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Abstract. We explore Tate-type conjectures over p-adic fields, es-
pecially a conjecture of Raskind [Ra05] that predicts the surjectivity
of

(NS(XK)⊗Z Qp)
GK −→ H2

ét (XK ,Qp(1))
GK

if X is smooth and projective over a p-adic field K and has totally
degenerate reduction. Sometimes, this is related to p-adic uniformi-
sation. For abelian varieties, Raskind’s conjecture is equivalent to the
question whether

Hom(A,B)⊗Qp → HomGK
(Vp(A), Vp(B))

is surjective if A and B are abeloid varieties over a p-adic field.

Using p-adic Hodge theory and Fontaine’s functors, we reformulate
both problems into questions about the interplay of Q- versus Qp-
structures inside filtered (ϕ,N)-modules. Finally, we disprove all of
these conjectures and questions by showing that they can fail for al-
gebraisable abeloid surfaces, that is, for abelian surfaces with totally
degenerate reduction.
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1 Introduction

Let F be a field and let GF := Gal(F sep/F ) be the Galois group of a separable
closure F sep of F . If X is a smooth and proper variety over F and ℓ is a prime
different from the characteristic p of F , then the first Chern class map gives
rise to an injective homomorphism of Qℓ-vector spaces

c1,ℓ : NS(X)⊗Z Qℓ −→ H2
ét (XF sep ,Qℓ(1))

GF . (⋆)

This is far from being an isomorphism in general. For example, if one takes F
to be a separably closed field of characteristic p = 0, then the image of c1,ℓ is
a proper subspace for any smooth and proper variety X with h2(OX) 6= 0.

1.1 The classical Tate conjecture

However, the Tate conjecture (for divisors) predicts that (⋆) is surjective if F
is finitely generated over its prime field (for example, if F is a number field or
a finite field), see [Ta65, Ta94]. This conjecture is known to be true if X is
an abelian variety [Fa83, Ta66, Zar75], if X is a hyperkähler variety and F is
finitely generated over Q [An96, Ta89], as well as if X is a K3 surface and F is
a finite field [Ch13, KM16, MP15, Ma14, Ny83, NO85]. In [Mo17], it has been
established for surfaces X with h2(OX) = 1 if F is finitely generated over Q and
under the assumption that the Hodge structure onH2(XC,Q) varies sufficiently
non-trivially in some family. We refer to [To17] for the current state of the Tate
conjecture.

1.2 Raskind’s p-adic Tate conjecture

Suppose now that F is a number field, choose a prime ideal p ∈ Spec OF and
let Fp be the p-adic completion of F . Let X be a smooth and proper variety
over F . Then a standard argument (see Proposition 2.7) shows that if (⋆) is
surjective for the completion XFp

at p, then X satisfies the Tate conjecture. It
is therefore a natural idea to study the homomorphism (⋆) for varieties defined
over p-adic fields (by which we shall mean finite extensions of Qp). Such fields
are not finitely generated over their prime field.

In light of the previous paragraph, let X be a smooth and proper variety
over a p-adic field K. Then it is well-known that one cannot expect (⋆) to
be surjective without imposing some further conditions on X (see Appendix
A for counter-examples). Nevertheless, Raskind [Ra05] has made a series of
conjectures of Tate-type over such fields. In codimension one, that is, for
divisors, they specialise to the following.

Conjecture 1.1 (Raskind). Let K be a p-adic field, let ℓ = p, and let X be
a smooth and proper variety over K with totally degenerate reduction. Then,
(⋆) is surjective.
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Of course, one has to specify what one means by totally degenerate reduction:
roughly speaking, Raskind requires that X has a strictly semi-stable model
X → SpecOK , he asks that the Chow groups of all intersections of all compo-
nents of the special fibre X0 to be as trivial as possible, and he requires X0 to
be ordinary, see [Ra05, §1], [RX07a, Definition 1], and Section 4.2 for details.
In some sense, Conjecture 1.1 has a long history. We point out that the conjec-
ture is true for varieties that are p-adically uniformisable by Drinfeld’s upper
half space (Proposition 2.5). This is an easy consequence of an observation
of Rapoport and incorporated in work of Ito [It05, Appendix], which relies
on a result of Schneider and Stuhler [SS91]. We also point out that it is a
result of Tate that the conjecture is true when X is the product of two Tate
elliptic curves, as is explained in [Se68, Appendix A.1.4] (see also [RX07b,
Corollary 19]). Moreover, a somewhat related conjecture has been formulated
and established in several cases, such as abelian varieties, by Tankeev [Ta81,
§1,2 and 3] for varieties over function fields over C. Let us also remark that
the restriction on ℓ being equal to p and bad reduction is really necessary (see
Appendix A).

1.3 Translation into a variational log-Tate conjecture

Although Raskind’s conjecture superficially looks to have a similar form as the
Tate conjecture, we first show that it is in fact a variational conjecture. More
precisely, using Fontaine’s Dst-functor we identify the conjectural image of (⋆)
with

H2
ét(XK ,Qp(1))GK ∼= H2

log−cris(X0/K0)ϕ=p,N=0 ∩ Fil1H2
dR(X/K),

where K0 is the maximal unramified extension of Qp contained in K, ϕ and N
denote the Frobenius and monodromy operator on log-crystalline cohomology,
respectively, and Fil• denotes the Hodge filtration. This translates Conjec-
ture 1.1 into a “variational log-Tate conjecture” as follows:

1. By an appropriate log-version of Tate’s conjecture for X0 over k, one
might expect H2

log−cris(X0/K0)ϕ=p,N=0 to be equal to the Qp-span of
classes of invertible sheaves on X0, see Section 3.

2. Since X0 is totally degenerate, there exists a combinatorial description
of H2

log−cris(X0/K0), ϕ and N . In fact, this cohomology group and its
operators arise naturally from a Q-vector space; a rational structure in
the sense of Definition 3.4. In particular, one can be fairly explicit about
the Q-span and the Qp-span of classes of invertible sheaves.

3. The intersection with the Hodge filtration Fil1H2
dR(X) as a necessary

and sufficient condition to deform invertible sheaves from X0 to X in the
smooth case is a theorem of Berthelot and Ogus [BO83, Theorem 3.8]
(based on ideas of Deligne and Illusie, see [De81, p. 124 b)]), which has
been extended to the semi-stable situation by Yamashita [Ya11, Theo-
rem 3.1].
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Now, the crucial point is that the just-mentioned theorems of Berthelot, Ogus,
and Yamashita deal with the deformation of the Q-span of classes of invertible
sheaves from the special to the generic fibre, whereas Raskind’s conjecture pre-
dicts this to be true even for the Qp-span of classes of invertible sheaves when
X0 is totally degenerate, see Remark 3.9. This translates Conjecture 1.1 into a
question about the interplay and the intersection of certain Q-vector spaces, cer-
tain Qp-vector spaces, and the filtration step Fil1 of a filtered (ϕ,N)-module.
This leads to the notion of such a module being Raskind-admissible (Defini-
tion 3.10) and we obtain the following reformulation of Raskind’s conjecture
for divisors:

Theorem (Theorem 3.11). Let X be a smooth and proper variety over a p-adic
field K with totally degenerate reduction. Then, the following are equivalent:

1. The homomorphism (⋆) is surjective for ℓ = p, that is, Conjecture 1.1 is
true for X.

2. The filtered (ϕ,N)-module Dst(H
2
ét(XK ,Qp)) is Raskind-admissible with

respect to the rational structure arising from X0.

One benefit of the reformulation is that it illuminates the known examples
of varieties that satisfy Raskind’s conjecture, and another is that Raskind-
admissibility is a testable property in practice. For example, since (2) is a
statement about filtered (ϕ,N)-modules, it is tempting to approach Conjec-
ture 1.1 via this statement in semi-linear algebra. In fact, in Section 5.2 we use
this approach to give a simple proof for the product of two Tate elliptic curves.

1.4 Abelian and abeloid varieties

After seeing that Conjecture 1.1 is actually a variational conjecture about Qp-
classes of line bundles on totally degenerate varieties, we turn our attention to
the study of Raskind’s conjecture for abelian varieties. Let A and B be abelian
varieties over a p-adic field K and let ℓ be any prime number (possibly ℓ = p).
Functoriality gives a natural homomorphism of Zℓ-modules

Hom(A,B)⊗Z Zℓ → HomGK
(Tℓ(A), Tℓ(B)) , (⋆⋆)

where the subscript GK on the right indicates homomorphisms that are GK-
equivariant. This homomorphism is injective and its cokernel is torsion free.
Then a classical Künneth argument of Tate [Ta66] relates Conjecture 1.1 to
the following question.

Question 1.2. Let K be a p-adic field, let ℓ = p, and let A and B be abelian
varieties over K, both of which have totally degenerate reduction. Is it true
that (⋆⋆) is surjective?

Raskind and Xarles have established Question 1.2 if both A and B are Tate
elliptic curves [RX07b, Theorem 18]. Moreover, Mumford’s results on p-adic
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uniformisation of abelian varieties with totally degenerate reduction [Mum72b]
make a positive answer plausible. Just as with Conjecture 1.1, all of the as-
sumptions are necessary. For example, if ℓ 6= p and if A and B are elliptic
curves with good reduction, then Lubin and Tate [LT66, §3.5] have given an
example where surjectivity of (⋆⋆) fails. For a comprehensive list of counter-
examples where all combinations of assumptions are dropped, see Appendix A.
We also point out in passing that using the Kuga-Satake correspondence [KS67],
Conjecture 1.1 for abelian varieties implies a version of Conjecture 1.1 for pro-
jective hyperkähler varieties (by adapting the arguments of André [An96] or
Tankeev [Ta89]).
There are several natural candidates for what it means for an abelian variety
over a p-adic field K to have totally degenerate reduction, but they turn out
to be equivalent up to base change by a finite field extension, see Proposition
4.6. It turns out that the point of view of admitting p-adic uniformisation in
the sense of Mumford [Mum72b] is a convenient framework for our studies and
computations. In particular, from Section 4.3 onward, we will be working with
lattices in G

g
m,K and abeloid varieties, which are rigid analytic varieties over K

that are not necessarily algebraic schemes. We study Question (1.2) in the
enlarged context of abeloid varieties. Along the way prove and make use of
the following results and computations, some of which may be of independent
interest.

1. We describe the abelian groups

Hom (A,B) and HomGK
(Tℓ(A), Tℓ(B))

for abeloid varieties over a p-adic field K in terms of their lattices (The-
orem 4.7, Proposition 4.11). We note that the description of Hom(A,B)
is essentially due to Gerritzen [Ge70, Ge71], see also [Kad07].

2. We explicitly compute the filtered (ϕ,N)-module Dst(Vp(A)) for an abe-
loid variety A over a p-adic field in terms of a period matrix associated
to a lattice (Theorem 4.12), where Vp denotes the rational Tate mod-
ule. This generalises work of Berger [Be04], Coleman [Co00], Coleman–
Iovita [CI99], and Le Stum [LeS95]. As an application, we also describe

HomMFwa,ϕ,N

K

(Dst(Vp(A)),Dst(Vp(B)))

in terms of lattices (Proposition 4.16).

3. We introduce an L-invariant for abeloid varieties that generalises the L-
invariant of a Tate elliptic curve. If the abeloid variety is the Jacobian J
of a Mumford curve C, then we show the Coleman-L-invariant of C in-
troduced by Besser and de Shalit [BdS16] coincides with our L-invariant
for J (Proposition 4.15).
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1.5 Counter-examples

Crucially, just as with Raskind’s conjecture above, these descriptions reformu-
late Question 1.2 into a question about the interplay of certain Q-vector spaces
versus certain Qℓ-vector spaces, see Section 4.6. Using these computations we
are able to give counter-examples to both Conjecture 1.1 and Question 1.2.

Theorem (Theorem 6.1). Let p be a prime with p ≥ 5 and p ≡ 1 mod 3.

1. There exists a Tate elliptic curve A and an algebraisable abeloid surface
(that is, an abelian surface with totally degenerate reduction) B over Qp

such that (⋆⋆) is not surjective for ℓ = p.

2. If X = B with B as in (1), then (⋆) is not surjective for ℓ = p.

On the other hand, our reformulation and following computations of
Le Stum [LeS95] and Serre [Se68] allows us to confirm Conjecture 1.1 and
Question 1.2 for abeloid varieties which are isogenous to arbitrary products of
Tate elliptic curves.

Proposition (Proposition 5.3). Let K be a p-adic field and let A and B be
abelian varieties over K, both of which are isogenous to products of Tate elliptic
curves.

1. Conjecture 1.1 is true for A, that is, (⋆) is surjective for ℓ = p.

2. Question 1.2 is true for A and B, that is, (⋆⋆) is surjective for ℓ = p.

Finally, let us remark that in this article, we study Conjecture 1.1 and Question
1.2 over p-adic fields. Of course, they can also be formulated and studied
over local fields of equicharacteristic p > 0. However, we expect that after
replacing Yamashita’s semi-stable Lefschetz theorem on (1, 1) classes [Ya11]
with results of Morrow, Lazda, and Pál [Mo14, LP17], one should be able to
set up everything in equicharacteristic p > 0 and then, we expect that counter-
examples similar to those of Theorem 6.1 and Appendix A should disprove
them.

1.6 Organisation

The article is organised as follows:
In Section 2, we establish general reduction steps for Raskind’s conjecture, such
as the behaviour under field extensions, dominant, or birational maps. These
are familiar from the analogous results for the classical Tate conjectures. We
also treat several simple cases and relate Raskind’s conjecture to the classical
Tate conjectures over number fields.
In Section 3 we translate Conjecture 1.1 into semi-linear algebra and filtered
(ϕ,N)-modules, we introduce the notion of a rational structure, and we show
that Conjecture 1.1 is in fact equivalent to a problem in semi-linear algebra.
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In Section 4, we first establish reduction steps for Question 1.2 similar to those
in Section 2. Then, we reformulate Raskind’s notion of total degeneration for
abelian varieties. As a result, we focus on abeloid varieties: we describe their
homomorphisms, their ℓ-adic Tate modules, and the filtered (ϕ,N)-modules
associated to their p-adic Tate modules.
In Section 5, we do explicit computations with filtered (ϕ,N)-modules arising
from the product of two Tate curves. This way, we prove Conjecture 1.1 for
these varieties, but we also produce admissible (ϕ,N)-modules that do not
satisfy a more general version of Conjecture 1.1.
In Section 6, we construct explicit examples that disprove Conjecture 1.1 and
show that Question 1.2 has a negative answer.
In Appendix A, we collect examples which show that Conjecture 1.1 and Ques-
tion 1.2 also have a negative answer if one allows ℓ 6= p or if one does not
consider totally degenerate reduction. Here, we claim only little originality.

Acknowledgements. We thank Valentina Di Proietto, Thomas Geisser,
Andreas Langer, Christopher Lazda, Bernard Le Stum, Johannes Nicaise,
Wies lawa Nizio l, Frans Oort, Otto Overkamp, Bjorn Poonen, Michael
Rapoport, Wayne Raskind, and Burt Totaro for discussions and comments.
We also thank the referee for comments and clarifications. Both authors are
supported by the ERC Consolidator Grant 681838 “K3CRYSTAL”.

Notations and Conventions

Throughout the whole article, we fix the following notations

K a p-adic field, that is, a finite field extension of Qp

OK its ring of integers with maximal ideal mK

k its residue field, that is, OK/mK

πK a uniformiser of OK

W (k) the ring of Witt vectors, which we consider as subring of OK

K0 the field of fractions of W (k), which we consider as a subfield of K
σ the Frobenius on W (k) and K0

K, k algebraic closures of K and k, respectively
GK , Gk their absolute Galois groups
νp the extension of the standard valuation from Qp to K, that is, νp(p) = 1
logp the Iwasawa logarithm, normalised such that logp(p) = 0

By a variety over a field F , we mean a geometrically integral scheme of finite
type over Spec F . If F ′/F is a field extension and X is a scheme over F , then
we define XF ′ := X ×Spec F Spec F ′.

2 Generalities

In this section, we recall some generalities concerning conjectures of Tate-type
for divisors. These are well-known to the experts and we do not claim much,
if any, originality.
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2.1 Setup

Let F be a field of characteristic p ≥ 0, let F sep be a separable closure, and let
GF := Gal(F sep/F ) be its absolute Galois group. If X is a smooth and proper
variety over F and ℓ is a prime different from p, then the first Chern class map
induces a GF -equivariant and injective homomorphism of finite-dimensional
Qℓ-vector spaces

c1,ℓ : NS(XF sep)⊗Z Qℓ −→ H2
ét (XF sep ,Qℓ(1)) .

Taking GF -invariants, we obtain an inclusion of finite dimensional Qℓ-vector
spaces (⋆). It is a natural question, whether this inclusion is in fact an isomor-
phism, that is, whether it is surjective.

2.2 Field extensions

Concerning this question, we have the following remarks, which are well-known
in the context of the classical Tate conjecture (see, for example [Ta65, Ta94]),
but perhaps not in this context:

Proposition 2.1. Let X be a smooth and proper variety over a field F , let
F ⊂ F ′ be a finite and separable field extension and let ℓ be a prime. If (⋆) is
surjective with respect to XF ′ , GF ′ , and ℓ, then (⋆) is surjective with respect
to X, GF , and ℓ.

Proof. This is well-known, but we give a proof here since we are not aware
of a reference. We consider GF ′ := Gal(F ′sep/F ′) = Gal(F sep/F ′) as subgroup
of GF = Gal(F sep/F ). Let n be the degree of the extension F ′/F . Suppose
that (⋆) is an isomorphism for XF ′ . Let α ∈ H2

ét(XF sep ,Qℓ(1))GF . Then, α is
fixed by the open subgroup GF ′ = Gal(F sep/F ′) ⊂ GF and hence, there is a
z ∈ NS(XF ′)⊗Z Qℓ with c1,ℓ(z) = α. (Technical point: here, we are using that
(NS(XF sep) ⊗Z Qℓ)

GF ′ ∼= NS(XF ′) ⊗Z Qℓ. This is not always true integrally
since the Brauer group of F may be non-trivial. However, it is always true
rationally since the Brauer group of a field is torsion.) Let f : XF ′ → X be the
finite morphism given by the base extension. Then, f∗(z) ∈ NS(X)⊗Z Qℓ and
c1,ℓ(f∗(z)) = nc1,ℓ(z) = nα. Since we are working with rational coefficients, we
see that α is the class of a cycle on X .

2.3 Dominant and birational maps

Next, we study the question whether surjectivity of (⋆) is preserved under
birational maps and dominant maps. To do so, we adapt Tate’s arguments
from [Ta94] to the p-adic case.

Proposition 2.2. Let K be a field that is finitely generated over its prime
subfield or a p-adic field. Let X and Y be smooth and proper varieties over K
and assume that (⋆) is surjective for X.
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1. If there exists a dominant and rational map X 99K Y of varieties over K,
or

2. if X and Y are birationally equivalent varieties over K,

then (⋆) is surjective for Y .

Proof. This is [Ta94, Theorem 5.2(b)] in the case that K is finitely generated
over its prime subfield. Tate shows that the (⋆) is an isomorphism for X if and
only if (⋆) is an isomorphism for an arbitrary dense open U ⊂ X by using
the Gysin sequence for U →֒ X . A weight argument then reduces showing
that “the Tate conjecture for divisors on X is equivalent to the Tate conjecture
for divisors on U” to showing that numerical equivalence coincides with ℓ-adic
homological equivalence for divisors on XK , where K is an algebraic closure
of K. The coincidence of numerical equivalence and homological equivalence
(defined using any Weil cohomology theory) is known over algebraically closed
fields, see [Ma57] or [An04, Proposition 3.4.6.1]. To prove the proposition for
p-adic fields, the same proof works when K since there is an appropriate theory
of weights (see [Ja10] for a summary of both cases ℓ 6= p and ℓ = p).

2.4 A simple case

As an easy consequence of the Lefschetz theorem on (1, 1)-classes and the Lef-
schetz principle, we obtain the following corollary of Proposition 2.1.

Proposition 2.3. Let F be a field of characteristic zero. Let X be a smooth
and proper variety over K with H2(X,OX) = 0. Then, (⋆) is surjective for all
primes ℓ.

Proof. Being of finite type over K, there exists a subfield F ′ ⊆ F that is
finitely generated over Q such that X can be defined over F ′. Being finitely
generated over Q, we may choose an embedding F ′ →֒ C. Let XC be the base
change of a model of X over F ′ to C. Since XC also satisfies H2(XC,OXC

) = 0,
the Lefschetz theorem on (1, 1)-cycles shows that the rank of NS(XC) is equal
to the second Betti number b2(XC). Thus, already the rank of NS(XF ′) is
equal to the Qℓ-dimension of H2

ét(XF ′ ,Qℓ) for some algebraic closure F ′ of
F ′ inside C. Since the Néron-Severi group is finitely generated, there exists
a finite field extension F ′ ⊆ F ′′, such that the rank of NS(XF ′′) is equal to
the Qℓ-dimension of H2

ét(XF ′′ ,Qℓ). Thus, the GF ′′ -actions on NS(XF ′) and
H2

ét(XF ′′ ,Qℓ(1)) are trivial and (⋆) is an isomorphism for XF ′′ . Thus, (⋆) is
surjective for X by Proposition 2.1.

Remark 2.4. For example, this includes varieties that are birationally equiva-
lent to smooth and proper varieties over F that are rationally connected (these
satisfy H2(X,OX) = 0), which includes rational and unirational varieties, and
Fano varieties. It also includes geometrically ruled surfaces and Calabi-Yau
varieties of dimension at least three (even in the liberal sense of varieties whose
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canonical divisor class is numerically trivial and that satisfy Hi(X,OX) = 0
for 0 < i < dim(X)).
In particular, the conjectures of Tate and Raskind for divisor holds for these
classes of varieties even without extra assumptions on finite generation of the
field over its prime subfield or on total degeneration.

2.5 Drinfeld’s upper half space

A second simple case is the following: let X be a smooth and proper variety
over a number field F . Assume that there exists a finite extension F ⊂ F ′

and a finite place w of F ′ such that X ×F F
′
w is isomorphic to Γ\Ω̂d

F ′

w
, where

F ′
w denotes the w-adic completion, where Ω̂d

F ′

w
denotes the Drinfeld upper half

space of dimension d ≥ 1, and where Γ ⊂ PGLd+1(F ′
w) is a cocompact and

torsion free discrete subgroup. In [It05, Theorem 7.1], Ito established the Tate
conjecture for such varieties, which is based on ideas of Rapoport. Essentially
the same proof shows the following observation, see also [It05, Remark 1.3].

Proposition 2.5. Let K be a p-adic field, let Γ ⊂ PGLd+1(K) be a cocompact

and torsion free discrete subgroup, and set XΓ := Γ\Ω̂d
K, Then, (⋆) is surjective

for XΓ and all primes ℓ.

Proof. If ℓ 6= p, then H2
ét(XΓ,K ,Qℓ) is one-dimensional by [SS91, Theorem

4]. After choosing an embedding K →֒C and using comparison theorems with
singular cohomology, it follows that also H2

ét(XΓ,K ,Qp) is one-dimensional.
It follows from work of Kurihara and Mustafin [Ku80, Mus78] (see also the
discussion in [It05, §6]) that XΓ is projective and thus, NS(XΓ) ⊗ Q is non-
zero. Thus, (⋆) is surjective for all primes ℓ for dimensional reasons.

Remark 2.6. Such an XΓ admits a semi-stable model over OK , whose spe-
cial fibre is totally degenerate in the sense of Raskind, see [It05, Remark 1.3]
and [RX07a, Example 1.(iii)].

2.6 The Tate conjecture over number fields

Let us also relate the conjecture of Raskind over p-adic fields to the conjecture
of Tate over number fields, which was already observed by Raskind [Ra05].
For a number field F , we let OF be its ring of integers and for a prime ideal
p ∈ Spec OF , we denote by Fp the p-adic completion of F . The following is a
slight generalisation of [Ra05, Proposition 1].

Proposition 2.7. Let X be a smooth and proper variety over a number field
F and assume that there exists a prime ℓ and a prime ideal p ⊂ OF such that
(⋆) is surjective for XFp

GFp
, and ℓ. Then, (⋆) is surjective for X, GF , and ℓ.

Proof. Let α ∈ H2
ét(XF ,Qℓ(1))GF . Then because H2

ét(XF ,Qℓ(1)) ∼=
H2

ét(XFp
,Qℓ(1)) and GFp

⊂ GF , we see that α ∈ H2
ét(XFp

,Qℓ(1))GFp . There-

fore there is a z ∈ NS(XFp
) ⊗Z Qℓ with c1,ℓ(z) = α by assumption. Since
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NS(XF ) = NS(XFp
) (the Néron-Severi group is invariant under algebraically

closed base extension), we see that z ∈ NS(XF ) ⊗Z Qℓ, and in particular
z ∈ NS(XF ′) ⊗Z Qℓ for some finite extension F ′/F . By making a finite ex-
tension if necessary, we may assume that F ′/F is Galois. Summing over the
Gal(F ′/F )-conjugates of z, we obtain a GF -invariant class z′, such that c1,ℓ(z

′)
is a non-zero multiple of c1,ℓ(z). Thus, c1,ℓ(z) lies in the image of (⋆).

3 A translation into semi-linear algebra

In this section, we use Fontaine’s functor Dst and Yamashita’s p-adic semi-
stable Lefschetz (1, 1)-theorem to translate Raskind’s conjecture for divisors
(Conjecture 1.1) into a question about semi-linear algebra and filtered (ϕ,N)-
modules.
More precisely, we define the notion of a rational structure on a (ϕ,N)-module
and show how the special fibre of a model X → SpecOK of some smooth and
proper variety X over K with total degeneration gives rise to such a structure.
Finally, we introduce the notion of Raskind-admissibility, which is the semi-
linear algebra version of the Raskind conjecture for divisors on the level of
filtered (ϕ,N)-modules with rational structure.

3.1 Translation into filtered (ϕ,N)-modules

Let X be a smooth and proper variety over a p-adic field K that admits a
proper and semi-stable model

π : X → SpecOK

over the ring of integers OK of K, that is, X is a regular scheme, π is a proper
and flat morphism, the generic fibre of π is isomorphic to X , and the special
fibre X0 is a semi-stable scheme over the residue field k of OK . Here, semi-
stable means that X0 is a strict normal crossing divisor. In particular, the
components of X0 are smooth and geometrically integral over k. Let W (k) be
the ring of Witt vectors, which we consider as subring of OK , and let K0 be
the field of fractions of W (k). Then, K0 is the maximal unramified extension
of Qp inside K. Endow X with the log structure induced by X0, and let M
denote the pullback of this log structure on X0. Then, (X0,M) is a fine and
log-smooth log scheme over (Spec k,N → k, 1 7→ 0), see [HK94, 2.13.2]. We
shall write

Hn
log−cris(X0/K0) := Hn(((X0,M)/(W (k),N))cris,O(X0,M)/(W (k),N))⊗W (k)K0,

where Hn(((X0,M)/(W (k),N))cris,O(X0,M)/(W (k),N)) is the log-crystalline co-
homology of (X0,M)→ (Speck,N). Then Hn

log−cris(X0/K0) is equipped with a
semi-linear endomorphism ϕ (Frobenius) and a linear endomorphism N (mon-
odromy) satisfying the relation Nϕ = pϕN , making the triple

(
Hn

log−cris(X0/K0), ϕ,N
)
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a (ϕ,N)-module. We refer to [HK94, §3] for the details.
Since X has semi-stable reduction, the GK -representation on Hn

ét(XK ,Qp) is
semi-stable in the sense of Fontaine for every n [Ts99, Theorem 0.2]. Next, let
Bst be Fontaine’s period ring and if V is a finite dimensional Qp-vector space
with a continuous GK-action, that is, a p-adic Galois-representation, then we
have a filtered (ϕ,N)-module over K

Dst(V ) :=
(
V ⊗Qp

Bst

)GK
,

that is, a K0-vector space with a semi-linear operator ϕ, a linear operator N ,
and a filtration Fil• on this vector space tensored with K. We recall that V is
said to be semi-stable if the inequality dimK0

Dst(V ) ≤ dimQp
(V ) is an equal-

ity. We refer to [CF00] for details. Fontaine’s functor Dst establishes an equiva-
lence of categories between the category of semi-stable GK-representations and
the category MFwa,ϕ,N

K of admissible filtered (ϕ,N)-modules over K [CF00,
Théorème A] .
By the semi-stable comparison theorem [Ts99, Theorem 0.2], the admissible
filtered (ϕ,N)-module Dst(H

n
ét(XK ,Qp)) is equal to

Dn :=
(
Hn

log−cris(X0/K0), Fil•Hn
dR(X/K), ϕ, N

)
.

Using this translation, we have the following.

Proposition 3.1. Let X be a smooth and proper variety over K and assume
that there exists a proper and semi-stable model X → Spec OK of X. Let X0

be the special fibre. Then, there exists an isomorphism of Qp-vector spaces

Hn
ét (XK ,Qp(m))GK ∼= Hn

log−cris(X0/K0)
ϕ=pm,N=0 ∩ FilmHn

dR(X/K) (1)

for all non-negative integers m,n.

Proof. This follows from the equalities and isomorphisms

Hn
ét (XK ,Qp(m))

GK = HomGK
(Qp, H

n
ét(XK ,Qp(m)))

∼= HomMFwa,ϕ,N

K

(K, Dn(m))

∼=
{
x ∈ Hn

log−cris(X0/K0) : ϕ(x) = pm · x, N(x) = 0
}

∩ FilmHn
dR(X/K),

where K denotes the trivial filtered (ϕ,N)-module.

Remark 3.2. If ℓ 6= p, then we have

dimQℓ
Hn

ét (XK ,Qℓ(m))GK = dimQp
Hn

log−cris(X0/K0)
ϕ=pm,N=0

by [KM74]. This explains why the dimensions of Hn
ét(XK ,Qℓ(m))GK behave

differently for ℓ = p and ℓ 6= p and it also shows that for ℓ 6= p, these vec-
tor spaces capture information about the special fibre X0 only. We refer to
Consani’s article [Co98] for background and some conjectures.

Documenta Mathematica 24 (2019) 1879–1934



Tate Conjectures and Abeloid Varieties 1891

We end our discussion by presenting some probably well-known dimension es-
timates: since K is of characteristic zero, the Frölicher spectral sequence

Er,s
1 = Hs(X,Ωr

X/K)⇒ Hr+s
dR (X/K)

degenerates at E1. In particular, by Proposition 3.1 and Remark 3.2 we obtain
the dimension estimates

dimQℓ
Hn

ét(XK ,Qℓ(m))GK −
n∑

i=m+1

hi,n−i(X) ≤ dimQp
Hn

ét(XK ,Qp(m))GK

≤ dimQℓ
Hn

ét(XK ,Qℓ(m))GK ,

where hi,j(X) := dimK Hj(X,Ωi
X/K). In the case of interest to us, that is to

say when n = 2 and m = 1, this gives

dimQℓ
H2

ét(XK ,Qℓ(1))GK − h2,0(X) ≤ dimQp
H2

ét(XK ,Qp(1))GK

≤ dimQℓ
H2

ét(XK ,Qℓ(1))GK .

3.2 Rational structures

Next, we deal with the log-crystalline cohomology of the special fibre X0 of a
proper and semi-stable model X → SpecOK of X . Let

Y =
⋃

i∈I

Yi

be the decomposition of the special fibre Y = X0 into irreducible components.
For a subset J ⊂ I, we denote by YJ the intersection of all Yj with j ∈ J .
Since Y is strict normal crossing, each YJ is a smooth, proper, and geometrically
integral scheme over k. Moreover, we denote by Y [i] the disjoint union of all
YJ ’s where J has (i + 1) elements, that is, the subscript i is equal to the
codimension of YJ in Y . By Mokrane [Mo93, §3] and Nakkajima [Na05, §4],
there exists a p-adic Steenbrink-Rapoport-Zink spectral sequence

E−k,h+k
1 =

⊕

j≥max{−k,0}

Hh−2j−k
cris (Y [2j+k]/K0)(−j − k) ⇒ Hh

log−cris(Y/K0) ,

(2)
which degenerates at E2. This spectral sequence is compatible with the F -
isocrystal structures on both sides and induces a monodromy operator N on
the right hand side.

Definition 3.3. A scheme Y over a finite field k is called cohomologically
totally degenerate if it is strictly normal crossing, say, equal to

⋃
i∈I Yi, where

the Yi are the irreducible components of Y , such that

1. for all j and all odd integers i, the crystalline cohomology groups
Hi

cris(Y
[j]/K0) are zero and
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2. for all i and j, the cycle class maps

CHj(Y [i])⊗K0 → H2j
cris(Y

[i]/K0)(j)

are isomorphisms.

Put differently, all crystalline cohomology groups of all intersections of compo-
nents of Y are spanned by classes of algebraic cycles. In particular, since the
Chow groups of a variety are Q-vector spaces and since the action of Frobenius
on Chow groups is trivial up to Tate twist, this implies that the log-crystalline
cohomology of X0 is of a very simple form. For H2

log−cris(X0/K0), it leads to
the following.

Definition 3.4. Let k be a finite field, let K0 = Frac(W (k)), let σ be the
Frobenius on K0, and let H be a (ϕ,N)-module over K0. A rational struc-
ture on a (ϕ,N)-module H consists of a finite-dimensional Q-vector V space
together with a direct sum decomposition

V = A ⊕ B0 ⊕ B1 ⊕ C

and two Q-linear endomorphisms ϕV and NV such that

1. NV is zero on B1 and A, and NV induces isomorphisms

C
N−→ N(C) = B0 and B0

N−→ N(B0) = A .

2. ϕV acts as identity on A, as multiplication by p on B0 ⊕ B1, and as
multiplication by p2 on C.

3. As (ϕ,N)-module, H is isomorphic to V ⊗Q K0 with ϕ = ϕV ⊗ σ and
N = NV ⊗ id.

If V is a rational structure on a filtered (ϕ,N)-module H over K0, then we
have an isomorphism of Qp-vector spaces

Hϕ=p,N=0 ∼= B1 ⊗Q Qp. (3)

For example, if m = 1 and n = 2 in Proposition 3.1 and if the (ϕ,N)-module
H2

log−cris(X0/K0) there comes with a rational structure, then (3) makes the
right hand side of (1) much easier to compute. Before establishing a natural
rational structure on H2

log−cris(X0/K0), we need one more definition.

Definition 3.5. The dual graph of Y is the simplicial complex Γ that has one
vertex Pi for each component Yi of Y and the simplex 〈Pi(0), ..., Pi(k)〉 belongs
to Γ if and only if YJ for J = {i(0), ..., i(k)} is non-empty. We define H∗(Γ) :=
H∗

sing(|Γ|,Q) to be the singular cohomology of the topological realisation |Γ|
of Γ.

Documenta Mathematica 24 (2019) 1879–1934



Tate Conjectures and Abeloid Varieties 1893

Proposition 3.6. Let Y =
⋃

i∈I Yi be a cohomologically totally degenerate
scheme over a finite field k and consider the (ϕ,N)-module H2

log−cris(Y/K0).
Then,

1. The cycle class maps

CHj(Y [i])⊗Q → H2j
cris(Y

[i]/K0)(j)

followed by the p-adic spectral sequence (2) induce a natural rational
structure

(V = A⊕B0 ⊕B1 ⊕ C,ϕV , NV )

on H2
log−cris(Y/K0).

2. If Γ denotes the dual complex of Y and if H2(Γ) 6= 0, then N has maxi-
mally nilpotent monodromy, that is, N2 6= 0.

3. If Y sm denotes the smooth locus of Y and if Y is equipped with its natural
log-structure, then there exist homomorphisms

Pic(Y ) → Pic(Y sm) ∼= Piclog(Y ),

where the first map is restriction and the second is an isomorphism.

The p-adic spectral sequence (2) gives rise to an isomorphism

Pic(Y )⊗Q ∼= B1.

Moreover, the first Chern class maps give rise to a commutative diagram

Pic(Y )⊗ F

Piclog(Y )⊗ F H2
log−cris(Y/K0)ϕ=p,N=0,

where the images of both Chern class maps are equal to B1 if F = Q and
equal to H2

log−cris(Y/K0)ϕ=p,N=0 if F = Qp.

Proof. Using the cycle class maps, the assumption on cohomological degen-
eracy, and the spectral sequence (2), we obtain a Q-vector space V , such that
V ⊗K0 is naturally isomorphic to H2

log−cris(Y/K0). Moreover, since Frobenius
acts on cohomology classes of cycles by multiplication by some power of p, we
obtain a direct sum decomposition V = V0 ⊕ V1 ⊕ V2 of Q-vector spaces to-
gether with a linear operator ϕV that is multiplication by pi on Vi, such that
the F -isocrystal structure on H2

log−cris(Y/K0) is isomorphic to (V ⊗K0, ϕV ⊗σ).
Also, the monodromy operator N and the weight filtration arise from the spec-
tral sequence and using the Q-vector space structures, we obtain a monodromy
operator on V . For details, we refer to the discussions in [BGS97, §1] or [Mo84].
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The fact that N2 6= 0 is equivalent to H2(Γ) 6= 0 is shown in [Mo84, §6] and
although they are stated in the framework of complex geometry in loc.cit.,
the arguments carry over literally to our situation. This establishes claims (1)
and (2).
Concerning claim (3): first, we have a restriction homomorphism Pic(Y ) →
Pic(Y sm) and an isomorphism Pic(Y sm) ∼= Piclog(Y ) by the discussion at the
beginning of [Ya11, §2].
Next, let δi : Y [j] → Y [j−1] be the morphisms induced by the obvious inclusions

Yι1 ∩ . . . ∩ Yιj+1
→֒ Yι1 ∩ . . . ∩ Yιi−1

∩ Yιi+1
∩ . . . ∩ Yιj+1

.

To give an invertible sheaf on Y is equivalent to giving an invertible sheaf on
Y [0] plus compatibilities under the restriction maps δ∗1 , δ

∗
2 : Y [0]

⇒ Y [1]. In
particular, we obtain an isomorphism

Pic(Y )⊗Q ∼= ker

(
Pic(Y [0])⊗Q

δ∗2−δ∗1−−−−→ Pic(Y [1])⊗Q

)
.

Now, the boundary morphisms δi give an augmented simplicial scheme
Y [•] → Y , which is a proper smooth hypercovering of Y . Since each Y [j]

is smooth, we have H∗
cris(Y

[j]/K0) ∼= H∗
rig(Y [j]/K0) by [Be97, Proposition 1.9]

and hence
H∗

cris(Y
[•]/K0) ∼= H∗

rig(Y [•]/K0) ∼= H∗
rig(Y/K0),

where the second isomorphism is because rigid cohomology satisfies cohomolog-
ical descent for proper hypercoverings [Ts03, Corollary 2.2.3]. Now, consider
the spectral sequence

Es,t
1 = Ht

rig(Y [s]/K0) ⇒ Hs+t
rig (Y/K0)

of the (hyper)covering (see, for example [Ts03, Theorem 4.5.1]). This degener-
ates at E2 by a standard weight argument (our assumption that Y is cohomo-
logically totally degenerate makes this argument very easy, but see also [Ts03,
Corollary 5.2.4] for the general statement). In particular, we find isomorphisms

H2
rig(Y/K0) ∼= ker

(
H2

rig(Y [0]/K0)
δ∗2−δ∗1−−−−→ H2

rig(Y [1]/K0)

)

∼= ker

(
H2

cris(Y
[0]/K0)

δ∗2−δ∗1−−−−→ H2
cris(Y

[1]/K0)

)

∼= ker

(
Pic(Y [0])⊗Qp

δ∗2−δ∗1−−−−→ Pic(Y [1])⊗Qp

)

∼= Pic(Y )⊗Qp,

where the third isomorphism is induced by the crystalline Chern class map,
and is an isomorphism by the assumption that Y is cohomologically to-
tally degenerate. The compatibility between rigid and crystalline Chern
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classes [Pe03, Théorème 5.2.3] implies that the above isomorphism Pic(Y ) ⊗
Qp

∼−→ H2
rig(Y/K0) is induced by the rigid Chern class map crig1 : Pic(Y ) →

H2
rig(Y/K0).

Finally, one has a square

Pic(Y ) Piclog(Y )

H2
rig(Y/K0) H2

log−cris(Y/K0)ϕ=p,N=0,

crig1
c1

where the top arrow is induced by the inclusion O×
Y →֒ Mgp (recall that M is

the log structure on Y ). The surjection is the one given by the Clemens-Schmid
exact sequence [CT14]. Recall from loc. cit. that this map is the composition

H2
rig(Y/K0) ∼= H2

conv(Y/W (k)) → H2
log−conv((Y,M)/(W (k),N))

∼= H2
log−cris(Y/K0),

where the first isomorphism is because Y is proper and the second isomorphism
is because (Y,M) → (Spec k,N) is log-smooth. Using the compatibility of
the rigid and crystalline (resp. log-crystalline) Chern classes, one checks that
the square commutes. Tensoring the square with Q (resp. Qp) finishes the
proof.

Remark 3.7. One can give an elementary argument for the surjectivity of
c1 : Piclog(Y )⊗Qp → H2

log−cris(Y/K0)ϕ=p,N=0 using the Hyodo-Kato complex,
but we have chosen to present the above proof because it nicely demonstrates
the relationship between Pic(Y ) and Piclog(Y ).

3.3 Raskind-admissibility

Next, we recall the following p-adic Lefschetz (1, 1)-theorem, due to Berthelot
and Ogus [BO83, Theorem 3.8] in the smooth case and to Yamashita [Ya11,
Theorem 3.1] in the semi-stable case.

Theorem 3.8 (Yamashita). Let X be a smooth and proper variety over K and
assume that there exists a proper and semi-stable model X → Spec OK of X.
Let X0 be the special fibre.

1. There exists a commutative diagram

Pic(X) ← Pic(X ) → Pic(X0)
‖ ↓ ↓

Pic(X) = Piclog(X ) → Piclog(X0).

where the vertical maps are restrictions and the horizontal maps are spe-
cialisations.
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2. An invertible sheaf L ∈ Pic(X0) ⊗ Q (resp. L ∈ Piclog(X0) ⊗ Q) can be
lifted to Pic(X ) ⊗ Q (resp. Piclog(X ) ⊗ Q ) if and only if its first Chern
class satisfies

c1(L) ∈ Fil1 ∩
(
H2

log−cris(X0/K0)⊗K0
K
)
,

where Fil• denotes the Hodge filtration on H2
dR(X/K).

Proof. Claim (1) is in the discussion at the beginning of [Ya11, §2]. Claim (2)
is [Ya11, Theorem 3.1].

After these preparations, we make the following key observation.

Remark 3.9. If X0 has cohomologically totally degenerate reduction, it looks
at first glance as if the combination of Proposition 3.1, Proposition 3.6, and
Theorem 3.8 might prove Conjecture 1.1. However, it is crucial to note that
Theorem 3.8 deals with Q-classes of invertible sheaves, whereas the other re-
sults deal with Qp-classes.

Definition 3.10. Let K be a p-adic field and let K0 be the maximal unramified
extension of Qp inside K. Let (H⊗K0

K,Fil•, ϕ,N) be a filtered (ϕ,N)-module
over K and let V be a rational structure on H . Then, H is called Raskind-
admissible if the natural inclusion of Qp-vector spaces

(
Fil1 ∩ V ϕ=p,N=0

)
⊗Q Qp ⊂ Fil1 ∩ Hϕ=p,N=0

is an equality.

We remark that V ϕ=p,N=0 = B1 and Hϕ=p,N=0 = B1 ⊗ Qp in the notation of
Definition 3.4, see also Equation (3). After these preparations, we now reformu-
late Raskind’s conjecture for divisors (Conjecture 1.1) into semi-linear algebra.
In fact, the following equivalence holds under a slightly weaker assumptions
than Raskind’s requirement of total degeneracy.

Theorem 3.11. Let X be a smooth and proper variety over K and assume that
there exists a proper and semi-stable model X → SpecOK of X. Assume that
the special fibre X0 is cohomologically totally degenerate. Then, the following
are equivalent:

1. The homomorphism (⋆) is surjective for ℓ = p.

2. The filtered (ϕ,N)-module Dst(H
2
ét(XK ,Qp)) together with the rational

structure arising from X0 is Raskind-admissible.

Proof. By Proposition 3.6.(1), there exists a rational structure (V = A ⊕
B0⊕B1⊕C,ϕV , NV ) on Dst(H

2
ét(XK ,Qp)) associated to X0. Next, by Propo-

sition 3.6.(3), the first Chern class induces an isomorphism

Pic(X0)⊗Z Q ∼= B1. (4)

Documenta Mathematica 24 (2019) 1879–1934



Tate Conjectures and Abeloid Varieties 1897

Using the first Chern class on X we obtain a map

Pic(X)⊗Z Q → Fil1 ∩ H2
log−cris(X0/K0)ϕ=p,N=0, (5)

whose image lies inside the subspace B1 of H2
log−cris(X0/K0)ϕ=p,N=0. Using

Yamashita’s theorem (Theorem 3.8), it follows that the first map in

Pic(X)⊗Z Q → Fil1 ∩ B1
∼= Fil1 ∩ Pic(X0)⊗ Q (6)

is surjective.

By Proposition 3.1 and (3), we have

H2
ét(XK ,Qp(1))GK ∼= Fil1 ∩ H2

log−cris(X0/K0)
ϕ=p,N=0

= Fil1 ∩ (B1 ⊗Qp).

Combining this with equation (5), we see that the homomorphism (⋆) is sur-
jective for ℓ = p if and only if

Pic(X)⊗Z Qp → Fil1 ∩ (B1 ⊗Q Qp)

is surjective. In view of (6), this is equivalent to asking whether

(
Fil1 ∩ B1

)
⊗Q Qp → Fil1 ∩ (B1 ⊗Q Qp)

is surjective. But this is equivalent to the rational structure V on the filtered
(ϕ,N)-module Dst(H

2
ét(XK ,Qp)) being Raskind-admissible.

3.4 Ordinary representations

Using the Hyodo-Kato complex and work of Perrin-Riou [PR94] and Il-
lusie [I94], we have the following description of the interplay between the p-
adic Galois represenation of GK on H2

ét(XK ,Qp) and the special fibre of a
semi-stable model.

Proposition 3.12. Let X be a smooth and proper variety over K and assume
that there exists a proper and semi-stable model X → Spec OK of X. Assume
that the special fibre X0 is cohomologically totally degenerate and that every

component of X [i]
0 for every i is ordinary in the sense of Bloch-Kato-Illusie-

Raynaud.

1. The GK-representation on H2
ét(XK ,Qp) is ordinary in the sense of

Perrin-Riou [PR94, 1.2]. More precisely, if F• denotes the corresponding
filtration, then there exist GK-equivariant isomorphisms

gr2−iH2
ét (XK ,Qp) ∼= H2−i

(
(X0)k,Wωi

log

)
⊗Qp(−i) .
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2. Let (V = A ⊕ B0 ⊕ B1 ⊕ C,ϕV , NV ) be the rational structure on
Dst(H

2
ét(XK ,Qp)) associated to X0. Then,

A ⊗QQp
∼= H2(X0,Wω0

log)⊗Zp
Qp

(B0 ⊕B1) ⊗QQp
∼= H1(X0,Wω1

log)⊗Zp
Qp

C ⊗QQp
∼= H0(X0,Wω2

log)⊗Zp
Qp .

3. We have the inequality

ρ(X) ≤ h1,1(X) − h0,2(X),

where ρ(X) denotes the Picard rank of X.

Proof. Since every component of X [i]
0 is ordinary for every i, so is X0 it-

self [I94, Proposition 1.6]. Thus, claim (1) follows from [I94, Corollaire 2.7].
More precisely, we obtain a very explicit description of the filtered (ϕ,N)-
module Dst(H

2
ét(XK ,Qp)) via the rational structure V and [I94, Corollaire

2.7] provides us with an equally explicit description of the GK-action on
H2

ét(XK ,Qp) via H2−i((X0)k,Wωi
log). Comparing these two descriptions,

claim (2) follows.
Finally, the de Rham Chern class map c1 : Pic(X) → H2

dR(X/K) is com-
patible with the log-crystalline Chern class and its image lies inside Fil1 and
H2

log−cris(X0/K0)ϕ=p,N=0 (see, for example, [Ya11, §2]). In our situation, the
latter is isomorphic to B1⊗Qp, from which claim (3) immediately follows (not-
ing that hi,j(X) = dimK0

Hj(X0,Wωi
X0

)⊗W (k)K0 = dimQp
Hj(X0,Wωi

log)⊗Zp

Qp by ordinarity).

Thus, when tensored with Qp, the rational structure on Dst(H
2
ét(XK ,Qp)) aris-

ing from X0 has an interpretation via the logarithmic Hodge-Witt cohomology
groups of the special fibre. Although this is not directly related to the conjec-
tures discussed in this article, it might be of independent interest.

3.5 Concluding remarks

The definitions and notions of this section are a little bit ad hoc, since we
only deal with Conjecture 1.1. A more conceptual approach, which would be
needed when studying Raskind’s conjectures for cycles of higher codimension,
could proceed along the following lines:

1. One can directly construct Q-structures on the groups H∗
log−cris(Y/K0)

using the Chow complex of [BGS97]. Moreover, these would also come
with Q-linearisations of the Frobenius ϕ and the monodromy N .

2. Concerning the definitions: one would have to define a weight w of a
filtered (ϕ,N)-module (in Definition 3.4, it would be w = 2), one would
have to define such a module to be of maximal nilpotent monodromy if
the monodromy operator N satisfies Nw 6= 0 and then, a rational struc-
ture would be a Q-vector space V with a direct sum decomposition into
subspaces upon which ϕV acts as multiplication by pi for i = 0, ..., w, etc.
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3. For an equivalence as in Theorem 3.11, one would also need a version of
Yamashita’s theorem (Theorem 3.8) for deforming cycles of higher codi-
mension. This would be a semi-stable analogue of the p-adic variational
Hodge conjecture (see for example [BEK14, Conjecture 1.2] for the good
reduction case, where the conjecture is attributed to Fontaine-Messing).
This conjecture is open in codimension ≥ 1, even in the case of good
reduction, but see [BEK14] for the state of the art.

To keep the discussion in this section shorter, we have decided not to develop
the setup in general, but to stick to the case of divisors.

4 Abeloid varieties

From this section on, we study abelian varieties over p-adic fields with totally
degenerate reduction. More precisely, we describe their morphisms, ℓ-adic Tate
modules, and the filtered (ϕ,N)-modules associated to the latter via p-adic
uniformisation, that is, within the framework of abeloid varieties. The results
of this section might be of independent interest and some of them might already
be known to the experts.

4.1 Generalities

We start with the behaviour of Question 1.2 under field extension and un-
der completion, similar to what we did for Raskind’s conjecture for divisors
(Conjecture 1.1) in Section 2.2 and Section 2.6.
Let F be a field of characteristic p ≥ 0 and let ℓ be a prime, possibly equal
to ℓ. If A is an abelian variety of dimension g over a field F , then the ℓ-adic
Tate module Tℓ and the rational ℓ-adic Tate module Vℓ of A are defined to be
to be

Tℓ(A) := lim←−
n

A(F sep)[ℓn] and Vℓ(A) := Tℓ(A)⊗Z Q

together with their GF -actions. If ℓ 6= p, then Tℓ(A) is a free Zℓ-module of
rank 2g.

Proposition 4.1. Let A and B be abelian varieties over a field F , let F ⊂ F ′

be a finite Galois extension and let ℓ be a prime. If the map (⋆⋆) (please see
§1.4) is surjective with r espect to AF ′ , BF ′ , GF ′ , and ℓ, then (⋆⋆) is surjective
with respect to A, B, GF , and ℓ.

Proof. Suppose that (⋆⋆) with respect to AF ′ , BF ′ , GF ′ is a surjection.
Then, we get a surjection on the Gal(F ′/F )-invariants

(Hom(AF ′ , BF ′)⊗Z Zℓ)
Gal(F ′/F )

։ HomGF ′
(Tℓ(A), Tℓ(B))Gal(F ′/F ) = HomGF

(Tℓ(A), Tℓ(B)) ,

and the left-hand side is Hom(A,B)⊗ZZℓ by Galois descent for morphisms.
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Remark 4.2. For abeloid varieties over p-adic fields, we will see a second proof
of this result in Corollary 4.8 below.

Proposition 4.3. Let A and B be abelian varieties over a number field F and
assume that there exists a prime ℓ and a prime ideal p ⊂ OF such that (⋆⋆) is
surjective for AFp

, BFp
, GFp

, and ℓ. Then, (⋆⋆) is surjective for A, B, GF ,
and ℓ.

Proof. We view GFp
as a subgroup of GF . Since we are allowed to make

finite Galois extensions by Proposition 4.1, we may assume that

Hom(A,B) = Hom(AF , BF ) .

In particular, GFp
and GF act trivially on Hom(AF , BF ). Then we have the

following commutative square

Hom(AF , BF )⊗Z Zℓ Hom(Tℓ(A), Tℓ(B))

Hom(AFp
, BFp

)⊗Z Zℓ Hom(Tℓ(AFp
), Tℓ(BFp

))

∼=

Taking GFp
-invariants gives

Hom(A,B)⊗Z Zℓ HomGFp
(Tℓ(A), Tℓ(B))

Hom(AFp
, BFp

)⊗Z Zℓ HomGFp
(Tℓ(AFp

), Tℓ(BFp
))

∼=

where the lower horizontal arrow is a surjection by assumption. We de-
duce therefore that the upper horizontal arrow is a surjection. This
proves the proposition because of the inclusion HomGF

(Tℓ(A), Tℓ(B)) ⊂
HomGFp

(Tℓ(A), Tℓ(B)).

4.2 Degenerations of abelian varieties

In the simple cases treated in Proposition 2.3, no assumption on the degen-
eration was needed and in Section 3, we worked with a weak form of total
degeneration. In [Ra05, RX07a], Raskind suggested a degeneration assump-
tion which is rather involved. For the purposes of this article, the following
slight generalisation of [RX07a, Example 1.(i)] suffices.

Lemma 4.4 (Raskind-Xarles + ε). Let Y =
⋃

i∈I Yi be a strict normal cross-
ing scheme over a perfect field F . Assume that for every subset J ⊂ I the
intersection YJ , if non-empty, is isomorphic to a successive blow-up of smooth,
projective, and toric varieties along subvarieties that are also smooth and toric.
Then, Y is totally degenerate in the sense of Raskind.
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Proof. If every YJ is a smooth, projective, and toric variety, then this
is [RX07a, Example 1.(i)]. Quite generally, if X̃ is the blow-up of a smooth
variety X along a smooth subvariety Y , then one can express the ℓ-adic co-
homology groups, the crystalline cohomology groups, the Chow groups, and
the cycle class maps for X̃ in terms of X and Y . From these formulas, it fol-
lows that the requirements (a)-(c) of [RX07a, Definition 1] also hold for our
assumptions. Moreover, if X and Y are ordinary in the sense of Bloch-Kato-
Illusie-Raynaud, then so is X̃ [I90, Proposition 1.6], that is, also requirement
(d) is satisfied.

Remark 4.5. If Y is a strict normal crossing scheme of dimension N ≤ 2,
such that all the YJ are smooth and rational varieties, then the assumptions
of the lemma are satisfied. For example, this applies to the combinatorial
degenerations of type III of the surfaces from [CL16, Definitions 5.4 to 5.7].

Next, we discuss the notion of totally degenerate reduction for abelian varieties.
There are several obvious candidates, all of which are stable under finite field
extensions and all of which are equivalent up to finite field extensions. The
following is well-known, but maybe never explicitly stated in this way, which
is why we include a short discussion with references.

Proposition 4.6. Let OK be a local and Henselian DVR with field of fractions
K and residue field k. Assume that K is of characteristic zero and that k is
perfect of characteristic p ≥ 0. Let A be an abelian variety of dimension g ≥ 1
over K. Consider the following properties:

1. A admits uniformisation in the sense of Mumford [Mum72b].

2. The connected component of the special fibre of the Néron model of A is
a split torus.

3. The special fibre of the projective regular Künnemann-Mumford
model [Mum72b, Kün98] of A is a union of smooth and toric vari-
eties.

4. A has totally degenerate reduction in the sense of Raskind [Ra05].

5. For some (resp., all) ℓ 6= p, the action of the inertia subgroup IK of
GK on H1

ét(AK ,Qℓ) is unipotent with maximal number of 2 × 2-Jordan
blocks, that is, its Jordan normal form has g Jordan blocks of size 2 × 2
and generalised eigenvalue 1.

6. For some (resp., all) ℓ 6= p, the IK-action on Hg
ét(AK ,Qℓ) is maximally

unipotent, that is, its Jordan normal form has one Jordan block of size
g × g and generalised eigenvalue 1.

7. Assume g ≥ 2. For some (resp., all) ℓ 6= p, the IK-action on H2
ét(AK ,Qℓ)

is unipotent and its Jordan normal form has no Jordan block of size 2×2
and 1

2g(g − 1) Jordan blocks of size 3× 3.
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If K is a p-adic field, consider also the following properties

8. The GK -representation H1
ét(AK ,Qp) is semi-stable and the monodromy

operator N of the associated filtered (ϕ,N)-module is nilpotent with min-
imal kernel, that is, ker(N) is g-dimensional.

9. The GK -representation Hg
ét(AK ,Qp) is semi-stable and the monodromy

operator N of the associated filtered (ϕ,N)-module is maximally nilpotent,
that is, Ng 6= 0.

10. Assume g ≥ 2. The GK-representation H2
ét(AK ,Qp) is semi-stable and

the monodromy operator N of the associated filtered (ϕ,N)-module has
no Jordan block of size 2× 2 and 1

2g(g − 1) Jordan blocks of size 3× 3.

Then,

(i) these properties are stable under finite extension, that is, if A satisfies
one of these properties, then AL satisfies the same property for every
finite field extension K ⊂ L.

(ii) Moreover, these properties are equivalent up to finite extension, that is,
if A satisfies one of the above properties, then there exists a finite field
extension K ⊂ L such that AL satisfies all of these properties.

Proof. The assertion that all these properties are stable under finite exten-
sion are well-known or easy and we leave them to the reader.
The fact that (1) and (2) are equivalent up to finite extension is the main result
of [Mum72b], see also the discussion in [Lüt16, §5.6].
The fact that (2) and (3) are equivalent up to finite extension is a special case
of [Kün98, §3].
If an abelian variety satisfies (4), then the identity component of the Néron
model is semi-abelian and the triviality of the conditions on the Chow group
imply that it cannot have abelian parts, and thus, (4) is equivalent to (2) and
(3) up to finite extension. Conversely, if an abelian variety satisfies (3), then
Lemma 4.4 applies and thus, (3) is equivalent to (4) up to finite extension, see
also [RX07a, Example 1.(ii)].
Assume that the Néron model of A has semi-abelian reduction, let t be the
dimension of the toric part and a be the dimension of the abelian part (and
thus, g = t+ a). Then, the IK -action on H1

ét(AK ,Qℓ) is unipotent with index
of unipotency at most ≤ 2. More precisely, there are 2a Jordan blocks of size
1 × 1 and generalised eigenvalue 1 and there are t Jordan blocks of size 2 × 2
and generalised eigenvalue 1. We refer to [BLR90, Theorem 6 in Chapter 7.4]
or [Gro72, Exposé IX] for proofs and details. Similarly, the GK-representation
on H1

ét(AK ,Qp) is semi-stable in this case. The monodromy operator on the
associated (ϕ,N)-module is nilpotent with nilpotency at most ≤ 2. More
precisely, there are 2a Jordan blocks of size 1 × 1 and eigenvalue 0 and there
are t Jordan blocks of size 2× 2 and generalised eigenvalue 0.
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From this discussion, it follows that (2) is equivalent to (5) up to finite extension
and that (2) is equivalent to (8) up to finite extension.
In any case and for all i, there exist GK -equivariant isomorphisms between
Hi

ét(AK ,Qℓ) and ∧iH1
ét(AK ,Qℓ). Moreover, for all ℓ 6= p, the IK -actions on

Hi
ét(AK ,Qℓ) are quasi-unipotent and the GK-representations Hi

ét(AK ,Qp) are
potentially semi-stable. Replacing K by a finite extension, we may assume that
all these IK-actions are unipotent for ℓ 6= p and all the GK-representations are
semi-stable for ℓ = p.
In particular, if ℓ 6= p, then the IK -action on ∧gHg

ét(AK ,Qℓ) is unipotent with
order of unipotency at most g. More precisely, there exists at most one Jordan
block of size g × g and generalised eigenvalue 1 and there exists such a block
if and only if g = t. We leave the straight forward exercise in linear algebra
to the reader. This implies that (5) is equivalent to (6) up to finite extension.
Similarly, (8) is equivalent to (9) up to finite extension.
If g ≥ 2 and ℓ 6= p, then the IK -inertia on ∧2H1

ét(AK ,Qℓ) is unipotent with
order of unipotency at most 3. More precisely, there are r := 1

2 t(t− 1) Jordan
blocks of size 3× 3 with generalised eigenvalue 1 and s := 2at Jordan blocks of
size 2×2 with generalised eigenvalue 1. Then, t = r+4s

2g−2 and thus, the IK -action

on ∧2H1
ét(AK ,Qℓ) encodes a and t. Again, we leave the details to the reader.

These considerations show that (5) is equivalent to (7) up to finite extension.
Similarly, (9) is equivalent to (11) up to finite extension.

4.3 Abeloid varieties

From now on, we will adopt the point of view of p-adic uniformisation. In
particular, this allows us to work with abeloid varieties, which are rigid ana-
lytic varieties over p-adic fields that are not necessarily algebraisable. We now
establish and recall a couple of general facts about abeloid varieties.
Let q1, ..., qg ∈ K×g be vectors, say qi = (qi,1, ...qi,g), such that νp(qi,j) > 1 for
all i, j. Let Q = (qi,j) ∈Mg×g(K) be the g × g-matrix, whose rows are the qi.
Associated to Q, we have the matrix

ordp(Q) := (νp(qi,j)) ∈ Mg×g(Q).

By definition, the abelian subgroup Λ = qZ1 · · · qZg of K×g is called a lattice, if
the columns of ordp(Q) span a lattice inside Rg or, equivalently, if the matrix
ordp(Q) is invertible. (In the literature, this matrix is sometimes constructed
with respect to a valuation νK on K× with νK(πK) = 1 for some uniformiser
πK ∈ OK and then, the matrix has integer entries rather then rational ones.
We have decided to work with the valuation νp instead, which rescales the
classical matrix by νp(πK) and has the advantage of being stable under finite
field extensions of K.)
Associated to a lattice Λ ⊂ K×g, there is a rigid analytic variety over K,
the abeloid variety G

g
m,K/Λ, see [Lüt16, Chapter 7]. The g × g-matrix Q

associated to a choice of basis for Λ is called a period matrix. The algebraisable
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abeloid varieties are precisely the totally degenerating abelian varieties studied
by Mumford [Mum72b]. Moreover, if g = 1, then a lattice Λ ⊂ K× is generated
by a single element q ∈ K× with νp(q) > 1, an abeloid variety of dimension
one is always algebraisable, and these are precisely the Tate elliptic curves.
We introduce the following notation: if R is a commutative ring and if A
is an R-module, then the set Matm×n(A) of m × n-matrices with values in
A is an Abelian group. Let X ∈ Matm×n(A). Then, if M ∈ Mats×m(R)
and N ∈ Matn×t(R) are matrices with entries in R for some s, t, then the
matrix products M ⊙X and X ⊙N are defined. In particular, Matn×n(A) is
a Matn×n(R)-bimodule. In the next theorem, we have R = Z and A = K×.

Theorem 4.7 (Gerritzen +ε). Let ΛA ⊂ K×g and ΛB ⊂ K×h be lattices and
let A := G

g
m,K/ΛA and B := Gh

m,K/ΛB be the associated abeloid varieties. Let
QA and QB be period matrices for ΛA and ΛB. Then, there exist isomorphisms

Hom(A,B)

∼= {M ∈ Matg×h(Z) |ΛA ⊙M ⊆ ΛB}

∼= {M ∈ Matg×h(Z) | ∃N ∈ Math×g(Z) : QA ⊙M = N ⊙QB}

∼=
{

M ∈ Matg×h(Z) |
(

ordp(QA)
−1 ⊙QA

)

⊙M = M ⊙
(

ordp(QB)
−1 ⊙QB

)}

.

In particular,

1. the natural map
Hom(A,B) → Hom(AK , BK)

is an isomorphism of abelian groups. In particular, the GK-action on the
right hand side is trivial.

2. A and B are K-isogenous if and only if they are K-isogenous.

3. A is K-simple if and only if it is K-simple.

Proof. If M = (mij) ∈ Mg×h(Z) is a g × h-matrix, then it gives rise to a
map ψM : K×g → K×h by sending

(x1, ..., xg) 7→


...,

g∏

j=1

x
mji

j , ...


 .

If ψM (ΛA) = ΛA ⊙M is contained in ΛB, then ψM descends to a morphism
A→ B of abeloid varieties. Conversely, every morphism of abeloid varieties is
of this form by the main theorem of [Ge70], see also the discussion in [Kad07,
§3]. This establishes the first two isomorphisms describing of Hom(A,B). Tak-
ing valuations in the equality QA ⊙M = N ⊙QB, we find

N = ordp(QA) ·M · ordp(QB)−1,

which implies the third isomorphism.
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Now, since every morphism AK → BK can be defined over some finite field
extension L/K and since the above description of homomorphisms is also valid
for homomorphisms over L, it follows from this description that every homo-
morphism Hom(AL, BL) can be defined over K. This establishes claim (1).
In particular, A and B are isogenous over K if and only if they are isogenous
over K, which establishes claim (2). Finally, A is simple over K if and only
if there exists no non-trivial idempotent in End(A) if and only if there exists
no non-trivial idempotent in End(AK) (by the already established (1)) if and
only if AK is simple, which establishes claim (3).

We will give another description of Hom(A,B)⊗Q in terms of L-invariants in
Proposition 4.14 below.

Corollary 4.8. Let A and B be abeloid varieties over a p-adic field K, let
L/K be a finite field extension, and let ℓ be a prime. If (⋆⋆) is surjective for
AL, BL, and ℓ, then (⋆⋆) is surjective for A, B, and ℓ.

Proof. We have a commutative diagram

Hom(A,B)⊗ Zℓ HomGK
(Tℓ(A), Tℓ(B))

Hom(AL, BL)⊗ Zℓ HomGL
(Tℓ(AL), Tℓ(BL))

By Theorem 4.7.(1), the left vertical arrow is an isomorphism, from which the
statement immediately follows.

4.4 The Tate module of an abeloid variety

Let A = G
g
m,K/Λ be an abeloid variety over a p-adic field K and let ℓ be a

prime, possibly equal to p. It follows from the rigid analytic parametrisation

K
×g

/Λ ∼= A(K) that the Tate module Tℓ(A) sits in a short exact sequence

0 → Zℓ(1)g → Tℓ(A) → Z
g
ℓ → 0 (7)

that is compatible with the GK-actions.
To describe its extension class, we follow and generalise some results due to
Serre [Se68, Appendix A]. To state the result, we define µℓ∞(K) to be the
group of those roots of unity of K whose order is a power of ℓ, we choose a
uniformiser πK , and we denote by U (1) := 1 + mK = 1 + πK · OK the group of
1-units of OK . Then, there exists an isomorphism of abelian groups

K× ∼= µ(K) × πZ
K × U (1).

In the sequel, we consider the ℓ-adic completion

γℓ : K× → K̂×
ℓ

:= lim←−
n

K×/K×ℓn (8)
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of K×.

Lemma 4.9 (Serre +ε). Let A := G
g
m,K/Λ be an abeloid variety over K.

1. There exists an isomorphism

ker(γℓ) =

{
µℓ∞(K)× U (1) if ℓ 6= p,
µp∞(K) if ℓ = p.

In particular, ker(γℓ) is finite if and only if ℓ = p.

2. Taking Galois invariants in (7), the boundary homomorphism in Galois
cohomology gives rise to a homomorphism

dg : H0(GK ,Z
g
ℓ ) → H1(GK ,Zℓ(1)g).

Let ei = (0, ..., 1, 0, ...), i = 1, ...g be the standard basis of Zg
ℓ . Then, the

Z-span Λ′ of {dg(ei)}i=1,...,g determines the extension class of (7).

3. Kummer theory induces an isomorphism

(K̂×
ℓ
)g ∼= H1(GK ,Zℓ(1)g).

Under this isomorphism, γℓ(Λ) is equal to Λ′ from assertion (2).

4. The image γℓ(Λ) is a lattice, that is, a free Z-module of rank g. In
particular, the sequence (7) does not split. In fact, there does not even
exist a non-trivial and GK-equivariant homomorphism Zℓ → Tℓ(A).

Proof. The description of the kernel in claim (1) for ℓ = p is shown in the
proof of the implication (3) ⇒ (2) of the theorem of [Se68, Appendix A.1.4].
If ℓ 6= p, the valuation argument of loc.cit. still shows that πZ

K has trivial
intersection with ker(γℓ). This shows that ker(γℓ) is contained in τ(k×)×U (1),
where τ denotes the Teichmüller lift from k× to K×

0 ⊂ K×. Hensel’s lemma
implies that U (1) ⊂ ker(γℓ). The intersection of τ(k×) with ker(γℓ) is µℓ∞(K).
Claims (2), (3), and (4) for g = 1 are the proposition and the corollary of [Se68,
Appendix A.1.2]. The generalisations of claims (1) - (3) to arbitrary g follow
immediately by taking products and we leave them to the reader. For claim (4),
we note that the valuation argument used in the proof of assertion (b) of the
proposition in [Se68, Appendix A.1.2] still works, when being replaced by the
valuation matrix ordp(V ) associated to a period matrix V for Λ, which we
introduced at the beginning of this section.

Remark 4.10. The ℓ-adic completion is explicitly given by

K̂×
ℓ ∼= (µ(K)/µℓ∞(K)) × πZℓ

K ×
{
{1} if ℓ 6= p
U (1) if ℓ = p .

In this decomposition, the map γℓ can be understood componentwise.
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As a consequence, we now describe GK -equivariant homomorphisms between ℓ-
adic Tate modules of abeloid varieties. In the one-dimensional case, this result
is implicit in [Se68, Appendix A.1.4].

Proposition 4.11. Let ΛA ⊂ K×g and ΛB ⊂ K×h be lattices and let A :=
G

g
m,K/ΛA and B := Gh

m,K/ΛB be the associated abeloid varieties. Let QA

and QB be period matrices for ΛA and ΛB. Then, there exist isomorphisms of
Zℓ-modules

HomGK
(Tℓ(A), Tℓ(B))

∼= {M ∈ Matg×h(Zℓ) | γℓ(ΛA)⊙M ⊆ γℓ(ΛB)}
∼= {M ∈ Matg×h(Zℓ) | ∃N ∈Math×g(Zℓ) : γℓ(QA)⊙M = N ⊙ γℓ(QB)}
∼=
{
M ∈ Matg×h(Zℓ) |

(
ordp(QA)−1 ⊙ γℓ(QA)

)
⊙M = M ⊙

(
ordp(QB)−1 ⊙ γℓ(QB)

)}
.

Here, γℓ : K× → K̂×
ℓ
denotes the ℓ-adic completion from Lemma 4.9.

Proof. Given a GK-equivariant morphism ϕ : Tℓ(A) → Tℓ(B), we obtain a
commutative diagram

0 Zℓ(1)g Tℓ(A) Z
g
ℓ 0

0 Zℓ(1)h Tℓ(B) Zh
ℓ 0

ρ ϕ σ

for some matrices ρ, σ ∈ Matg×h(Zℓ). Taking GK-invariants and passing to
cohomology, it follows that the diagram

Z
g
ℓ H1 (GK ,Zℓ(1)g)

Zh
ℓ H1

(
GK ,Zℓ(1)h

)

dg

dh

σ ρ∗

(9)

commutes.
By Lemma 4.9, the images of Λ′

A and Λ′
B under dg and dh are lattices, and

thus, the homomorphisms dg and dh are injective. In particular, ρ determines
ρ∗, which determines σ uniquely and vice versa.
Using the results and identifications of Lemma 4.9, the commutativity of the
above diagram implies

γℓ(QA)⊙ ρ = σ ⊙ γℓ(QB)

with respect to the notation introduced above. Thus, γℓ(ΛA) ⊙ ρ lies in the
Zℓ-span of γℓ(ΛB).
Conversely, let M ∈ Matg×h(Zℓ) be such that γℓ(ΛA)⊙M is contained in the
Zℓ-span of γℓ(ΛB). Then, M gives rise to map Zℓ(1)g → Zℓ(1)h and we can
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find a unique matrix N ∈ Matg×h(Zℓ) defining a map Z
g
ℓ → Zh

ℓ such that the
diagram (9) commutes. This commutativity implies that M and N determine
a unique GK-equivariant map ϕ : Tℓ(A)→ Tℓ(B).

The last isomorphism follows from taking valuations as in the proof of Theo-
rem 4.7.

4.5 The p-adic Galois representations

Let A = G
g
m,K/ΛA be an abeloid variety over a p-adic field K and let QA =

(qi,j) be a period matrix for ΛA. As seen in (7), the p-adic Galois representation
of GK on the rational Tate module Vp(A) is an extension of Qp(1)g by Qg

p. We
denote by logp Iwasawa’s p-adic logarithm, normalised such that logp(p) = 0.
Associated to this data, we construct a filtered (ϕ,N)-module overK as follows:

1. Let V be the 2g-dimensional vector space over Q with basis
x1, ..., xg, y1, ..., yg together with two linear operators ϕ,N :

ϕ(xi) = p−1 · xi ϕ(yi) = yi
N(xi) = 0 N(yi) =

∑g
j=1 νp(qi,j) · xj

that is, these operators are given by matrices

(
p−1 · Idg×g 0

0 Idg×g

)
and

(
0 ordp(Q)
0 0

)
.

We equip VK0
:= V ⊗QK0 with the K0-linear extension N⊗idK0

of N and
with the K0-semi-linear extension ϕ⊗ σ of ϕ. Here, σ denotes the lift of
Frobenius onK0 and by abuse of notation, we will denote these extensions
again by ϕ and N . This turns (VK0

, ϕ,N) into a (ϕ,N)-module.

2. A filtration on VK := V ⊗QK defined by Fili = 0 for i ≥ 1, by Fili = VK
for i < 0, and Fil0 is the g-dimensional K-vector space spanned by

yi +

g∑

j=1

logp(qi,j) · xj

for i = 1, ..., g.

After these preparations, we obtain the following result, which was already
known for Tate elliptic curves, that is, in the case where g = 1, see also Re-
mark 4.13 below.

Theorem 4.12. Let A = G
g
m,K/ΛA be an abeloid variety over a p-adic field K.

Then, the filtered (ϕ,N)-module Dst(Vp(A)) associated to the rational Tate
module of A is isomorphic to (VK0

, ϕ,N,Fil•) constructed above.
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Proof. We use the notations of [Be04, §II.4] and generalise the computations
there from g = 1 to arbitrary g. To obtain an explicit description of the
rational Tate module Vp(A), we fix a compatible system {ε(n)}n of pn-th roots

of unity, as well as a compatible system {q(n)i,j }n of pn-th roots of qi,j . Via p-

adic uniformisation, we obtain a GK-equivariant parametrisation K
×g
/ΛA →

A(K), which identifies the pn-torsion subgroup of A(K) with

{x ∈ K×g |xpn ∈ ΛA},

which shows that the 2g vectors

ei := lim←−n
(1, ..., ε(n), 1, ...)

fi := lim←−n
(q

(n)
i,1 , ..., q

(n)
i,g )

with i = 1, ..., g form a Zp-basis of the Tate module Tp(A). Thus, if g ∈ GK ,
we compute

g(ei) = lim←−
n

(1, ..., g(ε(n)), 1, ...) = χ(g) · lim←−
n

(1, ..., ε(n), 1, ...) = χ(g) · ei,

where χ : GK → Z×
p denotes the p-adic cyclotomic character. Moreover, we

define a g × g matrix C(g) = (ci,j(g)) with entries in Zp via

g(fi) = lim←−
n

(
g(q

(n)
i,1 ), ..., g(q

(n)
i,g )

)

= lim←−
n

(
q
(n)
i,1 (ε(n))ci,j(g), ..., q

(n)
i,g (ε(n))ci,j(g)

)

= fi +

g∑

j=1

ci,j(g) · ej .

Thus, the action of g ∈ GK on Tp(A) is given by the matrix

(
χ(g) · Idg×g C(g)

0 Idg×g

)
.

To determine the p-adic periods, we have t = logp([ε]) ∈ B+
dR ⊂ BdR and set

ui,j := logp(qi,j) −
∞∑

n=1

(1− [q̃i,j ])
n

n
.

were
q̃i,j = (q

(0)
i,j , q

(1)
i,j , . . .) ∈ Ẽ+ = lim←−

x 7→xp

ÔK

and [q̃i,j ] ∈ W (Ẽ+) denotes its Teichmüller lift. This series converges in B+
dR

and as explained in [Be04, §II.4.3], one should think of ui,j as being equal to

Documenta Mathematica 24 (2019) 1879–1934



1910 Oliver Gregory and Christian Liedtke

logp([q̃i,j ]) and one has g(ui,j) = ui,j + ci,j(g)t. In this explicit description, it
is easy to see that the 2g vectors

xi := 1
t ⊗ ei

yi := −∑g
j=1

ui,j

t ⊗ ej + 1⊗ fi

with i = 1, ..., g lie in DdR(Vp(A)) = (BdR⊗Qp
Vp(A))GK . These elements form a

2g-dimensional vector space, which shows explicitly that the GK-representation
on Vp(A) is de Rham. Now, t and the ui,j lie in the subring B+

cris ⊂ B+
dR and

we have ϕ(t) = p · t, ϕ(ui,j) = p ·ui,j, ϕ(ei) = ei, and ϕ(fi) = fi, see also [Be04,
§II.4.3]. This implies

ϕ(xi) =
1

pt
⊗ ei = p−1 ·xi and ϕ(yi) = −

g∑

j=1

p · ui,j
p · t ⊗ ej + 1⊗ fi = yi .

Then, we have Bst = Bcris[Y ] and the normalisation logp(p) = 0 determines an
embedding of Bst into BdR, see [Be04, §II.3.3]. Then,

ui,j = logp[q̃i,j ] = νp(qi,j) · Y + logp

[
q̃i,j

νp(qi,j)

]
.

The monodromy operator is given by N := − d
dY and we compute N(xi) = 0.

Rewriting yi as

yi = −
g∑

j=1

νp(qi,j)

t
· Y ⊗ ej −

g∑

j=1

1

t
· logp

[
q̃i,j

νp(qi,j)

]
⊗ ej + 1⊗ fi ,

we compute

N(yi) = − d

dY
yi =

g∑

j=1

νp(qi,j)

t
⊗ ej =

g∑

j=1

νp(qi,j)ej .

By definition, the filtration on BdR is defined by Fili(BdR) = ti · B+
dR, from

which it is easy to see that the induced filtration Fili on the K-span of the
xi, yi, that is, the intersection with ti · B+

dR, is zero for i ≥ 1 and it is equal to
the whole space for i < 0. Moreover, the elements

yi +

g∑

j=1

logp(qi,j) · xj , i = 1, ..., g

lie in Fil0, see also [Be04, §II.4.3] and we leave it to the reader to show that these
g vectors actually span Fil0. This establishes the claim and we see from these
explicit computations that the GK-representation on Vp(A) is semi-stable. We
remark that the semi-stability of Vp(A) is a special case of [CN17, Corollary
5.26].
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Remark 4.13. For Tate elliptic curves, this result was established by
Le Stum [LeS95, §9] and our computations extended the exposition in [Be04,
§II.4]. For the description of ϕ and N , we also refer to [Co00, CI99]. Since we
followed the exposition for Tate elliptic curves in [Be04, §II.4], we have chosen

to use the notation found therein. We note that Ẽ+ ∼= lim←−
x 7→xp

Ô
K
/p = O♭

̂K
and

also that W (Ẽ+) is commonly referred to as Ainf .

We end this discusssion by an analogue of Proposition 4.11 in the context of
filtered (ϕ,N)-modules. Before stating the result, we extend the definition of
the L-invariant of a Tate elliptic curve [MTT86, Ch. II §1] to abeloid varieties
of aribitrary dimension: if QA is a period matrix for the abeloid variety A :=
G

g
m,K/ΛA, we set

L(QA) := ordp(QA)−1 · logp(QA) ∈Matg×g(K×).

Here, logp(QA) denotes the matrix obtained by applying logp to every entry of
QA. Note that by a definition of period matrices, ordp(QA) ∈Matg×g(Q) is an
invertible matrix.

Proposition 4.14. Let A = G
g
m,K/ΛA and B = Gh

m,K/ΛB be abeloid varieties
and let QA and QB be period matrices for A and B, respectively.

1. If A is isomorphic to B, then there exists a M ∈ GLg×g(Z) such that

L(QB) = M−1 · L(QA) ·M .

In particular, this describes how L transforms under a change of period
matrix of one abeloid variety.

2. There exists an isomorphism of Q-vector spaces

Hom(A,B)⊗Z Q

∼= {M ∈Matg×h(Q) | L(QA) ·M = M · L(QB)} .

In particular, A and B are isogenous if and only if g = h and there exists
a M ∈ GLg(Q) such that L(QA) ·M = M · L(QB).

Proof. We start with the following computation: let R be a subring of Qp,
let A = G

g
m,K/ΛA and B = Gh

m,K/ΛB be abeloid varieties, and let QA and
QB be period matrices. Moreover, let M ∈ Matg×h(R) be a matrix such that
there exists a N ∈Matg×h(R) with

QA ⊙ M = N ⊙ QB. (10)

We have seen in the proof of Theorem 4.7 that we have N = ordp(QA) ·M ·
ordp(QB)−1 in this case, which then yields

(ordp(QA)−1 ⊙QA)⊙M = M ⊙ (ordp(QB)−1 ⊙QB).
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Taking the Iwasawa logarithm on both sides, we obtain

L(QA) ·M = M · L(QB).

This already implies claim (1): if A ∼= B, then we can find M,N ∈ GLg(Z)
satisfying equation (10) and the assertion follows.
We now establish claim (2): given a homomorphism Hom(A,B) ⊗ Q, there
exist by Theorem 4.7 two matrices M,N ∈ Matg×h(Q) that satisfy (10). By
the above computations, we find that L(QA) ·M = M · L(QB).
Conversely, assume that we are given a matrix M ∈ Matg×h(Q) such that
L(QA) ·M = M · L(QB). We set N := ordp(QA) ·M · ordp(QB)−1 and find

logp(QA) ·M = N · logp(QB) and ordp(QA) ·M = N · ordp(QB),

which shows that

logp(QA⊙M) = logp(N⊙QB) and ordp(QA⊙M) = ordp(N⊙QB).

Using properties of the Iwasawa logarithm, this shows that there exist roots of
unity εi,j ∈ K such that the (i, j) entries of the matrices QA⊙M and N ⊙QB

differ by the factor εi,j , see also the proof of [LeS95, Proposition 6]. Thus, if R is
a positive integer such that εRi,j = 1 for all i, j, then QA⊙ (RM) = (RN)⊙QB.
In particular, RM and RN define an element of Hom(A,B) and claim (2)
follows.

Our definition of the L-invariant of an abeloid variety generalises the L-
invariant of a Tate elliptic curve [MTT86, Ch. II §1]. We refer to [DT08] for a
survey of various L-invariants for varieties that are uniformised by Drinfeld’s
upper half plane Ω̂1

K . Before continuing with our discussion of Proposition 4.11
in the context of filtered (ϕ,N)-modules, we first show that the L-invariant
LCol(C) of a Mumford curve C, as defined by Besser-de Shalit [BdS16], coin-
cides with our L-invariant of the Jacobian J of C.

Proposition 4.15. Let Γ ⊂ PGL2(K) be a Schottky group and let C = Γ\Ω̂1
K

be the associated Mumford curve of genus g. Let J = G
g
m,K/ΛJ be the Jacobian

of C. Then, there exists a choice of period matrix QJ for J such that

LCol(C) = L(QJ) .

Proof. (We refer the reader to [BdS16, §2.1 and §2.2] for a summary of the
de Rham cohomology of varieties that are uniformised by Drinfeld upper half
spaces, and also for the appropriate references to the literature.)
Since we only consider de Rham cohomology in cohomological degree 1, we
are in the situation d = 1 and i = 0 in the notation of [BdS16]. We
have already fixed a uniformiser of K, so we shall drop this label from
the notation of [BdS16]. In summary, we simplify the notation by setting
LCol(C) := LCol

π,1 (C).
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By definition, we have LCol(C) = ν−1 ◦ λCol where

ν := grN : gr0ΓH
1
dR(C/K) → gr1ΓH

1
dR(C/K)

is the map induced by the monodromy operator on the graded pieces of the
covering filtration, using the fact that the covering filtration coincides with the
weight filtration up to a shift in index. It is an isomorphism by the monodromy-
weight conjecture, which is a theorem in our situation. The covering filtration
is opposite to the Hodge filtration, which gives the identifications

gr0ΓH
1
dR(C/K) ∼= H0(C,Ω1

C/K)

and

gr1ΓH
1
dR(C/K) ∼= H1(C,OC) .

The monodromy operators of C and J coincide under the identification
H1

dR(C/K) = H1
dR(J/K), by [CI99, §3]. Choose a period matrix QJ of J . Then

we have computed in Theorem 4.12 that ν is given by the matrix ordp(QJ).
The map

λCol : gr0ΓH
1
dR(C/K)→ gr1ΓH

1
dR(C/K)

is defined using harmonic cochains on the Bruhat-Tits building T of PGL2(K)
and the identifications

gr0ΓH
1
dR(C/K) ∼= H0(Γ, C1

har(T ))

and

gr1ΓH
1
dR(C/K) ∼= H1(Γ, C0

har(T )) .

Let Cp := K̂. It is shown in [Gro00, §3.1.2] that for Mumford curves, the map
λCol ⊗K Cp coincides with Coleman integration.

Fix z′ ∈ Ω̂1
K(Cp). For α ∈ Γ, define

uα(z) :=
∏

γ∈Γ

z − γ(z′)

z − γα(z′)

(this is independent of the choice of z′), and for α, β ∈ Γ, define

Qα,β :=
uα(z)

uα(βz)
∈ K× .

Then, ΛJ is generated by elements of the form Qα,β, that is the Qα,β form a
period matrix QJ for J [GvdP80, Ch. VI §2]. Recall as well that H0(C,Ω1

C/K)
is generated over K by differential forms of the form

ωα :=
duα
uα

,
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where α ∈ Γ′ := Γ/[Γ,Γ] ≃ ΛJ . Using the notation of [Gro00], all paths γ are
linear combinations of the paths of the form [z, β · z] with β ∈ Γ, and hence to
compute λCol we see that it suffices to calculate

∫ β·z

z

duα
uα

= logp uα(β · z)− logp uα(z) = logpQα,β .

Altogether, we see that LCol = ν−1◦λCol = ordp(QJ)−1·logp(QJ) = L(QJ ).

We now return to our discussion of 4.11 in the context of filtered (ϕ,N)-
modules.

Proposition 4.16. Let A := G
g
m,K/ΛA and B := Gh

m,K/ΛB be abeloid vari-
eties and let QA and QB be period matrices for A and B, respectively. Then,
there exists an isomorphism of Qp-vector spaces

HomMFwa,ϕ,N

K

(Dst(Vp(A)),Dst(Vp(B)))

∼= {M ∈Matg×h(Qp) | L(QA) ·M = M · L(QB)} .

In particular, Dst(Vp(A)) and Dst(Vp(B)) are isomorphic if and only if g = h
and there exists a M ∈ GLg(Qp) such that L(QA) ·M = M · L(QB).

Proof. Quite generally, let D,D′ be objects of MFwa,ϕ,N
K . Then, an element

of HomMFwa,ϕ,N

K

(D,D′) is a K0-linear map from the underlying K0-vector space

of D to the underlying K0-vector space of D′ that commutes with the Frobe-
nius and monodromy operators, and such that the K-linear extension of this
map sends the Hodge filtration of DK into the Hodge filtration of D′

K . After
choosing bases, we represent this K0-linear map by a matrix M and let F, F ′

be matrices representing the Frobenius operators on D and D′, respectively.
Then, compatibility with Frobenius is the condition that FM = MF ′.
We claim that the matrix M has coefficients in Qp: first, by considering

(
Id 0
M Id

)
: D ⊕D′ → D ⊕D′,

we see that it suffices to assume D = D′, ϕ = ϕ′, and F = F ′. Recall
that the Frobenius operator is semi-linear with respect to σ by definition, that
is, FM = σ(M)F . This together with condition FM = MF shows that
σ(M) = M , which proves the claim.
Now let us return to the explicit description of
HomMFwa,ϕ,N

K

(Dst(Vp(A)),Dst(Vp(B))). Using the bases from Section 4.5,

we see that giving an element of this space is equivalent to giving a matrix
M ∈Mat2g×2h(Qp) that satisfies the following three conditions

(
p−1 · Idg×g 0

0 Idg×g

)
M = M

(
p−1 · Idh×h 0

0 Idh×h

)
(a)

(
0 ordp(QA)
0 0

)
M = M

(
0 ordp(QB)
0 0

)
(b)
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(
logp(QA) Idg×g

)
M =

(
Z · logp(QB) Z

)
(c)

for some Z ∈Matg×h(K). We see that (a) holds if and only if M is of the form
( X 0

0 Y ) for some matrices X,Y ∈Matg×h(Qp). It then follows from (b) and (c)
that to give an element of HomMFwa,ϕ,N

K

(Dst(Vp(A)),Dst(Vp(B))) is the same as

giving X,Y ∈ Matg×h(Qp) that satisfy

ordp(QA) ·X = Y · ordp(QB) (d)

and
logp(QA) ·X = Y · logp(QB) . (e)

Since QB is a period matrix, ordp(QB) is invertible, and we find Y = ordp(QA)·
X · ordp(QB)−1. Plugging this into (e), the proposition follows.

4.6 A translation of Question 1.2 into linear algebra

Let A = G
g
m,K/ΛA and B = Gh

m,K/ΛB be abeloid varieties over a p-adic field
K and let ℓ be a prime, possibly equal to p. We choose period matrices QA

and QB.

1. Under the identifications of Theorem 4.7 and Proposition 4.11 the homo-
morphism (⋆⋆)

Hom(A,B) ⊗Z Zℓ → HomGK
(Tℓ(A), Tℓ(B))

is given by the homomorphism

{M ∈Matg×h(Z) |ΛA ⊙M ⊂ ΛB} ⊗Z Zℓ

→ {M ∈Matg×h(Zℓ) | γℓ(ΛA)⊙M ⊂ γℓ(ΛB)},

or, equivalently,
{
M ∈Matg×h(Z) |

(
ordp(QA)−1 ⊙QA

)
⊙M = M ⊙

(
ordp(QB)−1 ⊙QB

)}
⊗Z Zℓ

→
{
M ∈Matg×h(Zℓ) |

(
ordp(QA)−1 ⊙ γℓ(QA)

)
⊙M = M ⊙

(
ordp(QB)−1 ⊙ γℓ(QB)

)}
.

2. Moreover, if ℓ = p, then under the identifications of Theorem 4.7 and
Proposition 4.16, the analog of homomorphism (⋆⋆)

Hom(A,B)⊗Z Qp → HomMFwa,ϕ,N

K

(Dst(Vp(A)),Dst(Vp(B)))

is given by
{
M ∈Matg×h(Q) |

(
ordp(QA)−1 ⊙QA

)
⊙M = M ⊙

(
ordp(QB)−1 ⊙QB

)}
⊗Q Qp

→ {M ∈Matg×h(Qp) | L(QA) ·M = M · L(QB)} ,

or, equivalently,

{M ∈Matg×h(Q) | L(QA) ·M = M · L(QB)} ⊗Q Qp

→ {M ∈Matg×h(Qp) | L(QA) ·M = M · L(QB)} .
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This gives reformulations of Question 1.2 in terms of linear algebra. Note that it
is particularly easy to see that (⋆⋆) is injective in some of these reformulations.
We also see that the surjectivity of (⋆⋆) is equivalent to the interplay of Q-
structures versus Qℓ-structures, which is similar to Raskind-admissibility and
the results of Section 3. In Lemma 4.9 and Remark 4.10, we have seen that γℓ
behaves very differently depending on whether ℓ 6= p or ℓ = p:

1. In Proposition A.4, we will see that surjectivity of (⋆⋆) may fail if A and
B are Tate elliptic curves and ℓ 6= p.

2. Surjectivity of (⋆⋆) may look plausible if ℓ = p: we will give a positive
result in Proposition 5.3 below and disprove it in general in Theorem 6.1.

5 Products of Tate elliptic curves

In this section, we use the results of the previous section to study Raskind’s
conjecture for divisors (Conjecture 1.1) and Question 1.2 for abelian varieties
that are isogenous to products of Tate elliptic curves. For the product X of two
Tate elliptic curves, we determine the rational structure on the filtered (ϕ,N)-
module Dst(H

2
ét(XK ,Qp)), which leads to a direct verification of Conjecture

1.1. We also classify all filtered (ϕ,N)-modules that are ordinary in the sense
of Perrin-Riou that have a fixed rational structure that is modeled on a surface
with pg = 1.

5.1 Products of Tate elliptic curves

We recall that a Tate elliptic curve over a p-adic field K is the same as an
abeloid variety of dimension one over K. In particular, they are of the form
E(q) := Gm,K/q

Z for some q ∈ K× with νp(q) > 0. As in the previous section,
we set L(x) := logp(x)/νp(x).

Theorem 5.1 (Le Stum, Serre). Let E(qi), i = 1, 2 be two Tate elliptic curves
over a p-adic field K associated to qi ∈ K× with νp(qi) > 0. Then, the following
are equivalent:

1. E(q1) and E(q2) are isogenous.

2. There exist positive integers Ai, i = 1, 2 such that qA1

1 = qA2

2 .

3. The rational Tate modules Vp(E(qi)), i = 1, 2 are isomorphic as p-adic
GK-representations.

4. The Dst(V (E(qi))), i = 1, 2 are isomorphic as filtered (ϕ,N)-modules
over K.

5. L(q1) = L(q2).

Proof. The equivalences (1) ⇔ (2) ⇔ (3) are shown in [Se68, §A.1.4] and
the equivalences (1)⇔ (4)⇔ (5) are shown in [LeS95, Proposition 6].
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Remark 5.2. In fact, using the results from Section 4, it is easy to deduce the
equivalence (1)⇔ (2) from Theorem 4.7, to deduce the equivalence (2)⇔ (3)
from Proposition 4.11, to prove the equivalence (1) ⇔ (4) using Proposition
4.14, and to prove the equivalences (3)⇔ (4)⇔ (5) using Theorem 4.12.

Concerning Question 1.2, we have a positive answer in the following special
case.

Proposition 5.3. Let K be a p-adic field and let A and B be abelian varieties
over K, both of which are isogenous to products of Tate elliptic curves. Then,
(⋆⋆) (please see §1.4) is surjective for A, B, and ℓ = p, that is, Question 1.2
has a positive answer for A and B.

Proof. First, the map (⋆⋆) is injective [Mu70, IV.19.3] and since the cokernel
is torsion-free [Ta66, Lemma 1], we are reduced to showing the surjectivity of
the map

Hom(A,B) ⊗Z Qp −→ HomGK
(Vp(A), Vp(B)) . (11)

If A is isogenous to a product
∏

i=1 E(qi) of Tate elliptic curves, then an isogeny
gives rise to an isomorphism of p-adic GK-representations

Vp(A) ∼=
g⊕

i=1

Vp(E(qi)).

We are thus reduced to the case where both A and B are Tate elliptic curves.
If they are not isogenous, then Hom(A,B) = 0 and Hom(Vp(A), Vp(B)) = 0
by Theorem 5.1. On the other hand, if they are isogenous, then we have
Hom(A,B) = Z and Hom(Vp(A), Vp(B)) = Qp. This verifies the claim in both
cases and the proposition follows.

As a corollary, we establish Conjecture 1.1 in a special case.

Corollary 5.4. Let K be a p-adic field and let A be an abelian variety over
K that is isogenous to a product of Tate elliptic curves. Then, (⋆) is surjective
for A and ℓ = p, that is, Raskind’s conjecture for divisors (Conjecture 1.1) is
true for A.

Proof. We may assume that A is in fact isomorphic to a product of Tate
elliptic curves. The argument to deduce surjectivity of (⋆) from the surjectivity
of (⋆⋆) is [Ta66, Theorem 3].

In Appendix A, we will see that both results fail to be true if ℓ 6= p.

5.2 The product of two Tate curves

Let E(q) := Gm,K/q
Z be the Tate elliptic curve associated to an element q ∈

K× with νp(q) > 0. Associated to q, we construct a filtered (ϕ,N)-module as
follows
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1. Let V be a 2-dimensional vector space over Q with basis e1, e2 together
with two linear operators ϕ,N defined by

ϕ(e1) = e1 ϕ(e2) = p · e2
N(e1) = 0 N(e2) = e1 .

We equip VK0
:= V ⊗Q K0 with the K0-linear extension of N and the

K0-semi-linear extension of ϕ, which defines a (ϕ,N)-module over K0.

2. Define a filtration on VK := V ⊗Q K defined by Fili = VK for i ≥ 0,
by Fili = 0 for i ≥ 2, and Fil1 is the one-dimensional K-vector space
spanned by

L(q) · e1 + e2.

Now, the p-adic GK -representations Vp(E(q)) and H1
ét(E(q)K ,Qp) are dual.

Using the explicit description of Dst(Vp(E(q))) provided by Theorem 4.12 (al-
though in the case of Tate elliptic curves, this was classically known, see [Be04,
II.4.2]), the formulae from [Fo94, 4.2.4 and 4.3.4] to compute the dual, and af-
ter suitably rescaling, it is not difficult to see that the just constructed filtered
(ϕ,N)-module V is isomorphic to Dst(H

1
ét(E(q)K ,Qp)). Alternatively, one can

also use Le Stum’s computations [LeS95, §9].
Next, let qi ∈ K× with νp(qi) > 0 for i = 1, 2, let E(qi) be the assocated Tate
elliptic curves over K, and set X := E(q1)×E(q2). Then, we have the following
description of the filtered (ϕ,N)-module Dst(H

2
ét(XK ,Qp))

1. Let V (i), i = 1, 2 be two 2-dimensional vector spaces with bases

{e(i)1 , e
(i)
2 }, Frobenius, monodromy, and filtration on V (i) ⊗K associated

to qi as above. Set V := V (1) ⊕ V (2).

2. Then, W := ∧2(V ) = ∧2(V (1) ⊕ V (2)) is a 6-dimensional Q-vector space
with basis

a = e
(1)
1 ∧ e

(2)
1 ,

b0 = e
(1)
1 ∧ e

(2)
2 + e

(1)
2 ∧ e

(2)
1 ,

b1 = e
(1)
1 ∧ e

(2)
2 − e

(1)
2 ∧ e

(2)
1 , b2 = e

(1)
1 ∧ e

(1)
2 , b3 = e

(2)
1 ∧ e

(2)
2

c = e
(1)
2 ∧ e

(2)
2 .

We set

A := 〈a〉, B0 := 〈b0〉, B1 := 〈b1, b2, b3〉, B := B0 ⊕B1, and C := 〈c〉.

3. The ϕ’s on V (1) and V (2) induce a linear endomorphism ϕW with

ϕW |A = idA, ϕW |B = p · idA, and ϕW |C = p2 · idA .

Similarly, we obtain a linear endomorphism NW with

NW (c) = b0, NW (b0) = 2a, and NW |A⊕B1
= 0.

We extend ϕW semi-linearly and NW linearly to W ⊗K0 and thus obtain
a (ϕ,N)-module.
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4. Moreover, the decomposition (W = A⊕B0⊕B1⊕C,ϕW , NW ) defines a
rational structure in the sense of Definition 3.4.

5. The filtrations on V (i)⊗K give rise to a filtration on W ⊗K with Fil0 =
W , Fil3 = 0, and Fil2 is the one-dimensional K-span of

L(q1)L(q2) · a︸ ︷︷ ︸
∈A

+ L(q1) · e(1)1 ∧ e
(2)
2 + L(q2) · e(1)2 ∧ e

(2)
1︸ ︷︷ ︸

∈B

+ e
(1)
2 ∧ e

(2)
2︸ ︷︷ ︸

=c∈C

.

(12)
To explain Fil1, we note that since W = ∧2V , the wedge product induces
a non-degenerate symmetric bilinear form W ×W → ∧4V ∼= Q. Then,
Fil2 is isotropic with respect to this pairing and it is easy to see that

Fil1 = (Fil2)⊥.

Thus, we obtain a filtered (ϕ,N)-module (W ⊗K0,Fil•, ϕW ⊗ σ,NW ⊗ idK0
)

and a rational structure (W = A ⊕ B0 ⊕ B1 ⊕ C,ϕW , NW ). We will see in
Proposition 5.6 that it is isomorphic to Dst(H

2
ét(XK ,Qp)).

Lemma 5.5. This just-constructed filtered (ϕ,N)-module together with its ra-
tional structure is Raskind-admissible. More precisely, we have

dimQ

(
Fil1 ∩B1

)
=

{
2 if L(q1) 6= L(q2) and
3 if L(q1) = L(q2).

Proof. First, we note that an element lies in Fil1 if and only if it has zero
intersection with the vector (12). This makes computations very easy.
If L(q1) = L(q2), then B1 ⊂ Fil1 from which the claim on the dimension and
Raskind-admissibility easily follows.
If L(q1) 6= L(q2), then b2, b3 ∈ Fil1 and thus, dimQ(Fil1 ∩ B1) ≥ 2. Moreover,
we have that Fil1 ∩ (B1 ⊗K) is strictly contained in B1 ⊗K, which yields the
chain of inequalities dimQ(Fil1 ∩B1) ≤ dimQp

(Fil1 ∩ (B1⊗Qp)) ≤ dimK(Fil1∩
(B1 ⊗ K)) ≤ 2. Together with the previous inequality, this implies that we
have equality everywhere and establishes the claimed dimension, as well as
Raskind-admissibility.

Proposition 5.6. Let K be a p-adic field, let qi ∈ K× with νp(qi) > 0 for
i = 1, 2, let E(q1), E(q2) be the associated Tate elliptic curves over K, and set
X := E(q1)× E(q2).

1. X admits a proper and semi-stable model X → Spec OK , whose special
fibre X0 is cohomogically totally degenerate.

2. The filtered (ϕ,N)-module Dst(H
2
ét(XK ,Qp)) together with the rational

structure associated to X0 are isomorphic to the one constructed at the
beginning of this subsection.
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In particular, this filtered (ϕ,N)-module is Raskind-admissible and Conjecture
1.1 is true for X. More precisely, we have

ρ(X) =

{
2 if L(q1) 6= L(q2) and
3 if L(q1) = L(q2).

for the Picard rank of X.

Proof. Using the decomposition

H2
ét(XK ,Qp) ∼=

2∧
H2

ét(XK ,Qp) ∼=
2∧(

H1
ét(E(q1))K ,Qp)⊕H1

ét(E(q2)K ,Qp)
)

and the explicit description of Dst(H
1
ét(E(qi)K ,Qp)) given at the beginning of

Section 5.2, it is easy to see that the filtered (ϕ,N)-module constructed above
is isomorphic to Dst(H

2
ét(XK ,Qp)).

Let Ei → SpecOK the “standard” proper and semi-stable model of Ei := E(qi),
whose special fibre Ei,0 is a cycle of P1’s. It follows that H∗

dR(Ei/K) and
H∗

log−cris(Ei,0/K0) carry structures of Q-vector spaces arising from classes of
algebraic cycles of the special fibre. Tensoring with K, we obtain the filtered
(ϕ,N)-module V (i)⊗K constructed at the beginning of Section 5.2. Conversely,

the vector e
(i)
2 ∈ V (i) arises as an eigenvector of ϕ, which makes it canonical up

to a factor λi ∈ Q×
p . Since e

(i)
1 = N(e

(i)
2 ), this also determines e

(i)
1 . Thus, given

V (i)⊗K, the just discussed rational structure must be the Q-span 〈λie(i)1 , λie
(i)
2 〉

for some λi ∈ Q×
p .

We obtain a proper and semi-stable model X → Spec OK of X via a partial
resolution of singularities of E1 × E2 → Spec OK . Thus, the Q-vector space
structures on H∗

dR(X/K) and H∗
log−cris(X0/K0) arise (via Künneth) from the

Q-vector space structures on H∗
dR(Ei/K) and H∗

log−cris(Ei,0/K0). Therefore,
the rational structure on H∗

log−cris(X0/K0) arising from X0 is of the form as
discussed at the beginning of Section 5.2 and isomorphic to it, where the iso-
morphism is induced by multiplication by scalars λi ∈ Q×

p as just explained.
We note that such a rescaling multiplies the vector (12) by λ1 ·λ2, that is, it still
spans the same K-vector space Fil2. Since Fil1 = (Fil2)⊥, we see that rescaling
also leaves Fil1 invariant. Thus, the filtered (ϕ,N)-module together with its
rational structure discussed at the beginning of Section 5.2 is isomorphic to
Dst(H

2
ét(XK ,Qp)) with its rational structure arising from X0.

By Lemma 5.5, it is Raskind-admissible and thus, Conjecture 1.1 for X follows
from Theorem 3.11. The claim on the Picard ranks follows from the dimensions
computed in Lemma 5.5.

Remark 5.7. We note that Conjecture 1.1 for the product of two Tate curves
was already established Tate, as is explained in [Se68, Appendix A.1.4] (see
also [RX07b, §4.1, Corollary 19]), and it also follows from the more general
Corollary 5.4.
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The previous proposition raises the question, whether every admissible (ϕ,N)-
module with rational structure is Raskind-admissible. This is not the case, as
the following example shows.

Example 5.8. We keep the notations and assumptions of Proposition 5.6.
Choose γ ∈ Qp\Q, choose λ ∈ K\{0}, and define

v := 2(λ2 − γ)a + λb0 − γb2 + b3 + c.

Then, v is isotropic with respect to the pairing introduced at the beginning of
Section 5.2, which allows us to define a filtration on V ⊗K via

Fil2 := K · v and Fil1 := (Fil2)⊥ .

This filtration is admissible by Proposition 5.9 below. We leave it to the reader
to check that

Fil1 ∩ (B1 ⊗Qp) = Qp〈b1, γb2 + b3〉
Fil1 ∩B1 = Q 〈b1〉,

which implies that Fil• is not Raskind-admissible. Varying γ and λ, we obtain
a whole family of such modules.

5.3 Admissibility

Given a (ϕ,N)-module and a rational structure in the sense of Definition 3.4
with dimA = dimC = 1, we now address the question when a filtration over K
is ordinary in the sense of Perrin-Riou [PR94, 1.2]. We have the following result,
which should be the framework for rational structures on Dst(H

2
ét(XK ,Qp))

where X is a smooth and proper surface over K with cohomological total
degeneration and h0,2 = h2,0 = 1 (that is, pg = 1 in classical terminology).

Proposition 5.9. Let (V = A⊕B0 ⊕B1⊕C,ϕV , NV ) be a rational structure
in the sense of Definition 3.4. Assume moreover that

1. dimA = dimC = 1. We also fix a non-zero element c ∈ C, that is, a
basis of this vector space.

2. There exists a non-degenerate, symmetric, and bilinear pairing Q : V ×
V → Q.

Let K be a p-adic field and let Fil• be a filtration on V ⊗K with Fil0 = V ⊗K
and Fil3 = 0.

1. If Fil• is ordinary, then Fil2 is 1-dimensional and spanned by a unique
vector of the form

v = v′ + c (13)

with v′ ∈ (A⊕B0 ⊕B1)⊗K.
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2. If v is of the form (13) with Q(v, v) = 0 and Q(v,N2(c)) 6= 0, then

Fil2 := K · v and Fil1 := (Fil2)⊥

defines an ordinary filtration on V ⊗K.

In particular, there exists a bijection

{
v ∈ V ⊗K :

Q(v, v) = 0, Q(v,N2(c)) 6= 0,
and v is of the form (13)

}
→
{

ordinary filtrations

of V ⊗K with

Fil1 = (Fil2)⊥

}

that is defined by sending v to the filtration with Fil1 = (Kv)⊥ and Fil2 = Kv.

Proof. By [PR94, 2.6] it follows that Fil• is ordinary if and only if we have
direct sum decompositions

V ⊗K = Fil1 ⊕ (A⊗K) = Fil2 ⊕ ((A⊕B)⊗K) ,

where B = B0 ⊕B1,
In particular, Fil2 is one-dimensional and thus, generated by one element v ∈
V ⊗K. Being ordinary, we have v 6∈ (A⊕B)⊗K. Thus, after possibly rescaling,
we may assume that v is of the form v′ + c for some v′ ∈ (A⊕B)⊗K and this
vector is unique. This establishes claim (1).
If v ∈ V ⊗ K satisfies Q(v, v) = 0, then Fil2 := Kv is contained in Fil1 :=
(Kv)⊥, and we obtain a filtration. Since Q is non-degenerate, it follows that
(Kv)⊥ is of codimension 1 in V ⊗K. If v is moreover of the form (13), that is,
v = v′ + c with v′ ∈ (A ⊕ B0 ⊕ B1) ⊗K, then V ⊗K = Fil2 ⊕ (A ⊕ B) ⊗K.
If Q(v,N2(c)) 6= 0, then A, which is spanned by N2(c), is not contained in
(Kv)⊥ = Fil1, that is, we have V ⊗K = Fil1 ⊕A⊗K. This shows that Fil• is
ordinary and establishes claim (2).
We leave the remaining assertion to the reader.

Thus, ordinary filtrations on V ⊗ K with Fil1 = (Fil2)⊥ are parameterised
by the K-rational points of a quasi-affine scheme over Q. Explicitly: first,
b0 := N(c) is a basis of B0, then, c := N(b0) = N2(c) is a basis of A and
we choose a basis b1, ..., bs of B1. Then, we define an affine quadric Q by the
equation

Q

(
λa+

s∑

i=0

µibi + c, λa+

s∑

i=0

µibi + c

)
= 0

in the (s+2)-dimensional affine space with coordinates (λ, µ0, ..., µs). We define
the Zariski open subset U ⊂ Q by the condition

Q

(
λa+

s∑

i=0

µibi + c, N2(c)

)
6= 0.

Then, U is a quasi-affine scheme of dimension (s+ 1) over Q, whose K-rational
points are in bijection to ordinary filtrations Fil• on V ⊗K with Fil1 = (Fil2)⊥.
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6 A counter-example

For abelian varieties that are isogenous to products of Tate elliptic curves, we
established Raskind’s conjecture for divisors (Conjecture 1.1) and showed that
Question 1.2 has a positive answer in the previous section. In this section,
we will show that in general, Question 1.2 has a negative answer and that in
general Raskind’s conjecture for divisors is false.

6.1 Totally degenerate reduction and ℓ = p

In view of Proposition 5.3, the first place to look for counter-examples are
abeloid surfaces over p-adic fields.

Theorem 6.1. Let p be a prime with p ≥ 5 and p ≡ 1 mod 3. Then, there
exists a Tate elliptic curve A and an algebraisable abeloid surface B over Qp,
such that

1. the natural maps

Hom(A,B)⊗Z Zp → HomGQp
(Tp(A), Tp(B))

End(B)⊗Z Zp → EndGQp
(Tp(B))

are not surjective. In particular, (⋆⋆) (please see §1.4) is not surjective
and Question 1.2 has a negative answer for ℓ = p.

2. The natural map induced by the first Chern class map

Pic(B)⊗Z Qp → H2
ét(BQp

,Qp(1))GQp

is not surjective. In particular, (⋆) is not surjective for ℓ = p and
Raskind’s conjecture for divisors (Conjecture 1.1) is false.

Remark 6.2. As seen in Proposition 4.6, an algebraisable abeloid variety over
K is the same as an abelian variety over K with totally degenerate reduction.

Proof. Let ε ∈ 1 + p · Zp be a non-trivial p-adic unit, set q1 := p, and set
q2 := ε · p. Let A := E(q1) be the Tate elliptic curve over Qp with respect to
the lattice qZ1 ⊂ Q×

p . First, we set

V ′
B :=

(
q1 1
1 q2

)
∈ Mat2×2(Q×

p )

and note that abeloid surface B′ over Qp associated to the matrix V ′
B is iso-

morphic to the product of the two Tate elliptic curves E(q1)× E(q2).
For v1, v2 ∈ Zp, we define

S := Id2×2 − 2 ·
(
v1
v2

)
·
(
v1 v2

)
=

(
1− 2v21 −2v1v2
−2v1v2 1− 2v22

)
∈ Mat2×2(Zp) .

Documenta Mathematica 24 (2019) 1879–1934



1924 Oliver Gregory and Christian Liedtke

Clearly, S is symmetric and if v21 + v22 = 1, which we will assume from now on,
then S−1 = St and thus, we find

S =

(
a b
b −a

)
with a := 1− 2v21 , b := −2v1v2,

and note that we have a2 + b2 = 1 (one should think of this matrix as the
analog of an orthogonal matrix over R that describes the reflexion along the
axis spanned by (v1 v2)). We set

VB := S−1 ⊙ V ′
B ⊙ S ∈ Mat2×2(Q̂×

p

p

),

(here Q̂×
p

p

denotes the p-adic completion γp from Lemma 4.9), which is equal
to

VB =

(
qa

2

1 · qb
2

2 qab1 · q−ab
2

qab1 · q−ab
2 qb

2

1 · qa
2

2

)
=

(
εb

2 · p ε−ab

ε−ab εa
2 · p

)
.

In particular, this matrix has actually coefficients in Q×
p rather than merely

in Q̂×
p , see also Remark 4.10. Moreover, the valuation νp : Q×

p → Q sends VB
to the identity matrix. Since VB is a symmetric matrix and since it is definite
with respect to the Q-linear functional νp, it is a Riemann matrix in the sense
of Gerritzen [Ge71]. We let B be the abeloid surface over Qp associated to VB .
By [Ge71, Theorem 11], this surface is algebraisable, that is, B is an abelian
surface over Qp.
In order to determine Hom(A,B) and HomGQp

(Tp(A), Tp(B)), we are looking
at the equation

(
q1
)
⊙
(
x y

)
=
(
px py

) !
=
(
x′ y′

)
⊙ VB =

(
εx

′b2−y′ab · px′

εy
′a2−x′ab · py′

)
.

Taking valuations, we find x = x′ and y = y′. To avoid trivialities, we will also
assume that a 6= 0 and b 6= 0, which leads to the general solution

y =
b

a
· x .

Since there is always the p-adic solution x = a, y = b, Proposition 4.11 implies
that Hom(Vp(A), Vp(B)) is non-zero and in fact, isomorphic to Qp. On the
other hand, Theorem 4.7 implies that Hom(A,B) ⊗ Q is non-zero if and only
we can find a solution with x ∈ Q and y ∈ Q. Thus, Hom(A,B)⊗Q is non-zero
if and only if a/b ∈ Q.
In order to establish the first claim, we have to show that we can find v1, v2 ∈ Zp

that satisfy all the restrictions we made during the previous discussion and such
that a/b = (2v21 − 1)/(2v1v2) does not lie in Q. If v1 = 2, then v2 =

√
−3 does

not lie in Q, but it is an element of Zp if p ≥ 5 and p ≡ 1 mod 3 (the last
statement easily follows from the law of quadratic reciprocity).
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Similarly, to compute the endomorphism algebras End(B) ⊗ Q and
EndGQp

(Vp(B)), we have to solve the equation

VB ⊙ C = C′ ⊙ VB

for 2 × 2-matrices C and C′ with entries in Q and Qp, respectively. Taking
valuations, we find C = C′. Moreover, if C = (cij)1≤i,j≤2, then we leave it to
the reader to show that the general solution is given by

c12 = c21 and c22 − c11 = c12 ·
b2 − a2
ab

.

We thus always have the solution c12 = c21 = 0 and c11 = c22, that is, mul-
tiplication by a scalar. If (b2 − a2)/(ab) does not lie in Q (which is the case
if v1 = 2 and v2 =

√
−3), then these are the only solutions in Q, that is,

End(B) ⊗ Q ∼= Q. On the other hand, the above equation always has more
solutions in Qp, that is, End(Vp(B)) is strictly larger than Qp.
These computations establish the first claim. The second claim follows from
the first claim by the same arguments as in the proof of Proposition 5.4.

Remark 6.3. The restrictions on the prime p in Theorem 6.1 are artificial
in that they are only used to state a clean counterexample. The method of
proof should give counterexamples to Conjecture 1.1 and Question 1.2 for any
prime p.

A Further (counter-)examples

So far, we have studied the surjectivity of the maps (⋆) and (⋆⋆) (defined in §1)
in the case where ℓ = p and where the varieties in question are smooth and
proper over a p-adic field with totally degenerate reduction. If ℓ 6= p or if
the variety has good reduction, then it was already more or less well-known
to the experts that one cannot hope for such surjectivity results, but for the
sake of completing the picture, we have decided to collect some examples. As a
byproduct, we see that also “independence of ℓ” fails. In this section, we claim
only little originality.

A.1 Good reduction and ℓ 6= p

Let X be a smooth and proper variety over a p-adic field K that has good
reduction, say, via a smooth and proper model X → Spec OK with special
fibre X0 over the residue field k. By base-change in étale cohomology, the
GK-action on H∗

ét(XK ,Qℓ) is unramified and factors through the Gk-action on
H∗

ét(X0,k,Qℓ).

1. In particular, we have

H2
ét(XK ,Qℓ(1))GK = H2

ét(X0,k,Qℓ(1))Gk
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and if X0 satisfies the Tate conjecture for divisors over the finite field k,
then these spaces are isomorphic to Pic(X0)⊗Z Qℓ.

2. Let A and B be abelian varieties with good reduction over K and let
let A0 and B0 be the special fibres of their Néron models. In this case,
base-change implies that

HomGK
(Tℓ(A), Tℓ(B)) = HomGk

(Tℓ(A0), Tℓ(B0)) ,

which is isomorphic to Hom(A0,B0)⊗Z Zℓ by Tate’s theorem [Ta66].

In particular, the right hand sides of (⋆) and (⋆⋆) compute invariants of the
special fibre, see also Remark 3.2. After these preparations, it is easy to give the
desired counter-examples - in fact, “almost all” elliptic curves provide counter-
examples.

Proposition A.1. Let K be a p-adic field, let E be an elliptic curve over K
with good reduction, and let E0 be the special fibre of its Néron model. If E0
is supersingular or if E0 is ordinary and E does not have CM, then (⋆) is not
surjective for X = E × E and ℓ 6= p and (⋆⋆) is not surjective for A = B = E
and ℓ 6= p.

Proof. The first claim follows from the second claim by the same arguments
as in the proof of Proposition 5.4. Therefore, it suffices to show that the natural
map End(E) ⊗Z Qℓ → EndGK

(Vℓ(E)) is not surjective.
First, assume that E0 is supersingular. Then, End(E0) is an order in a quater-
nion algebra and thus, End(E0)⊗Qℓ is 4-dimensional. Hence, EndGK

(Vℓ(E)),
which is isomorphic to EndGk

(Vℓ(E0)), is 4-dimensional by Tate’s theo-
rem [Ta66, Main Theorem]. On the other hand, End(E) is isomorphic to Z or
to an order in a quadratic imaginary field, which implies that End(E)⊗Qℓ →
EndGK

(Vℓ(E)) cannot be surjective.
Similarly, if E does not have CM, then End(E) ⊗ Qℓ = Qℓ. Moreover, if E0
is ordinary, then EndGk

(E0) is an order in a quadratic imaginary field and
EndGk

(E0)⊗Qℓ is 2-dimensional.

A.2 Good reduction and ℓ = p

Next, we show that Conjecture 1.1 and Question 1.2 have a negative answer if
ℓ = p and in the case of good reduction.

Proposition A.2. Let K be a p-adic field and let E0 be an ordinary elliptic
curve over k.

1. Let A be a lift of E0 over K with CM, for example, the canonical lift, and

2. let B be a lift of E0 over K without CM.

Then, (⋆) is not surjective for X = A×B and ℓ = p and (⋆⋆) is not surjective
for A, B, and ℓ = p.
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Proof. The first claim follows from the second claim by the same arguments
as in the proof of Proposition 5.4. Therefore, it suffices to show that the natural
map Hom(A,B)⊗Z Qp → HomGK

(Vp(A), Vp(B)) is not surjective.
Since A cannot be isogenous to B, the source Hom(A,B)⊗ZQp is trivial. Next,
for E ∈ {A,B} there exists a short exact sequence of p-adic GK-representations

0 → X → Vp(E) → Y → 0. (14)

More precisely, X corresponds to the Tate module associated to the connected
component of the p-divisible group E0[p∞] and Y corresponds to the Tate mod-
ule associated to the étale quotient. In particular, the GK-representations X
and Y only depend on E0 and not on the choice of lift E. Moreover, the se-
quence of GK-representations (14) splits if and only if the lift of E0 has CM,
that is, it splits for A but not for B. We refer to [Se68, Appendix A.2.4] for
details and proof. But this implies that the target HomGK

(Vp(A), Vp(B)) is
non-trivial: taking the monomorphism X → Vp(B) from (14) and the zero
map Y → Vp(B), we obtain a non-trivial and GK -equivariant map

Vp(A) = X ⊕ Y → Vp(B).

This establishes the second claim.

Remark A.3. In [LT66, §3.5], Lubin and Tate constructed elliptic curves E
over p-adic fields having good and supersingular reduction such that the the
monomorphism

End(E)⊗Z Zp →֒ EndGK
(Tp(E))

is not surjective. Therefore, (⋆) is not surjective for X = E ×E and ℓ = p and
(⋆⋆) is not surjective for A = E, B = A, and ℓ = p.

A.3 Totally degenerate reduction and ℓ 6= p

Now, we show that Proposition 5.3 and Corollary 5.4 fail if ℓ 6= p.

Proposition A.4. For every prime p, there exist Tate elliptic curves A and
B over Qp, such that (⋆) is not surjective for X = A ×B and ℓ 6= p and (⋆⋆)
is not surjective for A, B, and ℓ 6= p.

Proof. Let ε ∈ 1 + p · Zp be a non-trivial p-adic unit and let A := E(p) and
B := E(ε · p) be the Tate elliptic curves associated to p ∈ Q×

p and ε · p ∈ Q×
p .

Then, A and B are not isogenous by Serre’s criterion (Theorem 5.1.(2)) and
thus, Hom(A,B) = 0.
We let γℓ be the ℓ-adic completion from Lemma 4.9. By Proposition 4.11, we
have

HomGK
(Tℓ(A), Tℓ(B)) ∼= {m ∈ Zℓ | ∃n ∈ Zℓ : γℓ(p)

m = γℓ(ε · p)n} .
By Lemma 4.9 and Remark 4.10, we have γℓ(ε) = 1, that is, we have
γℓ(p) = γℓ(ε · p), which implies that HomGK

(Tℓ(A), Tℓ(B)) is non-zero (in
fact, isomorphic to Zℓ).
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A.4 Étale fundamental groups and all primes at once

If A is an abelian variety of dimension g over a field characteristic zero field F ,
then there exists an isomorphism of GF -representations

πét
1 (AF ) ∼=

∏

ℓ

Tℓ(A),

where the product is taken over all primes. As an abelian group, this is a free
Ẑ-module of rank 2g. Now, if A and B are abelian varieties over F , then one
may ask whether the natural map

Hom(A,B)⊗Z Ẑ → HomGF

(
πét
1 (AF ), πét

1 (BF )
)

(⋆ ⋆ ⋆)

is an isomorphism.

Proposition A.5. For every prime p, there exist Tate elliptic curves A and
B over Qp, such that (⋆ ⋆ ⋆) is not surjective.

Proof. Fix a prime ℓ0 6= p and let A and B be counterexamples as provided
by Proposition A.4, that is, (⋆⋆) is not surjective for A, B, and ℓ0. Since (⋆ ⋆ ⋆)
factors through

∏

ℓ

Hom(A,B)⊗Z Zℓ →
∏

ℓ

HomGF
(Tℓ(A), Tℓ(B))

and since this map is not surjective at the factor corresponding to ℓ0, the claim
follows.

A.5 Independence of ℓ

From the previous computations, we conclude that also “independence of ℓ”
fails in the p-adic world, see also Remark 3.2 and the subsequent discussion.

Proposition A.6. For every prime p, there exist Tate elliptic curves A and
B over Qp, such that

dimQℓ
H2

ét((A×B)
Qp
,Qℓ(1))GQp =

{
2 if ℓ = p
3 if ℓ 6= p

.

In particular, this dimension depends on the prime ℓ.

Proof. Let A and B the Tate elliptic curves from the proof of Proposi-
tion A.4. There, we have seen that A and B are not isogenous and that
HomGQp

(Vℓ(A), Vℓ(B)) is one-dimensional if ℓ 6= p. On the other hand, since A

and B are not isogenous, HomGQp
(Vp(A), Vp(B)) is zero by Proposition 5.3.

The arguments from the proof of Proposition 5.4 show that the sought Qℓ-
dimensions are equal to 2+dimQℓ

HomGK
(Vℓ(A), Vℓ(B)) and the claim follows.
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