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1 Introduction

When investigating smooth group actions on manifolds, an insightful topologi-
cal invariant one associates to it is its equivariant cohomology. (The coefficient
ring throughout this paper is Q, unless otherwise specified.) This remains an
effective tool even in cases when concrete descriptions are hard to obtain. Geo-
metric features of the action are reflected by algebraic properties of its equivari-
ant cohomology. Equivariant formality is an example of such a property, which
is relevant due to its simple definition (see Sect. 2) and to the numerous situa-
tions when it is satisfied, such as Hamiltonian actions of compact Lie groups on
compact symplectic manifolds (cf. [35]) or isotropy actions of compact symmet-
ric spaces (see [19]). A larger class consists of the so-called Cohen-Macaulay
actions, which are defined in Sect. 2 below. Their relevance in the context
of equivariant topology was noticed by several authors already in the 70s and
early 80s: for example, M. F. Atiyah used the Cohen-Macaulay condition to
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study equivariant K-theory for torus actions in [4] and his ideas were adapted
to equivariant cohomology by G. E. Bredon in [8]; see also the paper [15] by
J. Duflot for actions of discrete groups. More recently, Lie group actions whose
equivariant cohomology satisfies the requirement above have been considered
in [18], before being thoroughly investigated in [23] and [24]. They are natu-
ral generalizations of equivariantly formal group actions to the more general
situation when all isotropy subgroups may have their ranks strictly smaller
than the rank of the acting group. Cohen-Macaulay actions are worth study-
ing due to their interesting features: for example, just like in the equivariantly
formal case, a compact Lie group action and the induced action of a maximal
torus satisfy simultaneously this requirement; furthermore, Cohen-Macaulay
actions are characterized by the exactness of a certain Atiyah-Bredon long se-
quence; for more details we refer to Sect. 2.1 and the appendix below. Also,
this condition is satisfied in numerous concrete situations, for example when
the cohomogeneity of the action is zero or one, as it was pointed out in [22].
Cohomogeneity-one actions are special cases of hyperpolar actions. Recall that
an isometric action of a compact connected Lie group on a Riemannian manifold
is polar if there exists a submanifold which is intersected by each orbit of
the action, the orbit being orthogonal to the submanifold at each intersection
point. If the submanifold can be chosen to be flat relative to the induced
Riemannian metric, we say that the action is hyperpolar. In this paper we
will be interested in the case when the manifold on which the group acts is a
Riemannian symmetric space of compact type, that is, a quotient G/H , where
G is a compact connected semisimple Lie group and H a closed subgroup such
that Gσ

0 ⊂ H ⊂ Gσ, where σ is an involutive automorphism of G, Gσ its fixed
point set and Gσ

0 the identity component of the latter group. Polar actions on
compact symmetric spaces have been extensively investigated by many authors,
see for instance [31], [32], [37], [39], [38], and [40]. We will prove the following:

Theorem 1.1. Any hyperpolar action of a compact connected Lie group on a
symmetric space of compact type is Cohen-Macaulay.

The proof relies essentially on the classification of the actions mentioned in the
theorem, which was obtained by A. Kollross in [40]. Before stating this result,
we need to describe an important class of examples of hyperpolar actions on
the symmetric space G/H mentioned above. Let τ be another involutive au-
tomorphism of G and consider its fixed point set, Gτ , along with the identity
component K := Gτ

0 . The action of K on G/H by left translations turns out
to be hyperpolar, see [31, Ex. 3.1]. It is known under the generic name of a
Hermann action, after R. Hermann, who first investigated this situation in [33]
(note that originally, in [33], the group Gτ was assumed to be connected). Ac-
cording to Kollross’ theorem [40], any hyperpolar action is orbit equivalent to
a direct product of actions of one of the following types: transitive, of cohomo-
geneity one, or Hermann (for the notion of orbit equivalence, see Sect. 4). We
already know that any action of one of the first two types is Cohen-Macaulay,
see [22, Cor. 1.2]. Thus, to prove Thm. 1.1, there are two steps to be performed:
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show first that any Hermann action is Cohen-Macaulay and second that the
Cohen-Macaulay property is preserved under orbit equivalence. The first goal
is achieved by the following result:

Theorem 1.2. If G, K, and H are as above, then the (Hermann) action of K
on G/H by left translations is Cohen-Macaulay.

A big part of the paper is devoted to the proof of this theorem, see Sect. 3 (also
note that the result remains true even if G is not necessarily semisimple, see
Rem. 3.5). It is worth recalling at this point a related result, obtained by the
first-named author of this paper in [19], which says that the K-action on G/K
by left translations is equivariantly formal; recently, a conceptually different
proof has been obtained by the second-named author in [29]. Thm. 1.2 above
is a generalization of this (taking into account Prop. 2.7 below). Pairs (G,K)
with the property that the action of K on G/K is equivariantly formal have
also been investigated in [20], [11], [12], [13], and again [29].
The second of the aforementioned goals is to show that the Cohen-Macaulay
property is preserved under orbit equivalence. This turns out to be true: see
Thm. 4.3, which represents the main result of Sect. 4. The proof of Thm. 1.1
is also given in full detail in that section.
Acknowledgement. We would like to thank the referee for numerous valu-
able comments on a previous version of this paper.

2 General considerations

2.1 The action of G on M

Throughout this subsection G will always be a compact and connected Lie
group which acts smoothly on a closed manifold M , although many of the
results presented below hold in a larger generality. To any such action one
attaches the equivariant cohomology H∗

G(M). This can be defined as the usual
cohomology of the Borel construction EG×GM , where EG → BG is the clas-
sifying principal bundle of G. This construction originally belongs to A. Borel
[7] and it became gradually an important tool in the theory of transformation
groups by work of M. F. Atiyah and R. Bott [5], D. Quillen [43], and many
others. The book [3] by C. Allday and V. Puppe is a useful reference for this
topic. We confine ourselves to mentioning the basic fact that H∗

G(M) has a
canonical structure of an H∗(BG)-algebra.
In case H∗

G(M) is free as an H∗(BG)-module, we say that the G-action is
equivariantly formal. Here is a well-known class of examples of such actions
(cf. [28, Thm. 6.5.3]):

Example 2.1. If Hodd(M) = 0 then any G-action on M is equivariantly formal.

The following criterion will be useful later, see [34, p. 46].

Proposition 2.2. Let T be a torus acting on a closed manifold M .

Documenta Mathematica 24 (2019) 1657–1676



1660 O. Goertsches, S. Hagh Shenas Noshari, and A.-L. Mare

(a) The total Betti number of the fixed point set MT is at most equal to the
total Betti number of M .
(b) The two numbers mentioned above are equal if and only if the T -action is
equivariantly formal.

In what follows we will be looking in more detail at the algebraic structure
of H∗

G(M). Relative to its structure of an H∗(BG)-module, it is a positively
graded module over a positively graded ring. The latter, H∗(BG), is a polyno-
mial algebra on generators of even degrees, and thus a commutative, graded,
Noetherian ring. It is also a *local ring, in the sense that it has a unique
graded ideal which is maximal among all graded ideals (namely H>0(BG)).
The theory of graded modules over *local Noetherian rings is nicely treated
in [9, Sect. 1.5]. Let us just briefly recall that to each such module one can
associate its depth, that is, the maximal length of a regular sequence of ele-
ments in the maximal graded ideal. One can also associate its Krull dimension,
which is the Krull dimension of the ring modulo the annihilator of the module.
In general, the latter number is at least equal to the depth. We say that the
module is Cohen-Macaulay if it is equal to 0 or its Krull dimension is equal to
its depth. For a more detailed account of this topic, suitable for applications
to equivariant cohomology, we refer to [24, Sect. 5].

Definition 2.3. A smooth action G × M → M is called Cohen-Macaulay if
H∗

G(M), considered as a module over H∗(BG), is Cohen-Macaulay.

A systematic study of this type of actions was undertaken in [23] and [24]
and we will often rely on results obtained there. However, some caution is
necessary, since in the two references above the coefficient field for cohomology
is R, whereas in this paper it is Q. We will next show that the two seemingly
different Cohen-Macaulayness conditions are in fact equivalent. This will be
done by using the following general result:

Proposition 2.4. Let R and S be two Noetherian *local rings and ϕ : R → S
a ring homomorphism which is homogeneous of degree 0 and maps the maximal
graded ideal m of R into the maximal graded ideal n of S. Assume that both
R/m and S/n are fields. Let A be a finitely generated non-zero R-module and
B a finitely generated non-zero S-module, which is flat over R. Then:
(a) depthS A⊗R B = depthR A+ depthS B/mB;
(b) dimS A⊗R B = dimR A+ dimS B/mB;
(c) The module A⊗RB is Cohen-Macaulay over S if and only if A and B/mB
are Cohen-Macaulay over R and S, respectively.

Proof. In the special case when R and S are just local rings, both (a) and (b)
are standard facts in commutative algebra, cf. e.g. Prop. 1.2.16 and Thm. A.11
in [9]. The general case can be reduced to this special situation by using
localization at the maximal graded ideals. One takes into account that if I is
a graded ideal of R then grade (I, A) = grade (Im, Am), see [9, Prop. 1.5.15
(e)]: this takes care of the three terms involved in equation (a). For (b), one
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uses three times the general formula dimA = dimAm, for which we refer to
the proof of Prop. 5.1 in [24] (note that the argument found there uses the
assumption that R/m is a field).

Corollary 2.5. A group action G × M → M is Cohen-Macaulay in the
sense of Def. 2.3 if and only if H∗

G(M ;R) is Cohen-Macaulay as a module over
H∗(BG;R).

Proof. One applies Proposition 2.4 by taking R = H∗(BG), S = H∗(BG;R),
A = H∗

G(M), and B = H∗(BG;R), in each case with the obvious module
structure; also, take ϕ : H∗(BG) → H∗(BG;R) the inclusion map.

Remark 2.6. The same argument shows that if N is a G-invariant subspace
of M , then the G-equivariant cohomologies H∗

G(M,N) and H∗
G(M,N ;R) as

modules over H∗(BG), respectively H∗(BG;R), have the same depth, the same
Krull dimension, and are thus simultaneously Cohen-Macaulay.

An immediate observation is that any equivariantly formal action is Cohen-
Macaulay. The converse implication is in general not true, as one can easily
see in concrete situations (for example, by [22, Prop. 2.6], any transitive action
is Cohen-Macaulay, without being in general equivariantly formal). However,
the following result is helpful in this context, see [23, Prop. 2.5]:

Proposition 2.7. A smooth action G×M → M is equivariantly formal if and
only if it is Cohen-Macaulay and there exists at least one point in M whose
isotropy subgroup has rank equal to rankG.

For later use, we also mention:

Proposition 2.8. Let G×M → M be a smooth action and T ⊂ G an arbitrary
maximal torus.
(a) The G-action on M is equivariantly formal if and only if so is the induced
T -action.
(b) The G-action on M is Cohen-Macaulay if and only if so is the induced
T -action.

Item (a) is a standard result, see for instance [27, Prop. C.26]. Item (b) is
the content of [23, Prop. 2.9]. It is worth pointing out in this context that if
H ⊂ G is an arbitrary closed subgroup, then the property of being equivariantly
formal is preserved when passing from G to H : indeed, on the one hand, the
G-action is equivariantly formal if and only if the canonical map H∗

G(M) =
H∗(E×GM) → H∗(M) is surjective (cf., e.g., [22, Prop. 2.1]), and on the other
hand the previous map factors as H∗

G(M) → H∗
H(M) → H∗(M). However, it

is possible for the G-action to be Cohen-Macaualy and the H-action not to be
like that, see [23, Ex. 2.13].
From the previous proposition one can deduce:

Corollary 2.9. If two smooth actions on closed manifolds are Cohen-
Macaulay then their direct product is Cohen-Macaulay as well.
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Proof. Let the two group actions be Gi×Mi → Mi and let Ti ⊂ Gi be maximal
tori, where i = 1, 2. By Prop. 2.8 above, the restricted Ti-action on Mi is
Cohen-Macaulay. By [24, Rem. 2], the restricted Ti-action on Mi is Cohen-
Macaulay if and only if there exists a subtorus Si ⊂ Ti of rank equal to the
minimal dimension of a Ti-orbit on Mi, which acts locally freely on Mi such
that the induced action of T/Si on the orbit space M/Si is equivariantly formal.
But then S1×S2 acts locally freely on M1×M2, has rank equal to the minimal
dimension of a T1×T2-orbit on M1×M2 and the induced action of T1/S1×T2/S2

on M1/S1 ×M2/S2 is equivariantly formal (note that equivariant formality is
preserved under taking the direct product). Thus the T1×T2-action on M1×M2

is Cohen-Macaulay, and so is the G1 ×G2-action.

We will need an equivalent characterization of the Cohen-Macaulay condition
above, this time exclusively in terms of the ring structure of H∗

G(M). The latter
is in general not a commutative ring, but it is nevertheless graded commutative,
in the sense that x·y = (−1)(degx)(degy)y ·x, for all homogeneous x, y ∈ H∗

G(M).
Although a self-contained treatment of graded commutative rings is not imme-
diately available in the literature, there is no essential difference relative to the
(usual) commutative case. A systematic and thorough study of graded commu-
tative rings has been undertaken by M. Poulsen in Appendix A of his Master
Thesis [42]. For instance, by using the remark following Prop. A.5 in [42] and
also taking into account that H∗

G(M) is finitely generated as an algebra over its
degree zero component H0

G(M) ≃ Q (see for instance [43, Cor. 2.2]), we deduce
that H∗

G(M) is a Noetherian ring. For graded commutative Noetherian rings of
the type R = ⊕i≥0R

i whose degree zero component R0 is a field, one can see in
[42] that the concepts of Krull dimension, depth (relative to the ideal ⊕i>0R

i),
and Cohen-Macaulayness can be defined in the same way as for commutative
rings. This enables us to prove the following result. It is obtained by adapting
[44, Prop. 12, Sect. IV.B] to our current set-up.

Lemma 2.10. (J.-P. Serre) Let R = ⊕i≥0R
i and S = ⊕i≥0S

i be two graded com-
mutative Noetherian rings with R0 = S0 = Q and ϕ : R → S a homomorphism
of graded rings which makes S into an R-module which is finitely generated.
Let also A be a finitely generated S-module. Then A is Cohen-Macaulay as an
S-module if and only if so is A as an R-module.

Corollary 2.11. The G-action on M is Cohen-Macaulay if and only if the
ring H∗

G(M) is Cohen-Macaulay.

2.2 The action of K on G/H

Let G be again a compact and connected Lie group and let K,H ⊂ G be
closed subgroups. In this section we list some results concerning the three
group actions mentioned in the following proposition.

Proposition 2.12. If K and H are connected, the following assertions are
equivalent:
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(a) the action of K on G/H by left translations is Cohen-Macaulay;

(b) the action of H on G/K by left translations is Cohen-Macaulay;

(c) the action of H ×K on G given by

(h, k) · g = hgk−1, (2.1)

is Cohen-Macaulay.

Proof. For the equivalence between (b) and (c) observe that we have the ring
isomorphisms

H∗
H×K(G) ≃ H∗

H(G/K),

due to the fact that the factor K of the product H ×K acts freely on G. The
equivalence between (a) and (c) can be proved in a similar way, although this
time one also needs to take into account that the H ×K-action in the lemma
is equivalent to the group action (H × K) × G → G, (h, k) · g = kgh−1. The
result now follows from Cor. 2.11.

In the light of item (c) above, the following proposition is useful. It is a direct
consequence of a certain Sullivan model obtained by J. D. Carlson and C.-
K. Fok in [13, Sect. 3.1] (see also [12, Sect. 8.8.3] or [10, end of Sect. 2]), which
describes the equivariant cohomology of actions on G of type (2.1), the acting
group being a general subgroup of G×G. Denote by g, k, h the Lie algebras of
G, K, and H .

Proposition 2.13. (J. D. Carlson and C.-K. Fok) If K and H are connected,
then the equivariant cohomology of the action of H×K on G given by (h, k).g =
hgk−1 depends only on g, h, k, and the inclusions h →֒ g and k →֒ g.

Finally, we mention a result that shows how to deal with the situation when
H is not connected.

Proposition 2.14. Assume K is connected and let H0 be the identity com-
ponent of H. If the K-action on G/H0 is Cohen-Macaulay, then so is the
K-action on G/H.

Proof. Use the characterization given by Prop. 2.12, (c). Note that H0 × K
is the identity component of H ×K, hence H∗

H×K(G) ≃ H∗
H0×K(G)H/H0 . By

hypothesis, H∗
H0×K(G) is Cohen-Macaulay as a module over the ring H∗(BH0×

BK), thus also over its subring H∗(BH ×BK) = H∗(BH0 ×BK)H/H0 , since
the ring is a finitely generated module over the subring and one can use Lemma
2.10. By a standard averaging argument, the invariant module H∗

H0×K(G)H/H0

can be realized as a direct summand of H∗
H0×K(G) in the category of H∗(BH×

BK)-modules, hence it is Cohen-Macaulay.
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3 Hermann actions

In this section we will prove Thm. 1.2. The meaning of G, H , and K is as in
Sect. 1. In particular, the Lie group G is compact, connected, and semisimple
(the case when G is not necessarily semisimple is discussed in Rem. 3.5). Due
to Propositions 2.12 and 2.14, we only need to show that the equivariant co-
homology ring of the H0 ×K-action on G is Cohen-Macaulay. By Prop. 2.13,
we lose no generality by assuming that G is simply connected, since otherwise
we can replace the triple G, H0, K with the universal cover of G along with
its two connected and closed subgroups that are locally isomorphic to H0 and
K respectively. Under the aforementioned assumption, the fixed point sets of
σ and τ are connected, see [30, Thm. 1.8, Ch. VII], and thus equal to H0 and
K respectively.

3.1 The case when G is simple

We will prove Thm. 1.2 under the assumption that G is simple and simply
connected, which is valid throughout the whole subsection. The induced auto-
morphisms of g will also be denoted by σ and τ . In general, we will not make
any notational distinction between an automorphism of G and the induced Lie
algebra automorphism.

Lemma 3.1. Assume G is not equal to Spin(8). If rankK ≤ rankH, then a
maximal torus in K is group-conjugate with a subgroup of H.

Proof. If one of σ or τ is an inner automorphism, the claim in the lemma is
clear by [30, Thm. 5.6, p. 424]. From now on we will assume that both σ and
τ are outer automorphisms of G. Let TK ⊂ K be an arbitrary maximal torus.
There is a unique maximal torus T in G such that TK ⊂ T ; furthermore, T is
τ -invariant and there is a Weyl chamber C in t := Lie(T ) which is τ -invariant
as well (see [41, Prop. 3.2, p. 125]). Let c : G → G be an inner automorphism
such that the torus S := c(T ) contains TH , the latter being a maximal torus
in H . As before, there exists a Weyl chamber C′ ⊂ c(t) which is invariant
under σ. On the other hand, cτc−1 is an involutive automorphism of G which
leaves S invariant; it even leaves the chamber c(C) (inside the Lie algebra of S)
invariant. But the chambers c(C) and C′ are conjugate under the Weyl group
of (G,S); that is, there exists an inner automorphism, say c′, such that

c′(S) = S and c′(C′) = c(C).

We now compare the involutions cτc−1 and c′σc′−1 of G: they both leave the
torus S invariant, and along with it, its Lie algebra and the chamber c(C) inside
it: both are realized in terms of permuting the simple roots that determine the
chamber, the permutation being necessarily a Dynkin diagram automorphism.
Since G is different from Spin(8), there is a unique such (involutive) permu-
tation which is not the identity map. But none of the automorphisms cτc−1

and c′σc′−1 is inner, thus by composing them and then restricting the result to
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the chamber c(C), one gets the identity map; as an automorphism of G, this
composition must consequently be an inner automorphism cg defined by some
g ∈ S. That is,

cτc−1 = c′σc′−1cg.

Notice that the automorphism in the left hand side of the previous equation
leaves c(TK) ⊂ S pointwise fixed. Consequently, c′σc′−1 does the same. In
other words, c(TK) is contained in the fixed point set of c′σc′−1, which is just
c′(H). This finishes the proof.

Proof of Thm. 1.2 in the case G simple. First assume that G is different
from Spin(8). By Prop. 2.12, we may assume that rankK ≤ rankH . Thus,
by Lemma 3.1, there exists T ⊂ K a maximal torus and g0 ∈ G such that
g0Tg

−1
0 ⊂ H . The actions K × G/H → G/H and g0Kg−1

0 × G/H → G/H
given by left translation are equivalent, relative to the map

(K,G/H) → (g0Kg−1
0 , G/H), (k, gH) 7→ (g0kg

−1
0 , g0gH).

Thus it is sufficient to show that the g0Kg−1
0 -action on G/H is Cohen-

Macaulay. Equivalently, by means of Prop. 2.8 above, that the action of g0Tg
−1
0

on G/H is so. But this is clear, because, by the main result in [19], the action
of H on G/H is equivariantly formal.
If G = Spin(8), then, as in the proof of Lemma 3.1, we can assume that both
σ and τ are outer automorphisms. It is known that the group of outer auto-
morphisms of Spin(8) is isomorphic to the symmetric group Σ3 on three letters
and the fixed point set of any order-two outer automorphism is isomorphic to
Spin(7), giving rise to a copy of the symmetric space Spin(8)/Spin(7) = S7

(cf. [1, Sect. 2]). Thus Thm. 1.2 is a consequence of Lemma 3.2 below. �

Lemma 3.2. Any smooth action of a compact connected Lie group on a closed
manifold which is a rational cohomology sphere is Cohen-Macaulay.

Proof. If the dimension of the sphere is even, the lemma is a consequence of
Ex. 2.1. To deal with the remaining situation, we use Prop. 2.8 (b), which
enables us to only consider the action of a torus T on X , where X is a closed
manifold with H∗(X) ≃ H∗(S2n+1) as vector spaces, for some n ≥ 0. In
particular, the total Betti number dimH∗(X) is equal to 2. In case the fixed
point set XT is non-empty, the latter is a union of closed submanifolds of X .
By Prop. 2.2, dimH∗(XT ) is thus a strictly positive number at most equal
to 2. On the other hand, the Euler-Poincaré characteristics of X and XT are
equal, see e.g. [36, Thm., (4)] or [25, Thm. 9.3]; thus dimH∗(XT ) is an even
number. We conclude that the latter number is equal to 2, hence the T -action
on X is equivariantly formal and consequently Cohen-Macaulay.
Let us now consider the case when the set XT is empty. There exists a one-
dimensional subtorus S ⊂ T whose action on X is locally free. One can compute
the cohomology of the orbit space X/S by means of the following version of
the Gysin sequence (cf. [14, Lemma 2.2]):

. . . → Hj(X/S) → Hj+2(X/S) → Hj+2(X) → Hj+1(X/S) → . . . .
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It follows that H∗(X/S) ≃ H∗(CPn) by an isomorphism of vector spaces.
Consequently, by Ex. 2.1, the canonical action of T/S on X/S is equivariantly
formal, hence, by Cor. 2.11, the ring H∗

T/S(X/S) is Cohen-Macaulay. To con-
clude the proof, it only remains to notice that we have the ring isomorphism

H∗
T (X) ≃ H∗

T/S(X/S).

3.2 The case when G is not simple

From now on, G is just simply connected, not necessarily being simple. Our
main tool in dealing with this situation is the following result, see [40, Prop. 18]:

Proposition 3.3. (A. Kollross) If G is simply connected then the H-action on
G/K is a direct product of actions of one of the following types:

(i) the action of H ′ × Ln−1 ×K ′ on Ln defined by

(h, g1, . . . , gn−1, k) · (x1, . . . , xn)

= (hx1g
−1
1 , g1x2g

−1
2 , . . . , gn−2xn−1g

−1
n−1, gn−1xnk

−1),

(ii) the action of H ′ × Ln−1 on Ln−1 × L/K ′ defined by

(h, g1, . . . , gn−1) · (x1, . . . , xn−1, xnK
′)

= (hx1g
−1
1 , g1x2g

−1
2 , . . . , gn−2xn−1g

−1
n−1, gn−1xnK

′),

(iii) the action of Ln−1 on H ′\L× Ln−2 × L/K ′ defined by

(g1, . . . , gn−1) · (H
′x1, x2, . . . , xn−1, xnK

′)

= (H ′x1g
−1
1 , g1x2g

−1
2 , . . . , gn−2xn−1g

−1
n−1, gn−1xnK

′),

(iv) the action of Ln on Ln defined by

(g1, . . . , gn) · (x1, . . . , xn)

= (g1x1g
−1
2 , g2x2g

−1
3 , . . . , gn−1xn−1g

−1
n , gnxnα(g1)

−1),

where L is a simply connected, simple and compact Lie group, H ′,K ′ ⊂ L are
fixed points of involutions of L, α is an outer or trivial automorphism of L,
and n is an arbitrary integer, at least equal to 1 in cases (i), (ii), and (iv),
respectively to 2 in case (iii).

For the reader’s convenience, here are a few details concerning this result.
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Remark 3.4. (a) Proposition 3.3 above is just a consequence of the result
actually proved in [40]. Namely, we are here in the special case when G is
simply connected. Thus our H-action on G/K is of the Hermann type in the
sense of [40, Def. 15] (see the definition of locally symmetric subgroups at the
beginning of [40, Sect. 2] and also recall the well-known fact that the identity
component of the isometry group of the symmetric space G/K is just G). Under
the hypothesis mentioned above, G/K is simply connected as well, hence the
H-action on G/K is not only locally conjugate to one of the types (i)-(iv), as
the result in [40] says, but genuinely conjugate.
(b) We also wish to explain the meaning of the number n in the proposition
above. It comes from the structure of G/K. For example, in case (i) the pair
(G,K) is equal to (L × · · · × L,∆(L) × · · · × ∆(L)), where the first direct
product has 2n factors, the second has n, and ∆(L) := {(g, g)|g ∈ L}. The
cases (ii)-(iv) are left as an exercise to the reader.

In view of Cor. 2.9, to prove Thm. 1.2 for G semisimple it is sufficient to show
that the actions (i)-(iv) are Cohen-Macaulay.
Let us start with (i). We use an inductive argument. Note that the first factor
L in H ′ × Ln−1 ×K ′ acts freely on Ln, the orbit space being diffeomorphic to
Ln−1 via

Ln/L → Ln−1, (x1, x2, . . . , xn) 7→ (x1x2, x3 . . . , xn).

Thus it is sufficient to prove that the action of H ′ ×Ln−2 ×K ′ on Ln−1 given
by

(h, g2, . . . , gn−1, k) · (x2, . . . , xn)

= (hx2g
−1
2 , g2x3g

−1
3 , . . . , gn−2xn−1g

−1
n−1, gn−1xnk

−1),

is Cohen-Macaulay. We continue the procedure and gradually drop out the
L-factors in H ′ ×Ln−1 ×K ′ until we finally obtain the action of H ′ ×K ′ on L
given by (h, k) · x = hxk−1. But this action is Cohen-Macaulay by the result
already proved in Subsect. 3.1 (see also Prop. 2.12).
To deal with (ii), we start by modding out the action of the first factor L in
H ′ × Ln−1, which is clearly a free action. In this way, we reduce the problem
to showing that the action of H ′ × Ln−2 on Ln−2 × L/K ′ described by

(h, g2, . . . , gn−1) · (x2, . . . , xn−1, xnK
′)

= (hx2g
−1
2 , g2x3g

−1
3 , . . . , gn−2xn−1g

−1
n−1, gn−1xnK

′),

is Cohen-Macaulay. We continue the procedure until we are led to the action
of H ′ on L/K ′ given by left translations. Again, this action is Cohen-Macaulay
by the result we proved in Subsect. 3.1.
Similarly, in case (iii) we reduce the problem to the action of L on H ′\L×L/K ′

described by g · (H ′x1, x2K
′) = (H ′x1g

−1, gx2K
′). The map

H ′\L× L/K ′ → L/H ′ × L/K ′, (H ′x1, x2K
′) 7→ (x−1

1 H ′,K ′x2)
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is an L-equivariant diffeomorphism. This allows us to change our focus to the
action of ∆(L) := {(g, g) | g ∈ L} on (L × L)/(H ′ × K ′) by left translations.
By Prop. 2.12, this is Cohen-Macaulay if and only if so is the action of H ′×K ′

on (L × L)/∆(L). But the latter is just the action of H ′ ×K ′ on L given by
(h, k) · x = hxk−1, which was discussed in Subsect. 3.1.
As about (iv), the recursive procedure already used in each of the previous cases
leads us to the action of L on itself given by g ·x = gxα(g)−1. It was proved by
Baird in [6, p. 212] (cf. also [45, p. 58]) that all isotropy groups of this action
have the same rank. By [23, Cor. 4.3], the action is thus Cohen-Macaulay.

Remark 3.5. Thm. 1.2 holds even when G is not necessarily semisimple. To
prove this, consider a finite cover of G of the type T×Gs, where T is a torus and
Gs is compact, connected, and simply connected. In view of Propositions 2.12,
2.13, and 2.14 it is sufficient to consider the case when G is equal to such a direct
product and H is the identity component of Gτ . But then both σ and τ leave
the factors T and Gs invariant. Their fixed point sets split as direct products
of subgroups of T and Gs respectively; that is, H0 = T1×Hs and K = T2×Ks,
where T1, T2 ⊂ T are subtori and Hs,Ks ⊂ Gs. The H0 ×K-action on G can
be described as follows:

((t1, h), (t2, k)) . (t, g) =
(

t1tt
−1
2 , hgk−1

)

.

This is the direct product of the following two actions:

(T1 × T2)× T → T, (t1, t2) · t = t1tt
−1
2

(Hs ×Ks)×Gs → Gs, (h, k) · g = hgk−1.

In view of Cor. 2.9, it is sufficient to observe that both of them are Cohen-
Macaulay: for the first factor, one observes that the kernel of the T1×T2-action
on T is isomorphic to T1∩T2, and an arbitrary direct complement of its identity
component acts locally freely; for the second factor, one uses Thm. 1.2.

We conclude the section with a remark concerning equivariant formality of
Hermann actions:

Remark 3.6. Let G,K, and H be as in Thm. 1.2. The action of K on G/H
is equivariantly formal if and only if a maximal torus in K is conjugate with
a subgroup of H (note that the latter condition is equivalent to the existence
of a fixed point for the action of the maximal torus in K, which is necessary
for the equivariant formality of the K-action; the other implication is proved
by invoking the main result of [19] as in the proof of Thm. 1.2 in the case G
simple). In particular, rankK ≤ rankH . We note that the latter condition
alone is not sufficient for equivariant formality. Take for instance two Dynkin
diagram involutions of Spin(8) which are not conjugate with each other. Their
fixed point sets, H and K respectively, are both isomorphic to Spin(7). It turns
out that the action of H on Spin(8)/K ≃ S7 by left translations is transitive,
with isotropy subgroups isomorphic to the exceptional compact Lie group of
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type G2, see e.g. [46, Thm. 3]. Thus this action is not equivariantly formal.
It is interesting to notice, however, that if G is simple and simply connected,
G 6= Spin(8), then the condition rankK ≤ rankH is sufficient for the K-action
on G/H to be equivariantly formal: this follows from Lemma 3.1 above.

4 Orbit equivalent actions

We start by proving the following two lemmata, whose relevance will become
clear immediately:

Lemma 4.1. Let M be a closed manifold and K,K ′ two compact and connected
Lie groups that act on M such that K ⊆ K ′ and Kp = K ′p for all p ∈ M .
Then the K-action on M is Cohen-Macaulay if and only if so is the K ′-action.

Proof. Let b denote the maximal rank of an isotropy subgroup of the K-action
and Mb,K the subspace of M consisting of all points whose isotropy group has
rank equal to b. In the same way, to the action of K ′ one assigns the number b′

and the subspace Mb′,K′ . For any p ∈ M we have Kp = K ′p. In general, if G
is a compact Lie group and U ⊂ G a closed subgroup, then the rank χπ(G/U)
of the homogeneous space G/U is a homotopy invariant, which turns out to be
equal to the difference rankU−rankG (see [2, Def. Sect. 1.1 and Sect. 4.2]). In
our situation, for any p ∈ M we have Kp = K ′p, and hence the homogeneous
spaces K/Kp and K ′/K ′

p are diffeomorphic, where Kp and K ′
p are the isotropy

subgroups at p. We deduce

rankK − rankKp = rankK ′ − rankK ′
p. (4.1)

(We note that the same argument was used in [26, Prop. 7]; we could also just
apply the latter proposition to the K- and K ′-actions on Kp = K ′p to obtain
the same conclusion.) Eq. (4.1) implies:

Mb,K = Mb′,K′ . (4.2)

Pick maximal tori T in K and T ′ in K ′ such that T ⊂ T ′. The minimal di-
mension of a T -orbit in M is rankK − b, cf. e.g. [23, Lemma 4.1]. Similarly,
the minimal dimension of a T ′-orbit in M is rankK ′ − b′. But the two afore-
mentioned numbers are the K-, respectively K ′-coranks of any point in Mb,K

respectively Mb′,K′ , hence, by eq. (4.2), they are equal. Thus, there exists a
subtorus S ⊂ T of rank equal to the two numbers which acts locally freely on
M .

The sets Mb,T and Mb′,T ′ defined in the same way as before are non-empty,
clearly contained in Mb,K and Mb′,K′ respectively. The K-action on Mb,K is
Cohen-Macaulay, see [23, Cor. 4.3]. Consequently, this time by Prop. 2.8 (b)
and Cor. 2.11, H∗

T (Mb,K) is a Cohen-Macaulay ring. Since S ⊂ T acts locally
freely, the latter ring is isomorphic to H∗

T/S(Mb,K/S).

Documenta Mathematica 24 (2019) 1657–1676



1670 O. Goertsches, S. Hagh Shenas Noshari, and A.-L. Mare

On the other hand, the T/S-action on Mb,K/S admits points that are fixed.
Namely, they are orbits of the form Sp such that Sp = Tp, which implies that

corankT Tp = rankS. (4.3)

But if p ∈ M satisfies the latter condition, then Sp is a connected and closed
submanifold of Tp, of the same dimension as the latter, hence Sp = Tp. Thus
condition (4.3) characterizes the fixed points. Since rankS = rankT − b, that
condition is actually equivalent to p ∈ Mb,T . We have actually proved:

(M/S)T/S = (Mb,K/S)T/S = Mb,T /S. (4.4)

From the previous considerations, the T/S-action on Mb,K/S is equivariantly
formal. Consequently, by eq. (4.4),

dimH∗(Mb,K/S) = dimH∗(Mb,T /S). (4.5)

In the same way, one analyzes the K ′-action on M and obtains

(M/S)T
′/S = (Mb′,K′/S)T

′/S = Mb′,T ′/S. (4.6)

as well as
dimH∗(Mb′,K′/S) = dimH∗(Mb′,T ′/S). (4.7)

We are now in a position to prove the equivalence stated in the lemma. First,
the K-action on M is Cohen-Macaulay if and only if so is the induced T -action,
see Prop. 2.8 (b). But H∗

T (M) = H∗
T/S(M/S) and the T/S-action on M/S

admits fixed points, thus the latter Cohen-Macaulay condition is equivalent to:
the T/S-action on M/S is equivariantly formal. Equivalently, by eqs. (4.4) and
(4.5),

dimH∗(M/S) = dimH∗(Mb,K/S).

In exactly the same way, this time by using eqs. (4.6) and (4.7), the K ′-action
on M is Cohen-Macaulay if and only if

dimH∗(M/S) = dimH∗(Mb′,K′/S).

The proof is completed by taking into account eq. (4.2).

Lemma 4.2. Let M be a closed manifold and K a compact and connected Lie
group that acts smoothly on M . Let also H ⊂ K be the kernel of the action.
Then the K-action on M is Cohen-Macaulay if and only if so is the K/H-
action.

Proof. Let b and Mb,K be as in the proof of Lemma 4.1. Pick maximal tori
T and T ′ in K and H respectively such that T ′ ⊂ T . Again, let S ⊂ T be a
subtorus of rank equal to rank T − b whose action on M is locally free. We
already noticed that the K-action on M is Cohen-Macaulay if and only if

dimH∗(M/S) = dimH∗(Mb,T /S).
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Observe that there exists a maximal torus T1 ⊂ K/H along with a covering
map T/T ′ → T1. Furthermore, for the K/H-action on M , the maximal rank
of an isotropy subgroup is b1 := b − rankH. Since the intersection T ′ ∩ S is
finite, the image S1 of S under the projection T → T/T ′ → T1 is a subtorus of
rank equal to rankS = rankT1 − b1 which acts locally freely on M . As before,
the K/H-action on M is Cohen-Macaulay if and only if

dimH∗(M/S1) = dimH∗(Mb1,T1
/S1).

But M/S1 = M/S and Mb1,T1
= Mb,T , thus the equivalence stated in the

lemma is clear.

Let us now recall that two isometric actions of two connected compact Lie
groups on a Riemannian manifold are orbit equivalent if there is an isometry
of the manifold to itself which maps each orbit of the first group action to an
orbit of the second one.

Theorem 4.3. Let M be a compact Riemannian manifold and K a connected
and closed subgroup of the isometry group of M . Assume that the K-action on
M is orbit equivalent to a Cohen-Macaulay action on M . Then the K-action
is Cohen-Macaulay as well.

Proof. Let G be the isometry group of M . By hypothesis, there exists a con-
nected and closed subgroup K ′ ⊂ G whose canonical action on M is Cohen-
Macaulay such that the actions of K and K ′ on M are orbit equivalent (notice
that a priori K ′ might not be contained in G; in this case, we mod out the
kernel of its action on M and use Lemma 4.2 above). Thus there exists an isom-
etry f : M → M which maps any K-orbit to a K ′-orbit. Consider the closed
subgroup K ′′ of G generated by f−1K ′f and K. Note that K ′′ is connected.
The key-observation is that for any p ∈ M , we have

Kp = (f−1K ′f)p = K ′′p. (4.8)

The first equality is clear and immediately implies the second.
Due to eq. (4.8), the result stated in the theorem is a direct consequence of
Lemma 4.1, used twice.

We are now in a position to prove the main result of the paper:
Proof of Thm. 1.1. As already mentioned in the introduction, Kollross has
shown in [40] that any hyperpolar action is orbit equivalent to a direct product
of actions of one of the following types: transitive, of cohomogeneity one, or
Hermann. We know that an action of each of these three types is Cohen-
Macaulay: for the first two, see [22, Cor. 1.2], for the last, use Thm. 1.2. We
apply Thm. 4.3: even though the acting group is not necessarily a subgroup of
Iso(M), we can mod out the kernel of the action and use Lemma 4.2. �

Remark 4.4. It would be interesting to find a classification-free proof of
Thm. 1.1, using the very definition of a hyperpolar action.
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A The non-abelian Atiyah-Bredon exact sequence for Cohen-

Macaulay actions

Although not directly related to the main topic of this paper, the following
result is devoted to illustrate the importance of showing that a group action
is Cohen-Macaulay. In the special case when the acting group is abelian, the
result was proved by the first-named author of this paper and D. Töben in
[24]. For an arbitrary (compact and connected) acting group, versions of it
were obtained by M. Franz in [16]. We refer to the two papers above for a
discussion concerning the history of the topic, which goes back to M. Atiyah
[4] and G. E. Bredon [8].
Let M be a closed manifold equipped with a smooth action of a compact and
connected Lie group G and let b be the maximal rank of a G-isotropy subgroup.
(Note that b is in general smaller than the rank of G.) The corresponding orbit
filtration is defined by

Mi := {p ∈ M | rankGp ≥ i},

where i is arbitrary between 0 and b + 1. For any 1 ≤ i ≤ b, consider the map

H∗
G(Mi,Mi+1) → H∗+1

G (Mi−1,Mi),

which is the connecting homomorphism in the long exact sequence in G-
equivariant cohomology of the triple (Mi−1,Mi,Mi+1). By concatenating these
maps one obtains the following long sequence:

0 → H∗
G(M) → H∗

G(Mb) → H∗+1
G (Mb−1,Mb) → . . . (A.1)

. . . → H∗+b−1
G (M1,M2) → H∗+b

G (M,M1) → 0,

which we call the Atiyah-Bredon sequence.

Theorem A.1. The G-action on M is Cohen-Macaulay if and only if the
Atiyah-Bredon sequence is exact.

Proof. The result follows using the same argument as in the proof of [24,
Thm. 6.1], cf. also [18, Sect. 4]. The main ingredients in the proof are:

• The exactness of the sequence (A.1) is equivalent to the exactness of

0 → H∗
G(M,Mi) → H∗

G(Mi−1,Mi) → H∗+1
G (M,Mi−1) → 0,

for any 1 ≤ i ≤ b; in other words, the long exact sequence of the triple
(Mi−1,Mi,Mi+1) splits into short exact sequences. This can be shown
going along the same lines as in the proof of [17, Lemma 4.1].

• For any 1 ≤ i ≤ b, the Krull dimension of H∗
G(M,Mi) is at most i − 1.

This is the content of [18, Lemma 4.4] in the case when the acting group is
abelian; the arguments of the proof carry over to the general situation, see
[21, Lemma 2.1] (this result was proved for cohomology with coefficients
in R, thus it consequently holds for coefficients in Q, see Remark 2.6
above).
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• For any 1 ≤ i ≤ b, H∗
G(Mi−1,Mi) is Cohen-Macaulay of dimension i− 1.

For this, we refer to [16, Cor. 1].
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