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Abstract. Coisotropic reduction from Poisson geometry and de-
formation quantization is cast into a general and unifying algebraic
framework: we introduce the notion of coisotropic triples of algebras
for which a reduction can be defined. This allows to construct also a
notion of bimodules for such triples leading to bicategories of bimod-
ules for which we have a reduction functor as well. Morita equivalence
of coisotropic triples of algebras is defined as isomorphism in the am-
bient bicategory and characterized explicitly. Finally, we investigate
the classical limit of coisotropic triples of algebras and their bimod-
ules and show that classical limit commutes with reduction in the
bicategory sense.
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1 Introduction

Coisotropic reduction is one of the standard constructions in Poisson geometry
leading to a new reduced Poisson manifold obtained out of the given data of
a Poisson manifold with a coisotropic submanifold. Of course, geometrically
certain circumstances have to be met in order to obtain a smooth reduced Pois-
son manifold. Ignoring these geometric assumptions, an algebraic formulation
of coisotropic reduction is possible and works in general, yielding a reduced
Poisson algebra out of a given Poisson algebra with a coisotropic ideal: here
an associative ideal in a Poisson algebra is called coisotropic if it is a Poisson
subalgebra, though not necessarily a Poisson ideal.
The original motivation to consider coisotropic submanifolds and the corre-
sponding reduction comes from Dirac’s program [22, 23] to handle constraint
mechanical systems: the notion of a coisotropic submanifold corresponds to
the first-class constraints. Dirac’s intention ultimately was of course to pass
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to a quantum theory. This leads to the task to find a quantized version of
coisotropic reduction as well.
Among many approaches one can favour deformation quantization [1] as start-
ing point. Here various versions of phase space reduction are available, starting
with a BRST approach in [7] and more general coisotropic reduction schemes
found in e.g. [18, 16, 17, 6, 5, 4]. The general idea is that the functions vanish-
ing on the coisotropic submanifold should be deformed into a left ideal of the
ambient algebra of all functions. The reduced algebra is then the quotient of
the normalizer of this left ideal modulo the left ideal. Also, it is worthwhile to
mention that the quantization of coisotropic subgroups has been considered in
the context of quantum groups, see e.g [19, 21].
Since both versions, the classical reduction as well as the quantum reduction,
can be formulated entirely in an algebraic fashion it is reasonable to explore
the algebraic features further, independent of the possible geometric origin.
Then one important question is how the relations between different algebras
with coisotropic ideals behave after reduction. A standard question beyond the
behaviour of isomorphisms is then the behaviour of Morita equivalence.

Thus the first main question we want to address is how Morita equivalences
between reduced algebras can be encoded in the data before reduction.
The main idea to approach this is to put Morita theory in a slightly larger
context of an appropriate bicategory: for algebras (or rings) it is a well-known
procedure that the bicategory of all bimodules Bimod encodes Morita equiva-
lence as the notion of isomorphism in the bicategorical sense. However, now one
has much more structure as also bimodules between algebras enter the game
which are not necessarily equivalence bimodules: they can carry important
information themselves.
Thus our first step is to construct a bicategory for the situation before reduc-
tion which allows for a functorial reduction. It turns out that the first idea
of algebras Atot with a specified left ideal A0 are not yet the suitable notion
of objects in this bicategory. One simply can not define a reasonable notion
of bimodules over such pairs that is compatible with reduction. Thus our ap-
proach consists in taking triples of an ambient algebra: the total algebra Atot, a
subalgebra AN of weakly observables in Dirac’s original sense, and a two-sided
ideal A0 in this subalgebra, corresponding to the left ideal from before. The
idea in mind is that starting with an algebra with left ideal one has to add
the normalizer of this left ideal as algebra in the middle. Nevertheless, we give
classes of interesting examples where one needs additional freedom to choose
this algebra in the middle, thus justifying to consider what we call coisotropic
triples of algebras A = (Atot,AN,A0) in the following. We then define a no-
tion of bimodules over such triples allowing for a good tensor product: this
ultimately leads us to the bicategory of coisotropic triples C3Bimod where the
1-morphisms are bimodules over coisotropic triples of algebras as objects with
an appropriate notion of bimodule morphisms as 2-morphisms.

Having this bicategory, it allows now to speak of Morita equivalence of
coisotropic triples of algebras which, by definition, is isomorphism in the sense
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of C3Bimod. As a first result we give an explicit characterization of Morita
equivalent triples in Theorem 5.5: it implies Morita equivalence of the corre-
sponding tot- and N-components together with a compatibility condition be-
tween the three components of the triples.

The second step consists now in extending the reduction of algebras to bi-
modules. We show in Theorem 6.1 that this is indeed possible and leads to a
reduction functor

red : C3Bimod −→ Bimod

in the bicategory sense. Since we have an honest functor between bicategories,
the reduction maps isomorphic objects to isomorphic objects and hence pre-
serves Morita equivalence being the notion of isomorphism in C3Bimod and
Bimod, respectively. However, being a functor we get much more detailed in-
formation from reduction, say a bigroupoid morphism of the corresponding
Picard bigroupoids, i.e. the bigroupoids of isomorphisms in these bicategories.

For technical reasons it is convenient to consider only the components (AN,A0)
of a coisotropic triple of algebras leading to the notion of a coisotropic pair of
algebras: the reduction uses only this information. Now the construction of
C3Bimod can be adjusted to yield also a bicategory C2Bimod of bimodules over
such pairs together with the corresponding reduction functor

red : C2Bimod −→ Bimod.

As we have seen, one of the main motivations to consider coisotropic reduction
is to pass from a classical to a quantum system and use the classical data to
investigate the reduced quantum system. Thus, in a last step, we consider
general deformations of coisotropic triples of algebras and their bimodules.
While a quantization of bimodules is typically obstructed, not unique, and
fairly difficult to understand in general, the classical limit is always rather easy
to study and unobstructed. We define a classical limit of coisotropic triples of
algebras over a ring RJλK of formal power series in a formal parameter λ with
coefficients in a ring R as the quotient by the ideals of multiples of λ. The idea
is that the algebras over RJλK are interpreted as deformations of algebras over
R. While the classical limit of the algebras is rather straightforward, we then
are able to extend the classical limit also to bimodules leading to a functor

cl : C3BimodRJλK −→ C3BimodR

of bicategories where now we explicitly indicate the underlying ring of scalars.
As before, we know that the classical limit preserves Morita equivalence and
yields a bigroupoid morphism between the Picard bigroupoids. In e.g. [12, 13]
it was demonstrated that a similar classical limit can be successfully used to
determine the Picard groups of deformed algebras and thus their Morita theory.

The final result is now that the two functors red and cl commute in the sense
of functors between bicategories: we explicitly construct the relevant natural
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transformations and modifications in Theorem 7.13 to obtain a commutative di-
agram

C2BimodR[[λ]] C2BimodR

BimodR[[λ]] BimodR

cl

red red

cl

of functors between bicategories. Here it suffices to restrict to coisotropic pairs
instead of triples since the reduction only uses the information of pairs anyway.
In particular, the functors restrict to commuting bigroupoid morphisms for
the corresponding Picard bigroupoids thus encoding the behaviour of Morita
equivalence under classical limit and reduction completely.

After arriving at this conceptually clear and fairly general picture of how
coisotropic reduction extends to bimodules and relates to the classical limit
several questions arise. We do not address their solutions in this work but
come back to them later on.

1. The question of quantization of coisotropic algebras and their modules
now becomes more urgent, once having understood their classical limit.
Here a question of particular interest is to understand the quantization
of equivalence bimodules provided the quantization of the algebras is
given. One can then use commutativity of reduction and classical limit
to actually find a good classification of coisotropic triples of e.g. star
product algebras in geometric terms like the characteristic classes of the
underlying star products. This should eventually lead to a comparison of
the Morita classification of equivariant star products initiated in [31, 30],
see also [38, 39, 25], extending the Morita classification from [15, 11, 12].
On the classical level, coisotropic relations provide particular coisotropic
triples which can then also be taken as starting point for quantization [20].

2. The geometric nature of the description of the equivalence bimodules from
Theorem 5.5 has to be clarified further. Here the case of star products is
again the guiding example and raises the questions what the semi-classical
limit is: the first order structures of equivalence bimodules should give
analogs of covariant (or contravariant) derivatives, now adapted to the
coisotropic triple point of view analogously to the ordinary case [12, 8].

3. Already on the classical level one can try to incorporate the first order
structures, i.e. the Poisson structures, into the game at a more fun-
damental level. Then a more geometric approach to Morita theory in
this context could ultimately lead to a notion of Morita equivalence of
coisotropic triples in Poisson geometry yielding the usual Morita equiv-
alence for the reduced Poisson manifolds, see [41]. Then the question
of the behaviour of Picard groups as studied in [9, 14] under reduction
would be one of the first tasks.
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4. We know that the reduction functor maps equivalence bimodules between
the triples to usual equivalence bimodules between the reduced algebras.
Which other classes of (bi-)modules behave well under reduction? Here
we want to find suitable criteria to obtain e.g. projective modules etc.
making contact to the geometric framework of reducing vector bundles.

5. A final longer term project is to incorporate ∗-involutions into the def-
inition of coisotropic triples. For applications in mathematical physics
this is of course crucial but requires some severe changes: the main ob-
stacle is that there is no reasonable compatibility to require between a
left ideal and a ∗-involution. The naive compatibility that the left ideal
is closed under the involution yields immediately a two-sided ideal which
in the examples of deformation quantization is known to be not relevant
at all. One idea would be to require the existence of a positive functional
having the left ideal as Gel’fand ideal as this was done in [29] and in-
duce a ∗-involution for the reduced algebra this way. Nevertheless, at the
moment it seems to be quite unclear how to incorporate the correspond-
ing structures like algebra-valued inner products on the modules as in
[13, 10]. Ultimately, one would like to have a definition for strong Morita
equivalence of coisotropic triples of algebras.

The paper is organized as follows: in Section 2 we recall the basic construc-
tions of coisotropic reduction together with some principal examples. Section 3
contains the definition of coisotropic triples and pairs of algebras together with
some first functorial properties. The bicategories of bimodules over coisotropic
triples and pairs are constructed in Section 4 while Section 5 contains the
characterization of Morita equivalence bimodules. The reduction functor for
bimodules is constructed in Section 6. Finally, Section 7 contains the definition
of the classical limit functor together with the proof of our main result that
classical limit commutes with reduction. In a small appendix we collect the
basic definitions of bicategories, functors, natural transformations, and modifi-
cations as unfortunately there are several competing versions in the literature:
we want to make clear which definitions we are actually using.

Acknowledgements: It is a pleasure to thank Martin Bordemann, Henrique
Burzstyn, Nicola Ciccoli and Rui Loja Fernandes for important remarks and
ideas on this project.

2 Preliminaries

In this section we recall some well-known reduction constructions in the settings
of Poisson geometry and deformation quantization to fix our notation.
Let (M,π) be a Poisson manifold, which models the phase space of a classical
mechanical system, and assume that ι : C −→ M is a closed coisotropic sub-
manifold of M , called the constraint surface. We denote the vanishing ideal of
C by

IC =
{
f ∈ C∞(M)

∣
∣ ι∗f = 0

}
, (1)
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which is clearly an ideal in the associative commutative algebra C∞(M) of
smooth functions on M .

Lemma 2.1 Let (M,π) be a Poisson manifold and C ⊆ M be a submanifold.
Then the following statements are equivalent:

1. The submanifold C is coisotropic.

2. For a function f ∈ IC the Hamiltonian vector field Xf = (df)♯ ∈
Γ∞(TM) is tangent to C, i.e. Xf (p) ∈ TpC ⊆ TpM for all p ∈ C.

3. Its vanishing ideal IC is a Poisson subalgebra of C∞(M).

Note that in most interesting situations, IC will not be a Poisson ideal: this is
equivalent to the statement that C is even a Poisson submanifold, a situation
which is rarely of interest in the context of reduction.
The distribution on C spanned by the Hamiltonian vector fields Xf of functions
f ∈ IC is called the characteristic distribution of C. It turns out that this
distribution is integrable and, under suitable circumstances, has a nice leaf
space C

/
∼. For simplicity, we assume that the leaf space is a smooth manifold

and the projection onto the leaf space

pr : C −→ C/∼ =:Mred (2)

is a surjective submersion. In this case, Mred is itself a Poisson manifold with
Poisson structure determined as follows: one can characterize the functions on
C which are constant along the leaves as restrictions of functions f ∈ C∞(M)
with the property that {f, g} ∈ IC for all g ∈ IC , i.e. as the Lie normalizer
(or Lie idealizer) of IC inside C∞(M). We denote this normalizer as

BC =
{
f ∈ C∞(M)

∣
∣ ι∗(Xgf) = 0 for all g ∈ IC

}
. (3)

It is now an easy verification that BC is a Poisson subalgebra of all functions
and IC ⊆ BC is a Poisson ideal in its normalizer. Thus, as an immediate
consequence we obtain the following claim.

Lemma 2.2 Let (M,π) be a Poisson manifold and C ⊆ M be a coisotropic
submanifold. Then the quotient BC

/
IC is a Poisson algebra.

Finally, we can observe that the pull-back with the projection yields an iso-
morphism

pr∗ : C∞(Mred) −→ BC/IC (4)

of associative algebras. Since the right hand side is a Poisson algebra in a
natural way, this induces the Poisson structure πred on the reduced space Mred

whenever Mred is a manifold at all with pr being a surjective submersion. In
this case, the isomorphism turns it into a Poisson manifold as claimed. But
even if this geometric assumption is not satisfied, we can take BC

/
IC as a

valid replacement for Mred.
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Example 2.3 (Marsden-Weinstein reduction, classical) A particular
but important case of the above procedure is the Marsden-Weinstein reduc-
tion. Here one assumes to have a smooth action Φ: G × M −→ M of a
connected Lie group such that the Poisson structure π is preserved. More-
over, one requires an ad∗-equivariant momentum map J : M −→ g∗ where g∗

is the dual of the Lie algebra g of G, i.e. for all ξ ∈ g the fundamental vector
field ξM ∈ Γ∞(TM) is given by ξM = −XJξ

= {Jξ, · } where we define the
scalar function Jξ ∈ C∞(M) as the function obtained by pairing the result of
J with ξ. The equivariance then reads as {Jξ, Jη} = J[ξ,η] for all ξ, η ∈ g.
Equivalently, J is a Poisson map with respect to the linear Poisson structure
on g∗. Now one considers the zero level set C = J−1({0}) of J , provided 0 is
a regular value and C 6= ∅. Then C is indeed coisotropic and the foliation of C
is just the foliation by orbits of G. Hence in this case

BC =
{
f ∈ C∞(M)

∣
∣ ι∗f is G-invariant

}
. (5)

Moreover, Mred = C
/
G, provided the action of G on C is sufficiently nice:

here we assume that G acts freely and properly on C so that pr : C −→ Mred

becomes a G-principal fiber bundle. There are of course many generalizations
of this particularly simple situation allowing for less restrictive assumptions,
see e.g. the textbooks [37, 35] for further information.

Example 2.4 Another example comes from the setting of actions of a Poisson
Lie group (G, πG) on a Poisson manifold (M,π). One assumes to have a smooth
action Φ: G×M −→M of a Poisson Lie group that sends the Poisson structure
πG⊕π into π. In this case a momentum map, if it exists, is a map J : M −→ G∗

where G∗ is the dual of the Poisson Lie group (G, πG). Its definition has been
introduced in [33]. Assuming that J is a Poisson map, one can easily see that
for any dressing orbit Oµ its preimage C := J−1({Oµ}) by J is a coisotropic
submanifold of M . Thus in a similar way as the case discussed above, we can
obtain a reduced Poisson manifold. For further details see [24]. Furthermore,
the relation between coisotropic submanifolds and left ideals in this setting has
been proposed in [34].

As a next step we want to incorporate the quantum picture as well. Here
we choose the approach of deformation quantization [1], see e.g. [40] for an
introduction. Thus we assume to have a formal star product ⋆ given on (M,π),
i.e. a C[[λ]]-bilinear associative product for C∞(M)[[λ]] written as

f ⋆ g =

∞∑

r=0

λrCr(f, g) (6)

with bilinear operators Cr : C∞(M) × C∞(M) −→ C∞(M) extended C[[λ]]-
bilinearly as usual, such that

C0(f, g) = fg and C1(f, g)− C1(g, f) = i{f, g} (7)
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for all f, g ∈ C∞(M), the constant function 1 is the unit of ⋆, and Cr is bidiffer-
ential for all r ∈ N0. The resulting algebra is denoted by AAA = (C∞(M)[[λ]], ⋆).
The formal parameter λ corresponds in convergent situations to the physical
Planck constant ~.
To formulate a quantum version of reduction, we first need to introduce a
quantum analog of the ideal and Poisson subalgebra IC . One way consists in
requiring the existence of a deformation of ι∗ into a quantum restriction map

ι
∗ = ι∗ ◦ S with S = id+

∞∑

r=1

λrSr, (8)

where Sr : C∞(M) −→ C∞(M) are differential operators to be found in such
a way that

IIIC = ker ι∗ =
{
f ∈ C∞(M)[[λ]]

∣
∣ ι

∗f = 0
}

(9)

becomes a left ideal with respect to ⋆. As before, we can then consider the
functions on the constraint surface C and find that

ι
∗ : C∞(M)[[λ]]/IIIC −→ C∞(C)[[λ]] (10)

becomes an isomorphism thanks to the above assumption that ι∗ starts with ι∗

in zeroth order of λ. Now we can proceed as in the classical case by considering
the normalizer, now in the associative sense, i.e.

BBBC = N(JJJC) =
{
f ∈ C∞(M)[[λ]]

∣
∣ g ⋆ f ∈ IIIC for all g ∈ IIIC

}
. (11)

Note that this is equivalent to the condition [f, g]⋆ ∈ IIIC for all g ∈ IIIC since
IIIC is already a left ideal. A simple check shows that BBBC is a subalgebra of
C∞(M)[[λ]] and IIIC is a two-sided ideal in BBBC . Thus it is tempting to define
the reduction on the quantum side as the quotient algebra AAAred = BBBC

/
IIIC in

complete analogy to the above classical case.
We point out now an alternative but equivalent definition of this reduced alge-
bra:

Proposition 2.5 The functions on the constraint surface become a left module
of the algebra AAA by (10) in a canonical way. Moreover, the module endomor-
phisms of this left module are isomorphic to the opposite algebra of AAAred via

BBBC/IIIC ∋ [f ] 7−→ ([g] 7−→ [g ⋆ f ]) ∈ EndAAA(C∞(C)[[λ]])opp, (12)

where [g] denotes an equivalence class in the quotient (10).

This idea from [5] puts the role of the constraint surface in a much clearer light:
it carries a bimodule structure for the original big algebra AAA acting from the left
and the reduced algebra acting from the right such that the reduced algebra co-
incides with (the opposite of) the module endomorphisms. Note, however, that
the AAAred-endomorphisms contain AAA but are typically strictly larger, see [29].
In particular, this bimodule is typically not a Morita equivalence bimodule.
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It is now a final check necessary to show that AAAred defined as above actually
gives a deformation quantization of the reduced Poisson manifold (Mred, πred).
This is by far not trivial and in fact not true in general. Simple examples
of ill-adjusted star products on M where this fails are discussed e.g. in [7].
More profound obstructions are discussed in [5, 4] in the symplectic case and
in [18, 17, 16] for the Poisson case.
However, in many reasonably nice situations the program can be carried
through and yields a star product ⋆red for Mred, see again [5, 4]: whenever
the reduced space Mred exists in the case of a symplectic manifold M , then
one can find a suitable star product ⋆ on M for which the construction yields
a reduced star product ⋆red. A more specific situation is the analog of the
Marsden-Weinstein reduction, the construction relying on BRST cohomologi-
cal arguments [7]:

Example 2.6 (Marsden-Weinstein reduction, quantum) Suppose that
we are in the same situation as in Example 2.3. Suppose moreover, that ⋆
is a star product on M , invariant under the group action Φ which allows for a
quantum momentum map J = J +

∑∞

r=1 λ
rJr, i.e. one has [Jξ, f ]⋆ = iλξMf

for all f ∈ C∞(M)[[λ]] and [Jξ,Jη]⋆ = iλJ [ξ,η]. Then one can construct a
deformation ι

∗ as needed and AAAred turns out to be isomorphic to C∞(Mred)[[λ]]
as C[[λ]]-module inducing thereby a star product ⋆red. Moreover, explicit for-
mulas for the bimodule structure on C∞(C)[[λ]] can be given, see e.g. [29].
The existence of invariant star products, quantum momentum maps, and the
corresponding reduction is discussed in detail in [36, 28, 26] culminating in
classification results [38, 39] in the symplectic case. Finally, the existence and
classification of equivariant star products in the Poisson case has been recently
proved in [25].

We will come back to this construction at several instances. It will serve as the
main motivation in the following: based on these observations we shall put the
reduction process into a purely algebraic framework.

3 Coisotropic Triples and Pairs of Algebras

In the following we fix a commutative unital ring k of scalars which in most
situations will be even a field. It will sometimes be convenient to assume
Q ⊆ k. All occurring algebras and modules will be over k and linearity always
will include linearity over k.
As we want to discuss reduction with respect to some coisotropic data, we start
with some unital total algebra Atot in which we suppose to have a left ideal
A0 ⊆ Atot. The correspondence with the above geometric situation is that
the total algebra stands for the functions on the total phase space while the
left ideal corresponds to the functions vanishing on the constraint surface. To
ensure maximal flexibility, we need to specify an additional algebra, which we
call the weakly observables according to Dirac’s original discussion of constraint
systems in [22, 23]. We thus have to specify a unital subalgebra AN ⊆ Atot
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containing the left ideal A0 as a two-sided ideal A0 ⊆ AN. With other words,
AN will be a unital subalgebra of the normalizer of the left ideal, i.e.

A0 ⊆ AN ⊆ N(A0). (13)

However, note that we explicitly allow AN to be strictly smaller than the nor-
malizer of A0: in the commutative situation above we took the Lie normalizer
with respect to the additional Poisson bracket, a structure we do not want to
introduce at this level. Summarizing, this leads now to the following definition
of a coisotropic triple of algebras:

Definition 3.1 (Coisotropic triple of algebras) A coisotropic triple
of algebras over k is a triple A = (Atot,AN,A0) consisting of a unital algebra
Atot, a unital subalgebra AN ⊆ Atot, and a left ideal A0 ⊆ Atot such that
A0 ⊆ AN is a two-sided ideal.

With this definition, our geometric situation provides us some first and guiding
examples:

Example 3.2 (Coisotropic triples of algebras from geometry) Let
M be a Poisson manifold with a coisotropic submanifold ι : C −→M .

1. Setting Atot = C∞(M) and A0 = JC = ker ι∗ gives a total algebra and
a (left) ideal inside. However, since Atot is commutative, taking the nor-
malizer of A0 would reproduce Atot, a too simple choice to be interesting.
However, taking AN = BC gives an interesting coisotropic triple of alge-
bras over C.

2. Suppose now in addition that we can find a star product ⋆ and a defor-
mation ι

∗ of the restriction map. Then Atot = C∞(M)[[λ]], equipped
with the star product ⋆ serves as total algebra, A0 = ker ι∗ will be the left
ideal and the normalizer AN = N(A0) can be taken as weakly observables.
We obtain a truly noncommutative coisotropic triple is this case, over the
ring C[[λ]] as underlying scalars.

Example 3.3 We recall a concrete example of coisotropic triples already dis-
cussed in [19] following [20]. Let Eq(2) be the ∗-algebra generated by the fol-
lowing relations:

vv−1 = 1 = v−1v

vn∗ = q−1nv

vn = qnv

nn∗ = n∗n,

where q is a real parameter. Denote by Iλ the right ideal generated by λ(v−1)+n
and λ̄(v−1 − 1) + n∗, with λ ∈ C. It is easy to see that Eq(2), Iλ and the
corresponding normalizer form a coisotropic triple.
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Before investigating more examples and constructions we introduce the fol-
lowing notion of morphisms between coisotropic triples of algebras: we define
a morphism from the coisotropic triple A = (Atot,AN,A0) to the coisotropic
triple B = (Btot,BN,B0) to be a unital algebra morphism

Φ: Atot −→ Btot, (14)

such that
Φ(AN) ⊆ BN and Φ(A0) ⊆ B0. (15)

It is clear that the composition of morphisms is again a morphism and hence we
ultimately obtain a category of coisotropic triples of algebras which we denote
by C3Alg or C3Alg

k

if we want to emphasize the underlying ring k of scalars.

Remark 3.4 If one would only focus on the pair (Atot,A0) then this notion
of morphisms becomes less obvious: in that case a natural candidate for a
morphism from one such pair to another would be a unital algebra morphism
Φ: Atot −→ Btot with Φ(A0) ⊆ B0. However, simple examples show that then
the normalizer N(A0) needs not to be mapped into the normalizer N(B0). As
we will base many constructions on the choice of AN, we need to take care of
this part of the triple by hand.

We denote the category of unital algebras (with unital algebra morphisms) by
Alg while the not necessarily unital algebras are then denoted by alg. Then we
have several obvious functors. First, projecting on one of the three components
of a triple is of course functorial leading to functors

C3Alg ∋ A 7−→ Atot ∈ Alg and C3Alg ∋ A 7−→ AN ∈ Alg (16)

as well as

C3Alg ∋ A 7−→ A0 ∈ alg, (17)

each with the obvious restriction of morphisms. But we can also go the other
way and build coisotropic triples out of single algebras. Here we have several
options. The first is the trivial triple

Atrivial = (A,A,A) (18)

for a unital algebra A. Alternatively, we can construct the un-reduce triple

Aunred = (A,A, {0}) (19)

for a unital algebra A. Both versions yield functors Alg −→ C3Alg. Finally,
more important for our original motivation, is the Dirac triple we can build
out of a pair of a unital algebra A and a left ideal J ⊆ A. Here we set

ADirac = (A,N(J),J). (20)

In view of Remark 3.4 this becomes again functorial if we consider the category
LeftIdealAlg of pairs of unital algebras with left ideals together with unital
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algebra morphisms mapping one left ideal into the other and mapping the
normalizer of the first left ideal into the normalizer of the second. Then the
canonical triple becomes a functor

Dirac : LeftIdealAlg −→ C3Alg. (21)

After having established the notion of coisotropic triples one can define the
reduction of them in the following way, mimicking the situation of star products
in the geometric situation: Let A = (Atot,AN,A0) be a coisotropic triple of
algebras. Then the reduction of A is defined to be the unital algebra

Ared = AN/A0. (22)

For a morphism Φ: A −→ B between coisotropic triples of algebras we see
that the restriction of Φ to the weak observables passes to the quotient and
thus defines a unital algebra morphism

Φred : Ared −→ Bred. (23)

Clearly, this yields a functorial reduction:

Proposition 3.5 Reduction of coisotropic triples of algebras yields a functor

red : C3Alg −→ Alg. (24)

Corollary 3.6 The reduction of the un-reduce triple is naturally isomorphic
to the identity functor on Alg. The reduction of the trivial triple is naturally
isomorphic to the zero-functor on Alg sending an algebra to the zero algebra
{0}.

Surprisingly, the reduction uses only the information of the pair (AN,A0) in-
stead of the full triple. The ambient total algebra does not play a role here.
This raises of course the question whether one can not just start with a category
of coisotropic pairs consisting of a unital algebra together with a two-sided ideal
inside. To some extend this is true and many of the following constructions
will only use the pair instead of the triple. Thus we also state the definition of
a coisotropic pair as follows:

Definition 3.7 (Coisotropic pair) A coisotropic pair of algebras is a pair
A = (AN,A0) of a unital associative algebra AN over k together with a two-
sided ideal A0 ⊆ AN. A morphism between two coisotropic pairs A and B is a
unital algebra morphism Φ: AN −→ BN with Φ(A0) ⊆ B0.

Clearly, this gives again a categorical framework for coisotropic pairs of alge-
bras. We denote the resulting category by C2Alg or C2Alg

k

whenever we need
to emphasize the underlying ring of scalars.
Forgetting the total algebra yields then a functor

C3Alg −→ C2Alg. (25)
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This also results in a functor

Dirac : LeftIdealAlg −→ C2Alg, (26)

sending an algebra Atot with left ideal A0 ⊆ Atot to the coisotropic pair
(N(A0),A0). Note that here the correct definition of morphisms in LeftIdealAlg

is crucial to make this functorial. Conversely, we can extend a coisotropic
pair (AN,A0) always to a coisotropic triple in a trivial way by mapping it to
(AN,AN,A0). Forgetting the triple gives back the pair we started with. In fact
this is a left adjoint to the forgetful functor forgetting Atot. Moreover, this al-
lows us to view C2Alg as a subcategory of C3Alg. We will often give definitions
only for coisotropic triples, and the appropriate definitions for coisotropic pairs
will then be given by restricting to this subcategory. However, the interesting
triples are those where A0 ⊆ Atot is only a left ideal. Hence these will not show
up as images of this inclusion functor C2Alg −→ C3Alg.
Note also that we have a trivial coisotropic pair for every unital algebra A by
setting

Atrivial = (A,A) (27)

as well as the un-reduce pair

Aunred = (A, {0}). (28)

Both notions are of course compatible with the trivial and the un-reduce triples
and the functor (25).
As mentioned before, the reduction functor only uses the information of a pair
and thus gives a reduction red : C2Alg −→ Alg. Ultimately, we arrive at the
following diagram

C3Alg

LeftIdealAlg Alg

C2Alg

Dir
ac

Dirac

unred

trivial
red

un
red

tri
via
l

red

fo
rg
ettr

iv
ia
l

(29)

of functors. Thus, in particular, the reduction of the un-reduce pair reproduces
the algebra one started with and the reduction of the trivial triple is the zero
algebra.

Remark 3.8 While the pair point of view simplifies the reduction picture dras-
tically, the original motivation is to generalize the geometric situation of phase
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space reduction: there the algebra in the middle AN is typically the most diffi-
cult one to get, both in the classical and the quantum situation. Instead, one
starts with the ambient algebra Atot. Then in the quantum version it is already
difficult enough (and sometimes obstructed) to deform the classical vanishing
ideal into a left ideal A0. Only in the last step one can then find AN. Thus we
will discuss triples and pairs in parallel to keep in mind that a serious appli-
cation will always require to actually find the triples out of more simple data.
Ultimately, we will be interested in starting with (Atot,A0) in LeftIdealAlg and
construct the relevant data out of this. While for the algebras there is a functo-
rial way by using the normalizers, in the case of (bi-)modules we will see that
one typically has no obvious functorial way to accomplish this.

Before moving to the categories of (bi-)modules over coisotropic triples and
pairs, we mention the following canonical bimodule relating the total algebra
and the reduced one:

Proposition 3.9 Let A = (Atot,AN,A0) be a coisotropic triple of algebras
over k.

1. Then
C(A) = Atot/A0 (30)

is a (Atot,Ared)-bimodule, cyclic with respect to Atot, and one has

EndAtot
(C(A))opp = N(A0)/A0. (31)

2. For a morphism Φ: A −→ B of coisotropic triples of algebras the map

C(Φ): C(A) ∋ [a] 7−→ [Φ(a)] ∈ C(B) (32)

is a bimodule morphism along the two algebra morphisms Φtot : Atot −→
Btot and Φred : Ared −→ Bred.

3. Mapping A to C(A) and morphisms Φ: A −→ B to C(Φ) gives a functor

C : C3Alg −→ Bimodule (33)

into the category Bimodule of bimodules with morphisms being bimodule
morphisms along algebra morphisms of the involved algebras.

Proof: Indeed, since A0 is a left ideal in Atot, the quotient C(A) is a left A-
module. Since Atot is unital, C(A) is cyclic with cyclic element [1] ∈ C(A). As
already indicated in the case of star products in (12), the opposite of the module
endomorphisms of this left A-module is given by N(A0)

/
A0 using the right

multiplications. Since AN ⊆ N(A0) by assumption, this gives the canonical
right module structure, showing the first claim. For the second, we note that
[Φ(a)] ∈ C(B) only depends on the class [a] since Φ(A0) ⊆ B0. Then it is clear
that C(Φ)(a · [x]) = Φtot(a) ·C(Φ)([x]) and C(Φ)([x] · [a′]) = C(Φ)([x]) ·Φred([a

′])
for a, x ∈ Atot and a′ ∈ AN since we can check these relations on representatives.
From this the second part follows. But then the claimed functoriality is clear.�
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Geometrically, C(A) corresponds to the functions on the constraint surface.
Even though in the classical (commutative) case this is an algebra itself, we
will consider it only as a (Atot,Ared)-bimodule, since this is the only struc-
ture remaining in the noncommutative situation. Note that here we need the
coisotropic triples instead of mere coisotropic pairs of algebras in order to define
the bimodule C(A).

Remark 3.10 We should remark that this observation stands at the beginning
of the reduction idea of Bordemann in [5, 4] where the geometric situation is
analyzed in detail, including a description of obstructions for the deformation
quantization of coisotropic submanifolds in the symplectic framework.

4 Triples and Pairs of Bimodules

Let us come back to the geometric picture of Section 2, where ι : C −→M is a
coisotropic submanifold of a Poisson manifold (M,π) and we assume to have a
surjective submersion pr : C −→ Mred. Here Mred is again the leaf space C

/
∼

of the characteristic distribution of C. Now let in addition p : E −→ M be a
vector bundle over M . Then we know that Etot = Γ∞(E) is a C∞(M)-module
and we can define a submodule

E0 =
{
s ∈ Γ∞(E)

∣
∣ s

∣
∣
C
= 0

}
(34)

of all sections vanishing on C. In order to define a reduced vector bundle
pred : Ered −→ Mred we would like to use the sections of E that are constant
along the characteristic distribution of C. Of course, there is no canonical
way to make sense out of such a statement. Instead, we need to use some
additional data. For this, let ∇ be a covariant derivative for the vector bundle
E and consider those sections of E whose covariant derivative in the direction
of Hamiltonian vector fields of functions in the vanishing ideal IC vanish on
C. We denote this subset by

EN =
{
s ∈ Γ∞(E)

∣
∣ (∇Xf

s)
∣
∣
C
= 0 for all f ∈ IC

}
. (35)

Note that for the definition of EN we used the additional information of a
covariant derivative on E while E0 was still canonical. This is different from
coisotropic algebras, where we could define AN as the Poisson normalizer BC .
We use this geometric situation as motivation for the definition of bimodules
over coisotropic triples.

Definition 4.1 (Bimodules over coisotropic triples) Let A and B be
coisotropic triples of algebras over k.

1. A triple E = (Etot, EN, E0) consisting of a (Btot,Atot)-bimodule Etot

and (BN,AN)-bimodules EN and E0 together with a bimodule morphism
ιE : EN −→ Etot along the inclusions BN ⊆ Btot and AN ⊆ Atot is called a
(B,A)-bimodule if E0 ⊆ EN is a sub-bimodule such that

B0 · EN ⊆ E0 and EN · A0 ⊆ E0. (36)
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2. A morphism Φ: E −→ Ẽ between (B,A)-bimodules is a pair (Φtot,ΦN)
of a (Btot,Atot)-bimodule morphism Φtot : Etot −→ Ẽtot and (BN,AN)-
bimodule morphism Φ: EN −→ ẼN such that Φtot ◦ ιE = ι

Ẽ
◦ ΦN and

ΦN(E0) ⊆ Ẽ0.

3. The category of (B,A)-bimodules is denoted by C3Bimod(B,A).

The motivation is to mimic the two-sided ideal property of the 0-component also
on the level of (bi-)modules. It is of course a routine check that the obvious
composition of morphisms is again a morphism and we thus get a category.
The reason we did not choose to require an inclusion EN ⊆ Etot is that with this
broader notion tensor products turn out to become easier as we will not have
to insist on flatness in order to guarantee the injectivity of the tensor product
of the inclusions. Nevertheless, viewing a coisotropic triple A as bimodule
over itself ιA : AN −→ Atot is still the inclusion map. Similar to the case of
coisotropic triples of algebras we can also define modules over coisotropic pairs
by simply ignoring the tot-component.

Definition 4.2 (Bimodules over coisotropic pairs) Let A and B be
coisotropic pairs of algebras over k.

1. A pair E = (EN, E0) of (BN,AN)-bimodules is called a (B,A)-bimodule if
E0 ⊆ EN is a sub-bimodule such that

B0 · EN ⊆ E0 and EN · A0 ⊆ E0. (37)

2. A morphism Φ: E −→ Ẽ between (B,A)-bimodules is a (BN,AN)-
bimodule morphism Φ: EN −→ ẼN such that Φ(E0) ⊆ Ẽ0.

3. The category of (B,A)-bimodules is denoted by C2Bimod(B,A).

By forgetting the total bimodule we get a forgetful functor

C3Bimod −→ C2Bimod. (38)

Conversely, we can go the other way by mapping a (B,A)-bimodule E over
coisotropic pairs A and B to the bimodule (EN, EN, E0) over the coisotropic
triples (AN,AN,A0) and (BN,BN,B0). Similar to the case of coisotropic alge-
bras this is a left adjoint to the forgetful functor forgetting the tot-component.
The bicategory Bimod of bimodules over algebras with the tensor product as
composition functors is one of the most basic examples of a bicategory. The
goal of this section is to prove that we can construct bicategories C3Bimod

and C2Bimod building on the above categories as well. Thus we can realize
C2Bimod as a sub-bicategory of C3Bimod. To show this we need to define
a tensor product of bimodules over coisotropic triples and pairs and to check
that there exist natural transformations of associativity as well as left and right
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identities. This is done in the following lemmas. As a first step we construct a
tensor product functor

⊗B : C3Bimod(C,B)× C3Bimod(B,A) −→ C3Bimod(C,A) (39)

by tensoring the components of the triple as follows:

Lemma 4.3 Let A, B and C be coisotropic triples of algebras and let F ∈
C3Bimod(C,B), E ∈ C3Bimod(B,A) be corresponding bimodules. Then

F
C B

⊗B E
B A

given by the components

( FC B ⊗B EB A)
tot

= Ftot ⊗Btot
Etot, (40)

( FC B ⊗B EB A)
N
= FN ⊗BN

EN, (41)

( FC B ⊗B EB A)
0
= FN ⊗BN

E0 + F0 ⊗BN
EN (42)

is a (C,A)-bimodule, where we use the tensor product ιF⊗E = ιF ⊗ ιE to map
the N-component into the tot-component.

Proof: Note that the tensor product FN⊗BN
E0 is not a submodule of FN⊗BN

EN directly, thus (42) has to be understood in one of the two following equivalent
ways: either view FN ⊗BN

E0 as the submodule of FN ⊗BN
EN generated by all

elements of the form y ⊗ x, with y ∈ FN, x ∈ E0, or as the image of idFN
⊗ιE0

where ιE0
is the inclusion of E0 into EN. Similarly for F0 ⊗BN

EN. Now observe
that (F ⊗B E)tot is a (Ctot,Atot)-bimodule and (F ⊗B E)N and (F ⊗B E)0
are clearly (CN,AN)-bimodules. Moreover, the map ιF ⊗ ιE : (F ⊗B E)N −→
(F⊗B E)tot is a bimodule morphism and

B0 · (F⊗B E)N = (B0 · FN)⊗BN
EN ⊆ F0 ⊗BN EN ⊆ (F⊗B E)0

and

(F⊗B E)N · A0 = FN ⊗BN
(EN · A0) ⊆ FN ⊗BN

E0 ⊆ (F⊗B E)0

hold. Hence F⊗B E is a (B,A)-bimodule. �

Lemma 4.4 Let A, B and C be coisotropic triples of algebras. Moreover, let
Ψ: F −→ F′ and Φ: E −→ E′ be morphisms of (C,B)-bimodules F, F′, and
(B,A)-bimodules E, E′, respectively. Then Ψ⊗ Φ given by

(Ψ⊗ Φ)tot = Ψtot ⊗ Φtot (43)

and

(Ψ ⊗ Φ)N = ΨN ⊗ ΦN (44)

is a bimodule morphism from F⊗B E to F′ ⊗B E′.
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Proof: It is clear that (Ψ⊗Φ)tot and (Ψ⊗Φ)N are a morphism of (Ctot,Atot)-
and (CN,AN)-bimodules, respectively, fulfilling (Ψ⊗ Φ)tot ◦ (ιF ⊗ ιE) = (ιF′ ⊗
ιE′ ) ◦ (ΨN ⊗ ΦN). Moreover.

(Ψ⊗ Φ)N (F⊗B E)
0
= (Ψ⊗ Φ)N

(
FN ⊗BN

E0 + F0 ⊗BN
EN

)

= ΨN(FN)⊗BN
ΦN(E0) + ΨN(F0)⊗BN

ΦN(EN)

⊆ F′

N ⊗BN
E′

0 + F′

0 ⊗BN
E′

N

= (F′ ⊗B E′)
0

holds. Hence Ψ⊗ Φ is a bimodule morphism from F⊗B E to F′ ⊗B E′. �

Note that by embedding C2Bimod(B,A) into C3Bimod(B,A) we can also define
a bimodule F ⊗B E for bimodules over coisotropic pairs. Putting these two
lemmas together we obtain functors

⊗B : C3Bimod(C,B)× C3Bimod(B,A) −→ C3Bimod(C,A). (45)

and

⊗B : C2Bimod(C,B)× C2Bimod(B,A) −→ C2Bimod(C,A). (46)

as wanted.
As a second step we need to show that the tensor product fulfills the associa-
tivity and identity properties of a bicategory.

Lemma 4.5 For coisotropic triples A,B, C,D of algebras over k there is a
natural isomorphism

asso: ⊗B ◦ (⊗C × id) =⇒ ⊗C ◦ (id×⊗B), (47)

given by the natural isomorphisms of associativity for usual bimodules

assotot : (Gtot ⊗Ctot
Ftot)⊗Btot

Etot −→ Gtot ⊗Ctot
(Ftot ⊗Btot

Etot)

(z ⊗ y)⊗ x 7−→ z ⊗ (y ⊗ x)
(48)

and

assoN :
(
GN ⊗CN

FN

)
⊗BN

EN −→ GN ⊗CN

(
FN ⊗BN

EN

)

(z ⊗ y)⊗ x 7−→ z ⊗ (y ⊗ x)
(49)

for G ∈ C3Bimod(D, C), F ∈ C3Bimod(C,B), and E ∈ C3Bimod(B,A).

Proof: First it is clear that the above definitions have the necessary multi-
linearity to extend to the tensor products at all. We then need to check that
assotot ◦ ((ιG ⊗ ιF) ⊗ ιE) = (ιG ⊗ (ιF ⊗ ιE)) ◦ assoN holds and that the mor-
phisms assoN preserve the submodules. This is an easy computation done on
factorizing tensors. �
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Lemma 4.6 For coisotropic triples of algebras A and B over k there are nat-
ural isomorphisms

left : ⊗B ◦ (IdB × id) =⇒ id and right: ⊗A ◦ (id× IdA) =⇒ id, (50)

given by the left and right identities of the tensor product of usual bimodules

lefttot : Btot ⊗Btot
Etot ∋ b⊗ x 7−→ bx ∈ Etot (51)

and
leftN : BN ⊗BN

EN ∋ b⊗ x 7−→ bx ∈ EN (52)

as well as
right

tot
: Etot ⊗Atot

Atot ∋ x⊗ a 7−→ xa ∈ Etot (53)

and
right

N
: EN ⊗AN

AN ∋ x⊗ a 7−→ xa ∈ EN. (54)

Proof: Since lefttot and leftN are natural isomorphisms we only need to show
that they form morphisms of bimodules over triples when put together. For
this let b ∈ BN and x ∈ EN, then

(lefttot ◦ (ιB ⊗ ιE)) (b⊗ x) = b · ιE(x) = ιE(bx) = (ιE ◦ leftN)(b ⊗ x)

holds. Additionally, observe that

leftN((B ⊗B E)0) = leftN
(
BN ⊗BN

EN + B0 ⊗BN
EN

)
= BN · E0 + B0 · EN = E0,

since BN is unital and B0 · EN ⊆ E0. Hence left is a natural isomorphism as
claimed. An analogous computation shows that also right is a natural isomor-
phism. �

Finally, Lemmas 4.3, 4.4, 4.5, and 4.6 imply that C3Bimod and C2Bimod in fact
form bicategories.

Theorem 4.7 (Bicategory of coisotropic modules) Taking coisotropic
triples of algebras as 0-morphisms, bimodules over coisotropic triples of alge-
bras as 1-morphisms and morphisms between such bimodules as 2-morphisms,
together with the tensor product, associativity and identities as constructed in
Lemmas 4.3, 4.4, 4.5, and 4.6 we obtain a bicategory.

Proof: For any two coisotropic triples of algebras A and B over k we have
a category C3Bimod(B,A) by Definition 4.2. The tensor product as intro-
duced in Lemma 4.3 is functorial due to Lemma 4.4. Moreover, Lemma 4.5
and Lemma 4.6 ensure the existence of natural transformations of associativity
and identity. Finally, the coherences have to be checked, but since the asso-
ciativity and identity natural transformations are for every component those
of usual bimodules it is clear that the coherence diagrams from Definition A.1
commute. �
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Again, by forgetting the tot-component we obtain also a bicategory of
coisotropic pairs, modules over coisotropic pairs and morphisms between them:

Definition 4.8 (Bicategory of coisotropic modules) The bicategory
with coisotropic triples of algebras as 0-morphisms, bimodules over coisotropic
triples of algebras as 1-morphisms and morphisms between such bimodules as
2-morphisms from Theorem 4.7 is called the bicategory of coisotropic triples
and will be denoted by C3Bimod. Similarly, the bicategory of coisotropic pairs
of algebras, bimodules over coisotropic pairs, and bimodule morphisms is called
the bicategory of coisotropic pairs and will be denoted by C2Bimod.

We can embed the category Alg of unital algebras into the bicategory Bimod of
unital Algebras with bimodules by turning an algebra morphism φ : A −→ B
into a bimodule Bφ

B A
, with right multiplication twisted by φ, and adding

as 2-morphisms only identities. Similarly, we can view the category C3Alg of
coisotropic triples of algebras as a bicategory, by simply adding as 2-morphisms
only the identities. This allows us to embed C3Alg into the bicategory C3Bimod.

Proposition 4.9 The following data defines a functor of bicategories
L : C3Alg −→ C3Bimod:

1. For A ∈ C3Alg define L(A) = A.

2. For A,B ∈ C3Alg a functor L : C3Alg(B,A) −→ C3Bimod(B,A) defined
by

LBA(φ) =
(

(Btot)
φ

Btot Atot
, (BN)

φ
BN AN

, (B0)
φ

BN AN

)

(55)

for φ ∈ C3Alg(B,A). Here φ in superscript means that the right module
structure is twisted with φ.

3. For A,B, C ∈ C3Alg a natural isomorphism m : ⊗B ◦ (LCB × LBA) −→
LCA ◦ (◦C2Alg) given by

m(ψ, φ) : Cψ
C B

⊗ Bφ
B A

∋ c⊗ b 7−→ cψ(b) ∈ Cψ◦φ
C A

(56)

for φ ∈ C3Alg(B,A) and ψ ∈ C3Alg(C,B).

This functor is even an embedding of bicategories.

Proof: The map (55) defines a functor by the usual extension to the discrete

category. Since for modules of the form (55) we have Bφ
N ⊆ Bφ

tot
, we only

need to check that the natural transformation (56) preserves the N- and 0-

components: for c ⊗ b ∈ CψN ⊗ Bφ
N we have m(ψ, φ)(c ⊗ b) = cψ(b) ∈ CN

and for c ⊗ b0 + c0 ⊗ b ∈
(
Cψ ⊗B Bφ

)

0
= CψN ⊗ Bφ

0 + Cψ0 ⊗ Bφ
N we have

m(ψ, φ)(c⊗ b0 + c0 ⊗ b) = cψ(b0)+ c0ψ(b) ∈ C0. The composition and identity
coherences from Definition A.2 are easy computations. Finally, L is clearly
injective on objects and also on 1-morphisms, since changing φ ∈ C3Alg(B,A)
will lead to different bimodule structures on LBA(φ). �
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This embedding of C3Alg in C3Bimod can also be defined by omitting the tot-
component, giving an embedding of C2Alg in C3Alg.

Remark 4.10 Note that also the projections onto the tot-component and the
N-component yield functors of bicategories

tot : C3Bimod −→ Bimod (57)

and

N : C3Bimod −→ Bimod, (58)

respectively. Note that for these functors the natural isomorphisms from Defi-
nition A.2 are in fact identities, simplifying the situation.

5 Morita Equivalence of Coisotropic Algebras

In classical Morita theory two algebras (or rings) are Morita equivalent if and
only if they are isomorphic in the bicategory Bimod of algebras, bimodules and
bimodule morphisms. Recall that two objects in a bicategory are called iso-
morphic if there exists an (up to 2-morphisms) invertible 1-morphism between
them. Having defined the bicategories C3Bimod and C2Bimod we can now give
a definition of Morita equivalence of coisotropic triples and pairs of algebras.

Definition 5.1 (Morita equivalence of coisotropic algebras) Two
coisotropic triples A, B of algebras are called Morita equivalent if they are
isomorphic in the bicategory C3Bimod. Similarly, two coisotropic pairs A, B
are called Morita equivalent if they are isomorphic in the bicategory C2Bimod.
An invertible bimodule E

B A
implementing a Morita equivalence of A and B

is called Morita equivalence bimodule in both cases.

Thus Morita equivalence of coisotropic algebras is completely encoded in the
so called Picard bigroupoids Pic(C3Bimod) and Pic(C2Bimod), given by all
coisotropic algebras and all corresponding invertible 1- and 2-morphisms.

Let A,B ∈ C3Alg be Morita equivalent, and let furthermore E ∈
C3Bimod(B,A) be a (B,A)-bimodule implementing Morita equivalence of
A and B. Thus we assume that there exists a (A,B)-bimodule E′ ∈
C3Bimod(A,B) and isomorphisms

φ : E′ ⊗B E −→ A and ψ : E ⊗B E′ −→ B (59)

such that

ψ(x⊗ x′) · y = x · φ(x′ ⊗ y) (60)

holds for all x, y ∈ E and x′ ∈ E′. Note that (60) can always be achieved by
turning a usual equivalence into an adjoint equivalence, see [27, A.1.3]. The
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fact that (59) are morphisms of coisotropic bimodules means in particular that
the diagram

Etot ⊗ E′
tot

Btot

EN ⊗ E′
N BN

ψtot

ψN

ιE⊗ιE′ ιB (61)

commutes. Then, since ψN and ιB are injective, so is ψtot ◦ ιE ⊗ ιE′ = ιB ◦ ψN

and hence also ιE ⊗ ιE′ .

Since by projecting onto the tot- and N-components yields functors of bicate-
gories tot : C3Bimod −→ Bimod and N : C3Bimod −→ Bimod to the bicategory of
algebras and bimodules according to Remark 4.10 we know that Morita equiv-
alence bimodules get mapped to Morita equivalence bimodules. Hence, by the
classical theory of Morita equivalence for algebras we know, in particular, that
Etot and EN are finitely generated projective modules, thus we have

Etot ≃ etotA
n
tot

(62)

and

EN ≃ eNAm
N (63)

for some n,m ∈ N and full idempotents etot ∈ End(An
tot) and eN ∈ End(Am

N ).
The following lemma gives a way to relate these two finitely generated projec-
tive modules:

Lemma 5.2 Let E ∈ C3Bimod(B,A) be a Morita equivalence bimodule of
coisotropic algebras A,B ∈ C3Alg. Then every dual basis {ej, ej}j=1,...,n

of the finitely generated projective module EN gives rise to a dual basis
{etotj , e

j
tot
}j=1,...,m for Etot, given by

etotj = ιE(ej) (64)

and

ej
tot
(x) =

( k∑

i=1

(ιA ◦ ej)(x1N

i ) · φtot

(

ιE′(y1N

i )⊗ x
))

, (65)

where 1BN
= ψN

(
∑k

i=1 x
1N

i ⊗ y1N

i

)

. For xN ∈ EN the dual basis (65) simplifies

to

ej
tot
(ιE(xN)) = ιA

(
ej(xN)

)
. (66)

Proof: First we note that we actually find elements x1N

i ∈ EN and y1N

i ∈ E′
N

such that 1BN
= ψN

(∑k
i=1 x

1N

i ⊗ y1N

i

)
since ψN is surjective. Since BN ⊆ Btot

is a unital subalgebra it follows that 1Btot
= ψtot

(∑k
i=1 ιE(x

1N

i )⊗ ιE′ (y1N

i )
)

by
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using the commutativity of (61). Now fix a dual basis of EN such that for any
xN ∈ EN we have xN =

∑m
j=1 ej · e

j(x). Then for x ∈ Etot we get

x = 1Btot
· x

=

k∑

i=1

ψtot

(
ιE(x

1N

i )⊗ ιE′(y1N

i )
)
· x

(a)
=

k∑

i=1

ιE(x
1N

i ) · φtot

(
ιE′(y1N

i )⊗ x
)

=

k∑

i=1

ιE

( m∑

j=1

ej · e
j
(
x1N

i

)
)

· φtot

(
ιE′(y1N

i )⊗ x
)

=

k∑

i=1

( m∑

j=1

ιE(ej) · (ιA ◦ ej)
(
x1N

i

)
)

· φtot

(
ιE′ (y1N

i )⊗ x
)

=
m∑

j=1

ιE(ej)
︸ ︷︷ ︸

=:etotj

·

( k∑

i=1

(ιA ◦ ej)(x1N

i ) · φtot

(
ιE′ (y1N

i )⊗ x
)
)

︸ ︷︷ ︸

=:ejtot(x)

,

where we used (60) in (a). Note that indeed etotj ∈ Etot and ejtot ∈ E∗
tot. Now for

xN ∈ EN we compute using (61) that ejtot(ιE(xN)) = ιA
(
ej(xN)

)
holds. �

Thus we can choose the isomorphisms (62) and (63) such that n = m. This
leads us to the next lemma, showing that in addition for a Morita equivalence
bimodule the projectors for the tot- and N-components agree:

Lemma 5.3 Let E ∈ C3Bimod(B,A) be a Morita equivalence bimodule of
coisotropic algebras A,B ∈ C3Alg. Then we can choose the isomorphisms
Etot ≃ etotAn

tot
and EN ≃ eNAn

N
such that etot = eN ∈ Mn(AN).

Proof: First we fix a dual basis of EN with corresponding dual basis of Etot

according to Lemma 5.2. Then the components of etot ∈ Mn(Atot) are given by

(etot)ij = eitot(e
tot

j ) = eitot(ιE(ej)) = ιA
(
ei(ej)

)
= ιA ((eN)ij) .

Thus viewing elements of AN as elements in Atot via the embedding ιA gives
the statement. �

As a first consequence, given a classical Morita equivalence bimodule Etot =
etotAn

tot
for the tot-components Btot and Atot we know that necessarily this

can only be a Morita equivalence bimodule for coisotropic triples of algebras
A = (Atot,AN,A0) and B = (Btot,BN,B0) if etot ∈ Mn(AN).
Now that we clarified the structure and relation of the N- and tot-components
of coisotropic Morita equivalence bimodules let us turn to a description of the
0-part. Here by definition of a coisotropic module we have EN · A0 ⊆ E0. For
Morita equivalence bimodules we get in fact equality.
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Lemma 5.4 Let E ∈ C3Bimod(B,A) be a Morita equivalence bimodule of
coisotropic algebras A,B ∈ C3Alg. Then EN · A0 = E0.

Proof: Note that the inclusion EN ·A0 ⊆ E0 holds by definition. For the other
inclusion we use A0 ≃ (E′ ⊗B E)0 = E′

N ⊗BN
E0 + E′

0 ⊗BN
EN by (59) and the

definition of the tensor product. Thus we get

EN · A0 ≃ EN ⊗ E′

0 ⊗ EN + EN ⊗ E′

N ⊗ E0 ≃ EN ⊗ E′

0 ⊗ EN + E0

showing that E0 ⊆ EN · A0. �

Putting these previous statements together we get a quite explicit descrip-
tion of Morita equivalence bimodules for coisotropic algebras, similar to the
well-known description of Morita equivalence bimodules for classical rings by
Morita’s theorems.

Theorem 5.5 Let E ∈ C3Bimod(B,A) be a coisotropic triple of bimodules
over coisotropic triples of algebras A and B. The bimodule E is a Morita
equivalence bimodule if and only if there exists an isomorphism of coisotropic
bimodules such that

Etot ≃ eAn
tot, (67)

EN ≃ eAn
N
, (68)

E0 ≃ eAn
0 (69)

with a full projection e ∈ Mn(AN) and

Btot ≃ EndAtot
(Etot), (70)

BN ≃ EndAN
(EN), (71)

B0 ≃ HomAN
(EN, E0), (72)

where all isomorphisms are given by left multiplication and we view
HomAN

(EN, E0) as a subset of EndAN
(EN).

Proof: Let E be a Morita equivalence bimodule. Fix a dual basis
{ej, ej}j=1,...,n for EN and consider the dual basis {etotj , e

j
tot
}j=1,...,m of Etot as

constructed in Lemma 5.2. These dual bases give rise to isomorphisms

gN : EN ∋
n∑

i=1

eie
i(x) 7−→

n∑

i=1

bie
i(x) ∈ eAn

N
,

where bi is the standard basis of An
N
, and similarly gtot : Etot −→ eAn

tot
. The

idempotent e is full since EN is a classical Morita equivalence bimodule. A
straightforward computation shows that ιA ◦ gN = gtot ◦ ιE. The compatibility
of gN with E0 is clear by Lemma 5.4. Thus we get an isomorphism of coisotropic
bimodules. Moreover, since Etot and EN are classical Morita equivalence bimod-
ules of the tot- and N-components, respectively, we immediately get (70) and
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(71). For (72) we only need to show that im(B0) = HomAN
(EN, E0) under left

multiplication. For this let ξ ∈ HomAN
(EN, E0) and 1BN

= ψN

(∑k
i=1 x

1N

i ⊗y1N

i

)

as before. Then ψN(ξ(x
1N

i )⊗ y1N

i ) ∈ B0 and

ψN

( k∑

i=1

ξ(x1N

i )⊗ y1N

i

)

· x =

k∑

i=1

ξ(x1N

i )φN(y
1N

i ⊗ x)

= ξ
( k∑

i=1

ψN(x
1N

i ⊗ y1N

i )x
)

= ξ(x)

shows that B0 ≃ HomAN
(EN, E0). Now let e ∈ Mn(AN) be given such that

(67) to (72) hold. Then since AN is unital we have AtoteAtot = Atot, i.e. e ∈
Mn(Atot) is full. Moreover, since Etot and EN are Morita equivalence bimodules
in the classical sence they have inverse bimodules (Etot)

′) and (EN)
′. Then

setting (E′)tot = (Etot)
′, (E′)N = (EN)

′ and (E′)0 = A0 · E′
N

defines an inverse
coisotropic bimodule for E. Hence E is a Morita equivalence bimodule. �

From this it directly follows that for an equivalence bimodule the map from
the N-component to the tot-component is in fact injective.

Corollary 5.6 Let E ∈ C3Bimod(B,A) be a Morita equivalence bimodule for
A,B ∈ C3Alg. Then ιE : EN −→ Etot is injective, i.e. EN ⊆ Etot is a submodule.

Remark 5.7 On the one hand, the theorem gives a complete picture of how
the equivalence bimodules for coisotropic triples of algebras look like. On the
other hand, it is quite bad news that the N-component controls and determines
the other components of the bimodule. It will be the one which is the most
inaccessible in the examples of deformation quantization.

Example 5.8 (Standard example) From the above characterization we ob-
tain the first standard example: for a coisotropic triple A the matrices

Mn(A) =
(
Mn(Atot),Mn(AN),Mn(A0)

)
(73)

form again a coisotropic triple of algebras which is now Morita equivalent to A
for all n ∈ N. As equivalence bimodule we can take

An =
(
An

tot
,An

N
,An

0

)
. (74)

6 Reduction for Bimodules

Following the idea of constructing vector bundles on the reduced manifold by
reducing a vector bundle on the manifold we started with, we want to turn
bimodules over coisotropic algebras into bimodules over the reduced algebras.
The idea is to proceed similarly to the algebra case and consider the quotient
EN

/
E0, see Proposition 3.5. Again this construction uses only the information of
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the N- and 0-components. Therefore we only consider reduction for bimodules
over coisotropic pairs. Reduction for bimodules over coisotropic triples is then
given by first forgetting about the tot-component. This construction indeed
yields bimodules over the reduced algebras and better still it is compatible
with the bicategory structure of C2Bimod in the best possible way, i.e. we get
a functor of bicategories, called reduction functor :

Theorem 6.1 (Reduction in C2Bimod) A functor of bicategories
red : C2Bimod −→ Bimod is given by the following data:

1. A map red : Obj(C2Bimod) −→ Obj(Bimod) on objects, given by

A 7−→ Ared. (75)

2. For any two coisotropic pairs of algebras A and B a functor

redBA : C2Bimod(B,A) −→ C2Bimod(Bred,Ared), (76)

given by

Ered = EN/E0 (77)

on objects and

Φred : Ered ∋ [x] 7−→ [Φ(x)] ∈ Fred (78)

on morphisms Φ: E −→ F.

3. For any three coisotropic pairs of algebras A, B, and C a natural iso-
morphism mCBA : ⊗Bred

◦ (red CB × redBA) =⇒ redCA ◦ ⊗B given by a
family of maps determined by

m(F, E) : Fred ⊗Bred
Ered ∋ [y]⊗ [x] 7−→ [y ⊗ x] ∈ (F⊗B E)red (79)

with F ∈ C2Bimod(C,B), E ∈ C2Bimod(B,A).

4. For any coisotropic pair of algebras A the identity 2-isomorphism

id : AredAred Ared
−→ redAA( AA A). (80)

Proof: First note that (75) is well-defined since A0 is a two-sided ideal in AN.
Furthermore, (77) gives a well-defined (Bred,Ared)-bimodule by the definition
of modules over coisotropic algebras, and (78) is well-defined since morphisms
of modules over coisotropic algebras preserve the submodules. It is a standard
computation to check that (79) is a well-defined natural isomorphism. Note,
that here we crucially need that (F⊗B E)0 = FN ⊗BN

E0 +F0 ⊗BN
EN. For the

last part it is clear that redAA( A
A A

) = AN

/
A0 = AredAred Ared

. �
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This reduction functor for C2Bimod is also compatible with the reduction in
C2Alg in the sense that

C2Alg C2Bimod

Alg Bimod

L

red red (81)

commutes. Indeed, on coisotropic algebras both reduction functors are defined
the same and for a morphism φ ∈ C2Alg(B,A) we clearly have Bφred

red = (Bφ)red
as sets and the (Bred,Ared)-bimodule structures also coincide.
Moreover, by identifying isomorphic coisotropic bimodules we can construct the
classifying categories [C2Bimod] and [Bimod]. Since red : C2Bimod −→ Bimod

is a functor of bicategories we get a well-defined functor red : [C2Bimod] −→
[Bimod], such that

C2Alg C2Bimod [C2Bimod]

Alg Bimod [Bimod]

L

red red

[ · ]

red

[ · ]

(82)

commutes.
Also, red maps invertible morphisms to invertible morphisms, thus it restricts
to a functor

red : Pic(C2Bimod) −→ Pic(Bimod) (83)

between the corresponding Picard bigroupoids. Similarly, we get a functor
red : [Pic(C2Bimod)] −→ [Pic(Bimod)] between the Picard groupoids, leading to
the commutative diagram

Pic(C2Bimod) [Pic(C2Bimod)]

Pic(Bimod) [Pic(Bimod)]

red

[ · ]

red

[ · ]

(84)

This means that reduction of coisotropic algebras preserves Morita equivalence.

Example 6.2 Let A ∈ C3Alg be a commutative coisotropic triple of algebras.
Then we can define a coisotropic bimodule Der(A) ∈ C3Bimod(A) by

Der(A)tot = Der(Atot) (85)

Der(A)N = {Φ ∈ Der(Atot) | Φ(AN) ⊆ AN,Φ(A0) ⊆ A0} (86)

Der(A)0 = {Φ ∈ Der(Atot) | Φ(AN) ⊆ A0}, (87)

giving directly an injective module homomorphism Der(A)red −→ Der(Ared).
In most geometric examples this is in fact an isomorphism. Following Exam-
ple 2.3 we have Der(Atot) = Γ∞(TM) and we can extend every vector field on
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the reduced manifold to a vector field on M by choosing a connection on the
principal fibre bundle C −→ Mred and a tubular neighbourhood of C. Thus we
get Der(A)red ≃ Γ∞(TMred) and therefore can construct the tangent bundle on
Mred as a reduction of a coisotropic triple of modules.

7 Classical Limit

In formal deformation quantization one is interested in algebras of formal power
series over a ring R[[λ]], e.g. (C∞(M)[[λ]], ⋆) as algebra overC[[λ]] for a Poisson
manifold M . Given such an R[[λ]]-algebra AAA we can construct an R-algebra,
called the classical limit, by taking the quotient cl(AAA) = AAA

/
λAAA. The crucial

property of cl is now that all multiples of λ will vanish, i.e. we have cl(λa) = 0
for all a ∈ AAA.
In the following we set the underlying ring as subscript for all involved cate-
gories in order to distinguish coisotropic triples and pairs of algebras over R[[λ]]
from the ones over R.
In order to define a classical limit for a coisotropic triple AAA ∈ C3AlgR[[λ]]
we can not simply set cl(AAA)N = cl(AAAN), since this would not be a subset of
cl(AAAtot) directly. Instead, we have to take its image in the classical limit of the
tot-component, leading to the following definition for the classical limit of a
coisotropic triple:

Definition 7.1 (Classical limit of coisotropic triples) Let AAA be a
coisotropic triple over R[[λ]]. Then the coisotropic triple

cl(AAA)tot = cl(AAAtot) (88)

cl(AAA)N = AAAN/(λAAAtot ∩ AAAN) ⊆ cl(AAA)tot (89)

cl(AAA)0 = AAA0/(λAAAtot ∩ AAA0) ⊆ cl(AAA)N (90)

is called the classical limit of AAA.

Note that cl(AAA)0 is indeed a two-sided ideal in cl(AAA)N. In addition to the
classical limit of deformed coisotropic triples we can also take the classical
limit of morphisms of coisotropic triples. We define for a morphism T : AAA −→
BBB of coisotropic triples the classical limit cl(T ) : cl(AAA) −→ cl(BBB) by setting
cl(T )(cl(a)) = cl(T (a)) for a ∈ AAAtot. This is just the map defined on the
quotient since every morphism T : AAA −→ BBB maps λAAAtot to λBBBtot by R[[λ]]-
linearity.
Let us now check that the classical limit gives a functor from C3AlgR[[λ]] to
C3AlgR.

Proposition 7.2 (Classical limit functor of coisotropic triples)
The classical limit

cl : C3AlgR[[λ]] −→ C3AlgR (91)

given by the classical limit of coisotropic triples on objects and quotient maps
on morphisms is a functor.
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Proof: First we know that for coisotropic AAA,BBB ∈ C3AlgR[[λ]] and a morphism
T : AAA −→ BBB the classical limits cl(AAA), cl(BBB) and cl(T ) are again coisotropic
algebras and morphisms, respectively. Moreover, it is clear that cl(idAAA) =
idcl(AAA). Let in addition CCC ∈ C3AlgR be another coisotropic triple and S : BBB −→
CCC a morphism, then

cl(S ◦ T )
(
cl(a)

)
= cl

(
(S ◦ T )(a)

)
= cl(S)

(
cl(T (a))

)

= cl(S)
(
cl(T )(cl(a))

)
=

(
cl(S) ◦ cl(T )

)(
cl(a)

)

for a ∈ AAA, shows that the classical limit is functorial. �

By viewing C2AlgR[[λ]] as a subcategory of C3AlgR[[λ]] we can also define a clas-
sical limit functor cl : C2AlgR[[λ]] −→ C2AlgR.
Now let us check if this classical limit is compatible with the reduction func-
tor for coisotropic algebras. Since reduction of coisotropic triples is given by
forgetting the tot-part and subsequent reduction of coisotropic pairs we only
consider pairs from the start. Thus we want to clarify if the diagram

C2AlgR[[λ]] C2AlgR

AlgR[[λ]] AlgR

cl

red red

cl

(92)

commutes. Recall, that commutativity of a diagram of categories and functors
means that all possible compositions between the same start and end points
are the same up to natural isomorphisms.

Proposition 7.3 There exists a natural isomorphism η : (cl◦red) =⇒ (red◦cl)
given by

ηAAA : cl(AAAred) ∋ cl([a]) 7−→ [cl(a)] ∈ cl(AAA)red (93)

for AAA ∈ C2AlgR[[λ]].

Proof: First, an easy computation shows that ηAAA is well-defined for AAA ∈
C2AlgR[[λ]]. Similarly one can show that

η−1
AAA

: cl(AAA)red ∋ [cl(a)] 7−→ cl([a]) ∈ cl(AAAred)

is well-defined and is an inverse of ηAAA. Therefore we have a family of algebra
isomorphisms. Finally for BBB ∈ C2AlgR[[λ]] and T : AAA −→ BBB we have (red ◦
cl)(T )◦ηAAA = ηBBB ◦ (cl◦ red)(T ), as a simple evaluation on elements shows. Thus
η is a natural isomorphism. �

Since we are interested in Morita equivalence of deformed coisotropic algebras
and the relation to the classical limit we also need to define a classical limit
for modules over coisotropic algebras. For a module EEE over R[[λ]] we define
the classical limit by cl(EEE) = EEE

/
λEEE, in analogy to the case of algebras over

R[[λ]]. This yields a functor of bicategories cl : C3BimodR[[λ]] −→ C3BimodR.
The following two lemmas will be needed to proof this.
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Lemma 7.4 Let AAA,BBB ∈ C3AlgR[[λ]] be coisotropic algebras. Then the classical
limit yields a functor

cl : C3BimodR[[λ]](BBB,AAA) → C3BimodR(cl(BBB), cl(AAA)) (94)

given by

cl(EEE)tot = cl(EEEtot) = EEEtot/λEEEtot (95)

cl(EEE)N = cl(EEEN) = EEEN/λEEEN (96)

cl(EEE)0 = EEE0/(λEEEN ∩ EEE0) ⊆ cl(EEE)N (97)

for objects EEE ∈ C3BimodR[[λ]](BBB,AAA), and by the usual map on quotients for
morphisms.

Proof: First note that the morphism ιEEE : EEEN −→ EEEtot induces a morphism
ιcl(EEE) : cl(EEE)N −→ cl(EEE)tot by the R[[λ]]-linearity of ιE. By definition, cl(EEE)0 ⊆
cl(EEE)N is a submodule. Moreover, cl(AAA0) · cl(EEE)N = cl(AAA0 · EEEN) ⊆ cl(EEE0) and
cl(EEEN) ·cl(BBB0) = cl(EEEN ·AAA0) ⊆ cl(EEE0) hold, hence cl(EEE) is a coisotropic bimodule.
Finally, for a morphism T : EEE −→ EEE′ between coisotropic modules, we have
cl(T )(cl(EEE0)) = cl(T (EEE0)) ⊆ cl(EEE′

0
). Thus cl(T ) is a morphism indeed. Then

the functoriality is clear. �

Note that in contrast to the classical limit of coisotropic algebras we do not con-
struct cl(EEE)N as a submodule of cl(EEE)tot which is consistent with our requirement
that we only need a morphism ιcl(EEE) : cl(EEE)N −→ cl(EEE)tot.
To make this into a functor of bicategories we also need two natural isomor-
phisms taking care of the composition of 1-morphisms and identities.

Lemma 7.5 Let AAA,BBB, CCC ∈ C3AlgR[[λ]] be coisotropic triples of algebras over
R[[λ]]. Moreover, let FFF ∈ C3BimodR[[λ]](CCC,BBB) and EEE ∈ C3BimodR[[λ]](BBB,AAA) be
coisotropic bimodules. Then

m : cl(FFF)⊗cl(BBB) cl(EEE) ∋ cl(y)⊗ cl(x) 7−→ cl(y ⊗ x) ∈ cl(FFF⊗BBB EEE) (98)

defines a natural isomorphism m : ⊗cl(BBB) ◦ (cl× cl) =⇒ cl ◦ ⊗BBB.

Proof: A routine check shows that m is a well-defined isomorphism on both
the tot- and N-component. Moreover, it is a morphism of coisotropic bimod-
ules since it respects the 0-component, i.e. we have m ((cl(FFF)⊗cl(BBB) cl(EEE))0) ⊆
cl(FFF ⊗BBB EEE)0, and m ◦ (cl(ιFFF) ⊗ cl(ιEEE)) = cl(ιcl(FFF) ⊗ ιcl(EEE)) ◦ m holds. Finally,
one can easily check that it is indeed a natural isomorphism, i.e. it holds
m ◦ (cl(T )⊗ cl(S)) = cl(T ⊗ S) ◦m, for T : FFF −→ FFF′ and S : EEE −→ EEE′. �

Putting these lemmas together we finally get the statement we aimed for.

Theorem 7.6 (Classical limit for C3BimodR[[λ]]) The classical limit as
constructed above is a functor of bicategories

cl : C3BimodR[[λ]] −→ C3BimodR. (99)

Documenta Mathematica 24 (2019) 1811–1853



Coisotropic Triples, Reduction and Classical Limit 1841

Proof: On coisotropic algebras we use the classical limit defined in Propo-
sition 7.2. For any two coisotropic triples AAA,BBB ∈ C3AlgR[[λ]] there exists
a classical limit functor cl : C3BimodR[[λ]](BBB,AAA) −→ C3BimodR(cl(BBB), cl(AAA))
by Lemma 7.4. The natural isomorphisms of composition are given as in
Lemma 7.5. The unit 2-isomorphisms are just the identities uAAA = idcl(AAA).
The coherences can then be checked on elements. �

Since this classical limit is a functor of bicategories it drops to a functor of
the corresponding Picard (bi-)groupoids. Thus Morita equivalent coisotropic
algebras get mapped to Morita equivalent coisotropic algebras. As always we
can view C2BimodR[[λ]] as a sub-bicategory of C3BimodR[[λ]], thus giving us a
classical limit functor for coisotropic pairs cl : C2BimodR[[λ]] −→ C2BimodR as
well.

Now the question arises if this classical limit is compatible with reduction,
hence, if the diagram

C2BimodR[[λ]] C2BimodR

BimodR[[λ]] BimodR

cl

red red

cl

(100)

commutes. We only consider coisotropic pairs here, since we know that re-
duction of triples is simply given by forgetting the tot-component and using
the reduction functor on pairs. We have to be careful here, since this is a
diagram consisting of functors between bicategories. So instead of checking
both compositions for equality we should see if they are equal up to higher
morphisms. More precisely, this means we have to find natural transformations
µ : (cl◦red) =⇒ (red◦cl) and µ̂ : (red◦cl) =⇒ (cl◦red) of functors between bicat-
egories and invertible modifications Γ: µ̂◦µ ≡≡⇛ idcl◦red and Γ̂ : µ◦µ̂ ≡≡⇛ idred◦cl
implementing that µ̂ is the inverse of µ, see Definition A.3 and Definition A.4.
As a diagram we get something like

C2BimodR[[λ]] C2BimodR

BimodR[[λ]] BimodR

cl

red red

cl

µ

µ̂
Γ (101)

There are quite a lot of things to check, so we start with giving some properties
that will later be combined to give the commutativity of (100).
In Proposition 7.2 we already showed that on objects the diagram (100) com-
mutes up to a natural isomorphisms. Since we can interpret morphisms of
(coisotropic) algebras as (coisotropic) modules we can restate parts of this re-
sult as follows:
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Lemma 7.7 Let AAA ∈ C2AlgR[[λ]]. Then µAAA = (cl(AAAred))
η−1

AAA with ηAAA : cl(AAAred) →
cl(AAA)red given by (93) is an invertible (cl(AAA)red, cl(AAAred))-bimodule in BimodR.

Here (cl(AAAred))
η−1

AAA denotes the algebra cl(AAAred) regarded as a module over itself
with left multiplication twisted by the map η−1

AAA
. By essentially the same com-

putations as in Proposition 7.2 we obtain a similar result for bimodules instead
of algebras:

Lemma 7.8 For every coisotropic (BBB,AAA)-bimodule EEE ∈ CoisoBimodR[[λ]](BBB,AAA)
the map

η(EEE) : (cl(EEEred))
η−1

BBB ∋ cl([x]) 7−→ [cl(x)] ∈ (cl(EEE)red)
ηAAA (102)

is a well-defined isomorphism of (cl(BBB)red, cl(AAAred))-bimodules.

This family of 2-morphisms is in fact a natural transformation:

Lemma 7.9 For any two coisotropic algebras AAA,BBB ∈ C2Bimod0 there is a nat-
ural isomorphism

µ : (µBBB)∗ ◦ (cl ◦ red)BBBAAA =⇒ (µAAA)∗ ◦ (red ◦ cl)BBBAAA (103)

between the functors

(µBBB)∗◦(cl◦red)BBBAAA : C2BimodR[[λ]](BBB,AAA) −→ BimodR(cl(BBB)red, cl(AAAred)) (104)

and

(µAAA)∗ ◦ (red ◦ cl)BBBAAA : C2BimodR[[λ]](BBB,AAA) −→ BimodR(cl(BBB)red, cl(AAAred)),
(105)

given by the family

µ(EEE) = right−1 ◦ η(EEE) ◦ left : µBBB ⊗ cl(EEEred) −→ cl(EEE)red ⊗ µAAA. (106)

of 2-isomorphisms, with η(EEE) as in Lemma 7.8.

Proof: It is left to show that

µBBB ⊗ cl(EEEred) µBBB ⊗ cl(FFFred)

cl(EEE)red ⊗ µAAA cl(FFF)red ⊗ µAAA

idµ
BBB

⊗cl(φred)

µ(EEE) µ(FFF)

cl(φ)red⊗idµ
AAA

commutes for all φ : EEE
BBB AAA

−→ FFF
BBB AAA

. This can be done by a simple computation
on elements. �

With all these lemmas we get a natural transformation of functors between
bicategories.
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Lemma 7.10 The 1-morphisms µAAA ∈ BimodR(cl(AAA)red, cl(AAAred)) from
Lemma 7.7 together with the natural isomorphisms

µ : (µBBB)∗ ◦ (cl ◦ red)BBBAAA =⇒ (µAAA)∗ ◦ (red ◦ cl)BBBAAA (107)

from Lemma 7.9 form a natural transformation

µ : (cl ◦ red) =⇒ (red ◦ cl) (108)

of functors between bicategories.

Proof: The only things left to show are the coherence conditions for natural
transformations between functors of bicategories, see Definition A.3. Again,
this is a simple verification. �

This is not yet everything we need for (100) to commute. We still need to show
that the natural transformation µ is invertible. For this we heavily use the
fact that the 1-morphisms µAAA are given by twisting the left multiplication of
idcl(AAAred) with the algebra isomorphism η−1

AAA
. Thus we can define

µ̂AAA = (cl(AAA)red)
ηAAA (109)

in analogy to Lemma 7.7. Similarly,

µ̂(EEE) = right−1 ◦ η̂(EEE) ◦ left : µ̂BBB ⊗ cl(EEE)red −→ cl(EEEred)⊗ µ̂AAA (110)

with
η̂(EEE) : cl(EEE)red

ηBBB ∋ [cl(x)] 7−→ cl([x]) ∈ cl(EEEred)
η−1

BBB (111)

gives a natural isomorphism

µ̂ : (µ̂BBB)∗ ◦ (red ◦ cl)BBBAAA =⇒ (µ̂AAA)∗ ◦ (cl ◦ red)BBBAAA (112)

in analogy to Lemma 7.9. This yields again a natural transformation of functors
between bicategories.

Lemma 7.11 The 1-morphisms µ̂AAA ∈ CoisoBimodR(cl(AAAred), cl(AAA)red) together
with the natural isomorphisms

µ̂ : (µ̂BBB)∗ ◦ (red ◦ cl)BBBAAA =⇒ (µ̂AAA)∗ ◦ (cl ◦ red)BBBAAA (113)

form a natural transformation

µ̂ : (red ◦ cl) =⇒ (cl ◦ red). (114)

of functors between bicategories.

Now the last thing to show is that µ and µ̂ are indeed inverse to each other: this
is of course to be understood in the sense of natural transformations between
bicategories and hence up to a modification:
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Lemma 7.12 The natural transformations µ : (cl ◦ red) =⇒ (red ◦ cl) and
µ̂ : (red ◦ cl) =⇒ (cl ◦ red) are inverse to each other.

Proof: We need to show that there are invertible modifications Γ: µ̂ ◦ µ ≡≡⇛
idcl◦red and Γ̂ : µ ◦ µ̂ ≡≡⇛ idred◦cl. Hence, we need for any AAA ∈ CoisoBimodR[[λ]]
a 2-isomorphism ΓAAA : µ̂AAA ⊗ µAAA −→ idcl(AAAred). Recall that µ̂AAA = cl(AAA)red

ηAAA and

µAAA = cl(AAAred)
η−1

AAA , thus we get an isomorphism ΓAAA by

µ̂AAA⊗µAAA = cl(AAA)red
ηAAA ⊗ cl(AAAred)

η−1
AAA ≃ cl(AAAred)

(ηAAA◦η−1
AAA

)
= cl(AAAred) = idcl(AAAred),

mapping [cl(a)]⊗cl([b]) to cl([ab]) and with inverse mapping cl([a]) to [cl(1AAA)]⊗
cl([a]). With this isomorphism the diagram

(µ̂BBB ⊗ µBBB)⊗ cl(EEEred) cl(EEEred)⊗ (µ̂AAA ⊗ µAAA)

idcl(BBBred) ⊗cl(EEEred) cl(EEEred)⊗ idcl(AAAred)

(µ̂◦µ)(EEE)

ΓBBB⊗id id⊗ΓAAA

id(cl◦red)(EEE)

commutes. Similarly, we obtain an isomorphism Γ̂AAA by

µAAA ⊗ µ̂AAA = cl(AAAred)
η−1

AAA ⊗ cl(AAA)red
ηAAA ≃ cl(AAA)red

η−1
AAA

◦ηAAA = cl(AAA)red = idcl(AAA)red ,

mapping cl([a]) ⊗ [cl(b)] to [cl(ab)] and inverse mapping [cl(a)] to cl([1AAA ]) ⊗
[cl(a)]. �

Thus we finally see that (100) commutes:

Theorem 7.13 The classical limit on C2BimodR[[λ]] commutes with reduction,
i.e. the diagram (100) given as

C2BimodR[[λ]] C2BimodR

BimodR[[λ]] BimodR

cl

red red

cl

(115)

commutes up to the invertible natural transformations µ and µ̂.

Thinking in geometric terms the Morita equivalence on the classical side is well-
understood. Moreover, Morita equivalence after reduction is just the classical
Morita equivalence. Thus if we want to understand Morita equivalence in
C2BimodR[[λ]] better it might be helpful to examine the functors cl and red

in order to transport knowledge about the classical or reduced side back to
C2BimodR[[λ]].
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Remark 7.14 (Picard groupoids) A first observation is that taking Picard
(bi-)groupoids of all involved bicategories in Theorem 7.13 immediately yields
the commutativity of

Pic(C2BimodR[[λ]]) Pic(C2BimodR)

Pic(BimodR[[λ]]) Pic(BimodR).

cl

red red

cl

(116)

This diagram now opens the doors to investigate the Morita theory of coisotropic
triples both from the deformed and classical point of view. In previous works
like [12, 30, 13, 31] similar diagrams have been used to understand the Morita
equivalence of deformed algebras in terms of their undeformed classical limits
as well as algebras having additional structure preserved by re-fined versions of
Morita theory and their counterparts after forgetting the additional structure.
This proved to be a very efficient way to encode the relevant questions, which, of
course, then have to be answered for classes of examples admitting more specific
information. Thus the above diagram can be understood as the starting point
for investigations of Morita theory of e.g. star products before (the triples) and
after reduction.

A Bicategories

For the convenience of the reader and to explain our conventions, we collect
some basic definitions concerning bicategories, see [3] or [32] for a more modern
treatment.

Definition A.1 (Bicategory) A bicategory B consists of the following
data:

1. A class B0, the objects of B.

2. For any two objects A,B ∈ B0 a category B(B,A). The objects
B1(B,A) = Obj(B(B,A)) of this category are called 1-morphisms from
A to B. Morphisms φ : f −→ g between 1-morphisms f, g ∈ B1(B,A) are
called 2-morphisms from f to g. The set of such 2-morphisms is denoted
by B2(g, f).

3. For any three objects A,B,C ∈ B0 a functor

⊗CBA : B(C,B) ×B(B,A) −→ B(C,A), (117)

called the composition or tensor product of 1-morphisms.

4. For each object A ∈ B0 a 1-morphism IdA ∈ B1(A,A), called the identity
at A.
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5. For any four objects A,B,C,D ∈ B0 a natural isomorphism

assoDCBA : ⊗CBA ◦ (⊗DCB × id) =⇒ ⊗DCB ◦ (id×⊗CBA) , (118)

called the associativity.

6. For any two objects A,B ∈ B0 natural isomorphisms

leftBA : ⊗BBA ◦ (idB × id) =⇒ id (119)

and

rightBA : ⊗BAA ◦ (id× idA) =⇒ id, (120)

called the left and right identity, respectively.

These data are required to fulfill the following coherence conditions:

1. Associativity coherence: the diagram

((k ⊗D h)⊗C g)⊗b f (k ⊗D (h⊗C g))⊗B f

(k ⊗D h)⊗C (g ⊗B f) k ⊗D ((h⊗C g)⊗B f)

k ⊗D (h⊗C (g ⊗B f))

asso(k,h,g)⊗B id

asso(k⊗Dh,g,f) asso(k,h⊗Cg,f)

asso(k,h,g⊗Bf) id⊗Dasso(h,g,f)

(121)
commutes for all k ∈ B1(E,D), h ∈ B1(D,C), g ∈ B1(C,B) and f ∈
B1(B,A).

2. Identity coherence: the diagram

(g ⊗B IdB)⊗B f g ⊗B (IdB ⊗Bf)

g ⊗B f

asso(g,IdB ,f)

right(g)⊗B id id⊗B left(f)
(122)

commutes for all g ∈ B1(C,B) and f ∈ B1(B,A).

Note that we simplify ⊗CBA to ⊗B and drop indices of the involved natural
isomorphisms whenever there is no possibility of confusion. Recall that in
bicategories there is a way to compose 1-morphisms with 2-morphisms. Let

A B C
f

g

g′

φ (123)
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be given, then we get a 2-morphism f∗φ = φ⊗B idf : g⊗ f −→ g′ ⊗ f between
the (horizontal) compositions of f and g, and f and g′, respectively. In the
same way, given

B C D

g

g′

φ
h . (124)

one defines a 2-morphism h∗φ = idh⊗Cφ : h⊗ g −→ h⊗ g′ between the (hori-
zontal) compositions. These compositions can also be seen as functors between
the appropriate hom-categories and are sometimes called whiskering.
As morphisms of bicategories we use what is often called a weak (2-)functor
or pseudofunctor. Note that there are also weaker notions like lax and oplax
functor which, however, will not suffice for our purposes. In the original work
Benabou calls the following version a homomorphism of bicategories [2]:

Definition A.2 (Functor of bicategories) Let A and B be two bicate-
gories. A functor F from A to B, written F : A −→ B, consists of the following
data:

1. A map F : A0 −→ B0 mapping objects of A to objects of B.

2. For any two objects A,B ∈ A0 a functor

FBA : A(B,A) −→ B(FB,FA). (125)

3. For each three objects A,B,C ∈ A0 a natural isomorphism

mCBA : ⊗FB ◦ (FCB × FBA) =⇒ FCA ◦ ⊗B. (126)

4. For any object A ∈ A0 a 2-isomorphism

uA : IdFA −→ FAA(IdA). (127)

These data are required to fulfil the following coherence conditions:

1. Composition coherence: the diagram

Fh⊗FC (Fg ⊗FB Ff) (Fh⊗FC Fg)⊗FB Ff

Fh⊗FC F(g ⊗B f) F(h⊗C g)⊗FB Ff

F(h⊗C (g ⊗B f)) F((h⊗C g)⊗B f)

asso

idFh ⊗m(g,f) m(h,g)⊗idFf

m(h,g⊗Bf) m(h⊗Cg,f)

F(asso)

(128)

commutes for all h ∈ A1(D,C), g ∈ A1(C,B) and f ∈ A1(B,A).
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2. Identity coherence: the diagram

IdFB ⊗FBFf Ff Ff ⊗FA IdFA

F(IdB)⊗FB Ff Ff ⊗FA F(IdA)

F(IdB ⊗Bf) Ff F(f ⊗A IdA)

left(Ff)

uB⊗FB idFf

id

right(Ff)

idFf ⊗FAuA

m(IdB ,f) m(f,IdA)

F(left(f)) F(right(f))

(129)

commutes for all f ∈ A1(B,A).

Composition of functors of bicategories is defined by composing the obvious
maps, functors and natural transformations. Similar to usual categories there
is also a notion of natural transformation between functors. But now we have
to incorporate the higher morphisms.

Definition A.3 (Natural transformation) Let F,G : A −→ B be func-
tors between bicategories A and B. A natural transformation η from F to G,
written η : F =⇒ G, consists of the following data:

1. for each A ∈ A0 a 1-morphism ηA : FA −→ GA in B.

2. for each 1-morphism f ∈ A1(B,A) a 2-isomorphism

ηf : ηB ⊗FB Ff −→ Gf ⊗GA ηA, (130)

such that for any A,B ∈ A0 the 2-morphisms ηf are the components of
a natural isomorphism

ηBA : (ηB)∗ ◦ FBA =⇒ (ηA)
∗ ◦ GBA. (131)

These data are required to fulfil the following coherence conditions:
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1. The diagram

ηC ⊗FC (Fg ⊗FB Ff) ηC ⊗FC F (g ⊗ f)

(ηC ⊗FC Fg)⊗FB Ff

(Gg ⊗GB ηB)⊗FB Ff

Gg ⊗GB (ηB ⊗FB Ff)

Gg ⊗GB (Gf ⊗GA ηA)

(Gg ⊗GB Gf)⊗GA ηA G(g ⊗ f)⊗GA ηA

id⊗mF

asso−1

η(g⊗f)

η(g)⊗id

asso

id⊗η(f)

asso−1

mG
⊗id

(132)

commutes for all f ∈ A1(B,A) and g ∈ A1(C,B).

2. The diagram

ηA ⊗FA IdFA ηA IdGA⊗GAηA

ηA ⊗FA F(IdA) G(IdA)⊗GA ηA

right

id⊗uA

left−1

uA⊗id

ηIdA

(133)

commutes for all A ∈ A0.

For bicategories there is also the possibility to relate natural transformations
via so called modifications:

Definition A.4 (Modification) Let A and B be bicategories. Let further-
more η : F =⇒ G and µ : F =⇒ G be two natural transformations between func-
tors F,G : A −→ B. A modification Γ: η ≡≡⇛ µ is an assignment that assigns to
every object A ∈ A0 a 2-morphism ΓA : ηA −→ µA such that for each morphism
f ∈ A1(B,A) the diagram

ηB ⊗FB Ff Gf ⊗GA ηA

µB ⊗FB Ff Gf ⊗GA µA

ΓB⊗id

η(f)

id⊗ΓA

µ(f)

(134)

commutes.
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