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Abstract. The triangulated category of cohomological 1-motives
with rational coefficients over a base scheme admits a motivic t-
structure. We prove that this t-structure restricts to the subcategory
of compact objects, and that pullbacks along arbitrary morphisms,
as well as Betti and étale realisation functors, are t-exact relative to
this t-structure. These exactness properties follow from a structural
result: compact objects in the heart behave like a constructible sheaf
of Deligne 1-motives.

2010 Mathematics Subject Classification: 14C15; 19E15
Keywords and Phrases: Voevodsky motives; Deligne 1-motives; Mo-
tivic t-structure

Introduction

This paper takes place in the context of triangulated categories of mixed mo-
tivic sheaves in the sense of Morel-Voevodsky, and is a follow-up to [12]. Let
S be a finite dimensional noetherian excellent scheme. Write DA(S) for the
triangulated category of mixed motives over S with rational coefficients. Let
DA

1(S) ⊂ DA(S) be the localizing subcategory generated by compactly sup-
ported cohomological motives of relative curves over S. This category is a
natural environment to study cohomology of families of curves and their de-
generations. The categoryDA(S) is conjectured to admit a motivic t-structure
compatible with standard t-structures on derived categories of sheaves via real-
isation functors. In [12], we constructed a candidate for the motivic t-structure
on the subcategory DA

1(S). Its heart is an abelian category MM
1(S). In this

paper, we solve some of the main questions left open in [12] about the motivic
t-structure and the category MM

1(S).
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We prove (under a mild hypothesis on S) that pullbacks along arbitrary mor-
phisms are t-exact on compact objects (Theorem 2.1 (iii)), and that Betti and
étale realisation functors are t-exact if the target categories of realisation func-
tors are equipped with their standard t-structure (Theorem 2.1 (iii) (iv) (v)).
In particular, this justifies our claim that the motivic t-structure on DA

1
c(S)

is the restriction to the conjectural motivic t-structure on DAc(S). To make
sense of these statements, we first have to prove that the motivic t-structure on
DA

1(S) restricts to the category DA
1
c(S) of compact cohomological 1-motives

(Theorem 2.1 (i)).

Let MM
1
c(S) be the category of constructible cohomological 1-motives, that is,

the heart of the restricted t-structure on DA
1
c(S). We show that, for any M ∈

MM
1
c(S), there exists a stratification of the base S by regular locally closed

subschemes such that the restrictions of M to strata are Deligne 1-motives
(Theorem 2.1 (ii)). This structural result easily implies the other statements
of Theorem 2.1 and its proof occupies most of the paper. The result is true
generically since MM

1
c(k) is equivalent to the category of Deligne 1-motives

over a field k (Proposition 1.7, and by a continuity argument holds over a dense
open subset of S. Using localisation triangles and easy homological algebra, we
are reduced to a statement about 1-motivic degeneration of Deligne 1-motives,
with the key case being the degeneration of the 1-motive associated to the
Jacobian of a smooth projective pointed curve (Lemma 2.2). We show using
results of De Jong that we can assume that the curve extends to a semi-stable
curve with regular total space. In this geometric situation, we can conclude
with an explicit computation.

Related work

The fact that the t-structure restricts to DA
1
c(S) has been obtained previously

by V. Vaish in [14]. Vaish’s approach relies on an elegant combination of the
gluing procedure for t-structures of [4] and the “weight truncation” t-structures
of [9]. He first gives an alternative construction of the functor ω1 : DA

coh
c (S)→

DA
1
c(S) (see Definition 1.2 and Theorem 1.3) by gluing the analoguous functors

ω1 : DA
coh
c (k(s)) → DA

1
c(k(s)) for all points s ∈ S (which exist by [3]), and

then uses gluing data of the form

(j! ⊣ j∗ ⊣ ω1j∗, i
∗ ⊣ i∗ ⊣ ω1i!)

for j : U → S ← Z : i complementary open and closed immersions to glue
together the t-structures on the DA

1
c(k(s)) (which exist by [11]). It is not

clear to us how to prove the other results in Theorem 2.1 using the approach
of [14]; we plan to come back to this point and to combine the strengths of our
approaches in future work.
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Conventions

All schemes are assumed to be finite dimensional, noetherian and excellent.
Unless specified, smooth morphisms are assumed to be separated of finite type.
The notation Sm/S denotes the category of all smooth S-schemes considered
as a site with the étale topology.
In this paper, a semi-abelian scheme over a scheme S is an S-group scheme
which is an extension of an abelian scheme by a torus; in other words, a semi-
abelian scheme in the more general sense which is of constant toric rank.

Definition 0.1. We say that a scheme S allows resolution of singularities by
alterations if for any separated S-scheme X of finite type and any nowhere
dense closed subset Z ⊂ X , there is a projective alteration g : X ′ → X with
X ′ regular and such that g−1(Z) is a strict normal crossing divisor.

The best result available in this direction is due to Temkin [13, Theorem 1.2.4]:
any S which is of finite type over a quasi-excellent scheme of dimension ≤ 3
allows resolution of singularities by alterations.

1 Background on relative 1-motives

For the comfort of the reader, we review some definitions and results from [12].
Let S be a scheme. The category DA(S) := DA

ét(S,Q) is the triangulated
category of rational étale motives coming from the stable homotopical 2-functor
DA

ét(−,Q) considered in [2, §3].

Definition 1.1. The category DA
coh(S) of cohomological motives is the lo-

calising subcategory of DA(S) generated by

{f∗QX | f : X → S proper morphism}.

The category DA
1(S) of cohomological 1-motives is the localising subcategory

of DA(S) generated by

{f∗QX | f : X → S proper morphism of relative dimension ≤ 1}.
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Definition 1.2. The full embedding DA
1(S) →֒ DA

coh(S) preserves small
sums, thus by Neeman’s version of Brown representability for compactly gen-
erated triangulated categories (see e.g. [10, Theorem 8.3.3]), admits a right
adjoint ω1 : DA

coh(S)→ DA
1(S).

One of the main results of [12] (which was reproved later by Vaish in [14] with
a different method) is the following.

Theorem 1.3. Let S be a noetherian finite-dimensional excellent scheme. As-
sume that S allows resolution of singularities by alterations. Then the functor
ω1 : DA

coh(S)→ DA
1(S) preserves compact objects.

We recall the definition of Deligne 1-motives.

Definition 1.4. Let S be a scheme. A 2-term complex of commutative S-
group schemes:

M = [
0

L−→
−1

G ]

is called a Deligne 1-motive over S if L is a lattice (i.e. an S-group scheme
which is étale locally isomorphic to a free abelian group of finite rank) and G is
a semi-abelian scheme. We denote byM1(S) the category of Deligne 1-motives
with rational coefficients (i.e., the idempotent completion of the category whose
morphisms groups are morphism groups of Deligne 1-motives tensored with Q).

Recall that sets of isomorphism classes of compact objects generate t-structures
in compactly generated triangulated categories [1, Lemme 2.1.69, Proposi-
tion 2.1.70].

Definition 1.5. The motivic t-structure t1
MM

(S) on DA
1(S) is the t-structure

generated by the family

DGS = {e♯Σ
∞(M)| e : U → S étale , M ∈M1(U)} .

of compact objects.

Let (T , T≥0, T<0) be a triangulated category with a t-structure, written with
the homological convention. In [12] we used the terminology “t-positive” for
objects in T≥0 and “t-negative” for objects in T≤0; we adopt here the more
correct english usage of “t-non-negative” for objects in T≥0 and “t-non-positive”
for objects in T≤0.
The main properties of t1

MM
(S) from [12, §4] which we will use are the following.

• Elementary exactness properties [12, Proposition 4.14].

• Compact objects are bounded for t1
MM

(S) [12, Corollary 4.29].

• There is a functor Σ∞(−)(−1) : M1(S) → MM
1(S) which is fully

faithful when S is regular [12, Theorem 4.22, Theorem 4.31]. Further-
more, if e : U → S is any étale morphism and M ∈ M1(U), then
e!Σ

∞M(−1) ∈MM
1(S).
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For the theory over an imperfect field, we have the following results which
complements the treatment in [12].

Proposition 1.6. Let k be a field and l/k be a purely inseparable field exten-
sion. Then the base change functor

M1(k)→M1(l)

is an equivalence of categories.

Proof. Let us first prove that this functor is fully faithful. This can be deduced
from the embedding into MM

1 recalled above, but we give a direct proof. The
idempotent completion of a fully faithful functor is fully faithful, so that we only
have to study morphism groups between Deligne 1-motives. Let M = [L

u
→ G]

and M′ = [L′ u′

→ G′] inM1(k).
Since Q is flat over Z, it is enough to show faithfulness for the functor
M1(k,Z) → M1(l,Z). The base change functor from group schemes over
k to group schemes over l is faithful, and this implies the result.
Since the category of lattices only depends on the small étale site két and
két ≃ lét, we have M1(k)(L,L

′) ≃ M1(l)(Ll, L
′
l). By [5, Theorem 3.11],

HomC
k
(G,G′) ≃ HomC

l
(Gl, G

′
l) with Ck the category of smooth commutative

k-groups up to isogeny in the sense of loc.cit. Since semi-abelian varieties over
any field are divisible, this implies by [5, Proposition 3.6] that

M1(k)(G,G′) := Hom(G,G′)⊗Q

≃ HomC
k
(G,G′)

≃ HomC
l
(Gl, G

′
l)

≃M1(l)(G,G′).

We can now prove fullness. Let g = f⊗ 1
n
∈M1(l)(Ml,M

′
l) with f = (fL, fG) ∈

M1(l,Z)(Ml,M
′
l′). By the previous paragraph, there exist preimages fL

0 : L→
L′ and fG

0 : G→ G′ of fL, fG. The pair (fL
0 , f

G
0 ) is a morphism of complexes

if and only if u′ ◦ fL
0 = fG

0 ◦ u : L → G′. Because the base change for group
schemes from k to l is faithful, we can check this over l, where it follows from
the fact that f is a morphism. This concludes the proof of fullness.
We prove essential surjectivity. The idempotent completion of an equivalence
of categories is an equivalence of categories, so we have to show that Deligne 1-
motives lie in the essential image. Let M = [L

u
→ G] ∈M1(l). By étale descent

and semi-simplicity of lattices up to isogeny, we can assume furthermore that
L ≃ Zr is split. By standard spreading-out arguments, we see that M is
defined over a finitely generated (hence finite since it is purely inseparable)
subextension of l. Hence we assume that l is finite over k, which implies
that lq ⊂ k with q = pN is a large enough power of p. Since l/k is purely
inseparable, there is a lattice L0 over k such that L ≃ (L0)l as group schemes.
By [5, Theorem 3.11] (again combined with [5, Proposition 3.6] and divisibility
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of semi-abelian varieties), there exists a semi-abelian variety G0 over k and
an isogeny λ : G → (G0)l. We thus get a morphism λu : Zr → (G0)l. By
[7, Exp. VIIA §4.3], we see that [q]λu factors through a morphism L0 → G0,
which makes [L0 → G0] ∈ M1(k) into a pre-image of M. This concludes the
proof.

Proposition 1.7. Over a field k, the t-structure restricts to compact objects
and the functor Σ∞(−)(−1) : Db(M1(k)) → DA

1
c(k) is an equivalence of t-

categories, so that Σ∞(−)(−1) :M1(k) ≃MM
1
c(k).

Proof. This follows from [12, Proposition 4.21] combined with Proposition 1.6.

In the same vein, here is a result implicit in [12] which we make explicit for
later reference.

Lemma 1.8. Let f : T → S be a finite surjective radicial morphism. Then
f∗ : DA

1(S)→ DA
1(T ) is an equivalence of t-categories.

Proof. For such a morphism, f∗ ≃ f ! : DA(c)(S)→ DA(c)(T ) is an equivalence

by [1, Corollaire 2.1.164]. Since f is finite, the functor f∗ sends DA
1(S) to

DA
1(T ), so that f∗ induces an equivalence between DA

1(S) and DA
1(T ).

Finally, the t-exactness follows from f∗ ≃ f ! and [12, Proposition 4.14].

2 Exactness properties of constructible 1-motives

Here is the main theorem of this paper.

Theorem 2.1. Let S be an scheme allowing resolution of singularities by al-
terations. Then

(i) The t-structure t1
MM

(S) restricts to the subcategory DA
1
c(S) of con-

structible 1-motives. Denote its heart by MM
1
c(S).

(ii) Let M be in DA
1
c(S). Then M is in MM

1(S) if and only if there exists
a locally closed stratification (iα : Sα → S) of Sred such that for all α, we
have

i∗αM ≃ Σ∞Mα(−1)

with Mα a Deligne 1-motive on Sα. Moreover, we can assume the Sα to
be regular.

(iii) Let f : T → S be a morphism. Then the functor f∗ : DA
1
c(S)→ DA

1
c(T )

is t-exact (with respect to the restricted t-structures from (i)).

(iv) Let ℓ be a prime number invertible on S. Then the functor Rℓ :
DA

1
c(S)→ Db

c(Sét,Qℓ) obtained by restricting the rational ℓ-adic realisa-
tion functor from [2, Definition 9.6] is t-exact for the motivic t-structure
of (i) on the source and the standard t-structure on the target.
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(v) Assume that S is a finite type k-scheme with k a field of characteristic
0 admitting an embedding σ : k → C. Then the Betti realisation functor
RB,σ : DA

1
c(S) → Db

c(Sσ(C),Q) is t-exact for the motivic t-structure of
(i) on the source and the standard t-structure on the target.

(vi) Statements (i)-(v) also hold for homological 1-motives DA1(−) (resp. for
0-motives DA

0(−)) provided one replaces M(−1) by M (resp. by F with
F a locally free sheaf of Q-vector spaces) in (ii) (cf. [12] for the relevant
definitions for homological 1-motives and 0-motives).

Proof. First, a word of caution about notation. Since we do not know yet
that t1

MM
(S) restricts to compact objects, we refrain from using the notation

MM
1
c(S) and always write MM

1(S)∩DA
1
c(S) for the compact objects in the

heart.
By Lemma 1.8, we can assume in every statement (i)-(v) that the schemes
involved are reduced, and we will do so in the rest of the proof.
For every d ∈ N and every statement (i)-(v), write (i)d-(v)d for the correspond-
ing statements where the dimension of the schemes involved is less or equal to
d (in particular, for (iii)d, we consider morphisms between schemes of dimen-
sion ≤ d. We are going to prove all the statements by induction on d. More
precisely, we show that

• (i)0 and (ii)0 hold.

• ((i)d and (ii)d) imply ((iii)d, (iv)d and (v)d) for all d ∈ N.

• ((i)d−1 and (ii)d−1) imply ((i)d and (ii)d) for all d ≥ 1.

Let us prove (i)0 and (ii)0. Let S be reduced of dimension 0. Then S is a finite
disjoint union of spectra of fields, and the result follows from Proposition 1.7.
Let us show that (i)d and (ii)d imply (iii)d. Let f : T → S be a morphism
of schemes with dim(S) ≤ d and dim(T ) ≤ d. By (i)d, t

1
MM

(S) and t1
MM

(T )
restrict to the subcategories of compact objects. We want to show that f∗ is
t-exact. By [12, Proposition 4.14], it is enough to show that f∗ : DA

1
c(S) →

DA
1
c(T ) is t-non-positive. Let M ∈ DA

1
c(S)≤0. We have to show that f∗M is

t-non-positive. By [12, Corollary 4.29], the motive M has finitely many non-
zero homology objects, and thus can be obtained by finitely many extensions
starting with non-positive shifts of objects in MM

1(S) ∩ DA
1
c(S). So it is

enough to prove that M ∈MM
1(S) ∩DA

1
c(S)⇒ f∗M is t-non-positive.

By (ii)d, there exists a stratification {Sα} of S so that we have

i∗αM ≃ Σ∞Mα(−1)

with Mα a Deligne 1-motive on Sα. Consider the induced stratification Tα :=
f−1(Sα) of T , with i′α : Tα → T and fα : Tα → Sα. The Tα are not necessarily
regular, but we can refine the stratification and assume they are. By [12,
Corollary 2.21], we have i′∗α f

∗M ≃ f∗
αΣ

∞Mα(−1) is a Deligne 1-motive. By
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the other direction of (ii)d, this shows that f
∗M is in MM

1(T )∩DA
1
c(S) and

in particular is t-non-positive.
We show (iv)d and (v)d assuming (i)d and (ii)d. The argument is the same
in both cases, so we only present the ℓ-adic case. By [12, Corollary 4.29], the
motivic t-structure on DA

1
c(S) is bounded, so that to prove t-exactness it is

enough to show that an object in the heart MM
1(S) ∩ DA

1
c(S) is sent to a

constructible ℓ-adic sheaf. Let M ∈MM
1(S)∩DA

1
c(S). By (ii)d, there exists

a locally closed stratification (Sα) of Sred such that for all α, if iα : Sα → S is
the natural immersion, we have

i∗αM ≃ Σ∞Mα(−1)

with Mα a Deligne 1-motive on Sα. By gluing and exactness of pullbacks
for ℓ-adic sheaves, it is enough to show that for any α, the object i∗αRℓM ≃
Rℓ(Σ

∞Mα)(−1) is a constructible ℓ-adic sheaf. This fact is established in the
proof of [12, Proposition 4.15].
So it remains to show that ((i)d−1 and (ii)d−1) imply ((i)d and (ii)d) for all
d ≥ 1. We assume (i)d−1 and (ii)d−1 for the rest of the proof. Let S be a
scheme of dimension ≤ d.
Let us show the “if” direction of Statement (ii)d. Let M ∈ DA

1
c(S). Assume

that there exists a stratification {Sα} of S so that we have

i∗αM ≃ Σ∞Mα(−1)

with Mα a Deligne 1-motive on Sα. Write U for the union of the open strata,
and Z for the complement, equipped with the reduced scheme structure (i.e.
the union of all the other strata). Write j : U → S for the open immersion
and i : Z → S for the complementary reduced closed immersion. Then Z is
of dimension < d. We see that i∗M satisfies the same hypothesis, with the
restricted stratification (since the pullback of a Deligne 1-motive is a Deligne
1-motive, [12, Corollary 2.21]). By (ii)d−1, the motive i∗M is in MM

1(Z); by
[12, Proposition 4.14], we get i∗i

∗M ∈MM
1(S). Moreover, j∗M is a Deligne

1-motive. By [12, Theorem 4.22], this implies that j!j
∗M is in MM

1(S). By
localisation, we have a distinguished triangle

j!j
∗M →M → i∗i

∗M
+
→

which shows that M ∈MM
1(S) as required.

In the rest of the proof, we establish the second part of (ii)d and (i)d. Both
statements will be established modulo the key geometric Lemma 2.2 below.
We first prove the rest of (ii)d. Let A ∈ MM

1(S) ∩ DA
1
c(S). Let η be the

scheme of generic points of S which is a disjoint union of spectra of fields.
Let us show that η∗A lies in MM

1(η) ∩ DA
1
c(η). The functor η∗ is t-non-

negative by Proposition [12, Proposition 4.14] (where no finite type hypothesis
is required). Let us show that η∗A is t-non-positive. We have to show that
for any P in a compact generating family of t1

MM
(η) and n > 0, we have
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DA(η)(P [n], η∗A) ≃ 0. By [12, Proposition 4.21], we can assume for instance
that P is of the form Σ∞M′

η(−1) with M′
η ∈ M1(η).

By continuity results for Deligne 1-motives [12, Proposition A.10] and DAc(−),

we can find an open set η ∈ V
j
→ S such that there exist Q = Σ∞M̃′′(−1) for

M̃′′ ∈ M1(V ) and P ≃ (η/V )∗Q. In particular, in both cases, Q is t-non-
negative. We can then use continuity for DAc(−) to write

DA(η)(P [n], η∗A) ≃ DA(η)((η/V )∗Q[n], (η/V )∗j∗A)

≃ Colimη∈W⊂V DA(W )((W/V )∗Q[n], (W/V )∗j∗A).

For such an intermediate open W , we see from [12, Proposition 4.14] that
(W/V )∗Q is t-non-negative while (W/V )∗j∗A is t-non-positive. This implies
that every morphism group in the colimit vanishes, and completes the proof
that η∗A is in MM

1(η) ∩DA
1
c(η).

Over η, which is a finite disjoint union of spectra of fields, thanks to Proposition
1.7, we understand completely the structure of compact objects in MM

1(η).
Namely, there exists a Deligne 1-motive Mη ∈ M1(η) such that

η∗A ≃ Σ∞Mη(−1)

The motive Mη has three components GrWi Mη for i = −2,−1, 0. By [8, Theo-

rem 11], we can write GrW−1Mη as a direct factor of the Jacobian of a smooth
projective geometrically connected curve Cη of genus ≥ 2 with a rational point

ση; that is, GrW−1Mη = Im(πη : Jac(Cη) ⊗ Q → Jac(Cη) ⊗ Q) with πη an
idempotent.
By continuity for Deligne 1-motives and DA(−), we can find an open set η ∈

U
j
→ S such that j∗A ≃ Σ∞M̃(−1) for M̃ ∈ M1(U). We can also assume

that U is regular (since S is excellent and reduced), and that GrW−1M is a
direct factor of the Jacobian of a smooth projective curve f : C → U with
geometrically connected fibers which comes together with a section σ : U → C.
Similarly, by restricting U , we can assume that the lattice GrW0 M and the
character lattice of the torus GrW−2M are direct factors of permutation lattices
over U , that is, lattices of the form e∗Z with e : V → U a finite étale morphism,
since this holds over a field.
Write i : Z → S for the reduced closed immersion complementary to U . We
prove that i∗A lies in MM

1(Z). By [12, Proposition 4.14], since A is t-non-
negative, the motive i∗A is t-non-negative. It remains to show it is t-non-
positive. Applying ω1i∗ to a localisation triangle, we get

ω1i!A→ i∗A→ ω1i∗j∗j
∗A

+
→ .

The functor ω1i! is t-non-positive by [12, Proposition 4.14], hence it is enough
to show that ω1i∗j∗j

∗A is t-non-positive. We have seen that j∗A is of the form
Σ∞M̃(−1). By Lemma 2.2 below, ω1i∗j∗j

∗A is t-non-positive, and we conclude
that i∗A lies in the heart as claimed.
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By (ii)d−1, there exists a locally closed stratification (iα : Zα → Z) such that all
the Zα are regular and such that i∗αi

∗A is a Deligne 1-motive. This stratification
combines with j : U → S to yield a stratification of S with regular strata and
such that A restricted to each stratum is a Deligne 1-motive. This proves (ii)d.

Let us show (i)d. We have to show that for any M ∈ DA
1
c(S), we have

τ≥0M ∈ DA
1
c(S). By [12, Corollary 4.29], M is bounded for t1

MM
(S). By

induction on the t1
MM

(S)-amplitude of M , we see that it is enough to show
that for a morphism f : A → B with A,B ∈MM

1(S) ∩DAc(S), the motive
τ≥1Cone(f) ≃ KerMM1(S)(f) is compact (or equivalently, that τ≤0Cone(f) ≃
CokerMM

1(S)(f) is compact).

The idea is to describe f over a dense open of S in terms of Deligne 1-motives
and to try to degenerate it to the boundary and apply the induction hypothesis.
Let us first describe A and B generically. By the same arguments in the proof

of (ii)d above, we can find a regular open subscheme η ∈ U
j
→ S such that

j∗A ≃ Σ∞M̃(−1) for M̃ ∈ M1(U) and that j∗B ≃ Σ∞Ñ(−1) for Ñ ∈ M1(U).

We can also assume that with GrW−1M (resp. GrW−1Ñ) is a direct factor of the
Jacobian of a smooth projective curve f : C → U (resp. g : P → U) with
geometrically connected fibers which comes together with a section σ : U → C
(resp. θ : U → P ). Similarly, we can assume that the lattices (resp. tori) of
A and B are direct factors of permutation lattices (resp. that their character
lattices are direct factors of permutation lattices).

The functor Σ∞(−)(−1) :M1(U)→MM
1(U) is fully faithful by [12, Theorem

4.31], so that we can identify the morphism j∗f : j∗A → j∗B modulo the

isomorphisms above with a morphism F : M̃→ Ñ. Restricting U , we can also
assume that the kernel K and cokernel Q of F in the abelian categoryM1(η)

extend to Deligne 1-motives K̃, Q̃ over U . Consider the morphism Σ∞F (−1).
The cone of Cone(η∗Σ∞F (−1)) ≃ Cone(η∗f) fits into a distinguished triangle

η∗Σ∞K̃(−1)[1]→ η∗Cone(Σ∞F̃ (−1))→ η ∗ Σ∞Q̃(−1)
+
→ .

By continuity for DA(−), again by restricting U , we can assume there is a
distiguished triangle

Σ∞K̃(−1)[1]→ Cone(Σ∞F̃ (−1))→ Σ∞Q̃(−1)
+
→ .

By [12, Theorem 4.22], we have j!Σ
∞K̃(−1) ∈ MM

1(S) and j!Σ
∞Q̃(−1) ∈

MM
1(S). This implies that the distinguished triangle

j!Σ
∞K̃(−1)[1]→ j!j

∗Cone(f)→ j!Σ
∞Q̃(−1)

+
→

is the truncation triangle of j!j
∗Cone(f) for t1MM , i.e., H1(j!j

∗Cone(f)) ≃

j!Σ
∞K̃(−1) and H0(j!j

∗Cone(f)) ≃ j!Σ
∞Q̃(−1).

As in the proof of (ii)d above, we see that i∗A and i∗B are in MM
1(Z). By

[12, Proposition 4.14], the motives i∗i
∗A and i∗i

∗B are in MM
1(S), and this
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implies that the morphism of localisation triangles

j!Σ
∞M̃(−1) //

j!Σ
∞F̃ (−1)

��

A //

f

��

i∗i
∗A

i∗i
∗f

��

+
//

j!Σ
∞M̃′(−1) // B // i∗i

∗B
+

//

is in fact a morphism of short exact sequences in MM
1(S), to which we can

apply the Snake lemma and get a six term exact sequence

0→ j!Σ
∞K̃(−1)→ H1(Cone(f))→ H1(Cone(i∗i

∗f))

→ j!Σ
∞Q̃(−1)→ H0(Cone(f))→ H0(Cone(i∗i

∗f))→ 0.

Again by Proposition [12, Proposition 4.14], we have H1(Cone(i∗i
∗f)) ≃

i∗H1(Cone(i
∗f)) and H0(Cone(i∗i

∗f)) ≃ i∗H0(Cone(i
∗f)).

By (i)d−1 applied to the morphism i∗f : i∗A→ i∗B on the proper closed subset
Z, we deduce that H1(Cone(i

∗f)) and H0(Cone(i
∗f)) are compact. Since i∗

preserves compact objects, H1(Cone(i∗i
∗f)) andH0(Cone(i∗i

∗f)) are compact.
By adjunction and localisation, we have a sequence of isomorphisms

DA(S)(i∗H1(Cone(i
∗f)), j!Σ

∞Q̃(−1))

≃ DA(Z)(H1(Cone(i
∗f)), i!j!Σ

∞Q̃(−1))

≃ DA(Z)(H1(Cone(i
∗f)), i∗j∗Σ

∞Q̃(−1)[−1])

≃ DA(Z)(H1(Cone(i
∗f)), ω1i∗j∗Σ

∞Q̃(−1)[−1]).

Again by Lemma 2.2 below, the motive ω1i∗j∗Σ
∞Q̃(−1) is t-non-positive.

Since the motive H1(Cone(i
∗f)) is t-non-negative, we deduce that the mor-

phism group above vanishes. This shows that the six term exact sequence
above splits into two short exact sequences,

0→ j!Σ
∞K̃(−1)→ H1(Cone(f))→ H1(Cone(i∗i

∗f))→ 0

and

0→ j!Σ
∞Q̃(−1)→ H0(Cone(f))→ H0(Cone(i∗i

∗f))→ 0.

We have proved that the outer terms in both those sequences are compact, and
we deduce that H1(Cone(f)) and H0(Cone(f)) are compact.
The theorem is now established modulo the following lemma, whose proof oc-
cupies the end of this section.

Lemma 2.2. Assume (i)d−1 and (ii)d−1. Let S be a scheme of dimension ≤ d
allowing resolution of singularities by alterations. Let j : U → S be an open
immersion with Ured regular and i : Z → S the complementary reduced closed
immersion. Let M ∈M1(U) and M = (Σ∞M)(−1).
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Assume moreover that the abelian scheme part of M is a direct factor of the
Jacobian scheme of a smooth projective curve C with geometrically connected
fibres and a section σ, that the lattice part of M is a direct factor of a permu-
tation lattice, and that the toric part has a character lattice which is a direct
factor of a permutation lattice.
Then the motive ω1i∗j∗M is t1

MM
(Z)-non-positive.

Using Lemma 1.8, we can assume that S is reduced. Let us show that we can
in fact assume S to be integral. Let q : S̃ → S be the normalisation morphism.
Since U is assumed to be regular, q is an isomorphism above U . Consider the
diagram of schemes with cartesian squares

U
̃

// S̃

q

��

Z̃
ı̃

oo

qZ

��

U
j

// S Z.
i

oo

By proper base change and [12, Proposition 3.3 (iii)], we have

ω1i∗j∗j
∗M ≃ ω1i∗q∗̃∗j

∗M

≃ ω1qZ∗ω
1ı̃∗̃∗j

∗M.

The functor ω1πZ∗ is t-non-positive [12, Proposition 4.14]. So it is enough to
prove Lemma 2.2 in the case S is integral.
We improve the geometric situation using alterations.

Lemma 2.3. There exists a projective alteration π : S′ → S such that

• S′ is regular, and

• C ×S S′ extends to a projective semi-stable curve f̄ ′ : C̄′ → S′ with
geometrically connected fibers such that C̄′ is regular and σ′ = σ ×S S′

extends to a section σ̄′ of C̄′/S′, which lands in the smooth locus.

Proof. The pair (C, σ) determines a U -point of the stack Mg,1 of genus g
stable curves with a section. By a standard argument using the existence
and properness of the moduli stack Mg,1, there exists a projective alteration
π1 : S1 → S (with S1 again integral) such that, if we write U1 = U ×S S1,
C1 = C ×S S1 and so on, the pair (C1, σ1) extends to a point (C̄1, σ̄1) ∈ Mg,1.
Note that, by definition ofMg,1, such a curve still has geometrically connected

fibers. In particular, σ̄1 factors through the S1-smooth locus C
sm

1 of C1. By
[6, Lemma 5.7], by replacing S1 by a further projective alteration, we can also
assume that C1 is quasi-split over S1 in the sense of loc. cit., i.e., that on every
fiber the singular points and the tangents to the singular points are rational.
The closed subset f1(Sing(C1)) is a proper closed subset since C1 is generically
smooth over a generically regular scheme S1. By resolution of singularities by
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alterations applied to the pair (S1, f1(Sing(C1))), which is possible by hypoth-
esis on S, there exists a projective alteration π2 : S2 → S1 with S2 integral and
regular, and with D := π−1

2 (f1(Sing(C1))) a strict normal crossings divisor.
Put U2 = U ×S S2 and so on. Then (C2, σ̄2) ∈ Mg,1(S2) is still a quasi-split
stable curve, which is moreover smooth outside of the strict normal crossings
divisor D.
By [6, Proposition 5.11], there exists a projective modification φ3 : C3 → C2

which is an isomorphism outside of Sing(C2) (so in particular over C
sm

2 , and
over S2 \D via f̄2), and such that C3 is regular and the composite f̄3 = f̄2 ◦φ3 :
C3 → S2 is a projective semi-stable curve. Since φ3 is an isomorphism on C

sm

2 ,
the section σ̄2 lifts to a section σ̄3 : S2 → C3 of f̄3.
We now put S′ = S2, C̄

′ = C̄3, f̄
′ = f̄3, and σ̄′ = σ̄3. These satisfy all the

requirements of the conclusion of the lemma.

Let us fix an alteration π as in Lemma 2.3. Consider the following diagram of
schemes with cartesian squares.

V ′

πV

��

j′
// S′

π

��

Z ′

i′
oo

πZ

��

V
j

// S Z
i

oo

By construction, the morphism πV is the composite of a finite étale morphism
followed by a finite purely inseparable morphism. By [1, Lemme 2.1.165],
we have that j∗M is a direct factor of πV ∗π

∗
V j

∗M . We are thus reduced to
show that ω1i∗j∗πV ∗π

∗
V j

∗M is t-non-positive. By proper base change and [12,
Proposition 3.3 (iii)], we have

ω1i∗j∗πV ∗π
∗
V j

∗M ≃ ω1i∗π∗j
′
∗π

∗
V Σ

∞M(−1)

≃ ω1πZ∗ω
1i′∗j′∗Σ

∞π∗
V M(−1).

The functor ω1πZ∗ is t-non-positive [12, Proposition 4.14], and π∗
V M(−1) is a

Deligne 1-motive. Hence we can assume that S′ = S and that C itself has an
extension f̄ : C̄ → S satisfying the conclusions of Lemma 2.3.
Since the lattice GrW0 M (resp. the character lattice of the torus GrW−2M) is by
assumption a direct factor of a permutation lattice, the same argument shows
that we can assume these lattices to be direct factors of trivial lattices.
By the distinguished triangles associated to the weight filtration of M, we can
treat each piece separately and assume that M is pure.
Let us quickly take care of the cases where M is either a lattice or a torus.
By the reductions above, we are immediately reduced to the case where those
are trivial lattices or split tori, and from there to the case M = [Z → 0] or
M = [0 → Gm]. So we have to prove that ω1(i∗j∗Q) and ω1(i∗j∗Q(−1)) are
t-non-positive. By localisation, we have distinguished triangles

Q→ ω1i∗j∗Q→ ω1i!Q[+1]
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and

Q(−1)→ ω1(i∗j∗Q(−1))→ ω1(i!Q(−1))[+1]

The motives Q and Q(−1) are associated to Deligne 1-motives over Z, so
they lie in MM

1(Z). By Lemma 2.4 below and [12, Corollary 3.9 (iv)], we
have that ω1i!Q[+1] is in DA

1(Z)≤−1 (in particular t-non-positive), and that
ω1i!Q(−1) ≃ 0. This concludes the proof in the lattice and torus case.
It remains to treat the case where M is a direct factor of Jac(C/V ), and it is
clearly enough to study the case M = Jac(C/V ). Consider the diagram with
cartesian squares

C
̃

//

f

��

C̄

f̄

��

∂C

∂f

��

ı̃
oo

U
j

// S Z.
i

oo

By [12, Corollary 3.20], the motive Σ∞ Jac(C/U)(−1)[−1] is a direct factor
of f∗QC [+1], via the section σ (we use the fact that C/U has geometrically
connected fibers). More precisely, using the adjunction (σ∗, σ∗) and the fact
that fσ = id, we get a map

π0 : f∗QC → f∗σ∗σ
∗QC ≃ QU .

From [12, Corollary 3.20], we deduce that Σ∞ Jac(C/U)(−1)[−2] is a di-
rect factor of Fib(π0), hence that Σ∞ Jac(C/U)(−1)[−1] is a direct factor
of Fib(π0[+1]). So it is enough to show that that ω1i∗j∗Fib(π0[+1]) ≃
Fib(ω1i∗j∗π0)[+1] is t-non-positive.
By base change and [12, Proposition 3.3 (iii)], we have ω1i∗j∗f∗QC ≃
ω1(∂f)∗ω

1ı̃∗̃∗QC . Moreover, if we write ∂π0 : ∂f∗Q∂C → QZ obtained from
∂σ in the same fashion as π0 was obtained from σ, the square

ω1(∂f)∗Q[+1] //

ω1∂π0

��

ω1i∗j∗f∗Q[+1]

ω1i∗j∗π0

��

Q[+1] // ω1i∗j∗Q[+1]

obtained by applying ω1 to a commutative square of unit of pullback-
pushforwards adjunctions is commutative. Applying localisation, we can com-
plete it into the following diagram with distinguished rows.

ω1(∂f)∗Q[+1] //

ω1∂π0

��

ω1i∗j∗f∗Q[+1]

ω1i∗j∗π0

��

// ω1∂f∗ω
1ı̃!Q[+2]

��

+
//

Q[+1] // ω1i∗j∗Q[+1] // ω1i!Q[+2]
+

// .
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By Lemma 2.4 below and the fact that ω1(δf)∗ is t-non-positive [12, Proposi-
tion 4.14] , the rightmost terms of both triangles are both t-non-positive. We
deduce that the central terms lie in DA

1(Z)≤1. In particular, we also have
ω1i∗j∗Fib(π0) ∈ DA

1(Z)≤1 and there is an isomorphism

H1(ω
1i∗j∗Fib(π0)) ≃ Ker(H1(ω

1i∗j∗f∗Q[+1])→ H1(ω
1i∗j∗Q[+1]))

and it remains to show that this last morphism, or equivalently
H0(ω

1i∗j∗f∗Q) → H0(ω
1i∗j∗Q) is injective. From the same diagram with

distinguished rows and Lemma 2.4, we deduce a commutative square with
horizontal isomorphisms

H0(ω
1(∂f)∗Q))

∼
//

ω1∂π0

��

H0(ω
1i∗j∗f∗Q)

ω1i∗j∗π0

��

H0Q ≃ Q
∼

// H0(ω
1i∗j∗Q).

So we have to prove that the morphism H0(ω
1∂f∗Q) → Q induced by ∂σ is

injective. We prove that it is in fact an isomorphism. First of all, since ∂f
is a proper curve, we have ∂f∗Q ∈ DA

1
c(Z), so that ω1∂f∗Q ≃ ∂f∗Q. By [2,

Proposition 3.24], it is enough to show that, for all points z ∈ Z, the morphism
z∗H0(∂f∗Q∂C)→ Qz is an isomorphism. We have dim(Z) < dim(S), so (iii)d−1

(which as we have seen earlier in the proof follows from (i)d−1 and (ii)d−1), the
pullback functor z∗ is t-exact for the 1-motivic t-structures. We thus have
z∗H0(∂f∗Q) ≃ H0(z

∗∂f∗Q) ≃ H0(∂(fz)∗Q), with ∂fz : C̄z → z. The curve C̄z

is geometrically connected, hence the morphism H0(∂fz∗Q) → Q induced by
the point σ̄z ∈ C̄z(z) is an isomorphism. This concludes the proof.

The following lemma was used in the proof of Theorem 2.1.

Lemma 2.4. Let S be a regular scheme, and i : Z → S be a closed immersion
with Z reduced and nowhere dense. Let k0 : Z0 → Z be an open immersion
with Z0 regular of pure codimension 1 in S, containing all points of Z which
are of codimension 1 in S (i.e., all generic points of irreducible components of
Z which are divisors); note that Z0 can be empty. Let M ∈MM

1,sm
c (S) be a

smooth constructible 1-motive. Then

ω1i!M ≃ ω1(k0∗k
∗
0i

∗M(−1))[−2] ≃ ω0(k0∗k
∗
0i

∗M)(−1)[−2].

In particular, ω1i!Q[+2] is t1
MM

-non-positive.

Proof. Extend Z0 into a stratification ∅ = Z̄m+1 ⊂ Z̄m ⊂ . . . ⊂ Z̄0 = Z by
closed subsets with Zi := Z̄i \ ¯Zi−1 regular and equidimensional. Write ci for
the codimension of Zi in S; by hypothesis, we can arrange that ci ≥ 2 for i > 0.

Write Zi
ki→ Z̄i

li← Z̄i+1. By localisation, we have distinguished triangles

l0∗l
!
0i

!M → i!M → k0∗k
!
0i

!M
+
→
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l1∗l
!
1l

!
0i

!M → l!0i
! → k1∗k

!
1l

!
0M

+
→

. . .

lm∗l
!
ml!m−1 . . . i

!Ml!d−1 . . . i
!M → km∗k

!
ml!d−1 . . . i

!M

For all i, since S and Zi are regular, the immersion ki = i◦ l1 ◦ . . . li−1 : Zi → S
is a regular immersion. By absolute purity in the form of [12, Proposition 1.7]
for the smooth motive M , we deduce that k!iM ≃ k∗iM(−ci)[−2ci]. Combining
this formula with the triangles above and the fact that ω1M(−2) = 0 for any
M ∈ DA

coh implies that ω1i!M ≃ ω1(k0∗k
∗
0i

∗M(−1)[−2]).
We have ω1(k0∗k

∗
0i

∗M(−1)) ≃ ω0(k0∗k
∗
0i

∗M)(−1) by [12, Corollary 3.9 (iv)].
This concludes the proof of the main statement.
We specialise to the case M = Q[+2]. We have Q(−1) ∈ MM

1(Z0). By
[12, Proposition 4.14 (v)], the motive ω1i!Q[+2] ≃ ω1k0∗(Q(−1)) is then t1-
negative, as claimed.
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Manuscripta Math. 115 (2004), no. 3, 339–360. MR 2102056 (2005j:14022)

[12] Simon Pepin Lehalleur, Triangulated categories of relative 1-motives, Adv.
Math. 347 (2019), 473–596. MR 3920833

[13] Michael Temkin, Tame distillation and desingularization by p-alterations,
Ann. of Math. (2) 186 (2017), no. 1, 97–126. MR 3665001

[14] V. Vaish, Punctual gluing of t-structures and weight structures, ArXiv e-
prints (2017), Preprint.

Simon Pepin Lehalleur
Freie Universität Berlin
Arnimallee 3
14195 Berlin
Germany
simon.pepin.lehalleur@gmail.com

Documenta Mathematica 24 (2019) 1721–1737



1738

Documenta Mathematica 24 (2019)


