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ABSTRACT. We prove an explicit central value formula for a family of
complex L-series of degree 6 for GLo x GL3 which arise as factors of
certain Garret—Rankin triple product L-series associated with modu-
lar forms. Our result generalizes a previous formula of Ichino involving
Saito—Kurokawa lifts, and as an application we prove Deligne’s con-
jecture stating the algebraicity of the central values of the considered
L-series up to the relevant periods.
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1 INTRODUCTION

Explicit central value formulas for L-series associated with modular forms have
always been of interest in number theory. In this paper we prove a cen-
tral value formula for certain L-series of degree 6, generalizing a result of
Ichino [Ich05], which involves pullbacks of Saito-Kurokawa lifts. This can be
seen as yet another evidence of the key role that pullbacks of Siegel Eisenstein
series or cusp forms play in the proof of the algebraicity of critical values of
certain automorphic L-functions. Previous instances of this phenomenon are
found for example in the works of Garrett [Gar84, Gar87], Bocherer [B6ce85],
or Bocherer—Furusawa—Schulze-Pillot [BFSP04], or also in a similar flavour in
Ichino—Tkeda [I108], where special values of certain triple product L-series are
related with pullbacks of hermitian Maass lifts. All these results, as well as the
result in this paper, fit within the range of the ‘refined global Gross—Prasad
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conjecture’ (cf. [IT10]), reflecting the intimate relation between certain periods
of automorphic forms on special orthogonal groups and L-values.

In order to describe the setting considered in this article, let £ > 1 be an odd
integer, and let f € S (Io(Ny)) and g € Sp¢Y (o(Ny), x) be two normalized
newforms of weights 2k and k + 1, and levels Ny and N, respectively. We
assume f has trivial nebentypus, whereas g has nebentypus x (hence y is a
Dirichlet character modulo N;). Write Vi(f) (resp. V(g)) for the compatible
system of ¢-adic Galois representations attached to f (resp. ¢), and denote by
Ad(Ve(g)) the so-called adjoint representation of Vy(g). In this paper we are
concerned with the complex L-series L(f ® Ad(g), s) of degree 6 for GLy x GL3
associated with the tensor product Vo(f) ® Ad(Vi(g)). This L-series can be
defined by an Euler product for Re(s) > 0, whose local factors at primes
p{ NyNy are given as in [Ich05, p. 559]. The completed L-series

A(f ® Ad(g),s) :=Tc(s)Te(s + k)Tc(s — k+ 1)L(f @ Ad(g), s),

where I'c(s) = 2(27)°T'(s) is the usual complex Gamma function, admits
analytic continuation to the whole complex plane and satisfies a functional
equation relating its values at s and 2k — s, with sign e(f ® Ad(g)) € {£1}.
Under certain hypotheses, which in particular guarantee that the sign e(f ®
Ad(g)) is +1, the main result of this paper is an explicit central value formula
for A(f ® Ad(g), k). As an immediate corollary, we deduce the algebraicity of
such value up to a suitable period, as expected by Deligne’s conjecture.

As the eager reader might have already suspected, the L-series L(f ® Ad(g), s)
is closely related to a suitable triple product Garret—-Rankin L-series. Indeed,
let f/ := f ® x~' be the twist of f by the inverse of the character y. By
construction, the motive associated to the triple tensor product Vo(f')®@Vi(g)®
Ve(g) is self-dual, and hence the Garret—Rankin L-series L(f'®g®g, s) attached
to it (or rather, its completed L-series) satisfies a functional equation relating its
values at s and 4k — s, with sign e(f’, g,¢9) € {£1}. In view of the isomorphisms

Vi(g) ® Vilg) ~ det(V(g)) ® Sym*(Vi(g)) ~ det(Vi(g)) ® (1 @ Ad(Vi(g))) ,

where Sym? (Vi(g)) stands for the symmetric square representation of V(g) and
we use that Sym?(Vy(g)) ~ Ad(Vi(g)) @ det(Vi(g)), Artin formalism provides
a factorization of complex L-series

L(f'®g®g,s) = L(f,s — k)L(f ® Ad(g), s — k). (1)

It is well-known that the completed L-series A(f,s) := T'c(s)L(f,s) satisfies
a functional equation relating its values at s and 2k — s, with sign e(f) €
{£1}, thus the central critical point for the shifted L-series A(f,s — k) is at
s = 2k. Concerning the central values, suppose that A(f ® Ad(g), k) is non-
zero. If A(f, k) is non-zero as well, then one can use (1) straightforward to
express the central value A(f ® Ad(g), k) as a ratio between the central values
A(f' ® g® g,2k) and A(f, k). When A(f, k) vanishes, however, the identity in
(1) is not directly giving a way to obtain an expression for A(f ® Ad(g), k).
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Despite the above relation to triple product central L-values, the approach in
this article to obtain an explicit central value formula for A(f ® Ad(g), k) does
not require determining triple product central L-values. Instead, as pointed out
at the beginning of the introduction, we generalize a result of Ichino involving
Saito—Kurokawa lifts. As a motivation towards our result, suppose in the pre-
vious discussion that Ny = N, = 1, hence x is trivial as well and f and g are
normalized newforms for the full modular group I'g(1) = SL2(Z). In this case,
f'=f,and (1) reads

L(f®g®g,s)=L(f,s—k)L(f ® Ad(g), s).

Our choice of weights makes that e(f, g,g) = e(f) = —1, and therefore the sign
in the functional equation for A(f ® Ad(g), s) is +1. In this particular setting,
Ichino proved in [Ich05] an explicit formula for A(f ® Ad(g), k), involving a
half-integral weight modular form h € Sj11/2(I'0(4)) associated with f by the
Shimura correspondence and its Saito-Kurokawa lift F' € Si41(Spy(Z)), which
is a Siegel modular form of degree 2. In terms of these lifts, Ichino’s formula

o o f) I i
_ ok ) \HXHag X g
=2 (h, ) (g.9> 7 .

where Fjy; 3 denotes the restriction (or ‘pullback’) of F' to H x H, embedded
‘diagonally’ in Siegel’s upper half space Hs. Our main result can be seen
as a generalization of (2), when removing the assumption that Ny = N, = 1.
However, instead of extending Ichino’s arguments, our strategy relies on a more
recent result by Qiu [Qiul4].

Indeed, there is a decomposition formula for the SO(4)-period P associated
with (the restriction of) a Saito-Kurokawa representation of PGSp, and an ir-
reducible cuspidal unitary representation of GSO(4). Here, GSO(4) and SO(4)
stand for the group of similitudes and the special orthogonal group of a certain
4-dimensional (split) quadratic space, and PGSp, is identified with the special
orthogonal group of a suitable 5-dimensional quadratic space. The proof of
this decomposition result by Qiu in fact reduces to a decomposition formula
for a global SLo-period Q, proved in the same article. This SLo-period, and
the interplay between P and Q, plays a central role in the proof of our main
result.

To illustrate our strategy, consider again the general setting in which f and g
are of level Ny and IV, respectively, and  is not necessarily trivial. Then let 7
(resp. T) be the automorphic representation of PGL3(A) (resp. GL2(A)) asso-
ciated with f (resp. ¢g). The Shimura correspondence, settled and investigated
in detail by Waldspurger [Wal80, Wal81] as a theta correspondence for the pair

A(f @ Ad(g), k)

(PGLg, SL2), associates to 7 (and a choice of non-trivial additive character of
A/Q) a near equivalence class of automorphic representations 7 of the double
metaplectic cover SLy (A) of SLy(A). Classical Shimura lifts of f give rise to
automorphic forms in the representations 7 arising in this theta correspon-
dence. Associated with the representations 7, 7, and a Weil representation w
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depending on the fixed additive character of A/Q, there is a (global) SLa-period
functional

Q:TRTRTRITRWRw — C

(cf. Section 6 for its precise definition), which by virtue of [Qiul4, Theorem 4.5]
decomposes (when it is non-zero) up to certain special L-values as a product
of local periods

Ty : Ty @ Ty Ty @ Ty @y @y, — C

defined by integrating local matrix coefficients. Among the L-values showing
up in this decomposition formula, one finds L(1/2, 7 x adr), which corresponds
with the central value A(f ® Ad(g), k) that we are interested in. Moreover, the
non-vanishing of the functional Q is essentially controlled by the non-vanishing
of the special value L(1/2,7 x adr) (cf. Propositions 6.2 and 6.3). Hence,
one can obtain an explicit expression for A(f ® Ad(g),k) by finding a test
vector on which Q does not vanish, and computing the local periods Z,, when
evaluated at such test vector. Besides, as hinted above, the global period Q is
related to the SO(4)-period P, when replacing the automorphic representations
7 and 7 with automorphic representations IT and Y, of GSp, and GSO(4)
respectively, obtained from 7 and 7 via theta correspondence. It is via this
relation with P that the global period Q evaluated at the test vector can
be interpreted as a classical Petersson product, therefore leading to the aimed
expression for A(f®Ad(g), k) in purely classical terms. For example, in Ichino’s
setting described above, this global automorphic period is the responsible of the
factor [(Flyxp, g X g)|? appearing in (2). The main novelty of our work is the
computation of the above mentioned local SLo-periods at ramified primes. It is
important to remark that these local SLy-periods have their own interest, and
their computation has potential applications in the study of the subconvexity
problem for the family of automorphic L-functions of the form L(s, 7w x adr).
This will be explored in a forthcoming work.

Although the strategy that we have just sketched works in a rather general
setting, for the sake of clarity and to simplify the (already involved) local
computations we will impose some assumptions on f and g. Most importantly,
we will assume that

N = Ny = N, is odd and square-free. (SF)

One could easily relax this assumption to require only that Ny and N, are
square-free (but not necessarily equal), at the cost of dealing with more cases
when performing the computation of the local periods Z, alluded to above.
However, we content ourselves with illustrating the method under the assump-
tion (SF).

Besides, let M denote the conductor of the Dirichlet character y. Thus M is
a positive divisor of N, and by (SF) M is square-free as well. If we write x =
le a X(p)> Where x(py is a Dirichlet character modulo p for each prime p | M,
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then we assume that
X(p)(—=1) = —1 for all primes p | M. (H1)

In particular, this implies that M is the product of an even number of primes.
We use hypothesis (H1) to apply a generalized Kohnen formula due to Baruch
and Mao [BMO07], recalled in Theorem 2.1 below. Finally, it is well-known that
the sign e(f) € {£1} in the functional equation for L(f,s) might be written
as a product of local signs e(f) = [], ev(f), where v varies over the rational
places, e,(f) = (1/2,m,) € {£1} for all v, and &, (f) = +1 for all v { Noo. We
will assume that

ep(f) = —1 for all primes p | M. (H2)

Under our previous assumptions, hypothesis (H2) becomes crucial for the non-
vanishing of the period functional Q (cf. Section 6). Observe that if x is
assumed to be trivial, then M = 1 and hypotheses (H1) and (H2) are empty.
In fact, for x trivial, the arguments in this paper would be much less technical
(for example, it would be enough to use Kohnen’s formula instead of its gen-
eralization by Baruch—Mao, computations with the Saito—Kurokawa lift would
be simpler, and the whole Section 8 would not be needed) and consequently
the length of this note would be also considerably reduced.

A comment on signs is now in order. Indeed, the assumption that k is odd
implies e, (f) = —1, and since the triple of weights (2k, k+1, k+1) is ‘balanced’
(i.e. none of the three weights is at least the sum of the other two) one also has
Eoo(f' ® g ® g) = —1. Besides, the assumption (SF) together with hypothesis
(H2) imply, by [Prad0, Section 8], that [[, xep(f) = [I,nen(f’ ® 9 ® 9).
Therefore, e(f) = e(f' ® g ® g), and it follows from (1) that the sign in the
functional equation for A(f ® Ad(g), s) is +1.

Now we can finally state our main result. To do so, let S,:;’I%J (4NM, x) denote
Kohnen’s subspace of newforms of weight k + 1/2, level 4NM and character
X (see Section 2.2 for details). Under assumptions (SF) and (H1), it follows
from [BMO07, Theorem 10.1] (cf. Theorem 2.1 below) that the subspace of
S,:‘ﬁ?; (4N'M, x) consisting of newforms whose eigenvalues for the Hecke oper-
ators at primes p f 2N coincide with those of f ® x is one-dimensional. Let h be
any non-trivial element in this one-dimensional subspace, thus h is a Shimura
lift of f (or of f® x), and let F\ € Sgy1(T (N),x) be the Saito-Kurokawa
lift of h, as defined in Section 2.3; this is a Siegel cusp form of degree 2, weight
k 4+ 1, Hecke-type level 1"(()2) (N), and character x. One may think of F, as a

Saito—Kurokawa lift of f ® x.

THEOREM 1.1. Let k,N > 1 be odd integers. Let f € S7Z"(I'o(N)) and g €
St (To(N), x) be normalized newforms, and assume (SF), (H1), and (H2).
If h and F,, denote a Shimura lift of f and its Saito-Kurokawa lift as explained
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above, then

_ (f, ) KA @ Unr) Fyppxas 9 X 9)
A(f @ Ad(g), k) = 2F1=vD (N, M, ,
( @) 8) ( )<h, h) (9,9)?
3)
where Upr = leM U, denotes the product of the usual p-th Hecke operators
Up, v(M) denotes the number of prime divisors of M, and

C(N,M,x) =[x *M* *N " [+ 1> [0+ D).
plN p|M

In particular, under the assumptions of the theorem A(f ® Ad(g),%k) > 0.

REMARK 1.2. Let f and g be as in Theorem 1.1, and suppose that x is trivial.
Then M = 1, and hypotheses (H1) and (H2) hold trivially, hence the central
value formula (3) reads

_ ok+1par—1 2<faf>|<ﬂ7‘l><7{agxg>|2
A(f © Ad(g), k) = 2"'N };[V(pH) o (g4

This formula coincides with the one obtained by S.-Y. Chen in [Chel9], which
appeared after a first version of this paper was made available. Instead of using
Qiu’s decomposition theorems and computing local SLa-periods, Chen general-
izes straightforward the original strategy of Ichino. Besides considering non-
trivial nebentype character, as commented above the novelty of our approach is
precisely the computation of local SLo-periods at ramified primes, which have
their own interest and applications to other problems. If we further restrict to
N =1, observe that we obviously recover Ichino’s formula in (2).

REMARK 1.3. If the weight of g is assumed to be £ + 1 with £ > k odd, in-
stead of k 4+ 1, then all the arguments to prove the above central value formula
work through by replacing h and F, with suitable nearly holomorphic forms ob-
tained from these by applying the relevant derivative operators, and modifying
accordingly the local computation for the archimedean period T, (cf. Section

9.2).
Theorem 1.1 has an immediate application to Deligne’s conjecture [Del79]:

COROLLARY 1.4. Let k, N > 1 be odd integers, and f, g be as in Theorem 1.1.
If Q(f,g) denotes the number field generated by the Fourier coefficients of f
and g, then

alg .__ M

where ¢ (f) denotes the period associated with the cuspidal form f by Shimura
as in [Shi77].

€Q(f,9),
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REMARK 1.5. When N = 1, this corollary follows of course from Ichino’s
formula. And in line with Remark 1.8, when N =1 and f and g have weights
2k and €41, respectively, with £ > k odd integers, the algebraicity of the relevant
central value has been recently shown by H. Xue in [Xue], working with Jacobi
forms instead of Saito—Kurokawa lifts.

Let us close this introduction by pointing out some applications of the present
work. One direction that we want to explore aims for a p-adic analogue of the
factorization of complex L-series given in (1). Even though one could define
a two-variable p-adic L-function associated with f ® Ad(g) by making use of
the above hinted relation of L(f ® Ad(g),s) with suitable triple product L-
series, the explicit central value formula provided by Theorem 1.1 gives an
alternative approach for the construction of such a p-adic L-function, which is
independent of any triple product p-adic L-function. Namely, one can directly
interpolate the explicit expression in Theorem 1.1 (or rather the algebraic parts
as in Corollary 1.4) as f and g vary in Hida families. With this p-adic L-
function at hand, the proof of a factorization of p-adic L-functions parallel to
(1) will require comparing two Euler systems. Namely, the one associated to
generalized Gross—Kudla—Schoen diagonal cycles in the product of three Kuga—
Sato varieties, and the one arising from Heegner points. This would extend the
factorization result of Dasgupta in [Das16] establishing Greenberg’s conjecture
for the adjoint representation, where instead of a triple product L-series one
considers a Rankin L-series of two cusp forms twisted by a Dirichlet character.
In a completely different direction, the computation of local SLy-periods lead-
ing to the explicit central value formula in Theorem 1.1, when relaxing the
assumption (SF) to requiring only that Ny and N, are square-free, provides
an important tool in the study of the subconvexity problem for the family of
automorphic L-functions of the form L(s,7m x adr). This problem is related
to the limiting mass distribution of automorphic forms (‘arithmetic quantum
unique ergodicity’). See for instance [Nelll], [Nel19], and references therein.

1.1 OUTLINE OF THE PAPER

Although the strategy of the proof of Theorem 1.1 has already been sketched
above, let us briefly explain the organization of this paper. Sections 2 and 3
are devoted to recall and set some necessary background material concerning
classical modular forms and automorphic forms. Theorem 2.1, due to Baruch—
Mao, will play an important role later on in the paper. After this, we review
in Section 4 the theory of quadratic spaces, theta functions, and theta lifts,
describing also explicit models for quadratic spaces in low dimension that are
used in this paper. Section 5 focuses in the three theta correspondences that
are involved in the proof of the main result of this paper. In particular, we
prove two explicit identities for theta lifts (see Propositions 5.1 and 5.10) for the
theta correspondences between GLs and GSO(4), and between SL, and PGSp,,
respectively, by adapting the ones in [II08, Section 5] and [Ich05, Section 7].
In Section 6 we can already prove Theorem 1.1, and deduce Corollary 1.4,
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although the computation of the local periods Z, is relegated to Sections 7, 8,
and 9, which constitute the most technical part of this article.

1.2 NOTATION AND MEASURES

Before closing this introduction, we collect here some notations to be used
throughout the paper. We will denote by A = Ag the ring of adeles over Q.
We will also write Z = Hp Z,, for the profinite completion of Z, which will be
regarded as a subring of A.

We write ¢ for Riemann’s zeta function, with the usual Euler product { =
Hp (p, and (g will stand for the completed Riemann zeta function defined by
Co(s) := T'r(s)¢(s), where T'g(s) := 7~*/2T'(s/2) and I'(s) denotes the Gamma
function. We also put I'c(s) := 2(27)~°T'(s).

If G is a connected reductive group over Q, we equip G(A) with the Tamagawa
measure dg. The volume of [G] := G(Q)\G(A) with respect to this measure is
usually referred to as the Tamagawa number of G. For GLa(A), we write dg =
I, dgv as a product of local Haar measures, satisfying vol(GL2(Z,),dg,) = 1
for all finite primes p. In the case of SLa(A), we choose the local Haar measures
to satisfy vol(SLa(Z,)) = (,(2)~! for all finite primes p.

If V' is a finite-dimensional quadratic space over Q, with bilinear form (, ),
and ¢ is an additive character of A/Q, then we consider the Haar measure
on V(A) which is self-dual with respect to 1, unless otherwise stated. That
is to say, the Haar measure such that F(F(¢))(z) = ¢(—z), where F(x) =
fv(A) o(y)Y((x,y))dy is the Fourier transform of ¢. The orthogonal group O(V)
is not connected. We choose a measure on O(V)(A) as follows: first, we equip
SO(V)(A) with the Tamagawa measure; secondly, at each place v we extend the
local measure on SO(V)(Q,) to the non-identity component of O(V)(Q,); and
finally, we consider the measure dh, on O(V)(Q,) to be half of this extended
measure, and define dh = [[, dh,,. This is the Tamagawa measure on O(V)(A),
and [O(V)] = O(V)(Q)\O(V)(A) has volume 1 with respect to dh.

Continue to consider a finite-dimensional quadratic space V as before, and
a non-trivial additive character of A/Q. If S(V(A)) denotes the space of
Bruhat—Schwartz functions on V(A), and ¢1, ¢2 € S(V(A)), we set (¢1, p2) =
fV(A) ¢1(x)d2(x)dx, where dz is the Haar measure that is self-dual with re-

spect to . If 7 is an irreducible cuspidal unitary representation of G(A), and
f1, f2 € 7, we define the pairing (f1, f2) to be:

) Jisp [1(9)F2(9)dg, if G = SLy;

ii) f[PGLZ] f1(9) f2(g)dyg, if G = GLg;

iii) f[G] f1(g9) f2(g)dyg, if G =SO(V) or O(V).

Finally, let p be a prime, and fix a non-trivial additive character ¢, : Q, = C*
of conductor Z,. If p : Qf — C* is a character such that u(p) = 1 (or
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equivalently, a character of Z; ), and a € Q,, we define the Gauss sum

&(a,u) = Y(ax)p(x)de,

Zy

where dx is the Haar measure which is self-dual with respect to 1, normalized
so that Z, has volume 1. It is well-known that ®(a, ) = 0 unless p = 1 or
ord,(a) = —cond(u), where ¢ = cond(u) is the smallest positive integer such
that p is trivial on 1 + p°Z,. More precisely, we have

1—p ! if u=1, ordy(a) > 0,
—p! if u=1, ordp(a) =

&(a,pu) =<0 if u=1, ord (a)<
la|=2e(1/2, p~ Y~ Y(a) if p # 1, ord,(a) = —cond(u)
0 if p# 1, ordy(a) # —cond(u).

Here, £(1/2, 1) is the (local) e-factor associated with p~1, which satisfies

(among other properties) e(1/2, u)e(1/2, p=1) = p(-1).
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2 MODULAR FORMS

The main purpose of this section is to recall and set up the notation regarding
classical modular forms, with a particular focus on some features concern-
ing distinct liftings between spaces of classical modular forms of different na-
ture (namely, modular forms of integral weight, modular forms of half-integral
weight, and Siegel modular forms of degree 2) that will be used in the paper.

2.1 INTEGRAL WEIGHT MODULAR FORMS

Let H = {z € C: Im(z) > 0} be the complex upper half plane, on which the
group GLJ (R) of real 2-by-2 matrices with positive determinant acts by

a b az+b
cZ = .
c d cz+d
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Let £ > 1 be an integer, and consider the usual action of GLJ (R) on the space
of holomorphic functions g : H — C defined by

9le)(z) = j(v, 2) " det()"?g(y2),

where j(v,z) = cz+dify=(24). If N > 1 is an integer and x : (Z/NZ)* —
C* is a Dirichlet character modulo N, we write My (N, x) for the C-vector space
of modular forms of weight ¢, level N and nebentype character x. Namely, the
space of holomorphic functions g : H — C satisfying

gle[y] = x(7)g for all v € To(N),

together with the usual holomorphicity condition at the cusps. Here, T'o(IN)
denotes the level N Hecke-congruence subgroup of I'g(1) = SLa(Z),

rO(N)z{(‘CL Z)GSLQ(Z):CEO (modN)},

on which y induces a character, which we still denote x by a slight abuse of
notation, through the rule
a b
( e d > — x(d).

We denote by S¢(N,x) € My(N,x) the subspace of cusp forms, namely the
subspace of those modular forms which vanish at all the cusps. If g1,90 €
My(N, x), and at least one of them belongs to Sp(IV, x), then we consider the
Petersson product of g; and go defined as

1
SLy(Z) : To(N)]

(91,92) == [ /F o 91(2)g2(2)y" 2dady (2 = z +iy).

If d is a positive integer, we define operators V; and Uy by

d—1 )
Vag(z) :=dg(dz), Uag(z):= ézg (z —611—3) .

j=0
Then the classical Hecke operators T}, for primes p t N, are expressed in terms
of V,, and U,: if g € My(N,x), then Tpg = Upg + x(p)p*~2Vpg. A cusp form
g € Se(N,x) is said to be a Hecke eigenform if g is an eigenvector for all the

Hecke operators T}, for pt N, and U,, for p | N.
If g € My(N, x), recall that one disposes of a g-expansion (at the infinity cusp)

9(g) =Y _alg,n)q".

n>0

If g is a cusp form, then a(g,0) = 0, and we say g is normalized if a(g,1) = 1.
If g is a normalized, new cuspidal Hecke eigenform, then T,9 = a(g,p)g for
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all primes p. And furthermore, g is also an eigenvector for the Atkin—Lehner
involutions W), at each prime p | N (cf. [AL70] for details, especially Theorem
3).

If X is a Dirichlet character modulo M and g € My(N, x), then we write g ® A
for the unique modular form in My(NM?, x\?) with ¢ expansion

> Amalg,n)q".

n>0

For a careful study of the minimal level of g ® A, at least for new forms, we
refer the reader to [AL7S].

When x = 1 is the trivial character, we will write Sy(N) := S¢(N,1). If
[ € Se(N) has g-expansion ) . anq", then we write

L(f,s) = Z ann”°

n>0

for the L-series associated with f. This Dirichlet series is well-known to con-
verge for Re(s) > 14 ¢/2, and further it extends analytically to a holomorphic
function on C. The completed L-series A(f,s) := I'c(s)L(f, s) satisfies a func-
tional equation of the form

A(f,8) = e(f)NP2A(f, 0 = 5), (4)

where e(f) € {£1}. If f is a new eigenform, then L(f,s) can be expressed as
an Euler product, namely

L(f,s) = [[(1 = app™ +epp"'p2) 7,
p

where e, = 0 for p | N, and e, = 1 otherwise.

2.2 HALF-INTEGRAL WEIGHT MODULAR FORMS

We review briefly some aspects of the theory of half-integral weight modular
forms, initiated by Shimura [Shi73] and further studied by Kohnen [Koh80,
Koh82, Koh85] and many others (see, e.g. [KT04, BM07]).

For vy = (%) € Ty(4) C SL2(Z) and z € C, define

i) = (5) el@ez+a) 2,

where (—) is the Kronecker symbol as defined in [Shi73, p.442], and €(d) equals 1
if d =1 (mod 4) and —/—1ifd = 3 (mod 4). Observe that j(v, 2)* = j(v, 2)2.
Let £ > 1 be an integer, N be an odd positive integer, and x be an even
Dirichlet character modulo N. Consider the space Sy11/2(4N,x) of holomor-
phic functions h : H — C satisfying

hW@ﬂ%d%“M@M@hﬂmv<Z Z)em@N)
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and vanishing at the cusps of I'g(4N). The Petersson product of two cusp
forms hy and hy in Sy 1/2(4N, x) is defined, similarly as in the case of integral
weight, as

1 sy -
(s ha) =t o (av] /mmw m@ha(Ely " dedy (2= o+ i)

It is well-known that every cusp form h € Sii1/2(4N,x) admits a Fourier

expansion of the form
h(z) = Z c(n)q™.

n>1

One defines Kohnen’s plus subspace S;H/Q(ALN, X) C Skt1/2(4N, x) as the sub-

space of those cusp forms whose Fourier expansion is of the form

h(z) = Z e(n)q™.
n>1,
(—1)*n=0,1(4)

Jr
k+1/2
ized as the eigenspace of a certain hermitean operator satisfying a quadratic

equation.

Finally, we recall also that for each prime p { 2N there is a Hecke operator T,
acting on the space Syy1/2(4N, x) (see [Koh82, Eq. (11)], [KT04, Eq. (1-6)]);
on Fourier expansions, it is given by sending . -, ¢(n)g" to

By virtue of [Koh82, Proposition 1], the space S (4N, x) can be character-

> (C(PQ”) + (%) x(p)p"~e(n) + x(p)Qp%‘lc(n/pQ)) q",

n>1

where we read c(n/p?) = 0 if p? { n.

Shimura’s correspondence establishes lifting maps CIQNJ( from S;+1/2(4N,X)

to the space Sar(N,x?) of cusp forms of weight 2k, level N and nebentype
character x2, which depend on the choice of a (fundamental) discriminant D.
When the character y is trivial and N is square-free, there is a well-behaved
theory of new forms of half-integral weight, and a linear combination of the
lifting maps C,f n Provides an isomorphism

STy (AN) = S5Ev(N)

commuting with the action of Hecke operators. In particular, for each nor-
malized newform f € S7"(N) there is a unique half-integral weight cusp form

h e S,:’ﬁjg(élN), up to constant multiples, such that h|T},> = a(p)h, where a(p)
+,new

is the p-th Fourier coefficient of f. Moreover, If h € Sk+1/2 (4N) corresponds

to f € SPEY(N) under this isomorphism, then the |D|-th Fourier coefficient
¢(|D]) of h is related to the special value L(f, D,k) of the complex L-series
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associated to f twisted by the quadratic character yp, by Kohnen’s formula
(cf. [Koh85, Corollary 1]):

e(DDE ooy (=111 a L. D.K)
N B e T

where v(N) is the number of prime divisors of N. However, this formula is
valid only for discriminants D such that (—1)*D > 0, and (%) = wy for all
prime divisors £ of N. Here, wy denotes the eigenvalue of the ¢-th Atkin—Lehner
involution acting on f.

In general, the lifting maps C’?JV»( : S,:'+1/2(4N,X) — Sor (N, x?) are given in

terms of Fourier expansions by the recipe (see [KT04, Section 3], for instance)

> et X (X (F) wadtwoye) | o o

n>1, n>1 \ d|n
(—=1)*n=0,1(4)

(5)

Suppose from now on that f € S5 (N) is as in the introduction; in particular,
k, N > 1 areodd, and N is square-free. Let also x be an even Dirichlet character
modulo N, of conductor M | N, and write y = HP\M X(p) through the canonical
isomorphism (Z/MZ)* ~ ] (Z/pZ)*, where each X ;) is a Dirichlet character
modulo p. For each prime p | N, let w, € {£1} be the eigenvalue of the p-
th Atkin—Lehner involution acting on f, and define ©(N, M) to be the set of
fundamental discriminants

. D . N (D .
{D<0fund. discr. : (5) =wp, if p | U’ (;) = —wp 1fp|M}. (7)

Besides, consider the twisted cusp form f ® y, which by [AL78, Theorem 3.1]
belongs to SF¢* (N M, x?), and define a subspace of Slj+1/2 (4N M, x) by setting

S,jﬁj;”(élNM, X; f@x) = {h €Sk, ,(4NM,X) : hT)2 = ay(p)h for pt 2N},

where a, (p) denotes the p-th Fourier coefficient of f®y. The lifting maps ¢ ,5 Nx

map SL’_??T;(ALNM, X; f ® x) to the one-dimensional subspace of Sax(N M, x?)
spanned by the new form f ® x. The theorem below follows from [BMO07,

Theorem 10.1] (cf. loc. cit. for a slightly more general statement).

THEOREM 2.1 (Baruch-Mao). Suppose that x ,)(—1) = —1 for allp | M. Then
the space

Siihss ANM, x; f® x) C S[195 (AN M, x)

is one-dimensional. Moreover, if h € S;jﬁjg(élNM,x;f ® X) s a non-zero

element, with Fourier expansion h = c¢(n)q™, and D € D(N, M), then

eUDDE ey =D s p \ LD, K)
oy =2 L S Ty ®

pIM
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The identity in (8) is a generalization of Kohnen’s formula (5), relating the
special values L(f, D, k) to the | D|-th Fourier coefficients of certain cusp forms
of half-integral weight, for discriminants D to which (5) does not apply. At the
end of Section 5.2 we will explain the meaning of the local sign assumptions on
D in terms of Waldspurger’s theta correspondence between automorphic forms
of PGLQ and SL2

REMARK 2.2. In terms of the completed L-series A(f,D,s) =Tc(s)L(f, D, s),
the identity in (8) can be rewritten as

MS. D) = 2 Do) T] 2 ) S
p|M ’

Continue to consider a new form f € S7£"(N) as above, and let x be an even
Dirichlet character of conductor M | N satisfying the hypothesis of Theorem
2.1. In particular, notice that M must be the (square-free) product of an even
number of prime divisors of N. Let

F=Y amq", fex=Y anyq

n>1 n>1

be the Fourier expansions of f and f®x, respectively, so that a,(n) = x(n)a(n).
We further assume that f is normalized, i.e. a(1) = 1, hence f® x is normalized
as well. By virtue of the above theorem, we can then choose a non-zero cusp
form

h € S5 (ANM, x; f @ x).

Now fix a fundamental discriminant D € ©(N, M) such that L(f, D,k) # 0.
By (8), ¢(|D|) is non-zero, and this implies that C,?’Nﬁx(h) # 0. Indeed, (6)
shows that the first Fourier coefficient of ¢’y  (h) equals ¢(|D]). Tt follows

that ¢’y (h) = ¢(|D[)f ® x. For later purposes, we determine in the next
lemma the Fourier coefficients of h in terms of the Fourier coefficients of f ® x
(hence, in terms of the Fourier coefficients of f as well).

LEMMA 2.3. With the above notation and assumptions, for every integer n > 1
one has

e(n?|D]) = ¢(|D)) Zu ( ) (d)d*ay (n/d). ©)

Proof. As observed above, CI?,N,X maps h to ¢(|D|)f ® x. From (6), we thus
have for all n > 1

(D)ay(m) =3 () <t e |pl/a?),
s
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Suppose first that n > 1 satisfies (n, ND) = 1. Then we can rewrite this last
identity as

D1) () xtm) i Fay ) = 3 () e tete o,

n
0<t|n
By applying the Mobius inversion formula, one gets

D)) = (1)) 3 wtd) () x(@d o/

0<d|n

Now suppose that n > 1, and write n = ngnynp where ng, ny,np > 1 are inte-
gers such that (ng, ND) = 1 and every prime divisor of ny (resp. np) divides N
(resp. D). From (6), we see that ¢(|D|)ay (nn) = ¢(n3|D]) and ¢(|D|)ay (np) =
c(n?)|D|). Also, for integers r, s > 1 with (r,s) = 1 one has c(r?|D|)c(s%|D|) =
c(|D|)e(r?s?|D|). In particular, ¢(n3|D|)c(n3,|D|)c(n%|D|) = ¢(|D|)?c(n?|D|),
which together with the above relations imply that

p (D)) e(nd|D])
P ==4b) e

c(ng|D|) = ax(ny)ay (np)e(ng|Dl).

Now one can apply the previous argument for c¢(ng|D]), since (ng, ND) = 1, to
eventually conclude that
D _
D)) = (1)) 3 wtd) () x(@d e/

0<d|n

O

2.3 SIEGEL MODULAR FORMS OF DEGREE 2 AND SAITO-KUROKAWA LIFTS

Let
Ho ={Z € My(C) : Z ='Z, Im(Z) positive definite}

denote Siegel’s upper half-space of degree 2,
0 1d
G891 (R)i= g € Mi®): g’y = via) o (o) > 0}, 2= (g '5?).
be the group of symplectic similitudes with positive multiplicators, and let

Spy(R) = {g € GSp3 (R) : v(g9) = 1} € GL4(R) be the symplectic group. The
group GSpy (R) acts on Hs by

9Z =(AZ + B)(CZ+D)™*" ifg= ( g g ) (10)

Put T'y := Spy(Z) = Spy,(R) N My(Z). If N > 1 is an integer, one defines a
Hecke-type congruence subgroup of level N > 1 of I'; by

r{Y(N) = {g (é g) €ly:C=0mod N}. (11)
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Given a Dirichlet character x : (Z/NZ)* — C*, by a slight abuse of notation

we will continue to write x : Fgf) — C* for the character on Fgf)(N ) defined
by the rule

A B
( c D > — x(det(D)). (12)
Fix now an integer k > 1, and for a function F : Ho — C and an element
g € GSpF (R), define
(Fliilg)(2) = J(9,2) "' F(92),

A B 2
c D) The space M;H_l(l"é)(N),X)

of Siegel modular forms of weight k + 1, level N, and character x is the space
of holomorphic functions F' : Hy — C such that

where J(g,Z) = det(CZ + D) if g =

Flipily] = x(0)F  for all y € TF (V).
Notice that there are no additional conditions of holomorphicity at the cusps
(‘Koecher’s principle’). We will write Sk+1(FE)2)(N),X) C Mk+1(Fé2)(N),X)

for the subspace of Siegel cusp forms. Given F € SkH(Fgf) (N),x), one has a
Fourier expansion of the form

F(Z) — Z AF(B)@QﬂﬁTr(BZ),
B

where B runs over the set of positive definite, half-integral 2-by-2 symmetric

matrices. If y
n r/2 T Z
B<r/2 m>’ Z(z T'>’

with n,7,m € Z such that 4nm —r? > 0 and 7,7’ € H, z € C with Im(2)? <
Im(7)Im(7’), then notice that 27V -1T(B2) — 2nvV=1(nm+rz+m7) g6 that we
can rewrite the Fourier expansion as

F(Ta 2y TI) = Z AF(TL, T, m)e277\/__1(n7'+7“2+m‘r/)_

n,r,me”z,
Anm—r?>0

Given a Siegel modular form F for Fgf)(N ), one can restrict it to H x H,
diagonally embedded into Hs. This way, we obtain a modular form on H x H
for To(N) x To(NN), usually referred to as the “pullback” of F' to the diagonal.
Explicitly, this pullback or restriction is obtained by setting z = 0, hence

Fpon(r,m) = Y > Ap(n,r,m) 27V~ I(nr+mr’)

n,mez rez,
r2<4nm
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Later we will also need a more technical operation on Siegel forms, which we
define now. Let F' € Sk+1(1"82) (N), x) be a Siegel modular form of degree 2 as
before, and let p be a prime dividing N. For each j € Z/pZ, put

100 0
|01 0 py +
W=l o1 o |€CP2(Q)
000 1

and define a function R, F on Hs by setting (notice that J(u;, Z) = 1 for all
J) . .
R F(Z) == 3 FZ) =~ 3 Flinlul(2). (13)
pjez/pZ pjez/pZ
For any integer m # 0, we write I'P"*™ () C Sp,(Q) for the paramodular
subgroup defined by

Z mZ 7Z 7

, Z Z 7 m7Z
param L
r (m) = Spy (@) N 7 mZ 7 7

mZ mZ mZ Z

LEMMA 2.4. Let I ¢ Sk+1(F82)(N),X) be as before, and p be a prime with
p| N. Then

mFe&H<®mwmwmwmx»
If p> | N, then R,F € Sk+1( ( ) NTParam () ).
Proof. Let v € T{? (Np) N TParam (p)
(A B
’y - C D 9
where A = (31 32), B = (1 12), C = (& &), D = (3 &). Notice that all
entries are integral, and we have c1, co, c3,c4 € NpZ and ao, d3 € pZ. Moreover,

observe that a4, d4 are invertible modulo p.
Similarly, write u; as a block matrix,

([ 1dy E
Yo 1 )
Choosing @ € Z/pZ such that iay = jdy (mod p), a bit of algebra shows that

u;y = 7'ui, where o/ = (’g g;) € FE)Q)(N) is such that A’ = A and D' = D

modulo N. In particular, x(7") = x(7) and it follows from the very definition
that

be written as a block matrix

RpFi = D Flugnl = O Flirag = X(V) Y Fl) = X(MR,F.

The second part of the statement follows by checking carefully the omitted
algebra. 0
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REMARK 2.5. We might observe that u; € GSp,y(Q) is the image of

((49)(4 7)) e

and hence the pullback (RpF )| xy coincides with (id @ VuUp) Flpxp -

Finally, we recall the classical construction of Saito—Kurokawa lifts that we
need in this paper. Assume as in the introduction that £ > 1 is odd, N > 1 is
an odd square-free integer, and f € SI¢* (V) is a normalized new cusp form of
weight 2k and level N. Let x be an even Dirichlet character of conductor M,

for some M | N, satisfying the hypothesis of Theorem 2.1, and let

h e SIISWANM, x; f ®X) C 8,15 (ANM, x)

be a Shimura lift of f ® y € Sy (NM,x?) as in Theorem 2.1. There is an
Eichler—Zagier isomorphism

Z: S,j;r’;j;f (ANM,x) = JLTP (To(NM)7, x)

between S;jﬁjg(élNM, x) and the space Ji{ )" (To(NM)7, x) of Jacobi new
cusp forms of weight & + 1, index 1, level I'o(NM)” and character x (see

[EZ85, Tbul2, MRO00]), which together with Maaf’ lift

M : JPSP (Do (NM) ,x) > Sker (DS (NM), x)

gives an injective  homomorphism from S ,:' ﬁ%) (ANM,x) into

Skt+1 (1"82) (NM), x). We will refer to the Siegel modular form F), := M(Z(h)) €

Sk+1(FE)2)(NM), x) associated with h under the composition of Z and M, as
a Saito—Kurokawa lift of f ® x. If we continue to denote by ¢(n) the Fourier
coefficients of h, then the Fourier expansion of F), reads

dnm — r? i/
F.(Z2)= Z Z a*x(a)c <72) 2™V -IT(BZ)

s (/2 \ alacdGurm),
“\r/2m ged(a,N)=1

(14)
If p is a prime dividing M, notice that p?> | NM, hence our discussion above
implies that R, Fy € Sit+1 (FE)2)(NM) nIrraram(y) ). By defining the operator
Ry = HP\M MR, as the compositum of the operators %R, for primes p | M, we
thus have

R Fy € Spyr (DG (NM) A TP(M]), ).
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3 AUTOMORPHIC FORMS AND REPRESENTATIONS

Similarly as in the previous one, the aim of this section is to set up some
notation and recall some results concerning the theory of automorphic forms
for GLo, for the metaplectic cover SLs of SLo, and for the symplectic similitude
group GSp, of degree 4. Most of this section can therefore be seen as an
automorphic rephrasing of the previous one. We will abbreviate A = Ag for
the ring of adeles of Q, and Ay will denote the subring of finite adeles. Then Q
sits diagonally in A, and for every rational place v, the local field Q, embeds
as a subfield of A in the v-th component. If x is a Dirichlet character modulo
N > 1, we will write x for the adelization of x. Namely, x : A*/Q* — C*
is the unique Hecke character such that y(w,) = x(q) for every prime ¢ { N
and every uniformizer w, € Q; — A* at ¢. For every finite prime p, we shall
denote by X, the restriction of x to Z,'. At primes p | N, X, coincides with the

inverse of the character Z; — C* inflated from the p-th component x, of x.

3.1 AUTOMORPHIC FORMS FOR GL,

Let us briefly recall how classical modular forms of integral weight give rise to
automorphic forms and representations of GLy. In the following, we identify
Q* and A* with the centers of GLz(Q) and GL3(A), respectively.
Let N > 1 be an integer, and consider the compact open subgroup

Ko(N) = {( “! ) €GLy(Z):c=0 (mod N)}

of GLa(Ay). By strong approximation, one has GLg(A) =
GL2(Q) GL3 (R)Ko(N), where GLJ (R) stands for the subgroup of 2-by-2
real matrices with positive determinant. If y is a Dirichlet character modulo
N, then y induces a character of Ko(/N), which by a slight abuse of notation

we still denote x, by
a b

Observe that this agrees with the Hecke character xy when restricted to A* N
Ko(N).
Let g € S¢(N, x) be a cusp form of weight ¢, level N and nebentype character
X- Then it is well-known that ¢ induces an automorphic form g for GLo(A),
by setting

g(1Vocko0) = (Yoo () (ci + d) ™ (det voo) /X (ko) (15)

whenever 7 € GL2(Q), 7o € GLJ (R) and ky € Ko(N). This gives indeed a
well-defined function on GLg(A) because GL2(Q) N GL3 (R)Ko(N) = Io(N),
GLo(A) = GLy(Q) GLI (R)Ko(N), and g satisfies

g << - )z) — (d)(cz + d)'g(z) for ( ot ) € To(N).
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Further, it is clear that g satisfies g(vz) = x(z)g(7) for all z € A*.

The function g just defined belongs in fact to the space of automorphic forms on
GL2(A) with central character x. If 7 = 7, denotes the linear span of the right
translates of g under GLo(A), then 7 is an admissible smooth representation
of GLa(A). Since g is an eigenform, it is well-known that = is irreducible and
decomposes as a restricted tensor product ®,m, of admissible representations
of GL2(Q,), and g = ®,g, with g, € m, for each place v of Q.

When the nebentype character x is trivial, g gives rise to an automorphic
representation m of GL2(A) with trivial central character, so that we can regard
7 as an automorphic representation of PGLz(A). Again, m decomposes as a
restricted tensor product 7 = ®,,m, of admissible representations of PGL2(Q,).
We refer the reader to [Sch02] for a good account on local types, newforms, and
a careful study of local e-factors at non-archimedean places. If f € SP<(N)
is a newform of weight ¢ > 1, level N, and trivial nebentype character, then
the completed complex L-series A(f,s) associated with f coincides with the
L-series L(m,s) associated with the automorphic representation of PGL2(A)
corresponding to f. The root number £(f) appearing in (4) can be therefore
written as the product of local e-factors e(m,, 1/2) at places v | Noo. At the
finite places p | N, e(mp,1/2) coincides with the eigenvalue w, € {1} of the
p-th Atkin—Lehner involution acting on f (cf. [Sch02, Theorem 3.2.2]).

3.2 AUTOMORPHIC FORMS FOR SLs

We start by setting down some notation concerning metaplectic groups. If v
is a place of Q, we write SL2(Q,) for the metaplectic cover (of degree 2) of

SL2(Q,), and similarly, we denote by SL, (A) the metaplectic cover (of degree
2) of SLa(A). We will identify SLa(Q,), resp. SLa(A), with SLy(Q,) x {£1},
resp. SLa(A) x {£1}, where the product is given by the rule

[91, €1][g2, €2] = 9192, €(g1, g2)€1€2].

At each place v, €,(g1, g2) is defined as follows. First one defines  : SL2(Q,) —
Q, by

if c#£0
_(ab _ e i ,
9=1(2d) *(9) {d if c=0.

Then, €,(g1,92) = (x(g1)x(9192),x(92)x(9192))v, where (, ), denotes the

Hilbert symbol. When v is a finite place, set also

1 otherwise,

¢, d), if ed # 0, ord,(c) odd,
SU((M)):{< ) # 0, ord, (c)

for g = (2%) € SL2(Qy), and sx(g) = 1 for all g € SLy(R). Then, for each
place v, SLy(Q,) embeds as a subgroup of éig(@v) through g — [g, s,(g)]. If
v is an odd finite prime, then this homomorphism gives a splitting of SLa(Q,)
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over the maximal compact subgroup SL2(Z,), while for v = 2 this is only a
splitting over I'1(4;Z2) C SLa(Z2). If p is an odd prime (resp. p = 2), and G
is a subgroup of SLa(Z,,) (resp. I'1(4;Zs2)), then we will write G C SL, (Zp) for
the image of G under the previous splitting. We will also regard SL2(Q) as a
subgroup of SAIZQ(A) through the homomorphism g — [g, ], sv(9)]-

To simplify notation, if v is a place of Q and =z € Q,, o € Q., we will write
u(z), n(x), t(a) for the elements of SLy(Q,) given by

u(z)(é f)mm(i ?),t(a)(% a91>'

We will slightly abuse of notation and still write u(x), n(z), t(«) for the ele-
ments [u(x), 1], [n(x),1], [t(a),1] in é\ﬂg(@v) (notice that these coincide with
the images of u(x), n(z), t(«a), respectively, under the splitting g — [g, s»(9)],
as sy(g) = 1 in the three cases). We will also write s = (% §) € SL2(Q,) (or

in SAIZQ(QU)). Then observe that
u(z) =t(-1)-s-n(—z)-s forall z€Q,.

Let k£ > 1 be an integer, N be a positive integer, and x be an even Dirichlet
character modulo 4N as before. Write yo = (=2)* - x, and let Xo denote the
associated Hecke character. .

Let Ap denote the space of cusp forms on SLy(Q)\SLz(A), and j denote the

right regular representation of the Hecke algebra of SLa(A) on Ap. Following
Waldspurger [Wal81], we define Ak+1/2(4N, Xo> to be the subspace of Ay con-
sisting of elements ¢ satisfying the following properties, where p, denotes the
restriction of j to SLa(Q,).

i) For each prime ¢ 12N, pg(v)p = ¢ for all v € SLa(Z,).

ii) For each prime ¢ | N, g # 2, ps(7)p = Xo,q(d)cp for all v = (‘gg) €
To(q° () C SLa(Zy).

iii) For all v = (% §) € To(2°72(1M) € SLa(Za), p2(7) = E2(7)x, ()¢
iv) For all 0 € R, foo (R(0))p = e (F+1/2)0,
v) po(D)g = 3(k +1/2)(k = 3/2)¢.

Here, D denotes the Casimir element for SLy(R), and the element #(6), for
6 € R, and the character é; of I'g(4) C SL2(Q2) are defined as in [Wal81, p.
382).

Let h € Sp41/2(4N, x) be a cusp form of half-integral weight as in Section 2.2.

Given z = u+ v € H, let b(z) € SAIZQ(A) be the element which is 1 at all the

finite places and equal to
ol/2 yu—1/2
0 ,U—1/2
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at the real place. Then there exists a unique continuous function h on
SL2(Q)\SL2(A) such that

h(b(z)f-@(@)) _ vk/2+1/4ei(k+1/2)0h(z)
for all z € H, 6 € R. The assignment h — h gives an adelization map

Skt1/2(AN, x) — Aji1/2(4N, Xo): (16)

which is an isomorphism (see [Wal81, Proposition 3, p. 386]). Under this
isomorphism, the Fourier coefficients of the classical modular form h are related
to the Fourier coefficients of h as follows. Let 1 be the standard additive
character of Q\A. That is, ¥ (x) = €?™@ and, for each finite prime g, ¥, is
the unique character of Q, with kernel Z, and such that ¢,(z) = e~ for
x € Z[1/q]. If ¢ € Ao and ¢ € Q, then the &-th Fourier coefficient of ¢ is
defined to be the function on SLo (A) given by

Weoely) = /Q\A o(u(z)y)(Ex)d.

If h € S41/2(4N, x) has Fourier expansion

hz)= Y e&d,

£€Z,6>0

and h — h under the above isomorphism, then one has (cf. [Wal81, Lemme 3])
(&) = ™ Whe(1). (17)

For the rest of this subsection, assume that k > 1 is odd, NV > 1 is odd and
square-free, and x is an even Dirichlet character satisfying the hypothesis of

Theorem 2.1. Let f € S3¢*(N) and h € S,jﬁ%j(élNM,x;f ® x) be chosen as

in the discussion after Theorem 2.1. By using (17), the relation (9) proved in
Lemma 2.3 can be rephrased in automorphic terms as we will now explain.
Given any & € Qy, set & = Dgfg, where 0¢ € N is such that —d¢ equals the

discriminant of Q(v/—¢)/Q. By (9), we have
c(€) = c(0e) Y pld)x—e(d)x()d* " ay(je/d). (18)

dfe,
d>0

For each prime p{ N, let {a, a;l} be the Satake parameter of f at p, so that
(1 —pk_l/QOsz)(l _ pk_1/2a;1X) —1_ a(p)X +p2k—1X2.

In particular, notice that a(p) = p*~'/2(a, + a,'). More generally, for each
integer e > 0 one has

€

a(pe) _ pe(k71/2) Zazfﬂ.
=0
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In contrast, if p is an (odd) prime dividing N, being N square-free we have
a(p) = —p"~tw,, where w, = w,(f) € {£1} is the eigenvalue of the Atkin-
Lehner involution at p acting on f. Also, one has a(p®) = a(p)® for all integers
e > 0 in this case. For each prime p | N, define oy, := p*/?~*a(p) = —p~/2w
In a similar spirit as for primes not dividing N, now a(p®) = pe=1/2)
e > 0.

Given a rational prime p, put e, := ord,(f¢) and define a function ¥,(&; X) €
C[X, X ] by

€
ap for

X=X A e(p) A, i p i Noep >0,
W, (6 X) = X—¢(P)(x—¢(p) +wp) X, %fp | N/M, e, >0,

X—¢(P)(X=¢(p) — wp) X7, if p| M,e, >0,

0, ep < 0.

Observe first of all that, fixed £, there are only finitely many primes p with
ord,(§) # 0. Since ¥,(§;X) = 1 whenever p { N and e, = 0, we see that
U, (& X) =1 for almost all primes. Secondly, at a prime p | N/M (resp. p | M)
we see that ¥, (& X) # 0 if and only if x_¢(p) = wp (resp. x—e(p) = —wp).
Hence, [[, ¥;,(§; X) # 0 if and only if

_ N _
e, (?5) = w,, for all p | i and (?5) = —w,, for all p | M.

LEMMA 3.1. If € € Z, and v(N) denotes the number of prime factors of N,
then

c(&) = 27" Mee)x(Fe)fe 2 [ wol&: o). (19)

Proof. First notice that (19) holds if ¢(£) = 0 by our above observation, so we
may assume that ¢(§) # 0. Secondly, both sides in (18) are zero if £ is not
an integer, so we may assume that £ € Z,. Writing £ = Dgf? as before, and
setting fe = fe nfe0, With fe n, fe0 integers such that (feo,N) = 1 and every
prime divisor of f¢ y divides IV, equation (18) can be rewritten as

c() = cd¢)x(fe)alie.n) D n(d)x—e(d)d*  alfeo/d).

d|fe,
d>0

Using the definition of the functions ¥,(§; X), we deduce that

c(§) = c(0¢)x(fe)alien) [T (atp™) = p* 'x—g(p)a(p™")) =

plfe,o

= c(e)x(Ge)alfen)fe o> T] ol&sap).

P‘f& 0
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Since ¢(§) # 0, in particular ¥, (§; o) # 0 for all p | N. At each prime p | e n,
we thus have ¥, (¢; o) = 205", We therefore deduce that

alfen) = [] an) =fen" TI oy =27 0955 T wal& o).

plfe,n plfe,n plfe,n

At primes p | N with p { fe n (if any), we have ¥,,(§; ap) = 2, hence we can
rewrite the above identity as

alfen) = 27" M52 T W& o).

p|N

Since U,(&;ap) = 1 for all primes p { N, we deduce that (19) holds when
(&) # 0. O

3.3 AUTOMORPHIC FORMS FOR GSp,

We will now set the basic notation and definitions concerning automorphic
forms for GSp,(A), which will naturally arise in this paper by adelization of
Siegel modular forms as the ones considered in Section 2.3. Write

0 Id
GSp, = {g € GLy: "glag = v(9)J2: v(g) € G}, Jo = ( i 0 ) ,

for the general symplectic group of degree 2, and recall that GSp§r (R) acts on
Siegel’s upper half-space as in (10). Here, v : GSpy — G, is the so-called
similitude (or scale) morphism. If N > 1 is an integer, we set K((,2)(N;Z) =
IL, Kéz)(N; Z,) C GSpy(Z), where for each prime p,

K(()Q)(N;Zzﬁ = {9 = (é g) € GSpy(Z,) : C =0 mod N}

is the local analogue of the congruence subgroup Fgf)(N ) introduced in (11).
Observe that KéQ)(N;Zp) = GSpy(Z,) for all primes p { N. Compact open

subgroups of GSp,(A) of the form K(()2) () will play a special role in the paper,
although we will also consider certain subgroups of them.

Let F : GSpy(A) — C be an automorphic cusp form, and IT be the automorphic
representation of GSp,(A) associated with F (i.e., the closure of the span of
all the right-translates of F). We suppose that II is irreducible and unitary.
By Schur’s lemma, F has a central character: there exists a Hecke character
A Q*\AX — C* such that F(zg) = AM(2)F(g) for all z € A* = Z(GSp,(A)),
g € GSpy(A). If X is trivial, then F is trivial on the center of GSpy(A), and
hence one can regard F as an automorphic cusp form on PGSp,(A).

Besides, suppose that we are given an automorphic cusp form F : PGSp,(A) —
C, and let A : Q*\A* — C* be a Hecke character. Then one can define an
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automorphic cusp form F ® A : GSpy(A) — C by the rule (F ® \)(g) :=
F(g)\(v(g)). It is readily seen that the central character of F ® X is \2.

If B € Sym,(Q) is a symmetric 2-by-2 matrix, then the B-th Fourier coefficient
of F is by definition the function on GSpy(A) given by

Wr 5(g) = / F(n(X)g) (T (BX))dX, g€ GSpy(A), (20)
SymZ(Q)\SymZ(A)

where n(X) = (¢ fi ). If F is right invariant by some subgroup K C GSpy(Z),
then notice that the Fourier coefficients Wg g enjoy also the same invariant
property. It is well-known that the collection of all Fourier coefficients Wg g
determine the automorphic form F.

We will not develop the general theory of automorphic forms and represen-
tations of GSp,(A), but rather we will focus on the automorphic forms for
GSp,(A) that appear by adelization of Siegel modular forms of degree 2 as the
ones considered in Section 2.3. Hence, suppose that & > 1 is an odd integer,
N > 1is an integer, and x : (Z/NZ)* — C* is a Dirichlet character. As usual,
let x : A* — C* be the Hecke character associated with x as in previous sec-

tions. If F € SkH(FgQ) (N), x) is a Siegel modular form of weight k + 1, level

FBQ)(N ) and character x, then F defines an automorphic form F for GSp,(A)
by setting

F(g) = det(goo) *1/? det(CV=T+ D)™ F(goo V=1)x (k)

whenever g = vgook with v € GSp,(Q), k € Ké2)(N), and
A B
gooz(c D)GGSp;(R).

Here, x induces a character on K(()Q)(N ) similarly as in the classical situa-
tion explained in (12). Since GSpy(A) = GSp,(Q) GSp; (R)KSQ) (N) by strong
approximation, this gives indeed a well-defined function on GSpy(A). The
fact that F' is a Siegel cusp form in Sk+1(1"82) (N), x) easily implies that F is
GSp,(Q)-invariant on the left, that F(gk) = x(k)F(g) for all g € GSpy(A)

and k € KéQ)(N), and that the center of GSpy(A) acts through x o v,
where v : GSpy(A) — A* denotes the similitude morphism. That is to say,
F(zg) = x(v(2))F(g) for all z € Z(GSp,y(A)) = A*, g € GSpy(A), hence the

central character of F is x2. We write Sk41 (KSQ)(N), X) for the space of auto-

morphic cusp forms on GSpy(A) arising by adelization of Siegel cusp forms in
2

Sk1 (T (V). X).

The level-raising operator R, introduced classically in (13) can be defined anal-

ogously in the automorphic setting. Indeed, let p be a prime dividing N, and
define

p—1

RF =) I(u;)F,
=0
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where II is the automorphic representation of GSp,(A) associated with F, act-
ing on F by right translation: II(h)F : g — F(gh). In line with the classical
definition, we now define KP**™(p;Z,) to be the subgroup

Ly pLy Ly Zip
Ly Ly Ly p Zp
7€ GSp, (@) N Ly ply Ly Ly

pLy plp Py Ly

:det(y) € Z,

Then we write K (N, p; Z,) := Kéz)(N;Zp) N Kparam (. 7,,), and

K(N,p) = K(N,p;Z,) x [] K (N:Zy) € GSpy(2).
q#p

If F € Sky1 (1"82) (N), x) is as above, recall that R, F belongs to Sk+1(1"82) (NN
rparam(p) v) where N’ = N if p> | N, and N’ = Np otherwise. We
have K(N',p) N GSp,(Q) = Fé2)(N’) N rraram(p) - and hence Siegel forms
in SkH(FgQ)(N’) N I'Param(p) ) induce by adelization automorphic cusp
forms on GSp,(A) on which K(N’,p) acts on the right through the char-
acter x : K(N',p) — C*. We write Sp+1(K(N',p),x) for the space of

automorphic forms on GSp,(A) obtained by adelization of Siegel forms in
Sk1 (D (V') N TP2m () ).

LEMMA 32, Let F € Spi(TP(N),x), and F € Spar(KP(N),x) be its

adelization as above. If p is a prime dividing N, then R,F is the adeliza-
tion of Ry F. In particular, R,F € Sp11(K(Np,p),x). If p? divides N, then
one actually has RyF € Sp11(K(N,p), x)-

We now particularize the above discussion to a situation which is of par-
ticular interest in this note. Continue to assume that £ > 1 is an odd
integer, and let N > 1 be an odd square-free integer, and x be an even
Dirichlet character of conductor M | N. Let f € S (T'o(IN)) be a nor-
malized new cusp form of weight 2k, level N and trivial nebentype, and let
F, € Sk+1(F82)(NM), X) be the Saito—Kurokawa lift of f ® y defined in Sec-

tion 2.3. Write F, € SkH(K((,Q) (NM), x) for the adelization of F, hence
Fy(g) = det(go0) D72 det(CvV=1+ D)™ Fy (900 V=1)x (k) (21)

for all g = vgook with v € GSp,(Q), k € KSQ)(N), and

A B
goo<c D)GGSp;(R).

Let B € Sym,(Q) be a symmetric 2-by-2 matrix, and Wr, g denote the B-th
Fourier coefficient of F,, as defined above. By strong approximation, together
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with (21), Wr,_ B : GSpy(A) — C is determined by the values W, p(goo) for
Joo € GSpg (R). Every element g, € GSpj (R) can be written as

. 2,’12 0 12 X A 0 « 6
Io=\ 0 21, 0 1, 0 tA-! B8 a )’
where z € RY, X € Symy(R), A € GL3 (R), and (_O‘Bg) € Sp,(R) with
k=a+ /-1 €U(2). Since

r((75 0, )o( % 0)) et

for z € R} and (_O‘ﬂ g) € Spy(R) as before, we see that Wg, p is actually

determined by the values W, 5(goo) for elements goo € GSp3 (R) of the form

pe=noman = (g ) (5 ).

with X € Sym,(R), and A € GL3 (R). And for go, = n(X)m(A, 1), one checks
from the definitions that WFX, B(goo) = 0 unless B is positive definite and
half-integral, in which case one has

W, .5(90) = Ay (B) det(Y)FHD/2e2mV 1T BD), (22)

where Y = A'A, Z = X +/—1Y € H,, and A, (B) is the B-th Fourier
coefficient of F, (cf. (14)).
Finally, let p be a prime dividing M. In particular, p?> | NM, and the adeliza-

tion of R, Fy, € S’k+1(1"(()2) (N M) nTraram(p) ) is precisely (cf. Lemma 3.2)
RyFy € Spp1(K(NM,p), x).

It is not hard to see from the definitions that the Fourier coefficients of R, F,
are closely related to those of F,. More precisely, one can prove the following
lemma, whose proof is left for the reader.

LEMMA 3.3. With notation as above, let B = (bb1 b2/2
2/2 b3

half-integral symmetric matriz, and let goo = n(X)m(A,1) € GSpy(R) be as
before. Then Wa,F, B(goo) = 0 unless b3 € pZ, and if this holds then

) be a positive definite,

W, F,,B(9oo) = WF, B(goo)-

If we repeat the above for all primes p dividing M, or in other words, if we
apply the operator Ry, = HP‘M R, to F,, we obtain an automorphic cusp
form

%IVIFX S Sk+1(K(NM7M)5X>a

and directly from the previous lemma we deduce the following:
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COROLLARY 3.4. Let B be a positive definite, half-integral symmetric matriz
as in the previous lemma, and let goo = n(X)m(A,1) € GSpy(R) be as above.
Then Wax ¥, ,B(goo) = 0 unless b3 € MZ, and if this holds then

WainFy,B(9oo) = W, B(9o0)-

4 (QUADRATIC SPACES AND THETA LIFTS

This section is devoted to briefly recall the essentials on quadratic spaces and
theta lifts. We focus especially in the three theta correspondences that will be
considered in this paper, which explain the different lifts of classical modular
forms described in Section 2 in the language of automorphic forms given in
Section 3.

4.1 (QUADRATIC SPACES

Let F be a field with char(F) # 2, and V be a quadratic space over F.
That is to say, V is a finite dimensional vector space over F' equipped with
a non-degenerate symmetric bilinear form (, ). We denote by @ the associated
quadratic form on V, given by

Qx) = %(z,z), zeV.

If m = dim(V), fixing a basis {v1, ... v, } of V and identifying V with the space
of column vectors F™, the bilinear form (, ) determines a matrix @ € GL,,(F)
by setting @ = ((v;, v;));,;. Then we have

(r,y) ='2Qy for z,y € V.

We define det(V) to be the image of det(Q) in F*/F>*2. The orthogonal
similitude group of V is

GO(V) = {h € GLy, : 'hQh = v(h)Q, v(h) € G},

where v : GO(V) — G, is the so-called similitude morphism (or scale map).
From the very definition, observe that det(h)? = v(h)™ for every h € GO(V).
When m is even, set

GSO(V) = {h € GO(V) : det(h) = v(h)™/?}.

Finally, we let O(V) = ker(v) denote the orthogonal group of V, and write
SO(V) = O(V) N SL,, for the special orthogonal group.

4.2 EXPLICIT REALIZATIONS IN LOW RANK

In this paper, we are particularly interested in orthogonal groups for vector
spaces of dimension 3, 4 and 5. For this reason, we fix here certain explicit
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realizations that will be used later on to describe automorphic representations
for SO(V')(A) and GSO(V)(A). Our choices follow quite closely the ones in
[Ich05, Qiul4].

When dim(V) = 3, one can show that there is a unique quaternion algebra B
over F' and an element a € F* such that (V,q) ~ (Vp,aqp), where Vg = {x €
B : Trp(z) = 0} is the subspace of elements in B with zero trace (sometimes
called ‘pure quaternions’), and gg(x) = —Nmpg(z). The group of invertible
elements B* acts on Vi by conjugation, b -2 = bxzb~', and this action gives
rise to an isomorphism

PB* =5 SO(Vg,qp) ~ SO(V,q).

When B = Mj is the split algebra of 2-by-2 matrices, then notice that PB* =
PGLs, thus the above identifies PGLs with the special orthogonal group of a
three-dimensional quadratic space.

In dimension 4, consider the vector space Vi := Ma(F) of 2-by-2 matri-
ces, equipped with the quadratic form ¢(z) = det(xz). The associated non-
degenerate bilinear form is (z,y) = Tr(zy*), where

z -z 1 @
z*( 4 2) forx< ! 2)€M2(F)~
—I3 X1 T3 T4
There is an exact sequence

1 — G, — GLy xGLy 25 GSO(V}) — 1, (23)

where 1(a) = (alz,a'1s) and p(hyi, he)x = hizh} for a € G, and hy, hy €
GLz. One has v(p(h1, h2)) = det(hiha) = det(h1) det(hg). In particular, when
F is a number field, automorphic representations of GSO(V},) can be seen as
automorphic representations of GLa x GLg through the homomorphism p in the
above short exact sequence. Here we might warn the reader that our choice for
the homomorphism p in (23) agrees with the one on [Qiul4] and [GT11], but
differs from the one considered in [Ich05] (or [II08]), which leads to a slightly
different model for GSO(V4).

Finally, in dimension 5 we will describe a realization of SO(3,2), the special
orthogonal group of a 5-dimensional quadratic space (V,q) of Witt index 2.
Although the isomorphism class of such a quadratic space depends on det(V),
the group SO(V,q) does not. We describe a model V5 of such a quadratic
space, with determinant 1 (modulo F*-2). Namely, start considering the 4-
dimensional space F* of column vectors, on which GSp, C GL4 acts on the
left. Let

er =(1,0,0,0), ... ,eq = (0,0,0,1)

be the standard basis on F*, and equip V := A2F* with the non-degenerate
symmetric bilinear form (, ) defined by

xAy=(x,y) (e1Nea Aez Aey), forall x,yef/.
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Set zg := e1 A ez + ez A eyq, and define the 5-dimensional subspace V5 C V to
be the orthogonal complement of the span of xg, i.e.

Vs :={x eV :(z,x0)=0}.

Then the homomorphism j : GSpy, — SO(V) given by p(h) = v(h)~ A2 (h)
satisfies p(h)xg = xg, and therefore induces an exact sequence

1 — G, — GSp, 5 80(V5) — 1, (24)

where t(a) = aly for a € G,,,. This short exact sequence induces an identifica-
tion

PGSp, ~ SO(Vs).

We fix an identification of V5 with the 5-dimensional space F® of column vectors
by

5
t

E T;v; — ($1,9€2,$3,$4a$5)a

=1

where v1 = egAep, va = ejAeyq, v3 = e1Aeg—eaANey, Vg = ea\es, Vs = ez/\ey.
Upon this identification, we consider the non-degenerate bilinear symmetric
form (, ) on V defined by (z,y) = 'oQy for x,y € F°, where

-1 0 0 1
Q= Q1 , 1=10 20
-1 1 0 0

We shall distinguish the 3-dimensional subspace V3 C V5 spanned by va, vs,
vy, equipped with the bilinear form (z,y) = ‘2Q1y, for x,y € F3, under the
identification V3 = F'® induced by restricting the above one for V = F®. Notice
that V5 = (v1) @ V3 @ (—vs), where v; and —vs are isotropic vectors with
(v1,—vs) =1, and V3 is the orthogonal complement of (vy, —vs) = (v1,v5).
Also, we distinguish a 4-dimensional subspace of V;. Indeed, the subspace
{x € V : (x,v3) = 0} = (v3)* C V5 is a quadratic 4-dimensional subspace of
V5, and it can be identified with the space Vj defined above by means of the
linear map

s Tl T2
(v3)™ — Vi,  m1v9 + 2ov1 + X305 + T4v4 — ( P )

By restricting the homomorphism p from the exact sequence in (23) to
G(SLQ X SL2)7 = {(hl, hz) € GLQ X GLQ : det(hl)det(hg) = 1},
one gets an exact sequence

1 — G, — G(SLy x SLy)~ £ 80(V;) — 1. (25)
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Now notice that G(SLy x SL2)~ is isomorphic to
G(SLg x SLg) := {(h1, h2) € GLy x GLy : det(hy) det(h) ™' =1}

through the morphism (h1, h2) — (h1,det(hy)~1hse). Composing this isomor-
phism with the natural embedding G(SLy x SLg) < GSp, given by

aq 0 bl 0

a; by as b 0 ay 0 by
<< C1 d1 >’< C2 d2 >) — C1 0 d1 0 ’

0 (6] 0 dg

one gets a commutative diagram

1——> Gy —> G(SLy x SLy)~ 24— SO(V;) —= 1

|

1 G ‘> GSp, L s SO(V5) —=1

and hence an embedding SO(V,) € SO(V5). This embedding will be of crucial
interest later on.

4.3 WEIL REPRESENTATIONS

Let now F be a local field with char(F') # 2 (for our purposes, one can think
of F being Q, for a rational place v), and (V, Q) be a quadratic space over F’
of dimension m as above. Let S(V) denote the space of locally constant and
compactly supported complex-valued functions on V. This is usually referred
to as the space of Bruhat—Schwartz functions on V. If F' is archimedean, we
rather consider S(V') to be the Fock model (which is a smaller subspace, see
[YZZ13, Section 2.1.2]).

We fix a non-trivial additive character ¢ of F'. The Weil representation wy, v
of SLy(F) x O(V) on 8(V), which depends on the choice of the character 1, is
given by the following formulae. If a € F*, b€ F, h € O(V), and ¢ € S(V),
then

(x
,1) o(x) = 1(, V) /F S()(( ) dy.
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Here, v(, V) is the Weil index, which is an 8-th root of unity. When m =1
and Q(z) = 2%, we will simply write wy, xy, and ¥(¢) for wy v, xp,v, and
~(, V), respectively. In this case, one has

xu(a) = (a, =1)F

where (,)r denotes the Hilbert symbol. This satisfies xy(ab) =
(a,b) rxy(a)xe (b), xp(@®) = 1, and Xye = Xy * Xa, Where Y, stands for
the quadratic character (a,-)p.

For a general V, if Q(x) = a12? + - - - + a;,x2, with respect to some orthogonal
basis, then (1, V) = [[; vy, and xy,v = []; xyei. This does not depend on
the chosen basis.

When m is even, the above simplifies considerably. Indeed, if m is even, it
is clear from the above description that the Weil representation descends to a
representation of SLo(F) x O(V) on S(V). Further, the Weil index (¢, V)
is a 4-th root of unity in this case, and .,y becomes the quadratic character
associated with the quadratic space (V, Q). This means that

Xo,v(a) = (a,(=1)"?det(V))p, a€F*.

It will be useful in some settings to extend the Weil representation wy v de-
scribed above. If m is even, one defines

R = G(SLy xO(V)) = {(g,h) € GLy xGO(V) : det(g) = v(h)},

and then wy 1 extends to a representation of R(F') on S(V') by setting

wy,v(9,h)d = wy v (9 ( (1) det((;)—l > 71> L(h)¢
for (g,h) € R(F), ¢ € S(V), where L(h)¢(z) = |V(h)|;m/4¢(h_1l') forx e V.

4.4 'THETA FUNCTIONS AND THETA LIFTS

Now let F' be a number field (for our purposes, we will just consider F' = Q),
and consider a quadratic space V over F' of dimension m. Fix a non-trivial
additive character ¢ of Ap/F and let w = wy,v be the Weil representation of
SL2(Ap)xO(V)(Ar) on S(V(Ap)) with respect to ¢p. Given (g, h) € SLa(Ap)x
O(V)(Ar) and ¢ € S(V(AF)), let

0(g.h;¢) = D wlg, h)g(x).

zeV(F)

Then (g, h) — 0(g, h; ¢) defines an automorphic form on SAI:Q(AF) x O(V)(Ar),
called a theta function. When m is even, this may be regarded as an automor-
phic form on SLa(Ap) x O(V)(Ap).
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Let f be a cusp form on SLo(Ap) if m is even, and a genuine cusp form on
SLa(Ap) if m is odd. If ¢ € S(V(AF)), put

O(h; f,¢) = 0(g,h; ) f(g)dg, heOV)(Ar).

/SLQ(F)\ SL2(Ap)

Then 0(f, ®) : h — 0(h; f, ¢) defines an automorphic form on O(V)(Ar). If m is
even and 7 is an irreducible cuspidal automorphic representation of SLy(A ), or
if m is odd and = is an irreducible genuine cuspidal automorphic representation

of SLy(Ar), put
Ogt, xo) (™ = {0(f,0) : f €, ¢ € S(V(AR))}.

Then @gizxo(v)(ﬂ) is an automorphic representation of O(V)(Ar), called the
theta lift of m. Going in the opposite direction, one defines similarly the theta
lift 6(f', ¢) of a cusp form f’ on O(V)(Ar) and the theta lift O 0 (1) x5t (') of
an irreducible cuspidal automorphic representation 7’ of O(V')(A).

Suppose that m is even. As we did for the Weil representation, theta lifts
can also be extended as follows. If (g,h) € R(Ar) and ¢ € S(V(AF)), one
defines 6(g, h; ¢) via the same expression as above (using the extended Weil
representation). Then, if f is a cusp form on GLy(Afr) and h € GO(V)(AF),
choose ¢’ € GL2(Ap) with det(¢") = v(h) and set

O(h; f,¢) = / 0(g9’,h; ) f(g99")dg.

SLy (F)\ SLz2(Ar)

The integral does not depend on the choice of the auxiliary element ¢’, and
0(f,¢) : h — 0(h; f,$) defines now an automorphic form on GO(V)(Ap).
If 7 is an irreducible cuspidal automorphic representation of GLo(Ag), then
its theta lift ©gr, xco(v)(m) is formally defined exactly as before (and the
same applies for Oco(v)xar, (7') if 7’ is an irreducible cuspidal automorphic
representation of GO(V)).

5 THREE THETA CORRESPONDENCES

5.1 THE PAIR (GLg, GOz )

Let V4 be the (split) four-dimensional quadratic space as above, and write from
now on GSOgz 2 C GOy for the groups GSO(Vy) € GO(Vy), and likewise Og o
for O(V4). The theta correspondence for the pair (GL2, GOs2 ) is sometimes
referred to as the Jacquet-Langlands—Shimizu correspondence [Shi72] (cf. also
[II08, Section 5], [Ich05, Section 6]). We will be interested in the restriction of
automorphic forms on GO3 2(A) to GSO22(A) (particularly in those arising as
theta lifts from automorphic forms on GL2(A)).

By virtue of the exact sequence in (23), automorphic forms on GSOz 2(A) might
be seen through the homomorphism p as representations 7 X 75 of GLy x GLg

DOCUMENTA MATHEMATICA 24 (2019) 1935-2036



1968 A. PaL, C. DE VERA-PIQUERO

with 7 and 7 having the same central character. The involution = +— z*
induces an element of order two ¢ € GOg 2, and GOz 2 = GSO22 % (¢).

Notice that for the theta correspondence to hold between GLy and GOg s it
does not suffice to consider the Weil representation of SLa(A) x Og 2; one needs
to consider the Weil representation extended to the group R(A) = {(g,h) €
GL2(A) x GO22(A) : det(g) = v(h)} as explained above. If 7 is an irreducible
cuspidal unitary representation of GL2(A), then one has OgL, xas0,.(7) =
7 X 7, where in line with the above comment ©gr, xcs0,,(7) might be read
as the restriction to GSOg22(A) of the theta lift ©grL, xco,.,(7). Conversely,
suppose that T is an irreducible cuspidal unitary GSOg 2(A)-representation.
Then there is a unique extension of T to an automorphic representation T of
GO2,2(A) on which there is a non-zero O(V})(A)- invariant distribution, where
Vi =A{xz € V4 : tr(z) = 0}. If ©go,,xcL,(T) # 0, then Yy is of the form
7 ® 7 for some irreducible cuspidal unitary representation 7 of GLo(A) and
0aq0, ,xaL, (T) = 7.

Let us consider a normalized newform g € Siy1(V, x) as in the introduction,
hence k£ > 1 is an odd integer, N > 1 is an odd square-free integer, and x is
an even Dirichlet character modulo N. Write M for the conductor of x (in
particular, M is also odd and square-free). Let 7 be the irreducible cuspidal
automorphic GLy(A)-representation associated with g, with central character
X- Then 7X7 can be regarded as a representation of GSO32 2(A) and it extends
to a unique automorphic representation Y of GOg22(A) on which there is a
non-zero O(V})(A)-invariant distribution. Then one has

e(r) =", e =r.

Let g € 7 be the adelization of g. Then the cusp form g®g € 7R 7 extends to a
cusp form G € T on GOz 2(A) such that G(hh') = G(h) for all h € GOz 2(A)
and A’ € p2(A), where pg is the subgroup of Oz 2 generated by the involution
* on Vj.

Define g! = ®,g? by setting gf = g, for all places v # 2, and gg =
T2 (t(271)2) gy, where

2 1), = ( 2(;1 i ) € SLo(Qy).

Further, consider the M-th level raising operator Vj; acting on 7 by ¢ —
T(war)p, where wyr € GLa(A) is 1 at every place v { M, and equals w, =
(P;I (1)) € GL2(Q,) at each prime p | M. Then define g := Vgf = (Vug)t.
The cusp form g thus obtained is one of the factors in our test vector.

Accordingly, we also modify slightly the cusp form G in the following manner.
For each prime p | M, consider the element h,, = (1,w,) € GL2(Q,) x GL2(Q,),
which we identify with its image p(hp) € GSO22(Qp) € GO22(Qp). Let Y,
denote the operator acting on Y given by Y(h,), and Y := HmM Y,. Simi-
larly as above, if hjs denotes the element in GOz 2(A) whose entries are trivial
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at every place v away from M, and equals h, at each prime p | M, then we
consider the cusp form Y G = Y(hy )G € Y. With this definition, observe
that

YMG\GLQXGLZ =g®VygerTXrT.

With the above definitions, the main purpose of this paragraph is to prove the
following explicit identity between the cusp forms g and Y 3;G. This is made
upon the choice of a Bruhat-Schwartz function ¢z € S(Vi(A)) to be defined
below.

ProrosITION 5.1. With the above notation, one has

O0(YmG, ¢g) = 2" M SLo(Z) : To(N)] ™ ¢a(2)"2(g, 9)&-

Following the approach of Ichino—Tkeda [IT08, Section 5], it is useful to consider
a different model of the Weil representation. If ¢ € S(V4(A)), one defines its
partial Fourier transform ¢ € S(V4(A)) by

¢ << i; ii )) = /AZSD << 2 zi >) V(22ys — xay2)dyzdys,  (26)

where dy2, dy, are the self-dual measure on A with respect to our fixed non-
trivial additive character ¢ of A/Q. Then, one defines a representation @ of
R(A) ={(g,h) € GL2(A) x GO2,2(A) : det(g) = v(h)} on S(Va(A)) by setting

w(g,h)p = (w(g, h)g).
Observe that @(g,1)@(x) = @(zg) for g € SLa(A).
We start defining a Bruhat—Schwartz function ¢g = Qg € S(Vi(A)) asso-
ciated with g as follows:
i) At primes g1 N, ¢g 4 equals the characteristic function on My (Zg).

ii) At primes p | N, ¢g,p is determined by requiring that (ﬁgyp is given by

Pep (33 52)) = 1z, (21)1z, (22) Lz, (23) 15 (24)X ) (2a).

iii) At the archimedean place,
Pgoo (55 53)) = (@1 + V=Twz + V—Taz — 24)"exp(—rtr(z'z)).

Notice that the local components at primes dividing N are defined through
their partial Fourier transforms. For later use, we provide an explicit recipe for
¢g,p at such primes:
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LEMMA 5.2. Let p be a prime dividing N, and write 5(1/27Xp> for the root
number of the character X,: Q) = C*. Ifp| M, then

bgp (25 27)) = p71/25(1/2,zp)1zp (21)1z, (£4)1pz, (€3) 1,17 (22) X (22),
while if p | N/M one has

Pep (23 27)) = 1z, (21)1z, (24) 1z, (23) (12, (22) — P~ Lp1z, (22)) -

The next statement adapts [I108, Proposition 5.2] to our slightly different model
for GSOQﬁQ.

PRroOPOSITION 5.3. With the above notation,
0(g, bg)aL. x aL, = 2711 (0(2) H[SL2(Z) : To(N)] ‘g @ &.

Proof. We know that 6(g, ¢g) € T®7. A routine calculation shows the following
assertions.

i) If pt N, and (g, h) € R(Z,), then w(g, h)pg p = dg p.
ii) If p | N, and hq, he € Ko(N;Z,), then
w ((det(’élhz) ?) , (hl, hg)) Dgp = Xp(hlhﬂ)(bg,p-

iii) If kg, ko,, ko, € SO(2), then
w(ko, (Ko, . ko, ))bg,00 = exp(V=1(k +1)(—0 + 01 + 02)) g co-
It follows from these properties that there is a constant C satisfying
0(g, dg)| L, x a1, = C8® 8,

and one finds C = 2¥+1yol(T'y(N)) by comparing the Fourier coefficients
Wg1(1) and Wyg,),1,1(1) (cf. loc. cit. for details), where T'o(N) =

SO(2) SL2(Z) N SO(2)['o(N;Z). The statement then follows by using that
vol(T'o(N)) = (g(2) 7 [SLa(Z) : To(N)] L. O

COROLLARY 5.4. With the above notation,
0(G, dg) = 2"1[SLa(Z) : To(N)] ' ¢a(2) (9. 9)8- (27)

Proof. The invariance properties of ¢g imply that there is a constant C' such
that 6(G, ¢g) = Cg. Thus we need to determine the precise value of C. On

the one hand we have (#(G, ¢g),8) = C(g,g). And on the other hand, by the
seesaw principle together with the previous proposition we also have

(0(G, ¢g). 8) = (G, b(g, ¢g)) = 2T (a(2) T [SL2(Z) : To(N)] (G, G) =
= 2M1¢g(2) 71 SL2(Z) : To(N)] (g, 8)*.
Hence, using that (g, g) = (p(2)"1{g,g) we conclude that C' = 2F*+1[SLy(Z) :
To(N)] ' ¢a(2)72(9, 9)- m
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Proposition 5.1 will follow straightforward from the identity in Corollary 5.4.
We need to suitably modify the Bruhat—Schwartz function ¢g in order to trans-
late (27) into an explicit analogous relation between g and Yy G. To do
so, define ¢g1 = ®y¢g: , by setting dg: , = ¢g . at all places v # 2, and
Pgi o = 27 2wo(t(271)2,1)¢g 2. From the definition of ¢g 2, one can easily check
that ¢g: o(z) = 1y,(22,)(x) for x € V4(Q2). With this slight modification at
p =2, Corollary (5.4) gets easily rephrased:

COROLLARY 5.5. With the above notation,
0(G, dgr) = 2" [SLa(Z) : To(N)] ' ¢a(2) (g, 9)g".

Proof. This follows from the very definitions. Indeed, recall that for =z €
GL2(A) one has

0(G. b)) = / O, y'y: 6) G y/y)dy =

[O2,2]

/[o ] > w@y'y)eev) | Gy)dy,

veV4(Q)

where ¢y’ € GOz 2(A) is any element with v(y’) = det(z). From the last expres-
sion, observe that if we replace ¢g by w(g, 1)¢g with g € SLo(A), then

0(G,w(g, 1)) (x) = / S wle 'yl )ogv) | Gly'y)dy =

[O2:2] \vevy ()

/[O ] Z w(xgayly)¢g(v) G(yly)dy:

veVy(Q)
= 0(G, dg)(29) = 7(9)0(G, ¢g) ().

Applying this for g = £(271)2 € SL2(Q2) < SLa(A) C GL2(A), we deduce that
o(Ga ¢gﬁ) = 9(G7 272&)(15(271)27 1>¢g> = 272T(t(271>2>9(G5 ¢g>a

and the statement follows from the previous corollary together with the defini-
tion of g. O

Finally, we define ¢g = ®,¢g ., by keeping ¢z, = dg: , for all places v { M,
and setting

Pgp = pilwp(wpa hp)‘bg”,p = pilwp(wpv hp)9g,p

at each prime p | M. In other words, if wys and hys are as before, we see that
g = M w(w, hr)dge.
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Proof of Proposition 5.1. As above, if € GL2(A) notice that
0(G.6g:) (o) = | > vl y)os) | Gy,
022(@\02.2(A) \ yev, (@)

where 3y’ € GOg2(A) is such that det(z) = v(y’). In particular, observe that
det(xwn ) = v(y'har), hence

1
0(YnG, g)(z) = 57 > wa,y'y)w(@nr, b )dg: (v) | Gy yhar)dy =
(O221\vevi(@)
1
= Z w(zwar, y' hary)dg: (v) |Gy hary)dy.
[O2,2]

veVL(Q)

From this we see that 0(Yn G, ¢g) = M~ '7(wp)0(G, dgi), and hence the
statement follows from the previous corollary, together with the fact that g =
T(ZU]M )gﬁ. O

For later use, we will need an explicit description of the Bruhat—Schwartz func-
tion ¢z. At places vt 2M, observe that ¢z, = ¢g ., thus we have:

i) If p{2M is a finite prime, then ¢z ,(7) = 1y,(z,)(z) for all z € V4(Q,).
ii) If p| N/M is an (odd) prime, then
e (33 37)) = 1z, (21)1z, (22) 1z, (25) (1z, (22) — P~ Loz, (22)) -
iil) At v = o0,

b0 ((5152)) = (21 + V—Tlag + V—1z3 — 24)"exp(—ntr(a'a)).

At primes p | 2M, we describe ¢z , in the following lemma.

LEMMA 5.6. With the above notation, the following assertions hold.
i) At p =2, ¢pgo(x) = ly,(2z,)(x) for all x € Vi(Q2).
it) At (odd) primes p | M, for x = (g} 22) € Va(Qp) we have

bgp(@) =0~ %e(1/2, ) Lz, (1)1, (22) Loz, (23) 1,15 (22)X (22).

Proof. One just have to compute ¢z 2 and ¢z, (p | M) using the definitions
of ¢g 2 and ¢g , together with the properties of the Weil representation, since
bg2 = 2 2wa(t(27 )2, 1) g2 and ¢z, = p~wy(wp, hy)dg,p for primes p | M.
We omit the details and leave them to the reader. o
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5.2 THE PAIR (PGLQ,ﬁJg)

Shimura’s correspondence between half-integral weight modular forms and in-
tegral weight modular forms was investigated by Waldspurger as a theta corre-
spondence between automorphic representations of PGLy(A) and automorphic
representations of S\]ZQ(A). Here, PGL; is identified as the special orthogonal
group SO(V) of a three-dimensional quadratic space V' as in Section 4.2.

The theta correspondence for the pair (PGLo, Sig) depends on the choice of
an additive character ¢ of Q\A. To emphasize this dependence, we will write

@PGszs”m(””/’) (resp. GSszPGLQ(“ V)

for the automorphic representation of SLy(A) (resp. PGLy(A)) obtained as
the theta lift of the automorphic representation 7 (resp. 7) of PGL2(A) (resp.
SL2(A)). On the local setting, we write

®PGL2 xSLa (Wv’ 1/}”> and eSLz xPGLg (ﬂv’ "/’v)

for the local theta lifts of m, and 7, respectively. We will omit the subscripts
PGLo ><SL2 or SL2 x PGLs if the direction of the theta lift is clear.

In the following, for a fixed irreducible cuspidal automorphic representation
7 of PGLy(A), and D varying over the set of fundamental discriminants, the
representations O(m ® xp, %) (and their local counterparts O (m, ® xp, ¥>))
will play a crucial role. Waldspurger’s description of the theta correspondence
for (PGLa, SLp) tells us that the set {O(7 ® xp,¥?”) : D € Q* fund. discr.} is
finite.

In order to describe the local theory, fix a place v of Q and let Py, denote the
set of special or supercuspidal representations (or discrete series representations

if v = 00) of PGL2(Q,). For D € QJ, define the symbol
D
(—) = (Ve 1/2)e(ms © X0, 1/2),

Ty

and consider the associated partition Q) = Q (m,) L Q, (7,), where

QE(m) == {D cQ: <£) _ il}.

The next statement summarizes Waldspurger’s local theory.

THEOREM 5.7 (Waldspurger). With the above notation, the following assertions
hold.

i) If my & Poy, then QF (m,) = QX and 7y := O(my, 1) = O(m, ® XD, VP
) If ™ & Po, B s ( XD, ¥y
for all D € Q.

ii) If m, € Pow, then there are two representations 7,7 and T, of éig(@v)
such that

@(7‘(‘1} ®XD)1/JUD) = {
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iii) The equality ©(m, @ Xp, VD) = O(my,1,) holds if and only if O (m,, 1)

admits a non-trivial Y2 -Whittaker model.

REMARK 5.8. When m, € Pow, one has 77 = O(my, ) and 7, =
O(JL(7y), 1)), where JL(m,) is the Jacquet—Langlands lift of m, to an admissi-
ble representation of PB), with B, the unique division quaternion algebra over

Q. We warn the reader that the labelling +/— in i) depends on the choice of
the additive character 1,,.

Altogether, the local Waldspurger packet Waldy, (m,) is defined to be the sin-
gleton {7,} if m, &€ Py, and the set {7}, 7, } if m, € Po,. Although the
labelling +/— in the set Waldy, (7,) depends on t,, the packet Wald, (7, )
itself does not.

To state the global side of this theory, write Ago for the subspace of cuspidal
automorphic forms on SLy(A) which are orthogonal to the theta series gener-
ated by quadratic forms of one variable. Let Ay ; be the subspace of cuspidal
automorphic forms on PGL2(A) such that for any subrepresentation 7 of Ao ;
there exists some D € Q* with L(m ® xp,1/2) # 0.

Let 7 be an irreducible cuspidal automorphic representation of PGL2(A), and
let ¥(m) denote the set of rational places v such that m, € Py,. For each D €
Q*, let (D, ) € {£1}®™! be the tuple determined by setting e(D, 7), = (£)
for each v € ¥(w). Observe that one has by construction ’

f(r@xp.1/2) = e(m,1/2) [] | (2) .

T
veX(m v

For an arbitrary tuple € = (e,)yex(r) € {£1}*™, define the set Q°(r) =
{D € Q* : e(D,7) = €}. In particular, 7 determines a partition

Q* = |Q(m).

Having settled this notation, we summarize Waldspurger’s global theory as
follows. Below, two irreducible subrepresentations of Agg are called near equiv-
alent, denoted 7y ~ 7o, if it holds that 71, ~ 72, for almost all places.

THEOREM 5.9 (Waldspurger). With the above notation, the following assertions
hold.

i) The global theta correspondence between PGLo and §I:2 s compati-
ble with the local correspondence. That is, if O(7,¢) # 0, then
O(7, 1) = ®,O(Ty, y). And analogously, if O(w, 1) # 0, then O(mw, ) ~
RuO(y, o).

1) O(m, ) # 0 if and only if L(w,1/2) #0. And ©(7,¢) # 0 if and only if
7 has a non-trivial - Whittaker model.
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iit) If T is an irreducible subrepresentation of Ao, then there is a unique ir-
reducible automorphic representation m = Shy(7) of PGL2(A) associated
to @ such that O(7,vP) # 0 = O(7,¥P) @ xp = 7. The association
7T — Shy () defines a bijection between floo/ ~ and Ao;.

i) If m = Shy(7), then the near equivalence class of @ consists of all the
non-zero lifts of the form O(m ® xp,¥p).

v) Let e € {1} [f [Toes(n) €0 # €(m,1/2), then O(r @ xp,¥P) =0
Jor all D € Q(m). If [[,ex(x) €v = €(m,1/2), then there is a unique 7
such that for every D € Q¢(r) it holds

¢ if L(r ® xp,1/2) # 0,

Dy _
Or @ X0,y ){0 if L(7  xp,1/2) = 0.

In the previous theorem, if € = (&,), € {1} then 7¢ denotes the irre-
ducible cuspidal automorphic representation of SAIZQ (A) whose local components
equal 7, at all rational places v & (), and whose local components at places
v € X(m) equal 5. Together with the local theory, the above result motivates
the definition of the (global) Waldspurger packet Waldy () associated with 7
as the finite set

Waldy () = < 7€ : H €y = €(m,1/2)
veEX(m)

Notice that Waldy (7) = Wald,o (7 ® xp) for all D € Q*, similarly as locally
at each place v one has Waldy, (1,) = Waldya (T, ® x4) for all a € Q.

5.2.1 ON THE RESULT OF BARUCH-MAO

Having recalled Waldspurger’s theory, we explain briefly how Baruch—-Mao’s
result stated in Theorem 2.1, leading to a generalization of Kohnen’s formula,
fits in this theory. So let f € SJ™ (V) and x be as in Theorem 2.1, and let 7
be the irreducible cuspidal automorphic representation of PGLa(A) associated
with f. Choose once and for all a fundamental discriminant D € D(N, M),
where the set ©(N, M) is defined in (7), and assume further that L(f, D, k) # 0.
Let 9 be the standard additive character of A/Q, and write 1 = ¢! and

ED = =P for the (—1)-th and (—D)-th twists of 1, respectively. Then,

consider the theta lift 7 := O(7 ® XD,wD) of T ® xp with respect to the

additive character 1/}D. Because of the assumption L(f, D, k) # 0, we have

O(m ®XD,ED) # 0, and so T = ®,7, with 71, ~ O(m, ®XD,E5).

Let € := €(D,n) € {£1}* be defined as above, so that D(N, M) is the
set of fundamental discriminants in Q¢(7). It is proved in [BMO07, Section 10]
that 7 = 7¢ € Waldw(w). In other words, the automorphic representation
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T=0([r® XD,ED) of SAIZQ(A) corresponds to the element in the Waldspurger
packet Wald ;(m) whose labelling coincides with € (recall that the labelling of &

depends on the choice of ). Moreover, one has €5, = —1, and for each prime

pIN
<D> <D> wy  ifp| N/M,
€, =—]=|—] =
P p P —w, ifp|M.

If Vz denotes the representation space for 7, then Baruch and Mao show that

Vi N AZ‘H /2(4N ;X,) is one-dimensional. The one-dimensional subspace of

S,jj;j;“ (4N M:;x) denoted S,jj;j;“ (ANM, x; f ® x) in Theorem 2.1 is then the

preimage of Vi ﬂflzﬂ/Q(ALN, X,) under the adelization map (16), and h can be

taken to be the de-adelization of any new vector in Vi N AZ‘+1/2(4N, Xo)'
Summing up, the set D(N, M) in Theorem 2.1 singles out a precise element 7 in

the Waldspurger packet Wald; () = Wald ;» (m ® xp), where the adelizations

of the classical half-integral modular forms in S;;_qe/;’ (ANM, x; f ® x) belong
to. Together with the local assumptions on x, this allows Baruch and Mao to
have a clean description of the local types for 7 at primes p dividing N. For
later purposes, we briefly describe these local types, according to whether p
divides M or not.

First suppose that p is a prime dividing N/M. The local representation m, is
a quadratic twist of the Steinberg representation, say m, = St - xu, for some
u € Z). If w, =1 (resp. w, = —1), then u is a non-quadratic residue (resp.
quadratic residue) modulo p. We have

—D —D

Tp =~ O(mp @ XD, Y, ) = O(St, - XuD> ¥ );

and notice that ¢ := uD € Z; is a non-square in Z, since (%) = wp. In this

p )
case, it follows that 7, is a special representation of SLa(Q,), denoted &° (¥, Dy
in [BMO07, (10.5.3)]. This representation is realized as the space of functions

¢ : SL2(Qp) — C such that

d([(6 5) o) = e @v@ia=o

for all g € §I:2(Qp) and a € Q,, and satisfying also the vanishing condition

/ gza(wﬁ(;c))@f(—m%)dx =0 forall A €Q,.

P

Here, notice that s is the unique non-trivial quadratic character of Q. A
newvector ¢, € 7, can be chosen as in [BMO07, Lemma 8.3], see also Lemma
7.1 below.

Secondly, suppose that p is a prime dividing M. We have again 7, = Sty x4, for

~ —D .
some u € Z,;, and therefore 77, ~ ©(St, xup,?, ). But now, § :=uD € Z isa
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square in Z, because (%) = —wp. Then 7, is a supercuspidal representation of

SL, (Qp). More precisely, it is the odd Weil representation TiD associated with

P

the character Ef (cf. [BMO7, (10.5.4)]). In this case, a choice of newvector
Pp € Tp is described in [BMO7, Proposition 8.5], see also Lemma 8.3 below.

5.3 THE PAIR (SLs, PGSp,)

Now we focus on the theta correspondence for the pair (S\]ZQ, PGSp,), which
explains the classical Saito—Kurokawa lift introduced in Section 2.3. We iden-
tify PGSp, with the special orthogonal group SO(3,2) = SO(V;), where V5 is
the five-dimensional quadratic space of determinant 1 and Witt index 2 as in
Section 4.2. As we did for the pair (PGLg, SLy), let us fix a non-trivial additive
character 1 of A/Q.

Global theta lifts can be defined in the same fashion as we have already ex-
plained in the previous two instances, so that for an irreducible cuspidal rep-
resentation II of PGSp,(A) and an irreducible component 7# C Agg(SL2), one
can define their lifts @PGSp2 ST, (IT;¢)) and ®§i2xPGsp2 (7;4), respectively.
The following assertions concerning this theta correspondence can be found in

[PS83].
a) If 9PGSP2 ST, (IT; 4) is not zero, then it is irreducible cuspidal.

b) If Og  par, (T19) =0, then @gizxpGSm (7r;4) is irreducible cuspidal.

¢) If Og1,  par, (F34) is not zero, then Ogt., «Pasp, (7;4) is irreducible non-

cuspidal and occurs in the discrete spectrum of PGSp,.
d) ®PGSp2 w51, UL ¢) = 7 if and only if GéiszGsz (m;9¢) =1L

Similarly as for Waldspurger packets, one can introduce the notion of local
and global Saito—Kurokawa packets. Indeed, let v be a place of Q, and m, be
an infinite-dimensional irreducible admissible representation of PGL2(Q,). If
€, € {£1} and 75 € Waldy, (7,), write IISv := Ogt, «Pasp, (7ev;1hy). Then
the local Saito-Kurokawa packet of 7, is defined to be

SK(my) = {II;" : 75» € Waldy, ()}

Now if 7 is an irreducible cuspidal automorphic representation of PGLo(A),
the associated global Saito—Kurokawa packet is just

SK(7) := {O(7;¢) : 7 € Waldy(m)}.

Given a tuple € = (e,), such that €, € {£1} for every place v, and €, = +1 for
all v such that m, is not square-integrable, set II° = ®,II{*. Then we have

SK(m) := {11 : [J e = (1/2,m)}.
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Although the Saito-Kurokawa packet SK(m) associated with 7 is defined
through Waldy(7), it turns out that SK(m) does not depend on the choice
of the additive character . Also, it is well-known that SK(7) consists only of
cuspidal members when L(1/2,7) = 0.

In the rest of this section, we focus on an explicit relation between a newform
h € 7, where 7 is as in Section 5.2.1, and a theta lift of h. From now on, we
fix ¢ to be the standard additive character of A/Q.

If F is a cuspidal automorphic form on SO(V5)(A) ~ PGSpy(A) and B €
Sym,(Q), we will regard F as an automorphic form on GSpy(A) trivial on the
center. Then its B-th Fourier coefficient Wg g : GSpy(A) — C is defined as
in (20). In particular, for an automorphic form h on SL, (A) and a Bruhat—
Schwartz function ¢ € S(V5(A)), the B-th Fourier coefficient of the theta lift
O(h, ¢) is the function (of g € GSpy(A))

0 Wotno.n(9) = /S oy, P COTEBTX.
ym2 ym2

As in the introduction, let k, N > 1 be odd integers, with N square-free, and
let x be an even Dirichlet character modulo N, of conductor M | N. Let
f € SEY(N) be a normalized newform of weight 2k and level N, and let =
be the automorphic representation of PGLy associated with f. We assume
Hypotheses (H1) and (H2), so that x(,)(—1) = —1 and w;, = —1 for all primes
plM. .

Let # € Waldgy(m) be the automorphic representation of SLi(A) ob-
tained by theta correspondence as explained in Section 5.2.1. Let h €

S,j_ﬁ?; (AN M, x; f ® x) be a Shimura lift of f as in Theorem 2.1, and let h € 7

be its adelization. Besides, let F,, € 8k+1(Ké2) (NM), x) be the adelization of
the Saito-Kurokawalift F,, = M(Z(h)) € SkH(FéQ) (NM), x) as defined in (21)
(cf. also Section 2.3). Recall the operator %Ry, and consider the automorphic
form

RuFy € Spy1(K(NM, M), x),

which by Lemma 3.2 is the adelization of Ry F) € Sk“(Fgf) (NM) N
rPeram (ALY, y).

The main purpose for the rest of this section is to prove the following identity,
where the Bruhat—Schwartz function ¢n € S(V5(A)) will be defined below.

ProrosITION 5.10. With the above notation,
0(h, én) ® x = 27°x(2) 7'M~ '[SL2(Z) : To(N)] 7' (o(2) ' RuFy.  (28)

Here, observe that 6(h, ¢p) is an automorphic cusp form on PGSp,(A), and as
in Section 3.3, the automorphic cusp form 6(h, ¢n) ® x on GSpy(A) is defined
by

(0(h, ¢n) @ x)(9) = 0(h, én)(9)x(¥(9)),
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where v : GSpy(A) — A* is the similitude morphism. In particular, the
above proposition says that the automorphic form 6(h, ¢n) ® x is classical,
in the sense that it is obtained by adelization of 272x(2)"'M~1[SLy(Z) :
Lo(N)] ™ ¢ (2) 1 Rur Fy.

The proof of Proposition 5.10 will proceed by comparing the Fourier coefficients
Wom,p)ox,B and W, ¥, B of the automorphic forms O(h, o) ® x and Ry Fy
appearing in (28), for arbitrary symmetric matrices B € Sym,(Q). Concerning
RuFy, we know from Lemma 3.4 that Wi, ¥, B is zero unless B is positive
definite, half-integral and b3 € MZ if

_ by by/2
B‘(mﬂ by )
And in that case, Wn,¥, B is uniquely determined by the values
Wor,,F,,B(9o0) at the elements

e =nman = (@ 1) (5 L) cosm® @)

with X € Sym,(R), and A € GLJ (R), for which we know (cf. Corollary 3.4
and equation (22)) that

WmMFX,B(goo) — WFX,B(goo) — Ax(B) det(y)(k+l)/262ﬂJT1Tr(BZ),

where Y = A'A, Z = X +/—1Y € Hy. Here, A, (B) is the classical B-th
Fourier coefficient of F), which can be made precise as in (14).
Regarding 6(h, ¢y), it will follow from Lemma 5.12 below that 6(h, ¢n) ® x

satisfies the same invariance properties with respect to K (NM, M) C GSpy(Z)
as Ry F, does (namely, K (NM, M) acts through x on both 6(h, ¢n) ® x and
Ry F,). Therefore, by comparing the Fourier coefficients We(h,¢h)®x,B_With
Wr, B at elements g, € GSp,(R) as above we will be able to deduce a relation
between Wy, ¢.)0x,8 and Wr, g as functions on GSpy(A), leading to the
identity claimed in_(28). Furthermore, observe that from the very definitions
we have
Woh,én)@x,B(9o0) = Woh,én),8(9oc)-

For this reason, we will focus on the computation of Fourier coefficients of the
automorphic form @(h, ¢n) on PGSp,(A) obtained as a theta lift from h.

In order to determine the Fourier coefficients Wy, ¢,),5, as in the previous
section it is useful to consider another model for the Weil representation. Recall
the 3-dimensional quadratic subspace V3 C V5 on which the quadratic form is
given by Q1, i.e. Va3 = (v2,v3,v4). We identify V4~ with F2, in a compatible
way with the fact that

0 0 1
Q= 0 @1 O
-1 0 0
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We consider the partial Fourier transform
S(V5(A)) — S(Va(A)) © S(A%), ¢+ &,

defined by setting
d(ay) = / (23 73919 (—y2)d, (30)
A

where 2 € V3(A) and y = (y1,y2) € A% As usual, here dz is the self-dual
measure with respect to the additive character 1. The Weil representation
w of SLa(A) x O(V5)(A) on S(V5(A)) gives rise then to a representation & of
SLa(A) x O(V5)(A) on S(V3(A)) @ S(A2) by setting

@(g,h)¢ = (w(g,h)o).
If ¢ = ¢ ® py with ¢y € S(V3(A)) and ¢y € S(A?), then one has

w((g,€), Do(x;y) = wl(g, €), )dr () - P2(yg) (31)

for (g,¢) € Sig (A). This change of polarization helps to get simpler computa-
tions, and the identity in (31), which we will use later, is an instance of this.
Most importantly, in terms of this new model one can express the Fourier coef-
ficients of O(h, ), for a given ¢ € S(V5(A)), in terms of the Fourier coefficients
of h. Recall that if £ € Q, then the &-th Fourier coefficient of h is by definition
the function

g+ Whe(g) = /Q B IE g < STa(a)

As quoted in (17), one has c¢(n) = €™ Wy ,,(1) for all integers n > 1. With
this, the following is proved in [Ich05, Lemma 4.2].

LEMMA 5.11. If o € S(V5(A)), then for B # 0 one has

Wty () = / (9. E(5:0, )Whelg)dg,  (32)
U(A)\ SL2(A)

where € = det(B) and 8 = (b3, by/2,—b1) if B = (bf}z bzbéz).

The identity in (32) is a crucial ingredient in our computation of the B-th
Fourier coefficients of 6(h, ¢y ) towards the proof of Proposition 5.10. To pro-
ceed with this computation, we still need to address two tasks. First, we must
describe an explicit choice of Bruhat—Schwartz function ¢n € S(V5(A)). And
second, we must express the integral on the right hand side of (32) as a product
of local integrals, one for each rational place v. After this is done, we will be
able to proceed with the computation of the Fourier coefficients of 8(h, ¢p) by
performing local computations prime by prime.
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Concerning the choice of ¢ € S(V5(A)), recall the Bruhat—Schwartz function
¢z € S(Va(A)) considered in the previous section, which is involved in the
explicit formula in Proposition 5.1. For our proof of the main theorem, it
is crucial that ¢y is chosen so that its restriction to Vj coincides with ¢g.
Since we have an explicit description of ¢z, we only need to define ¢y on the
orthogonal complement of Vj, which is the one-dimensional quadratic subspace
Vi := Vjt of Vs spanned by vs. Notice that we may identify the space S(V;(A))
with S(A), by identifying V7 with the one-dimensional quadratic space over Q
endowed with the quadratic form ¢(z) = 2%. In S(V4(A)), we consider the
Bruhat—Schwartz function ¢ = ®,¢, determined by its local components as
follows:

2,
e 2™ if ¢ = 0.

o (z) = {1Zq($) ifv=gq# o0,

Considering the basis v1,...,vs of V5 as we did above, so that V; = V- is
generated by vs, and taking into account the embedding V,; C V5 explained in
Section 4.2, then ¢y, is defined by setting

Pn(z) = @(x3)dg (25 71 ) -
for z = x1v1 + 2av2 + x3V3 + T4v4 + 505 € V5(A). By construction, the local
components of ¢ = ®,¢n ., can be easily given in terms of the local components
of ¢ and ¢z. For the reader’s convenience, we describe such local components:
if v is a rational place, z = x1v1 + T2v2 + x3v3 + T4v4 + 2505 € V5(Q,) and we
put X = (32 z), then ¢n ,(2) is given as detailed below.

i) If v = ¢ { N is an odd prime, then ¢p 4 is the characteristic function of
Vs5(Zq). Indeed,

Pn,q(2) = q(@3)g,q(X) = 1z,(21)1z, (22)1z, (23)1z2,(24)17, (25).

ii) If v = 2, ¢n 2 is the characteristic function of Zgovs + V5(2Zs). Indeed,
Pn,2(2) = ¢2(23) g 2(X) = Loz, (21) 12z, (v2) 12, (23) 12z, (v4) L2z, (25).

iii) If v =p | M is prime, then ¢n ,(2) = @p(r3)0g,p(X) equals

p~12e(1/2, X)L -1z (1) 1z, (22)12, (23)17, (24) 12z, (25) X (21).
iv) If v =p | N/M is prime, then ¢n ,(2) = @p(23)dg p(X) equals

(1z,(21) = p~ "1z, (21)) 1z, (22)1z, (23)1z, (24) 1z, (25).
v) For the archimedean prime v = oo,
bhoo(2) = (w2+V =1z +V—1a5—24)" ! exp(—7 (22 +254+203+ 2 +22)).

DOCUMENTA MATHEMATICA 24 (2019) 1935-2036



1982 A. PaL, C. DE VERA-PIQUERO

In particular, observe that ¢n = ®,¢n,, coincides with the Bruhat-Schwartz
function p®) = ®v<p1()5) defined in [Ich05, Section 7] locally at every place v { N.
Therefore, we can use Ichino’s computations in loc. cit. at all such places.
We need to understand the action of the Weil representation of SLa(A) X
O(V5)(A) on ¢n € S(V5(A)). For later purposes, the properties we are in-
terested in are collected in the following lemma.

LEMMA 5.12. Let ¢y be defined as above, and v be a rational place. Then the
following assertions hold:

1) If v = q is an odd prime not dividing N, then gZA)hyq = (bhq ® d)i,q’ where
b, € S(V3(Qy)) and ¢, , € S(Q}) are the characteristic functions of
V3(Zq) and 72, respectively. Besides, wy((k, sq(k)), k' )pn,q = ¢n,q for all
k € SLa(Zq) and all k' € GSpy(Zg).

it) If v = 2, then wa(k, k' )pn2 = é(k)pn2 for all k € To(4;Z2) and all
K S GSPQ(ZQ)

it1) If v = oo, then

woo (g, K )om,00 = VT2 det (k)M oy, o

for all kg € S/(—)\/(Q) and k' = (_O‘ﬂ g) € Spy(R), with k = a+ /—13 €
U(2).

) If p| N/M, then wy((k,sp(k)),k")pnp = ¢np for all k € To(NM;Z,) =
To(p;Z,) C SLa(Zp) and all k' € KéQ)(NM;Zp) = Ké2)(p;Zp) -
GSpy(Zy,). And if p | M, then wy((k,sp(k)), K )onp = ényp for all
k € To(NM;Zy,) = To(p*Zyp) C SLa(Zy) and all k' € K(NM,p;Z,) =
K(p*,p;Z,) C GSpy(Zy). Explicit expressions for qgh,p in these cases are
given in Lemma 5.13 below.

Proof. Part i) is as in [Ich05, Section 7.3]; part ii) is worked out in [Ich05,
Section 7.4], where one also finds an explicit expression for &(r, 1)q§h72, where r
varies over a set of representatives for SLa(Z2)/Ko(4;Z2) (which consists only
of 3 elements); part iii) is covered in [Ich05, Section 7.5]. As for part iv), one can
check it by routine (and tedious) computation using the explicit description of
®n,p together with the rules for the Weil representation and the explicit model
of SO(Vs) that we are using (cf. Section 4.2). We omit this computation and
leave it for the reader. O

At primes p | N, we will also need the partial Fourier transforms (ﬁh,p of each
local component ¢y, ;,, which we collect in the next lemma.

LEMMA 5.13. With notation as above, let p be a prime dividing N, and let
x = (x1,22,23) € V3(Qp), ¥y = (y1,92) € Q3. Then one has

1z, (21)1z, (22)1z, (23)1pz, (Y1) 17x (y2) ifp| N/M,

Pnalit) = {1pzp(x1)1zp (22)12, (x3) 12z, (y1) 17 (y2)x, " (92) i p | M.
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Proof. We consider first the case p | M. By applying the definition of the partial
Fourier transform and the recipe in iii) above we have, for © = (21,22, 23) €

V3(Qp) and (y1,92) € Qj,
Php(5y) = P_1/25(1/2,Xp)1pz,, (71)1z, (22)1z, (23)1p2z, (Y1) ¥

x / X (@) p(—paz)dz =

*IZS —p

= 1,z,(21)1z, (22)1z, (23) Lpez, (1) 152 (y2)X, ' (v2)-

Similarly, for primes p | N/M, we find for z = (z1,22,23) € V3(Q,) and
(yl,yg) S @12) that

Php(T;y) = 1z,(21)1z, (22)1z, (23)1,z, (y1) ¥
X/ (1Zp(z) _pillpflzp(z)) Vp(—y2z)dz.

p

The last integral is easily seen to equal 125 (y2), hence the result follows. O

Having described our choice for ¢y, together with its main properties, we now
focus on the right hand side of (32). We want to decompose the Fourier coeffi-
cients Wy ¢ as a product of local Whittaker functions Wy, ¢, so that the integral
on the right hand side of (32) decomposes as a product of local integrals that
will be eventually computed place by place. By multiplicity one, any decompo-
sition of Wy ¢ as a product of local Whittaker functions will differ from a fixed
one by a non-zero scalar factor. Our choice will follow closely the discussion
in [BMO7, Section 8|, with slight renormalizations so that our decomposition
will reflect the identity proved in (19). Let £ € QT, and write £ = Dgfg with
9¢ € N and f¢ € QF, so that —d¢ is the discriminant of Q(v/—¢)/Q. Write
ep := ord,(f¢), and recall the functions ¥, (¢; X) € C[X, X '] defined in Sec-
tion 3.2. For each rational place v, we define the local Whittaker function
Wy e = Wh, ¢ attached to h, and ¢ as follows (we do not enter here in a de-
scription of the local types of 7, at primes p | N, which has been given in
Section 5.2.1 and will be recalled and used again in Sections 7 and 8, where we
will need them to perform the computation of local SLa-periods).

i) If v = p is a finite prime with p { N, then we define W), ¢ as in [Ich05,
Section 7.2, Appendix A.3]. In particular, for all primes p t N we have

Wp,ﬁ(l) = qu(‘f? ap)-

ii) If v = p is a finite prime with p | N/M, then 7, is the special representa-

tion 6° (Ef) as explained in Section 5.2.1, where § € Z, is any non-square
unit. The p-th component h, € 7, of h lies in the one-dimensional sub-
space of vectors fixed by I'g(p) C SLa(Z,), and hence it is a multiple
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of the newvector ¢, chosen as in [BM07, Lemma 8.3] (see Lemma 7.1
below). We consider the local Whittaker function

Wi cig o /@ G5 u(2)g) Ty Ea)da

associated with ¢,, with respect to 1/15. We may assume that p 1 d¢, as
otherwise Wy ¢(1) = 0. Then, it follows from the computations in [BM07,
Section 8] that

W” ( ) _ 2p76p lf X*f(p) + wp ?é 05
ok 0 if x_e(p) +wp = 0.

From the definition of the function ¥,(&; X) in Section 3.2, we see that

U, (& ap) = p 32 R a(pr )W, (1)

We define W, ¢ = p»®/2=Fq(per)W ¢, so that we have W, (1) =
Uy (&5 ap).

If v = p is a finite prime with p | M, then 7, is the supercuspidal odd
Weil representation TiD explained in Section 5.2.1. The subspace of vec-
P

tors in 7, on which fo(pQ) - Sig(Zp) acts through XOp(: Xp) is one-

dimensional, and hence the p-th component h, € 7, of his a multiple

of the newvector ¢, chosen as in [BMO07, Proposition 8.5] (see Lemma

8.3 below). The representation 7, = TiD is distinguished, in the sense
P

that it only has non-trivial z/Jg-Whittaker functionals for £ in the same
square class as —D. Equivalently, this holds if and only if —¢ is in the
same square class as D. If this is the case, we choose the local Whittaker
function W, ¢ associated with @, to satisfy Wy, (1) = 1, (fg)Xp(fg)*l

(this normalization differs slightly from the one chosen in [BM07, Section
8]). From the definition of the function ¥,(£; X) in Section 3.2, we now
have

Uy (& ) = 20712 M a(p)x (1) W, 6 (1)

We define W, = 2p»1/2=Rq(per)Wy ¢, so that U,(&a,) =
X (W (1),

At the archimedean place v = oo, again as in [Ich05, Section 7.2] we
define W ¢ by setting

Weo,e(u(z)t(a)ke) = o2V =16z (k+1/2 ,—2m€a® ,V/=T(k+1/2)0

for # € R, a € RY, 0 € R/47Z and ky = (%% 5n9) € SO(2). In
particular, W, ¢(1) = e~27¢.

DOCUMENTA MATHEMATICA 24 (2019) 1935-2036



SAITO-KUROKAWA LIFTS AND A CENTRAL VALUE FORMULA 1985

With these choices, we see from equation (17) and Lemma 3.1 that

Whe(l) = 6727”’:271/(]\[)0( k 1/2 H\Il (& ap)

= 27"Me(pe)fE UQHW@ (33)

and so the next lemma follows immediately by combining (33) with (32).

LEMMA 5.14. With the above notations, for B # 0 we have

W 2 et (2 T, Wew if € >0,
0(h,¢n),B — .
0 if £ <0,

where Wg (h) equals

vol(SLa(Zy)) ™" if v=p,

vol(SO(2))~1 if v =00

/ @u (g, ) m,w(B; 0, 1) W,y ¢(g)dg x {
U(Qu)\ SL2(Qy)

As before, here & = det(B) and = (b3, b2/2,—b1) if B = (b:}Q bx?).

By using this lemma, we can now determine the Fourier coefficients Wy(n 4,.),
by computing the local functions Wg,. Because of the invariance prop-
erties spelled out in Lemma 5.12, we see that 6(h,¢y) is right invariant
for K(NM,M). In particular, as commented above the Fourier coeffi-
cients Wy(n,¢,),5 are determined by the values Wy, ¢,.),8(goc) With goo =
n(X)m(A4,1) as in (29). Hence we only need to determine the values Wg (1)
at finite primes p, together with Wg o (n(X)m(A4,1)). We discuss case by case
such computations.

5.3.1 COMPUTATION AT PRIMES p{ N

At primes p ¥ N, we can compute Wg (1) literally as in [Ich05, Sections
7.3, 7.4]. We summarize the outcome of such computation. At each prime
p1 N, we continue to denote by {ap, a;l} the Satake parameter of f at p, and
consider the function ¥, (¢&; X) € C[X + X '] as above. Recall that ¢, is the
characteristic function of V5(Z,). Further, from Lemma 5.12 we have

wp((k, sp(k)), k') bnp = Pnp

for all k € SLa(Z,) and k' € GSpy(Zy), and ¢np = dp1 @ bp.2, where ¢ 1 €
S(V3(Qy)) and ¢, 2 € S(Q2) are the characteristic functions of V3(Z,) and Z2,
respectively. In this case, one finds out that for £ # 0

Z?;no(ordp(bi)) pn/Q\I];D(p_Qn& ap) if by, b2, by € Zp,

. (35)
0 otherwise.

WB,p(l) = {

DOCUMENTA MATHEMATICA 24 (2019) 1935-2036



1986 A. PaL, C. DE VERA-PIQUERO

At the prime p = 2, the 2-component ¢y 2 of the Bruhat—Schwartz function ¢y
is the characteristic function of Zyvs + V5(2Z3), which satisfies wa(k, k" )¢n 2 =
€(k)pn,2 for all k € Ty(4;Z2), k' € GSpy(Z2) (cf. Lemma 5.12). In this case
one finds, for £ # 0,

Wa(1) = 9= 7/2 yomin(orda (b)) 9n/2, (9-2042¢; ) if by, by, by € Lo,
e 0 otherwise.
(36)

5.3.2 COMPUTATION AT PRIMES p | N/M

Let p be a prime dividing N/M. Now QAﬁhm is not SLy(Z,,)-invariant, but only
To(p)-invariant. Let R, be a set of representatives for SLa(Z,)/To(p). Then,
using that SLo ((@p) =U(Qp)T(Qp) SL2(Z,) we have

Woet@k) ) o=,
volSL2 //SL (a)k, h)én p(5;0,1) P dkd

= [ 3 Gult(a)r M (550, DWa el

Qp reERy

WB,p(h) -

where ¢, := [SL2(Z,) : To(p)] ™t = %%. We will compute Wg ,(1). If

a € Q) and r € Ry, recall from (31) that

Op(t(a)r, 1)én,p(5; 0, 1) = wy((t(@)r, 1))d1,5(8)2,5((0, D)t(a)r),

where ¢1,(z) = 1z,(21)1z,(22)1z,(x3) and ¢2p(y) = 1pr(yl)1zg (y2). We
take R, to be the set consisting of the elements

10 . 0 -1
(b 1),W1thb€Zp/pr,and(1 0 )

Therefore, the elements t(a)r with a € Q,, 7 € R,, are precisely the elements
of the form

a 0 0 -—a
( a_lb a_l )7 ( a_l 0 ), QGQ;,bGZp/pr.

From the very definition of ¢ ,, it is immediate to see that ¢2 ,((0,1)t(a)r) =0
unless r = 1 and a € Z,'. Therefore, we deduce that

Wop1) =5 [ aplt(a), D (5:0,DW, (b)) a =
= &y1(0) | Wyelt(@)aa

=¢plz,(b3)1z,(b2)1z,(b1) /ZX Wp.e(t(a))d*a =

= ¢p1z,(b3)1z,(b2)1z, (b1) ¥, (& ap),
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where we have used that for a € Z,; one has (here, recall that ¢ = Y, D where
1y is the standard additive character of Q,, and § € Z; is any non-square unit)

Wpe(t(a)) = xp (@ )xs(a™)|alt/2W, 42¢ (1) =
= Wyare(1) = Uy(a’E; ) = U, (§; ).

We conclude that

71 . .
Weo(1) = {[SLQ( o) To(p)] 710, (& ay) 1fb1,b2',b36Zp, (37)
0 otherwise.

5.3.3 COMPUTATION AT PRIMES p | M
We proceed similarly as in the previous case. But now if p is a prime dividing M,

then @y, is only I‘O( ?)-invariant. If we denote by R,2 a set of representatives
for SL2(Z,)/To(p?), then we have

Woet@k) ) o=,
volSL2 //SL (a)k, h)én,p(8;0,1) P dkd

=g [ 3 Galr W (550, DV (a2

PT€R2

WB,p(h) =

where now ¢,z := [SLa(Z,) : To(p?)] ™! = %2(&?))). To compute Wg (1), as

before we notice that for a € Qg and r € R,> we have

Gp(t(@)r, )m,p(B;0,1) = wy((t(@)r, 1))d1,p(B)d2,((0, 1)t (a)r),
where now ¢i1,(x) = lpg,(21)1z,(22)1z,(z3) and  dap(y) =

1p2Zp(yl>lz,§ (yg)&;;(yg). We might take as a set of representatives for
SL2(Zy)/To(p?) the set R, consisting of the elements

10 . ) 0 -1
(b 1),W1thb€Zp/pr,and(1 0 ),

hence the elements t(a)r with a € Q.. r € Ry, are precisely the elements of
the form

a 0 0 —a
< a_lb a_l >7 ( a_l 0 >7 aE@;, bE Zp/pQZp.
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As in the previous case, one easily checks that ¢2 ,((0,1)t(a)r) = 0 unless r =1
and a € Z,;, hence it follows that

W) = 6 [ plt(a). 1)6m(5:0. )W, e t(a)a =

= 61(6) [ X, (@Wyelt@)da =

= o, ()12, ()1, () |, (0 Wpelt(a))d"a =
= ¢p21pz,(b3)1z,(b2)1z, (bl)XO,p(&r1 U, (&s ap),

where we have used that for a € Z5 one has W, ¢(t(a)) = Xp(afg)*l\llp(é; ap)
for a € Z,;. We thus obtain

[SL2(ZP) : FO(pQ)]_1X(p) (f&)‘llp(§§ O‘p) if by,ba € Zy, b3 € pZy,
0 otherwise.

WByp(U = {
(38)

5.3.4 COMPUTATION AT THE ARCHIMEDEAN PLACE

At the archimedean place, the determination of Wp o is carried out in [Ich05,
Section 7.5]. Recall that the co-component ¢n o € S(V5(R)) of ¢n is given by

¢h OO(ZL') = (SCQ + Vv *1561 + Vv *11‘5 - 1,4>k+1e—w(m?+z§+2z§+mi+z§),
and it satisfies (cf. Lemma 5.12)

woo(lzrea k/>¢h,oo = eiﬁ(k+1/2)6 det(k)k+1¢h,oo

for kg € SO(2) and k' = (_QB g) € Sp,(R) with k = a++/—18 € U(2). Then it
is proved in [Ich05, Lemma 7.6] that for £ > 0, A € GL] (R) and X € Sym,(R),
one has

2k+1 det(y)(k+1)/2€27r\/—71Tr(BZ) if B> 0’

0 if B <0,
(39)

WhB.so(n(X)diag(A4,'A71)) = {

where Y = A'A, 7 = X 4+ +/-1Y.

5.3.5 PROOF OF PROPOSITION 5.10

We are finally in position to compute the Fourier coefficients for 6(h, ¢y). Let
us fix B € Sym,(Q), and

Joo = n(X)m(A,1) = n(X)diag(A, A7) € Sp,(R)
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with X € Sym,(R) and A € GL (R). By using (35)-(39) above, we may
assume that B > 0, and that b1, bs,b3 € Z with b3 € MZ; otherwise we have
Woh,én)(9oo) = 0. In that case, by virtue of (34) we have

Wath,on.5(95) = 27" M g(2) L e@e)fe " *Wh 0o (g0) [ [ W (1)

p

where W5 oo (g00) = 2841 det (V)R +1D/2e27V=TTH(B2) a5 in (39). For ease of
notation, let us write Wao := 2% ""Wp o (goo) = det(Y)(FH+1)/22mV/=TTr(BZ)
and to abbreviate put

pn. = [SLa(Z) : To(NM)] ™t = M~ [SLa(Z) : To(N)] .

Then, using (35)-(38), Wa(n,én),B(90) €quals

M@mmmx%»:2“”N*W%mm*mNMd ) x(fef "/ Waox

min(ordy,(b;))
s pw@< )ng%
ptN n=0 p|N
k—1/2

Next, observe that dic = ¢, hence c(d¢) = c(ds), and that f; =

_ k—1/2 : .
9—k+1/ 2f4£ /2 Therefore, the previous expression can be rewritten as

Wea(h,6n),8(9o0) = 2_V(N)_2CQ>(2)_1,UN,MC(045) (fﬁ)figl/QW X

« 3 fﬂHm(ﬁ,)ng%

d|(b1,b2,b3), PIN p|N
(d,N)=1
Now, for every integer d with (d, N) = 1, we have ¢(d4¢) = ¢(04¢/q2), figl/Q -
2542, and W, (G o) = 0, (j—é;ap) for every prime p | N. Hence,
Wo(n,én),8(9o0) equals

N, MWeo ko—v(N) k—1/2
—_— = E d®2 2 I I v, Ty | =
2%(o(2) (Psg/a)x(e) Fac/d d2

d|(b1,b2,b3),
(d,N)=1

Wao -v y
:% > x(@d/2)d* 27 Me(fae a2 )X (Fae f4€/1dz2H\P <d2’ >

d|(b1,b2,b3),
(d,N)=1

_ N MWeo ke 2y _
e o, M)

d|(b1,b2,b3),
(d,N)=1

_ BN Mm (k+1)/2 27/—1Tr(BZ)
=—————det(Y A, (B).
@G T x(B)
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Thus, we conclude that when B > 0 and by, by, bs € Z with bs € MZ,
Weon,én@x.B(90) = Wan,s1),8(9oc) = CWr, B(9oc) = CWay P, ,B(9o0),

Where C = 272X(2)71,UN,1V[§Q(2)71- Since bOth WG(h,d);,)@z,B and W‘:RJVIF)UB
vanish when either B is not positive definite or (b1,b2,b3) € Z X Z x MZ, it
follows that 6(h, ¢n) ® x = CRMF, as desired.

6 THE MAIN RESULT

In this section we finally state precisely and prove the main result of this paper,
relegating the technical local computations to the subsequent sections. Since
our approach relies crucially on a decomposition formula of Qiu [Qiul4] for
an automorphic SLo-period, we first explain how such period is related to the
central L-value that we want to compute.

6.1 QIU’S DECOMPOSITION FORMULA FOR THE SLo-PERIOD

Let 7 (resp. 7) be an irreducible cuspidal automorphic representation of
PGL2(A) (resp. GL2(A)). Fix a non-trivial additive character ¢ of A/Q,
and let 7 € Waldy (m) be an irreducible cuspidal automorphic representation
of SL» (A), belonging to the Waldspurger packet of m with respect to ¢ as ex-
plained in Section 5.2. Let also w = w, be the Weil representation of §I:2(A)
acting on the space S(A) of Bruhat—Schwartz functions (for the one dimen-
sional quadratic space endowed with bilinear form (z,y) = 2zy) with respect
to 1. Associated with 7, 7 and w, there is a (global) SLe-period functional

Q:TRTRTRITRWRw — C

defined by associating to each choice of decomposable vectors hy,hy € T,
g1,82 € T, $1,P2 € w, the product of integrals

O(hy ho. g1, 82.61.62) = /[SL Ba5)e1(9)06, (0)d9 /[SL Bal5)e2(6)00. 0)ds

It is proved in [Qiul4, Theorem 4.5] that this global period, if it is non-
vanishing, decomposes as a product of local SLy-periods up to certain L-values.
Namely, one has

1 L(1/2,7 x adr) "

4 L(1,7,ad)L(1, 7, ad)

X HIv(hl,vah2,vag1,vag2,va¢1,va¢2,v)a (40)

Q(hla h2; g1, g2a¢1a¢2)

where for each place v, the local period Z,(hy v, h2 v, 81,0, 82.0; P10, P2,0) 18
defined by integrating a product of matrix coefficients, and equals

L(l,ﬁv,ad)L(l,Tv,ad)/
L(1/2,7, x ad7y,) Jg

éig%)hl,va h2,v> <T(gv)gl,va g2,v> <wv (gv)¢1,va ¢2,U>dgv-

DOCUMENTA MATHEMATICA 24 (2019) 1935-2036



SAITO-KUROKAWA LIFTS AND A CENTRAL VALUE FOrRMULA 1991

When 7 (resp. 7) is the automorphic representation of PGL2(A) (resp.
GL2(A)) associated with the newform f (resp. g) as in the introduction, notice
that L(1/2,7 x adr) coincides indeed with the special value A(f ® Ad(g), k) =
A(f' ® Sym?(g), 2k) that we are concerned with.

REMARK 6.1. Qiu’s definition of the local periods I, includes a factor (,(2)~ !,
and then the decomposition formula in (40) has accordingly o factor (g(2) on
the right hand side. We have chosen to redefine the local periods by the above
expression due to our different choice of local measures dg,.

The proof of the central value formula in Theorem 1.1 will rest crucially on this
decomposition result, thus it is essential to characterize the conditions under
which Q does not vanish. In this sense, we shall note the following (see [Qiul4,
Proposition 4.1], and [GG09, Theorem 7.1]):

PROPOSITION 6.2. The functional Q is non-vanishing on T QT QTR TR w Qw
if and only if the following conditions hold:

i) L(1/2,7 x adT) # 0;
i) T =7 with €, = €(1/2,7, @ 7, @ T );
iii) €(1/2,m, @ T, @ 7)) = 1 when m, is not square-integrable.

In condition ii), 7€ refers to the automorphic representation in Wald (7) la-
belled by the tuple € = (,), € {£1}*| as in Theorem 5.9. In particular,
notice that fixed the automorphic representation « there is only one automor-
phic representation for SLa(A) in the (finite) set Waldy, (m,) which makes the
period Q non-vanishing. When 7, is not square-integrable, recall from Theorem
5.7 that the local Waldspurger packet Waldy,, (7,) consists of a single element,
labelled 7,,. Therefore, condition iii) is meant to ensure that condition ii) is not
failing by obvious reasons. Also, condition i) implies that €(1/2, 7 x adr) =1,
and hence [], €, = €(1/2, 7, @7, ®7,) = €(1/2, 7), ensuring that 7€ is a global
automorphic representation.

6.2 THE CENTRAL VALUE FORMULA

Now we put ourselves in the setting of interest in this paper. Let £ > 1 be an
odd integer, N > 1 be an odd square-free integer, and let f € SIS (T'o(IN)) be
a normalized newform of weight 2k, level N, and trivial nebentype. Let also x
be a Dirichlet character modulo N, and g € S;¢{(I'o(IN), x) be a normalized
newform of weight k + 1, level N, and nebentype character y. Write M > 1 for
the conductor of y, which divides N, and assume Hypotheses (H1) and (H2).
That is to say, x(p)(—1) = =1 for all p | M and ¢,(f) = —1 for all p | M. Here,
the Dirichlet character x(,) : (Z/pZ)* — C* is the p-th component of x.

Let m and 7 be the cuspidal automorphic representations of PGLy(A) and
GL2(A), respectively, associated with f and g. Fix a fundamental discriminant
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D € ©(N, M) as in Theorem 2.1, and assume further that L(f, D, k) # 0. Let
¥ be the standard additive character of A/Q, and let

™= @PGLZ %SLa (m®xp, v~ P) € Walda(w)

be the automorphic representation of SL (A) as explained at the end of Section
5.2, where ¢ = 1! is the (—1)-th twist (equivalently, the inverse, or the
complex conjugate) of 1b. Recall that, as an element of Walda(ﬂ), 7 corresponds
to the automorphic representation labelled by the tuple € = (e,), € {1}
with e.o = —1 and

€, = wp for all primes p | N/M, €, = —w, for all primes p | M.

Under the hypothesis (H2), we thus have ¢, = 1 for all primes p | M.
Recall also that the adelization of the half-integral weight cuspidal forms
h € S,j_ﬁ?;(ZLNM,x; f ® x) as in Theorem 2.1 belong to this particular el-
ement 7 in the Waldspurger packet Wald ().

In this setting and under our assumptions, the criterion for the non-vanishing

of the SLsy-period
Q:7~r®7~r®7’®7®wa®a@ — C
is reduced to the following statement:

PROPOSITION 6.3. With the above choices, the functional Q is non-vanishing
if and only if
A(f ® Ad(g), k) # 0.

Proof. In the current setting, condition iii) in Proposition 6.2 obviously holds,
and we claim that condition ii) holds if and only if hypothesis (H2) is satisfied.
Indeed, we only need to take care of condition ii) in Proposition 6.2 at places
v | Noo. First of all, at the archimedean place v = co we have €, = —1,
and our choice of weights implies that (1/2, 700 ® Too ® TL) = —1 as well.
Secondly, suppose that p is a prime dividing N/M. Then both m, and 7,
are quadratic twists of the Steinberg representation, and [Pra90, Proposition
8.6] shows that £(1/2,m, ® 7, ® 7/) = €(1/2, 7)) = w,, which agrees with ¢,.
And finally, suppose that p is a prime factor of M. In this case, m, is again
a quadratic twist of the Steinberg representation, but 7, is now a (ramified)
principal series representation. Then, [Pra90, Proposition 8.4] implies that
e(1/2,m, ® 7, ® 7)) = 1. Under hypothesis (H2), this indeed agrees with ¢,
as pointed out above, and therefore the statement follows from Proposition
6.2. O

In light of this proposition, the period functional Q is therefore non-vanishing

if we assume that A(f ® Ad(g),k) # 0. When this holds, the strategy for
proving our central value formula is now clear. Indeed, let h € 7, g € 7, and
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S wy; be decomposable vectors, and write O(h,g,¢) := Q(h,h,g,g,¢,0),
and Iv(ha ga¢) = Iv(hva h,, gy, gva¢va¢v)a so that

L(1, 7y, ad)L(1, 74, ad) "
L(1/2,7m, x adr,)

X /SLQ(QU) m<7(gv)gv; gv) (wEv (gv)¢u, ¢u>dgv.

Z, (h’ g, ¢) =

Regularizing these local periods by setting

i — Zy(h, g, ¢) _ Z,(h, g ¢)
L T N TP Sl I E P TPWIER

we will write

L(1,7,,ad)L(1, 1y, ad)

Ig(h7g7¢) = L(1/2 T X a.dTU) Oé?}(h,g,¢), (41)

where
ik _ (@ (go) o h) (7(g0)80. 80) Wy, (90)00:b0) 2
v(e.4) /SLZ«@U) Wl el gz o 42

Then, if one can choose h, g and ¢ so that Q(h,g,¢) does not vanish, then
one might rewrite (40) as

ros =G (MTnmes anss. w

By virtue of this identity, our proof of Theorem 1.1 consists essentially in
choosing an appropriate test vectorh@gR ¢ € TR T ® Wy for which the right
hand side of (43) does not vanish. Computing the regularized local periods
T!(h,g,¢) and translating the global period Q(h,g, @) into classical terms,
leads eventually to the desired explicit central value formula.

THEOREM 6.4. Let k, N > 1 be odd integers. Let f € S7Z"(I'o(N)) and g €
St (To(N), x) be normalized newforms, and assume (SF), (H1), and (H2).
Ifh € S;Jﬁjgj(élNM,x; f®x) and F, denote a Shimura lift of f as above and
its Saito—Kurokawa lift, then

AT & Adig), ) = 241 O, 1) T W04 8 U0 Prs 910

(h, ) (9,9) ’
(44)
where v(M) denotes the number of prime divisors of M, and

C(N,M,x) =[x *M* *N [+ 1D)* [+ D).
p|lN p|M
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Proof. Suppose first that A(f ® Ad(g),k) # 0. By Proposition 6.3, the func-
tional period Q@ does not vanish, and so we might use (43) for a suitable choice
of test vector. Keeping the notations as above, consider the pure tensor

hogeéciaTwy,

where h € flk+1/2(4NM, Xo) is the adelization of h, § = Vig! € 7 is the
automorphic cusp form obtained from the adelization g € 7 of g as in Section
5.1, and @ € wy; is the one-dimensional Bruhat-Schwartz function determined
by requiring that ¢, = 1z, at all finite primes p, and ¢ (z) = e=272” for all
xz eR.

With this choice, we have

(hh) = s (hh), (&8) = (g.8) = —((0.0). (6.6) = ol = 3.

2¢e(2) a(2)
And by [Hid00, Theorem 5.15], [Wat02, §3.2.1], it is known that

L(1,7,ad) = 2°* N7 [SLy(Z) : To(N)I(f, f),
L(1,7,ad) = 2" N1 [SLy(Z) : To(N)]{g, g).

Therefore, the first factor on the right hand side of (43) for our choice of test
vector reads

AL(1,m,ad)L(1,7,ad) _ 2°%9¢o(2)?[SLa(Z) : To(N)*(/, f)
(h,h)(g,2) (¢, 9) N2(h, h) '

Because of our choice of h, g, and ¢, it follows from [Qiul4, Lemma 4.4] that
Ig(h,g,qﬁ) = 1 for all finite primes ¢ ¥ 2N (notice that our choice for the
local measure dgq on SL(Qq) is different to Qiu’s choice, but we have modified
accordingly the definition of the local periods Z,, after (40), cf. Remark 6.1). In
the next sections we will compute the regularized local periods at the remaining
places: from Propositions 7.15, 8.19, 9.2, and 9.4, we have:

p ifv=p,p|N/M,
Ti(h,g,¢) ' = 22D ify =p p| M,
1 ifv=2o0rv=o0.

Therefore, in (43) we have

O N +1 _y
T:=]][Zi(h g ¢) 1=NH(p—2)=2 CONTI@+D.
v p|M p|M

Finally, it remains to deal with the global SLo-period Q(h, g,¢). Recall from
Sections 5.1 and 5.3 that we have associated Bruhat—Schwartz functions ¢y €
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S(Vi(A)) and ¢n = ¢ ® ¢z € S(V5(A)) to & and h. By virtue of Proposition
5.1, we have

G(YMGa ¢§) = Clga

where ) = 2F "1 M ~1[SLy(Z) : To(N)]~1¢0(2)"2(g,9), and Y, G € T = O(7)
is an automorphic form for GSO2 2 whose restriction to GLa x GL2 coincides
with g@V g € 7K7. Write IT for the automorphic representation of PGSp,(A)
associated with 8(h, ¢p). It follows from the proof of [Qiul4, Theorem 5.3] that

Q(h7 ga ¢) = C;2P(9(ha ¢h)7 YMG)7

where on the right hand side P : IQII®T®Y — C is an SO(Vy)-period defined
by associating to any choice of decomposable vectors F1,Fs € I, G1, G2 € T
the value

P(Fla F27 Gla GQ) = /
[SO(Va)]

PG [ FamGad,
[SO(Va)]
and we have abbreviated
P(O(h,¢n), Y G) =P(0(h,¢n),0(h,¢n), YiG, Y G)

(cf. [Qiul4, Section 5]). Let I, = IT® x be the automorphic representation of
GSpy(A) associated with 6(h, ¢n) ® x. Since the similitude morphism is trivial
on SO(V}), if one defines a period functional

Py, @I, @T®YT — C

by the same recipe as for P, then one has P(F1,F2,G1,G2) = P (F1®x, F2®
X, G1, Gz) for all decomposable vectors Fy, Fo € II, G1, G2 € T. In particular,

Q(h,g,¢) = Cy *Py(0(h, én) ® X, Yu G),
and thanks to Proposition 5.10 we deduce that

Q(h, g,¢) = C1 *|C2l Py (R Fy, Y G),
where Coy = 272x(2) "M ~YSLy(Z) : To(N)]71¢p(2)~!. Now, when restricted
to SO(Vy), Ry Fy coincides with the adelization of Ras Fy 3«3, which in turn

equals (id ® V]MUM)FX|7-[><H- Besides, Y /G restricted to GLg x GLs is the
adelization of M#+1)/2=1¢ 5 V3,4 Therefore, we have

PyRuFy, Yy G) = CIM" 1 ((id ® VigUnr) Fyjaexn, (id @ Var)g x g)|?,

where C3 = 271(g(2)72 (cf. [I110, Section 9]). Furthermore, one can easily
check that

((id ® Vs Unt) Fypaxa (id @ Vi )g x g) = MP75((id @ Unr) Fyjagxs 9 % 9),
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where now the right hand side makes sense as a Petersson product with respect
to To(NM) x To(NM). Therefore,

PyRuFy, YiG) = CIMPF|((id ® Unr) Fyjauxcns 9 < )|
Altogether, we have

{(f: 1)
(h, )

A(f ®Ad(g),k)=C-T- {(Gd ® Unt) Fyjpxrs 9 % )17,

where we put C = 235 (2)?[SLa(Z) : To(N)]2PM3~FN—2|Co|?C2CT 2. Plug-
ging the values of the constants, and of the product of local periods Z, one
concludes that

<fa f> |<(ld®UM)FX\’H><Hag X g>|2
h,h

A(f @ Ad(g), k) = 27V DO(N, M, X>< ) (9,9)% ’

where C'(N, M, x) is as in the statement.

Finally, when A(f ® Ad(g),k) = 0 the global functional Q vanishes by
Proposition 6.3. In particular, Q(h,g,¢) = 0, and this implies that ((id ®
Unm)Fymx, 9 x g) = 0. Thus we see that the formula in the statement holds
trivially in this case. O

An immediate application of Theorem 6.4 is the following algebraicity result,
predicted by Deligne’s conjecture, in which ¢*(f) denotes the period associated
with f by Shimura as in [Shi77].

COROLLARY 6.5. Let f and g be as in Theorem 6.4. If o € Aut(C), then
(A(f ® Ad(g), kr))” _ A7 ®Ad(g7), k)
(9,9)%ct(f) (97, 97)%ct(f7)

In particular, if Q(f,g) denotes the number field generated by the Fourier co-
efficients of f and g, then

e, A © Ad(o), k)
A(f@Ad(g)ak) T (g9,9)%ct(f)

Proof. First of all, we may assume that the Fourier coefficients of h, and hence
of F, belong to the number field Q(f, x) generated by the Fourier coefficients
of f together with the values of x. This is either a totally real field or a CM
field.

Choose a fundamental discriminant D < 0, D € ©(N, M), with L(f, D, k) # 0.
By Theorem 2.1 (see also Remark 2.2), if ¢;(|D|) denotes the |D|-th Fourier
coefficient of h, then

€ Q(f, 9).

(£, f) _ ok—141(N) H p |D|F=Y2A(f, D, k)
(h, h) p+1 len (| D))[?

p|M
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Combined with the central value formula in Theorem 6.4,

|D|F='2A(f, D, k)
ct(f)len(ID))|?
[((id ® Unr) Fypuxcn 9 % 9)1?
(9, 9)* ’

where C(N, M,x) = C(N, M, ) 1,2 757 Now fix 0 € Aut(C). One has
cn(|D))? = epo (|D]), and hence by the properties of the period ¢ (f) we have

A(f @ Ad(g), k)8 = 22k IN/MG(N M, y)

(IDIk‘1/2A(f,D,k))U _ |DI*V2A(S7. D, k)
ct(flen(|D])? — ct(f)ene (IDI)?

Besides, FY is the Saito-Kurokawa lift of h7 and

3

('((id ® UM)Fx|’H><7-[ag X g>|2)0 _ |<(id ® UM)F;U.[X}UQU X ga>|2
(9,9)* (97,97)4

so the statement follows. O

7 COMPUTATION OF LOCAL PERIODS AT PRIMES p | N/M

This section is devoted to compute the regularized local periods If,(h, g,0) at
primes p | N/M. First of all, we will describe the local components g, and h,,
(up to scalar multiple), according to the local types of the representations 7 and
7 at such primes. Then we will compute the matrix coefficients (7,(9)gp, &p)
and (7,(g9)hp, h,), for g € SLy(Q,), which together with the Weil parings
(w% (9)¢p, ¢p) will lead to the determination of Z%(h,g,¢). Thus let us fix
through all this section a prime factor p of N/M, and let ¢, denote the p-th
component of the standard additive character ¢ : A/Q — C*.

For the GLj case, 7, a twist of the Steinberg representation St, by some un-
ramified quadratic character £ : Q) — C*. That is to say, it is the unique

irreducible subrepresentation of the induced representation (|- |117/2, K |;1/2).

The representation m(&] - ,1)/2,§| . |;1/2) is realized as the space of all locally
constant functions ¢ : GL2(Q,) — C satisfying the transformation property

a
© ((8 g) x) = &(ad) ‘E‘p@(ac) for all a,d € Q' ,b € Qp, v € GL2(Q,), (45)
and the subspace corresponding to 7, is that of such functions which, in addi-
tion, satisfy a certain vanishing condition.

To describe g, € 7,, notice first of all that g, = g, because p { M. Therefore,
g, = g, belongs to the space Tf" of Ky-fixed vectors, where we abbreviate

Ko = Ko(p) = {( “ ! > € QLy(Z,): c=0 (modp)}.
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The space 7'5(0 is well-known to be one-dimensional. When replacing g, by
a scalar multiple, the ratio (7,(9)&p,&p)/||8p||* remains invariant, so we can
freely choose a new vector in 7‘;{0 and suppose that g, coincides with such
choice. Following [Sch02, Section 2.1], we can choose g, : GL2(Q,) — C in the

induced model to be the local vector characterized by the property that

1
8| GL(z,) = 1K, — ;]—KowKoa (46)

where w = (9 }) and 1x denotes the characteristic function of X C GLa(Z,).

Thanks to the Iwasawa decomposition for GL2(Q)), this together with the
rule (45) determines uniquely g,. Notice that being £ : Q) — C* unramified
means that {(a) = 1 for all a € Z;, hence { is completely determined by the
value &(p). Since ¢ is quadratic, we have &(p) = +1, and it is well-known that
&(p) = —1 (resp. +1) if and only if the local root number (or the Atkin—Lehner
eigenvalue) of 7, is 1 (resp. —1).

Now we move to the case of SAIZQ. Recall from Section 5.2.1 that 7, is the
special representation &‘5(55) of SAIZQ(QP), where § € Z; is any non-square
unit, and D € Z; satisfies (%) = wp, = €(1/2,m,). In order to lighten the
notation, we will write from now on ¢ := Ef. As explained in Section 5.2.1,
the representation space of 7, is then the space of locally constant functions
@ : SLy (Qp) — C such that

*

G ([(5 .51) €lg) = exupla)ula)lal,@(g) = exy(a)xs(a)lal??G(g)  (47)

for all g € SLy (Qp) and a € Q) together with a certain vanishing condition
that we will not need here. Notice that xs is the unique non-trivial quadratic
character of Q, hence its restriction to Z, is trivial, and xs(p) = —1.

In order to describe hy, recall first that SLo(Z,) embeds into §I:2(Qp) by g —
[9, 5p(9)], and let T'y denote the image of 'y in SLa(Z,) under this embedding.
Then let 157 | be the (genuine) function on SL2(Q)) which sends [g, €] to 0
if g & SLa(Z,) and to esp(g) otherwise (thus it takes value 1 if [g, €] lies in the
image of SLa(Zp), and —1 if g € SLa(Z,) but s,(g) = —¢). Similarly, let 15 be
the function on SLy (Qp) which sends [g,€] to 0if g ¢ 'y and to 1g; ([g5€])

SLZ(ZP)
otherwise. With these notations, the following is proved in [BM07, Lemma

8.3).

LEMMA 7.1. The space of fo—ﬁl’@d vectors in T, is one-dimensional, and a new
vector generating such space is given by the function @, : SL2(Q,) — C whose
restriction to SLa(Z,) equals Ist,2,) — (p+11g, .

The condition in the statement determines completely ¢,, thanks to the Iwa-

sawa decomposition of SAIZQ(QP) (which is lifted from that of SL2(Qp)). The p-th
component h,, of the adelization h of the half-integral weight modular form A is

DOCUMENTA MATHEMATICA 24 (2019) 1935-2036



SAITO-KUROKAWA LIFTS AND A CENTRAL VALUE FORMULA 1999

therefore a scalar multiple of ¢,. Since (7, (g)h,,h,)/|/h,||? is invariant under
replacing h;, by a scalar multiple of it, we may assume that h, = @,,.

LEMMA 7.2. For the above choice of hy, we have ||h,||* = p~1(p? — 1).

Proof. This is a straightforward computation. Indeed, when restricted to
SL2(Zp) and I'g the functions 1g; z,) and 15 become the characteristic func-
P

tions of SLo(Z,) and Iy, respectively. Therefore,

Il = [ w B [ sy [ an=
SLa(Zp) SLs(Zp)\To o
= vol(SLa(Z,) — T'y)) + p* vol(Tg).

Since our measure is normalized so that SLa(Z,) has volume (,(2)~! = (1 —
p~ 1) (14+p~1), and Iy has index p+1 in SLa(Z,), it follows easily that vol(I'g) =

p (1 —p7!) and [|hy[]* = p~1(p* - 1).

Finally, for simplicity we will write w, = Wy for the local Weil representation of
P

O

SL, (Qp) acting on the space of Bruhat—Schwartz functions S(Q,), with respect
to the character Ep =1, 1. Here, Q,, is to be regarded as the one-dimensional
quadratic space endowed with the bilinear form (z,y) = 2zy. In our choice of
test vector, the p-th component of ¢ is ¢, = 1z,, the characteristic function
of Z,. It is easily checked that ¢, is invariant under the action of SLy(Z,). In
particular, it is also invariant under I'y.
Having described the local components g, € 7, h, € 7, and ¢, € S(Q,),
observe that the three of them are invariant under the action of I'y. It thus
follows that for any g € SL2(Q,) the values

by (g) = OB 5 (o))

=1

depend only on the double coset I'ggl'g. Thus we only need to compute these
values for g varying in a set of representatives for the double cosets for I'y in
SL2(Qp). Define elements «, f € SL2(Q,) by

_(p O (0
a.—(o p_l)’ ﬁ.—sa—(p 0 ),

where s = (% {). Then the Cartan decomposition for SLy(Q)) relative to the
maximal compact open subgroup SLa(Z,) gives

G = | | SLa(Zp)an SLa(Zy) = | | SLa(Zp)a—p SLa(Z,),

n>0 n>0

— <wp(g)¢p7¢p>
TN A P

where we put a,, := " for any integer n. Combining this with the so-called
Bruhat decomposition for SLy over the residue field FF),, one obtains also a
decomposition for SL2(Q,) in terms of I'y:

SLy(Qp) = | | ToanTo U | | ToBmTo. (48)

nez mEeZ
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where B, 1= sa,;, = sa™. By virtue of (48) and our above observation, it will
be enough to compute the values ®g, (g), Pn,(g), and @y (g) for g € {an, B :
n,m € Z}. We will need the volumes of the double cosets g, I'g and Ty 3,0,
hence we collect them in the following lemma for ease of reference.

LEMMA 7.3. Keep the same notation as above.

i) vol(Toaolo) = vol(T'g) = p~1(1 —p~ 1), and for n # 0, one has

2n=1(] —p~1 ifn >0,
VOl(FoanFQ) = p_2n_(1 p _)1 f
P (I-p™") difn<O.

ii) vol(TpBolo) = vol(Tgsly) = (1 —p~1), and for m # 0, one has

2m=2(1 —p~ 1) ifm >0,
VOl(FOﬂmFO) = p_gm ( p_1 ) f
P (1-p Y difm<o.

Proof. For each g € {an, B : 1, m € Z}, one writes the double coset Togl'y as
a disjoint union of finitely many cosets I'gg;. Then the volume of T'ggl'g equals

the volume of I'y multiplied by the number of coset representatives g;. We omit
the details. O

7.1 THE GLy CASE

In the case of matrix coefficients for GLq, the values @4 (g) for g € SL2(Q,)
can be easily deduced from the results in [Woo, §3]. We explain briefly how to
get such values.

PROPOSITION 7.4. For an integer n, we have ®g (ovn) = p2Inl
Proof. Suppose that n > 0, and notice first of all that, as elements of GL2(Q)),
we have

n o
ap =P "pon, Wherepgn:(po e

In particular, it follows that ®g (an,) = £(p™")2®g, (p2n) = £(p) 2" P, (p2n)-
According to [Woo, Proposition 3.8], for n > 1 we have ®_(p2n) = &(p)*"p~ 2",
hence combining the last two identities we find out that ®¢ (ay,) = p~2". For
n =0, ag = Idz and we trivially find ®¢ (Idz) = 1. Thus the statement holds
as well. When n < 0, we can proceed similarly. Indeed, we now have the

identity
n (0 1
ap = prlwp_opw, where w = < 10 ) ,

so that ®g () = &(p)*" g, (wp_2,w). Now —2n > 0, and again by [Woo,
—2n,,2n

Proposition 3.8] ®g (wp_2,w) = {(p)~*"p*". Altogether, we conclude as de-
sired that ®g (av,) = p. O
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The next lemma deals with the case g = 8,, = sa,,, for m € Z.
PROPOSITION 7.5. For an integer m, we have ®g, (Bm) = —p~12m=1l.

Proof. First suppose that m > 0, and observe that

(0 pmN . 0 1 -1 0
() (2 DY)

Since 7, is invariant by the rightmost element, we have ®g (8,,) =
E(p) 2Py (wpam).  Again by [Woo, Proposition 3.8], ®g (wpom) =
—&(p)*™p'~?™, hence we conclude that ®g (8,) = —p~ 2. When m = 0,
observe that Sy = s. Since
S:w(1 0)
0 1

and 7, is invariant by the rightmost element, we see that ®g (s) = ®g (w). By
[Woo, Proposition 3.8], ®g, (w) = —p~!, hence for m = 0 we have &5 (8y) =
—p~ !, which fits into the statement. Finally, suppose that m < 0 and write

— M 0 p72m _.m 0 p72m 71 0
bm =p (1 0 )_p (1 0 0 1)

From this, ®g, (8y) = £(p)*" ®g, (p—2mw). Since —2m > 0, now [Woo, Propo-
sition 3.8] implies that ®g (p_omw) = —&(p)~2"p*™ !, and hence for m < 0
we conclude as claimed that &g (8,) = —p*™ 1. O

7.2 'THE éfg CASE

For the computation of matrix coefficients in the SAIZQ case, it will be useful to
introduce the following subsets of SL2(Z,). For each integer j > 0, we define
Lj:= (Z ?l) € SLa(Zp) : ordp(c) = j} ’
R; = {(2%) € SLa(Z,) : ordy(d) = j} .
Recall that our measure on SL(A) is chosen so that vol(SLa(Z,)) = (,(2)~*

1 —p~2. By expressing the sets £; and R; in terms of the subgroups I'o(p?)
SL2(Z,), for j > 0, one can easily prove:

Nl

LEMMA 7.6. With the above notation, vol(Ly) = vol(Rg) =1 —p~!, vol(Lo N
Ro) = (1—p~H2, and
vol(L;) = vol(R;) = p~ /(1 —p~1)? for all j > 0.

For the computation of the (normalized) matrix coefficients ®y, (o) and

®n, (Bm), recall that SAIZQ(QP) = SL2(Qp) x {£1} as sets. The group oper-
ation is given by
[91, €1][g2, €2] = [9192, €(g1, g2)€1€2],
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where €(g1, g2) = (#(g1)2(9192), ©(92)2(9192))p, with 2 : SL2(Qp) — Q@ being
defined as
ifc#£0
_ (ab _Je i ,
9=(23)—alo) {d if ¢ =0,

Recall that we regard SLs(Z,) as a subgroup of éig(@p) via the splitting
k — [k, sp(k)], where

5 (( a b )) _ {(c,d)p if ed # 0 and ord,(c) is odd,

c d 1 otherwise.

And recall also that h,, € 7, is the function SL, (Qp) — C described in Lemma
7.1, which satisfies the transformation rule spelled out in (47).
7.2.1 COMPUTATION OF ®y ()

Fix throughout this paragraph n € Z, and identify «,, with the element [a,, 1] €

SL, (Qp). In the computation of @y, (cv,), we encounter products of the form
how,, with h € SLo(Z,,) and n € Z. This is to be seen as the product

[h’ Sp(h)] [O‘na 1] = [hana 6] € SI‘Q(QP)’

where using the above recipe we have € = s,(h)e(h, o). The sign sp,(h) € {£1}
is given as above. And by using the definition of €(-, ), we have

e(h, an) = (z(h)z(how), z(am)z(han))p.

[ a b o ap™ bp"
h(C d>’ ha"(CP" dp~" >
so that we have

Sp(h){(c,d)p if cd # 0, ord,(c) is odd, z(h){c if ¢ # 0,

Write

1 otherwise, d ifc=0,

(o) = cp™  ifc#0,
" dp™™ ifc=0.

Then one can easily check that
(d,p™), ife=0,
€= ¢ (c,dp™), if cd # 0 and ord,(c) odd, (49)
(e,p™)p  otherwise.
To compute ®p, (o), we will need to evaluate h,, at the element [ha,,€]. And
to do so, we need to write down an Iwasawa decomposition of this element,
induced from an Iwasawa decomposition for ha,, in SL2(Qp). The shape of

such an Iwasawa decomposition will vary according to whether h belongs to
the subregions A;(n) or As(n) of SLa(Z,) that we now discuss.
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Let A;(n) C SLa(Z,) be the subset of h = (¢ 4) € SLy(Z,) with |cp™|, <
|dp~"|,. Equivalently, |c|, < p?"|d|,. Observe that one always has d # 0
in A;(n). If h € Ai(n), we have

~(ap™ bpTm [ d7lpm o« 1 0\
han - < cpn dp—n ) - < 0 dp—n ) ( cd—1p2n 1 =:0192,

where notice that the rightmost element g, belongs to I'g. This lifts to
an identity

b= ) (ol 2) 0

where e = €(g1, g2)e. Since g1g2 = ha,, we have

(de,dp™), if ¢ #0,

Gwhmﬁﬂﬂmﬂww%ﬂwmw%mpz{1 if ¢ =0,

From our recipe for e in (49), noticing that d # 0 in A;(n) and using
elementary properties of the Hilbert symbol, the above recipe for e = e(h)
when h € Ay (n) gets simplified to

o {(cd, d)p(d,p™)p if ¢ # 0 and ord,(c) even, (51)

(d,p")p otherwise.

) € SLy(Z,

Let Az(n) C SLy(Z,) be the subset of elements h = (¢}
In As(n), observe

with [ep"| > |dp~"|,, or equivalently, |c|, > p?"|d|,.
that one always has ¢ # 0. For h € Ay(n), we have

(ap™ bp™\ _ [cTlpTm ok 0 -1 .
hOén - ( Cpn dpfn ) - ( 0 cpn )( 1 de— 1 —2n =1 9192,

where now observe that g € SLa(Z,) — I'g. This identity lifts now to

o= [(757 5 ) I8 it ) o

again with e = €(g1, g2)e. In this case, since ¢ # 0 for all h € As(n), we
have

c(91,92) = (x(g1)z(haw), 2(g2)z(han))p = (*p*", cp™)p = 1,

and therefore, when h € Az(n) the value of e = e(h) is given as follows:

e=e= {(C’ d)p(ep™)p i d 70 and ord,(c) odd, (53)

(¢, p™)p if d = 0 or ordy(c) even.
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As we know |[h,||* from Lemma 7.2, to compute ®p,_(a;,) we need to compute
(7p(an)hp, hy). And since A, (n) and Az (n) are disjoint by definition, and their
union is the whole SL2(Z,,), we see that (7,(a,)hy, hy,) equals

A(n) + As(n) ;z/

hy, (hov, )by, () dh + / hy, (ho, Yhy, () dh.
Ai(n) Az (n)

In the remaining of this section we will compute separately A;(n) and Ax(n).
Observe that h,(h) only takes values 1 and —p for h € SLa(Z,), hence we have
h,(h) = h,(h) in the above integrals.

COMPUTATION OF A;(n)

We proceed now with the computation of A;(n) = f.Al(n) h, (hay, )by, (R)dh.
Writing h = (2 %) as usual, by virtue of (50) and (47) we see that

Ay(n) = —p 321y (07) /A Dy )i

where e(h) is given by the recipe in (51). Denote by Z;(n) the last integral.
Defining

Al (n) :== {h € A1(n) : ¢ # 0 and ord,(c) even},
A7 (n) :={h € Ai(n) : ¢ =0 or ordy(c) odd},

we have, according to (51),
L) = [ (e @) By (s
+ [ @@,y h)dn
Ar(n)
Observe that d is always a unit in .A] (n), thus the above becomes

Z:(n) :/ (cd, d)pxw(d)x(;(d)|d|;3/2hp(h)dh+/ h,(h)dh.
Al (n) Aj (n)

From this expression we will now easily obtain the value of A;(n).

LEMMA 7.7. With the above notation,

(=) X (M (A = p (L +p—p")  ifn >0,
Al(n)_ 3n/2(_1\n n _ -1\, 1-n :
PR (=1)" Xy (") (L —p~)p if n <0.

Proof. Suppose that n > 0. First of all, observe that A; (n) = A7 (0), which
up to a set of measure zero is the disjoint union of the sets L9;41 with j > 0.
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Therefore we have

/ h)dh = Z/ h)dh = —p > vol(Lzj41) =
A7 ()

>0 L2541 >0
=—pY p P M A-p )2 =-1-p )Y p¥=
320 320
—(1-p™")? -(A-p7") 1-p
1—p2 1+p-t p+1

On the other hand, A (n) is the disjoint union of the sets L£o; with j > 0,
Lo N Ry, and R; with 1 < 5 < 2n —1. If h € Ly; with j > 0, then h € T'g,
ord,(c) is even, and d is a unit. Thus

/[: ‘(cd, d)pX¢(d)xg(d)|d|;3/2hp(h)dh = p/ﬁ | 1dh = —pvol(Lg;) =

=—p'"H(1-p ),
and one deduces that

S [ e dyxo s @y h)an = D2 R o

Jj>0 j>0
_ _pfl(l -p ') _ 1—p -
(1-p72) plp+1)
When h € Lo N Ry, both ¢ and d are units, and h,(h) = 1, hence

/ﬁ - (cd, d)pxy(d)xs(d)d], > *hy(h)dh = vol(Lo N Re) = (1 —p~ )%

Finally, if » € R; with j > 0, we have ¢ € Z) and ord,(d) = j. Using
elementary properties of the quadratic symbol, it follows that

[ (et dyxoldis @l b = (<1 | (ed,p)ah.

j R

If j = 2t is even, then (cd,p’), = 1 and we deduce that
/ (ed, d)pxp(d)xs(d)|d],*/* by (h)dh = p**vol(Ra) = p'(1 —p~")*.
Rat

In contrast, when j is odd, by applying the automorphism of R; given by
conjugation by v, = (4 9), with u € Z, a non-quadratic residue, one sees that
the above integral equals the same integral multiplied by —1. Therefore, it

must vanish. As a consequence, we just have to compute

n—1 n—1
> [ el s @@l hyh)dh = (1= 5 Y =
Rot t=1
n n—1
(1 =1 P TP _1\2P -1 _—1y/. n—1
=(1-p) 1_p7(1 P )71_2)_1*(1 p~)(p 1)
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Summing all the contributions, we find for n > 0
Ti(n) = —(1=p™ )+ 1=p )’ +(1-p "' =1) =p ' (1-p (" —p—1),

and hence Ay(n) = p=*"/2(=1)"xy(p")(1 = p~ ) (1 +p = p").
Next assume that n < 0. In this case, one easily checks that A] (n) is the
disjoint union of the sets Loy for ¢ > —n. Therefore, it follows that the integral

/ (cd, ) (d)xs (d)|d] %/ 2y (h)dh
AT (n)

equals (notice that d is a unit)

> / (ed, d) o s (Nl ()i = —p 3 vol(La) =

t>—n t>—n

_ Zp o pne (=p)? o p—1
—p—2 ’
= 1-p plp+1)
Besides, one can check that up to a set of measure zero the set A] (n) equals
the disjoint union of the sets £9;41 with j > —n. Therefore, the integral over
A7 (n) in the expression for Z; (n) equals

2 /c Wdh = —p Y vol(Laj1) = —p(l—p 1) Y p~¥7" =

j>—n 2j+1 j>—n j>—n
— _p2n (1 _p_1)2 — _ P — 1
1—p2 p+1

Altogether, we find for n < 0 that

p—1 2P — 1 onP — 1 -1 2n—1
T (n) = — 2n o n — _2nt - 1+ E— ) 1
1(n) PR R i) =)

and therefore A1 (n) = p=3"/2(—1)"xy (p")(p — 1)p*" = p*/2(—1)"x» (p™) (1 —

-1\, 1-n
pp O
COMPUTATION OF Az(n)
We now deal with the computation of Az (n) = [, m B p(hapn)hy,(h)dh. Writing

h=(2%) as usual, by virtue of (52) and ( 7) we see that
As(n) :psn/Q(_l)an(pn)/A ( )(C,pn)p)(w(C)e(h)xa(c)|C|;3/2hp(h)dh,

where e(h) is given by the recipe in (53). Write Zo(n) for the integral on the
right hand side. Then define

AJ (n) :== {h € Az(n) : d =0 or ord,(c) even},
A5 (n) :=={h € Az(n) : d # 0 and ord,(c) odd},
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so that Ay = A (n) U A5 (n) and
7o) = [ (el dn +

s edpa@ns@lel, by h)dn
A

2 (n

Concerning the second integral, applying conjugation by v, = (% 9) shows that
such integral equals itself multiplied by —1, hence it vanishes. Therefore, we
have

L) = [ sl hy(h)a.
Af(m)

Using this expression, we can easily compute Zz(n), and hence As(n).

LEMMA 7.8. With the above notation,

A=) Xy () (= pT ) ifn>0,
AQ(n) - 3n/2(_1\n n o1 _ l-n .
P (=1)"xyp(@") (1 =p )L +p—p ") ifn<0.

Proof. The proof goes along the same lines of the previous lemma, so we omit
the computations. We just point out that when n > 0 (resp. n < 0) the set
AJ (n) coincides, up to a zero measure set, with the disjoint union of the sets
R;, with j > 2n (resp. the sets Loy, with 0 < ¢ < —n). O

PROPOSITION 7.9. With the above notation, ®n,(cv,) = p~3I"/2(—1)"yy (p™).

Proof. Recalling that @y (o) = (p(an)hy, hy)/||hy|[?, and that |[hy|* =
p~1(p? — 1) from Lemma 7.2, the statement follows by combining Lemmas 7.7
and 7.8 since (7, (o )hy, hy) = A1 (n) + A2(n). O

7.2.2 COMPUTATION OF @y (8m)

Now we proceed with the computation of ®y (f,). Thus fix from now on

m

an integer m, and let 8,, = sa,, = (—2m p; ) € SLy(Qp). As before, we

identify v, with the element [am,, 1] € SLs (Qp). We will need to evaluate h,,
at products of the form

S S\i@(@p)a

€]
where € = s, (hs)e(hs, am). If we write h = (2 Y), then

B —b a _ B —bp™ ap™™
hS(_d C), hﬂthOém(_dpm Cp_m>,

[hs, sp(hs)][am, 1] = [hsam,

so that

o (hs) = {(c, —d), if ed # 0,0rd,(d) is odd, o(hs) =

1 otherwise,

—d ifd#0,
¢ ifd=0,
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—dp™ if d 0,

2(hfm) = {cp‘m if d=0.

Besides, x(a;,) = p~™, hence we can compute the sign

e(hs, am) = (x(hs)x(hfm), x(am)x(hBm))p

as follows. If d # 0, we have e(hs, ) = (—d,p™),, whereas if d = 0, we have
e(hs, am) = (¢,p™)p. Together with the recipe for s,(hs), we have

(¢, =d)p(—d,p™), if ed # 0, 0rd,(d) is odd,
—d,p™ if ed # 0, ord,(d) i

€ = sp(hs)e(hs, am,) = (=d, ™)y 1 cd # 0,0rd,(d) is even, (54)
(capm)p lf d = 0,
(=d,p™)p if ¢ = 0.

As in the case of the elements o, now to compute @y, (8,) we need an Iwa-
sawa decomposition for [hf,, €], induced from the Iwasawa decomposition in
SL2(Qp). Such a decomposition will depend on two subregions B;(m) and
Ba(m) of SLy(Z,,). The discussion is analogous to the one we did above for the
sets Aj(n) and Az(n), thus we omit some details.

i)

ii)

Let B1(m) C SLa(Z,) be the set of h = (24) € SLy(Z,) with |dp™|, <
lep™™|,, or equivalently |d|, < p*™|c|,. Notice that one always has ¢ # 0
in Bi(m). If h € B1(m), one has

<[ ) (e )]

where one can check that the sign e is given by the recipe

(56)

.o (e, p™)p if d =0 or ord,(d) is odd,
(e,d)p(e,p™)p if d # 0 and ord,(d) is even.

Let Bz2(m) C SLy(Z,) be the set of elements h = (¢ 4) € SLy(Z,) such
that |dp™|, > |ep~™|,, or equivalently, |d|, > p*™|c|,. Now, one always
has d # 0 in Ba(m). If h € Ba(m), one has

(1B €] = [( 7d7(1)p7m jpm )e} K (1) gpilzm )1} (57)

where the sign e is now computed according to the recipe

. (¢, =d)p(—d,p™)p if ord,(d) is odd,
(—d,p™)p if ord,(d) is even.
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Now, to proceed with the computation of @y, (8m), we may focus on the com-
putation of the matrix coefficients (7, (8 )hy, h,), since we know ||h,|[?* from
Lemma 7.2, and clearly (7, (8 )hp, hy) equals

Bi(m) + Ba(m) :/B( ) h, (hBm )y, (h )dh+/8( )hp(hﬁm>mdh.

Thus from now on, we will focus on the computation of the integrals Bi(m)
and Ba(m). Notice again that in the above expression one has h,(h) = h,(h).

COMPUTATION OF Bj(m)

We proceed now with the computation of Bi(m) = [, (m) Dp (R B )y (h)dh.

Writing h = (a g) as usual, by virtue of (55) and (47) we see that

Bi(m) = plgm/?(l)mxw(pm)/g ( )(cvpm)pxip(C)e(h)xzs(C)|C|£3/2hp(h)dh,
1(m

where e(h) is given by the recipe in (56). Let us denote by Ji(m) the last
integral, and define

B (m) :={h € Bi(m) : d =0 or ord,(d) odd},
By (m) :={h € Bi(m) : d # 0 and ord,(d) even}.
Then, according to (56) we have

im) = [ xu@Olel, by (k)dh+
B (m)

+ [ (ed(@xa©d, by
Bl (m

Observe that Bf (m) C SL2(Z,)—TI', hence h,(h) = 1 and c s a unit for all h €
B (m). Therefore, the first integral in the last expression equals vol(B; (m)),
and

Ji(m) = vol(B (m)) + /B el )i

LEMMA 7.10. With the above notation,
By (m) = PR (=) iy () (L= p ) (A +p—p™)  if m >0,
PP (=) oy (pm) (1 —p~H)p ™ if m < 0.

Proof. First, suppose that m < 0. Then, up to a set of measure zero, By (m)
equals the union of the sets Ro;41 with j > —m. Thus

vol(Bf (m)) = Z vol(Raj41) = pl(1—ph)? Z p% =

j>—m j>—m
—1

2m—1
1-— .
( 2P Tl

_ 1 m_1l—D
=p 1)2 _ 2m—1
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Besides, By (m) equals the union of the sets Ro; with j > —m. When h € Ry;
we have hy,(h) =1 and ¢ is a unit, and one has

[ ecdnxuxs(@lel,* hy(hydh = 3 vol(Ray) = (1 =51 Y 7 =
By (m) j>—m j>—m
_ om—2l—p"
p T+p-1

Altogether, in this case we see that J;(m) = p?™~1(1 — p~!), and hence

Bi(m) = —p' =¥ 2 (1) xy (p™) T (m) = p*™ 2 (= 1) iy (™) (1-p~p ™

Now suppose that m > 0. One easily checks that B (m) = B; (0), and that
By (m) is the union of By (0) together with the sets Lo N Ro and the sets £;
with 1 < j < 2m — 1. Integration over Lo MRy gives vol(LoNRy) = (1 —p~1)2.
For odd integers j with 1 < j < 2m — 1, we see with an already used argument
that

[ el hy(hn

J

vanishes. And for j = 2t even, 1 <t <m — 1, we have

/ (e Dpxu(e)xs(e)lel, **hy(h)dh = —p'**vol(Lar) = —p'+H(1 = p~ )%

Loy

Summing up all the contributions, for m > 0 one checks that Ji(m) = (1 —
p~)(14p—p™), and hence in this case By (m) = p'=3"/2(—1)™F 1y, (p™)(1 —
p A +p—p™). O
COMPUTATION OF Bs(m)

We now deal with the computation of Ba(m) = [, (m) 12 »(RBm)hy(h)dh. Writ-

ing h = (2%) as usual, by virtue of (57) and (47) we see that
B = P2 (=1) "y (p™ R)(—=d, p"™)xy (—d) x5 (d)|d|5 > *h, (h)dh
2(m) = p”™7(=1)"xp (p™) - )6( )(=d,p")xy(—=d)xs(d)|d|, ' “hy(h)dh,

where e(h) is given by the recipe in (58). Let us denote by J2(m) the last
integral, and define

By (m) == {h € Ba(m) : ord,(d) odd},
By (m) := {h € Ba(m) : ord,(d) even}.
Then, by (58) we have

am) = [ (e dpxa@na(d)id], by ()dn +
By (m)

4 / X (d)xs(d) ]/ 2y (R)dh.
B (m)
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LEMMA 7.11. With the above notation,

By(m) = 470 D (0™ (= p e if m >0,

P (M (A =)+ pT =) if m <0,
Proof. The proof goes along the same lines of the previous lemma, and hence
we omit the computations. We just stress that when m > 0 the set B5 (m)
is empty, and By (m) is the disjoint union of the sets £; with j > 2m. And
for m < 0, the set B5 (m) equals the disjoint union of the sets Ro;y1 with
0 < j < —m — 1, whereas By (m) is the disjoint union of the sets Ro; with
0<j<-—-m. a

PropoOsITION 7.12. With the above notation,
O, (Bm) = p~ P2 (=) oy (0™).

Proof. Recalling that ®n,(8y) = (7p(Bm)hy, hy)/[|hy|[2, and that ||h,||? =
p~1(p?—1) from Lemma 7.2, the statement follows by combining Lemmas 7.10
and 7.11 since (7, (Bm )hyp, hy) = B1(m) + Ba(m). O

7.3  WEIL PAIRINGS

Finally, we also need to compute the Weil pairings

(I)¢p (an) = <wEP (an>¢pa ¢p> and q)qsp (ﬂm) = <WEP (ﬂm)¢pa ¢p>

for n,m € Z. Notice that ||¢,|]* = [, 1z,(2)1z,(z)dz = vol(Z,) = 1. The
next statement is actually valid for all primes p, and we will use it later not
only for primes p | N/M, but also for primes p | M.

PROPOSITION 7.13. Let p be a prime, and ¢, = 1z, € S(Q,) be the character-
istic function of Z,. With the above notation, if n,m € Z we have

P " d m
Pl g e, el o i,
P P

Proof. This follows immediately from the definitions. O

7.4 CoMPUTATION OF Zi(h, g, ¢)
Continue to fix a prime p|N/M. Recall from (41), (42) that

_ L(1,m,,ad)L(1,,,ad)
- L(1/2,7, x adT,)

T (h, g, ¢) aj(h, &),

where of(h,g,¢) = fSLQ(Qp)Qp(g)dg and Q,(g) == Pn,(9)Ps,(9)Pg, (g) for
g € SL2(Qp). By using the double coset decomposition of SL2(Q,) as in (48),
we have

ab(h,8,6) = 3 2y(an)vol(ToanTo) + 3 9 (Bm)vol(ToBuTo).
nez mEeEZ
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PROPOSITION 7.14. Let p be a prime dividing N/M. Then

o _p-w -1
ag(h,g,‘ﬁ) 2 +Jp<p(2) )

Proof. For n = 0 we have Q,(ag)vol(Toaply) = vol(I'y) = p~1(1 — p~1).

Let n # 0 be an integer. From Proposition 7.13, we have ®g (o)
X7 (p™)p~1"1/2, whereas from Propositions 7.4 and 7.9 we have
P

Dy () =p 2 By (@) = p 32 (1) (7).

—D
Since ¢ = 1, , one has xy = Xy - Xp, and therefore xo (@) = (2)"xz (") =
P p by
wy Xy (p™). From this, using the volumes from Lemma 7.3, we deduce that
P

Q;D(an)VOl(FOO‘nFO) = (_wp)np_mn‘_l(l _p_l)a

and therefore

3", (an)vol(Toanlo) = 1‘;f4 (1+—§j<—u@p-%"+—§j<—u@p-%-">.

nez n>0 n<0
The two geometric sums on the right hand side are the same, and equal p; f£ .
P
Hence,
-1 -1 2wy
> Qp(am)vol(Toanlo) =p~ (1 —p 1) (1 - )=
ne”Z p p
2
-1 —1\PT —Wp
= 1-— . 59
p - (L—-p )]D2 T w, (59)

Besides, for m = 0 we have Q,(80)vol(ToBI0) = (—p ) (—p (1 —p~!) =
p~2(1—p~'). And if m # 0, we have again @y (By,) = X7 (p™)p~!™I/2 and
Propositions 7.5 and 7.12 tell us that

Og, (Bm) = —p 2" By (Bm) = p B (1) o, ().

Using again that xy(p™) = wy'xg (p™), and the volumes from Lemma 7.3, it
follows that when m # 0

P (—wp)m (1 —p7h)  ifm >0,
%wmmmw““{ﬁ“%ﬂwwLm4>ﬁm<a

Summing up all the terms, one easily checks that

l—wp-
p2+wp

Z (B )vol(ToBmlo) = (1 —p~ )

meZ
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Finally, combining (59) and (60) we conclude that

. 1—p'
aﬁ(h,g,¢):p2+wp(p Lp? —wp) +1—wy) =
:p—lpo-‘,—p(l—’wp)—’wp: p_wpg(Q)—l
p2 p2+wp p2+wp P :

O
PROPOSITION 7.15. Let p be a prime dividing N/M. Then Iﬁ(h, g.¢)=p L.
Proof. Recall from the definition of Ig(h, g, @) that

L(lvﬂpvad)L(lvaaad) b s,
h .
L(1/2, 7, % adr,) (b, €, ¢)

Ti(h,g,¢) =

Since p | N/M, both m, and 7, are (unramified) special representations, say
mp = &15t,, T, = &2St,. And recall that €(1/2,m,) = —&1(p) and similarly for
Tp. Then (cf. [JL70] and [Kud94, Section 3]) we have

1 P
L(1/2 = =
(1/2,mp © 7 © 7p) 1+ wpp=2) (L +wpp= )2 (P2 +wp)(p + wp)?’

where w, = €(1/2,mp). On the other hand, it is well-known that L(1/2,7,) =
ﬁ, so that (since p 1 M)

L(1/2 3
L(1/2,mp x ad7,) = & er@Tp@Tp): 3 £ .
L(1/2,mp) (p? + wp) (p + wp)
Also, from [Hid86, Section 10] (cf. also [GJ78]), we have L(1,mp,ad) =
L(1,7p,ad) = (p(2). It thus follows from the previous proposition that

Cp(2)2(p2 +wp)(p + wp) p— Wy

i 8. 9) = v GO + )
_ (p+wp)(p — wp) 7p2(p2*1) 71
= Cp(2) p3 - ( 2 _ 1)p3 o p'

8 COMPUTATION OF LOCAL INTEGRALS AT PRIMES p | M

In this section we focus on the regularized local periods Ig(h, g,¢) at primes
p | M. First we will recall the local types of the representations 7 and 7 at such
primes, and describe explicitly the local components g, and h,. After this, we
will be concerned with the matrix coeflicients (7,(9)gp, &) and (7,(g)hy, hy),
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together with the Weil pairings <w$ (9)@p, dp), for g € SLa(Qy), towards ob-

taining an explicit expression for Ig(h, g,4). As in the previous section, for
g € SLy(Q)) we write

oy (e(9)8p, 8p) _ (#p(9)hy, hy) vy, (9)p bp)
R T N A i W

When p divides M, g, and h, are not I'p-invariant, although our choice
guarantees that for any element g € SL2(Q,), the product Q,(g9) :=
Pp,(9)Pg,(9)Pg,(g9) depends only on the double coset T'oogl'oo. Because of
this, we will need to refine our decomposition of SL2(Q)) in (48) into a decom-
position in terms of double cosets for I'gg. Then, we will need to compute the
products ,(g) for g varying in a set of representatives for the double cosets for
Too in SL2(Qp). As we will see, many of the involved matrix coefficients vanish,
so we will not need to compute all of them in order to obtain the quantities
Q,(g).

Fix a prime p | M through all this section. As before, write 1, for the p-th
component of the standard additive character ¢ : A/Q — C*.

8.1 LOCAL TYPES AND EXPLICIT DESCRIPTION OF TEST VECTORS

As in last section, we start considering the GLy case. Now 7, is a (ramified)
principal series. More precisely, 7, = 7(&1,&2) is the principal series represen-
tation induced by two characters &1, &2 : Q) — C*. In the induced model, this
space is realized as the space of those functions ¢ : GL2(Qp) — C such that

/
(EHE) =&<a>@<d>\§\;£<x> for a,d € Q)b € Q€ GLo(Qy). (61)

Because of our assumption that N is square-free, we may assume that &; is
unramified (hence &(a) = 1 for all @ € Z) and & is ramified of (p-power)
conductor 1 (meaning that (1 + pZ,) = 1). Define

K&:{(z Z)GGLQ(ZP):CEO,dzl (modp)},

and notice that GLa(Z,) = B(Z,)K} U B(Z,)wKg, where B(Z,) = B(Q,) N
GL3(Z,) is the subgroup of matrices of GLy(Z,) which belong to the Borel

subgroup of upper triangular matrices in GL2(Q,), and w = (9}). In the

induced model for 7, = 7(&1,&2), the subspace T,f( ® C T, of vectors fixed by
K& turns out to be one-dimensional, and a non-trivial K&-invariant vector is
described in [Sch02, Proposition 2.1.2]. Namely, the vector ¢, : GL2(Q,) — C
characterized by requiring that

(62)

(h) = &G(p) " i(a)ea(d)|ad Y2 ifhe (35) KL, a.deQf,
op 0 ifh & B(Q,)KL.
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Since we are only interested in the normalized value ®z (g), we may assume
that g, coincides with the local vector ¢, given by the above recipe. In contrast
to the case of the previous section, however, when p divides M the new vector
g, does not ensure the non-vanishing of the local periods Z,,. To remedy this,
we replace g, by g, = V8, € 7, where V,, is the p-th level raising operator
acting on 7, by ¢ — 7,(wp)p, with w, = (1’81 (1)) € GL2(Qp). The vector g,

is no longer K}-invariant, but defining

K&O{< “ Z)EGLQ(ZP):CO,dl (modpQ)},

c
we have the following:

LEMMA 8.1. With the above notation, g, is K}y-invariant. Moreover, we have
gl = (p+1)7"

Proof. 1t is straightforward to check the first assertion, hence we focus in the
computation of ||g,||?. By definition, we have ||g,||* = (gp,8,). Using the
decomposition GLy(Z,) = Ko U KowKjy, we have

(0 &) = / g, (heop) gy Urp) dh =
GL?(ZP)

:/ gp(hwp)gp(hwp)dh+/ gp(hwy)gp(hwop)dh.
Ko KowKo

We deal separately each of the two integrals. If h = (7 Y) € Ky is an arbitrary
element in Ky, using Iwasawa decomposition in Ky, we can write

b — zp~l oy _ p~it~tdet(h) y 1 0
P z2p7t ot 0 t t~ip7lz 1 )

where the rightmost element, call it hg, belongs to GL2(Z,). Moreover, if
h € Koo then hq clearly belongs to K¢; and one can check that if h ¢ Koo then
ho € B(Q,)K¢, where recall that B(Q,) stands for the upper triangular Borel
subgroup of GL2(Qp). Thus, it follows from (62) (recall that &; is unramified,

& is ramified of conductor 1, and &1& = Xp) that

p2&(p) "%y, (h) if h € Koo,

hw,) =
&n(hey) {o if h & Koo.

Now suppose that h = (7 %) € KowKj is an arbitrary element in KowKjp.

Then, again using Iwasawa decomposition and noticing that z € Z,, we have

he — zp~t y\ [ —z"tdet(h) ap~?! 0 1
“p = 2p7t ot )T 0 Z2p~t 1 27 tp )
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The rightmost element belongs to GL2(Z,,), but not to K. And further, it can
be easily shown that it does not belong to B(Q,)K} either, hence by applying
(62) we deduce that g,(hw,) = 0 for all h € KqwKy. Therefore, we conclude
that (g,,8,) = pvol(Kg) = (p+ 1)L O

REMARK 8.2. The same arguments of the proof of the previous lemma show
that, for an arbitrary g € SL2(Q,), we have

gp(hgwp)g(hwp)dh :pl/Q‘fl(p)Q/ gp(hgwp)x_l(h)dh.

Koo P

(7p(9)8p, Ep) :/

Koo
Now we turn our attention to the representation 7, of S\ig(@p). In order
to lighten the notation, we will write as in the previous section ¢ = Ep,
where Ep = v, 1. Then, as explained in Section 5.2.1, 7, is the odd Weil

representation r, (which is supercuspidal). The space of ry is the subspace
of odd functions in S(Q,) (where Qy, is regarded as a quadratic space endowed

with the bilinear form (z,y) = 2zy). Recall that the action of S\ig(@p) is
determined by the following properties: if ¢ € S(Qp) is odd, a € Q,, » € Qy,
and we write s = (_01 (1)), then

Ty [( ! ot )1] () = lal}/*xy(a)p(az),
w (1)) ] e —veatiee),
s eta) =5(6) [ elu)oendy.

P

For our choice of ¢, we have () = 1, hence the third identity above simplifies
to

vy [s,1] () = / () (2y) dy.

p

Let Top denote the image of I'gg in SL, (Z,). The following is proved in [BMO07,
Lemma 8.5]:

LEMMA 8.3. The space of vectors ¢, in Ty satisfying Ty Pp = Xp(k>90p for all
ke foo is one-dimensional, and it is generated by the function 12; 'X;l

The p-th component hy, of the vector h is thus a scalar multiple of the function
given in the lemma. Since the matrix coefficients ®y,,(g) are normalized so that

they are invariant under replacing h, by a scalar multiple, we will assume in
the following that h, = 1,x - x~'. Notice that
P

Iyl = [ ey @de = [ do=volizp) =1-571 (3

X
D P
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Having described our choices for the p-th components g, and h,,, we should note

that by construction the function of SLy(Q,) defined by g — @5 (9)®n,(g) is
Tgo-biinvariant (and it is not T'g-biinvariant). Indeed, this follows immediately
from the invariance properties of g, and h,, together with the properties of
the matrix coefficients (7,(9)&p, &p) and (r,, (9)hp, hy).

Finally, as in the previous section we write w, = wy for the Weil representation

of é\ﬂg(Qp) acting on the space of Bruhat-Schwartz functions S(Q,), with
respect to the character ¢, = 1, L. As before, by our choice of test vector we
have ¢, = 1z, and recall that Proposition 7.13 continues to hold when p|M.
8.2 COMPUTATION OF o (h,&,¢) FOR p | M

Recall from last section that

SLa(Qp) = | | ToanTo U | | ToBaTo. (64)

nez nez

By the comment we have just made above, now one cannot compute af,(h, g, 9)
by only computing the matrix coefficients for g, h,, and ¢, at the elements o,
and f,,. However, starting from this decomposition we can refine it to obtain a
decomposition in terms of double cosets for I'gg. First of all, one might observe
that I'gg is not normal in I'y. However, one has

1 0
Ib:: LJ IboVW:: LJ wabo, Vy = ( ~p 1 > S SL?(ZPL
YEZLyp /DLy YEZLy [PZp

so that for each n and m we can write

Toaply = U Loovyanvsloo, ToBmIo = U LoovyBmvsToo.  (65)
V,0€Zy [pLyp YV,0€ZLy [ DLy

However, these unions are not disjoint. Nevertheless, it is not so difficult (al-
though labourious) to reduce these expressions to disjoint unions, so that even-
tually one obtains a set of representatives for the double cosets for I'gpg in
SL2(Qp). We describe this set in the following lemma, whose proof is skipped.

LEMMA 8.4. Fiz a non-quadratic residue u € Z, . Then
SL2(Qp) = |_| LoorToo, (66)
reER
where the set R is the union of the following sets:
I) {1,v1,,};
II) {an, anvy, aniy :n > 0};

III) {an, vian, vya, i n < 0};
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IV) {Bm :m € Z};
V) {ﬂmylvﬂml/u tm > 0} U {Vlﬂmy6vyuﬂmy6 :m >0,0 € Z/pZ}

Now, we can finally proceed with the main goal of this section, namely
the computation of ozfj(h, g,), and therefore of the regularized local period
Ig(h,g,qﬁ). To ease the notation, for g € SL2(Q,) we will write Q,(g) :=

m@gp (9)®4,(g), so that

ol (h, &, ) = / 0, (g)dg.
SLZ(Q;D)

By our choice of h,, g,, and ¢,, we see that {,(g) depends only on the double
coset I'gogl'og. By using the decomposition explained in Lemma 8.4, we see
that

Y(h,g.6) = > Q(r)vol(ToorToo). (67)
reER

Therefore, we will proceed by computing Q,(r)vol(TgorLoo) for each r € R.
We will deal with the cases I - V listed in Lemma 8.4 one by one. First we will
concentrate in computing Q,(r).

8.2.1 Casel

We start computing Q,(v,,) for v € Z,. First of all we have the following
vanishing statement for @y .

LEMMA 8.5. Ify € Z,, then @5 (v,) = 0.
Proof. Let v € Z,;. By Remark 8.2, we have
(1o (v7)8p, Bp) = /K 8p(hvyw@p)gp(hwp)dh.
00

But for h € Koo, an Iwasawa decomposition for hv,z, reads

—1y—1
_( p~it7tdet(h) y 1 0
hl/,ywp< 0 ¢ tlp iz by 1

Under the assumption that v € Z , and taking into account that h € Ky,
we see from this identity that huva does not belong to B(Q,)K¢, thus it
follows from (62) that g, (hvyw,) = 0 for all h € Ko, and hence the statement
follows. (|

With this we can easily deduce €,(r) for elements r as in Case L.
PROPOSITION 8.6. We have (1) = 1. And for v € Z), Qy(vy) = 0.

Proof. Recall that Q,(g) := ®n, Dy, (9) )P, (9
Pp,, ®g,, and Py , it is clear that Q,(1)
the previous lemma implies that Q,(vy) =

)Py (g) By our normalization of
= 1. And for g = v, with v € Z,
0 D
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8.2.2 C(Caske Il

Now we focus on elements of the form ay,v., with n > 0 and ¢ € Z,. When
c €LY, v. € Koo and therefore Q,(anve) = Qp(am).

p )
LEMMA 8.7. The following assertions hold:
i) ®n,(an) =0 for all n > 0.
i) If n >0 and c € Z;, then ®p,(anv.) = 0.

Proof. From one of the rules for the odd Weil representation Ty, We have

(ry (an)hy) (@) = ol xw (0" V0 (") = [l X0 (0L, - (@)X (0" 0).

Therefore, if n £ 0 we find that

(g @nbyety) = bl 0 0) [ 1,0 (0, (07001 ()

P

and i) follows. Notice that the argument does not require n > 0, but only
n # 0. To show ii), notice that

VC:(_1)S( b )s

By applying repeatedly the rules for the Weil representation to the elements
on the right hand side of this identity, one arrives to

ry (e)hy(2) = | (=2xy — epy®)B(2y, X " )dy =
2

=1z,() | (=2ay - cpy®)®(2y, x; ) dy,

and applying 7, () to this expression we get

5 (anve)bp () = X (0")p" 21z, (2p") /Q (20" — epy®)6(2y, )y,

Completing the squares and with some elementary computation, we find more
explicitly

ry (v (@) = pU="2xy (p")e(1/2, X, )X, (2) 10z, (2)9 <p22px2> )

X /Z " <_?C (y + 7%>Q> X, (®)dy.
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Using that 7/’(%) =1 and that

7

Uy + 5007, (v)dy = K, Wy

—cy2

Zy

forn>0and z € Z;, it follows that
<r1; (O‘nVC)hpa h;u> = p(l_n)/2xw(pn)5(1/2a Xp)Xp(Q) X

x /Z; P (;y2> Xp(y)dy /Z; Xp(z)de

But the last integral vanishes by orthogonality of Dirichlet characters, hence
(ry (anve)hy, hy) = 0, which gives @5, (anv.) = 0 as we wanted to prove. [

As a consequence, we immediately have the next vanishing statement.

PROPOSITION 8.8. For alln >0 and ¢ € Zj, Qp(anve) =0.

8.2.3 Cask III
Now we consider the case of elements v .o, with n <0 and c € Z,.
LEMMA 8.9. The following assertions hold:

i) ®n,(an) =0 for all n <0.

i) If n <0 and c € Z, then ®p, (veay) = 0.

Proof. The first assertion follows as in Lemma 8.7, where we only used n # 0.
To prove ii), observe that

ry (an)hy (2) = xu ()P~ 15 (0" 0)x,  (p"2) =
= xu (PP (2)x (@),

1

—ep . .
01 ) s as in the previous

Secondly, using again the decomposition v, = (—1)s (
case, one finds

ry (Vean)hp() = Xy (p”)p‘"/2/Q Y(=2ap"z — ep?" 2B (22, X )dz.

From this, (r (vean)hy, hy) equals

(x)dx.

xw(p")p‘””/ < w(—%p"z—0p2"+122)®(22,xg1)d2> X,
z; \Jo,
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We have 6(227X;1> = p*1/25(1/2,Xp)zp@)lp,lzg (2)x,(2), thus the inner in-

tegral in the above expression for (r (vcan)hy, hy) equals

=P

P2, @) [ (-2 - gty ()i
2

By completing squares and plugging this in the expression for (r,, (vean)hy, hy),
one eventually obtains

<T1Z (Vcan)hpv hP> = Xy (pn>p(1fn)/2€(1/2, XP>XP(2> X

x | (=ep®™2)x (2)B(—22p" ", x )dz.
Z;; —=p —p

But notice that —2zp"~! & p‘lZ; for z € Z; because n < 0. Since X, has con-
ductor 1, it follows that &(—2zp"~1, Xp) = 0, and therefore (7“; (Vean )y, hy) =
0 as well, which implies @y, (vea,) = 0. O

PROPOSITION 8.10. For alln <0 and ¢ € Zy, Qp(veon) = 0.

8.2.4 CaseE IV

Now we deal with Case IV in Lemma 8.4, consisting only of elements 3, with
m € Z.

LEMMA 8.11. The following assertions hold:
i) ®n,(Bm) =0 for all m # 1.
ii) ®g (B1) =0.

Proof. 1) Since B, = say,, we compute Ty (Bm)hp(z) by applying first i (am)
and then r,,(s). We have

5 (G )y () = X (0P~ 1 (P )X (") =
= Xo (™)L g ()X (@),
and therefore applying r; (s) gives
B hule) =X [ g iy =
= xu(P")"26(20p™", X ).
From this, we have

(ry (Bm)hp, hy) :xw(pm)pm”/ &(2ap™™, x, ), (x)da.

Z -P
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But &(2xp~™, x 1) ~1/2¢(1/2, X, )1 - 17 (z)Xp(Qx). If m # 1, we have
pmle; NZy =0, wh1ch implies that (ry (Bm)hy,hy) = 0 and therefore
h, (Bm) = 0.

11) If h=(%Y) € Ky is an arbitrary element in Ko, an Iwasawa decomposition
for hfw, reads

-1 ~1 -1
-y =p ~( t~tdet(h)p —y 0 1
hiveo, = ( —t zp~! > o < 0 —t 1 —tlp~tz )2

and it is easy to check from this expression that hf1w, ¢ B(Q,)K{}. Thus
we have g,(hfB1w,) = 0 for all h € Koo by (62), and Remark 8.2 implies that
(7 (B1)&p, &p) = 0. Therefore @5 (B1) = 0 as well. O

Directly from the lemma, and the definition of Q,, we deduce:

PROPOSITION 8.12. Q,(8,,) =0 for all m € Z.

8.2.5 CASE V

Finally, we consider the computation of matrix coefficients for elements in Case
V from Lemma 8.4. We start considering the elements of the form f,,vs with
m >0 and ¢ € Z, . First of all, we note the following vanishing statement for
m > 1:

LEMMA 8.13. If 6 € Z), then @y, (Bmrs) =0 for all m > 1.

Proof. As in previous lemmas, we have
i (amvs)hy (2) = xy (0™~ 1z, (2) /@ W (=22p™y—opy*)&(2y, x, " )dy.

By applying r (s), we deduce that i (Bmvs)hy(z) equals

xw(p’")p‘m”/ . ¢(2w2)( , w(—2zpmy—5py2)®(2y,x;1)dy> dz =
p~"ZLyp p

= xu(P™) ’"/2/ D(=opy*) &2y, x, (/w ))d2>dy-

Using that &(2y, x Y =p~ 2% e(1/2,x,)x,(2)1, 172 ()X, (v), one finds

ry (Bmvs)hy(z) = xw(pm)p(m“>/2€(1/2,xp)xp@)><

x| @ 20 ([ (20 g, X, (®)dy.
Zy Zy p
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m

The inner integral vanishes unless x € pm’lZ; and zp'™™ = y (mod p), so

one easily gets

P

1 (Bolyle) = X002 X (2N 000 ) 00,

From this, it follows easily that (r, (8nvs)hy, hy) = 0 for all m > 1, since
ZX NpmTizy =0 O

It follows from this lemma that Q,(8,vs) = 0 for all § € Z)¥ and m > 1. So
we are left with the case m = 1. However, looking at ®g (51vs) we find:

LEMMA 8.14. For all § € Z;, one has ®g (B1vs) = 0.

Proof. Let h = (7Y) € Koo be an arbitrary element. An Iwasawa decomposi-
tion for hfBvsw, reads

t~ldet(h)p~t =« 5 1
hbrvsmy = ( 0( ) —t ) ( 1-6t"1p~lz —t71lp~ iz ) ’

Using this decomposition we see that hBivsw, ¢ B(Qp)Kj. Thus it follows
from (62) that g,(hB1vsw,) = 0 for all h € Koo, and hence by Remark 8.2
(7p(B1v5)&p, &p) = 0, which implies that ®5 (51v5) = 0. O

Therefore, together with the above discussion we see that Q,(8mvs) = 0 for all
m > 0andall § € Z;. Let us next consider the elements of the form v, 3,5
when both 7,6 € Z;. In the next lemma we will deal with matrix coefficients
of the form (7, (v mVs)8p, &p), With m > 0. To compute these, we need to find
an Iwasawa decomposition for elements hv, 3, vsw, with h € K (cf. Remark
8.2). Using that hv,fmvswp = hvyfBmwp (L), one can first determine an
Iwasawa decomposition for
m—1

o —yp ap™ ™ + yypt ™
hl/yﬁmwp = ( 7tpm71 prm +’Ytp17m )

and then multiply it on the right by (}?). This is how we proceed in the proof
of the next lemma.

LEMMA 8.15. Let m > 0 be an integer, and lety,6 € Z,\. Then @y (vyfmvs) =
0 unless m =1 and v6 =1 (mod p), and in that case one has g (v, B1vs) =

x,(7)-

Proof. Let us first consider the case m = 1. In this case, if h € Ky then one

has
[ t7ptdet(h) —y g 1
hv, pvswy, = ( 0 —t ) ( 1L —dn(h) —n(h) ) ’

where n(h) =t~ 'p~tz+~ € Z,. Since h € Kqo, observe that n(h) =+ (mod p),
and therefore 1 — dn(h) =1 — 4 (mod p). By looking at the right hand side,
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it is easy to check that hv,B1vs5w, belongs to B(Q,)K{ if and only if v§ =1
(mod p). We deduce from (62) that
1/2 —2 ; =
p/6(p) " x, (V)x (h) ifyd=1 (mod p),
gp(hvy frvswp) = {0 ( —P( —p( (

otherwise.

In particular, it immediately follows from this that (7,(vy51vs)&p,&p) = 0
whenever v§ # 1 (mod p), and so ®g (v,81v5) = 0 as well in this case. When
¥4 =1 (mod p), the above tells us that

(o (0 Brvs ) &) = D261 (p)? /

gp(h’/'vﬂlep)X;l (h)dh =
Koo

p(v).
p+1
Dividing by ||gp||* = (p+ 1) (cf. Lemma 8.1), we get @5 (vyf1v5) = Xp(’y)

[

=DX, (y)vol(Koo) =

when v =1 (mod p).
Now suppose that m > 1. Then an Iwasawa decomposition for hv,Bn,vsw,
reads

m—2det(h) xp~™ 4+ 1-m 1 0

where n(h) = t~'p~'z 4 v as before. Since h € Koo, we have n(h) € Z), and
since we are now assuming m > 1, we see that § — n(h)~'p*"~? € Z because
6 € Z*. Therefore, the rightmost element in the above identity does not belong
to K§, and it is not difficult to see that it does not belong to B(Q,)K{ either.
Hence, by applying (61) we deduce that g,(hvyBmvsw,) = 0 for all h € Koo. It
follows that (7, (v BmVs)&p, &p) = 0, and hence @y (v, 3,,v5) =0 as well. O

By virtue of the last lemma, for any integer m > 0 we have Q,(vyBmvs) =0
unless m = 1 and v0 = 1 (mod p). Therefore, we only need to compute
P, (V4 Bmrs) for m = 1 and 7,8 € Z; with v6 = 1 (mod p). Further, we
see from Case V in Lemma 8.4 that the latter condition is only satisfied for
the representatives 118111 and v, [51v,-1. That is to say, there will be only
two elements r arising in Case V for which Q,(r) might be non-zero. The
next lemma addresses the computation of ®y, (v, B1v,-1) for v € Z,; for v =
1, it thus provides the values that we are looking for. In the proof we will
need to deal with certain quadratic Gauss sums. For each a € Q;, we write
G(a) := pr Y(az?)dz. Here, recall that ) = EPD =, P, and that D € ZX is a
square thanks to hypothesis (H2), together with the fact that (%) = —wp. In
particular, if a € Z,, then we have G(a/p) = p~1G(a,p), where G(a, p) denotes
the usual quadratic Gauss sum defined by

p—1
Gla,p) =Y ¢, with ¢ = e*™V=1/P,
=0
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Recall that one has G(a,p) = (%) G(1,p), and G(1,p)? = (;1) P.

p

LEMMA 8.16. Let v € Z,, and put v = v, and v' = v,—1. Then

(p)x,(Vp~/?
P, (v1V) = i i”jlp (p — G(=7,p))-

Proof. From previous lemmas, we know that
ry (01 )by (2) = xu(P)p~ 211z, (96)/ W(=2wyp — 7"y’ p)B(2y, X dy.
Qp

Observing that

1 — 1 —
vBiv' = (—1)s ( 0 iyp > ssaiv =s ( 0 iyp ) oV

we compute (r;(yﬂly’)hp)(z) by applying r,, (s (é _1”7)) to the above expres-
sion. This gives

xw(p)pl/Q/Z W (W) < ., (y(2z+vlyp))®(2yvzpl)dy> dz.

P

Using that @(Qy,xgl) = p‘1/25(1/2,Xp)xp(Q)lp,lzg (¥)x,(y), the inner inte-
gral becomes

prre/2 ), @ [ o (DY Gy

Setting C' = pxy (p)s(l/Q,Xp)Xp(Q), one can then rewrite r,; (vf10/)hy(7) as

_~—1,2 _ _ 2
7y WPV )hy(z) = C leﬂ ( 7p Y )M?D(/Z 0 (W) dz)cly.

Completing squares, the inner integral is essentially a (translated) quadratic
Gauss sum, and it is not difficult to see that the above expression can be
simplified to

ry (VB )hy(2) = CG (_?7) 1z, (x)¢) (%) ® (%,Xp) _

Replacing & (;iz, Xp) and C by their value, we eventually find that

~

ry (B )hy(2) = xu(p)p'/ X (7)G (%) L (2)d <%) X, (@),

DOCUMENTA MATHEMATICA 24 (2019) 1935-2036



2026 A. PaL, C. DE VERA-PIQUERO

and uSing thiS eXpI‘eSSiOIl, we deduce tha,t
< ( i 1 I) 4 > ( ) /2 ( )Q ,7 a d
w p w P p X ’yp

= xu(p'x, ()G (%) (g (%) - %) .

Dividing by ||h,[|> =1—-p~! =p~1(p — 1), we obtain

B, (B = xu (P)x, (V)P P <?7> <g <%> B

p—1

Finally, using that G (—77) =1 (?) G(1,p), and G (WT) =1 (g) G(1,p),

we conclude that

Dy, (V1Y) = — (p — G(=7,p))-
O

Combining the previous four lemmas, we summarize our discussion for Case V:

PROPOSITION 8.17. Let m > 0 be an integer, and let v,6 € Z;. Then
Q,(Bmvs) =0, and

p(p—1)
0 otherwise.

p=C0p) ity =1,46=1 (mod p),
Qp(”’yﬁmyé) = { ( )

Proof. The first assertion follows immediately from Lemmas 8.13 and 8.14. As
for the second one, combining Lemmas 8.15 and 8.16 yields that Q, (v B vs) =
0 unless m = 1 and v§ = 1 (mod p). And in that case, the same lemmas
together with Proposition 7.13 tell us that

X (P)x, (V)12

—1/2
p—1 ’

P, (v P1vs) = p—G(—=v,p)), g, (vyP1vs) = Xp, (p)p

O, (vy1v5) = X, (7)-

Notice that x4 (p) = X3 (p)xp(p) = X3 (p) because D € Z; is a square.
Therefore,

Qp(vyf1vs) = P, (v, B1vs) Py, (I/.Yﬂll/g)(l)q)p(l/’yﬂll/g) =

_p=G(=rp) _p=GO,p)
p(p—1) pp—1)
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8.3 COMPUTATION OF Z}(h, g, @)

Finally, we conclude with the computation of the regularized local periods
Ig(h, g,¢) at primes p | M. Recall from (67) that

o (h,g,6) = Y Q,(r)vol(ToorToo),
reER

where R is the set described in Lemma 8.4. However, by Propositions 8.6, 8.8,
8.10, 8.12, 8.17,

ag(h, g,0) = Q,(1)vol(Tgo) + Qp(r1)vol(Toor1T00) + Qp (1w )vol(TooruI00),
8)

u.

where u € Z;; is a fixed non-quadratic residue, and r, = v, S1v,-1 for y =1

It is not hard to see that vol(T'po) = p~3(p — 1), and that

)

pp—1?

VOI(FooTlroo) = VOI(FO()T“FO()) = B

PROPOSITION 8.18. Let p be a prime dividing M. Then afj(h, g,.6) =2p3(p—

1).

Proof. We just need to compute the three terms on the right hand side of (68).
Clearly, we have €2,(1)vol(I'gp) = vol(Tgo) = p~3(p — 1). As for the other two
terms, it follows from Proposition 8.17 that

—aq,
Qp(r1)vol(Toor1Too) = ]T(lf)vol(l“oorll“oo),
p—G(u,p)
Qp (ru)vol(TooruT'o0) 1) vol(Toor4 o)

Therefore, the sum of these two equals

=3(p_1
2L - 6l1L5) - Glup) =5 - 1),
since G(u, p) = —G(1,p). It follows that af(h,g,¢) =2p~3(p— 1). O

ProPOSITION 8.19. Let p be a prime dividing M. Then
2
Ti(h, & ¢) = ———.
3 ) pp+1)
Proof. From the definition of the regularized local period, we have

b o _ L(1,7m,ad)L(1,7p,ad) ¢ .
Ip(haga¢) = CQP (2)2(1/2,7Tp XpadTp) ap(h;ga¢).
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As in the case where p divides N/M, m, is an unramified Steinberg represen-
tation, so that we have again

2
P 1 P P
L(1l,m,,ad) = , L(1/2,m,) = = = ,
(1, mp, ad) p*—1 (1/2,m) (I+wpp™t) ptw, p-1
where now we are using that w, = —1 by hypothesis (H2). In contrast, as

already explained, 7, = m(£1,&2) is a (ramified) principal series representation
induced by a pair of characters §1,§> : Q) — C* (with §; unramified and &>
of conductor 1). In this case, from [Hid86, Section 10] (or [GJ78]) we have

1
L(1,7p,ad) = 7—— =2
Y

Besides, one can now check using [JL.70] and [Kud94, Section 3] that

L(1/2,m@ 1, @ 7)) = L(1/2,7,)* = TESVER

Therefore, L(1/2, 7, x ad7,) = ;557 and the statement follows. O

9 COMPUTATION OF LOCAL INTEGRALS AT p = 2 AND v = 00

Let f € Sak(N), g € Sk+1(N,x), and h € Slj+1/2
let f, g, and h be their adelizations. Write w, 7 and 7 for the corresponding
automorphic representations as in Section 6. Continue to consider our test

vector h@gR¢ € TR®T®w, where w = Wy Recal that ¢ denotes the standard
additive character of A/Q, and ¥ = ¢~

(4N, x) be as usual, and

9.1 COMPUTATION AT p = 2

For simplicity, in the following we write 1 for the local additive character

)y = w;l of Q2, so that we = wy,. Write also £(2) = (3 291) € SL2(Q2), which

we identify with [£(2),1] € SLa(Q2), and recall that g = g} = 7 (¢(2)~!)go.
Then define
by = (t(2)ha, 857 = 2w (1(2))8n.

LEMMA 9.1. With the above notation, we have 45%2) = 1%22. Furthermore, the
following identities hold:

() b)) = (hy,ha),  (82.82) = (g2.82), (85 .05) = 2(h2, 62).

Proof. Recall that ¢2 = 1z,. Then by applying the rules of the Weil represen-
tation we have

wa(£(2))2 = wa (H(2)1z, = xu(2)|2ly*15,.
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One can check that x.,(2) = 1 for our choice of ¢, and hence w2 (t(2))¢s =

21/ 21522. It follows that ¢52) = 117, as stated. Furthermore, by definition
we have

(05 ,657) = /Q 11y, (@) 117, @)de = vol(271Zy) = 2 = 2v0l(Zs) = 2($2, 62).

D

As for the other identities, we show only the one concerning g (the other one
can be dealt with similarly). First of all, gs is a GL2(Z2)-fixed vector in the
unramified principal series representacion 7 = m(&,£71), where £ : Q5 — C*
is an unramified character. The space of such vectors is known to be one-
dimensional, and a non-trivial choice is given by the function ¢s : GLy(Z2) — C
defined by (cf. [Sch02, Section 2])

oaly) = {f(ad1)|ad1|é/2 if v € (8%5)GLa(Z2), a,d € QJ, ©9)

0 otherwise.

Since we are only interested in the ratio (g2, 82)/(g2, g2), we may assume that

g2 = 2. Then, one has (go, g2) = fGL2(Z2) g2(x)ga(z)dx = vol(GLy(Zs)) = 1.
To compute

(2, 80) = (&b, &) = / & (227 ) (@@ ) de,
GL2(Z2)

we divide GL2(Z2) into three subregions, namely

Ly := {x: (‘33) GGLz(Z2)5C€Z§}v
Ly:={x=(2%) € GLy(Z2) : c € 2Z } ,

and Lo := GLa(Z2) — Lo — L1 = Ko(4). Working separately each of these
regions, finding an Iwasawa decomposition for 2¢(271) one checks that

272 ifx € Ly,

go(xt(27))ga(xt(271) =<1 ifz e Ly,

22 if x € L.
Therefore, (g2, 82) = 2 *vol(Lg) + vol(L1) + 24vol(Lz). Since Lo = GLa(Z3) —
Ky(2) and Ly = Ko(4), and K¢(2) (resp. Kp(4)) has index 3 (resp. 6) in
GL3(Zs), one can easily compute (g2, 82) = 1 = (g2, 2). O

The next proposition computes the local regularized period Ig (h,g,¢), by re-
lating it to the period Z5(h®), g, ¢?) and invoking the computation done in
[Xuel8, Section 6].

PROPOSITION 9.2. Z4(h, &, ¢) = 1.
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Proof. Recall that by definition we have

)
2)(¢2,¢2)

Ti(h,g,¢) =

0q< 0Q<

Z(h,
(ha, ha)(gs,
where
L(l, T2, ad)L(l, T2, ad)
L(1/2, T X adTg)

y / (72 () o, B} (72 (9) &2, &2) (wa (9)a, d2)dg.
SLa(

Q2)

IQ (ha ga ¢) -

Denote by as(hg, g2,@2) the integral on the right hand side. By replacing g
with #(2)~1gt(2), one checks

az(h2, 82,¢2) = aa(72(t(2))ha, 72(£(2))82, wa(t(2))¢2) =
= aa(72(t(2))h2, g2, w2(t(2))d2),

using that g, = g2 = 75(t(2)71)ga. Since 72(t(2))hy = th) and wa(t(2))2 =
2-1/2¢(*) by definition, the above shows that Z»(h, g, ¢) = 2~ 1Z,(h, g, ¢(?).
Hence by the previous lemma,

Ig (h, g, ¢) _ IQ(hv g7¢) — 27112(}1(2) g, ¢ 2))

(ho bo) (g2, 82)(62:02) (0D 1) (g2 g2)2 ' (65 6%
= Z}(h®, g, ¢@).

Finally, it follows from Xue’s computation in [Xuel8, Section 6] that the right
hand side equals 1. o

9.2 COMPUTATION AT THE ARCHIMEDEAN PLACE

Finally, we deal with the computation of the regularized local period
7! (h, g, ¢) at the real place v = co. The approach we follow here has already
been considered in [Xue] (where the case that g has weight /41 with ¢ > k odd is
also covered). For simplicity, in what follows we will write ¢ = 17! for the twist
of the standard additive character 1o, on R by —1, so that ¢ (z) = e—2mV-1e
for all x € R. Then we = wy. By Iwasawa decomposition, every element
g € SLy(R) can be written as

=5 ) (o 1)

for some y € Ry, z € R and k € SO(2). We consider the Haar measure
dg = y~?dxdydk, where dr and dy are the Lebesgue measure on R, and dk is
the Haar measure on SO(2) with vol(SO(2)) = .

Observe that 7o (resp. 7o) is a discrete series representation of PGL2(R) of
weight k+1 (resp. 2k). The archimedean component g, = goo of g is a lowest
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weight vector in 7. Similarly, 7, is a discrete series representation of SAIZQ(R)
of lowest K-type k + 1/2, and h, is a lowest weight vector in 7.

Let J be the Jacobi group, which arises as the semidirect product of SLs with
the so-called Heisenberg group H, and it can be realized as a subgroup of Sp,
(see [BS98, Section 1.1]). In explicit terms, elements in J can be written as
products

1 %
a b B 1 N1 o €
(C d)(A’/’[/)E)_ d 1 7}\ b

with ( ‘z Z ) € SLy, (A, 11, €) € H.

By virtue of [BS98, Theorem 7.3.3], Too ® woo 18 isSomorphic to a discrete series
representation p, of J(R) of lowest K-type k + 1. In particular, the vector
hoo ® Poo € oo ® Woo i then identified under the previous isomorphism with
a lowest weight vector Joo € poo. Being the isomorphism 7o ® Weo =~ pPoo an
isometry (see loc. cit.), we have

f 9 _ <T(g)gooagoo> <ﬁ-(g)h00’h00> <w00(g)¢005¢00>
%o (€, 9) /SL2<R> &l [l CNE

(7(9)8o0s Boo) (P(9)J o0, Joo) t e
- s dg =: @} (8oo, Joo)-
/SLQ(]R) ||gool]? [T |[?

dg =

To compute of_(h, g, #), we will consider the explicit model D(k+1, N) of the
discrete series representation p.. that can be found in [BS98, Chapter 3]. As
vector spaces, one has

Dk+1,N)= B C-vme,

m,£>0,0 even

and SO2(R) acts on vy, ¢ through the character u ~ ufT1+m+¢ The element
vo,0 1s a lowest weight vector, and SO2(R) acts on the line spanned by wvg
through the character u — u**1. Let t be the Lie algebra of R(R), and denote
by vc its complexification. Then there are certain operators X, X_, Y, Y_
acting on t¢ (see loc. cit.). One has that sly is a Lie subalgebra of t, and
X+ € slpc. Also, one has dpoe X_Joo = dpocY_Js = 0. The action of these
operators is given by the following recipe:

1

ApocY1Vm,e = Vms1,6,  ApocXyUme = 27N

Um+2,€;

dpocY_Vm e = =20 Nmvp—1,0,

14
dpooX_—vm,e = TNM(m — 1)vpm_2,0 — Z(Qk + 40— 1)U -2
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The space D(k + 1, N) is endowed with an inner product {, ), and the vectors
Um,¢ form an orthogonal basis with respect to this inner product. We put
[|v]|> = (v,v). For each pair of integers m, ¢ > 0 with ¢ even, one can compute
[|[Um.¢||? in a recursive manner from ||vg||?, where we abbreviate vy := vg,9. We
shall normalize the inner product (, ) so that ||vg||* = 1.

LEMMA 9.3. With the above notation, of_(h,g,¢) = 2r2k~1.

Proof. With respect to the above model, 7o, might be realized as a subrepresen-
tation of poo|sr, (r), spanned by vg. Then we can assume the inner product for
Too t0 be given by the restriction of the inner product for peo. As af_ (g0, Joo)
is normalized so that it is invariant under replacing g., and J., by scalar
multiples of them, we can therefore assume that g., = Joo = vg. Then we have

1
~ vl /SL ®) (7o (9)v0, vo) [*dg =

- / (o (9)v0, v0) .
SLa(R)

b (,8,4) = ab (&, I

Write AT := {(et e*t) it > 0}, and consider the map

(SOa(R) x A+ x SO5(R))/{£1} — SLy(R)/{=£1},

t t
(7 e )w) (7 )
e e

where on the left hand side —1 is identified with the element (—1,1,—1). This
map is bijective outside the boundary of A*, by virtue of Cartan decomposition.
Using a similar argument to the one in [IT10, Section 12], one deduces that
dg = 2sinh(2t)dtdkdk’, where dk and dk’ are the Haar measure as above for
which SO2(R) has volume 7, and dt is the Lebesgue measure. It is well-known
(cf. [Kna79]) that

(e ((* oo

and hence it follows that

b b d) = [ [(rlg)un, )Py =
SL2(R)
= vol(SO3(R))? / cosh(t) =21 2sinh(2t)dt =
0

= 2#2/ cosh(t) 2R+ Dginh(2t)dt = 272k,
0

PROPOSITION 9.4. We have Z¥_(h, g,¢) = 1.
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Proof. We have seen in the previous lemma that of_(h, g, ¢) = 272k~. Be-
sides, the ratio
L(1, oo, Ad) L(1, Too, Ad)
L(1/2, 7 x Ad(g))

equals

202m) 7 * 1T (k + 1)n'T(1) - 2(27) T (2k)7'T(1) &k
22(2m) k1D (2k)T(k — k 4+ 1) - 2(2m)~FC(k) 22’

and thus it follows from the definition of Z¥_(h, g, ) that

Lo L0 AL(L 7o, Ad)
Ti (h,g,¢) = —F =0 )
~ 08 = = o X Adlg))

(ha ga‘ﬁ) =1
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