]St
) det
ÐÐ→
≅

Λ[t]×St
.

For any adic Zp-algebra Λ and any γ ∈ Γ ≅ Zp, we have a ring homomorphism

evγ ∶Λ[t]↦ Λ[[Γ]], f(t)↦ f(γ).
inducing homomorphisms Kn(Λ[t])→ Kn(Λ[[Γ]]).
Proposition A.2. Assume that γ ≠ 1. Then the ring homomorphism evγ
induces homomorphisms

evγ ∶Kn(wtP(Λ[[t]])) ≅ Kn(wtSP(Λ[t])) → Kn(Λ[[Γ]]S)
for all n ≥ 0.

Proof. It suffices to show that for any complex P ● in SP
wt(Λ[t]), the complex

Q● ∶= Λ[[Γ]]⊗Λ[t] P ●

is perfect as complex of Λ-modules. We can check this after factoring out the
Jacobson radical of Λ [Wit14, Prop. 4.8]. Hence, we may assume that Λ is
semi-simple, i. e.

Λ =
m

∏
i=1

Mni
(ki)
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where Mni
(ki) is the algebra of ni ×ni-matrices over a finite field ki of charac-

teristic p. By the Morita theorem, the tensor product over Λ with the ∏i ki-
Λ-bimodule

m

∏
i=1

kni

i

induces equivalences of categories

SP
wt(Λ[t]) → SP

wt ( n∏
i=1

ki[t]) ,
SP

wH (Λ[[Γ]]) → SP
wH( n∏

i=1

ki[[Γ]]),
with H ⊂ Γ being the trivial subgroup. Hence, we are reduced to the case

Λ =
m

∏
i=1

ki.

In this case, the set S ⊂ Λ[[Γ]] defined in (3.1) consists of all non-zero divisors
of Λ[[Γ]], i. e. all elements with non-trivial image in each component ki[[Γ]].
Since Λ[[Γ]] is commutative, this is trivially a left denominator set. Moreover,
the complex Q● is perfect as complex of Λ-modules precisely if its cohomology
groups are S-torsion. On the other hand, as a trivial case of Proposition A.1,
we know that St is a left denominator set and that the cohomology groups of
P ● are St-torsion. Since f(0) is a unit in Λ for each f ∈ St, the element f(γ)
has clearly non-trivial image in each component ki[[Γ]]. Hence, evγ maps St
to S and Q● is indeed perfect as complex of Λ-modules.
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