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Abstract. The purpose of this article is to study Ezra Getzler’s
approach to the Atiyah-Singer index theorem from the perspective
of Alain Connes’ tangent groupoid. We shall construct a “rescaled”
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1 Introduction

In this paper we shall investigate the relationship between Alain Connes’ tan-
gent groupoid [Con94, Sec. II.5] and Ezra Getzler’s approach to the Atiyah-
Singer index theorem for the Dirac operator on a spin manifold [Get83, BGV92].
We shall construct a variation of Connes’ convolution algebra for the tangent
groupoid that incorporates Getzler’s rescaling of Clifford variables. The new
algebra carries a family of supertraces that smoothly vary between operator
traces and an integral of differential forms (and so in index-theoretic contexts,
where the operator traces are integer-valued, the integral of differential forms
actually computes the operator trace).
Connes introduced the tangent groupoid in order to conceptualize the construc-
tion by Atiyah and Singer [AS68] of the K-theoretic analytic index map,

Inda : K(T ∗M) −→ Z,

and thereby streamline the K-theory proof of the Atiyah-Singer index theorem.
In contrast, Getzler’s approach to the index theorem was purely local in char-
acter, and on the surface at least, quite far removed from global, K-theoretic
considerations. So it is an interesting problem to try to harmonize the two
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1678 Nigel Higson and Zelin Yi

approaches. The issue has certainly been considered by others, but as far as
we are aware little has been published on this topic. It is the purpose of this
paper to help fill this gap.
We should say at the outset that virtually everything that follows is implicit ei-
ther in Getzler’s original work or in Connes’ definition of the tangent groupoid.
But a fresh looks seems to be worthwhile, especially in view of the new role
that these ideas are finding in Bismut’s work on the hypoelliptic Laplacian; see
for example [Bis11]. The latter was, in fact, an important motivation for us.
The tangent groupoid of a smooth manifoldM is, among other things, a smooth
manifold TM equipped with a submersion onto M×R via the source map that
is part of the groupoid structure. The fibers of the source map have the form

TM(m,λ)
∼=

{
M λ 6= 0

TmM λ = 0.
(1.0.1)

So the tangent groupoid smoothly interpolates between the curved manifold
M and its linear tangent spaces.
Now let D be a linear partial differential operator on M . For m ∈ M , denote
by Dm the constant-coefficient, linear partial differential model operator on
the tangent space TmM that is obtained by freezing the coefficient functions
for D in local coordinates at m, and then dropping lower-order terms; the
resulting operator is invariantly defined on the tangent space and carries the
same information as the principal symbol of D at m. The foundation of the
relationship between the tangent groupoid and partial differential operators,
and eventually between the tangent groupoid and index theory, is the following
result:

Theorem. If D has order q, then the operators

D(m,λ) =

{
λqD λ 6= 0

Dm λ = 0

constitute, under the identifications (1.0.1), a smooth family of differential op-
erators on the source fibers of the tangent groupoid.

The theorem is easy to prove, as we shall recall in Section 2. In fact it is more
or less incorporated into the definition of the tangent groupoid.
Suppose now that M is a Riemannian spin manifold with spinor bundle S. In
Section 3 we shall construct from S a smooth vector bundle S on TM whose
restrictions to the fibers in (1.0.1) are as follows:

S|TM(m,λ)
∼=

{
S ⊗ S∗

m λ 6= 0

∧∗TmM λ = 0.
(1.0.2)

The most important, and indeed defining, feature of S, is its relation to Getzler’s
filtration of the algebra of linear partial differential operators acting on the
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sections of the spinor bundle [Get83]. The filtration associates to any operator
D a new family of model operators D〈m〉 on the tangent spaces TmM . These
are typically not constant-coefficient operators, and moreover they reflect the
Riemannian geometry ofM in a rather subtle way. We shall prove the following
result.

Theorem. If D is a linear partial differential operator on M , acting on the
sections of S, and if D has Getzler-order no more than q, then the operators

D(m,λ) =

{
λqD λ 6= 0

D〈m〉 λ = 0

constitute a smooth family of operators on the source-fibers of TM , acting on
the sections of the smooth vector bundle S.

Let us return to Connes’ work. He constructs a convolution algebra C∞
c (TM)

of smooth, compactly supported, complex-valued functions on the tangent
groupoid that brings the geometric object TM into close contact with opera-
tor theory. The tangent groupoid decomposes into a family of smooth, closed
subgroupoids parametrized by λ ∈ R, namely the fibers of the composite sub-
mersion

TM −→ M×R −→ R.

These subgroupoids are

TMλ
∼=

{
M×M λ 6= 0

TM λ = 0,
(1.0.3)

where M×M carries the pair groupoid structure and the tangent bundle TM
is a made into a groupoid using the vector group structures on its fibers. By
restricting functions on TM to these subgroupoids, Connes obtains algebra
homomorphisms

ελ : C
∞
c (TM) −→ K∞(L2(M)) (1.0.4)

for λ 6= 0 and
ε0 : C

∞
c (TM) −→ C∞

c (TM), (1.0.5)

where K∞(L2(M)) is the algebra of smoothing operators on L2(M), and
C∞

c (TM) is the fiberwise convolution algebra of smooth, compactly supported
functions on the tangent bundle. The study of these is the next step in Connes’
K-theoretic approach to index theory—not surprisingly so since at the level of
K-theory, the morphisms (1.0.4) are related to the analytic index of elliptic
operators, whereas (1.0.5) is related to the symbol class in K-theory, and the
index theorem is all about relating these two quantities. See [Con94, Sec. II.5]
or [Hig93], for further details.
We shall explore similar constructions in the spinorial context, although we
shall do so here at the level of supertraces rather than K-theory. The first
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step is to construct a suitable convolution algebra. In Section 4 we shall prove
that the bundle S carries a natural multiplicative structure, which is to say a
smoothly varying and associative family of complex-linear maps

Sγ ⊗ Sη −→ Sγ◦η, (1.0.6)

among the fibers of S, where (γ, η) 7→ γ ◦ η is the tangent groupoid composi-
tion law. Using the multiplicative structure, the space C∞

c (TM, S) of smooth,
compactly supported sections of S may be given a convolution product and
becomes a complex associative algebra.
Of special interest are the multiplication maps (1.0.6) in the case where λ = 0,
so that γ and η correspond to tangent vectors Xm and Ym, and the spaces Sγ
and Sη are copies of ∧∗TmM . We shall compute the multiplication maps in
this case, as follows:

Theorem. When λ = 0 the morphism (1.0.6) is given by the formula

α⊗ β 7−→ α ∧ β ∧ exp
(
− 1

2κ(Xm, Ym)
)
, (1.0.7)

where κ(Xm, Ym) is the Riemannian curvature R(Xm, Ym) viewed as an ele-
ment of ∧2TmM .

Continuing, and following Connes’ work, we can construct algebra homomor-
phisms

ελ : C
∞
c (TM, S) −→ K∞(L2(M,S)) (1.0.8)

for λ 6= 0 and
ε0 : C

∞
c (TM, S) −→ C∞

c (TM,∧∗TM)), (1.0.9)

by restricting sections of S to the subgroupoids (1.0.3). Here K∞(L2(M,S)) is
the algebra of smoothing operators acting on the sections of the spinor bundle,
but the algebra C∞

c (TM,∧∗TM)) is more interesting. It is the algebra of
smooth, compactly supported sections of the pullback of the exterior algebra
bundle of M to TM but with a twisted convolution multiplication related to
(1.0.7).
In Section 5 we shall construct and analyze our family of supertraces

STrλ : C
∞
c (TM, S) −→ C,

parametrized by λ ∈ R. When λ6=0 the supertrace is defined by the diagram

C∞
c (TM, S)

STrλ
((◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

ελ // K∞(L2(M,S))

STr

��
C.

(1.0.10)

Here ελ is the evaluation morphism in (1.0.8) and STr is the standard operator
supertrace. The supertrace STr0 uses the morphism

∫
: C∞

c (TM,∧∗TM)) −→ C
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that is given by restricting a form to the zero sectionM ⊆ TM , then integrating
its top-degree component over M (we use the Riemmanian metric to identify
the top degree component with a top-degree differential form). We define STr0
by means of the diagram

C∞
c (TM, S)

STr0
((❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘

ε0 // C∞
c (TM,∧∗TM))

(2/i)dim(M)/2·
∫

��
C,

(1.0.11)

where ε0 is the evaluation morphism in (1.0.9).

Theorem. If σ ∈ C∞
c (TM, S), then the supertraces STrλ(σ) ∈ C vary smoothly

with λ ∈ R.

As we have already hinted, this is a sort of “index theorem without a Dirac
operator,” which relates the operator supertrace to differential forms, and we
shall conclude the paper with a brief reminder, following Getzler, of how the
actual index theorem for the Dirac operator quickly follows from it.
In future work we aim to study Fréchet and Banach algebra completions of the
convolution algebra C∞

c (TM, S) from a K-theoretic perspective, and also con-
sider variations appropriate to other occurences of Getzler’s rescaling method,
for instance in the work on the hypoelliptic Laplacian that we already men-
tioned.

2 The Tangent Groupoid

In this section we shall review the construction of the tangent groupoid and
discuss its relations with linear partial differential operators. The tangent
groupoid is a special case of the deformation to the normal cone construction
from algebraic geometry, and generally speaking we shall follow the algebraic
geometric approach towards its definition. The particular adaptations needed
to handle smooth manifolds as opposed to algebraic varieties are taken from
[HSSH18]. (A more direct account would be possible, see for instance [Hig10],
but it would be a bit less convenient for our later purposes.)

2.1 Deformation to the Normal Cone

Throughout this section V will be a smooth manifold, andM will be a smoothly
embedded submanifold of V . We shall denote by C∞(V ) the R-algebra of real-
valued smooth functions on V .
Recall that if p is a positive integer, then a smooth, real-valued function on
V is said to vanish to order ≥ p on M if it is locally a sum of products of p
or more smooth, real-valued functions on V , all of which vanish on M . It will
be convenient to extend this concept to nonpositive p: let us agree that if p is
nonpositive, then every smooth, real-valued function vanishes to order ≥ p. We

Documenta Mathematica 24 (2019) 1677–1720



1682 Nigel Higson and Zelin Yi

shall define the deformation space (or deformation to the normal cone) NV M
using the filtration on the smooth, real-valued functions by order of vanishing
on M , as encoded in the following Rees [Ree56] construction:

2.1.1 Definition. Denote by A(V,M) ⊆ C∞(V )[t−1, t] the R-algebra of those
Laurent polynomials ∑

p∈Z

fpt
−p

for which each coefficient fp is a smooth, real-valued function on V that vanishes
to order ≥ p on M (and all but finitely many fp are zero).

2.1.2 Definition. A character of an associative algebra A over R is a non-
zero algebra homomorphism from A to R. The character spectrum of A, which
we shall denote by CharSpec(A), is the set of all characters of A. We equip
CharSpec(A) with the weak topology, that is, the topology with the fewest
open sets for which the evaluation morphisms ϕ 7→ ϕ(a) are continuous.

In the case of A(V,M), two kinds of characters present themselves:

(i) Simple evaluations at points in V and a nonzero values in R, given by the
formula

ε(v,λ) :
∑

p∈Z

fpt
−p 7→

∑

p∈Z

fp(v)λ
−p. (2.1.1)

(ii) Evaluations at normal vectors Xm ∈ TmV/TmM , given by the formula

εXm :
∑

p∈Z

fpt
−p 7→

∑

p≥0

1

p!
Xp

m(fp). (2.1.2)

Here, in order to evaluate the right-hand side, the normal vector Xm ∈
TmV/TmM is first lifted to a tangent vector on V , and then extended to
a vector field X on V , so that the p’th iterated derivative Xp(fp) can be
formed; the value of Xp(fp) at m depends only on the normal vector Xp.

2.1.3 Remark. If M has a Riemannian structure, then the evaluation (2.1.2)
at a normal vector can be written alternatively as

∑

p∈Z

fpt
−p 7→ lim

λ→0

∑

p∈Z

fp(expm(λXm))λ−p, (2.1.3)

which should help explain the phrase “evaluation at a normal vector.” Compare
also Proposition 2.2.5 below.

2.1.4 Theorem (See for example [HSSH18, Sec. 3]). The character spectrum
of the algebra A(V,M) consists precisely of the characters of the form (2.1.1)
and (2.1.2). All of them are distinct, and so the character spectrum may be
identified with the disjoint union

NM×{0} ⊔ V×R×.
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where NM = TV |M/TM is the normal bundle of M in V , and R× = R \
{0}.

2.1.5 Definition. We shall denote by NV M the above character spectrum of
A(V,M).

The topological space NV M may be equipped with a smooth manifold struc-
ture, as follows:

2.1.6 Definition. We shall denote by ANV M the sheaf of those real-valued
continuous functions on (open subsets of) NV M that are locally of the form

CharSpec
(
A(V,M)

)
∋ ϕ 7−→ h(ϕ(f1), . . . , ϕ(fk)) ∈ R,

where k ∈ N, f1, . . . , fk ∈ A(V,M), and where h is a smooth function on Rk.

This is a fine sheaf (that is, there are partitions of unity; see [God58, Sec. 3.7] or
[Wel08, Def. 3.3]), and so it is determined by its space of global sections, which
is the algebra of smooth, real-valued functions on NV M . Nevertheless the sheaf
point of view will be useful later, when we examine sheaves of modules over
NV M .

2.1.7 Theorem (See for example [HSSH18, Sec. 3] again.). The deformation
space NV M carries a unique smooth manifold structure for which ANV M is the
sheaf of smooth, real-valued functions.

Of course every element of A(V,M) can be viewed as a smooth function on
NV M , and from here onwards we shall occasionally refer to A(V,M) as the
coordinate algebra of the deformation space, and use the more suggestive no-
tation

A(NV M) = A(V,M).

Not every smooth function on the deformation space belongs to the coordinate
algebra, since for instance every function in the coordinate algebra is polyno-
mial in each fiber of the normal bundle. Hence the need to consider the sheaf
ANV M above.

2.2 Vector Fields on the Deformation Space

In this subsection we shall present a new view of the characters of A(NV M)
that correspond to tangent vectors. It is an algebraic counterpart of the de-
scription involving the Riemannian exponential map that was mentioned in
Remark 2.1.3, and it will be quite useful to us later on.
We begin with the following very simple fact:

2.2.1 Lemma. Let M be a smooth submanifold of a smooth manifold V and
let X be a vector field on V . If a smooth function f on V vanishes to order
≥ p on M , then X(f) vanishes to order ≥ p−1.
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If follows from Lemma 2.2.1 that the formula
∑

fpt
−p 7−→

∑
X(fp)t

−(p−1) (2.2.1)

defines a derivation of the coordinate algebra A(NV M). We shall study the
action of this derivation on the following quotient of A(NV M):

2.2.2 Definition. We shall denote by A0(NV M) the quotient of A(NV M) by
the ideal generated by t ∈ A(NV M). We shall view A0(NV M) as a graded alge-
bra, with components in degrees p≥0 generated by the images of the elements
fpt

−p (note that the elements fpt
−p with p<0 map to zero in the quotient).

2.2.3 Remark. Thanks to the way that A(NV M) was defined, the quotient
A0(NV M) identifies with the associated graded algebra for the decreasing fil-
tration on C∞(V ) given by order of vanishing on M .

The derivation (2.2.1) annihilates t, and hence it descends to the quotient
algebra A0(NV M). We shall use the following notation:

2.2.4 Definition. If X is a vector field on V , then we shall denote by

X : A0(NV M) −→ A0(NV M)

the derivation on A0(NV M) induced from the derivation of A(NV M) in (2.2.1).

The action of X lowers the grading degree in A0(NV M), and therefore the
operator X is locally nilpotent. Because of this, we can form the exponential

exp(X) : A0(NV M) −→ A0(NV M)

using the power series. Now, let us denote by

εm : A0(NV M) −→ R

the character (2.1.2) obtained by evaluation at the zero normal vector 0m ∈
NV,mM . Algebraically it is given by the formula

εm :
∑

fpt
−p 7−→ f0(m).

The following proposition is then merely a reformulation of the general formula
(2.1.2). As we noted at the beginning of this subsection, it should be compared
with the formula in Remark 2.1.3.

2.2.5 Proposition. Let M be a smooth submanifold of a smooth manifold V ,
let X be a vector field on V . If f ∈ A0(NV M) and m ∈ M , then

εXm(f) = εm
(
exp(X)f

)
.

2.2.6 Remark. Since X is a derivation of A0(NV M), the map exp(X) is an
algebra automorphism. This makes it clear that the formula for εXm in (2.1.2)
does indeed define a character.
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We shall use algebraic exponentials similar to exp(X) quite extensively later
on, and the following proposition gives an indication of how we shall do so (but
using local coordinates, it is also very easy to prove this particular result by a
direct computation).

2.2.7 Proposition. Let X be a vector field on V . The smooth family of vector
fields

λX : C∞(V×{λ}) −→ C∞(V×{λ})

defined on the fibers of NV M over λ 6= 0, extends to a smooth family of vector
fields on the fibers of NV M over all λ ∈ R (here by a smooth family of vector
fields on the fibers of a submersion we mean a vector field on the total space
that is tangent to each fiber). The extension to λ=0 acts by differentiation in
each normal space NV,mM in the direction of the normal vector determined by
the tangent vector Xm

Proof. According to [HSSH18, §2] there is a vector field on the deformation
space that implements the derivation (2.2.1). The vector field is tangent to each
λ-fiber since the derivation annihilates t ∈ A(NV M), and clearly it restricts to
λX on V×{λ}. To compute its action on the fiber over λ=0 we can proceed
as follows.

The derivations of A0(NV M) that are associated to any pair of vector fields
always commute with one another. This is a consequence of Remark 2.2.3 and
the fact that the commutator of vector fields, being itself a vector field, only
lowers the order of vanishing on M by one, not two. Using this, we compute
that

εYm(Xf) =
d

dt

∣∣∣
t=0

εYm(exp(tX)f)

=
d

dt

∣∣∣
t=0

εm(exp(Y ) exp(tX)f)

=
d

dt

∣∣∣
t=0

εm(exp(Y + tX)f) =
d

dt

∣∣∣
t=0

εYm+tXm(f).

The extension therefore acts on the fiber of the normal bundle over m ∈ M as
directional differentiation in the direction Xm, as required.

2.2.8 Remark. The characters (2.1.2) determine an isomorphism from
A0(NV M) to the algebra of smooth functions on the normal bundle that are
polynomial in each fiber (and are of uniformly bounded degree). The proposi-
tion asserts that X acts by differentiation in each NV,mM in the direction of
the normal vector determined by Xm.
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2.3 Functoriality Properties

The deformation space is functorial in the following sense. Given a commuting
diagram

V // V ′

M //

OO

M ′

OO (2.3.1)

in which the vertical maps are inclusions of submanifolds and the horizontal
maps are arbitrary smooth maps, there is an induced map

NV M −→ NV ′M ′. (2.3.2)

Indeed the algebra map from C∞(V ′) to C∞(V ) determined by (2.3.1) deter-
mines, in turn, an algebra map

A(NV ′M ′) −→ A(NV M),

and so a map on character spectra in the reverse direction. In terms of the
determination of the spectrum in Theorem 2.1.4, the formula for the induced
map on deformation spaces is the obvious one determined by (2.3.1).
Here are some properties related to functoriality that we shall use later on:

(i) If the horizontal maps in (2.3.1) are open inclusions, then so is the induced
map on deformation spaces.

(ii) Given a diagram

V1
Φ1 // W V2

Φ2oo

M1
Ψ1

//

OO

P

OO

M2
Ψ2

oo

OO

of submanifolds in which the horizontal maps are submersions, if we form
the fiber product manifolds

V = V1 ×
W

V2 = { (v1, v2) ∈ V1×V2 : Φ1(v1) = Φ2(v2) }

and

M = M1 ×
P
M2 = { (m1,m2) ∈ M1×M2 : Ψ1(m1) = Ψ2(m2) },

then the natural map

NV M −→ NV1M1 ×
NWP

NV2M2

coming from functoriality is a diffeomorphism.
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(iii) If M = V , that is, if the submanifold M is the entire manifold V , then
there are of course no nonzero normal vectors, and the deformation space
identifies with the product M×R via Theorem 2.1.4:

NMM ∼= M×R (2.3.3)

2.4 Tangent Groupoid

The tangent groupoid of a smooth manifoldM , denoted TM , is the deformation
space associated to the diagonal embedding of M into its square. That is,

TM = NM2M,

where M2 = M×M (it will be helpful to use this compressed notation for the
powers of M in this subsection). Throughout the paper we shall identify the
normal bundle for the diagonal embedding with the tangent bundle of M via
the projection onto the first coordinate. So as a set

TM = TM×{0} ⊔ M2×R×. (2.4.1)

We shall use the following notation for the coordinate algebra of the tangent
groupoid:

A(TM) = A(NM2M).

The tangent groupoid inherits a Lie groupoid structure from the pair groupoid
structure on M×M using the functoriality of the deformation space construc-
tion, as follows. Consider the commuting diagram

M2 // // M

M

OO

=
// M

OO

in which the top maps are the first and second coordinate projections—these
are the target and source maps, respectively, for the pair groupoid—while the
upwards maps are diagonal maps, viewed as inclusions of submanifolds. By
functoriality of the deformation space construction, the diagram gives rise to
maps

NM2M ⇒ NMM,

and therefore to maps
t, s : TM ⇒ M×R.

These are the target and source maps for the tangent groupoid.
The composition law in the tangent groupoid is obtained in the same fashion.
The space of composable pairs of elements in the tangent groupoid is

TM (2) = { (γ, η) ∈ TM×TM : s(γ) = t(η) }

= TM ×
M×R

TM
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According to the previous subsection, the diagram

M2 p2 // M M2p1oo

M

OO

M

OO

M

OO (2.4.2)

in which the top maps are the projections onto the second and factors respec-
tively, gives rise to a diffeomorphism

NM3M
∼=
−→ TM ×

M×R

TM. (2.4.3)

On the other hand the diagram

M3 // M2

M

OO

=
// M,

OO

in which the top map is projection onto the first and third factors induces a
map from NM3M to NM2M , and hence a map

c : TM (2) −→ TM. (2.4.4)

This is the composition law for the tangent groupoid. Clearly

(m1,m2, λ) ◦ (m2,m3, λ) = (m1,m3, λ) (2.4.5)

when λ6=0. The formula when λ=0 is only a little harder to derive. We shall
do the calculation in a somewhat roundabout way that will be helpful later
(although for the tangent groupoid itself, an easy direct computation in local
coordinates is possible).
Start with the following commutative diagram, in which the various evaluation
characters ε are labeled by the indicated tangent vectors on the diagonal (which
of course project to normal vectors):

A(NM2M)
p∗

12 //

ε(Xm,0m)

��

A(NM3M)

ε(Xm,0m,−Ym)

��

A(NM2M)
p∗

23oo

ε(Ym,0m) = ε(0m,−Ym)

��
R R R.

(2.4.6)

Commutativity follows by direct computation from the definitions. It follows
from the diagram that the isomorphism (2.4.3) maps the point of NM3M asso-
ciated to the character ε(Xm,0m,−Ym) to

(
(Xm, 0), (Ym, 0)

)
∈ TM (2).

2.4.1 Lemma. (Xm, 0) ◦ (Ym, 0) = (Xm + Ym, 0).
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Proof. Consider the diagram

A0(TM)
c∗ // A0(TM

(2))
ε(Xm,0m,−Ym) // R

A0(TM)⊗R A0(TM)

OO

ε(Ym,0m)⊗ε(Xm,0)

// R⊗R R

∼=

OO

in which the leftmost map is induced from the composition law (2.4.4), while
the left vertical map is induced from

f1 ⊗ f2 7−→
[
(m1,m2,m3) 7→ f1(m1,m2)f2(m2,m3)

]
,

or equivalently from the inclusion of TM (2) into TM × TM . It follows from
(2.4.6) that the square in the diagram is commutative. The composition of
morphisms along the top is the character of A0(TM) associated to (Xm, 0) ◦
(Ym, 0). But this composition is

ε(Xm,−Ym) : A0(TM) −→ R

and ε(Xm,−Ym) = ε(Xm+Ym,0) since the tangent vectors (Xm,−Ym) and (Xm +
Ym, 0) at the diagonal point (m,m) determine the same normal vector for the
diagonal embedding. This completes the proof.

2.5 Families of Differential Operators

Let D be a linear partial differential operator on M . The source fibers of
the pair groupoid M×M have the form M×{m}, and if we place a copy of
D on each one, then we obtain a smooth, equivariant family of linear partial
differential operators on the source fibers.

A small extension of the above produces a family of linear partial differential
operators on the source fibers of the tangent groupoid. First, if m ∈ M ,
then denote by Dm the translation-invariant model operator on TmM that is
obtained from D by freezing coefficients in a local coordinate expression for D
and dropping lower order terms.

2.5.1 Theorem. Let M be a smooth manifold and let D be a linear partial
differential operator on M of order q. The formula

D(m,λ) =

{
λqD λ 6= 0

Dm λ = 0

defines a smooth and equivariant family of differential operators on the source
fibers of TM .
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Proof. We need to show that if f is a smooth function on TM , and if we apply
the above family of differential operators to f fiberwise, then the result is again
a smooth function on TM .
In fact it suffices to prove this when D is a vector field, since λqD is a sum of
products

λq−d · h · λD1 · . . . · λDd

where h is a smooth function, the operators Di are vector fields, and where
d ≤ q, and since the model operator Dm is the sum of those products

h(m) ·D1,m · . . . ·Dd,m

where q = d. The vector field case is handled by Proposition 2.2.7.

3 A Rescaled Spinor Bundle

In this section we shall explain how to construct a “rescaled” spinor bundle on
the tangent groupoid of a Riemannian spin manifold.

3.1 Clifford Algebras

We begin with a very quick review of some points in Clifford algebra theory to
fix notation and terminology. Let E be a finite-dimensional euclidean vector
space. We shall denote by CliffR(E) the real algebra generated by a copy of E
subject to the relations

ef + fe = −2〈e, f〉1

for all e, f ∈ E, and we shall denote by CliffC(E), or simply Cliff(E), its
complexification. We shall generally follow the conventions in the monograph
[Mei13], and in terms of that book, Cliff(E) is the complex Clifford algebra
associated to the bilinear form B given by the negative of the inner product on
E.
There is a real-linear quantization isomorphism

q : ∧∗ E −→ CliffR(E) (3.1.1)

as in [Mei13, Sec. 2.2.5]. If {e1, . . . , en} is any orthonormal basis for E, then

q(ei1 ∧ · · · ∧ eid) = ei1 · . . . · eid

for all indices i1 < · · · < id. The quantization isomorphism equips the Clifford
algebra with a vector space grading. This grading is not compatible with the
multiplication operation in the Clifford algebra, but the underlying increasing
filtration is compatible with multiplication. We shall write it as

C · I = Cliff0(E) ⊆ Cliff1(E) ⊆ · · · ⊆ Cliffdim(E)(E) = Cliff(E), (3.1.2)

where Cliffd(E) is the sum of all q(∧aE) with a ≤ d.
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3.1.1 Remark. For later purposes it will be convenient to extend this filtration
to all d ∈ Z so that

Cliffd(E) =

{
0 d < 0

Cliff(E) d > dim(E).
(3.1.3)

The associated “Clifford order” of 0 ∈ Cliff(E) will be −∞. Observe that the
quantization map gives rise to an isomorphism

∧d E
∼=
−→ Cliffd(E)/Cliffd−1(E) (3.1.4)

for all d.

The subspace q(∧2E) ⊆ CliffR(E) is closed under the ordinary commutator
bracket in the Clifford algebra, and so acquires a Lie algebra structure. More-
over [

q(∧2E), q(∧1E)
]
⊆ q(∧1E),

so that the Lie algebra q(∧2E) acts on E ∼= q(∧1E) by commutator bracket in
the Clifford algebra. This action determines a Lie algebra homomorphism

q(∧2E) −→ gl(E),

and indeed Lie algebra isomorphism

q(∧2E)
∼=
−→ so(E). (3.1.5)

Now define a vector space isomorphism γ : so(E) → ∧2E by means of the
following commuting diagram:

q(∧2E)

(3.1.5)

$$■
■■

■■
■■

■■

∧2E

q
;;✈✈✈✈✈✈✈✈✈

so(E).
γoo

(3.1.6)

We shall not use it, but γ is given by the beautiful explicit formula

γ(T ) = 1
4

∑
T (ei) ∧ ei.

See [Mei13, Section 2.2.10].

3.2 Spinor Bundles

From now on M will be an even-dimensional, Riemannian spin manifold. We
shall review some facts concerning spinors on M .
Let S → M be a complex irreducible spinor vector bundle, equipped with the
canonical Riemannian connection ∇ (also known as the Levi-Civita connec-
tion), as in [LM89, Sec. II.4] or [Roe98, Ch. 4]. The bundle S and connection
∇ have the following properties:
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(i) S is a smooth, Z/2-graded Hermitian vector bundle over M .

(ii) There is a morphism of smooth real vector bundles

c : TM −→ End(S)oddskew-adjoint

with
c(X)2 = −‖X‖2 · I

for every vector field X .

(iii) The morphism c induces an irreducible representation of CliffC(TmM) on
Sm for every m ∈ M , and indeed a Z/2-graded algebra isomorphism

c : CliffC(TmM)
∼=
−→ End(Sm). (3.2.1)

(iv) If X and Y are vector fields on M , and if s is a smooth section of S, then

∇Y (c(X)s) = c(∇LC
Y (X))s+ c(X)∇Y s, (3.2.2)

where ∇LC is the Levi-Civita connection on TM .

We shall also use in a crucial way a simple formula that relates the curvature
operator

K(X,Y ) = ∇X∇Y −∇Y ∇X −∇[X,Y ]

of the Riemannian connection on S to the Riemann curvature tensor

R(X,Y ) = ∇LC
X ∇LC

Y −∇LC
Y ∇LC

X −∇LC
[X,Y ]

on TM . For any pair of tangent vectors Xm, Ym ∈ TmM we have, of course

R(Xm, Ym) ∈ so(TmM) and K(Xm, Ym) ∈ End(Sm).

Moreover
K(X,Y ) = c ◦ q ◦ γ

(
R(X,Y )

)
(3.2.3)

where γ is the morphism (3.1.6).

3.3 The Scaling Filtration

Denote by S⊠S∗ the bundle overM×M whose fiber over (m1,m2) is Sm1⊗S∗
m2

.
In this subsection we shall construct a decreasing filtration of the space of
smooth sections of S ⊠ S∗ that is based on the vanishing behavior of sections
near the diagonal in M×M . The construction uses the following Getzler filtra-
tion of the algebra of linear partial differential operators acting on the smooth
sections of S over M , the definition of which takes advantage of the fact that
the algebra is generated by Clifford multiplications, covariant derivatives and
multiplications by scalar functions.
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3.3.1 Definition. We say such a differential operator D has Getzler order
≤ p if in a neighborhood of any point in M it can be expressed as a finite sum
of operators of the form

f ·D1 · · ·Dp,

where f is a smooth function and each Dj is either a covariant derivative ∇X ,
or a Clifford multiplication operator c(X), or the identity operator.

3.3.2 Examples. If X is any vector field on M , then Getzler-order(∇X) ≤ 1,
and the order is equal to 1 unless X = 0. In addition Getzler-order(c(X)) ≤ 1,
and again the order is equal to 1 unless X = 0.

The construction also uses the following increasing filtration of the fibers of
S⊠S∗ over the diagonal in M×M . Using (3.2.1), these fibers admit canonical
identifications

Sm ⊗ S∗
m

∼= End(Sm) ∼= Cliff(TmM), (3.3.1)

and we equip them with the canonical increasing Clifford algebra filtration from
(3.1.2).

3.3.3 Definition. Let q ∈ Z. We shall say that a smooth section of S ⊠ S∗

has Clifford order ≤ q if its value at each diagonal point (m,m) lies in the order
q subspace Cliffq(TmM) ⊆ Cliff(TmM).

3.3.4 Examples. If q is negative, then a section with Clifford order ≤ q at
m ∈ M must vanish. At the other extreme, every section has Clifford order
≤ dim(M).

In the following definition we shall consider linear partial differential operators
D that act on the smooth sections of the spinor bundle S over M . We shall
consider D as also acting on the smooth sections of S ⊠ S∗ over M×M by
differentiation in the first factor of M×M alone.

3.3.5 Definition. Let p ∈ Z. We shall say that a section σ of S ⊠ S∗ over
M×M has scaling order ≥ p if

Clifford-order(Dσ) ≤ q − p

for every differential operator D of Getzler order ≤ q. If m ∈ M , then we
shall say that σ has scaling order p near m if the above condition holds in a
neighborhood of (m,m).

3.3.6 Remark. The definition can be compared as follows to the ordinary
notion of vanishing to order p along the diagonal of a real-valued function on
M×M that we used to construct the tangent groupoid. Suppose we write
val(f) = −∞ if f vanishes on the diagonal, while val(f) = 0 otherwise. Then
f vanishes to order p on the diagonal in M×M if and only if

val(Df) ≤ order(D)− p

for every linear partial differential operator D on M acting on functions on
M×M through the first factor.
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3.3.7 Example. Since the Clifford order of a section of S ⊠ S∗ is never more
than dim(M), every section has scaling order ≥ − dim(M).

Let us record two easy consequences of the definition. The first is immediate:

3.3.8 Lemma. If a smooth section σ of S ⊠ S∗ has scaling order ≥ p, and if
D has Getzler order ≤ q, then Dσ has scaling order ≥ p−q.

3.3.9 Lemma. If a smooth section σ of S⊠S∗ has scaling order ≥ p1, and if a
smooth function f on M×M vanishes to order ≥ p2 on the diagonal of M×M ,
then the section f · σ has scaling order ≥ p1 + p2.

Proof. If D has Getzler order ≤q, then

D(f · σ) =
∑

(Ejf)(Djσ)

for suitable operators Dj acting on sections of on S, and suitable partial dif-
ferential operators Ej acting on scalar-valued functions, with

order(Ej) + Getzler-order(Dj) ≤ q.

The proof follows from this.

In particular, the sections of S ⊠ S∗ of scaling order ≥ p form a C∞(M×M)-
module. A deeper result concerning scaling order is the following fact, whose
proof we shall give in an appendix; see Section 6.

3.3.10 Proposition. Let m ∈ M and let d ≥ 0. Every smooth section of the
bundle Cliff(TM) over M that has Clifford order ≤ d near m is the restriction
to the diagonal in M×M of a smooth section of S ⊠ S∗ of scaling order ≥ −d
near m.

3.4 The Rescaled Spinor Module

In this subsection we shall define a module S(TM) over the coordinate algebra
A(TM) using the scaling filtration from the previous subsection and the Rees
construction. As we shall soon see, it may be viewed as the module of “regular”
sections of a bundle S over the tangent groupoid, just as A(TM) may be viewed
as the algebra of “regular” functions on the tangent groupoid. Here we shall
compute the fibers of the module S(TM), which will be the fibers of the bundle
S.

3.4.1 Definition. Denote by S(TM) the complex vector space of Laurent
polynomials ∑

p∈Z

σpt
−p

where each σp is a smooth section of S ⊠ S∗ of scaling order at least p. It
follows from Lemma 3.3.9 that S(TM) is a module over A(TM) by ordinary
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multiplication of Laurent polynomials. For each point γ ∈ TM let Iγ ⊆ A(TM)
be the corresponding vanishing ideal. The fiber of S(TM) over γ is

S(TM)|γ = S(TM)
/
Iγ · S(TM)

The most interesting fibers are those for which the morphism γ ∈ TM has
the form γ = (Xm, 0), where Xm is a tangent vector on M , and most of this
subsection will be devoted to studying them.

3.4.2 Definition. We shall denote by S0(TM) the vector space quotient

S0(TM) = S(TM)
/
t · S(TM).

Note that the A(TM)-module structure on S(TM) descends to an A0(TM)-
module structure on S0(TM).

The quotient space S0(TM) is a graded vector space with nonzero components
in integer degrees − dim(M) and up. Indeed it is the associated graded space
for the decreasing filtration of the smooth sections of S⊠S∗ by scaling order
(to be clear, we place in degree p the images of the elements σpt

−p, or in other
words the sections of scaling order at least p, modulo the sections of scaling
order ≥ p+1).
If the morphism γ ∈ TM has the form γ = (Xm, 0), where Xm is a tangent
vector on M , then the quotient map from S(TM) to S0(TM) induces an iso-
morphism

S(TM)|γ ∼= S0(TM)
/
IXm · S0(TM),

where IXm ⊳ A0(TM) is the vanishing ideal for Xm ∈ TM . We shall use this
to compute S(TM)|γ .

3.4.3 Definition. Let m ∈ M . We shall denote by

εm : S0(TM) −→ ∧∗TmM

the evaluation map at m ∈ M defined by the formula

εm :
∑

p

σpt
−p 7−→

∑

d

[σ−d(m,m)]d,

where [ ]d denotes the image in the quotient Cliffd(TmM)
/
Cliffd−1(TmM) of

an element in Cliffd(TmM), and we identify the quotient with ∧dTmM via the
quantization map.

3.4.4 Lemma. The evaluation map has the property that

εm(fσ) = εm(f)εm(σ)

for all f ∈ A0(TM) and all σ ∈ S0(TM).
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3.4.5 Definition. Let X be a vector field on M . Denote by

∇X : S0(TM) −→ S0(TM)

the linear operator determined by the formula

∇X :
∑

σpt
−p 7−→

∑
∇Xσpt

−(p−1).

3.4.6 Lemma. The operator ∇X is compatible with the derivation X of the
coordinate algebra A0(TM) in the sense that

∇X(fσ) = X(f)σ + f∇X(σ)

for every f ∈ A0(TM) and every σ ∈ S0(TM).

The operator ∇X has grading degree minus one, and is therefore locally nilpo-
tent. So we can form the exponential

exp(∇X) : S0(TM) −→ S0(TM)

using the power series. Inspired by the discussion in Subsection 2.2, let us now
make the following definition:

3.4.7 Definition. Let X be a vector field on M and let m ∈ M . Denote by

εXm : S0(TM) −→ ∧∗TmM

the map defined by the commuting diagram

S0(TM)
εXm //

exp(∇X)

��

∧∗TmM

S0(TM) εm
// ∧∗TmM.

3.4.8 Lemma. The morphism εXm depends only on the tangent vector Xm,
and not on the values of the vector field X at other points in M . Moreover
εXm(fσ) = εXm(f)εXm(σ).

Proof. This follows from Lemma 3.4.6 and the definitions.

3.4.9 Proposition. Let m ∈ M and let Xm ∈ TmM . The morphism

εXm : S0(TM) −→ ∧∗TmM

induces an isomorphism

S(TM)|(Xm,0)

∼=
−→ ∧∗TmM.
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The proof will use the following local form for sections of S⊠S∗ of scaling order
p. Let n = dim(M), choose a local orthonormal frame { e1, . . . , en } for TM
near m ∈ M , and for each index

I = (i1 < · · · < id)

of length ℓ(I) = d, form the local section

eI = ei1 · ei2 · . . . · eid

of the bundle Cliffℓ(I)(TM) over M . View this as a local section of the re-
striction of S⊠S∗ to the diagonal, and use Proposition 3.3.10 to extend it to
a section over M×M with scaling order −ℓ(I) near m. We shall use the same
notation eI for the extension. The smooth sections eI constitute a local frame
for S⊠S∗ near (m,m) ∈ M×M . So any smooth section σ may be expanded in
the form

σ =
∑

I

hI · eI (3.4.1)

near (m,m), where the hI are smooth, complex-valued functions on M×M .

3.4.10 Lemma. Let p ∈ Z. The section σ in (3.4.1) has scaling order ≥ p near
m if and only if each scalar function hI vanishes on the diagonal of M×M
near (m,m) to order ≥ p+ ℓ(I).

Proof. The sufficiency of the condition follows from Lemma 3.3.9. As for ne-
cessity, given a section σ =

∑
hIeI of scaling order p, let p′ be the minimum

of all the integers order(hI) − ℓ(I), where order(hI) means here the order of
vanishing of hI on the diagonal of M×M near (m,m). We need to prove that
p′≥p.
Let Imin be the set of all those indices I for which the minimum p′ is achieved,
let q be the least value of order(hI) among all I ∈ Imin. If D has Getzler order
q, then for any I ∈ Imin, the section D(hIeI) restricts to a function times eI
on the diagonal. Moreover for any fixed I0 ∈ Imin we can find some such D
so that D(hI0eI0) is not identically zero in a neighborhood of (m,m) on the
diagonal. So for this D,

Clifford-order
(∑

I∈Imin
D(hIeI)

)
≥ ℓ(I0)

near m. As a result, since ℓ(I0) = q−p′,

Scaling-order
(∑

I∈Imin
D(hIeI)

)
≤ p′

near m. On the other hand, it follows from Lemma 3.3.9 that

Scaling-order
(∑

I /∈Imin
D(hIeI)

)
≥ p′ + 1

near m. Hence the scaling order of σ is ≤p′, and so p′≥p as required.
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Proof of Proposition 3.4.9. Lemma 3.4.8 shows that εXm does at least induce
a vector space morphism

S(TM)|(Xm,0) −→ ∧∗TmM.

In addition, if I = (i1 < · · · < id), then under this morphism an element
eIt

ℓ(I) ∈ S(TM) is mapped to an element of the form

ei1 ∧ · · · ∧ eid + higher-degree terms in ∧∗TmM . (3.4.2)

It follows from this that the morphism is surjective.
Now suppose that

∑
σpt

−p ∈ S(TM) is mapped to zero by εXm . We need to
prove that it lies in Iγ · S(TM). In doing so, we can assume that each σp is
supported near (m,m). Indeed, if ϕ is any smooth function on M×M that is
equal to 1 near (m,m), then we can write

∑
σpt

−p = (1− ϕ) ·
∑

σpt
−p +

∑
ϕσpt

−p,

and the first term on the right-hand side belongs to I(Xm,0) · S(TM) and so is
mapped to zero by εXm . So we can replace each σp by ϕσp.
Assuming then that each σp is supported near (m,m), we can write

σp =
∑

I

hp,IeI ,

as in (3.4.1). According to Lemma 3.4.10, each hp,I vanishes to order p+ℓ(I)
or higher on the diagonal in M×M . Hence we may write

∑

p

σpt
−p =

∑

I

(∑

p

hp,It
−(p+ℓ(I))

)
·
(
eIt

ℓ(I)
)

(3.4.3)

where each
∑

p hp,It
−(p+ℓ(I)) is an element of (the complexification of) A(TM).

To prove the proposition it suffices to show that if
∑

σpt
−p maps to zero under

the morphism εXm in the statement of the proposition, then each function
∑

p

hp,It
−(p+ℓ(I)) ∈ A(TM)

evaluates to zero atXm. But according to (3.4.2), the elements eIt
ℓ(I) ∈ S(TM)

map to linearly independent elements under εXm . So the required vanishing
follows from Lemma 3.4.8.

3.4.11 Proposition. Let m1,m2 ∈ M and λ ∈ R×. The morphism

ε(m1,m2,λ) : S0(TM) −→ Sm1 ⊗ S∗
m2

defined by the formula

ε(m1,m2,λ) :
∑

σpt
−p 7−→

∑
λ−pσp(m1,m2)

induces an isomorphism

S(TM)|(m1,m2,λ)

∼=
−→ Sm1

⊗ S∗
m2

.
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Proof. The morphism ε(m1,m2,λ) above is obviously surjective and factors
through the fiber, so it remains to prove injectivity of the induced map on
the fiber.
Suppose first that m1 = m = m2. Using the argument and notation of the
previous proof, if λ 6= 0, and if

∑

p

∑

I

λ−php,I(m,m)eI(m,m) = 0,

then for each I ∑

p

λ−(p+ℓ(I))hp,I(m,m) = 0,

since the vectors λ−ℓ(I)eI(m,m) are linearly independent. So the formula
(3.4.3) expresses any element of S(TM) that maps to zero in Sm ⊗ S∗

m as
a combination of elements in A(TM) that vanish at (m,m, λ), times elements
in S(TM), as required.
If m1 6= m2, then we need only replace the local frame {eI} near (m,m) by any
local frame of S⊠S∗ near (m1,m2) (away from the diagonal there is no need
to invoke Proposition 3.3.10). Then we may proceed as above.

3.5 The Rescaled Spinor Bundle

We are now ready to construct the rescaled spinor bundle S over TM .

3.5.1 Definition. Define a family of vector spaces Sγ parametrized by γ ∈
TM as follows:

Sγ =

{
Sm1

⊗S∗
m2

γ = (m1,m2, λ)

∧∗TmM γ = (Xm, 0).
(3.5.1)

Denote by σ 7→ σ̂ the morphism of A(TM)-modules

S(TM) −→
∏

γ∈TM

Sγ ,

that associates to each σ ∈ S(TM) its value in each fiber S(TM)|γ under the
identifications in Propositions 3.4.9 and 3.4.11.

3.5.2 Lemma. The above morphism is injective.

Proof. Let (m1,m2) ∈ M×M . If an element
∑

p σpt
−p maps to zero, then it

follows from the formula for the morphisms ε(m1,m2,λ) that

∑

p

λ−pσp(m1,m2) = 0

for all λ 6= 0. But this implies that σp(m1,m2) = 0 for all p. Hence σp = 0 for
all p, and so

∑
p σpt

−p = 0.

Documenta Mathematica 24 (2019) 1677–1720



1700 Nigel Higson and Zelin Yi

3.5.3 Definition. We shall denote by STM the sheaf on TM consisting of
sections

TM ∋ γ 7−→ τ(γ) ∈ Sγ

that are locally of the form

τ(γ) =

N∑

j=1

fj(γ) · σ̂j(γ)

for some N ∈ N, where f1, . . . , fN are smooth, complex-valued functions on
TM and σ1, . . . , σN belong to S(TM).

3.5.4 Theorem. The sheaf STM is locally free, of rank 2dim(M), as a sheaf of
modules over ATM .

Proof. Let us prove that the sheaf is free in a neighborhood of γ = (Xm, 0);
the other γ ∈ TM are handled in the same way. Consider a section τ of STM

as in Definition 3.5.3 above. Locally we may write each σj ∈ S(TM) as

σj =
∑

I

(∑

p

hj,p,It
−(p+ℓ(I))

)
·
(
eIt

ℓ(I)
)

as in (3.4.3). So near γ, the section τ is a linear combination the sections

êItℓ(I). But these spanning sections are also linearly independent in each fiber
Sη, for η near γ. So they are linearly independent over the smooth functions
on TM , near γ, as required.

3.5.5 Definition. We shall denote by S the unique smooth vector bundle over
TM whose fibers are the spaces Sγ in (3.5.1) and whose smooth sections are
the sections of the sheaf STM .

3.6 Families of Differential Operators and the Getzler Symbol

We wish to prove the following spinorial counterpart of Theorem 2.5.1:

3.6.1 Theorem. Let D be a linear partial differential operator on M , acting
on the sections of the spinor bundle, of Getzler order q. The family of linear
partial differential operators

D(m,λ) = λqD,

defined on those source fibers of TM with λ 6= 0, extends to a smooth family
of linear partial differential operators on all the source fibers of the tangent
groupoid, acting on sections of S.

As with scalar case, it suffices to consider generators of the algebra of linear
partial differential operators, in this case covariant derivatives ∇X and Clifford
multiplication operators c(X). Let us begin with the latter, which are easier.
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3.6.2 Lemma. Let X be a vector field on M . The family of Clifford multipli-
cation operators

D(m,λ) = λc(X),

defined on the source fibers of TM with λ 6= 0, and acting on sections of S,
extends to a smooth family on all the source fibers of TM . The operator on the
source fiber TM(m,0)

∼= TmM is the exterior multiplication operator

∧∗TmM ∋ ω 7−→ Xm ∧ ω ∈ ∧∗TmM.

Proof. The formula

∑
σpt

−p 7−→
∑

c(X)σpt
−(p−1)

defines an A(TM)-linear operator on S(TM) and hence a endomorphism of the
bundle S. Its restriction to λ6=0 is the operator of left multiplication by λc(X)
on S⊠S∗. We need to compute its restriction to λ=0.
For this, we need to show that if c(X) is the induced operator on S0(TM),
then for any tangent vector Ym,

εYm(c(X)σ
)
= Xm ∧ εYm(σ).

Note first that
εm(c(X)τ

)
= Xm ∧ εm(τ

)

for any τ ∈ S0(TM), which is clear from the definitions. Next, the formula

∇Y c(X)− c(X)∇Y = c(∇Y X) : C∞(M×M,S⊠S∗) −→ C∞(M×M,S⊠S∗)

shows that the Getzler order-one operators c(X) and ∇Y commute up to an
operator of Getzler order one, not two. As a result,

∇Y c(X) = c(X)∇Y : S0(TM) −→ S0(TM),

and it therefore follows that

εYm

(
c(X)σ

)
= εm

(
exp(∇Y )c(X)σ

)

= εm
(
c(X) exp(∇Y )σ

)

= Xm ∧ εYm(σ),

as required.

3.6.3 Lemma. Let X be a vector field on M . The family of covariant deriva-
tives

D(m,λ) = λ∇X ,

defined on those source fibers of TM with λ 6= 0, and acting on sections of S,
extends to a smooth family on all the source fibers of TM . The operator on
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the source fiber TM(m,0)
∼= TmM is the sum of directional differentiation in the

direction Xm and exterior multiplication by the linear function

TmM ∋ Ym 7−→ 1
2κ(Ym, Xm) ∈ ∧∗TmM,

where, as in (3.2.3), the section κ(Y,X) of ∧2TM is related to the Riemannian
curvature and the curvature of S by

γ(R(Y,X)) = κ(Y,X) and c(q(κ(Y,X))) = K(Y,X).

The proof will use following simple algebraic fact:

3.6.4 Lemma. If A, B and [A,B] are locally nilpotent linear operators on a
rational vector space, and if [A,B] commutes with both A and B, then A + B
is locally nilpotent and

exp(A) exp(B) = exp(12 [A,B]) exp(A+B).

Proof of Lemma 3.6.3. It follows from the definition of the curvature operator
that

[∇Y ,∇X ]−∇[Y,X] = K(Y,X)

as operators on smooth sections of S⊠S∗ over M×M . So if we define

K(Y,X) : S0(TM) −→ S0(TM)

by ∑
σpt

−p 7−→
∑

K(Y,X)σpt
−(p−2),

then, since ∇[Y,X] has Getzler order one, not two, we obtain

[∇Y ,∇X ] = K(Y,X) : S0(TM) −→ S0(TM).

Moreover, as in the proof of Lemma 3.6.2, each of ∇Y and ∇X commutes with
K(Y,X), and so by Lemma 3.6.4,

exp
(
∇Y

)
exp

(
∇X

)
= exp

(
∇Y +X

)
exp

(
1
2K(Y,X)

)
.

We can now compute that

εY
(
∇Xs

)
=

d

dt

∣∣∣
t=0

εY
(
exp(∇tX)s

)

=
d

dt

∣∣∣
t=0

ε0
(
exp(∇Y ) exp(∇tX)s

)

=
d

dt

∣∣∣
t=0

ε0
(
exp(∇Y +tX) exp(12K(Y, tX))s

)

=
d

dt

∣∣∣
t=0

εY+tX

(
exp(12K(Y, tX))s

)

=
d

dt

∣∣∣
t=0

εY+tX

(
s
)
+ 1

2κ(Ym, Xm) ∧ εY (s).

In the last line we used the Leibniz rule and Lemma 3.6.2. We have now
computed the action of the family {λ∇X} in the statement of the lemma on
“algebraic” sections of S (associated to elements of S(TM)). The lemma follows
from this.
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3.7 Tangent Vectors Versus Normal Vectors

So far, when discussing the tangent groupoid we have been identifying TM
with the normal bundle for the diagonal in M×M by associating to a tan-
gent vector Xm at m ∈ M the tangent vector (Xm, 0m) at the diagonal point
(m,m) ∈ M×M . In this subsection we shall examine the effect of using other
identifications.
LetX be a vector field onM . Instead of writing∇X for the covariant derivative
on M×M associated to the action on the left copy of M , let us temporarily
write ∇(X,0). Let us similarly write c(X, 0) for left Clifford multiplication.
There are also obvious right operators ∇(0,X) and c(0, X), and let us begin by
noting that all the right operators commute with the all the left operators.
It follows from this commutativity that each right operator decreases the scaling
order of a section σ of S⊠S∗ by at most one. Consider for example the covariant
derivative ∇(0,X). If the scaling order of σ is at least p, and if D is a differential
operator of Getlzer order ≤ q on M , acting on the left factor of M×M , then
we need to show that

Clifford-order(D∇(0,X)σ) ≤ q − p+ 1.

Write τ = Dσ, which is a section of scaling order ≥ p−q. Since D∇(0,X)σ =
∇(0,X)Dσ, we need to show that

Clifford-order(∇(0,X)τ) ≤ q − p+ 1.

Next write
∇(0,X) = ∇(X,X) −∇(X,0).

The operator∇(X,X) preserves Clifford order since along the diagonal ofM×M
the Riemannian connection is the standard connection on Cliff(TM), while of
course ∇(X,0) increases the Clifford order of τ by at most one, by definition of
the scaling filtration. The proof is complete. The proof for Clifford multiplica-
tions is similar, but simpler since the last step above is not needed.
It follows from these computations that we can define the scaling order using
either left operators, or the right operators, or both.
Now let X and Y be vector fields on M . Since ∇(X,Y ) decreases scaling order
by at most one, there is an induced, degree minus one operator

∇(X,Y ) : S0(TM) −→ S0(TM)

given by the now-usual formula

∑
σpt

−p 7−→
∑

∇(X,Y )σpt
−(p−1)

on S(TM). Define the evaluation morphism

ε(Xm,Ym) : S0(TM) −→ ∧∗TmM
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via the commuting diagram

S0(TM)
ε(Xm,Ym) //

exp(∇(X,Y ))

��

∧∗TmM

S0(TM) εm
// ∧∗TmM.

In the context of A0(TM), the map ε(Xm,Ym) only depends on the normal vec-
tor determined by (Xm, Ym), but the following computation shows that this is
not the case for S0(TM). Write κ(X,Y ) = γ(R(X,Y )), as in Lemma 3.6.3.
View κ(X,Y ) as an operator on the exterior algebra bundle by exterior multi-
plication.

3.7.1 Proposition. The diagram

S0(TM)
ε(Xm,Ym) // ∧∗TmM

exp( 1
2κ(Xm,Ym))

��
S0(TM) ε(Xm−Ym,0)

// ∧∗TmM

is commutative.

Proof. Let us first prove the following special case: if Y is any vector field on
M , then

ε(0m,Ym) = ε(−Ym,0m) : S0(TM) −→ ∧∗TmM. (3.7.1)

To do so, use the fact that ∇(0,Y ) and ∇(−Y,0) commute as operators on smooth
sections of S⊠S∗ to write

∇n
(0,Y ) −∇n

(−Y,0)

= ∇(Y,Y )

(
∇n−1

(0,Y ) +∇n−2
(0,Y )∇(−Y,0) + · · ·+∇(0,Y )∇

n−2
(−Y,0) +∇n−1

(−Y,0)

)
.

The operator ∇(Y,Y ) does not increase the Clifford order of sections, so if σ is
a section of scaling order p, then the section

∇n
(0,Y )σ −∇n

(−Y,0)σ

has Clifford order ≤ p+n−1. It follows now from the definitions that

εm
(
∇(0,Y )σ

)
= εm

(
∇(−Y,0)σ

)
,

and (3.7.1) follows.
For the general case, it follows from Lemma 3.6.4 that

exp(∇(−Y,0)) exp(∇(X,0)) = exp(12K(X,Y )) exp(∇(X−Y,0)) (3.7.2)
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as operators on S0(TM). Therefore

ε(Xm,Ym)(σ) = εm
(
exp(∇(X,Y ))σ

)

= εm
(
exp(∇(0,Y )) exp(∇(X,0))σ

)

= εm
(
exp(∇(−Y,0)) exp(∇(X,0))σ

)

= εm
(
exp(12K(X,Y )) exp(∇(X−Y,0))σ

)

= exp(12κ(Xm, Ym))εXm−Ym(σ)

as required.

4 Multiplicative Structure

In this section we shall equip the space C∞
c (TM, S) of smooth, compactly

supported sections of the rescaled spinor bundle over TM with a convolution
product.

4.1 Convolution Algebras of Smooth Groupoids

We being by reviewing some basic facts about the convolution algebras of
smooth groupoids [Con94, Section 2.5]. Let s, t : G ⇒ M be a Lie groupoid. In
order to build a convolution algebra of functions on G we shall fix a suitable
family of measures on the target fibers of G (an alternative approach uses half-
densities, but in our tangent groupoid example the family of measures has an
extremely simple form).

4.1.1 Definition (Compare [Ren80, Section 1.2]). A smooth left Haar system
on G is a family of smooth measures µm on the target fibers

Gm = { γ ∈ G : t(γ) = m }

of G having the following two properties:

(i) For any compactly supported smooth function f on G, the assignment

m 7→

∫

Gm

f(γ) dµm(γ)

defines a smooth function on M .

(ii) For any morphism γ1 : m → p and any compactly supported smooth
function f on G we have

∫

Gm

f(γ1 ◦ γ) dµ
m(γ) =

∫

Gp

f(γ) dµp(γ)

Given a smooth left Haar system on G, the formula

f1 ⋆ f2(η) =

∫

Gt(η)

f1(γ)f2(γ
−1 ◦ η) dµt(η)(γ),

defines an associative product on C∞
c (G). This is the convolution algebra of

the Lie groupoid G.
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4.2 Multiplicative Structures on Bundles Over Groupoids

Let s, t : G ⇒ M be a Lie groupoid, once again. Form the space of composable
pairs

G(2) = { (γ, η) ∈ G×G : s(γ) = t(η) },

and denote by
c : G(2) −→ G and p1, p2 : G

(2) −→ G

the composition map c(γ, η) = γ ◦ η and the two coordinate projections.

4.2.1 Definition. Let V be a smooth vector bundle over G. A multiplicative
structure on V is a morphism of vector bundles

p∗1 V⊗ p∗2 V
◦

−→ c∗ V,

or in other words a smoothly varying family of vector space morphisms

Vη ⊗ Vγ
◦

−→ Vη◦γ ,

that is associative in the natural sense that

vα ∈ Vα, vβ ∈ Vβ , vγ ∈ Vγ ⇒ vα ◦ (vβ ◦ vγ) = (vα ◦ vβ) ◦ vγ ∈ Vα◦β◦γ

for all composable α, β and γ.

4.2.2 Example. If G ⇒ M is any smooth groupoid, and if V is a vector bundle
on M then the bundle on G with fibers

Vγ = Vt(γ) ⊗ V ∗
s(γ) = Hom

(
Vs(γ), Vt(γ)

)

has an obvious multiplicative structure given by contraction/composition that
we shall call the standard multiplicative structure.

4.2.3 Lemma. Let G be a Lie groupoid equipped with a smooth left Haar system.
If V is a vector bundle on G with multiplicative structure, then the formula

f1 ⋆ f2(η) =

∫

Gt(η)

f1(γ) ◦ f2(γ
−1 ◦ η) dµt(η)(γ),

defines an associative product on the smooth, compactly supported sections of V.

4.3 Multiplicative Structure on the Rescaled Spinor Bundle

The rescaled spinor bundle S over the tangent groupoid that we constructed in
Section 3 carries the standard multiplicative structure away from λ = 0 since

S|λ6=0 = S ⊠ S∗.

The purpose of this section is to prove the following result:
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4.3.1 Theorem. There is a unique multiplicative structure on the rescaled
spinor bundle S over TM whose restriction away from λ = 0 is the standard
multiplicative structure. On fibers at λ = 0 the multiplication map

S(Xm,0) ⊗ S(Ym,0) −→ S(Xm+Ym,0)

is given by the formula

α⊗ β 7−→ α ∧ β ∧ exp
(
− 1

2κ(Xm, Ym)
)
.

The uniqueness statement in the theorem is clear since TM \TM×{0} is dense
in TM . To prove the existence statement we shall show that if ρ, τ ∈ S(TM),
and if the associated sections of S are pulled back to TM (2) via p1 and p2, and
then multiplied according to the formula in the statement of the theorem, then
the result, namely
{
(m1,m2,m3, λ) 7→ ε(m1,m2,λ)(ρ) ◦ ε(m2,m3,λ)(τ) (m1,m2,m3∈M,λ6=0)

(Xm, Ym, 0) 7→ εXm(ρ)∧εYm(τ)∧ exp
(
1
2κ(Ym, Xm)

)
(Xm, Ym ∈ TmM)

(4.3.1)
is a smooth section of the pullback bundle c∗S over TM (2). This will suffice.
By linearity it further suffices to consider elements ρ, τ ∈ S(TM) of the form

ρ = ρp1t
−p1 and τ = τp2t

−p2 ,

where ρp1 and τp2 have scaling orders at least p1 and p2, respectively.
Form the pointwise composition

M×M×M ∋ (m1,m2,m3) 7−→ ρp1(m1,m2) ◦ τp2(m2,m3) ∈ Sm1 ⊗ S∗
m3

,

which is a smooth section of the pullback to M×M×M of S⊠S∗ along the
projection onto the first and third factors (which is the composition map for
the pair groupoid). As we did in Subsection 3.4, choose a local frame {eI} of
S⊠S∗ consisting of sections whose scaling orders are at least the negatives of
their Clifford orders. We can of course write

ρp1(m1,m2) ◦ τp2(m2,m3) =
∑

I

fI(m1,m2,m3) · eI(m1,m3) (4.3.2)

where each fI is a smooth function on (an open subset of) M×M×M .

4.3.2 Lemma. Each function fI defined above vanishes to order ≥ p1+p2+ℓ(I)
on the diagonal M ⊆ M×M×M .

Proof. Let us call an index I regular if fI vanishes to order ≥ p1+p2+ℓ(I) on
the diagonal, and deficient otherwise. Write

ρp1(m1,m2) ◦ τp2(m2,m3)−
∑

I regular

fI(m1,m2,m3) · eI(m1,m3)

=
∑

I deficient

fI(m1,m2,m3) · eI(m1,m3). (4.3.3)
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The left-hand side has scaling order ≥ p1 + p2 in the sense Definition 3.3.5,
except using covariant derivatives and Clifford multiplications in both the first
and third factors in M×M×M . If there were any deficient indices at all, then
we could choose a deficient Imin for which the vanishing order of fI was minimal.
Call the vanishing order q; of course

q < p1 + p2 + ℓ(Imin) (4.3.4)

by definition of deficiency. We could then find a differential operatorD of order
q so that D(fIeI) is a smooth function multiple of eI along the diagonal for
all deficient I, and a nonzero function multiple for Imin. But the the Clifford
order of the right-hand side of (4.3.3) after applyingD would be at least ℓ(Imin),
whereas the Clifford order of the left-hand side after applying D would be at
most q − p1 − p2. This contradicts (4.3.4).

Now write

FI = fIt
−(p1+p2+ℓ(I)) ∈ A(TM (2)) and σI = eIt

ℓ(I) ∈ S(TM).

We should like to prove that the section (4.3.1) is given by the formula

{
(m1,m2,m3, λ) 7−→

∑
I ε(m1,m2,m3,λ)(FI)ε(m1,m3,λ)(σ)

(Xm, Ym, 0) 7−→
∑

I ε(Xm,0m,−Ym)(FI)εXm+Ym(σI).
(4.3.5)

See (2.4.6) for the notation. Since (4.3.5) is a combination of smooth functions
on TM (2), times pullbacks to TM (2) of smooth sections of S, this will suffice.
The identity of (4.3.1) and (4.3.5) away from λ = 0 is clear, and we have seen
in Proposition 3.7.1 that

ε(Xm+Ym,0m)(σI) = exp
(
1
2κ(Ym, Xm)

)
∧ ε(Xm,−Ym)(σI).

So in fact it suffices to prove that

εXm(ρ) ∧ εYm(τ) =
∑

I

ε(Xm,0m,−Ym)(FI)ε(Xm,−Ym)(σI),

or, using (3.7.1), that

ε(Xm,0m)(ρ) ∧ ε(0m,−Ym)(τ) =
∑

I

ε(Xm,0m,−Ym)(FI)ε(Xm,−Ym)(σI). (4.3.6)

A systematic way to check this formula is to introduce the space S(TM (2)) of
Laurent polynomials

∑
σpt

−p in which σp is a smooth section of S⊠C⊠S∗ over
M×M×M that has scaling order p, as in the proof of Lemma 4.3.2. This is a
module over A(TM (2)), and we have the obvious identity

ρ ◦ τ =
∑

I

FI · σI
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in S(TM (2)), and hence in the quotient

S0(TM
(2)) = S(TM (2))

/
t · S(TM (2)).

The morphism
εm : S0(TM

(2)) −→ ∧∗TmM

defined, following Definition 3.4.3, by

εm :
∑

σpt
−p 7−→

∑
[σ−d(m,m,m)]d

has the properties that

εm(ρ ◦ τ) = εm(ρ) ∧ εm(τ)

and that
εm(F · σ) = εm(F ) · εm(σ),

and these settle (4.3.6) in the special case where Xm = Ym = 0. The general
case is settled by applying the special case to the elements

ρ = exp
(
∇(X,0)

)
ρ, τ = exp

(
∇(0,−Y )

)
τ,

FI = exp
(
∇(X,0,−Y )

)
FI , and σI = exp

(
∇(X,−Y )

)
σI ,

for which ρ ◦ τ =
∑

I FI · σI .

5 Convolution Algebra and Traces

The multiplicative structure on S provides us with a convolution algebra
C∞

c (TM, S). In this section we shall construct our family of supertraces on
this algebra.

5.1 A Haar System for the Tangent Groupoid

Let M be a smooth manifold. The target fibers of TM are of course

TM (m,λ) = {m}×M×{λ}

and
TM (Xm,0) = TmM×{0}

If we fix a smooth measure µ on M , and if we denote by µm the associated
translation-invariant measures on the tangent spaces TmM , then the formulas

{
µ(m,λ) = |λ|−nµ

µ(Xm,0) = µm
(5.1.1)

define a smooth left Haar system for TM . So we can now form the associated
tangent groupoid algebra C∞

c (TM). The definition is due to Connes, and we
summarize the basic facts from [Con94, Sec. II.5]:
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5.1.1 Proposition. For λ 6= 0 the linear map

ελ : C
∞
c (TM) −→ K∞(L2(M))

given by the formula

ελ(f) : (m1,m2) 7−→ λ−nf(m1,m2, λ)

is a homomorphism of algebras. In addition the linear map

ε0 : C
∞
c (TM) −→ C∞

c (TM)

given by the formula

ε0(f) : Xm 7−→ f(Xm, 0)

is a homomorphism of algebras, too, if the target C∞
c (TM) is equipped with the

fiberwise convolution product.

The factor λ−n that appears above comes from the fact that we are using a fixed
measure on M to define L2(M), whereas the chosen Haar system is comprised
of measures on copies of M that vary with λ.

5.2 Twisted Convolution on the Tangent Bundle

The first statement in Proposition 5.1.1 has an obvious spinorial counterpart,
whose proof requires no new ideas:

5.2.1 Proposition. For λ 6= 0 the morphism

ελ : C
∞
c (TM, S) −→ K∞(L2(M,S))

given by the formula

ελ(σ) : (m1,m2) 7−→ λ−nσ(m1,m2, λ)

is a homomorphism of algebras.

We can also define

ε0 : C
∞
c (TM, S) −→ C∞

c (TM,∧∗TM)

by restriction, so that

ε0(σ) : Xm 7−→ σ(Xm, 0).

But in order to make this a homomorphism of algebras we need to adjust the
convolution operation on C∞

c (TM,∧∗TM), in accordance with Theorem 4.3.1.
Other than this adjustment, the proof of the following theorem is identical to
the case of the ordinary tangent groupoid algebra considered by Connes.
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5.2.2 Proposition. If the space C∞
c (TM,∧∗TM) is equipped with the twisted

convolution product

(ϕ1 ⋆ ϕ2)(Xm) =

∫

TmM

ϕ1(Xm − Ym) ∧ ϕ2(Ym) ∧ exp(12κ(Ym, Xm)) dµm(Ym),

then the restriction map

ε0 : C
∞
c (TM, S) −→ C∞

c (TM,∧∗TM)

is a homomorphism of algebras.

5.2.3 Remark. This is an appropriate time to note that our approach shares
much with a manuscript of Siegel [Sie10]. The above proposition is, however
at variance with the corresponding formula there [Sie10, p.16].

5.3 Supertraces on the Clifford Algebra

Let E be an even-dimensional and oriented Euclidean vector space. Let
e1, . . . , en be an oriented orthonormal basis for E, and for I = (i1 < i2 <
· · · < id) let

eI = ei1 · ei2 · . . . · eid ∈ Cliff(E).

The linear functional
str : Cliff(E) −→ C

defined by

str(eI) =

{
1 I = (1, 2, . . . , n)

0 otherwise.
(5.3.1)

is independent of the choice of oriented, orthonormal basis, and is a supertrace
on the Clifford algebra. See [Mei13, Sec. 2.2.8]. Note that

str |Cliffn−1(E) = 0. (5.3.2)

The supertrace can be calculated using the irreducible representation

c : Cliff(E)
∼=
−→ End(S)

as follows. The element

s = i
n
2 e1 · . . . · en ∈ Cliff(E) (5.3.3)

is independent of the choice of oriented orthonormal basis and satisfies s2 = 1.
The self-adjoint operator c(s) determines a Z/2-grading of the vector space S,
and

str(x) =
(
i
2

)n
2 Tr(c(s)c(x)) (5.3.4)

for all x ∈ Cliff(E).
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5.4 Supertraces on the Convolution Algebra

The Hilbert space L2(M,S) carries a Z/2-grading that is defined as follows.
If e1, . . . , en is any local oriented orthonormal frame for the tangent bundle of
M , then the product

c(s) = i
n
2 c(e1)c(e2) . . . c(en)

defines locally an endomorphism of S whose square is the identity. It is in
fact independent of the choice of local oriented orthonormal frame, and so the
formula above defines a canonical global endomorphism of S. It is self-adjoint
and squares to the identity, and is by definition the grading operator for the
Z/2-grading on L2(M,S).
We shall denote by

STr: K∞(L2(M,S)) −→ C

the associated supertrace, and we shall use this to define a family of supertraces
on C∞

c (TM, S), as follows:

5.4.1 Definition. For λ ∈ R \ {0} we shall denote by

STrλ : C
∞
c (TM, S) −→ C

the composition

C∞
c (TM, S)

ελ−→ K∞(L2(M,S))
STr
−→ C,

as in (1.0.10). In addition, we define the supertrace STr0 using (1.0.11).

5.4.2 Theorem. If τ ∈ C∞
c (TM, S), then λ 7→ STrλ(τ) is a smooth function

of λ ∈ R.

5.4.3 Remark. The ordinary tangent groupoid algebra carries a family of
traces, parametrized by λ 6= 0, that are obtained by composing the homomor-
phisms (1.0.4) with the usual operator trace on smoothing operators:

C∞
c (TM)

ελ−→ K∞(L2(M))
Tr
−→ C.

Roughly speaking, local, or algebraic, index theory is the study of these traces
as λ → 0. The traces do not converge as λ → 0, and instead more elaborate
strategies must be developed, for instance replacing the traces with equivalent
cyclic cocycles. See for example [NT95] or [Per13] for two perspectives on
this. It is a remarkable fact, discovered of course by Getzler, that in the
supersymmetric context the traces do converge.

Proof of Theorem 5.4.2. The supertrace on K∞(L2(M,S)) can be written

STr(k) =

∫

M

str
(
k(m,m)

)
dµ(m),
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where str is the pointwise supertrace on End(Sm). So according to the defini-
tions, if τ ∈ C∞

c (TM, S) and λ 6= 0, then

STrλ(τ) = λ−n

∫

M

str
(
τ(m,m, λ)

)
dµ(m).

We shall show that for any smooth section τ the map

(m,λ) 7−→ λ−n str
(
τ(m,m, λ)

)

extends to a smooth function on M×R, and then calculate the value of the
extension at 0 ∈ R to be

(m, 0) 7−→ str(τ(0m, 0)), (5.4.1)

where 0m ∈ TmM is the zero tangent vector and the supertrace is the coefficient
of e1 ∧ · · · ∧ en ∈ ∧∗TmM , with e1, . . . , en as above. This will suffice.
Any smooth section of S over TM is locally a finite sum of products f · σ̂, where
f is a smooth function on TM and σ ∈ S(TM); see Definition 3.5.3. Since

λ−n str
(
(f · σ̂)(m,m, λ)

)
= f(m,m, λ) · λ−n str

(
σ̂(m,m, λ)

)

it suffices to show that λ−n str(σ̂(m,m, λ)) extends to a smooth function on
M×R, and calculate that the value of the extension at λ = 0 agrees with
(5.4.1).
If σ =

∑
σpt

−p, then

λ−n str
(
σ̂(m,m, λ)

)
=

∑
λ−p−nσp(m,m)

Now if p > −n, then the restriction of σp to the diagonal point (m,m) lies in

c
(
Cliffn−1(TmM)

)
⊆ End(Sm),

and hence by (5.3.2) it has supertrace zero. So after writing q = −p we find
that

λ−n str
(
σ̂(m,m, λ)

)
=

∑

q≥n

λq−n str
(
σ̂−q(m,m)

)
,

which is clearly a smooth function of m ∈ M and λ ∈ R. The value at λ = 0
is str(σ̂−n(m,m)), and if we write

σ−n =
∑

I

hIeI

as in (3.4.1), then from (5.3.1) we find that

str
(
σ̂−n(m,m)

)
= hIn(m,m)

where In = (1, 2, . . . , n). This is the coefficient of e1 ∧ · · · ∧ en in the fiber
∧∗TmM , as required.
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5.5 Final Comments on Index Theory

In this concluding subsection we shall comment on the roles that the tangent
groupoid and rescaling play in index theory, and suggest future developments,
which we aim to pursue elsewhere.
Let us return to Theorem 2.5.1. We noted there that the family of operators
{D(m,λ)} on the source fibers of the tangent groupoid that is associated to a
single linear partial differential operator on M is equivariant for the (right)
action of the groupoid TM on itself. This has the following consequence:

5.5.1 Lemma. The family of operators {D(m,λ)} on the source fibers of TM
acts on the function space C∞

c (TM) as a right C∞
c (TM)-module endomor-

phism.

If D is in addition elliptic, then we can say more. To make the cleanest
statement it is convenient to introduce the quotient algebra C∞

c (TM)[0,1] of
C∞

c (TM) by the ideal of all smooth, compactly supported functions on TM
that vanish for all λ ∈ [0, 1]. Of course the family {D(m,λ)} acts on this algebra
by right module endomorphisms, too. Ellipticity implies that this action is
almost invertible:

5.5.2 Theorem. If M is closed, and if D is elliptic, then the associated right-
module endomorphism of C∞

c (TM)[0,1] is invertible modulo left multiplications
by elements of C∞

c (TM)[0,1].

To be explicit, the theorem asserts that there are right module maps

D : C∞
c (TM)[0,1] −→ C∞

c (TM)[0,1] and Q : C∞
c (TM)[0,1] −→ C∞

c (TM)[0,1],

the first associated to {D(m,λ)}, for which the operators

I− DQ, I−QD : C∞
c (TM)[0,1] −→ C∞

c (TM)[0,1]

are left multiplications by elements of C∞
c (TM)[0,1]. The theorem may be

proved using pseudodifferential operator theory (and see [EY17] for an account
of the theory of pseudodifferential operators that is particularly well suited to
the present context).

The theorem implies that D defines a class inK0(C
∞
c (TM)[0,1]); see for example

[Mil71, Sec. 2]. This is an essential step in Connes’ approach to index theory
via K-theory and the tangent groupoid.

5.5.3 Remarks. Actually when considering K-theory it is preferable to pass
to a Fréchet algebra completion of C∞

c (TM)[0,1], as in [CR08], or, even bet-
ter, the C∗-algebra completion considered by Connes in [Con94, Sec. II.5]. In
addition, in order to get a sufficiently rich class of examples, one should intro-
duce operators acting on sections of bundles, and use the associated modified
convolution algebras, as in Example 4.2.2 and Lemma 4.2.3 above.
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It is an interesting challenge to fit the rescaled bundle and the algebra
C∞

c (TM, S) into this type of K-theory picture. The main issue is that the
Dirac operator /D gives rise to a family of operators for which the analogue of
Lemma 5.5.1 holds, but not the analogue of Theorem 5.5.2, the latter because
the model operators /D(m,0) are not elliptic, as they are in the standard case
(as is well known they are in fact the de Rham differentials on the tangent
fibers). Perhaps Kasparov’s Dirac operator dM from [Kas88, Def. 4.2] has a
role to play here.
There are other interesting challenges, too. For instance although the convolu-
tion algebra C∞

c (TM, S) admits natural Fréchet and Banach algebra comple-
tions [Yi19], there is no C∗-algebra completion.
Getzler took a different approach that focussed not on /D but on the Laplace-
type operator ∆ = /D2, for which the model operators ∆(m,0) are variants of
the quantum harmonic oscillator (and are elliptic). Supersymmetry relates the
supertraces considered in Subsection 5.4 to the index of the Dirac operator:

5.5.4 Lemma. The supertrace STr
(
exp(−λ2∆)

)
is the index of the Dirac op-

erator /D, and is in particular a constant, integer-valued function of λ 6= 0.

As Getzler pointed out, the smoothness of the family of supertraces STrλ from
Subsection 5.4 now allows one to compute the index from the value at λ=0,
which involves only the operators ∆(m,0), which depend only on the Riemannian
curvature of M . See [Get83, BGV92, Roe98]. It will be interesting to explore
this more thoroughly from the point of view of the cyclic cohomology of the
algebra C∞

c (TM, S), and also discover what lessons can be learned in K-theory
and K-homology about the use of /D2 rather than /D here.

6 Appendix. Taylor Expansions

The purpose of this appendix is to prove Proposition 3.3.10. We shall use the
exponential map

TM ∋ Xm 7−→ (expm(Xm),m) ∈ M×M,

which is a diffeomorphism from a neighborhood of the zero section in the tan-
gent bundle onto a neighborhood of the diagonal in M×M , and the associated
Euler vector field E, defined on a neighborhood of the diagonal in M×M , by

E(exp(Xm),m) =
d

ds

∣∣∣
s=1

(expm(sXm),m).

The Euler vector field is tangent to each source fiber M×{m} of the pair group-
oid, and if (x1, . . . , xn) are geodesic local coordinates on M that are centered
at m, then

E =

n∑

i=1

xi∂i

on M×{m}. We shall also use the concept of Taylor series that is explained in
the following two definitions.
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6.0.1 Definition. We shall say that a smooth section σ of S⊠S∗ is syn-
chronous near m ∈ M , if ∇Eσ = 0 in a neighborhood of (m,m) ∈ M×M .

By parallel translation, every smooth section of S⊠S∗ on the diagonal extends
to a smooth section that is synchronous near the diagonal.

6.0.2 Definition. Let m ∈ M and let (x1, . . . , xn) be smooth functions de-
fined in a neighborhood of (m,m) ∈ M×M that restrict to geodesic local
coordinates at (m′,m′) on each M×{m′}. Let σ be a smooth section S⊠S∗.
A Taylor expansion of the section σ at m ∈ M is a formal series

∑

α≥0

xα σα, (6.0.1)

where

(i) the sum is over multi-indices α = (α1, . . . , αn), with each αk a nonnegative
integer, and xα = xα1

1 · · ·xαn
n ;

(ii) each σα is a smooth section of S⊠S∗ that is synchronous near m (note
that since it is synchronous near m, σα is determined by its values along
the diagonal near m)

(iii) the series is asymptotic to σ near the diagonal and near (m,m) ∈ M×M
in the sense that for every N ∈ N the difference

σ −
∑

|α|<N

xα σα

vanishes to orderN on the diagonal near (m,m) (here |α| = α1+· · ·+αn).

Every smooth section has a unique Taylor expansion. Proposition 3.3.10 is a
consequence of the following result:

6.0.3 Proposition. Let σ be a smooth section of the S⊠S∗, and let m ∈ M .
If

σ ∼
∑

α≥0

xα σα

is the Taylor series of σ near m, then

Scaling-order(σ) ≥ min
α

{
|α| − Clifford-order(σα)

}
(6.0.2)

near m. In particular, if σ is synchronous near m, then

Scaling-order(σ) ≥ −Clifford-order(σ).

near m.
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The proposition is proved as follows. Let us temporarily call the quantity on
the right hand side of (6.0.2) the Taylor order of σ. Obviously

Taylor-order(σ) ≤ −Clifford-order(σ)

If we can prove that applying an operator D to σ decreases the Taylor order
by at most the Getzler order of D, then we shall get

Taylor-order(σ)−Getzler-order(D) ≤ Taylor-order(Dσ)

≤ −Clifford-order(Dσ)

and hence

Clifford-order(Dσ) ≤ Getzler-order(D)− Taylor-order(σ)

In view of Definition 3.3.5, the proposition follows immediately from this. As
for the effect on the Talyor order of applying D, it is clear that a Clifford
multiplication c(X) increases it by at most one; the other case to consider,
that of a covariant derivative ∇X , is handled by the following lemma:

6.0.4 Lemma. Let σ be a smooth section of the S⊠S∗ that is synchronous near
m ∈ M , and let X be a vector field on M . The Taylor series at m of the section
∇X σ has the form

∇X σ ∼
∑

|α|≥1

xα c(q(ωα))σ,

where each ωα is the germ near m ∈ M of a smooth section of ∧2TM . Here
we regard c(q(ωα)) as a section of S⊠S∗ defined on the diagonal near m, and
extend it to a section over M×M that is synchronous near m.

Proof. (Compare [Roe98, Prop. 12.22].) A general vector field X on M can
be written as a combination

∑
i fi∂i, and by expanding the smooth coefficient

functions fi in Taylor series we see that it suffices to prove the lemma for the
coordinate vector fields X = ∂i.
According to the definition of curvature,

∇E∇X σ −∇X∇E σ −∇[E,X] σ = K(E,X)σ. (6.0.3)

Since the section σ is synchronous near m,

∇Eσ = 0 (6.0.4)

in a neighborhood of (m,m) ∈ M×M . Moreover, since X is a coordinate
vector field,

[E,X ] = −X. (6.0.5)

Inserting (6.0.4) and (6.0.5) into (6.0.3) we find that

∇E∇X σ +∇X σ = K(E,X)σ. (6.0.6)
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Now expand ∇X σ as a Taylor series at m ∈M,

∇Xσ ∼
∑

|α|≥1

xασα (6.0.7)

(there is no order zero term because the section σ is synchronous). Using the
formula

∇E xα σα = |α|xα σα

for the Euler vector field we find that the Taylor series for ∇E∇X σ is

∇E∇X σ ∼
∑

α

|α|xασα. (6.0.8)

Next, recall that the curvature operator K(E,X) may be written as

K(E,X) = c
(
γ(R(E,X))

)
.

See (3.2.3). Write the section γ(R(E,X)) of ∧2TM as a Taylor series

γ(R(E,X)) ∼
∑

|α|≥1

xαηα, (6.0.9)

where each ηα ∈ ∧2TM is synchronous at m ∈ M for the Levi-Civita con-
nection (there is no order zero term in this Taylor expansion either, this time
because the vector field E vanishes at m ∈ M). Inserting (6.0.7), (6.0.8) and
(6.0.9) into (6.0.6) we obtain an identity of Taylor expansions

∑

|α|≥1

(1 + |α|)xασα =
∑

|α|≥1

xαc(q(ηα))σ.

The lemma follows from this.
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[EY17] Erik van Erp and Robert Yuncken. A groupoid approach to pseu-
dodifferential calculi. J. Reine Angew. Math., Published Online,
2017.

[Get83] Ezra Getzler. Pseudodifferential operators on supermanifolds and
the Atiyah-Singer index theorem. Comm. Math. Phys., 92(2):163–
178, 1983.

[God58] Roger Godement. Topologie algébrique et théorie des faisceaux. Ac-
tualités Sci. Ind. No. 1252. Publ. Math. Univ. Strasbourg. No. 13.
Hermann, Paris, 1958.

[Hig93] Nigel Higson. On the K-theory proof of the index theorem. In Index
theory and operator algebras (Boulder, CO, 1991), volume 148 of
Contemp. Math., pages 67–86. Amer. Math. Soc., Providence, RI,
1993.

[Hig10] Nigel Higson. The tangent groupoid and the index theorem. In
Quanta of Maths, volume 11 of Clay Math. Proc., pages 241–256.
Amer. Math. Soc., Providence, RI, 2010.

[HSSH18] Ahmad Reza Haj Saeedi Sadegh and Nigel Higson. Euler-like vector
fields, deformation spaces and manifolds with filtered structure. Doc.
Math., 23:293–325, 2018.

[Kas88] Gennadi Kasparov. Equivariant KK-theory and the Novikov con-
jecture. Invent. Math., 91(1):147–201, 1988.

[LM89] H. Blaine Lawson, Jr. and Marie-Louise Michelsohn. Spin geometry,
volume 38 of Princeton Mathematical Series. Princeton University
Press, Princeton, NJ, 1989.

[Mei13] Eckhard Meinrenken. Clifford algebras and Lie theory, volume 58
of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A
Series of Modern Surveys in Mathematics [Results in Mathemat-
ics and Related Areas. 3rd Series. A Series of Modern Surveys in
Mathematics]. Springer, Heidelberg, 2013.

[Mil71] John Milnor. Introduction to algebraic K-theory. Princeton Univer-
sity Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971.
Annals of Mathematics Studies, No. 72.

[NT95] Ryszard Nest and Boris Tsygan. Algebraic index theorem. Comm.
Math. Phys., 172(2):223–262, 1995.

Documenta Mathematica 24 (2019) 1677–1720



1720 Nigel Higson and Zelin Yi

[Per13] Denis Perrot. Pseudodifferential extension and Todd class. Adv.
Math., 246:265–302, 2013.

[Ree56] David Rees. Valuations associated with ideals. II. J. London Math.
Soc., 31:221–228, 1956.

[Ren80] Jean Renault. A groupoid approach to C∗-algebras, volume 793 of
Lecture Notes in Mathematics. Springer, Berlin, 1980.

[Roe98] John Roe. Elliptic operators, topology and asymptotic methods, vol-
ume 395 of Pitman Research Notes in Mathematics Series. Long-
man, Harlow, second edition, 1998.

[Sie10] Paul Siegel. Local index theory and the tangent groupoid.
Manuscript, 2010. Available at semanticscholar.org.

[Wel08] Raymond O. Wells, Jr. Differential analysis on complex manifolds,
volume 65 of Graduate Texts in Mathematics. Springer, New York,
third edition, 2008. With a new appendix by Oscar Garcia-Prada.

[Yi19] Zelin Yi. Ph.D. Thesis, Penn State University, 2019.

Nigel Higson
Department of Mathematics
Penn State University
University Park
PA 16802
USA
higson@psu.edu

Zelin Yi
Chern Institute of Mathematics
Nankai University
Tianjin 300071
China
zelin@nankai.edu.cn

Documenta Mathematica 24 (2019) 1677–1720


