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Abstract. We prove an explicit central value formula for a family of
complex L-series of degree 6 for GL2 ×GL3 which arise as factors of
certain Garret–Rankin triple product L-series associated with modu-
lar forms. Our result generalizes a previous formula of Ichino involving
Saito–Kurokawa lifts, and as an application we prove Deligne’s con-
jecture stating the algebraicity of the central values of the considered
L-series up to the relevant periods.
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1 Introduction

Explicit central value formulas for L-series associated with modular forms have
always been of interest in number theory. In this paper we prove a cen-
tral value formula for certain L-series of degree 6, generalizing a result of
Ichino [Ich05], which involves pullbacks of Saito–Kurokawa lifts. This can be
seen as yet another evidence of the key role that pullbacks of Siegel Eisenstein
series or cusp forms play in the proof of the algebraicity of critical values of
certain automorphic L-functions. Previous instances of this phenomenon are
found for example in the works of Garrett [Gar84, Gar87], Böcherer [Böc85],
or Böcherer–Furusawa–Schulze-Pillot [BFSP04], or also in a similar flavour in
Ichino–Ikeda [II08], where special values of certain triple product L-series are
related with pullbacks of hermitian Maass lifts. All these results, as well as the
result in this paper, fit within the range of the ‘refined global Gross–Prasad

Documenta Mathematica 24 (2019) 1935–2036



1936 A. Pal, C. de Vera-Piquero

conjecture’ (cf. [II10]), reflecting the intimate relation between certain periods
of automorphic forms on special orthogonal groups and L-values.
In order to describe the setting considered in this article, let k ≥ 1 be an odd
integer, and let f ∈ Snew2k (Γ0(Nf )) and g ∈ Snewk+1 (Γ0(Ng), χ) be two normalized
newforms of weights 2k and k + 1, and levels Nf and Ng, respectively. We
assume f has trivial nebentypus, whereas g has nebentypus χ (hence χ is a
Dirichlet character modulo Ng). Write Vℓ(f) (resp. Vℓ(g)) for the compatible
system of ℓ-adic Galois representations attached to f (resp. g), and denote by
Ad(Vℓ(g)) the so-called adjoint representation of Vℓ(g). In this paper we are
concerned with the complex L-series L(f⊗Ad(g), s) of degree 6 for GL2 ×GL3

associated with the tensor product Vℓ(f) ⊗ Ad(Vℓ(g)). This L-series can be
defined by an Euler product for Re(s) ≫ 0, whose local factors at primes
p ∤ NfNg are given as in [Ich05, p. 559]. The completed L-series

Λ(f ⊗Ad(g), s) := ΓC(s)ΓC(s+ k)ΓC(s− k + 1)L(f ⊗Ad(g), s),

where ΓC(s) = 2(2π)−sΓ(s) is the usual complex Gamma function, admits
analytic continuation to the whole complex plane and satisfies a functional
equation relating its values at s and 2k − s, with sign ε(f ⊗ Ad(g)) ∈ {±1}.
Under certain hypotheses, which in particular guarantee that the sign ε(f ⊗
Ad(g)) is +1, the main result of this paper is an explicit central value formula
for Λ(f ⊗ Ad(g), k). As an immediate corollary, we deduce the algebraicity of
such value up to a suitable period, as expected by Deligne’s conjecture.
As the eager reader might have already suspected, the L-series L(f ⊗Ad(g), s)
is closely related to a suitable triple product Garret–Rankin L-series. Indeed,
let f ′ := f ⊗ χ−1 be the twist of f by the inverse of the character χ. By
construction, the motive associated to the triple tensor product Vℓ(f

′)⊗Vℓ(g)⊗
Vℓ(g) is self-dual, and hence the Garret–Rankin L-series L(f ′⊗g⊗g, s) attached
to it (or rather, its completed L-series) satisfies a functional equation relating its
values at s and 4k−s, with sign ε(f ′, g, g) ∈ {±1}. In view of the isomorphisms

Vℓ(g)⊗ Vℓ(g) ≃ det(Vℓ(g))⊕ Sym2(Vℓ(g)) ≃ det(Vℓ(g))⊗ (1⊕Ad(Vℓ(g))) ,

where Sym2(Vℓ(g)) stands for the symmetric square representation of Vℓ(g) and
we use that Sym2(Vℓ(g)) ≃ Ad(Vℓ(g)) ⊗ det(Vℓ(g)), Artin formalism provides
a factorization of complex L-series

L(f ′ ⊗ g ⊗ g, s) = L(f, s− k)L(f ⊗Ad(g), s− k). (1)

It is well-known that the completed L-series Λ(f, s) := ΓC(s)L(f, s) satisfies
a functional equation relating its values at s and 2k − s, with sign ε(f) ∈
{±1}, thus the central critical point for the shifted L-series Λ(f, s − k) is at
s = 2k. Concerning the central values, suppose that Λ(f ⊗ Ad(g), k) is non-
zero. If Λ(f, k) is non-zero as well, then one can use (1) straightforward to
express the central value Λ(f ⊗Ad(g), k) as a ratio between the central values
Λ(f ′ ⊗ g ⊗ g, 2k) and Λ(f, k). When Λ(f, k) vanishes, however, the identity in
(1) is not directly giving a way to obtain an expression for Λ(f ⊗Ad(g), k).
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Despite the above relation to triple product central L-values, the approach in
this article to obtain an explicit central value formula for Λ(f ⊗Ad(g), k) does
not require determining triple product central L-values. Instead, as pointed out
at the beginning of the introduction, we generalize a result of Ichino involving
Saito–Kurokawa lifts. As a motivation towards our result, suppose in the pre-
vious discussion that Nf = Ng = 1, hence χ is trivial as well and f and g are
normalized newforms for the full modular group Γ0(1) = SL2(Z). In this case,
f ′ = f , and (1) reads

L(f ⊗ g ⊗ g, s) = L(f, s− k)L(f ⊗Ad(g), s).

Our choice of weights makes that ε(f, g, g) = ε(f) = −1, and therefore the sign
in the functional equation for Λ(f ⊗Ad(g), s) is +1. In this particular setting,
Ichino proved in [Ich05] an explicit formula for Λ(f ⊗ Ad(g), k), involving a
half-integral weight modular form h ∈ Sk+1/2(Γ0(4)) associated with f by the
Shimura correspondence and its Saito–Kurokawa lift F ∈ Sk+1(Sp2(Z)), which
is a Siegel modular form of degree 2. In terms of these lifts, Ichino’s formula
reads

Λ(f ⊗Ad(g), k) = 2k+1 〈f, f〉
〈h, h〉

|〈F|H×H, g × g〉|2
〈g, g〉2 , (2)

where F|H×H denotes the restriction (or ‘pullback’) of F to H×H, embedded
‘diagonally’ in Siegel’s upper half space H2. Our main result can be seen
as a generalization of (2), when removing the assumption that Nf = Ng = 1.
However, instead of extending Ichino’s arguments, our strategy relies on a more
recent result by Qiu [Qiu14].
Indeed, there is a decomposition formula for the SO(4)-period P associated
with (the restriction of) a Saito–Kurokawa representation of PGSp2 and an ir-
reducible cuspidal unitary representation of GSO(4). Here, GSO(4) and SO(4)
stand for the group of similitudes and the special orthogonal group of a certain
4-dimensional (split) quadratic space, and PGSp2 is identified with the special
orthogonal group of a suitable 5-dimensional quadratic space. The proof of
this decomposition result by Qiu in fact reduces to a decomposition formula
for a global SL2-period Q, proved in the same article. This SL2-period, and
the interplay between P and Q, plays a central role in the proof of our main
result.
To illustrate our strategy, consider again the general setting in which f and g
are of level Nf and Ng, respectively, and χ is not necessarily trivial. Then let π
(resp. τ) be the automorphic representation of PGL2(A) (resp. GL2(A)) asso-
ciated with f (resp. g). The Shimura correspondence, settled and investigated
in detail by Waldspurger [Wal80, Wal81] as a theta correspondence for the pair

(PGL2, S̃L2), associates to π (and a choice of non-trivial additive character of
A/Q) a near equivalence class of automorphic representations π̃ of the double

metaplectic cover S̃L2(A) of SL2(A). Classical Shimura lifts of f give rise to
automorphic forms in the representations π̃ arising in this theta correspon-
dence. Associated with the representations π̃, τ , and a Weil representation ω
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depending on the fixed additive character of A/Q, there is a (global) SL2-period
functional

Q : π̃ ⊗ π̃ ⊗ τ ⊗ τ ⊗ ω ⊗ ω −→ C

(cf. Section 6 for its precise definition), which by virtue of [Qiu14, Theorem 4.5]
decomposes (when it is non-zero) up to certain special L-values as a product
of local periods

Iv : π̃v ⊗ π̃v ⊗ τv ⊗ τv ⊗ ωv ⊗ ωv −→ C

defined by integrating local matrix coefficients. Among the L-values showing
up in this decomposition formula, one finds L(1/2, π×adτ), which corresponds
with the central value Λ(f ⊗Ad(g), k) that we are interested in. Moreover, the
non-vanishing of the functional Q is essentially controlled by the non-vanishing
of the special value L(1/2, π × adτ) (cf. Propositions 6.2 and 6.3). Hence,
one can obtain an explicit expression for Λ(f ⊗ Ad(g), k) by finding a test
vector on which Q does not vanish, and computing the local periods Iv when
evaluated at such test vector. Besides, as hinted above, the global period Q is
related to the SO(4)-period P , when replacing the automorphic representations
π̃ and τ with automorphic representations Π and Υ, of GSp2 and GSO(4)
respectively, obtained from π̃ and τ via theta correspondence. It is via this
relation with P that the global period Q evaluated at the test vector can
be interpreted as a classical Petersson product, therefore leading to the aimed
expression for Λ(f⊗Ad(g), k) in purely classical terms. For example, in Ichino’s
setting described above, this global automorphic period is the responsible of the
factor |〈F|H×H, g × g〉|2 appearing in (2). The main novelty of our work is the
computation of the above mentioned local SL2-periods at ramified primes. It is
important to remark that these local SL2-periods have their own interest, and
their computation has potential applications in the study of the subconvexity
problem for the family of automorphic L-functions of the form L(s, π × adτ).
This will be explored in a forthcoming work.
Although the strategy that we have just sketched works in a rather general
setting, for the sake of clarity and to simplify the (already involved) local
computations we will impose some assumptions on f and g. Most importantly,
we will assume that

N = Nf = Ng is odd and square-free. (SF)

One could easily relax this assumption to require only that Nf and Ng are
square-free (but not necessarily equal), at the cost of dealing with more cases
when performing the computation of the local periods Iv alluded to above.
However, we content ourselves with illustrating the method under the assump-
tion (SF).
Besides, let M denote the conductor of the Dirichlet character χ. Thus M is
a positive divisor of N , and by (SF) M is square-free as well. If we write χ =∏
p|M χ(p), where χ(p) is a Dirichlet character modulo p for each prime p | M ,
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then we assume that

χ(p)(−1) = −1 for all primes p |M. (H1)

In particular, this implies that M is the product of an even number of primes.
We use hypothesis (H1) to apply a generalized Kohnen formula due to Baruch
and Mao [BM07], recalled in Theorem 2.1 below. Finally, it is well-known that
the sign ε(f) ∈ {±1} in the functional equation for L(f, s) might be written
as a product of local signs ε(f) =

∏
v εv(f), where v varies over the rational

places, εv(f) = ε(1/2, πv) ∈ {±1} for all v, and εv(f) = +1 for all v ∤ N∞. We
will assume that

εp(f) = −1 for all primes p |M. (H2)

Under our previous assumptions, hypothesis (H2) becomes crucial for the non-
vanishing of the period functional Q (cf. Section 6). Observe that if χ is
assumed to be trivial, then M = 1 and hypotheses (H1) and (H2) are empty.
In fact, for χ trivial, the arguments in this paper would be much less technical
(for example, it would be enough to use Kohnen’s formula instead of its gen-
eralization by Baruch–Mao, computations with the Saito–Kurokawa lift would
be simpler, and the whole Section 8 would not be needed) and consequently
the length of this note would be also considerably reduced.

A comment on signs is now in order. Indeed, the assumption that k is odd
implies ε∞(f) = −1, and since the triple of weights (2k, k+1, k+1) is ‘balanced’
(i.e. none of the three weights is at least the sum of the other two) one also has
ε∞(f ′ ⊗ g ⊗ g) = −1. Besides, the assumption (SF) together with hypothesis
(H2) imply, by [Pra90, Section 8], that

∏
p|N εp(f) =

∏
p|N εp(f

′ ⊗ g ⊗ g).

Therefore, ε(f) = ε(f ′ ⊗ g ⊗ g), and it follows from (1) that the sign in the
functional equation for Λ(f ⊗Ad(g), s) is +1.

Now we can finally state our main result. To do so, let S+,new
k+1/2 (4NM,χ) denote

Kohnen’s subspace of newforms of weight k + 1/2, level 4NM and character
χ (see Section 2.2 for details). Under assumptions (SF) and (H1), it follows
from [BM07, Theorem 10.1] (cf. Theorem 2.1 below) that the subspace of
S+,new
k+1/2 (4NM,χ) consisting of newforms whose eigenvalues for the Hecke oper-

ators at primes p ∤ 2N coincide with those of f⊗χ is one-dimensional. Let h be
any non-trivial element in this one-dimensional subspace, thus h is a Shimura

lift of f (or of f ⊗ χ), and let Fχ ∈ Sk+1(Γ
(2)
0 (N), χ) be the Saito–Kurokawa

lift of h, as defined in Section 2.3; this is a Siegel cusp form of degree 2, weight

k + 1, Hecke-type level Γ
(2)
0 (N), and character χ. One may think of Fχ as a

Saito–Kurokawa lift of f ⊗ χ.

Theorem 1.1. Let k,N ≥ 1 be odd integers. Let f ∈ Snew2k (Γ0(N)) and g ∈
Snewk+1 (Γ0(N), χ) be normalized newforms, and assume (SF), (H1), and (H2).
If h and Fχ denote a Shimura lift of f and its Saito–Kurokawa lift as explained

Documenta Mathematica 24 (2019) 1935–2036



1940 A. Pal, C. de Vera-Piquero

above, then

Λ(f ⊗Ad(g), k) = 2k+1−ν(M)C(N,M,χ)
〈f, f〉
〈h, h〉

|〈(id⊗ UM )Fχ|H×H, g × g〉|2
〈g, g〉2 ,

(3)
where UM =

∏
p|M Up denotes the product of the usual p-th Hecke operators

Up, ν(M) denotes the number of prime divisors of M , and

C(N,M,χ) = |χ(2)|−2M3−kN−1
∏

p|N
(p+ 1)2

∏

p|M
(p+ 1).

In particular, under the assumptions of the theorem Λ(f ⊗Ad(g), k) ≥ 0.

Remark 1.2. Let f and g be as in Theorem 1.1, and suppose that χ is trivial.
Then M = 1, and hypotheses (H1) and (H2) hold trivially, hence the central
value formula (3) reads

Λ(f ⊗Ad(g), k) = 2k+1N−1
∏

p|N
(p+ 1)2

〈f, f〉
〈h, h〉

|〈F|H×H, g × g〉|2
〈g, g〉2 .

This formula coincides with the one obtained by S.-Y. Chen in [Che19], which
appeared after a first version of this paper was made available. Instead of using
Qiu’s decomposition theorems and computing local SL2-periods, Chen general-
izes straightforward the original strategy of Ichino. Besides considering non-
trivial nebentype character, as commented above the novelty of our approach is
precisely the computation of local SL2-periods at ramified primes, which have
their own interest and applications to other problems. If we further restrict to
N = 1, observe that we obviously recover Ichino’s formula in (2).

Remark 1.3. If the weight of g is assumed to be ℓ + 1 with ℓ ≥ k odd, in-
stead of k + 1, then all the arguments to prove the above central value formula
work through by replacing h and Fχ with suitable nearly holomorphic forms ob-
tained from these by applying the relevant derivative operators, and modifying
accordingly the local computation for the archimedean period I∞ (cf. Section
9.2).

Theorem 1.1 has an immediate application to Deligne’s conjecture [Del79]:

Corollary 1.4. Let k,N ≥ 1 be odd integers, and f , g be as in Theorem 1.1.
If Q(f, g) denotes the number field generated by the Fourier coefficients of f
and g, then

Λ(f ⊗Ad(g), k)alg :=
Λ(f ⊗Ad(g), k)

〈g, g〉2c+(f) ∈ Q(f, g),

where c+(f) denotes the period associated with the cuspidal form f by Shimura
as in [Shi77].
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Remark 1.5. When N = 1, this corollary follows of course from Ichino’s
formula. And in line with Remark 1.3, when N = 1 and f and g have weights
2k and ℓ+1, respectively, with ℓ ≥ k odd integers, the algebraicity of the relevant
central value has been recently shown by H. Xue in [Xue], working with Jacobi
forms instead of Saito–Kurokawa lifts.

Let us close this introduction by pointing out some applications of the present
work. One direction that we want to explore aims for a p-adic analogue of the
factorization of complex L-series given in (1). Even though one could define
a two-variable p-adic L-function associated with f ⊗ Ad(g) by making use of
the above hinted relation of L(f ⊗ Ad(g), s) with suitable triple product L-
series, the explicit central value formula provided by Theorem 1.1 gives an
alternative approach for the construction of such a p-adic L-function, which is
independent of any triple product p-adic L-function. Namely, one can directly
interpolate the explicit expression in Theorem 1.1 (or rather the algebraic parts
as in Corollary 1.4) as f and g vary in Hida families. With this p-adic L-
function at hand, the proof of a factorization of p-adic L-functions parallel to
(1) will require comparing two Euler systems. Namely, the one associated to
generalized Gross–Kudla–Schoen diagonal cycles in the product of three Kuga–
Sato varieties, and the one arising from Heegner points. This would extend the
factorization result of Dasgupta in [Das16] establishing Greenberg’s conjecture
for the adjoint representation, where instead of a triple product L-series one
considers a Rankin L-series of two cusp forms twisted by a Dirichlet character.
In a completely different direction, the computation of local SL2-periods lead-
ing to the explicit central value formula in Theorem 1.1, when relaxing the
assumption (SF) to requiring only that Nf and Ng are square-free, provides
an important tool in the study of the subconvexity problem for the family of
automorphic L-functions of the form L(s, π × adτ). This problem is related
to the limiting mass distribution of automorphic forms (‘arithmetic quantum
unique ergodicity’). See for instance [Nel11], [Nel19], and references therein.

1.1 Outline of the paper

Although the strategy of the proof of Theorem 1.1 has already been sketched
above, let us briefly explain the organization of this paper. Sections 2 and 3
are devoted to recall and set some necessary background material concerning
classical modular forms and automorphic forms. Theorem 2.1, due to Baruch–
Mao, will play an important role later on in the paper. After this, we review
in Section 4 the theory of quadratic spaces, theta functions, and theta lifts,
describing also explicit models for quadratic spaces in low dimension that are
used in this paper. Section 5 focuses in the three theta correspondences that
are involved in the proof of the main result of this paper. In particular, we
prove two explicit identities for theta lifts (see Propositions 5.1 and 5.10) for the

theta correspondences between GL2 and GSO(4), and between S̃L2 and PGSp2,
respectively, by adapting the ones in [II08, Section 5] and [Ich05, Section 7].
In Section 6 we can already prove Theorem 1.1, and deduce Corollary 1.4,
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although the computation of the local periods Iv is relegated to Sections 7, 8,
and 9, which constitute the most technical part of this article.

1.2 Notation and measures

Before closing this introduction, we collect here some notations to be used
throughout the paper. We will denote by A = AQ the ring of adeles over Q.

We will also write Ẑ =
∏
p Zp for the profinite completion of Z, which will be

regarded as a subring of A.
We write ζ for Riemann’s zeta function, with the usual Euler product ζ =∏
p ζp, and ζQ will stand for the completed Riemann zeta function defined by

ζQ(s) := ΓR(s)ζ(s), where ΓR(s) := π−s/2Γ(s/2) and Γ(s) denotes the Gamma
function. We also put ΓC(s) := 2(2π)−sΓ(s).
If G is a connected reductive group over Q, we equip G(A) with the Tamagawa
measure dg. The volume of [G] := G(Q)\G(A) with respect to this measure is
usually referred to as the Tamagawa number of G. For GL2(A), we write dg =∏
v dgv as a product of local Haar measures, satisfying vol(GL2(Zp), dgp) = 1

for all finite primes p. In the case of SL2(A), we choose the local Haar measures
to satisfy vol(SL2(Zp)) = ζp(2)

−1 for all finite primes p.
If V is a finite-dimensional quadratic space over Q, with bilinear form ( , ),
and ψ is an additive character of A/Q, then we consider the Haar measure
on V (A) which is self-dual with respect to ψ, unless otherwise stated. That
is to say, the Haar measure such that F(F(φ))(x) = φ(−x), where F(x) =∫
V (A) φ(y)ψ((x, y))dy is the Fourier transform of φ. The orthogonal group O(V )

is not connected. We choose a measure on O(V )(A) as follows: first, we equip
SO(V )(A) with the Tamagawa measure; secondly, at each place v we extend the
local measure on SO(V )(Qv) to the non-identity component of O(V )(Qv); and
finally, we consider the measure dhv on O(V )(Qv) to be half of this extended
measure, and define dh =

∏
v dhv. This is the Tamagawa measure on O(V )(A),

and [O(V )] = O(V )(Q)\O(V )(A) has volume 1 with respect to dh.
Continue to consider a finite-dimensional quadratic space V as before, and
a non-trivial additive character of A/Q. If S(V (A)) denotes the space of
Bruhat–Schwartz functions on V (A), and φ1, φ2 ∈ S(V (A)), we set 〈φ1, φ2〉 =∫
V (A)

φ1(x)φ2(x)dx, where dx is the Haar measure that is self-dual with re-

spect to ψ. If π is an irreducible cuspidal unitary representation of G(A), and
f1, f2 ∈ π, we define the pairing 〈f1, f2〉 to be:

i)
∫
[SL2]

f1(g)f2(g)dg, if G = S̃L2;

ii)
∫
[PGL2]

f1(g)f2(g)dg, if G = GL2;

iii)
∫
[G]
f1(g)f2(g)dg, if G = SO(V ) or O(V ).

Finally, let p be a prime, and fix a non-trivial additive character ψp : Qp → C×

of conductor Zp. If µ : Q×
p → C× is a character such that µ(p) = 1 (or
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equivalently, a character of Z×
p ), and a ∈ Qp, we define the Gauss sum

G(a, µ) :=

∫

Z×

p

ψ(ax)µ(x)dx,

where dx is the Haar measure which is self-dual with respect to ψ, normalized
so that Zp has volume 1. It is well-known that G(a, µ) = 0 unless µ = 1 or
ordp(a) = −cond(µ), where c = cond(µ) is the smallest positive integer such
that µ is trivial on 1 + pcZp. More precisely, we have

G(a, µ) =





1− p−1 if µ = 1, ordp(a) ≥ 0,

−p−1 if µ = 1, ordp(a) = −1,

0 if µ = 1, ordp(a) < −1,

|a|−1/2ε(1/2, µ−1)µ−1(a) if µ 6= 1, ordp(a) = −cond(µ),

0 if µ 6= 1, ordp(a) 6= −cond(µ).

Here, ε(1/2, µ−1) is the (local) ε-factor associated with µ−1, which satisfies
(among other properties) ε(1/2, µ)ε(1/2, µ−1) = µ(−1).
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2 Modular forms

The main purpose of this section is to recall and set up the notation regarding
classical modular forms, with a particular focus on some features concern-
ing distinct liftings between spaces of classical modular forms of different na-
ture (namely, modular forms of integral weight, modular forms of half-integral
weight, and Siegel modular forms of degree 2) that will be used in the paper.

2.1 Integral weight modular forms

Let H = {z ∈ C : Im(z) > 0} be the complex upper half plane, on which the
group GL+

2 (R) of real 2-by-2 matrices with positive determinant acts by

(
a b
c d

)
· z = az + b

cz + d
.
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Let ℓ ≥ 1 be an integer, and consider the usual action of GL+
2 (R) on the space

of holomorphic functions g : H → C defined by

g|ℓ[γ](z) = j(γ, z)−ℓ det(γ)ℓ/2g(γz),

where j(γ, z) = cz+ d if γ =
(
a b
c d

)
. If N ≥ 1 is an integer and χ : (Z/NZ)× →

C× is a Dirichlet character modulo N , we writeMℓ(N,χ) for the C-vector space
of modular forms of weight ℓ, level N and nebentype character χ. Namely, the
space of holomorphic functions g : H → C satisfying

g|ℓ[γ] = χ(γ)g for all γ ∈ Γ0(N),

together with the usual holomorphicity condition at the cusps. Here, Γ0(N)
denotes the level N Hecke-congruence subgroup of Γ0(1) = SL2(Z),

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
,

on which χ induces a character, which we still denote χ by a slight abuse of
notation, through the rule

(
a b
c d

)
7−→ χ(d).

We denote by Sℓ(N,χ) ⊆ Mℓ(N,χ) the subspace of cusp forms, namely the
subspace of those modular forms which vanish at all the cusps. If g1, g2 ∈
Mℓ(N,χ), and at least one of them belongs to Sℓ(N,χ), then we consider the
Petersson product of g1 and g2 defined as

〈g1, g2〉 :=
1

[SL2(Z) : Γ0(N)]

∫

Γ0(N)\H
g1(z)g2(z)y

ℓ−2dxdy (z = x+ iy).

If d is a positive integer, we define operators Vd and Ud by

Vdg(z) := d g(dz), Udg(z) :=
1

d

d−1∑

j=0

g

(
z + j

d

)
.

Then the classical Hecke operators Tp, for primes p ∤ N , are expressed in terms
of Vp and Up: if g ∈ Mℓ(N,χ), then Tpg = Upg + χ(p)pℓ−2Vpg. A cusp form
g ∈ Sℓ(N,χ) is said to be a Hecke eigenform if g is an eigenvector for all the
Hecke operators Tp, for p ∤ N , and Up, for p | N .
If g ∈Mℓ(N,χ), recall that one disposes of a q-expansion (at the infinity cusp)

g(q) =
∑

n≥0

a(g, n)qn.

If g is a cusp form, then a(g, 0) = 0, and we say g is normalized if a(g, 1) = 1.
If g is a normalized, new cuspidal Hecke eigenform, then Tpg = a(g, p)g for
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all primes p. And furthermore, g is also an eigenvector for the Atkin–Lehner
involutions Wp at each prime p | N (cf. [AL70] for details, especially Theorem
3).
If λ is a Dirichlet character modulo M and g ∈Mℓ(N,χ), then we write g ⊗ λ
for the unique modular form in Mℓ(NM

2, χλ2) with q expansion
∑

n≥0

λ(n)a(g, n)qn.

For a careful study of the minimal level of g ⊗ λ, at least for new forms, we
refer the reader to [AL78].
When χ = 1 is the trivial character, we will write Sℓ(N) := Sℓ(N,1). If
f ∈ Sℓ(N) has q-expansion

∑
n>0 anq

n, then we write

L(f, s) =
∑

n>0

ann
−s

for the L-series associated with f . This Dirichlet series is well-known to con-
verge for Re(s) > 1+ ℓ/2, and further it extends analytically to a holomorphic
function on C. The completed L-series Λ(f, s) := ΓC(s)L(f, s) satisfies a func-
tional equation of the form

Λ(f, s) = ε(f)N ℓ/2−sΛ(f, ℓ− s), (4)

where ε(f) ∈ {±1}. If f is a new eigenform, then L(f, s) can be expressed as
an Euler product, namely

L(f, s) =
∏

p

(1− app
−s + epp

ℓ−1p−2s)−1,

where ep = 0 for p | N , and ep = 1 otherwise.

2.2 Half-integral weight modular forms

We review briefly some aspects of the theory of half-integral weight modular
forms, initiated by Shimura [Shi73] and further studied by Kohnen [Koh80,
Koh82, Koh85] and many others (see, e.g. [KT04, BM07]).
For γ =

(
a b
c d

)
∈ Γ0(4) ⊂ SL2(Z) and z ∈ C, define

j̃(γ, z) =
( c
d

)
ǫ(d)(cz + d)1/2,

where
( ·
·
)
is the Kronecker symbol as defined in [Shi73, p.442], and ǫ(d) equals 1

if d ≡ 1 (mod 4) and −
√
−1 if d ≡ 3 (mod 4). Observe that j̃(γ, z)4 = j(γ, z)2.

Let k ≥ 1 be an integer, N be an odd positive integer, and χ be an even
Dirichlet character modulo N . Consider the space Sk+1/2(4N,χ) of holomor-
phic functions h : H → C satisfying

h(γz) = j̃(γ, z)2k+1χ(d)h(z) for all γ =

(
a b
c d

)
∈ Γ0(4N)
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and vanishing at the cusps of Γ0(4N). The Petersson product of two cusp
forms h1 and h2 in Sk+1/2(4N,χ) is defined, similarly as in the case of integral
weight, as

〈h1, h2〉 :=
1

[SL2(Z) : Γ0(4N)]

∫

Γ0(4N)\H
h1(z)h2(z)y

k−3/2dxdy (z = x+ iy).

It is well-known that every cusp form h ∈ Sk+1/2(4N,χ) admits a Fourier
expansion of the form

h(z) =
∑

n≥1

c(n)qn.

One defines Kohnen’s plus subspace S+
k+1/2(4N,χ) ⊂ Sk+1/2(4N,χ) as the sub-

space of those cusp forms whose Fourier expansion is of the form

h(z) =
∑

n≥1,

(−1)kn≡0,1 (4)

c(n)qn.

By virtue of [Koh82, Proposition 1], the space S+
k+1/2(4N,χ) can be character-

ized as the eigenspace of a certain hermitean operator satisfying a quadratic
equation.
Finally, we recall also that for each prime p ∤ 2N there is a Hecke operator Tp2
acting on the space Sk+1/2(4N,χ) (see [Koh82, Eq. (11)], [KT04, Eq. (1-6)]);
on Fourier expansions, it is given by sending

∑
n≥1 c(n)q

n to

∑

n≥1

(
c(p2n) +

(
(−1)kn

p

)
χ(p)pk−1c(n) + χ(p)2p2k−1c(n/p2)

)
qn,

where we read c(n/p2) = 0 if p2 ∤ n.
Shimura’s correspondence establishes lifting maps ζDk,N,χ from S+

k+1/2(4N,χ)

to the space S2k(N,χ
2) of cusp forms of weight 2k, level N and nebentype

character χ2, which depend on the choice of a (fundamental) discriminant D.
When the character χ is trivial and N is square-free, there is a well-behaved
theory of new forms of half-integral weight, and a linear combination of the
lifting maps ζDk,N provides an isomorphism

S+,new
k+1/2 (4N)

≃−→ Snew2k (N)

commuting with the action of Hecke operators. In particular, for each nor-
malized newform f ∈ Snew2k (N) there is a unique half-integral weight cusp form
h ∈ S+,new

k+1/2 (4N), up to constant multiples, such that h|Tp2 = a(p)h, where a(p)

is the p-th Fourier coefficient of f . Moreover, If h ∈ S+,new
k+1/2 (4N) corresponds

to f ∈ Snew2k (N) under this isomorphism, then the |D|-th Fourier coefficient
c(|D|) of h is related to the special value L(f,D, k) of the complex L-series
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associated to f twisted by the quadratic character χD, by Kohnen’s formula
(cf. [Koh85, Corollary 1]):

|c(|D|)|2
〈h, h〉 = 2ν(N) (k − 1)!

πk
|D|k−1/2L(f,D, k)

〈f, f〉 , (5)

where ν(N) is the number of prime divisors of N . However, this formula is
valid only for discriminants D such that (−1)kD > 0, and

(
D
ℓ

)
= wℓ for all

prime divisors ℓ of N . Here, wℓ denotes the eigenvalue of the ℓ-th Atkin–Lehner
involution acting on f .
In general, the lifting maps ζDk,N,χ : S+

k+1/2(4N,χ) → S2k(N,χ
2) are given in

terms of Fourier expansions by the recipe (see [KT04, Section 3], for instance)

∑

n≥1,

(−1)kn≡0,1 (4)

c(n)qn 7−→
∑

n≥1


∑

d|n

(
D

d

)
χ(d)dk−1c(n2|D|/d2)


 qn. (6)

Suppose from now on that f ∈ Snew2k (N) is as in the introduction; in particular,
k,N ≥ 1 are odd, andN is square-free. Let also χ be an even Dirichlet character
modulo N , of conductorM | N , and write χ =

∏
p|M χ(p) through the canonical

isomorphism (Z/MZ)× ≃∏p(Z/pZ)
×, where each χ(p) is a Dirichlet character

modulo p. For each prime p | N , let wp ∈ {±1} be the eigenvalue of the p-
th Atkin–Lehner involution acting on f , and define D(N,M) to be the set of
fundamental discriminants
{
D < 0 fund. discr. :

(
D

p

)
= wp if p | N

M
,

(
D

p

)
= −wp if p |M

}
. (7)

Besides, consider the twisted cusp form f ⊗ χ, which by [AL78, Theorem 3.1]
belongs to Snew2k (NM,χ2), and define a subspace of S+

k+1/2(4NM,χ) by setting

S+,new
k+1/2 (4NM,χ; f ⊗ χ) := {h ∈ S+

k+1/2(4NM,χ) : h|Tp2 = aχ(p)h for p ∤ 2N},

where aχ(p) denotes the p-th Fourier coefficient of f⊗χ. The lifting maps ζDk,N,χ
map S+,new

k+1/2 (4NM,χ; f ⊗ χ) to the one-dimensional subspace of S2k(NM,χ2)

spanned by the new form f ⊗ χ. The theorem below follows from [BM07,
Theorem 10.1] (cf. loc. cit. for a slightly more general statement).

Theorem 2.1 (Baruch–Mao). Suppose that χ(p)(−1) = −1 for all p |M . Then
the space

S+,new
k+1/2 (4NM,χ; f ⊗ χ) ⊂ S+,new

k+1/2 (4NM,χ)

is one-dimensional. Moreover, if h ∈ S+,new
k+1/2 (4NM,χ; f ⊗ χ) is a non-zero

element, with Fourier expansion h =
∑
c(n)qn, and D ∈ D(N,M), then

|c(|D|)|2
〈h, h〉 = 2ν(N) (k − 1)!

πk
|D|k−1/2


∏

p|M

p

p+ 1


 L(f,D, k)

〈f, f〉 . (8)
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The identity in (8) is a generalization of Kohnen’s formula (5), relating the
special values L(f,D, k) to the |D|-th Fourier coefficients of certain cusp forms
of half-integral weight, for discriminants D to which (5) does not apply. At the
end of Section 5.2 we will explain the meaning of the local sign assumptions on
D in terms of Waldspurger’s theta correspondence between automorphic forms
of PGL2 and S̃L2.

Remark 2.2. In terms of the completed L-series Λ(f,D, s) = ΓC(s)L(f,D, s),
the identity in (8) can be rewritten as

Λ(f,D, k) = 21−k−ν(N)|D|1/2−k|c(|D|)|2

∏

p|M

p+ 1

p


 〈f, f〉

〈h, h〉

Continue to consider a new form f ∈ Snew2k (N) as above, and let χ be an even
Dirichlet character of conductor M | N satisfying the hypothesis of Theorem
2.1. In particular, notice that M must be the (square-free) product of an even
number of prime divisors of N . Let

f =
∑

n≥1

a(n)qn, f ⊗ χ =
∑

n≥1

aχ(n)q
n

be the Fourier expansions of f and f⊗χ, respectively, so that aχ(n) = χ(n)a(n).
We further assume that f is normalized, i.e. a(1) = 1, hence f⊗χ is normalized
as well. By virtue of the above theorem, we can then choose a non-zero cusp
form

h ∈ S+,new
k+1/2 (4NM,χ; f ⊗ χ).

Now fix a fundamental discriminant D ∈ D(N,M) such that L(f,D, k) 6= 0.
By (8), c(|D|) is non-zero, and this implies that ζDk,N,χ(h) 6= 0. Indeed, (6)

shows that the first Fourier coefficient of ζDk,N,χ(h) equals c(|D|). It follows

that ζDk,N,χ(h) = c(|D|)f ⊗ χ. For later purposes, we determine in the next
lemma the Fourier coefficients of h in terms of the Fourier coefficients of f ⊗χ
(hence, in terms of the Fourier coefficients of f as well).

Lemma 2.3. With the above notation and assumptions, for every integer n ≥ 1
one has

c(n2|D|) = c(|D|)
∑

d|n,
d>0

µ(d)

(
D

d

)
χ(d)dk−1aχ(n/d). (9)

Proof. As observed above, ζDk,N,χ maps h to c(|D|)f ⊗ χ. From (6), we thus
have for all n ≥ 1

c(|D|)aχ(n) =
∑

d|n,
d>0

(
D

d

)
χ(d)dk−1c(n2|D|/d2).
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Suppose first that n ≥ 1 satisfies (n,ND) = 1. Then we can rewrite this last
identity as

c(|D|)
(
D

n

)
χ(n)−1n1−kaχ(n) =

∑

0<t|n

(
D

t

)
χ(t)−1t1−kc(t2|D|).

By applying the Möbius inversion formula, one gets

c(n2|D|) = c(|D|)
∑

0<d|n
µ(d)

(
D

d

)
χ(d)dk−1aχ(n/d).

Now suppose that n ≥ 1, and write n = n0nNnD where n0, nN , nD ≥ 1 are inte-
gers such that (n0, ND) = 1 and every prime divisor of nN (resp. nD) dividesN
(resp. D). From (6), we see that c(|D|)aχ(nN ) = c(n2

N |D|) and c(|D|)aχ(nD) =
c(n2

D|D|). Also, for integers r, s ≥ 1 with (r, s) = 1 one has c(r2|D|)c(s2|D|) =
c(|D|)c(r2s2|D|). In particular, c(n2

0|D|)c(n2
N |D|)c(n2

D|D|) = c(|D|)2c(n2|D|),
which together with the above relations imply that

c(n2|D|) = c(n2
N |D|)

c(|D|)
c(n2

D|D|)
c(|D|) c(n2

0|D|) = aχ(nN )aχ(nD)c(n
2
0|D|).

Now one can apply the previous argument for c(n2
0|D|), since (n0, ND) = 1, to

eventually conclude that

c(n2|D|) = c(|D|)
∑

0<d|n
µ(d)

(
D

d

)
χ(d)dk−1aχ(n/d).

2.3 Siegel modular forms of degree 2 and Saito–Kurokawa lifts

Let
H2 = {Z ∈ M2(C) : Z = tZ, Im(Z) positive definite}

denote Siegel’s upper half-space of degree 2,

GSp+2 (R) := {g ∈ M4(R) : gJ2tg = ν(g)J2, ν(g) > 0}, J2 =

(
0 Id2

−Id2 0

)
,

be the group of symplectic similitudes with positive multiplicators, and let
Sp2(R) = {g ∈ GSp+

2 (R) : ν(g) = 1} ⊆ GL4(R) be the symplectic group. The
group GSp+2 (R) acts on H2 by

gZ = (AZ +B)(CZ +D)−1 if g =

(
A B
C D

)
. (10)

Put Γ2 := Sp2(Z) = Sp2(R) ∩ M4(Z). If N ≥ 1 is an integer, one defines a
Hecke-type congruence subgroup of level N ≥ 1 of Γ2 by

Γ
(2)
0 (N) =

{
g =

(
A B
C D

)
∈ Γ2 : C ≡ 0 mod N

}
. (11)
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Given a Dirichlet character χ : (Z/NZ)× → C×, by a slight abuse of notation

we will continue to write χ : Γ
(2)
0 → C× for the character on Γ

(2)
0 (N) defined

by the rule (
A B
C D

)
7−→ χ(det(D)). (12)

Fix now an integer k ≥ 1, and for a function F : H2 → C and an element
g ∈ GSp+

2 (R), define

(F |k+1[g])(Z) = J(g, Z)−k−1F (gZ),

where J(g, Z) = det(CZ +D) if g =

(
A B
C D

)
. The space Mk+1(Γ

(2)
0 (N), χ)

of Siegel modular forms of weight k + 1, level N , and character χ is the space
of holomorphic functions F : H2 → C such that

F |k+1[γ] = χ(γ)F for all γ ∈ Γ
(2)
0 (N).

Notice that there are no additional conditions of holomorphicity at the cusps

(‘Koecher’s principle’). We will write Sk+1(Γ
(2)
0 (N), χ) ⊆ Mk+1(Γ

(2)
0 (N), χ)

for the subspace of Siegel cusp forms. Given F ∈ Sk+1(Γ
(2)
0 (N), χ), one has a

Fourier expansion of the form

F (Z) =
∑

B

AF (B)e2π
√
−1Tr(BZ),

where B runs over the set of positive definite, half-integral 2-by-2 symmetric
matrices. If

B =

(
n r/2
r/2 m

)
, Z =

(
τ z
z τ ′

)
,

with n, r,m ∈ Z such that 4nm− r2 > 0 and τ, τ ′ ∈ H, z ∈ C with Im(z)2 <

Im(τ)Im(τ ′), then notice that e2π
√
−1Tr(BZ) = e2π

√
−1(nτ+rz+mτ ′), so that we

can rewrite the Fourier expansion as

F (τ, z, τ ′) =
∑

n,r,m∈Z,
4nm−r2>0

AF (n, r,m)e2π
√
−1(nτ+rz+mτ ′).

Given a Siegel modular form F for Γ
(2)
0 (N), one can restrict it to H × H,

diagonally embedded into H2. This way, we obtain a modular form on H×H
for Γ0(N)× Γ0(N), usually referred to as the “pullback” of F to the diagonal.
Explicitly, this pullback or restriction is obtained by setting z = 0, hence

F|H×H(τ, τ ′) =
∑

n,m∈Z




∑

r∈Z,
r2<4nm

AF (n, r,m)


 e2π

√
−1(nτ+mτ ′).
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Later we will also need a more technical operation on Siegel forms, which we

define now. Let F ∈ Sk+1(Γ
(2)
0 (N), χ) be a Siegel modular form of degree 2 as

before, and let p be a prime dividing N . For each j ∈ Z/pZ, put

uj :=




1 0 0 0
0 1 0 p−1j
0 0 1 0
0 0 0 1


 ∈ GSp+2 (Q),

and define a function RpF on H2 by setting (notice that J(uj, Z) = 1 for all
j)

RpF (Z) :=
1

p

∑

j∈Z/pZ

F (ujZ) =
1

p

∑

j∈Z/pZ

F |k+1[uj ](Z). (13)

For any integer m 6= 0, we write Γparam(m) ⊆ Sp2(Q) for the paramodular
subgroup defined by

Γparam(m) := Sp2(Q) ∩




Z mZ Z Z
Z Z Z m−1Z
Z mZ Z Z
mZ mZ mZ Z


 .

Lemma 2.4. Let F ∈ Sk+1(Γ
(2)
0 (N), χ) be as before, and p be a prime with

p | N . Then

RpF ∈ Sk+1(Γ
(2)
0 (Np) ∩ Γparam(p), χ).

If p2 | N , then RpF ∈ Sk+1(Γ
(2)
0 (N) ∩ Γparam(p), χ).

Proof. Let γ ∈ Γ
(2)
0 (Np) ∩ Γparam(p) be written as a block matrix

γ =

(
A B
C D

)
,

where A = ( a1 a2a3 a4 ), B =
(
b1 b2
b3 b4

)
, C = ( c1 c2c3 c4 ), D =

(
d1 d2
d3 d4

)
. Notice that all

entries are integral, and we have c1, c2, c3, c4 ∈ NpZ and a2, d3 ∈ pZ. Moreover,
observe that a4, d4 are invertible modulo p.
Similarly, write uj as a block matrix,

uj =

(
Id2 Ej
0 Id2

)
.

Choosing i ∈ Z/pZ such that ia4 ≡ jd4 (mod p), a bit of algebra shows that

ujγ = γ′ui, where γ′ =
(
A′ B′

C D′

)
∈ Γ

(2)
0 (N) is such that A′ ≡ A and D′ ≡ D

modulo N . In particular, χ(γ′) = χ(γ) and it follows from the very definition
that

RpF|[γ] =
∑

F|[ujγ] =
∑

F|[γ′ui] = χ(γ′)
∑

F|[ui] = χ(γ)RpF.

The second part of the statement follows by checking carefully the omitted
algebra.
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Remark 2.5. We might observe that uj ∈ GSp2(Q) is the image of

((
1 0
0 1

)
,

(
1 p−1j
0 1

))
∈ SL2(Q)× SL2(Q),

and hence the pullback (RpF )|H×H coincides with (id⊗ VpUp)F|H×H.

Finally, we recall the classical construction of Saito–Kurokawa lifts that we
need in this paper. Assume as in the introduction that k ≥ 1 is odd, N ≥ 1 is
an odd square-free integer, and f ∈ Snew2k (N) is a normalized new cusp form of
weight 2k and level N . Let χ be an even Dirichlet character of conductor M ,
for some M | N , satisfying the hypothesis of Theorem 2.1, and let

h ∈ S+,new
k+1/2 (4NM,χ; f ⊗ χ) ⊂ S+,new

k+1/2 (4NM,χ)

be a Shimura lift of f ⊗ χ ∈ Snew2k (NM,χ2) as in Theorem 2.1. There is an
Eichler–Zagier isomorphism

Z : S+,new
k+1/2 (4NM,χ)

≃−→ Jcusp,newk+1,1 (Γ0(NM)J , χ)

between S+,new
k+1/2 (4NM,χ) and the space Jcusp,newk+1,1 (Γ0(NM)J , χ) of Jacobi new

cusp forms of weight k + 1, index 1, level Γ0(NM)J and character χ (see
[EZ85, Ibu12, MR00]), which together with Maaß’ lift

M : Jcusp,newk+1,1 (Γ0(NM)J , χ) →֒ Sk+1(Γ
(2)
0 (NM), χ)

gives an injective homomorphism from S+,new
k+1/2 (4NM,χ) into

Sk+1(Γ
(2)
0 (NM), χ). We will refer to the Siegel modular form Fχ := M(Z(h)) ∈

Sk+1(Γ
(2)
0 (NM), χ) associated with h under the composition of Z and M, as

a Saito–Kurokawa lift of f ⊗ χ. If we continue to denote by c(n) the Fourier
coefficients of h, then the Fourier expansion of Fχ reads

Fχ(Z) =
∑

B=

(
n r/2
r/2 m

)




∑

a|gcd(n,r,m),
gcd(a,N)=1

akχ(a)c

(
4nm− r2

a2

)

 e2π

√
−1Tr(BZ).

(14)

If p is a prime dividing M , notice that p2 | NM , hence our discussion above

implies that RpFχ ∈ Sk+1(Γ
(2)
0 (NM)∩Γparam(p), χ). By defining the operator

RM :=
∏
p|M Rp as the compositum of the operators Rp for primes p | M , we

thus have

RMFχ ∈ Sk+1(Γ
(2)
0 (NM) ∩ Γparam(M), χ).
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3 Automorphic forms and representations

Similarly as in the previous one, the aim of this section is to set up some
notation and recall some results concerning the theory of automorphic forms
for GL2, for the metaplectic cover S̃L2 of SL2, and for the symplectic similitude
group GSp2 of degree 4. Most of this section can therefore be seen as an
automorphic rephrasing of the previous one. We will abbreviate A = AQ for
the ring of adeles of Q, and Af will denote the subring of finite adeles. Then Q
sits diagonally in A, and for every rational place v, the local field Qv embeds
as a subfield of A in the v-th component. If χ is a Dirichlet character modulo
N ≥ 1, we will write χ for the adelization of χ. Namely, χ : A×/Q× → C×

is the unique Hecke character such that χ(̟q) = χ(q) for every prime q ∤ N
and every uniformizer ̟q ∈ Q×

q →֒ A× at q. For every finite prime p, we shall
denote by χ

p
the restriction of χ to Z×

p . At primes p | N , χ
p
coincides with the

inverse of the character Z×
p → C× inflated from the p-th component χ(p) of χ.

3.1 Automorphic forms for GL2

Let us briefly recall how classical modular forms of integral weight give rise to
automorphic forms and representations of GL2. In the following, we identify
Q× and A× with the centers of GL2(Q) and GL2(A), respectively.
Let N ≥ 1 be an integer, and consider the compact open subgroup

K0(N) =

{(
a b
c d

)
∈ GL2(Ẑ) : c ≡ 0 (mod N)

}

of GL2(Af ). By strong approximation, one has GL2(A) =
GL2(Q)GL+

2 (R)K0(N), where GL+
2 (R) stands for the subgroup of 2-by-2

real matrices with positive determinant. If χ is a Dirichlet character modulo
N , then χ induces a character of K0(N), which by a slight abuse of notation
we still denote χ, by

χ

((
a b
c d

))
= χ(d).

Observe that this agrees with the Hecke character χ when restricted to A× ∩
K0(N).
Let g ∈ Sℓ(N,χ) be a cusp form of weight ℓ, level N and nebentype character
χ. Then it is well-known that g induces an automorphic form g for GL2(A),
by setting

g(γγ∞k0) = g(γ∞(i))(ci + d)−ℓ(det γ∞)ℓ/2χ(k0) (15)

whenever γ ∈ GL2(Q), γ∞ ∈ GL+
2 (R) and k0 ∈ K0(N). This gives indeed a

well-defined function on GL2(A) because GL2(Q) ∩ GL+
2 (R)K0(N) = Γ0(N),

GL2(A) = GL2(Q)GL+
2 (R)K0(N), and g satisfies

g

((
a b
c d

)
z

)
= χ(d)(cz + d)ℓg(z) for

(
a b
c d

)
∈ Γ0(N).
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Further, it is clear that g satisfies g(γz) = χ(z)g(γ) for all z ∈ A×.
The function g just defined belongs in fact to the space of automorphic forms on
GL2(A) with central character χ. If π = πg denotes the linear span of the right
translates of g under GL2(A), then π is an admissible smooth representation
of GL2(A). Since g is an eigenform, it is well-known that π is irreducible and
decomposes as a restricted tensor product ⊗vπv of admissible representations
of GL2(Qv), and g = ⊗vgv with gv ∈ πv for each place v of Q.
When the nebentype character χ is trivial, g gives rise to an automorphic
representation π of GL2(A) with trivial central character, so that we can regard
π as an automorphic representation of PGL2(A). Again, π decomposes as a
restricted tensor product π = ⊗vπv of admissible representations of PGL2(Qv).
We refer the reader to [Sch02] for a good account on local types, newforms, and
a careful study of local ε-factors at non-archimedean places. If f ∈ Snewℓ (N)
is a newform of weight ℓ ≥ 1, level N , and trivial nebentype character, then
the completed complex L-series Λ(f, s) associated with f coincides with the
L-series L(π, s) associated with the automorphic representation of PGL2(A)
corresponding to f . The root number ε(f) appearing in (4) can be therefore
written as the product of local ε-factors ε(πv, 1/2) at places v | N∞. At the
finite places p | N , ε(πp, 1/2) coincides with the eigenvalue wp ∈ {±1} of the
p-th Atkin–Lehner involution acting on f (cf. [Sch02, Theorem 3.2.2]).

3.2 Automorphic forms for S̃L2

We start by setting down some notation concerning metaplectic groups. If v
is a place of Q, we write S̃L2(Qv) for the metaplectic cover (of degree 2) of

SL2(Qv), and similarly, we denote by S̃L2(A) the metaplectic cover (of degree

2) of SL2(A). We will identify S̃L2(Qv), resp. S̃L2(A), with SL2(Qv) × {±1},
resp. SL2(A)× {±1}, where the product is given by the rule

[g1, ǫ1][g2, ǫ2] = [g1g2, ǫ(g1, g2)ǫ1ǫ2].

At each place v, ǫv(g1, g2) is defined as follows. First one defines x : SL2(Qp) →
Qp by

g =
(
a b
c d

)
7−→ x(g) =

{
c if c 6= 0,

d if c = 0.

Then, ǫv(g1, g2) = (x(g1)x(g1g2), x(g2)x(g1g2))v, where ( , )v denotes the
Hilbert symbol. When v is a finite place, set also

sv
((

a b
c d

))
=

{
(c, d)v if cd 6= 0, ordv(c) odd,

1 otherwise,

for g =
(
a b
c d

)
∈ SL2(Qp), and s∞(g) = 1 for all g ∈ SL2(R). Then, for each

place v, SL2(Qv) embeds as a subgroup of S̃L2(Qv) through g 7→ [g, sv(g)]. If

v is an odd finite prime, then this homomorphism gives a splitting of S̃L2(Qp)
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over the maximal compact subgroup SL2(Zp), while for v = 2 this is only a
splitting over Γ1(4;Z2) ⊂ SL2(Z2). If p is an odd prime (resp. p = 2), and G

is a subgroup of SL2(Zp) (resp. Γ1(4;Z2)), then we will write G̃ ⊆ S̃L2(Zp) for
the image of G under the previous splitting. We will also regard SL2(Q) as a

subgroup of S̃L2(A) through the homomorphism g 7→ [g,
∏
v sv(g)].

To simplify notation, if v is a place of Q and x ∈ Qv, α ∈ Q×
v , we will write

u(x), n(x), t(α) for the elements of SL2(Qv) given by

u(x) =

(
1 x
0 1

)
, n(x) =

(
1 0
x 1

)
, t(α) =

(
α 0
0 α−1

)
.

We will slightly abuse of notation and still write u(x), n(x), t(α) for the ele-

ments [u(x), 1], [n(x), 1], [t(α), 1] in S̃L2(Qv) (notice that these coincide with
the images of u(x), n(x), t(α), respectively, under the splitting g 7→ [g, sv(g)],
as sv(g) = 1 in the three cases). We will also write s =

(
0 1
−1 0

)
∈ SL2(Qv) (or

in S̃L2(Qv)). Then observe that

u(x) = t(−1) · s · n(−x) · s for all x ∈ Qv.

Let k ≥ 1 be an integer, N be a positive integer, and χ be an even Dirichlet
character modulo 4N as before. Write χ0 = (−1

· )k · χ, and let χ
0
denote the

associated Hecke character.
Let Ã0 denote the space of cusp forms on SL2(Q)\S̃L2(A), and ρ̃ denote the

right regular representation of the Hecke algebra of S̃L2(A) on Ã0. Following
Waldspurger [Wal81], we define Ãk+1/2(4N,χ0

) to be the subspace of Ã0 con-
sisting of elements ϕ satisfying the following properties, where ρ̃v denotes the
restriction of ρ̃ to S̃L2(Qv).

i) For each prime q ∤ 2N , ρ̃q(γ)ϕ = ϕ for all γ ∈ SL2(Zq).

ii) For each prime q | N , q 6= 2, ρ̃q(γ)ϕ = χ
0,q

(d)ϕ for all γ =
(
a b
c d

)
∈

Γ0(q
ordq(N)) ⊂ SL2(Zq).

iii) For all γ =
(
a b
c d

)
∈ Γ0(2

ord2(4N)) ⊂ SL2(Z2), ρ̃2(γ)ϕ = ǫ̃2(γ)χ0,2
(d)ϕ.

iv) For all θ ∈ R, ρ̃∞(κ̃(θ))ϕ = ei(k+1/2)θϕ.

v) ρ̃∞(D̃)ϕ = 1
2 (k + 1/2)(k − 3/2)ϕ.

Here, D̃ denotes the Casimir element for S̃L2(R), and the element κ̃(θ), for

θ ∈ R, and the character ǫ̃2 of Γ̃0(4) ⊆ S̃L2(Q2) are defined as in [Wal81, p.
382].
Let h ∈ Sk+1/2(4N,χ) be a cusp form of half-integral weight as in Section 2.2.

Given z = u + iv ∈ H, let b(z) ∈ S̃L2(A) be the element which is 1 at all the
finite places and equal to

(
v1/2 uv−1/2

0 v−1/2

)
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at the real place. Then there exists a unique continuous function h on
SL2(Q)\S̃L2(A) such that

h(b(z)κ̃(θ)) = vk/2+1/4ei(k+1/2)θh(z)

for all z ∈ H, θ ∈ R. The assignment h 7→ h gives an adelization map

Sk+1/2(4N,χ) −→ Ãk+1/2(4N,χ0
), (16)

which is an isomorphism (see [Wal81, Proposition 3, p. 386]). Under this
isomorphism, the Fourier coefficients of the classical modular form h are related
to the Fourier coefficients of h as follows. Let ψ be the standard additive
character of Q\A. That is, ψ∞(x) = e2πix and, for each finite prime q, ψq is
the unique character of Qq with kernel Zq and such that ψq(x) = e−2πix for

x ∈ Z[1/q]. If ϕ ∈ Ã0 and ξ ∈ Q, then the ξ-th Fourier coefficient of ϕ is

defined to be the function on S̃L2(A) given by

Wϕ,ξ(γ) =

∫

Q\A
ϕ(u(x)γ)ψ(ξx)dx.

If h ∈ Sk+1/2(4N,χ) has Fourier expansion

h(z) =
∑

ξ∈Z,ξ>0

c(ξ)qξ,

and h 7→ h under the above isomorphism, then one has (cf. [Wal81, Lemme 3])

c(ξ) = e2πξWh,ξ(1). (17)

For the rest of this subsection, assume that k ≥ 1 is odd, N ≥ 1 is odd and
square-free, and χ is an even Dirichlet character satisfying the hypothesis of
Theorem 2.1. Let f ∈ Snew2k (N) and h ∈ S+,new

k+1/2 (4NM,χ; f ⊗ χ) be chosen as

in the discussion after Theorem 2.1. By using (17), the relation (9) proved in
Lemma 2.3 can be rephrased in automorphic terms as we will now explain.
Given any ξ ∈ Q+, set ξ = dξf

2
ξ, where dξ ∈ N is such that −dξ equals the

discriminant of Q(
√−ξ)/Q. By (9), we have

c(ξ) = c(dξ)
∑

d|fξ,
d>0

µ(d)χ−ξ(d)χ(d)d
k−1aχ(fξ/d). (18)

For each prime p ∤ N , let {αp, α−1
p } be the Satake parameter of f at p, so that

(1 − pk−1/2αpX)(1− pk−1/2α−1
p X) = 1− a(p)X + p2k−1X2.

In particular, notice that a(p) = pk−1/2(αp + α−1
p ). More generally, for each

integer e ≥ 0 one has

a(pe) = pe(k−1/2)
e∑

i=0

αe−2i
p .
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In contrast, if p is an (odd) prime dividing N , being N square-free we have
a(p) = −pk−1wp, where wp = wp(f) ∈ {±1} is the eigenvalue of the Atkin–
Lehner involution at p acting on f . Also, one has a(pe) = a(p)e for all integers
e ≥ 0 in this case. For each prime p | N , define αp := p1/2−ka(p) = −p−1/2wp.
In a similar spirit as for primes not dividing N , now a(pe) = pe(k−1/2)αep for
e ≥ 0.

Given a rational prime p, put ep := ordp(fξ) and define a function Ψp(ξ;X) ∈
C[X,X−1] by

Ψp(ξ;X) =





Xep+1−X−ep−1

X−X−1 − p−1/2χ−ξ(p)
Xep−X−ep

X−X−1 , if p ∤ N, ep ≥ 0,

χ−ξ(p)(χ−ξ(p) + wp)X
ep , if p | N/M, ep ≥ 0,

χ−ξ(p)(χ−ξ(p)− wp)X
ep , if p |M, ep ≥ 0,

0, ep < 0.

Observe first of all that, fixed ξ, there are only finitely many primes p with
ordp(ξ) 6= 0. Since Ψp(ξ;X) = 1 whenever p ∤ N and ep = 0, we see that
Ψp(ξ;X) = 1 for almost all primes. Secondly, at a prime p | N/M (resp. p |M)
we see that Ψp(ξ;X) 6= 0 if and only if χ−ξ(p) = wp (resp. χ−ξ(p) = −wp).
Hence,

∏
pΨp(ξ;X) 6= 0 if and only if

ξ ∈ Z,
(−ξ
p

)
= wp for all p | N

M
, and

(−ξ
p

)
= −wp for all p |M.

Lemma 3.1. If ξ ∈ Z, and ν(N) denotes the number of prime factors of N ,
then

c(ξ) = 2−ν(N)c(dξ)χ(fξ)f
k−1/2
ξ

∏

p

Ψp(ξ;αp). (19)

Proof. First notice that (19) holds if c(ξ) = 0 by our above observation, so we
may assume that c(ξ) 6= 0. Secondly, both sides in (18) are zero if ξ is not
an integer, so we may assume that ξ ∈ Z+. Writing ξ = dξf

2
ξ as before, and

setting fξ = fξ,N fξ,0, with fξ,N , fξ,0 integers such that (fξ,0, N) = 1 and every
prime divisor of fξ,N divides N , equation (18) can be rewritten as

c(ξ) = c(dξ)χ(fξ)a(fξ,N )
∑

d|fξ,
d>0

µ(d)χ−ξ(d)d
k−1a(fξ,0/d).

Using the definition of the functions Ψp(ξ;X), we deduce that

c(ξ) = c(dξ)χ(fξ)a(fξ,N )
∏

p|fξ,0

(a(pep)− pk−1χ−ξ(p)a(p
ep−1)) =

= c(dξ)χ(fξ)a(fξ,N )f
k−1/2
ξ,0

∏

p|fξ,0

Ψp(ξ;αp).
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Since c(ξ) 6= 0, in particular Ψp(ξ;αp) 6= 0 for all p | N . At each prime p | fξ,N ,
we thus have Ψp(ξ;αp) = 2α

ep
p . We therefore deduce that

a(fξ,N ) =
∏

p|fξ,N

a(pep) = f
k−1/2
ξ,N

∏

p|fξ,N

αepp = 2−ν(fξ,N)f
k−1/2
ξ,N

∏

p|fξ,N

Ψp(ξ;αp).

At primes p | N with p ∤ fξ,N (if any), we have Ψp(ξ;αp) = 2, hence we can
rewrite the above identity as

a(fξ,N ) = 2−ν(N)f
k−1/2
ξ,N

∏

p|N
Ψp(ξ;αp).

Since Ψp(ξ;αp) = 1 for all primes p ∤ N , we deduce that (19) holds when
c(ξ) 6= 0.

3.3 Automorphic forms for GSp2

We will now set the basic notation and definitions concerning automorphic
forms for GSp2(A), which will naturally arise in this paper by adelization of
Siegel modular forms as the ones considered in Section 2.3. Write

GSp2 = {g ∈ GL4 : tgJ2g = ν(g)J2 : ν(g) ∈ Gm}, J2 =

(
0 Id2

−Id2 0

)
,

for the general symplectic group of degree 2, and recall that GSp+2 (R) acts on
Siegel’s upper half-space as in (10). Here, ν : GSp2 → Gm is the so-called

similitude (or scale) morphism. If N ≥ 1 is an integer, we set K
(2)
0 (N ; Ẑ) =∏

pK
(2)
0 (N ;Zp) ⊆ GSp2(Ẑ), where for each prime p,

K
(2)
0 (N ;Zp) =

{
g =

(
A B
C D

)
∈ GSp2(Zp) : C ≡ 0 mod N

}

is the local analogue of the congruence subgroup Γ
(2)
0 (N) introduced in (11).

Observe that K
(2)
0 (N ;Zp) = GSp2(Zp) for all primes p ∤ N . Compact open

subgroups of GSp2(A) of the form K
(2)
0 (N) will play a special role in the paper,

although we will also consider certain subgroups of them.
Let F : GSp2(A) → C be an automorphic cusp form, and Π be the automorphic
representation of GSp2(A) associated with F (i.e., the closure of the span of
all the right-translates of F). We suppose that Π is irreducible and unitary.
By Schur’s lemma, F has a central character: there exists a Hecke character
λ : Q×\A× → C× such that F(zg) = λ(z)F(g) for all z ∈ A× = Z(GSp2(A)),
g ∈ GSp2(A). If λ is trivial, then F is trivial on the center of GSp2(A), and
hence one can regard F as an automorphic cusp form on PGSp2(A).
Besides, suppose that we are given an automorphic cusp form F : PGSp2(A) →
C, and let λ : Q×\A× → C× be a Hecke character. Then one can define an
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automorphic cusp form F ⊗ λ : GSp2(A) → C by the rule (F ⊗ λ)(g) :=
F(g)λ(ν(g)). It is readily seen that the central character of F⊗ λ is λ2.
If B ∈ Sym2(Q) is a symmetric 2-by-2 matrix, then the B-th Fourier coefficient
of F is by definition the function on GSp2(A) given by

WF,B(g) =

∫

Sym2(Q)\Sym2(A)

F(n(X)g)ψ(Tr(BX))dX, g ∈ GSp2(A), (20)

where n(X) =
(
12 X
0 12

)
. If F is right invariant by some subgroup K ⊆ GSp2(Ẑ),

then notice that the Fourier coefficients WF,B enjoy also the same invariant
property. It is well-known that the collection of all Fourier coefficients WF,B

determine the automorphic form F.
We will not develop the general theory of automorphic forms and represen-
tations of GSp2(A), but rather we will focus on the automorphic forms for
GSp2(A) that appear by adelization of Siegel modular forms of degree 2 as the
ones considered in Section 2.3. Hence, suppose that k ≥ 1 is an odd integer,
N ≥ 1 is an integer, and χ : (Z/NZ)× → C× is a Dirichlet character. As usual,
let χ : A× → C× be the Hecke character associated with χ as in previous sec-

tions. If F ∈ Sk+1(Γ
(2)
0 (N), χ) is a Siegel modular form of weight k + 1, level

Γ
(2)
0 (N) and character χ, then F defines an automorphic form F for GSp2(A)

by setting

F(g) = det(g∞)(k+1)/2 det(C
√
−1 +D)−k−1F (g∞

√
−1)χ(k),

whenever g = γg∞k with γ ∈ GSp2(Q), k ∈ K
(2)
0 (N), and

g∞ =

(
A B
C D

)
∈ GSp+2 (R).

Here, χ induces a character on K
(2)
0 (N) similarly as in the classical situa-

tion explained in (12). Since GSp2(A) = GSp2(Q)GSp+2 (R)K
(2)
0 (N) by strong

approximation, this gives indeed a well-defined function on GSp2(A). The

fact that F is a Siegel cusp form in Sk+1(Γ
(2)
0 (N), χ) easily implies that F is

GSp2(Q)-invariant on the left, that F(gk) = χ(k)F(g) for all g ∈ GSp2(A)

and k ∈ K
(2)
0 (N), and that the center of GSp2(A) acts through χ ◦ ν,

where ν : GSp2(A) → A× denotes the similitude morphism. That is to say,
F (zg) = χ(ν(z))F(g) for all z ∈ Z(GSp2(A)) = A×, g ∈ GSp2(A), hence the

central character of F is χ2. We write Sk+1(K
(2)
0 (N), χ) for the space of auto-

morphic cusp forms on GSp2(A) arising by adelization of Siegel cusp forms in

Sk+1(Γ
(2)
0 (N), χ).

The level-raising operatorRp introduced classically in (13) can be defined anal-
ogously in the automorphic setting. Indeed, let p be a prime dividing N , and
define

RpF :=

p−1∑

j=0

Π(uj)F,
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where Π is the automorphic representation of GSp2(A) associated with F, act-
ing on F by right translation: Π(h)F : g 7→ F(gh). In line with the classical
definition, we now define Kparam(p;Zp) to be the subgroup




γ ∈ GSp2(Qp) ∩




Zp pZp Zp Zp
Zp Zp Zp p−1Zp
Zp pZp Zp Zp
pZp pZp pZp Zp


 : det(γ) ∈ Z×

p




.

Then we write K(N, p;Zp) := K
(2)
0 (N ;Zp) ∩Kparam(p;Zp), and

K(N, p) = K(N, p;Zp)×
∏

q 6=p
K

(2)
0 (N ;Zq) ⊆ GSp2(Ẑ).

If F ∈ Sk+1(Γ
(2)
0 (N), χ) is as above, recall that RpF belongs to Sk+1(Γ

(2)
0 (N ′)∩

Γparam(p), χ), where N ′ = N if p2 | N , and N ′ = Np otherwise. We

have K(N ′, p) ∩ GSp2(Q) = Γ
(2)
0 (N ′) ∩ Γparam(p), and hence Siegel forms

in Sk+1(Γ
(2)
0 (N ′) ∩ Γparam(p), χ) induce by adelization automorphic cusp

forms on GSp2(A) on which K(N ′, p) acts on the right through the char-
acter χ : K(N ′, p) → C×. We write Sk+1(K(N ′, p), χ) for the space of
automorphic forms on GSp2(A) obtained by adelization of Siegel forms in

Sk+1(Γ
(2)
0 (N ′) ∩ Γparam(p), χ).

Lemma 3.2. Let F ∈ Sk+1(Γ
(2)
0 (N), χ), and F ∈ Sk+1(K

(2)
0 (N), χ) be its

adelization as above. If p is a prime dividing N , then RpF is the adeliza-
tion of RpF . In particular, RpF ∈ Sk+1(K(Np, p), χ). If p2 divides N , then
one actually has RpF ∈ Sk+1(K(N, p), χ).

We now particularize the above discussion to a situation which is of par-
ticular interest in this note. Continue to assume that k ≥ 1 is an odd
integer, and let N ≥ 1 be an odd square-free integer, and χ be an even
Dirichlet character of conductor M | N . Let f ∈ Snew2k (Γ0(N)) be a nor-
malized new cusp form of weight 2k, level N and trivial nebentype, and let

Fχ ∈ Sk+1(Γ
(2)
0 (NM), χ) be the Saito–Kurokawa lift of f ⊗ χ defined in Sec-

tion 2.3. Write Fχ ∈ Sk+1(K
(2)
0 (NM), χ) for the adelization of Fχ, hence

Fχ(g) = det(g∞)(k+1)/2 det(C
√
−1 +D)−k−1Fχ(g∞

√
−1)χ(k), (21)

for all g = γg∞k with γ ∈ GSp2(Q), k ∈ K
(2)
0 (N), and

g∞ =

(
A B
C D

)
∈ GSp+2 (R).

Let B ∈ Sym2(Q) be a symmetric 2-by-2 matrix, and WFχ,B denote the B-th
Fourier coefficient of Fχ as defined above. By strong approximation, together
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with (21), WFχ,B : GSp2(A) → C is determined by the values WFχ,B(g∞) for

g∞ ∈ GSp+2 (R). Every element g∞ ∈ GSp+2 (R) can be written as

g∞ =

(
z12 0
0 z12

)(
12 X
0 12

)(
A 0
0 tA−1

)(
α β
−β α

)
,

where z ∈ R×
+, X ∈ Sym2(R), A ∈ GL+

2 (R), and
(

α β
−β α

)
∈ Sp2(R) with

k = α+
√
−1β ∈ U(2). Since

Fχ

((
z12 0
0 z12

)
g

(
α β
−β α

))
= det(k)k+1Fχ(g)

for z ∈ R×
+ and

(
α β
−β α

)
∈ Sp2(R) as before, we see that WFχ,B is actually

determined by the values WFχ,B(g∞) for elements g∞ ∈ GSp+
2 (R) of the form

g∞ = n(X)m(A, 1) =

(
12 X
0 12

)(
A 0
0 tA−1

)
,

with X ∈ Sym2(R), and A ∈ GL+
2 (R). And for g∞ = n(X)m(A, 1), one checks

from the definitions that WFχ,B(g∞) = 0 unless B is positive definite and
half-integral, in which case one has

WFχ,B(g∞) = Aχ(B) det(Y )(k+1)/2e2π
√
−1Tr(BZ), (22)

where Y = AtA, Z = X +
√
−1Y ∈ H2, and Aχ(B) is the B-th Fourier

coefficient of Fχ (cf. (14)).
Finally, let p be a prime dividing M . In particular, p2 | NM , and the adeliza-

tion of RpFχ ∈ Sk+1(Γ
(2)
0 (NM) ∩ Γparam(p), χ) is precisely (cf. Lemma 3.2)

RpFχ ∈ Sk+1(K(NM, p), χ).

It is not hard to see from the definitions that the Fourier coefficients of RpFχ
are closely related to those of Fχ. More precisely, one can prove the following
lemma, whose proof is left for the reader.

Lemma 3.3. With notation as above, let B =
(

b1 b2/2
b2/2 b3

)
be a positive definite,

half-integral symmetric matrix, and let g∞ = n(X)m(A, 1) ∈ GSp2(R) be as
before. Then WRpFχ,B(g∞) = 0 unless b3 ∈ pZ, and if this holds then

WRpFχ,B(g∞) = WFχ,B(g∞).

If we repeat the above for all primes p dividing M , or in other words, if we
apply the operator RM :=

∏
p|M Rp to Fχ, we obtain an automorphic cusp

form
RMFχ ∈ Sk+1(K(NM,M), χ),

and directly from the previous lemma we deduce the following:
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Corollary 3.4. Let B be a positive definite, half-integral symmetric matrix
as in the previous lemma, and let g∞ = n(X)m(A, 1) ∈ GSp2(R) be as above.
Then WRMFχ,B(g∞) = 0 unless b3 ∈MZ, and if this holds then

WRMFχ,B(g∞) = WFχ,B(g∞).

4 Quadratic spaces and theta lifts

This section is devoted to briefly recall the essentials on quadratic spaces and
theta lifts. We focus especially in the three theta correspondences that will be
considered in this paper, which explain the different lifts of classical modular
forms described in Section 2 in the language of automorphic forms given in
Section 3.

4.1 Quadratic spaces

Let F be a field with char(F ) 6= 2, and V be a quadratic space over F .
That is to say, V is a finite dimensional vector space over F equipped with
a non-degenerate symmetric bilinear form ( , ). We denote by Q the associated
quadratic form on V , given by

Q(x) =
1

2
(x, x), x ∈ V.

Ifm = dim(V ), fixing a basis {v1, . . . vm} of V and identifying V with the space
of column vectors Fm, the bilinear form ( , ) determines a matrix Q ∈ GLm(F )
by setting Q = ((vi, vj))i,j . Then we have

(x, y) = txQy for x, y ∈ V.

We define det(V ) to be the image of det(Q) in F×/F×,2. The orthogonal
similitude group of V is

GO(V ) = {h ∈ GLm : thQh = ν(h)Q, ν(h) ∈ Gm},

where ν : GO(V ) → Gm is the so-called similitude morphism (or scale map).
From the very definition, observe that det(h)2 = ν(h)m for every h ∈ GO(V ).
When m is even, set

GSO(V ) = {h ∈ GO(V ) : det(h) = ν(h)m/2}.

Finally, we let O(V ) = ker(ν) denote the orthogonal group of V , and write
SO(V ) = O(V ) ∩ SLm for the special orthogonal group.

4.2 Explicit realizations in low rank

In this paper, we are particularly interested in orthogonal groups for vector
spaces of dimension 3, 4 and 5. For this reason, we fix here certain explicit
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realizations that will be used later on to describe automorphic representations
for SO(V )(A) and GSO(V )(A). Our choices follow quite closely the ones in
[Ich05, Qiu14].
When dim(V ) = 3, one can show that there is a unique quaternion algebra B
over F and an element a ∈ F× such that (V, q) ≃ (VB , aqB), where VB = {x ∈
B : TrB(x) = 0} is the subspace of elements in B with zero trace (sometimes
called ‘pure quaternions’), and qB(x) = −NmB(x). The group of invertible
elements B× acts on VB by conjugation, b · x = bxb−1, and this action gives
rise to an isomorphism

PB× ≃−→ SO(VB, qB) ≃ SO(V, q).

When B = M2 is the split algebra of 2-by-2 matrices, then notice that PB× =
PGL2, thus the above identifies PGL2 with the special orthogonal group of a
three-dimensional quadratic space.
In dimension 4, consider the vector space V4 := M2(F ) of 2-by-2 matri-
ces, equipped with the quadratic form q(x) = det(x). The associated non-
degenerate bilinear form is (x, y) = Tr(xy∗), where

x∗ =

(
x4 −x2
−x3 x1

)
for x =

(
x1 x2
x3 x4

)
∈ M2(F ).

There is an exact sequence

1 −→ Gm
ι−→ GL2 ×GL2

ρ−→ GSO(V4) −→ 1, (23)

where ι(a) = (a12, a
−112) and ρ(h1, h2)x = h1xh

∗
2 for a ∈ Gm and h1, h2 ∈

GL2. One has ν(ρ(h1, h2)) = det(h1h2) = det(h1) det(h2). In particular, when
F is a number field, automorphic representations of GSO(V4) can be seen as
automorphic representations of GL2 ×GL2 through the homomorphism ρ in the
above short exact sequence. Here we might warn the reader that our choice for
the homomorphism ρ in (23) agrees with the one on [Qiu14] and [GT11], but
differs from the one considered in [Ich05] (or [II08]), which leads to a slightly
different model for GSO(V4).
Finally, in dimension 5 we will describe a realization of SO(3, 2), the special
orthogonal group of a 5-dimensional quadratic space (V, q) of Witt index 2.
Although the isomorphism class of such a quadratic space depends on det(V ),
the group SO(V, q) does not. We describe a model V5 of such a quadratic
space, with determinant 1 (modulo F×,2). Namely, start considering the 4-
dimensional space F 4 of column vectors, on which GSp2 ⊂ GL4 acts on the
left. Let

e1 = t(1, 0, 0, 0), . . . , e4 = t(0, 0, 0, 1)

be the standard basis on F 4, and equip Ṽ := ∧2F 4 with the non-degenerate
symmetric bilinear form ( , ) defined by

x ∧ y = (x, y) · (e1 ∧ e2 ∧ e3 ∧ e4), for all x, y ∈ Ṽ .
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Set x0 := e1 ∧ e3 + e2 ∧ e4, and define the 5-dimensional subspace V5 ⊂ Ṽ to
be the orthogonal complement of the span of x0, i.e.

V5 := {x ∈ Ṽ : (x, x0) = 0}.

Then the homomorphism ρ̃ : GSp2 → SO(Ṽ ) given by ρ̃(h) = ν(h)−1 ∧2 (h)
satisfies ρ̃(h)x0 = x0, and therefore induces an exact sequence

1 −→ Gm
ι−→ GSp2

ρ−→ SO(V5) −→ 1, (24)

where ι(a) = a14 for a ∈ Gm. This short exact sequence induces an identifica-
tion

PGSp2 ≃ SO(V5).

We fix an identification of V5 with the 5-dimensional space F 5 of column vectors
by

5∑

i=1

xivi 7−→ t(x1, x2, x3, x4, x5),

where v1 = e2∧e1, v2 = e1∧e4, v3 = e1∧e3−e2∧e4, v4 = e2∧e3, v5 = e3∧e4.
Upon this identification, we consider the non-degenerate bilinear symmetric
form ( , ) on V defined by (x, y) = txQy for x, y ∈ F 5, where

Q =




−1
Q1

−1


 , Q1 =




0 0 1
0 2 0
1 0 0


 .

We shall distinguish the 3-dimensional subspace V3 ⊂ V5 spanned by v2, v3,
v4, equipped with the bilinear form (x, y) = txQ1y, for x, y ∈ F 3, under the
identification V3 = F 3 induced by restricting the above one for V = F 5. Notice
that V5 = 〈v1〉 ⊕ V3 ⊕ 〈−v5〉, where v1 and −v5 are isotropic vectors with
(v1,−v5) = 1, and V3 is the orthogonal complement of 〈v1,−v5〉 = 〈v1, v5〉.
Also, we distinguish a 4-dimensional subspace of V5. Indeed, the subspace
{x ∈ V : (x, v3) = 0} = 〈v3〉⊥ ⊂ V5 is a quadratic 4-dimensional subspace of
V5, and it can be identified with the space V4 defined above by means of the
linear map

〈v3〉⊥ −→ V4, x1v2 + x2v1 + x3v5 + x4v4 7−→
(
x1 x2
x3 x4

)
.

By restricting the homomorphism ρ from the exact sequence in (23) to

G(SL2 × SL2)
− := {(h1, h2) ∈ GL2 ×GL2 : det(h1) det(h2) = 1},

one gets an exact sequence

1 −→ Gm
ι−→ G(SL2 × SL2)

− ρ−→ SO(V4) −→ 1. (25)
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Now notice that G(SL2 × SL2)
− is isomorphic to

G(SL2 × SL2) := {(h1, h2) ∈ GL2 ×GL2 : det(h1) det(h2)
−1 = 1}

through the morphism (h1, h2) 7→ (h1, det(h2)
−1h2). Composing this isomor-

phism with the natural embedding G(SL2 × SL2) →֒ GSp2 given by

((
a1 b1
c1 d1

)
,

(
a2 b2
c2 d2

))
7−→




a1 0 b1 0
0 a2 0 b2
c1 0 d1 0
0 c2 0 d2


 ,

one gets a commutative diagram

1 // Gm
ι

// G(SL2 × SL2)
−

� _

��

ρ
// SO(V4) //

� _

��

1

1 // Gm
ι

// GSp2
ρ

// SO(V5) // 1

and hence an embedding SO(V4) ⊂ SO(V5). This embedding will be of crucial
interest later on.

4.3 Weil representations

Let now F be a local field with char(F ) 6= 2 (for our purposes, one can think
of F being Qv for a rational place v), and (V,Q) be a quadratic space over F
of dimension m as above. Let S(V ) denote the space of locally constant and
compactly supported complex-valued functions on V . This is usually referred
to as the space of Bruhat–Schwartz functions on V . If F is archimedean, we
rather consider S(V ) to be the Fock model (which is a smaller subspace, see
[YZZ13, Section 2.1.2]).

We fix a non-trivial additive character ψ of F . The Weil representation ωψ,V
of S̃L2(F )×O(V ) on S(V ), which depends on the choice of the character ψ, is
given by the following formulae. If a ∈ F×, b ∈ F , h ∈ O(V ), and φ ∈ S(V ),
then

ωψ,V (h)φ(x) = φ(h−1x),

ωψ,V

((
a 0
0 a−1

)
, ǫ

)
φ(x) = ǫmχψ,V (a)|a|m/2φ(ax)

ωψ,V

((
1 b
0 1

)
, 1

)
φ(x) = ψ(Q(x)b)φ(x),

ωψ,V

((
0 1
−1 0

)
, 1

)
φ(x) = γ(ψ, V )

∫

F

φ(y)ψ((x, y))dy.
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Here, γ(ψ, V ) is the Weil index, which is an 8-th root of unity. When m = 1
and Q(x) = x2, we will simply write ωψ, χψ, and γ(ψ) for ωψ,V , χψ,V , and
γ(ψ, V ), respectively. In this case, one has

χψ(a) = (a,−1)F
γ(ψa)

γ(ψ)
,

where ( , )F denotes the Hilbert symbol. This satisfies χψ(ab) =
(a, b)Fχψ(a)χψ(b), χψ(a

2) = 1, and χψa = χψ · χa, where χa stands for
the quadratic character (a, ·)F .
For a general V , if Q(x) = a1x

2
1 + · · ·+ amx

2
m with respect to some orthogonal

basis, then γ(ψ, V ) =
∏
i γψai , and χψ,V =

∏
i χψai . This does not depend on

the chosen basis.
When m is even, the above simplifies considerably. Indeed, if m is even, it
is clear from the above description that the Weil representation descends to a
representation of SL2(F ) × O(V ) on S(V ). Further, the Weil index γ(ψ, V )
is a 4-th root of unity in this case, and χψ,V becomes the quadratic character
associated with the quadratic space (V,Q). This means that

χψ,V (a) = (a, (−1)m/2 det(V ))F , a ∈ F×.

It will be useful in some settings to extend the Weil representation ωψ,V de-
scribed above. If m is even, one defines

R = G(SL2 ×O(V )) = {(g, h) ∈ GL2 ×GO(V ) : det(g) = ν(h)},

and then ωψ,V extends to a representation of R(F ) on S(V ) by setting

ωψ,V (g, h)φ = ωψ,V

(
g

(
1 0
0 det(g)−1

)
, 1

)
L(h)φ

for (g, h) ∈ R(F ), φ ∈ S(V ), where L(h)φ(x) = |ν(h)|−m/4F φ(h−1x) for x ∈ V .

4.4 Theta functions and theta lifts

Now let F be a number field (for our purposes, we will just consider F = Q),
and consider a quadratic space V over F of dimension m. Fix a non-trivial
additive character ψ of AF /F and let ω = ωψ,V be the Weil representation of

S̃L2(AF )×O(V )(AF ) on S(V (AF )) with respect to ψ. Given (g, h) ∈ S̃L2(AF )×
O(V )(AF ) and φ ∈ S(V (AF )), let

θ(g, h;φ) :=
∑

x∈V (F )

ω(g, h)φ(x).

Then (g, h) 7→ θ(g, h;φ) defines an automorphic form on S̃L2(AF )×O(V )(AF ),
called a theta function. When m is even, this may be regarded as an automor-
phic form on SL2(AF )×O(V )(AF ).
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Let f be a cusp form on SL2(AF ) if m is even, and a genuine cusp form on

S̃L2(AF ) if m is odd. If φ ∈ S(V (AF )), put

θ(h; f, φ) =

∫

SL2(F )\ SL2(AF )

θ(g, h;φ)f(g)dg, h ∈ O(V )(AF ).

Then θ(f, φ) : h 7→ θ(h; f, φ) defines an automorphic form on O(V )(AF ). Ifm is
even and π is an irreducible cuspidal automorphic representation of SL2(AF ), or
if m is odd and π is an irreducible genuine cuspidal automorphic representation
of S̃L2(AF ), put

Θ
S̃L2×O(V )(π) := {θ(f, φ) : f ∈ π, φ ∈ S(V (AF ))}.

Then Θ
S̃L2×O(V )

(π) is an automorphic representation of O(V )(AF ), called the

theta lift of π. Going in the opposite direction, one defines similarly the theta
lift θ(f ′, φ) of a cusp form f ′ on O(V )(AF ) and the theta lift Θ

O(V )×S̃L2
(π′) of

an irreducible cuspidal automorphic representation π′ of O(V )(A).
Suppose that m is even. As we did for the Weil representation, theta lifts
can also be extended as follows. If (g, h) ∈ R(AF ) and φ ∈ S(V (AF )), one
defines θ(g, h;φ) via the same expression as above (using the extended Weil
representation). Then, if f is a cusp form on GL2(AF ) and h ∈ GO(V )(AF ),
choose g′ ∈ GL2(AF ) with det(g′) = ν(h) and set

θ(h; f, φ) =

∫

SL2(F )\ SL2(AF )

θ(gg′, h;φ)f(gg′)dg.

The integral does not depend on the choice of the auxiliary element g′, and
θ(f, φ) : h 7→ θ(h; f, φ) defines now an automorphic form on GO(V )(AF ).
If π is an irreducible cuspidal automorphic representation of GL2(AF ), then
its theta lift ΘGL2 ×GO(V )(π) is formally defined exactly as before (and the
same applies for ΘGO(V )×GL2

(π′) if π′ is an irreducible cuspidal automorphic
representation of GO(V )).

5 Three theta correspondences

5.1 The pair (GL2,GO2,2)

Let V4 be the (split) four-dimensional quadratic space as above, and write from
now on GSO2,2 ⊂ GO2,2 for the groups GSO(V4) ⊂ GO(V4), and likewise O2,2

for O(V4). The theta correspondence for the pair (GL2,GO2,2) is sometimes
referred to as the Jacquet–Langlands–Shimizu correspondence [Shi72] (cf. also
[II08, Section 5], [Ich05, Section 6]). We will be interested in the restriction of
automorphic forms on GO2,2(A) to GSO2,2(A) (particularly in those arising as
theta lifts from automorphic forms on GL2(A)).
By virtue of the exact sequence in (23), automorphic forms on GSO2,2(A) might
be seen through the homomorphism ρ as representations τ1 ⊠ τ2 of GL2 ×GL2
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with τ1 and τ2 having the same central character. The involution x 7→ x∗

induces an element of order two c ∈ GO2,2, and GO2,2 = GSO2,2 ⋊ 〈c〉.
Notice that for the theta correspondence to hold between GL2 and GO2,2 it
does not suffice to consider the Weil representation of SL2(A)×O2,2; one needs
to consider the Weil representation extended to the group R(A) = {(g, h) ∈
GL2(A)×GO2,2(A) : det(g) = ν(h)} as explained above. If τ is an irreducible
cuspidal unitary representation of GL2(A), then one has ΘGL2 ×GSO2,2

(τ) =
τ ⊠ τ , where in line with the above comment ΘGL2 ×GSO2,2

(τ) might be read
as the restriction to GSO2,2(A) of the theta lift ΘGL2 ×GO2,2

(τ). Conversely,
suppose that Υ0 is an irreducible cuspidal unitary GSO2,2(A)-representation.
Then there is a unique extension of Υ0 to an automorphic representation Υ of
GO2,2(A) on which there is a non-zero O(V ′

4)(A)- invariant distribution, where
V ′
4 = {x ∈ V4 : tr(x) = 0}. If ΘGO2,2×GL2

(Υ) 6= 0, then Υ0 is of the form
τ ⊗ τ for some irreducible cuspidal unitary representation τ of GL2(A) and
ΘGO2,2×GL2

(Υ) = τ .
Let us consider a normalized newform g ∈ Sk+1(N,χ) as in the introduction,
hence k ≥ 1 is an odd integer, N ≥ 1 is an odd square-free integer, and χ is
an even Dirichlet character modulo N . Write M for the conductor of χ (in
particular, M is also odd and square-free). Let τ be the irreducible cuspidal
automorphic GL2(A)-representation associated with g, with central character
χ. Then τ ⊠τ can be regarded as a representation of GSO2,2(A) and it extends
to a unique automorphic representation Υ of GO2,2(A) on which there is a
non-zero O(V ′

4)(A)-invariant distribution. Then one has

Θ(τ) = Υ, Θ(Υ) = τ.

Let g ∈ τ be the adelization of g. Then the cusp form g⊗g ∈ τ⊠τ extends to a
cusp form G ∈ Υ on GO2,2(A) such that G(hh′) = G(h) for all h ∈ GO2,2(A)
and h′ ∈ µ2(A), where µ2 is the subgroup of O2,2 generated by the involution
∗ on V4.
Define g♯ = ⊗vg♯v by setting g♯v = gv for all places v 6= 2, and g

♯
2 =

τ2(t(2
−1)2)gv, where

t(2−1)2 =

(
2−1 0
0 2

)
∈ SL2(Q2).

Further, consider the M -th level raising operator VM acting on τ by ϕ 7→
τ(̟M )ϕ, where ̟M ∈ GL2(A) is 1 at every place v ∤ M , and equals ̟p =(
p−1 0
0 1

)
∈ GL2(Qp) at each prime p | M . Then define ğ := VMg♯ = (VMg)♯.

The cusp form ğ thus obtained is one of the factors in our test vector.
Accordingly, we also modify slightly the cusp form G in the following manner.
For each prime p |M , consider the element hp = (1, ̟p) ∈ GL2(Qp)×GL2(Qp),
which we identify with its image ρ(hp) ∈ GSO2,2(Qp) ⊆ GO2,2(Qp). Let Yp

denote the operator acting on Υ given by Υ(hp), and YM :=
∏
p|M Yp. Simi-

larly as above, if hM denotes the element in GO2,2(A) whose entries are trivial
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at every place v away from M , and equals hp at each prime p | M , then we
consider the cusp form YMG = Υ(hM )G ∈ Υ. With this definition, observe
that

YMG|GL2 ×GL2
= g⊗VMg ∈ τ ⊠ τ.

With the above definitions, the main purpose of this paragraph is to prove the
following explicit identity between the cusp forms ğ and YMG. This is made
upon the choice of a Bruhat–Schwartz function φğ ∈ S(V4(A)) to be defined
below.

Proposition 5.1. With the above notation, one has

θ(YMG, φğ) = 2k−1M−1[SL2(Z) : Γ0(N)]−1ζQ(2)
−2〈g, g〉ğ.

Following the approach of Ichino–Ikeda [II08, Section 5], it is useful to consider
a different model of the Weil representation. If ϕ ∈ S(V4(A)), one defines its
partial Fourier transform ϕ̌ ∈ S(V4(A)) by

ϕ̌

((
x1 x2
x3 x4

))
=

∫

A2

ϕ

((
x1 y2
x3 y4

))
ψ(x2y4 − x4y2)dy2dy4, (26)

where dy2, dy4 are the self-dual measure on A with respect to our fixed non-
trivial additive character ψ of A/Q. Then, one defines a representation ω̌ of
R(A) = {(g, h) ∈ GL2(A)×GO2,2(A) : det(g) = ν(h)} on S(V4(A)) by setting

ω̌(g, h)ϕ̌ = (ω(g, h)ϕ)̌.

Observe that ω̌(g, 1)ϕ̌(x) = ϕ̌(xg) for g ∈ SL2(A).
We start defining a Bruhat–Schwartz function φg = ⊗vφg,v ∈ S(V4(A)) asso-
ciated with g as follows:

i) At primes q ∤ N , φg,q equals the characteristic function on M2(Zq).

ii) At primes p | N , φg,p is determined by requiring that φ̌g,p is given by

φ̌g,p ((
x1 x2
x3 x4

)) = 1Zp
(x1)1Zp

(x2)1pZp
(x3)1Z×

p
(x4)χ

−1
p

(x4).

iii) At the archimedean place,

φg,∞ (( x1 x2
x3 x4

)) = (x1 +
√
−1x2 +

√
−1x3 − x4)

k+1exp(−πtr(xtx)).

Notice that the local components at primes dividing N are defined through
their partial Fourier transforms. For later use, we provide an explicit recipe for
φg,p at such primes:
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Lemma 5.2. Let p be a prime dividing N , and write ε(1/2, χ
p
) for the root

number of the character χ
p
: Q×

p → C×. If p | M , then

φg,p ((
x1 x2
x3 x4

)) = p−1/2ε(1/2, χ
p
)1Zp

(x1)1Zp
(x4)1pZp

(x3)1p−1Z×

p
(x2)χp(x2),

while if p | N/M one has

φg,p ((
x1 x2
x3 x4

)) = 1Zp
(x1)1Zp

(x4)1pZp
(x3)

(
1Zp

(x2)− p−11p−1Zp
(x2)

)
.

The next statement adapts [II08, Proposition 5.2] to our slightly different model
for GSO2,2.

Proposition 5.3. With the above notation,

θ(g, φg)|GL2 ×GL2
= 2k+1ζQ(2)

−1[SL2(Z) : Γ0(N)]−1g ⊗ g.

Proof. We know that θ(g, φg) ∈ τ⊠τ . A routine calculation shows the following
assertions.

i) If p ∤ N , and (g, h) ∈ R(Zp), then ω(g, h)φg,p = φg,p.

ii) If p | N , and h1, h2 ∈ K0(N ;Zp), then

ω
((

det(h1h2) 0
0 1

)
, (h1, h2)

)
φg,p = χ

p
(h1h2)φg,p.

iii) If kθ, kθ1 , kθ2 ∈ SO(2), then

ω(kθ, (kθ1 , kθ2))φg,∞ = exp(
√
−1(k + 1)(−θ + θ1 + θ2))φg,∞.

It follows from these properties that there is a constant C satisfying

θ(g, φg)|GL2 ×GL2
= Cg⊗ g,

and one finds C = 2k+1vol(Γ̂0(N)) by comparing the Fourier coefficients
Wg,1(1) and Wθ(g,φg),1,1(1) (cf. loc. cit. for details), where Γ̂0(N) =

SO(2) SL2(Ẑ) ∩ SO(2)Γ0(N ; Ẑ). The statement then follows by using that
vol(Γ̂0(N)) = ζQ(2)

−1[SL2(Z) : Γ0(N)]−1.

Corollary 5.4. With the above notation,

θ(G, φg) = 2k+1[SL2(Z) : Γ0(N)]−1ζQ(2)
−2〈g, g〉g. (27)

Proof. The invariance properties of φg imply that there is a constant C such
that θ(G, φg) = Cg. Thus we need to determine the precise value of C. On
the one hand we have 〈θ(G, φg),g〉 = C〈g,g〉. And on the other hand, by the
seesaw principle together with the previous proposition we also have

〈θ(G, φg),g〉 = 〈G, θ(g, φg)〉 = 2k+1ζQ(2)
−1[SL2(Z) : Γ0(N)]−1〈G,G〉 =

= 2k+1ζQ(2)
−1[SL2(Z) : Γ0(N)]−1〈g,g〉2.

Hence, using that 〈g,g〉 = ζQ(2)
−1〈g, g〉 we conclude that C = 2k+1[SL2(Z) :

Γ0(N)]−1ζQ(2)
−2〈g, g〉.
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Proposition 5.1 will follow straightforward from the identity in Corollary 5.4.
We need to suitably modify the Bruhat–Schwartz function φg in order to trans-
late (27) into an explicit analogous relation between ğ and YMG. To do
so, define φg♯ = ⊗vφg♯,v by setting φg♯,v = φg,v at all places v 6= 2, and
φg♯,2 = 2−2ω2(t(2

−1)2, 1)φg,2. From the definition of φg,2, one can easily check
that φg♯,2(x) = 1V4(2Z2)(x) for x ∈ V4(Q2). With this slight modification at
p = 2, Corollary (5.4) gets easily rephrased:

Corollary 5.5. With the above notation,

θ(G, φg♯) = 2k−1[SL2(Z) : Γ0(N)]−1ζQ(2)
−2〈g, g〉g♯.

Proof. This follows from the very definitions. Indeed, recall that for x ∈
GL2(A) one has

θ(G, φg)(x) =

∫

[O2,2]

Θ(x, y′y;φg)G(y′y)dy =

=

∫

[O2,2]


 ∑

v∈V4(Q)

ω(x, y′y)φg(v)


G(y′y)dy,

where y′ ∈ GO2,2(A) is any element with ν(y′) = det(x). From the last expres-
sion, observe that if we replace φg by ω(g, 1)φg with g ∈ SL2(A), then

θ(G, ω(g, 1)φg)(x) =

∫

[O2,2]


 ∑

v∈V4(Q)

ω(x, y′y)ω(g, 1)φg(v)


G(y′y)dy =

=

∫

[O2,2]


 ∑

v∈V4(Q)

ω(xg, y′y)φg(v)


G(y′y)dy =

= θ(G, φg)(xg) = τ(g)θ(G, φg)(x).

Applying this for g = t(2−1)2 ∈ SL2(Q2) →֒ SL2(A) ⊆ GL2(A), we deduce that

θ(G, φg♯) = θ(G, 2−2ω(t(2−1)2, 1)φg) = 2−2τ(t(2−1)2)θ(G, φg),

and the statement follows from the previous corollary together with the defini-
tion of g♯.

Finally, we define φğ = ⊗vφğ,v by keeping φğ,v = φg♯,v for all places v ∤ M ,
and setting

φğ,p = p−1ωp(̟p, hp)φg♯,p = p−1ωp(̟p, hp)φg,p

at each prime p |M . In other words, if ̟M and hM are as before, we see that
φğ =M−1ω(̟M , hM )φg♯ .
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Proof of Proposition 5.1. As above, if x ∈ GL2(A) notice that

θ(G, φg♯)(x) =

∫

O2,2(Q)\O2,2(A)


 ∑

v∈V4(Q)

ω(x, y′y)φg♯(v)


G(y′y)dy,

where y′ ∈ GO2,2(A) is such that det(x) = ν(y′). In particular, observe that
det(x̟M ) = ν(y′hM ), hence

θ(YMG, φğ)(x) =
1

M

∫

[O2,2]


 ∑

v∈V4(Q)

ω(x, y′y)ω(̟M , hM )φg♯(v)


G(y′yhM )dy =

=
1

M

∫

[O2,2]


 ∑

v∈V4(Q)

ω(x̟M , y
′hMy)φg♯(v)


G(y′hMy)dy.

From this we see that θ(YMG, φğ) = M−1τ(̟M )θ(G, φg♯), and hence the
statement follows from the previous corollary, together with the fact that ğ =
τ(̟M )g♯.

For later use, we will need an explicit description of the Bruhat–Schwartz func-
tion φğ. At places v ∤ 2M , observe that φğ,v = φg,v, thus we have:

i) If p ∤ 2M is a finite prime, then φğ,p(x) = 1V4(Zp)(x) for all x ∈ V4(Qp).

ii) If p | N/M is an (odd) prime, then

φğ,p ((
x1 x2
x3 x4

)) = 1Zp
(x1)1Zp

(x4)1pZp
(x3)

(
1Zp

(x2)− p−11p−1Zp
(x2)

)
.

iii) At v = ∞,

φg,∞ (( x1 x2
x3 x4

)) = (x1 +
√
−1x2 +

√
−1x3 − x4)

k+1exp(−πtr(xtx)).

At primes p | 2M , we describe φğ,p in the following lemma.

Lemma 5.6. With the above notation, the following assertions hold.

i) At p = 2, φğ,2(x) = 1V4(2Z2)(x) for all x ∈ V4(Q2).

ii) At (odd) primes p |M , for x = ( x1 x2
x3 x4

) ∈ V4(Qp) we have

φğ,p(x) = p−1/2ε(1/2, λp)1pZp
(x1)1Zp

(x4)1p2Zp
(x3)1p−1Z×

p
(x2)χp(x2).

Proof. One just have to compute φğ,2 and φğ,p (p | M) using the definitions
of φg,2 and φg,p together with the properties of the Weil representation, since
φğ,2 = 2−2ω2(t(2

−1)2, 1)φg,2 and φğ,p = p−1ωp(̟p, hp)φg,p for primes p | M .
We omit the details and leave them to the reader.
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5.2 The pair (PGL2, S̃L2)

Shimura’s correspondence between half-integral weight modular forms and in-
tegral weight modular forms was investigated by Waldspurger as a theta corre-
spondence between automorphic representations of PGL2(A) and automorphic

representations of S̃L2(A). Here, PGL2 is identified as the special orthogonal
group SO(V ) of a three-dimensional quadratic space V as in Section 4.2.

The theta correspondence for the pair (PGL2, S̃L2) depends on the choice of
an additive character ψ of Q\A. To emphasize this dependence, we will write

Θ
PGL2 ×S̃L2

(π, ψ) (resp. Θ
S̃L2×PGL2

(π̃, ψ))

for the automorphic representation of S̃L2(A) (resp. PGL2(A)) obtained as
the theta lift of the automorphic representation π (resp. π̃) of PGL2(A) (resp.
S̃L2(A)). On the local setting, we write

Θ
PGL2 ×S̃L2

(πv, ψv) and Θ
S̃L2×PGL2

(π̃v, ψv)

for the local theta lifts of πv and π̃v, respectively. We will omit the subscripts
PGL2 ×S̃L2 or S̃L2 × PGL2 if the direction of the theta lift is clear.
In the following, for a fixed irreducible cuspidal automorphic representation
π of PGL2(A), and D varying over the set of fundamental discriminants, the
representations Θ(π ⊗ χD, ψ

D) (and their local counterparts Θ(πv ⊗ χD, ψ
D
v ))

will play a crucial role. Waldspurger’s description of the theta correspondence
for (PGL2, S̃L2) tells us that the set {Θ(π⊗χD, ψ

D) : D ∈ Q× fund. discr.} is
finite.
In order to describe the local theory, fix a place v of Q and let P0,v denote the
set of special or supercuspidal representations (or discrete series representations
if v = ∞) of PGL2(Qv). For D ∈ Q×

v , define the symbol
(
D

πv

)
= χD(−1)ǫ(πv, 1/2)ǫ(πv ⊗ χD, 1/2),

and consider the associated partition Q×
v = Q+

v (πv) ⊔Q−
v (πv), where

Q±
v (πv) :=

{
D ∈ Q×

v :

(
D

πv

)
= ±1

}
.

The next statement summarizes Waldspurger’s local theory.

Theorem 5.7 (Waldspurger). With the above notation, the following assertions
hold.

i) If πv 6∈ P0,v, then Q+
v (πv) = Q×

v and π̃v := Θ(πv, ψv) = Θ(πv ⊗ χD, ψ
D
v )

for all D ∈ Q×
v .

ii) If πv ∈ P0,v, then there are two representations π̃+
v and π̃−

v of S̃L2(Qv)
such that

Θ(πv ⊗ χD, ψ
D
v ) =

{
π̃+
v if D ∈ Q+

v (πv),

π̃−
v if D ∈ Q−

v (πv).
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iii) The equality Θ(πv ⊗ χD, ψ
D
v ) = Θ(πv, ψv) holds if and only if Θ(πv, ψv)

admits a non-trivial ψDv -Whittaker model.

Remark 5.8. When πv ∈ P0,v, one has π̃+
v = Θ(πv, ψv) and π̃−

v =
Θ(JL(πv), ψv)), where JL(πv) is the Jacquet–Langlands lift of πv to an admissi-
ble representation of PB×

v , with Bv the unique division quaternion algebra over
Qv. We warn the reader that the labelling +/− in ii) depends on the choice of
the additive character ψv.

Altogether, the local Waldspurger packet Waldψv
(πv) is defined to be the sin-

gleton {π̃v} if πv 6∈ P0,v, and the set {π̃+
v , π̃

−
v } if πv ∈ P0,v. Although the

labelling +/− in the set Waldψv
(πv) depends on ψv, the packet Waldψv

(πv)
itself does not.

To state the global side of this theory, write Ã00 for the subspace of cuspidal
automorphic forms on S̃L2(A) which are orthogonal to the theta series gener-
ated by quadratic forms of one variable. Let A0,i be the subspace of cuspidal
automorphic forms on PGL2(A) such that for any subrepresentation π of A0,i

there exists some D ∈ Q× with L(π ⊗ χD, 1/2) 6= 0.
Let π be an irreducible cuspidal automorphic representation of PGL2(A), and
let Σ(π) denote the set of rational places v such that πv ∈ P0,v. For each D ∈
Q×, let ǫ(D, π) ∈ {±1}|Σ(π)| be the tuple determined by setting ǫ(D, π)v = ( Dπv

)
for each v ∈ Σ(π). Observe that one has by construction

ǫ(π ⊗ χD, 1/2) = ǫ(π, 1/2)
∏

v∈Σ(π)

(
D

πv

)
.

For an arbitrary tuple ǫ = (ǫv)v∈Σ(π) ∈ {±1}|Σ(π)|, define the set Qǫ(π) =
{D ∈ Q× : ǫ(D, π) = ǫ}. In particular, π determines a partition

Q× =
⊔

ǫ

Qǫ(π).

Having settled this notation, we summarize Waldspurger’s global theory as
follows. Below, two irreducible subrepresentations of Ã00 are called near equiv-
alent, denoted π̃1 ∼ π̃2, if it holds that π̃1,v ≃ π̃2,v for almost all places.

Theorem 5.9 (Waldspurger). With the above notation, the following assertions
hold.

i) The global theta correspondence between PGL2 and S̃L2 is compati-
ble with the local correspondence. That is, if Θ(π̃, ψ) 6= 0, then
Θ(π̃, ψ) ≃ ⊗vΘ(π̃v, ψv). And analogously, if Θ(π, ψ) 6= 0, then Θ(π, ψ) ≃
⊗vΘ(πv, ψv).

ii) Θ(π, ψ) 6= 0 if and only if L(π, 1/2) 6= 0. And Θ(π̃, ψ) 6= 0 if and only if
π̃ has a non-trivial ψ-Whittaker model.
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iii) If π̃ is an irreducible subrepresentation of Ã00, then there is a unique ir-
reducible automorphic representation π = Shψ(π̃) of PGL2(A) associated
to π̃ such that Θ(π̃, ψD) 6= 0 ⇒ Θ(π̃, ψD) ⊗ χD = π. The association
π̃ → Shψ(π̃) defines a bijection between Ã00/ ∼ and A0,i.

iv) If π = Shψ(π̃), then the near equivalence class of π̃ consists of all the
non-zero lifts of the form Θ(π ⊗ χD, ψD).

v) Let ǫ ∈ {±1}|Σ(π)|. If
∏
v∈Σ(π) ǫv 6= ǫ(π, 1/2), then Θ(π ⊗ χD, ψ

D) = 0

for all D ∈ Qǫ(π). If
∏
v∈Σ(π) ǫv = ǫ(π, 1/2), then there is a unique π̃ǫ

such that for every D ∈ Qǫ(π) it holds

Θ(π ⊗ χD, ψ
D) =

{
π̃ǫ if L(π ⊗ χD, 1/2) 6= 0,

0 if L(π ⊗ χD, 1/2) = 0.

In the previous theorem, if ǫ = (ǫv)v ∈ {±1}|Σ(π)|, then π̃ǫ denotes the irre-

ducible cuspidal automorphic representation of S̃L2(A) whose local components
equal π̃v at all rational places v 6∈ Σ(π), and whose local components at places
v ∈ Σ(π) equal π̃ǫvv . Together with the local theory, the above result motivates
the definition of the (global) Waldspurger packet Waldψ(π) associated with π
as the finite set

Waldψ(π) =



π̃

ǫ :
∏

v∈Σ(π)

ǫv = ǫ(π, 1/2)



 .

Notice that Waldψ(π) = WaldψD (π ⊗ χD) for all D ∈ Q×, similarly as locally
at each place v one has Waldψv

(πv) = Waldψa
v
(πv ⊗ χa) for all a ∈ Q×

v .

5.2.1 On the result of Baruch–Mao

Having recalled Waldspurger’s theory, we explain briefly how Baruch–Mao’s
result stated in Theorem 2.1, leading to a generalization of Kohnen’s formula,
fits in this theory. So let f ∈ Snew2k (N) and χ be as in Theorem 2.1, and let π
be the irreducible cuspidal automorphic representation of PGL2(A) associated
with f . Choose once and for all a fundamental discriminant D ∈ D(N,M),
where the setD(N,M) is defined in (7), and assume further that L(f,D, k) 6= 0.
Let ψ be the standard additive character of A/Q, and write ψ = ψ−1 and

ψ
D

= ψ−D for the (−1)-th and (−D)-th twists of ψ, respectively. Then,

consider the theta lift π̃ := Θ(π ⊗ χD, ψ
D
) of π ⊗ χD with respect to the

additive character ψ
D
. Because of the assumption L(f,D, k) 6= 0, we have

Θ(π ⊗ χD, ψ
D
) 6= 0, and so π̃ = ⊗vπ̃v with π̃v ≃ Θ(πv ⊗ χD, ψ

D

v ).
Let ǫ := ǫ(D, π) ∈ {±1}|Σ(π)| be defined as above, so that D(N,M) is the
set of fundamental discriminants in Qǫ(π). It is proved in [BM07, Section 10]
that π̃ = π̃ǫ ∈ Waldψ(π). In other words, the automorphic representation
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π̃ = Θ(π ⊗ χD, ψ
D
) of S̃L2(A) corresponds to the element in the Waldspurger

packet Waldψ(π) whose labelling coincides with ǫ (recall that the labelling of π̃

depends on the choice of ψ). Moreover, one has ǫ∞ = −1, and for each prime
p | N

ǫp =

(
D

πp

)
=

(
D

p

)
=

{
wp if p | N/M,

−wp if p |M.

If Vπ̃ denotes the representation space for π̃, then Baruch and Mao show that
Vπ̃ ∩ Ã+

k+1/2(4N,χ0
) is one-dimensional. The one-dimensional subspace of

S+,new
k+1/2 (4NM ;χ) denoted S+,new

k+1/2 (4NM,χ; f ⊗ χ) in Theorem 2.1 is then the

preimage of Vπ̃ ∩Ã+
k+1/2(4N,χ0

) under the adelization map (16), and h can be

taken to be the de-adelization of any new vector in Vπ̃ ∩ Ã+
k+1/2(4N,χ0

).

Summing up, the set D(N,M) in Theorem 2.1 singles out a precise element π̃ in
the Waldspurger packet Waldψ(π) = Wald

ψ
D(π ⊗ χD), where the adelizations

of the classical half-integral modular forms in S+,new
k+1/2 (4NM,χ; f ⊗ χ) belong

to. Together with the local assumptions on χ, this allows Baruch and Mao to
have a clean description of the local types for π̃ at primes p dividing N . For
later purposes, we briefly describe these local types, according to whether p
divides M or not.
First suppose that p is a prime dividing N/M . The local representation πp is
a quadratic twist of the Steinberg representation, say πp = Stp · χu, for some
u ∈ Z×

p . If wp = 1 (resp. wp = −1), then u is a non-quadratic residue (resp.
quadratic residue) modulo p. We have

π̃p ≃ Θ(πp ⊗ χD, ψ
D

p ) = Θ(Stp · χuD, ψ
D

p ),

and notice that δ := uD ∈ Z×
p is a non-square in Z×

p , since (Dp ) = wp. In this

case, it follows that π̃p is a special representation of S̃L2(Qp), denoted σ̃δ(ψ−D
p )

in [BM07, (10.5.3)]. This representation is realized as the space of functions

ϕ̃ : S̃L2(Qp) → C such that

ϕ̃

([(
a ∗
0 a−1

)
, ǫ

]
g

)
= ǫχ

ψ
D

p

(a)χδ(a)|a|3/2p ϕ̃(g)

for all g ∈ S̃L2(Qp) and a ∈ Q×
p , and satisfying also the vanishing condition

∫

Qp

ϕ̃(w̃ñ(x))ψ
D

p (−δ∆2x)dx = 0 for all ∆ ∈ Qp.

Here, notice that χδ is the unique non-trivial quadratic character of Q×
p . A

newvector ϕ̃p ∈ π̃p can be chosen as in [BM07, Lemma 8.3], see also Lemma
7.1 below.
Secondly, suppose that p is a prime dividingM . We have again πp = Stp ·χu, for
some u ∈ Z×

p , and therefore π̃p ≃ Θ(Stp ·χuD, ψ
D

p ). But now, δ := uD ∈ Z×
p is a
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square in Z×
p because (Dp ) = −wp. Then π̃p is a supercuspidal representation of

S̃L2(Qp). More precisely, it is the odd Weil representation r−
ψ

D

p

associated with

the character ψ
D

p (cf. [BM07, (10.5.4)]). In this case, a choice of newvector
ϕ̃p ∈ π̃p is described in [BM07, Proposition 8.5], see also Lemma 8.3 below.

5.3 The pair (S̃L2,PGSp2)

Now we focus on the theta correspondence for the pair (S̃L2,PGSp2), which
explains the classical Saito–Kurokawa lift introduced in Section 2.3. We iden-
tify PGSp2 with the special orthogonal group SO(3, 2) = SO(V5), where V5 is
the five-dimensional quadratic space of determinant 1 and Witt index 2 as in
Section 4.2. As we did for the pair (PGL2, S̃L2), let us fix a non-trivial additive
character ψ of A/Q.
Global theta lifts can be defined in the same fashion as we have already ex-
plained in the previous two instances, so that for an irreducible cuspidal rep-
resentation Π of PGSp2(A) and an irreducible component π̃ ⊂ A00(S̃L2), one
can define their lifts Θ

PGSp2 ×S̃L2
(Π;ψ) and Θ

S̃L2×PGSp2

(π̃;ψ), respectively.

The following assertions concerning this theta correspondence can be found in
[PS83].

a) If ΘPGSp2 ×S̃L2
(Π;ψ) is not zero, then it is irreducible cuspidal.

b) If Θ
S̃L2×PGL2

(π̃;ψ) = 0, then Θ
S̃L2×PGSp2

(π̃;ψ) is irreducible cuspidal.

c) If Θ
S̃L2×PGL2

(π̃;ψ) is not zero, then Θ
S̃L2×PGSp2

(π̃;ψ) is irreducible non-

cuspidal and occurs in the discrete spectrum of PGSp2.

d) Θ
PGSp2 ×S̃L2

(Π;ψ) = π̃ if and only if Θ
S̃L2×PGSp2

(π̃;ψ) = Π.

Similarly as for Waldspurger packets, one can introduce the notion of local
and global Saito–Kurokawa packets. Indeed, let v be a place of Q, and πv be
an infinite-dimensional irreducible admissible representation of PGL2(Qv). If
ǫv ∈ {±1} and π̃ǫvv ∈ Waldψv

(πv), write Πǫvv := Θ
S̃L2×PGSp2

(π̃ǫvv ;ψv). Then

the local Saito–Kurokawa packet of πv is defined to be

SK(πv) := {Πǫvv : π̃ǫvv ∈ Waldψv
(πv)}.

Now if π is an irreducible cuspidal automorphic representation of PGL2(A),
the associated global Saito–Kurokawa packet is just

SK(π) := {Θ(π̃;ψ) : π̃ ∈ Waldψ(π)}.

Given a tuple ǫ = (ǫv)v such that ǫv ∈ {±1} for every place v, and ǫv = +1 for
all v such that πv is not square-integrable, set Πǫ = ⊗vΠǫvv . Then we have

SK(π) := {Πǫ :
∏

v

ǫv = ε(1/2, π)}.
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Although the Saito–Kurokawa packet SK(π) associated with π is defined
through Waldψ(π), it turns out that SK(π) does not depend on the choice
of the additive character ψ. Also, it is well-known that SK(π) consists only of
cuspidal members when L(1/2, π) = 0.
In the rest of this section, we focus on an explicit relation between a newform
h ∈ π̃, where π̃ is as in Section 5.2.1, and a theta lift of h. From now on, we
fix ψ to be the standard additive character of A/Q.
If F is a cuspidal automorphic form on SO(V5)(A) ≃ PGSp2(A) and B ∈
Sym2(Q), we will regard F as an automorphic form on GSp2(A) trivial on the
center. Then its B-th Fourier coefficient WF,B : GSp2(A) → C is defined as

in (20). In particular, for an automorphic form h on S̃L2(A) and a Bruhat–
Schwartz function ϕ ∈ S(V5(A)), the B-th Fourier coefficient of the theta lift
θ(h, ϕ) is the function (of g ∈ GSp2(A))

g 7→ Wθ(h,ϕ),B(g) =

∫

Sym2(Q)\Sym2(A)

θ(h, ϕ)(n(X)g)ψ(tr(BX))dX.

As in the introduction, let k,N ≥ 1 be odd integers, with N square-free, and
let χ be an even Dirichlet character modulo N , of conductor M | N . Let
f ∈ Snew2k (N) be a normalized newform of weight 2k and level N , and let π
be the automorphic representation of PGL2 associated with f . We assume
Hypotheses (H1) and (H2), so that χ(p)(−1) = −1 and wp = −1 for all primes
p |M .

Let π̃ ∈ Waldψ(π) be the automorphic representation of S̃L2(A) ob-
tained by theta correspondence as explained in Section 5.2.1. Let h ∈
S+,new
k+1/2 (4NM,χ; f ⊗χ) be a Shimura lift of f as in Theorem 2.1, and let h ∈ π̃

be its adelization. Besides, let Fχ ∈ Sk+1(K
(2)
0 (NM), χ) be the adelization of

the Saito–Kurokawa lift Fχ = M(Z(h)) ∈ Sk+1(Γ
(2)
0 (NM), χ) as defined in (21)

(cf. also Section 2.3). Recall the operator RM , and consider the automorphic
form

RMFχ ∈ Sk+1(K(NM,M), χ),

which by Lemma 3.2 is the adelization of RMFχ ∈ Sk+1(Γ
(2)
0 (NM) ∩

Γparam(M), χ).
The main purpose for the rest of this section is to prove the following identity,
where the Bruhat–Schwartz function φh ∈ S(V5(A)) will be defined below.

Proposition 5.10. With the above notation,

θ(h, φh)⊗ χ = 2−2χ(2)−1M−1[SL2(Z) : Γ0(N)]−1ζQ(2)
−1RMFχ. (28)

Here, observe that θ(h, φh) is an automorphic cusp form on PGSp2(A), and as
in Section 3.3, the automorphic cusp form θ(h, φh)⊗ χ on GSp2(A) is defined
by

(θ(h, φh)⊗ χ)(g) = θ(h, φh)(g)χ(ν(g)),
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where ν : GSp2(A) → A× is the similitude morphism. In particular, the
above proposition says that the automorphic form θ(h, φh) ⊗ χ is classical,

in the sense that it is obtained by adelization of 2−2χ(2)−1M−1[SL2(Z) :
Γ0(N)]−1ζQ(2)

−1RMFχ.
The proof of Proposition 5.10 will proceed by comparing the Fourier coefficients
Wθ(h,ϕ)⊗χ,B and WRMFχ,B of the automorphic forms θ(h, ϕ) ⊗ χ and RMFχ

appearing in (28), for arbitrary symmetric matrices B ∈ Sym2(Q). Concerning
RMFχ, we know from Lemma 3.4 that WRMFχ,B is zero unless B is positive
definite, half-integral and b3 ∈MZ if

B =

(
b1 b2/2
b2/2 b3

)
.

And in that case, WRMFχ,B is uniquely determined by the values
WRMFχ,B(g∞) at the elements

g∞ = n(X)m(A, 1) =

(
12 X
0 12

)(
A 0
0 tA−1

)
∈ GSp2(R) (29)

with X ∈ Sym2(R), and A ∈ GL+
2 (R), for which we know (cf. Corollary 3.4

and equation (22)) that

WRMFχ,B(g∞) = WFχ,B(g∞) = Aχ(B) det(Y )(k+1)/2e2π
√
−1Tr(BZ),

where Y = AtA, Z = X +
√
−1Y ∈ H2. Here, Aχ(B) is the classical B-th

Fourier coefficient of Fχ, which can be made precise as in (14).
Regarding θ(h, φh), it will follow from Lemma 5.12 below that θ(h, φh) ⊗ χ

satisfies the same invariance properties with respect to K(NM,M) ⊆ GSp2(Ẑ)
as RMFχ does (namely, K(NM,M) acts through χ on both θ(h, φh)⊗ χ and
RMFχ). Therefore, by comparing the Fourier coefficients Wθ(h,φh)⊗χ,B with

WFχ,B at elements g∞ ∈ GSp2(R) as above we will be able to deduce a relation
between Wθ(h,φh)⊗χ,B and WFχ,B as functions on GSp2(A), leading to the

identity claimed in (28). Furthermore, observe that from the very definitions
we have

Wθ(h,φh)⊗χ,B(g∞) = Wθ(h,φh),B(g∞).

For this reason, we will focus on the computation of Fourier coefficients of the
automorphic form θ(h, φh) on PGSp2(A) obtained as a theta lift from h.
In order to determine the Fourier coefficients Wθ(h,φh),B, as in the previous
section it is useful to consider another model for the Weil representation. Recall
the 3-dimensional quadratic subspace V3 ⊂ V5 on which the quadratic form is
given by Q1, i.e. V3 = 〈v2, v3, v4〉. We identify V ⊥

3 with F 2, in a compatible
way with the fact that

Q =




0 0 −1
0 Q1 0
−1 0 0


 .
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We consider the partial Fourier transform

S(V5(A)) −→ S(V3(A))⊗ S(A2), φ 7−→ φ̂,

defined by setting

φ̂(x; y) =

∫

A

φ(z;x; y1)ψ(−y2z)dz, (30)

where x ∈ V3(A) and y = (y1, y2) ∈ A2. As usual, here dz is the self-dual
measure with respect to the additive character ψ. The Weil representation
ω of S̃L2(A) × O(V5)(A) on S(V5(A)) gives rise then to a representation ω̂ of

S̃L2(A)×O(V5)(A) on S(V3(A)) ⊗ S(A2) by setting

ω̂(g, h)φ̂ = (ω(g, h)φ)̂.

If φ̂ = φ1 ⊗ φ2 with φ1 ∈ S(V3(A)) and φ2 ∈ S(A2), then one has

ω̂((g, ǫ), 1)φ̂(x; y) = ω((g, ǫ), 1)φ1(x) · φ2(yg) (31)

for (g, ǫ) ∈ S̃L2(A). This change of polarization helps to get simpler computa-
tions, and the identity in (31), which we will use later, is an instance of this.
Most importantly, in terms of this new model one can express the Fourier coef-
ficients of θ(h, ϕ), for a given ϕ ∈ S(V5(A)), in terms of the Fourier coefficients
of h. Recall that if ξ ∈ Q, then the ξ-th Fourier coefficient of h is by definition
the function

g 7→Wh,ξ(g) =

∫

Q\A
h(u(x)g)ψ(ξx)dx, g ∈ S̃L2(A).

As quoted in (17), one has c(n) = e2πnWh,n(1) for all integers n ≥ 1. With
this, the following is proved in [Ich05, Lemma 4.2].

Lemma 5.11. If ϕ ∈ S(V5(A)), then for B 6= 0 one has

Wθ(h,ϕ),B(h) =

∫

U(A)\ SL2(A)

ω̂(g, h)ϕ̂(β; 0, 1)Wh,ξ(g)dg, (32)

where ξ = det(B) and β = (b3, b2/2,−b1) if B =
(

b1 b2/2
b2/2 b3

)
.

The identity in (32) is a crucial ingredient in our computation of the B-th
Fourier coefficients of θ(h, φh) towards the proof of Proposition 5.10. To pro-
ceed with this computation, we still need to address two tasks. First, we must
describe an explicit choice of Bruhat–Schwartz function φh ∈ S(V5(A)). And
second, we must express the integral on the right hand side of (32) as a product
of local integrals, one for each rational place v. After this is done, we will be
able to proceed with the computation of the Fourier coefficients of θ(h, φh) by
performing local computations prime by prime.
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Concerning the choice of φh ∈ S(V5(A)), recall the Bruhat–Schwartz function
φğ ∈ S(V4(A)) considered in the previous section, which is involved in the
explicit formula in Proposition 5.1. For our proof of the main theorem, it
is crucial that φh is chosen so that its restriction to V4 coincides with φğ.
Since we have an explicit description of φğ, we only need to define φh on the
orthogonal complement of V4, which is the one-dimensional quadratic subspace
V1 := V ⊥

4 of V5 spanned by v3. Notice that we may identify the space S(V1(A))
with S(A), by identifying V1 with the one-dimensional quadratic space over Q
endowed with the quadratic form q(x) = x2. In S(V1(A)), we consider the
Bruhat–Schwartz function φφφ = ⊗vφφφv determined by its local components as
follows:

φφφv(x) =

{
1Zq

(x) if v = q 6= ∞,

e−2πx2

if v = ∞.

Considering the basis v1, . . . , v5 of V5 as we did above, so that V1 = V ⊥
4 is

generated by v3, and taking into account the embedding V4 ⊂ V5 explained in
Section 4.2, then φh is defined by setting

φh(z) := φφφ(x3)φğ ((
x2 x1
x5 x4

)) .

for z = x1v1 + x2v2 + x3v3 + x4v4 + x5v5 ∈ V5(A). By construction, the local
components of φh = ⊗vφh,v can be easily given in terms of the local components
of φφφ and φğ. For the reader’s convenience, we describe such local components:
if v is a rational place, z = x1v1 + x2v2 + x3v3 + x4v4 + x5v5 ∈ V5(Qv) and we
put X = ( x2 x1

x5 x4
), then φh,v(z) is given as detailed below.

i) If v = q ∤ N is an odd prime, then φh,q is the characteristic function of
V5(Zq). Indeed,

φh,q(z) = φφφq(x3)φğ,q(X) = 1Zq
(x1)1Zq

(x2)1Zq
(x3)1Zq

(x4)1Zq
(x5).

ii) If v = 2, φh,2 is the characteristic function of Z2v3 + V5(2Z2). Indeed,

φh,2(z) = φφφ2(x3)φğ,2(X) = 12Z2
(x1)12Z2

(x2)1Z2
(x3)12Z2

(x4)12Z2
(x5).

iii) If v = p |M is prime, then φh,p(z) = φφφp(x3)φğ,p(X) equals

p−1/2ε(1/2, χ
p
)1p−1Z×

p
(x1)1pZp

(x2)1Zp
(x3)1Zp

(x4)1p2Zp
(x5)χp(x1).

iv) If v = p | N/M is prime, then φh,p(z) = φφφp(x3)φğ,p(X) equals

(
1Zp

(x1)− p−11p−1Zp
(x1)

)
1Zp

(x2)1Zp
(x3)1Zp

(x4)1pZp
(x5).

v) For the archimedean prime v = ∞,

φh,∞(z) = (x2+
√
−1x1+

√
−1x5−x4)k+1 exp(−π(x21+x22+2x23+x

2
4+x

2
5)).
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In particular, observe that φh = ⊗vφh,v coincides with the Bruhat–Schwartz

function ϕ(5) = ⊗vϕ(5)
v defined in [Ich05, Section 7] locally at every place v ∤ N .

Therefore, we can use Ichino’s computations in loc. cit. at all such places.
We need to understand the action of the Weil representation of S̃L2(A) ×
O(V5)(A) on φh ∈ S(V5(A)). For later purposes, the properties we are in-
terested in are collected in the following lemma.

Lemma 5.12. Let φh be defined as above, and v be a rational place. Then the
following assertions hold:

i) If v = q is an odd prime not dividing N , then φ̂h,q = φ1h,q ⊗ φ2h,q, where

φ1h,q ∈ S(V3(Qp)) and φ2h,q ∈ S(Q2
p) are the characteristic functions of

V3(Zq) and Z2
q, respectively. Besides, ωq((k, sq(k)), k

′)φh,q = φh,q for all
k ∈ SL2(Zq) and all k′ ∈ GSp2(Zq).

ii) If v = 2, then ω2(k, k
′)φh,2 = ǫ̃2(k)φh,2 for all k ∈ Γ0(4;Z2) and all

k′ ∈ GSp2(Z2).

iii) If v = ∞, then

ω∞(k̃θ, k
′)φh,∞ = e−

√
−1(k+1/2)θ det(k)k+1φh,∞

for all k̃θ ∈ S̃O(2) and k′ =
(

α β
−β α

)
∈ Sp2(R), with k = α +

√
−1β ∈

U(2).

iv) If p | N/M , then ωp((k, sp(k)), k
′)φh,p = φh,p for all k ∈ Γ0(NM ;Zp) =

Γ0(p;Zp) ⊆ SL2(Zp) and all k′ ∈ K
(2)
0 (NM ;Zp) = K

(2)
0 (p;Zp) ⊆

GSp2(Zp). And if p | M , then ωp((k, sp(k)), k
′)φh,p = φh,p for all

k ∈ Γ0(NM ;Zp) = Γ0(p
2;Zp) ⊆ SL2(Zp) and all k′ ∈ K(NM, p;Zp) =

K(p2, p;Zp) ⊆ GSp2(Zp). Explicit expressions for φ̂h,p in these cases are
given in Lemma 5.13 below.

Proof. Part i) is as in [Ich05, Section 7.3]; part ii) is worked out in [Ich05,

Section 7.4], where one also finds an explicit expression for ω̂(r, 1)φ̂h,2, where r
varies over a set of representatives for SL2(Z2)/K0(4;Z2) (which consists only
of 3 elements); part iii) is covered in [Ich05, Section 7.5]. As for part iv), one can
check it by routine (and tedious) computation using the explicit description of
φh,p together with the rules for the Weil representation and the explicit model
of SO(V5) that we are using (cf. Section 4.2). We omit this computation and
leave it for the reader.

At primes p | N , we will also need the partial Fourier transforms φ̂h,p of each
local component φh,p, which we collect in the next lemma.

Lemma 5.13. With notation as above, let p be a prime dividing N , and let
x = (x1, x2, x3) ∈ V3(Qp), y = (y1, y2) ∈ Q2

p. Then one has

φ̂h,p(x; y) =

{
1Zp

(x1)1Zp
(x2)1Zp

(x3)1pZp
(y1)1Z×

p
(y2) if p | N/M,

1pZp
(x1)1Zp

(x2)1Zp
(x3)1p2Zp

(y1)1Z×

p
(y2)χ

−1
p

(y2) if p |M.
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Proof. We consider first the case p |M . By applying the definition of the partial
Fourier transform and the recipe in iii) above we have, for x = (x1, x2, x3) ∈
V3(Qp) and (y1, y2) ∈ Q2

p,

φ̂h,p(x; y) = p−1/2ε(1/2, χ
p
)1pZp

(x1)1Zp
(x2)1Zp

(x3)1p2Zp
(y1)×

×
∫

p−1Z×

p

χ
p
(z)ψp(−y2z)dz =

= 1pZp
(x1)1Zp

(x2)1Zp
(x3)1p2Zp

(y1)1Z×

p
(y2)χ

−1
p

(y2).

Similarly, for primes p | N/M , we find for x = (x1, x2, x3) ∈ V3(Qp) and
(y1, y2) ∈ Q2

p that

φ̂h,p(x; y) = 1Zp
(x1)1Zp

(x2)1Zp
(x3)1pZp

(y1)×

×
∫

Qp

(
1Zp

(z)− p−11p−1Zp
(z)
)
ψp(−y2z)dz.

The last integral is easily seen to equal 1Z×

p
(y2), hence the result follows.

Having described our choice for φh, together with its main properties, we now
focus on the right hand side of (32). We want to decompose the Fourier coeffi-
cientsWh,ξ as a product of local Whittaker functionsWhv ,ξ, so that the integral
on the right hand side of (32) decomposes as a product of local integrals that
will be eventually computed place by place. By multiplicity one, any decompo-
sition of Wh,ξ as a product of local Whittaker functions will differ from a fixed
one by a non-zero scalar factor. Our choice will follow closely the discussion
in [BM07, Section 8], with slight renormalizations so that our decomposition
will reflect the identity proved in (19). Let ξ ∈ Q+, and write ξ = dξf

2
ξ with

dξ ∈ N and fξ ∈ Q+, so that −dξ is the discriminant of Q(
√−ξ)/Q. Write

ep := ordp(fξ), and recall the functions Ψp(ξ;X) ∈ C[X,X−1] defined in Sec-
tion 3.2. For each rational place v, we define the local Whittaker function
Wv,ξ = Whv,ξ attached to hv and ξ as follows (we do not enter here in a de-
scription of the local types of π̃p at primes p | N , which has been given in
Section 5.2.1 and will be recalled and used again in Sections 7 and 8, where we
will need them to perform the computation of local SL2-periods).

i) If v = p is a finite prime with p ∤ N , then we define Wp,ξ as in [Ich05,
Section 7.2, Appendix A.3]. In particular, for all primes p ∤ N we have
Wp,ξ(1) = Ψp(ξ;αp).

ii) If v = p is a finite prime with p | N/M , then π̃p is the special representa-

tion σ̃δ(ψ
D

p ) as explained in Section 5.2.1, where δ ∈ Z×
p is any non-square

unit. The p-th component hp ∈ π̃p of h lies in the one-dimensional sub-

space of vectors fixed by Γ̃0(p) ⊆ S̃L2(Zp), and hence it is a multiple
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of the newvector ϕ̃p chosen as in [BM07, Lemma 8.3] (see Lemma 7.1
below). We consider the local Whittaker function

Wϕ̃p,ξ : g 7→
∫

Qp

ϕ̃p(s
−1u(x)g)ψp(ξx)dx

associated with ϕ̃p, with respect to ψξp. We may assume that p ∤ dξ, as
otherwiseWh,ξ(1) = 0. Then, it follows from the computations in [BM07,
Section 8] that

Wϕ̃p,ξ(1) =

{
2p−ep if χ−ξ(p) + wp 6= 0,

0 if χ−ξ(p) + wp = 0.

From the definition of the function Ψp(ξ;X) in Section 3.2, we see that

Ψp(ξ;αp) = pep(3/2−k)a(pep)Wϕ̃p,ξ(1).

We define Wp,ξ := pep(3/2−k)a(pep)Wϕ̃p,ξ, so that we have Wp,ξ(1) =
Ψp(ξ;αp).

iii) If v = p is a finite prime with p | M , then π̃p is the supercuspidal odd
Weil representation r−

ψ
D

p

explained in Section 5.2.1. The subspace of vec-

tors in π̃p on which Γ̃0(p
2) ⊆ S̃L2(Zp) acts through χ

0,p
(= χ

p
) is one-

dimensional, and hence the p-th component hp ∈ π̃p of h is a multiple
of the newvector ϕ̃p chosen as in [BM07, Proposition 8.5] (see Lemma
8.3 below). The representation π̃p = r−

ψ
D

p

is distinguished, in the sense

that it only has non-trivial ψξp-Whittaker functionals for ξ in the same
square class as −D. Equivalently, this holds if and only if −ξ is in the
same square class as D. If this is the case, we choose the local Whittaker
function Wϕ̃p,ξ associated with ϕ̃p to satisfy Wϕ̃p,ξ(1) = 1Z×

p
(fξ)χp(fξ)

−1

(this normalization differs slightly from the one chosen in [BM07, Section
8]). From the definition of the function Ψp(ξ;X) in Section 3.2, we now
have

Ψp(ξ;αp) = 2pep(1/2−k)a(pep)χ
p
(fξ)Wϕ̃p,ξ(1).

We define Wp,ξ := 2pep(1/2−k)a(pep)Wϕ̃p,ξ, so that Ψp(ξ;αp) =
χ
p
(fξ)Wp,ξ(1).

iv) At the archimedean place v = ∞, again as in [Ich05, Section 7.2] we
define W∞,ξ by setting

W∞,ξ(u(x)t(a)kθ) = e2π
√
−1ξxak+1/2e−2πξa2e

√
−1(k+1/2)θ

for x ∈ R, a ∈ R×
+, θ ∈ R/4πZ and kθ =

(
cos θ sin θ
− sin θ cos θ

)
∈ SO(2). In

particular, W∞,ξ(1) = e−2πξ.
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With these choices, we see from equation (17) and Lemma 3.1 that

Wh,ξ(1) = e−2πξ2−ν(N)c(dξ)χ(fξ)f
k−1/2
ξ

∏

p

Ψp(ξ;αp) =

= 2−ν(N)c(dξ)f
k−1/2
ξ

∏

v

Wv,ξ(1), (33)

and so the next lemma follows immediately by combining (33) with (32).

Lemma 5.14. With the above notations, for B 6= 0 we have

Wθ(h,φh),B =

{
2−ν(N)c(dξ)f

k−1/2
ξ ζQ(2)

−1
∏
vWB,v if ξ > 0,

0 if ξ ≤ 0,
(34)

where WB,v(h) equals

∫

U(Qv)\ SL2(Qv)

ω̂v(g, h)φ̂h,v(β; 0, 1)Wv,ξ(g)dg ×
{
vol(SL2(Zp))−1 if v = p,

vol(SO(2))−1 if v = ∞.

As before, here ξ = det(B) and β = (b3, b2/2,−b1) if B =
(

b1 b2/2
b2/2 b3

)
.

By using this lemma, we can now determine the Fourier coefficients Wθ(h,φh),B

by computing the local functions WB,v. Because of the invariance prop-
erties spelled out in Lemma 5.12, we see that θ(h, φh) is right invariant
for K(NM,M). In particular, as commented above the Fourier coeffi-
cients Wθ(h,φh),B are determined by the values Wθ(h,φh),B(g∞) with g∞ =
n(X)m(A, 1) as in (29). Hence we only need to determine the values WB,p(1)
at finite primes p, together with WB,∞(n(X)m(A, 1)). We discuss case by case
such computations.

5.3.1 Computation at primes p ∤ N

At primes p ∤ N , we can compute WB,p(1) literally as in [Ich05, Sections
7.3, 7.4]. We summarize the outcome of such computation. At each prime
p ∤ N , we continue to denote by {αp, α−1

p } the Satake parameter of f at p, and
consider the function Ψp(ξ;X) ∈ C[X +X−1] as above. Recall that φh,p is the
characteristic function of V5(Zp). Further, from Lemma 5.12 we have

ωp((k, sp(k)), k
′)φh,p = φh,p

for all k ∈ SL2(Zp) and k′ ∈ GSp2(Zp), and φ̂h,p = φp,1 ⊗ φp,2, where φp,1 ∈
S(V3(Qp)) and φp,2 ∈ S(Q2

p) are the characteristic functions of V3(Zp) and Z2
p,

respectively. In this case, one finds out that for ξ 6= 0

WB,p(1) =

{∑min(ordp(bi))
n=0 pn/2Ψp(p

−2nξ;αp) if b1, b2, b3 ∈ Zp,
0 otherwise.

(35)
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At the prime p = 2, the 2-component φh,2 of the Bruhat–Schwartz function φh
is the characteristic function of Z2v3 + V5(2Z2), which satisfies ω2(k, k

′)φh,2 =
ǫ̃2(k)φh,2 for all k ∈ Γ0(4;Z2), k

′ ∈ GSp2(Z2) (cf. Lemma 5.12). In this case
one finds, for ξ 6= 0,

WB,2(1) =

{
2−7/2

∑min(ord2(bi))
n=0 2n/2Ψ2(2

−2n+2ξ;α2) if b1, b2, b3 ∈ Z2,

0 otherwise.

(36)

5.3.2 Computation at primes p | N/M

Let p be a prime dividing N/M . Now φ̂h,p is not SL2(Zp)-invariant, but only
Γ0(p)-invariant. Let Rp be a set of representatives for SL2(Zp)/Γ0(p). Then,
using that SL2(Qp) = U(Qp)T (Qp) SL2(Zp) we have

WB,p(h) =
1

vol(SL2(Zp))

∫

Q×

p

∫

SL2(Zp)

ω̂p(t(a)k, h)φ̂h,p(β; 0, 1)
Wp,ξ(t(a)k)

|a|2p
dkd×a =

= cp

∫

Q×

p

∑

r∈Rp

ω̂p(t(a)r, h)φ̂h,p(β; 0, 1)Wp,ξ(t(a)r)|a|−2
p d×a,

where cp := [SL2(Zp) : Γ0(p)]
−1 = vol(Γ0(p))

vol(SL2(Zp))
. We will compute WB,p(1). If

a ∈ Q×
p and r ∈ Rp, recall from (31) that

ω̂p(t(a)r, 1)φ̂h,p(β; 0, 1) = ωp((t(a)r, 1))φ1,p(β)φ2,p((0, 1)t(a)r),

where φ1,p(x) = 1Zp
(x1)1Zp

(x2)1Zp
(x3) and φ2,p(y) = 1pZp

(y1)1Z×

p
(y2). We

take Rp to be the set consisting of the elements
(

1 0
b 1

)
, with b ∈ Zp/pZp, and

(
0 −1
1 0

)
.

Therefore, the elements t(a)r with a ∈ Q×
p , r ∈ Rp, are precisely the elements

of the form(
a 0

a−1b a−1

)
,

(
0 −a
a−1 0

)
, a ∈ Q×

p , b ∈ Zp/pZp.

From the very definition of φ2,p, it is immediate to see that φ2,p((0, 1)t(a)r) = 0
unless r = 1 and a ∈ Z×

p . Therefore, we deduce that

WB,p(1) = cp

∫

Z×

p

ω̂p(t(a), 1)φ̂h,p(β; 0, 1)Wp,ξ(t(a))d
×a =

= cpφ1,p(β)

∫

Z×

p

Wp,ξ(t(a))d
×a =

= cp1Zp
(b3)1Zp

(b2)1Zp
(b1)

∫

Z×

p

Wp,ξ(t(a))d
×a =

= cp1Zp
(b3)1Zp

(b2)1Zp
(b1)Ψp(ξ;αp),
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where we have used that for a ∈ Z×
p one has (here, recall that ψ = ψ−D

p , where
ψp is the standard additive character of Qp, and δ ∈ Z×

p is any non-square unit)

Wp,ξ(t(a)) = χψ(a
−1)χδ(a

−1)|a|1/2p Wp,a2ξ(1) =

=Wp,a2ξ(1) = Ψp(a
2ξ;αp) = Ψp(ξ;αp).

We conclude that

WB,p(1) =

{
[SL2(Zp) : Γ0(p)]

−1Ψp(ξ;αp) if b1, b2, b3 ∈ Zp,
0 otherwise.

(37)

5.3.3 Computation at primes p |M

We proceed similarly as in the previous case. But now if p is a prime dividingM ,
then φ̂h,p is only Γ0(p

2)-invariant. If we denote by Rp2 a set of representatives
for SL2(Zp)/Γ0(p

2), then we have

WB,p(h) =
1

vol(SL2(Zp))

∫

Q×

p

∫

SL2(Zp)

ω̂p(t(a)k, h)φ̂h,p(β; 0, 1)
Wp,ξ(t(a)k)

|a|2p
dkd×a =

= cp2

∫

Q×

p

∑

r∈Rp2

ω̂p(t(a)r, h)φ̂h,p(β; 0, 1)Wp,ξ(t(a)r)|a|−2
p d×a,

where now cp2 := [SL2(Zp) : Γ0(p
2)]−1 = vol(Γ0(p

2))
vol(SL2(Zp))

. To compute WB,p(1), as

before we notice that for a ∈ Q×
p and r ∈ Rp2 we have

ω̂p(t(a)r, 1)φ̂h,p(β; 0, 1) = ωp((t(a)r, 1))φ1,p(β)φ2,p((0, 1)t(a)r),

where now φ1,p(x) = 1pZp
(x1)1Zp

(x2)1Zp
(x3) and φ2,p(y) =

1p2Zp
(y1)1Z×

p
(y2)χ

−1
0,p

(y2). We might take as a set of representatives for

SL2(Zp)/Γ0(p
2) the set Rp2 consisting of the elements

(
1 0
b 1

)
, with b ∈ Zp/p2Zp, and

(
0 −1
1 0

)
,

hence the elements t(a)r with a ∈ Q×
p , r ∈ Rp, are precisely the elements of

the form

(
a 0

a−1b a−1

)
,

(
0 −a
a−1 0

)
, a ∈ Q×

p , b ∈ Zp/p2Zp.
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As in the previous case, one easily checks that φ2,p((0, 1)t(a)r) = 0 unless r = 1
and a ∈ Z×

p , hence it follows that

WB,p(1) = cp2

∫

Z×

p

ω̂p(t(a), 1)φ̂h,p(β; 0, 1)Wp,ξ(t(a))d
×a =

= cp2φ1,p(β)

∫

Zp

χ
0,p

(a)Wp,ξ(t(a))d
×a =

= cp21pZp
(b3)1Zp

(b2)1Zp
(b1)

∫

Zp

χ
0,p

(a)Wp,ξ(t(a))d
×a =

= cp21pZp
(b3)1Zp

(b2)1Zp
(b1)χ0,p

(fξ)
−1Ψp(ξ;αp),

where we have used that for a ∈ Z×
p one has Wp,ξ(t(a)) = χ

p
(afξ)

−1Ψp(ξ;αp)

for a ∈ Z×
p . We thus obtain

WB,p(1) =

{
[SL2(Zp) : Γ0(p

2)]−1χ(p)(fξ)Ψp(ξ;αp) if b1, b2 ∈ Zp, b3 ∈ pZp,

0 otherwise.

(38)

5.3.4 Computation at the archimedean place

At the archimedean place, the determination of WB,∞ is carried out in [Ich05,
Section 7.5]. Recall that the ∞-component φh,∞ ∈ S(V5(R)) of φh is given by

φh,∞(x) = (x2 +
√
−1x1 +

√
−1x5 − x4)

k+1e−π(x
2
1+x

2
2+2x2

3+x
2
4+x

2
5),

and it satisfies (cf. Lemma 5.12)

ω∞(k̃θ, k
′)φh,∞ = e−

√
−1(k+1/2)θ det(k)k+1φh,∞

for k̃θ ∈ S̃O(2) and k′ =
(

α β
−β α

)
∈ Sp2(R) with k = α+

√
−1β ∈ U(2). Then it

is proved in [Ich05, Lemma 7.6] that for ξ > 0, A ∈ GL+
2 (R) and X ∈ Sym2(R),

one has

WB,∞(n(X)diag(A, tA−1)) =

{
2k+1 det(Y )(k+1)/2e2π

√
−1Tr(BZ) if B > 0,

0 if B < 0,

(39)
where Y = AtA, Z = X +

√
−1Y .

5.3.5 Proof of Proposition 5.10

We are finally in position to compute the Fourier coefficients for θ(h, φh). Let
us fix B ∈ Sym2(Q), and

g∞ = n(X)m(A, 1) = n(X)diag(A, tA−1) ∈ Sp2(R)
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with X ∈ Sym2(R) and A ∈ GL+
2 (R). By using (35)-(39) above, we may

assume that B > 0, and that b1, b2, b3 ∈ Z with b3 ∈ MZ; otherwise we have
Wθ(h,φh)(g∞) = 0. In that case, by virtue of (34) we have

Wθ(h,φh),B(g∞) = 2−ν(N)ζQ(2)
−1c(dξ)f

k−1/2
ξ WB,∞(g∞)

∏

p

WB,p(1),

where WB,∞(g∞) = 2k+1 det(Y )(k+1)/2e2π
√
−1Tr(BZ) as in (39). For ease of

notation, let us write W∞ := 2−k−1WB,∞(g∞) = det(Y )(k+1)/2e2π
√
−1Tr(BZ),

and to abbreviate put

µN,M := [SL2(Z) : Γ0(NM)]−1 =M−1[SL2(Z) : Γ0(N)]−1.

Then, using (35)-(38), Wθ(h,φh),B(g∞) equals

Wθ(h,φh),B(g∞) = 2k−ν(N)−5/2ζQ(2)
−1µN,Mc(dξ)χ(fξ)f

k−1/2
ξ W∞×

×
∏

p∤N

min(ordp(bi))∑

n=0

pn/2Ψp

(
4ξ

p2n
;αp

)∏

p|N
Ψp(ξ;αp).

Next, observe that d4ξ = dξ, hence c(dξ) = c(d4ξ), and that f
k−1/2
ξ =

2−k+1/2f
k−1/2
4ξ . Therefore, the previous expression can be rewritten as

Wθ(h,φh),B(g∞) = 2−ν(N)−2ζQ(2)
−1µN,Mc(d4ξ)χ(fξ)f

k−1/2
4ξ W∞×

×
∑

d|(b1,b2,b3),
(d,N)=1

d1/2
∏

p∤N

Ψp

(
4ξ

d2
;αp

)∏

p|N
Ψp (ξ;αp) .

Now, for every integer d with (d,N) = 1, we have c(d4ξ) = c(d4ξ/d2), f
k−1/2
4ξ =

dk−1/2f4ξ/d2 , and Ψp (ξ;αp) = Ψp

(
4ξ
d2 ;αp

)
for every prime p | N . Hence,

Wθ(h,φh),B(g∞) equals

µN,MW∞
22ζQ(2)

∑

d|(b1,b2,b3),
(d,N)=1

dk2−ν(N)c(d4ξ/d2)χ(fξ)f
k−1/2
4ξ/d2

∏

p

Ψp

(
4ξ

d2
;αp

)
=

=
µN,MW∞
22ζQ(2)

∑

d|(b1,b2,b3),
(d,N)=1

χ(d/2)dk2−ν(N)c(f4ξ/d2)χ(f4ξ/d2)f
k−1/2
4ξ/d2

∏

p

Ψp

(
4ξ

d2
;αp

)
=

=
µN,MW∞
22χ(2)ζQ(2)

∑

d|(b1,b2,b3),
(d,N)=1

χ(d)dkc(4ξ/d2) =

=
µN,M

22χ(2)ζQ(2)
det(Y )(k+1)/2e2π

√
−1Tr(BZ)Aχ(B).
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Thus, we conclude that when B > 0 and b1, b2, b3 ∈ Z with b3 ∈MZ,

Wθ(h,φh)⊗χ,B(g∞) = Wθ(h,φh),B(g∞) = CWFχ,B(g∞) = CWRMFχ,B(g∞),

where C = 2−2χ(2)−1µN,MζQ(2)
−1. Since both Wθ(h,φh)⊗χ,B and WRMFχ,B

vanish when either B is not positive definite or (b1, b2, b3) 6∈ Z × Z ×MZ, it
follows that θ(h, φh)⊗ χ = CRMFχ as desired.

6 The main result

In this section we finally state precisely and prove the main result of this paper,
relegating the technical local computations to the subsequent sections. Since
our approach relies crucially on a decomposition formula of Qiu [Qiu14] for
an automorphic SL2-period, we first explain how such period is related to the
central L-value that we want to compute.

6.1 Qiu’s decomposition formula for the SL2-period

Let π (resp. τ) be an irreducible cuspidal automorphic representation of
PGL2(A) (resp. GL2(A)). Fix a non-trivial additive character ψ of A/Q,
and let π̃ ∈ Waldψ(π) be an irreducible cuspidal automorphic representation

of S̃L2(A), belonging to the Waldspurger packet of π with respect to ψ as ex-

plained in Section 5.2. Let also ω = ωψ be the Weil representation of S̃L2(A)
acting on the space S(A) of Bruhat–Schwartz functions (for the one dimen-
sional quadratic space endowed with bilinear form (x, y) = 2xy) with respect
to ψ. Associated with π̃, τ and ω, there is a (global) SL2-period functional

Q : π̃ ⊗ π̃ ⊗ τ ⊗ τ ⊗ ω ⊗ ω −→ C

defined by associating to each choice of decomposable vectors h1,h2 ∈ π̃,
g1,g2 ∈ τ , φφφ1,φφφ2 ∈ ω, the product of integrals

Q(h1,h2,g1,g2,φφφ1,φφφ2) :=

∫

[SL2]

h1(g)g1(g)Θφφφ1
(g)dg ·

∫

[SL2]

h2(g)g2(g)Θφφφ2
(g)dg.

It is proved in [Qiu14, Theorem 4.5] that this global period, if it is non-
vanishing, decomposes as a product of local SL2-periods up to certain L-values.
Namely, one has

Q(h1,h2,g1,g2,φφφ1,φφφ2) =
1

4

L(1/2, π × adτ)

L(1, π, ad)L(1, τ, ad)
×

×
∏

v

Iv(h1,v,h2,v,g1,v,g2,v,φφφ1,v,φφφ2,v), (40)

where for each place v, the local period Iv(h1,v,h2,v,g1,v,g2,v,φφφ1,v,φφφ2,v) is
defined by integrating a product of matrix coefficients, and equals

L(1, πv, ad)L(1, τv, ad)

L(1/2, πv × adτv)

∫

SL2(Qv)

〈π̃(gv)h1,v,h2,v〉〈τ(gv)g1,v,g2,v〉〈ωv(gv)φφφ1,v,φφφ2,v〉dgv.
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When π (resp. τ) is the automorphic representation of PGL2(A) (resp.
GL2(A)) associated with the newform f (resp. g) as in the introduction, notice
that L(1/2, π× adτ) coincides indeed with the special value Λ(f ⊗Ad(g), k) =
Λ(f ′ ⊗ Sym2(g), 2k) that we are concerned with.

Remark 6.1. Qiu’s definition of the local periods Iv includes a factor ζv(2)
−1,

and then the decomposition formula in (40) has accordingly a factor ζQ(2) on
the right hand side. We have chosen to redefine the local periods by the above
expression due to our different choice of local measures dgv.

The proof of the central value formula in Theorem 1.1 will rest crucially on this
decomposition result, thus it is essential to characterize the conditions under
which Q does not vanish. In this sense, we shall note the following (see [Qiu14,
Proposition 4.1], and [GG09, Theorem 7.1]):

Proposition 6.2. The functional Q is non-vanishing on π̃⊗ π̃⊗ τ ⊗ τ ⊗ω⊗ω
if and only if the following conditions hold:

i) L(1/2, π × adτ) 6= 0;

ii) π̃ = π̃ǫ with ǫv = ǫ(1/2, πv ⊗ τv ⊗ τ∨v );

iii) ǫ(1/2, πv ⊗ τv ⊗ τ∨v ) = 1 when πv is not square-integrable.

In condition ii), π̃ǫ refers to the automorphic representation in Waldψ(π) la-
belled by the tuple ǫ = (ǫv)v ∈ {±1}|Σ(π)| as in Theorem 5.9. In particular,
notice that fixed the automorphic representation π there is only one automor-
phic representation for S̃L2(A) in the (finite) set Waldψv

(πv) which makes the
periodQ non-vanishing. When πv is not square-integrable, recall from Theorem
5.7 that the local Waldspurger packet Waldψv

(πv) consists of a single element,
labelled π̃v. Therefore, condition iii) is meant to ensure that condition ii) is not
failing by obvious reasons. Also, condition i) implies that ε(1/2, π × adτ) = 1,
and hence

∏
v ǫv = ǫ(1/2, πv⊗ τv⊗ τ∨v ) = ǫ(1/2, π), ensuring that π̃ǫ is a global

automorphic representation.

6.2 The central value formula

Now we put ourselves in the setting of interest in this paper. Let k ≥ 1 be an
odd integer, N ≥ 1 be an odd square-free integer, and let f ∈ Snew2k (Γ0(N)) be
a normalized newform of weight 2k, level N , and trivial nebentype. Let also χ
be a Dirichlet character modulo N , and g ∈ Snewk+1 (Γ0(N), χ) be a normalized
newform of weight k+1, level N , and nebentype character χ. Write M ≥ 1 for
the conductor of χ, which divides N , and assume Hypotheses (H1) and (H2).
That is to say, χ(p)(−1) = −1 for all p |M and εp(f) = −1 for all p |M . Here,
the Dirichlet character χ(p) : (Z/pZ)× → C× is the p-th component of χ.
Let π and τ be the cuspidal automorphic representations of PGL2(A) and
GL2(A), respectively, associated with f and g. Fix a fundamental discriminant
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D ∈ D(N,M) as in Theorem 2.1, and assume further that L(f,D, k) 6= 0. Let
ψ be the standard additive character of A/Q, and let

π̃ = Θ
PGL2 ×S̃L2

(π ⊗ χD, ψ
−D) ∈ Waldψ(π)

be the automorphic representation of S̃L2(A) as explained at the end of Section
5.2, where ψ = ψ−1 is the (−1)-th twist (equivalently, the inverse, or the
complex conjugate) of ψ. Recall that, as an element of Waldψ(π), π̃ corresponds

to the automorphic representation labelled by the tuple ǫ = (ǫv)v ∈ {±1}|Σ(π)|

with ǫ∞ = −1 and

ǫp = wp for all primes p | N/M, ǫp = −wp for all primes p |M.

Under the hypothesis (H2), we thus have ǫp = 1 for all primes p | M .
Recall also that the adelization of the half-integral weight cuspidal forms
h ∈ S+,new

k+1/2 (4NM,χ; f ⊗ χ) as in Theorem 2.1 belong to this particular el-

ement π̃ in the Waldspurger packet Waldψ(π).
In this setting and under our assumptions, the criterion for the non-vanishing
of the SL2-period

Q : π̃ ⊗ π̃ ⊗ τ ⊗ τ ⊗ ωψ ⊗ ωψ −→ C

is reduced to the following statement:

Proposition 6.3. With the above choices, the functional Q is non-vanishing
if and only if

Λ(f ⊗Ad(g), k) 6= 0.

Proof. In the current setting, condition iii) in Proposition 6.2 obviously holds,
and we claim that condition ii) holds if and only if hypothesis (H2) is satisfied.
Indeed, we only need to take care of condition ii) in Proposition 6.2 at places
v | N∞. First of all, at the archimedean place v = ∞ we have ǫ∞ = −1,
and our choice of weights implies that ε(1/2, π∞ ⊗ τ∞ ⊗ τ∨∞) = −1 as well.
Secondly, suppose that p is a prime dividing N/M . Then both πp and τp
are quadratic twists of the Steinberg representation, and [Pra90, Proposition
8.6] shows that ε(1/2, πp ⊗ τp ⊗ τ∨p ) = ε(1/2, πp) = wp, which agrees with ǫp.
And finally, suppose that p is a prime factor of M . In this case, πp is again
a quadratic twist of the Steinberg representation, but τp is now a (ramified)
principal series representation. Then, [Pra90, Proposition 8.4] implies that
ε(1/2, πp ⊗ τp ⊗ τ∨p ) = 1. Under hypothesis (H2), this indeed agrees with ǫp
as pointed out above, and therefore the statement follows from Proposition
6.2.

In light of this proposition, the period functional Q is therefore non-vanishing
if we assume that Λ(f ⊗ Ad(g), k) 6= 0. When this holds, the strategy for
proving our central value formula is now clear. Indeed, let h ∈ π̃, g ∈ τ , and
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φφφ ∈ ωψ be decomposable vectors, and write Q(h,g,φφφ) := Q(h,h,g,g,φφφ,φφφ),
and Iv(h,g,φφφ) := Iv(hv,hv,gv,gv,φφφv,φφφv), so that

Iv(h,g,φφφ) =
L(1, πv, ad)L(1, τv, ad)

L(1/2, πv × adτv)
×

×
∫

SL2(Qv)

〈π̃(gv)hv,hv〉〈τ(gv)gv,gv〉〈ωψv
(gv)φφφv,φφφv〉dgv.

Regularizing these local periods by setting

I♯v(h,g,φφφ) :=
Iv(h,g,φφφ)

〈hv,hv〉〈gv,gv〉〈φφφv,φφφv〉
=

Iv(h,g,φφφ)
||hv||2||gv||2||φφφv||2

,

we will write

I♯v(h,g,φφφ) =
L(1, πv, ad)L(1, τv, ad)

L(1/2, πv × adτv)
α♯v(h,g,φφφ), (41)

where

α♯v(h,g,φφφ) :=

∫

SL2(Qv)

〈π̃(gv)hv,hv〉
||hv||2

〈τ(gv)gv,gv〉
||gv||2

〈ωψv
(gv)φφφv,φφφv〉
||φφφv||2

dgv. (42)

Then, if one can choose h, g and φφφ so that Q(h,g,φφφ) does not vanish, then
one might rewrite (40) as

Λ(f ⊗Ad(g), k) =
4L(1, π, ad)L(1, τ, ad)

〈h,h〉〈g,g〉〈φφφ,φφφ〉

(
∏

v

I♯v(h,g,φφφ)−1

)
Q(h,g,φφφ). (43)

By virtue of this identity, our proof of Theorem 1.1 consists essentially in
choosing an appropriate test vector h⊗ g⊗φφφ ∈ π̃ ⊗ τ ⊗ωψ for which the right
hand side of (43) does not vanish. Computing the regularized local periods
I♯v(h,g,φφφ) and translating the global period Q(h,g,φφφ) into classical terms,
leads eventually to the desired explicit central value formula.

Theorem 6.4. Let k,N ≥ 1 be odd integers. Let f ∈ Snew2k (Γ0(N)) and g ∈
Snewk+1 (Γ0(N), χ) be normalized newforms, and assume (SF), (H1), and (H2).

If h ∈ S+,new
k+1/2 (4NM,χ; f ⊗ χ) and Fχ denote a Shimura lift of f as above and

its Saito–Kurokawa lift, then

Λ(f ⊗Ad(g), k) = 2k+1−ν(M)C(N,M,χ)
〈f, f〉
〈h, h〉

|〈(id⊗ UM )Fχ|H×H, g × g〉|2
〈g, g〉2 ,

(44)
where ν(M) denotes the number of prime divisors of M , and

C(N,M,χ) = |χ(2)|−2M3−kN−1
∏

p|N
(p+ 1)2

∏

p|M
(p+ 1).
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Proof. Suppose first that Λ(f ⊗ Ad(g), k) 6= 0. By Proposition 6.3, the func-
tional period Q does not vanish, and so we might use (43) for a suitable choice
of test vector. Keeping the notations as above, consider the pure tensor

h⊗ ğ ⊗φφφ ∈ π̃ ⊗ τ ⊗ ωψ,

where h ∈ Ãk+1/2(4NM,χ
0
) is the adelization of h, ğ = VMg♯ ∈ τ is the

automorphic cusp form obtained from the adelization g ∈ τ of g as in Section
5.1, and φφφ ∈ ωψ is the one-dimensional Bruhat–Schwartz function determined

by requiring that φφφq = 1Zq
at all finite primes p, and φφφ∞(x) = e−2πx2

for all
x ∈ R.
With this choice, we have

〈h,h〉 = 1

2ζQ(2)
〈h, h〉, 〈ğ, ğ〉 = 〈g,g〉 = 1

ζQ(2)
〈g, g〉, 〈φφφ,φφφ〉 = ||φφφ∞||2 =

1

2
.

And by [Hid00, Theorem 5.15], [Wat02, §3.2.1], it is known that

L(1, π, ad) = 22kN−1[SL2(Z) : Γ0(N)]〈f, f〉,
L(1, τ, ad) = 2k+1N−1[SL2(Z) : Γ0(N)]〈g, g〉.

Therefore, the first factor on the right hand side of (43) for our choice of test
vector reads

4L(1, π, ad)L(1, τ, ad)

〈h,h〉〈g,g〉〈φφφ,φφφ〉 =
23k+5ζQ(2)

2[SL2(Z) : Γ0(N)]2〈f, f〉
N2〈h, h〉 .

Because of our choice of h, ğ, and φφφ, it follows from [Qiu14, Lemma 4.4] that
I♯q(h, ğ,φφφ) = 1 for all finite primes q ∤ 2N (notice that our choice for the
local measure dgq on SL2(Qq) is different to Qiu’s choice, but we have modified
accordingly the definition of the local periods Iv after (40), cf. Remark 6.1). In
the next sections we will compute the regularized local periods at the remaining
places: from Propositions 7.15, 8.19, 9.2, and 9.4, we have:

I♯v(h, ğ,φφφ)−1 =





p if v = p, p | N/M,
p(p+1)

2 if v = p, p |M,

1 if v = 2 or v = ∞.

Therefore, in (43) we have

I :=
∏

v

I♯v(h, ğ,φφφ)−1 = N
∏

p|M

(p+ 1)

2
= 2−ν(M)N

∏

p|M
(p+ 1).

Finally, it remains to deal with the global SL2-period Q(h, ğ,φφφ). Recall from
Sections 5.1 and 5.3 that we have associated Bruhat–Schwartz functions φğ ∈
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S(V4(A)) and φh = φφφ ⊗ φğ ∈ S(V5(A)) to ğ and h. By virtue of Proposition
5.1, we have

θ(YMG, φğ) = C1ğ,

where C1 = 2k−1M−1[SL2(Z) : Γ0(N)]−1ζQ(2)
−2〈g, g〉, and YMG ∈ Υ = Θ(τ)

is an automorphic form for GSO2,2 whose restriction to GL2 ×GL2 coincides
with g⊗VMg ∈ τ⊠τ . Write Π for the automorphic representation of PGSp2(A)
associated with θ(h, φh). It follows from the proof of [Qiu14, Theorem 5.3] that

Q(h, ğ,φφφ) = C−2
1 P(θ(h, φh),YMG),

where on the right hand side P : Π⊗Π⊗Υ⊗Υ→ C is an SO(V4)-period defined
by associating to any choice of decomposable vectors F1,F2 ∈ Π, G1,G2 ∈ Υ
the value

P(F1,F2,G1,G2) :=

∫

[SO(V4)]

F1(h)G1(h)dh ·
∫

[SO(V4)]

F2(h)G2(h)dh,

and we have abbreviated

P(θ(h, φh),YMG) = P(θ(h, φh), θ(h, φh),YMG,YMG)

(cf. [Qiu14, Section 5]). Let Πχ = Π⊗χ be the automorphic representation of
GSp2(A) associated with θ(h, φh)⊗χ. Since the similitude morphism is trivial
on SO(V4), if one defines a period functional

Pχ : Πχ ⊗Πχ ⊗Υ⊗Υ −→ C

by the same recipe as for P , then one has P(F1,F2,G1,G2) = Pχ(F1⊗χ,F2⊗
χ,G1,G2) for all decomposable vectors F1,F2 ∈ Π, G1,G2 ∈ Υ. In particular,

Q(h, ğ,φφφ) = C−2
1 Pχ(θ(h, φh)⊗ χ,YMG),

and thanks to Proposition 5.10 we deduce that

Q(h, ğ,φφφ) = C−2
1 |C2|2Pχ(RMFχ,YMG),

where C2 = 2−2χ(2)−1M−1[SL2(Z) : Γ0(N)]−1ζQ(2)
−1. Now, when restricted

to SO(V4), RMFχ coincides with the adelization of RMFχ|H×H, which in turn
equals (id ⊗ VMUM )Fχ|H×H. Besides, YMG restricted to GL2 ×GL2 is the

adelization of M (k+1)/2−1g × VMg. Therefore, we have

Pχ(RMFχ,YMG) = C2
3M

k−1|〈(id⊗ VMUM )Fχ|H×H, (id⊗ VM )g × g〉|2,

where C3 = 2−1ζQ(2)
−2 (cf. [II10, Section 9]). Furthermore, one can easily

check that

〈(id⊗ VMUM )Fχ|H×H, (id⊗ VM )g × g〉 =M2−k〈(id⊗ UM )Fχ|H×H, g × g〉,
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where now the right hand side makes sense as a Petersson product with respect
to Γ0(NM)× Γ0(NM). Therefore,

Pχ(RMFχ,YMG) = C2
3M

3−k|〈(id⊗ UM )Fχ|H×H, g × g〉|2.

Altogether, we have

Λ(f ⊗Ad(g), k) = C · I · 〈f, f〉〈h, h〉 |〈(id⊗ UM )Fχ|H×H, g × g〉|2,

where we put C = 23k+5ζQ(2)
2[SL2(Z) : Γ0(N)]2M3−kN−2|C2|2C2

3C
−2
1 . Plug-

ging the values of the constants, and of the product of local periods I, one
concludes that

Λ(f ⊗Ad(g), k) = 2k+1−ν(M)C(N,M,χ)
〈f, f〉
〈h, h〉

|〈(id⊗ UM )Fχ|H×H, g × g〉|2
〈g, g〉2 ,

where C(N,M,χ) is as in the statement.
Finally, when Λ(f ⊗ Ad(g), k) = 0 the global functional Q vanishes by
Proposition 6.3. In particular, Q(h, ğ,φφφ) = 0, and this implies that 〈(id ⊗
UM )Fχ|H×H, g × g〉 = 0. Thus we see that the formula in the statement holds
trivially in this case.

An immediate application of Theorem 6.4 is the following algebraicity result,
predicted by Deligne’s conjecture, in which c+(f) denotes the period associated
with f by Shimura as in [Shi77].

Corollary 6.5. Let f and g be as in Theorem 6.4. If σ ∈ Aut(C), then
(
Λ(f ⊗Ad(g), k)

〈g, g〉2c+(f)

)σ
=

Λ(fσ ⊗Ad(gσ), k)

〈gσ, gσ〉2c+(fσ) .

In particular, if Q(f, g) denotes the number field generated by the Fourier co-
efficients of f and g, then

Λ(f ⊗Ad(g), k)alg :=
Λ(f ⊗Ad(g), k)

〈g, g〉2c+(f) ∈ Q(f, g).

Proof. First of all, we may assume that the Fourier coefficients of h, and hence
of Fχ, belong to the number field Q(f, χ) generated by the Fourier coefficients
of f together with the values of χ. This is either a totally real field or a CM
field.
Choose a fundamental discriminant D < 0, D ∈ D(N,M), with L(f,D, k) 6= 0.
By Theorem 2.1 (see also Remark 2.2), if ch(|D|) denotes the |D|-th Fourier
coefficient of h, then

〈f, f〉
〈h, h〉 = 2k−1+ν(N)


∏

p|M

p

p+ 1


 |D|k−1/2Λ(f,D, k)

|ch(|D|)|2 .
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Combined with the central value formula in Theorem 6.4,

Λ(f ⊗Ad(g), k)alg = 22k+ν(N/M)C̃(N,M,χ)
|D|k−1/2Λ(f,D, k)

c+(f)|ch(|D|)|2 ×

× |〈(id⊗ UM )Fχ|H×H, g × g〉|2
〈g, g〉4 ,

where C̃(N,M,χ) = C(N,M,χ)
∏
p|M

p
p+1 . Now fix σ ∈ Aut(C). One has

ch(|D|)σ = chσ (|D|), and hence by the properties of the period c+(f) we have

( |D|k−1/2Λ(f,D, k)

c+(f)ch(|D|)2
)σ

=
|D|k−1/2Λ(fσ, D, k)

c+(fσ)chσ(|D|)2 .

Besides, F σχ is the Saito–Kurokawa lift of hσ and

( |〈(id⊗ UM )Fχ|H×H, g × g〉|2
〈g, g〉4

)σ
=

|〈(id⊗ UM )F σχ|H×H, g
σ × gσ〉|2

〈gσ, gσ〉4 ,

so the statement follows.

7 Computation of local periods at primes p | N/M

This section is devoted to compute the regularized local periods I♯p(h, ğ,φφφ) at
primes p | N/M . First of all, we will describe the local components ğp and hp
(up to scalar multiple), according to the local types of the representations τ and
π̃ at such primes. Then we will compute the matrix coefficients 〈τp(g)ğp, ğp〉
and 〈π̃p(g)hp,hp〉, for g ∈ SL2(Qp), which together with the Weil parings
〈ωψp

(g)φφφp,φφφp〉 will lead to the determination of I♯p(h, ğ,φφφ). Thus let us fix

through all this section a prime factor p of N/M , and let ψp denote the p-th
component of the standard additive character ψ : A/Q → C×.
For the GL2 case, τp a twist of the Steinberg representation Stp by some un-
ramified quadratic character ξ : Q×

p → C×. That is to say, it is the unique

irreducible subrepresentation of the induced representation π(ξ| · |1/2p , ξ| · |−1/2
p ).

The representation π(ξ| · |1/2p , ξ| · |−1/2
p ) is realized as the space of all locally

constant functions ϕ : GL2(Qp) → C satisfying the transformation property

ϕ
((

a b
0 d

)
x
)
= ξ(ad)

∣∣∣a
d

∣∣∣
p
ϕ(x) for all a, d ∈ Q×

p , b ∈ Qp, x ∈ GL2(Qp), (45)

and the subspace corresponding to τp is that of such functions which, in addi-
tion, satisfy a certain vanishing condition.
To describe ğp ∈ τp, notice first of all that ğp = gp because p ∤ M . Therefore,
ğp = gp belongs to the space τK0

p of K0-fixed vectors, where we abbreviate

K0 = K0(p) :=

{(
a b
c d

)
∈ GL2(Zp) : c ≡ 0 (mod p)

}
.
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The space τK0
p is well-known to be one-dimensional. When replacing gp by

a scalar multiple, the ratio 〈τp(g)ğp, ğp〉/||gp||2 remains invariant, so we can
freely choose a new vector in τK0

p and suppose that gp coincides with such
choice. Following [Sch02, Section 2.1], we can choose gp : GL2(Qp) → C in the
induced model to be the local vector characterized by the property that

gp|GL2(Zp) = 1K0
− 1

p
1K0wK0

, (46)

where w = ( 0 1
1 0 ) and 1X denotes the characteristic function of X ⊆ GL2(Zp).

Thanks to the Iwasawa decomposition for GL2(Qp), this together with the
rule (45) determines uniquely gp. Notice that being ξ : Q×

p → C× unramified
means that ξ(a) = 1 for all a ∈ Z×

p , hence ξ is completely determined by the
value ξ(p). Since ξ is quadratic, we have ξ(p) = ±1, and it is well-known that
ξ(p) = −1 (resp. +1) if and only if the local root number (or the Atkin–Lehner
eigenvalue) of τp is 1 (resp. −1).

Now we move to the case of S̃L2. Recall from Section 5.2.1 that π̃p is the

special representation σ̃δ(ψ
D

p ) of S̃L2(Qp), where δ ∈ Z×
p is any non-square

unit, and D ∈ Z×
p satisfies (Dp ) = wp = ε(1/2, πp). In order to lighten the

notation, we will write from now on ψ := ψ
D

p . As explained in Section 5.2.1,
the representation space of π̃p is then the space of locally constant functions

ϕ̃ : S̃L2(Qp) → C such that

ϕ̃ ([( a ∗
0 a−1 ) , ǫ] g) = ǫχψ(a)µ(a)|a|pϕ̃(g) = ǫχψ(a)χδ(a)|a|3/2p ϕ̃(g) (47)

for all g ∈ S̃L2(Qp) and a ∈ Q×
p , together with a certain vanishing condition

that we will not need here. Notice that χδ is the unique non-trivial quadratic
character of Q×

p hence its restriction to Z×
p is trivial, and χδ(p) = −1.

In order to describe hp, recall first that SL2(Zp) embeds into S̃L2(Qp) by g 7→
[g, sp(g)], and let Γ̃0 denote the image of Γ0 in S̃L2(Zp) under this embedding.

Then let 1
S̃L2(Zp)

be the (genuine) function on S̃L2(Qp) which sends [g, ǫ] to 0

if g 6∈ SL2(Zp) and to ǫsp(g) otherwise (thus it takes value 1 if [g, ǫ] lies in the
image of SL2(Zp), and −1 if g ∈ SL2(Zp) but sp(g) = −ǫ). Similarly, let 1Γ̃0

be

the function on S̃L2(Qp) which sends [g, ǫ] to 0 if g 6∈ Γ0 and to 1
S̃L2(Zp)

([g, ǫ])

otherwise. With these notations, the following is proved in [BM07, Lemma
8.3].

Lemma 7.1. The space of Γ̃0-fixed vectors in π̃p is one-dimensional, and a new

vector generating such space is given by the function ϕ̃p : S̃L2(Qp) → C whose

restriction to S̃L2(Zp) equals 1
S̃L2(Zp)

− (p+ 1)1Γ̃0
.

The condition in the statement determines completely ϕ̃p, thanks to the Iwa-

sawa decomposition of S̃L2(Qp) (which is lifted from that of SL2(Qp)). The p-th
component hp of the adelization h of the half-integral weight modular form h is
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therefore a scalar multiple of ϕ̃p. Since 〈π̃p(g)hp,hp〉/||hp||2 is invariant under
replacing hp by a scalar multiple of it, we may assume that hp = ϕ̃p.

Lemma 7.2. For the above choice of hp, we have ||hp||2 = p−1(p2 − 1).

Proof. This is a straightforward computation. Indeed, when restricted to
SL2(Zp) and Γ0 the functions 1

S̃L2(Zp)
and 1Γ̃0

become the characteristic func-

tions of SL2(Zp) and Γ0, respectively. Therefore,

||hp||2 =

∫

SL2(Zp)

hp(h)hp(h)dh =

∫

SL2(Zp)\Γ0

dh+ p2
∫

Γ0

dh =

= vol(SL2(Zp)− Γ0)) + p2 vol(Γ0).

Since our measure is normalized so that SL2(Zp) has volume ζp(2)
−1 = (1 −

p−1)(1+p−1), and Γ0 has index p+1 in SL2(Zp), it follows easily that vol(Γ0) =
p−1(1− p−1) and ||hp||2 = p−1(p2 − 1).

Finally, for simplicity we will write ωp = ωψp
for the local Weil representation of

S̃L2(Qp) acting on the space of Bruhat–Schwartz functions S(Qp), with respect
to the character ψp = ψ−1

p . Here, Qp is to be regarded as the one-dimensional
quadratic space endowed with the bilinear form (x, y) = 2xy. In our choice of
test vector, the p-th component of φφφ is φφφp = 1Zp

, the characteristic function
of Zp. It is easily checked that φφφp is invariant under the action of SL2(Zp). In
particular, it is also invariant under Γ0.
Having described the local components gp ∈ τp, hp ∈ π̃p, and φφφp ∈ S(Qp),
observe that the three of them are invariant under the action of Γ0. It thus
follows that for any g ∈ SL2(Qp) the values

Φğp
(g) :=

〈τp(g)ğp, ğp〉
||ğp||2

, Φhp
(g) :=

〈π̃p(g)hp,hp〉
||hp||2

, Φφφφp
(g) :=

〈ωp(g)φφφp,φφφp〉
||φφφp||2

depend only on the double coset Γ0gΓ0. Thus we only need to compute these
values for g varying in a set of representatives for the double cosets for Γ0 in
SL2(Qp). Define elements α, β ∈ SL2(Qp) by

α :=

(
p 0
0 p−1

)
, β := sα =

(
0 p−1

−p 0

)
,

where s =
(

0 1
−1 0

)
. Then the Cartan decomposition for SL2(Qp) relative to the

maximal compact open subgroup SL2(Zp) gives

G =
⊔

n≥0

SL2(Zp)αn SL2(Zp) =
⊔

n≥0

SL2(Zp)α−n SL2(Zp),

where we put αn := αn for any integer n. Combining this with the so-called
Bruhat decomposition for SL2 over the residue field Fp, one obtains also a
decomposition for SL2(Qp) in terms of Γ0:

SL2(Qp) =
⊔

n∈Z

Γ0αnΓ0 ⊔
⊔

m∈Z

Γ0βmΓ0. (48)

Documenta Mathematica 24 (2019) 1935–2036



2000 A. Pal, C. de Vera-Piquero

where βm := sαm = sαm. By virtue of (48) and our above observation, it will
be enough to compute the values Φgp

(g), Φhp
(g), and Φφφφp

(g) for g ∈ {αn, βm :
n,m ∈ Z}. We will need the volumes of the double cosets Γ0αnΓ0 and Γ0βmΓ0,
hence we collect them in the following lemma for ease of reference.

Lemma 7.3. Keep the same notation as above.

i) vol(Γ0α0Γ0) = vol(Γ0) = p−1(1− p−1), and for n 6= 0, one has

vol(Γ0αnΓ0) =

{
p2n−1(1− p−1) if n > 0,

p−2n−1(1− p−1) if n < 0.

ii) vol(Γ0β0Γ0) = vol(Γ0sΓ0) = (1− p−1), and for m 6= 0, one has

vol(Γ0βmΓ0) =

{
p2m−2(1− p−1) if m > 0,

p−2m(1− p−1) if m < 0.

Proof. For each g ∈ {αn, βm : n,m ∈ Z}, one writes the double coset Γ0gΓ0 as
a disjoint union of finitely many cosets Γ0gi. Then the volume of Γ0gΓ0 equals
the volume of Γ0 multiplied by the number of coset representatives gi. We omit
the details.

7.1 The GL2 case

In the case of matrix coefficients for GL2, the values Φgp
(g) for g ∈ SL2(Qp)

can be easily deduced from the results in [Woo, §3]. We explain briefly how to
get such values.

Proposition 7.4. For an integer n, we have Φgp
(αn) = p−2|n|.

Proof. Suppose that n ≥ 0, and notice first of all that, as elements of GL2(Qp),
we have

αn = p−nρ2n, where ρ2n =

(
p2n 0
0 1

)
.

In particular, it follows that Φgp
(αn) = ξ(p−n)2Φgp

(ρ2n) = ξ(p)−2nΦgp
(ρ2n).

According to [Woo, Proposition 3.8], for n ≥ 1 we have Φgp
(ρ2n) = ξ(p)2np−2n,

hence combining the last two identities we find out that Φgp
(αn) = p−2n. For

n = 0, α0 = Id2 and we trivially find Φgp
(Id2) = 1. Thus the statement holds

as well. When n < 0, we can proceed similarly. Indeed, we now have the
identity

αn = pnwρ−2nw, where w =

(
0 1
1 0

)
,

so that Φgp
(αn) = ξ(p)2nΦgp

(wρ−2nw). Now −2n > 0, and again by [Woo,
Proposition 3.8] Φgp

(wρ−2nw) = ξ(p)−2np2n. Altogether, we conclude as de-
sired that Φgp

(αn) = p2n.
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The next lemma deals with the case g = βm = sαm, for m ∈ Z.

Proposition 7.5. For an integer m, we have Φgp
(βm) = −p−|2m−1|.

Proof. First suppose that m > 0, and observe that

βm =

(
0 p−m

−pm 0

)
= p−m

(
0 1
p2m 0

)(
−1 0
0 1

)
.

Since τp is invariant by the rightmost element, we have Φgp
(βm) =

ξ(p)−2mΦgp
(wρ2m). Again by [Woo, Proposition 3.8], Φgp

(wρ2m) =
−ξ(p)2mp1−2m, hence we conclude that Φgp

(βm) = −p−2m+1. When m = 0,
observe that β0 = s. Since

s = w

(
−1 0
0 1

)

and τp is invariant by the rightmost element, we see that Φgp
(s) = Φgp

(w). By
[Woo, Proposition 3.8], Φgp

(w) = −p−1, hence for m = 0 we have Φgp
(β0) =

−p−1, which fits into the statement. Finally, suppose that m < 0 and write

βm = pm
(

0 p−2m

−1 0

)
= pm

(
0 p−2m

1 0

)(
−1 0
0 1

)
.

From this, Φgp
(βm) = ξ(p)2mΦgp

(ρ−2mw). Since −2m > 0, now [Woo, Propo-
sition 3.8] implies that Φgp

(ρ−2mw) = −ξ(p)−2mp2m−1, and hence for m < 0
we conclude as claimed that Φgp

(βm) = −p2m−1.

7.2 The S̃L2 case

For the computation of matrix coefficients in the S̃L2 case, it will be useful to
introduce the following subsets of SL2(Zp). For each integer j ≥ 0, we define

Lj :=
{(

a b
c d

)
∈ SL2(Zp) : ordp(c) = j

}
,

Rj :=
{(

a b
c d

)
∈ SL2(Zp) : ordp(d) = j

}
.

Recall that our measure on SL2(A) is chosen so that vol(SL2(Zp)) = ζp(2)
−1 =

1− p−2. By expressing the sets Lj and Rj in terms of the subgroups Γ0(p
j) ⊆

SL2(Zp), for j ≥ 0, one can easily prove:

Lemma 7.6. With the above notation, vol(L0) = vol(R0) = 1 − p−1, vol(L0 ∩
R0) = (1− p−1)2, and

vol(Lj) = vol(Rj) = p−j(1 − p−1)2 for all j > 0.

For the computation of the (normalized) matrix coefficients Φhp
(αn) and

Φhp
(βm), recall that S̃L2(Qp) = SL2(Qp) × {±1} as sets. The group oper-

ation is given by
[g1, ǫ1][g2, ǫ2] = [g1g2, ǫ(g1, g2)ǫ1ǫ2],
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where ǫ(g1, g2) = (x(g1)x(g1g2), x(g2)x(g1g2))p, with x : SL2(Qp) → Qp being
defined as

g =
(
a b
c d

)
7−→ x(g) =

{
c if c 6= 0,

d if c = 0.

Recall that we regard SL2(Zp) as a subgroup of S̃L2(Qp) via the splitting
k 7−→ [k, sp(k)], where

sp

((
a b
c d

))
=

{
(c, d)p if cd 6= 0 and ordp(c) is odd,

1 otherwise.

And recall also that hp ∈ π̃p is the function S̃L2(Qp) → C described in Lemma
7.1, which satisfies the transformation rule spelled out in (47).

7.2.1 Computation of Φhp
(αn)

Fix throughout this paragraph n ∈ Z, and identify αn with the element [αn, 1] ∈
S̃L2(Qp). In the computation of Φhp

(αn), we encounter products of the form
hαn, with h ∈ SL2(Zp) and n ∈ Z. This is to be seen as the product

[h, sp(h)][αn, 1] = [hαn, ǫ] ∈ S̃L2(Qp),

where using the above recipe we have ǫ = sp(h)ǫ(h, αn). The sign sp(h) ∈ {±1}
is given as above. And by using the definition of ǫ(·, ·), we have

ǫ(h, αn) = (x(h)x(hαn), x(αn)x(hαn))p.

Write

h =

(
a b
c d

)
, hαn =

(
apn bp−n

cpn dp−n

)
,

so that we have

sp(h) =

{
(c, d)p if cd 6= 0, ordp(c) is odd,

1 otherwise,
x(h) =

{
c if c 6= 0,

d if c = 0,

x(hαn) =

{
cpn if c 6= 0,

dp−n if c = 0.

Then one can easily check that

ǫ =





(d, pn)p if c = 0,

(c, dpn)p if cd 6= 0 and ordp(c) odd,

(c, pn)p otherwise.

(49)

To compute Φhp
(αn), we will need to evaluate hp at the element [hαn, ǫ]. And

to do so, we need to write down an Iwasawa decomposition of this element,
induced from an Iwasawa decomposition for hαn in SL2(Qp). The shape of
such an Iwasawa decomposition will vary according to whether h belongs to
the subregions A1(n) or A2(n) of SL2(Zp) that we now discuss.
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i) Let A1(n) ⊆ SL2(Zp) be the subset of h =
(
a b
c d

)
∈ SL2(Zp) with |cpn|p <

|dp−n|p. Equivalently, |c|p < p2n|d|p. Observe that one always has d 6= 0
in A1(n). If h ∈ A1(n), we have

hαn =

(
apn bp−n

cpn dp−n

)
=

(
d−1pn ∗

0 dp−n

)(
1 0

cd−1p2n 1

)
=: g1g2,

where notice that the rightmost element g2 belongs to Γ0. This lifts to
an identity

[hαn, ǫ] =

[(
d−1pn ∗

0 dp−n

)
, e

] [(
1 0

cd−1p2n 1

)
, 1

]
, (50)

where e = ǫ(g1, g2)ǫ. Since g1g2 = hαn, we have

ǫ(g1, g2) = (x(g1)x(hαn), x(g2)x(hαn))p =

{
(dc, dpn)p if c 6= 0,

1 if c = 0.

From our recipe for ǫ in (49), noticing that d 6= 0 in A1(n) and using
elementary properties of the Hilbert symbol, the above recipe for e = e(h)
when h ∈ A1(n) gets simplified to

e =

{
(cd, d)p(d, p

n)p if c 6= 0 and ordp(c) even,

(d, pn)p otherwise.
(51)

ii) Let A2(n) ⊆ SL2(Zp) be the subset of elements h =
(
a b
c d

)
∈ SL2(Zp)

with |cpn| ≥ |dp−n|p, or equivalently, |c|p ≥ p2n|d|p. In A2(n), observe
that one always has c 6= 0. For h ∈ A2(n), we have

hαn =

(
apn bp−n

cpn dp−n

)
=

(
c−1p−n ∗

0 cpn

)(
0 −1
1 dc−1p−2n

)
=: g1g2,

where now observe that g2 ∈ SL2(Zp)− Γ0. This identity lifts now to

[hαn, ǫ] =

[(
c−1p−n ∗

0 cpn

)
, e

] [(
0 −1
1 dc−1p−2n

)
, 1

]
, (52)

again with e = ǫ(g1, g2)ǫ. In this case, since c 6= 0 for all h ∈ A2(n), we
have

ǫ(g1, g2) = (x(g1)x(hαn), x(g2)x(hαn))p = (c2p2n, cpn)p = 1,

and therefore, when h ∈ A2(n) the value of e = e(h) is given as follows:

e = ǫ =

{
(c, d)p(c, p

n)p if d 6= 0 and ordp(c) odd,

(c, pn)p if d = 0 or ordp(c) even.
(53)
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As we know ||hp||2 from Lemma 7.2, to compute Φhp
(αn) we need to compute

〈π̃p(αn)hp,hp〉. And since A1(n) and A2(n) are disjoint by definition, and their
union is the whole SL2(Zp), we see that 〈π̃p(αn)hp,hp〉 equals

A1(n) +A2(n) :=

∫

A1(n)

hp(hαn)hp(h)dh+

∫

A2(n)

hp(hαn)hp(h)dh.

In the remaining of this section we will compute separately A1(n) and A2(n).
Observe that hp(h) only takes values 1 and −p for h ∈ SL2(Zp), hence we have
hp(h) = hp(h) in the above integrals.

Computation of A1(n)

We proceed now with the computation of A1(n) =
∫
A1(n)

hp(hαn)hp(h)dh.

Writing h =
(
a b
c d

)
as usual, by virtue of (50) and (47) we see that

A1(n) = −p1−3n/2(−1)nχψ(p
n)

∫

A1(n)

(d, pn)pχψ(d)e(h)χδ(d)|d|−3/2
p hp(h)dh,

where e(h) is given by the recipe in (51). Denote by I1(n) the last integral.
Defining

A+
1 (n) := {h ∈ A1(n) : c 6= 0 and ordp(c) even},

A−
1 (n) := {h ∈ A1(n) : c = 0 or ordp(c) odd},

we have, according to (51),

I1(n) =
∫

A+

1
(n)

(cd, d)pχψ(d)χδ(d)|d|−3/2
p hp(h)dh+

+

∫

A−

1
(n)

χψ(d)χδ(d)|d|−3/2
p hp(h)dh.

Observe that d is always a unit in A−
1 (n), thus the above becomes

I1(n) =
∫

A+

1
(n)

(cd, d)pχψ(d)χδ(d)|d|−3/2
p hp(h)dh+

∫

A−

1
(n)

hp(h)dh.

From this expression we will now easily obtain the value of A1(n).

Lemma 7.7. With the above notation,

A1(n) =

{
p−3n/2(−1)nχψ(p

n)(1− p−1)(1 + p− pn) if n > 0,

p3n/2(−1)nχψ(p
n)(1− p−1)p1−n if n ≤ 0.

Proof. Suppose that n > 0. First of all, observe that A−
1 (n) = A−

1 (0), which
up to a set of measure zero is the disjoint union of the sets L2j+1 with j ≥ 0.
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Therefore we have∫

A−

1
(n)

hp(h)dh =
∑

j≥0

∫

L2j+1

hp(h)dh = −p
∑

j≥0

vol(L2j+1) =

= −p
∑

j≥0

p−2j−1(1− p−1)2 = −(1− p−1)2
∑

j≥0

p−2j =

=
−(1− p−1)2

1− p−2
=

−(1− p−1)

1 + p−1
=

1− p

p+ 1
.

On the other hand, A+
1 (n) is the disjoint union of the sets L2j with j > 0,

L0 ∩ R0, and Rj with 1 ≤ j ≤ 2n − 1. If h ∈ L2j with j > 0, then h ∈ Γ0,
ordp(c) is even, and d is a unit. Thus

∫

L2j

(cd, d)pχψ(d)χδ(d)|d|−3/2
p hp(h)dh = −p

∫

L2j

1dh = −pvol(L2j) =

= −p1−2j(1− p−1)2,

and one deduces that
∑

j>0

∫

L2j

(cd, d)pχψ(d)χδ(d)|d|−3/2
p hp(h)dh = −p(1− p−1)2

∑

j>0

p−2j =

= −p−1 (1 − p−1)2

(1− p−2)
=

1− p

p(p+ 1)
.

When h ∈ L0 ∩R0, both c and d are units, and hp(h) = 1, hence
∫

L0∩R0

(cd, d)pχψ(d)χδ(d)|d|−3/2
p hp(h)dh = vol(L0 ∩R0) = (1− p−1)2.

Finally, if h ∈ Rj with j > 0, we have c ∈ Z×
p and ordp(d) = j. Using

elementary properties of the quadratic symbol, it follows that
∫

Rj

(cd, d)pχψ(d)χδ(d)|d|−3/2
p hp(h)dh = (−1)jχψ(p

j)p3j/2
∫

Rj

(cd, pj)pdh.

If j = 2t is even, then (cd, pj)p = 1 and we deduce that
∫

R2t

(cd, d)pχψ(d)χδ(d)|d|−3/2
p hp(h)dh = p3tvol(R2t) = pt(1− p−1)2.

In contrast, when j is odd, by applying the automorphism of Rj given by
conjugation by γu = ( u 0

0 1 ), with u ∈ Z×
p a non-quadratic residue, one sees that

the above integral equals the same integral multiplied by −1. Therefore, it
must vanish. As a consequence, we just have to compute

n−1∑

t=1

∫

R2t

(cd, d)pχψ(d)χδ(d)|d|−3/2
p hp(h)dh = (1− p−1)2

n−1∑

t=1

pt =

= (1− p−1)2
p− pn

1− p
= (1− p−1)2

pn−1 − 1

1− p−1
= (1 − p−1)(pn−1 − 1).
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Summing all the contributions, we find for n > 0

I1(n) = −(1−p−1)+(1−p−1)2+(1−p−1)(pn−1−1) = p−1(1−p−1)(pn−p−1),

and hence A1(n) = p−3n/2(−1)nχψ(p
n)(1 − p−1)(1 + p− pn).

Next assume that n ≤ 0. In this case, one easily checks that A+
1 (n) is the

disjoint union of the sets L2t for t > −n. Therefore, it follows that the integral
∫

A+

1
(n)

(cd, d)pχψ(d)χδ(d)|d|−3/2
p hp(h)dh

equals (notice that d is a unit)

∑

t>−n

∫

L2t

(cd, d)pχψ(d)χδ(d)|d|−3/2
p hp(h)dh = −p

∑

t>−n
vol(L2t) =

= −p(1− p−1)2
∑

t>−n
p−2t = −p2n−1 (1 − p−1)2

1− p−2
= −p2n p− 1

p(p+ 1)
.

Besides, one can check that up to a set of measure zero the set A−
1 (n) equals

the disjoint union of the sets L2j+1 with j ≥ −n. Therefore, the integral over
A−

1 (n) in the expression for I1(n) equals
∑

j≥−n

∫

L2j+1

hp(h)dh = −p
∑

j≥−n
vol(L2j+1) = −p(1− p−1)2

∑

j≥−n
p−2j−1 =

= −p2n (1− p−1)2

1− p−2
= −p2n p− 1

p+ 1
.

Altogether, we find for n ≤ 0 that

I1(n) = −p2n p− 1

p(p+ 1)
− p2n

p− 1

p+ 1
= −p2n p− 1

p+ 1
(1 + p−1) = −p2n−1(p− 1)

and therefore A1(n) = p−3n/2(−1)nχψ(p
n)(p− 1)p2n = p3n/2(−1)nχψ(p

n)(1−
p−1)p1−n.

Computation of A2(n)

We now deal with the computation of A2(n) =
∫
A2(n)

hp(hαn)hp(h)dh. Writing

h =
(
a b
c d

)
as usual, by virtue of (52) and (47) we see that

A2(n) = p3n/2(−1)nχψ(p
n)

∫

A2(n)

(c, pn)pχψ(c)e(h)χδ(c)|c|−3/2
p hp(h)dh,

where e(h) is given by the recipe in (53). Write I2(n) for the integral on the
right hand side. Then define

A+
2 (n) := {h ∈ A2(n) : d = 0 or ordp(c) even},

A−
2 (n) := {h ∈ A2(n) : d 6= 0 and ordp(c) odd},
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so that A2 = A+
2 (n) ⊔ A−

2 (n) and

I2(n) =
∫

A+

2
(n)

χψ(c)χδ(c)|c|−3/2
p hp(h)dh+

+

∫

A−

2
(n)

(c, d)pχψ(c)χδ(c)|c|−3/2
p hp(h)dh.

Concerning the second integral, applying conjugation by γu = ( u 0
0 1 ) shows that

such integral equals itself multiplied by −1, hence it vanishes. Therefore, we
have

I2(n) =
∫

A+

2
(n)

χψ(c)χδ(c)|c|−3/2
p hp(h)dh.

Using this expression, we can easily compute I2(n), and hence A2(n).

Lemma 7.8. With the above notation,

A2(n) =

{
p−3n/2(−1)nχψ(p

n)(1 − p−1)pn if n > 0,

p3n/2(−1)nχψ(p
n)(1 − p−1)(1 + p− p1−n) if n ≤ 0.

Proof. The proof goes along the same lines of the previous lemma, so we omit
the computations. We just point out that when n > 0 (resp. n ≤ 0) the set
A+

2 (n) coincides, up to a zero measure set, with the disjoint union of the sets
Rj , with j ≥ 2n (resp. the sets L2t, with 0 ≤ t ≤ −n).

Proposition 7.9. With the above notation, Φhp
(αn) = p−3|n|/2(−1)nχψ(p

n).

Proof. Recalling that Φhp
(αn) = 〈π̃p(αn)hp,hp〉/||hp||2, and that ||hp||2 =

p−1(p2 − 1) from Lemma 7.2, the statement follows by combining Lemmas 7.7
and 7.8 since 〈π̃p(αn)hp,hp〉 = A1(n) +A2(n).

7.2.2 Computation of Φhp
(βm)

Now we proceed with the computation of Φhp
(βm). Thus fix from now on

an integer m, and let βm = sαm =
(

0 p−m

−pm 0

)
∈ SL2(Qp). As before, we

identify αm with the element [αm, 1] ∈ S̃L2(Qp). We will need to evaluate hp
at products of the form

[hs, sp(hs)][αm, 1] = [hsαm, ǫ] ∈ S̃L2(Qp),

where ǫ = sp(hs)ǫ(hs, αm). If we write h =
(
a b
c d

)
, then

hs =

(
−b a
−d c

)
, hβm = hsαm =

(
−bpm ap−m

−dpm cp−m

)
,

so that

sp(hs) =

{
(c,−d)p if cd 6= 0, ordp(d) is odd,

1 otherwise,
x(hs) =

{
−d if d 6= 0,

c if d = 0,
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x(hβm) =

{
−dpm if d 6= 0,

cp−m if d = 0.

Besides, x(αm) = p−m, hence we can compute the sign

ǫ(hs, αm) = (x(hs)x(hβm), x(αm)x(hβm))p

as follows. If d 6= 0, we have ǫ(hs, αm) = (−d, pm)p, whereas if d = 0, we have
ǫ(hs, αm) = (c, pm)p. Together with the recipe for sp(hs), we have

ǫ = sp(hs)ǫ(hs, αm) =





(c,−d)p(−d, pm)p if cd 6= 0, ordp(d) is odd,

(−d, pm)p if cd 6= 0, ordp(d) is even,

(c, pm)p if d = 0,

(−d, pm)p if c = 0.

(54)

As in the case of the elements αn, now to compute Φhp
(βm) we need an Iwa-

sawa decomposition for [hβm, ǫ], induced from the Iwasawa decomposition in
SL2(Qp). Such a decomposition will depend on two subregions B1(m) and
B2(m) of SL2(Zp). The discussion is analogous to the one we did above for the
sets A1(n) and A2(n), thus we omit some details.

i) Let B1(m) ⊆ SL2(Zp) be the set of h =
(
a b
c d

)
∈ SL2(Zp) with |dpm|p <

|cp−m|p, or equivalently |d|p < p2m|c|p. Notice that one always has c 6= 0
in B1(m). If h ∈ B1(m), one has

[hβm, ǫ] =

[(
c−1pm ∗

0 cp−m

)
, e

] [(
1 0

−d
c p

2m 1

)
, 1

]
, (55)

where one can check that the sign e is given by the recipe

e =

{
(c, pm)p if d = 0 or ordp(d) is odd,

(c, d)p(c, p
m)p if d 6= 0 and ordp(d) is even.

(56)

ii) Let B2(m) ⊆ SL2(Zp) be the set of elements h =
(
a b
c d

)
∈ SL2(Zp) such

that |dpm|p ≥ |cp−m|p, or equivalently, |d|p ≥ p2m|c|p. Now, one always
has d 6= 0 in B2(m). If h ∈ B2(m), one has

[hβm, ǫ] =

[(
−d−1p−m ∗

0 −dpm
)
, e

] [(
0 −1
1 c

dp
−2m

)
, 1

]
, (57)

where the sign e is now computed according to the recipe

e =

{
(c,−d)p(−d, pm)p if ordp(d) is odd,

(−d, pm)p if ordp(d) is even.
(58)
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Now, to proceed with the computation of Φhp
(βm), we may focus on the com-

putation of the matrix coefficients 〈π̃p(βm)hp,hp〉, since we know ||hp||2 from
Lemma 7.2, and clearly 〈π̃p(βm)hp,hp〉 equals

B1(m) +B2(m) :=

∫

B1(m)

hp(hβm)hp(h)dh+

∫

B2(m)

hp(hβm)hp(h)dh.

Thus from now on, we will focus on the computation of the integrals B1(m)
and B2(m). Notice again that in the above expression one has hp(h) = hp(h).

Computation of B1(m)

We proceed now with the computation of B1(m) =
∫
B1(m) hp(hβm)hp(h)dh.

Writing h =
(
a b
c d

)
as usual, by virtue of (55) and (47) we see that

B1(m) = −p1−3m/2(−1)mχψ(p
m)

∫

B1(m)

(c, pm)pχψ(c)e(h)χδ(c)|c|−3/2
p hp(h)dh,

where e(h) is given by the recipe in (56). Let us denote by J1(m) the last
integral, and define

B+
1 (m) := {h ∈ B1(m) : d = 0 or ordp(d) odd},

B−
1 (m) := {h ∈ B1(m) : d 6= 0 and ordp(d) even}.

Then, according to (56) we have

J1(m) =

∫

B+

1
(m)

χψ(c)χδ(c)|c|−3/2
p hp(h)dh+

+

∫

B−

1
(m)

(c, d)pχψ(c)χδ(c)|c|−3/2
p hp(h)dh.

Observe that B+
1 (m) ⊆ SL2(Zp)−Γ0, hence hp(h) = 1 and c is a unit for all h ∈

B+
1 (m). Therefore, the first integral in the last expression equals vol(B+

1 (m)),
and

J1(m) = vol(B+
1 (m)) +

∫

B−

1
(m)

(c, d)pχψ(c)χδ(c)|c|−3/2
p hp(h)dh.

Lemma 7.10. With the above notation,

B1(m) =

{
p1−3m/2(−1)m+1χψ(p

m)(1− p−1)(1 + p− pm) if m > 0,

p3m/2(−1)m+1χψ(p
m)(1− p−1)p−m if m ≤ 0.

Proof. First, suppose that m ≤ 0. Then, up to a set of measure zero, B+
1 (m)

equals the union of the sets R2j+1 with j ≥ −m. Thus

vol(B+
1 (m)) =

∑

j≥−m
vol(R2j+1) = p−1(1− p−1)2

∑

j≥−m
p−2j =

= p2m−1(1− p−1)2
1

1− p−2
= p2m−1 1− p−1

1 + p−1
.
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Besides, B−
1 (m) equals the union of the sets R2j with j > −m. When h ∈ R2j

we have hp(h) = 1 and c is a unit, and one has
∫

B−

1
(m)

(c, d)pχψ(c)χδ(c)|c|−3/2
p hp(h)dh =

∑

j>−m
vol(R2j) = (1 − p−1)2

∑

j>−m
p−2j =

= p2m−2 1− p−1

1 + p−1
.

Altogether, in this case we see that J1(m) = p2m−1(1− p−1), and hence

B1(m) = −p1−3m/2(−1)mχψ(p
m)J1(m) = p3m/2(−1)m+1χψ(p

m)(1−p−1)p−m.

Now suppose that m > 0. One easily checks that B+
1 (m) = B+

1 (0), and that
B−
1 (m) is the union of B−

1 (0) together with the sets L0 ∩ R0 and the sets Lj
with 1 ≤ j ≤ 2m−1. Integration over L0∩R0 gives vol(L0∩R0) = (1−p−1)2.
For odd integers j with 1 ≤ j ≤ 2m− 1, we see with an already used argument
that ∫

Lj

(c, d)pχψ(c)χδ(c)|c|−3/2
p hp(h)dh

vanishes. And for j = 2t even, 1 ≤ t ≤ m− 1, we have
∫

L2t

(c, d)pχψ(c)χδ(c)|c|−3/2
p hp(h)dh = −p1+3tvol(L2t) = −p1+t(1− p−1)2.

Summing up all the contributions, for m > 0 one checks that J1(m) = (1 −
p−1)(1+ p− pm), and hence in this case B1(m) = p1−3m/2(−1)m+1χψ(p

m)(1−
p−1)(1 + p− pm).

Computation of B2(m)

We now deal with the computation of B2(m) =
∫
B2(m)

hp(hβm)hp(h)dh. Writ-

ing h =
(
a b
c d

)
as usual, by virtue of (57) and (47) we see that

B2(m) = p3m/2(−1)mχψ(p
m)

∫

B2(m)

e(h)(−d, pm)χψ(−d)χδ(d)|d|−3/2
p hp(h)dh,

where e(h) is given by the recipe in (58). Let us denote by J2(m) the last
integral, and define

B−
2 (m) := {h ∈ B2(m) : ordp(d) odd},

B+
2 (m) := {h ∈ B2(m) : ordp(d) even}.

Then, by (58) we have

J2(m) =

∫

B−

2
(m)

(c,−d)pχψ(d)χδ(d)|d|−3/2
p hp(h)dh+

+

∫

B+

2
(m)

χψ(d)χδ(d)|d|−3/2
p hp(h)dh.
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Lemma 7.11. With the above notation,

B2(m) =

{
p1−3m/2(−1)m+1χψ(p

m)(1− p−1)pm if m > 0,

p3m/2(−1)m+1χψ(p
m)(1− p−1)(1 + p−1 − p−m) if m ≤ 0.

Proof. The proof goes along the same lines of the previous lemma, and hence
we omit the computations. We just stress that when m > 0 the set B−

2 (m)
is empty, and B+

2 (m) is the disjoint union of the sets Lj with j ≥ 2m. And
for m ≤ 0, the set B−

2 (m) equals the disjoint union of the sets R2j+1 with
0 ≤ j ≤ −m − 1, whereas B+

2 (m) is the disjoint union of the sets R2j with
0 ≤ j ≤ −m.

Proposition 7.12. With the above notation,

Φhp
(βm) = p−|3m/2−1|(−1)m+1χψ(p

m).

Proof. Recalling that Φhp
(βm) = 〈π̃p(βm)hp,hp〉/||hp||2, and that ||hp||2 =

p−1(p2−1) from Lemma 7.2, the statement follows by combining Lemmas 7.10
and 7.11 since 〈π̃p(βm)hp,hp〉 = B1(m) +B2(m).

7.3 Weil pairings

Finally, we also need to compute the Weil pairings

Φφφφp
(αn) = 〈ωψp

(αn)φφφp,φφφp〉 and Φφφφp
(βm) = 〈ωψp

(βm)φφφp,φφφp〉

for n,m ∈ Z. Notice that ||φφφp||2 =
∫
Qp

1Zp
(x)1Zp

(x)dx = vol(Zp) = 1. The

next statement is actually valid for all primes p, and we will use it later not
only for primes p | N/M , but also for primes p | M .

Proposition 7.13. Let p be a prime, and φφφp = 1Zp
∈ S(Qp) be the character-

istic function of Zp. With the above notation, if n,m ∈ Z we have

Φφφφp
(αn)

||φφφp||2
= χψp

(pn)p−|n|/2,
Φφφφp

(βm)

||φφφp||2
= χψp

(pm)p−|m|/2.

Proof. This follows immediately from the definitions.

7.4 Computation of I♯p(h, ğ,φφφ)
Continue to fix a prime p|N/M . Recall from (41), (42) that

I♯p(h, ğ,φφφ) =
L(1, πv, ad)L(1, τv, ad)

L(1/2, πv × adτv)
α♯p(h, ğ,φφφ),

where α♯p(h, ğ,φφφ) =
∫
SL2(Qp)

Ωp(g)dg and Ωp(g) := Φhp
(g)Φğp

(g)Φφφφp
(g) for

g ∈ SL2(Qp). By using the double coset decomposition of SL2(Qp) as in (48),
we have

α♯p(h, ğ,φφφ) =
∑

n∈Z

Ωp(αn)vol(Γ0αnΓ0) +
∑

m∈Z

Ωp(βm)vol(Γ0βmΓ0).

Documenta Mathematica 24 (2019) 1935–2036



2012 A. Pal, C. de Vera-Piquero

Proposition 7.14. Let p be a prime dividing N/M . Then

α♯p(h, ğ,φφφ) =
p− wp
p2 + wp

ζp(2)
−1.

Proof. For n = 0 we have Ωp(α0)vol(Γ0α0Γ0) = vol(Γ0) = p−1(1 − p−1).
Let n 6= 0 be an integer. From Proposition 7.13, we have Φφφφp

(αn) =

χψp
(pn)p−|n|/2, whereas from Propositions 7.4 and 7.9 we have

Φğp
(αn) = p−2|n|, Φhp

(αn) = p−3|n|/2(−1)nχψ(p
n).

Since ψ = ψ
D

p , one has χψ = χψp
·χD, and therefore χψ(p

n) = (Dp )
nχψp

(pn) =

wnpχψp
(pn). From this, using the volumes from Lemma 7.3, we deduce that

Ωp(αn)vol(Γ0αnΓ0) = (−wp)np−2|n|−1(1− p−1),

and therefore

∑

n∈Z

Ωp(αn)vol(Γ0αnΓ0) =
1− p−1

p

(
1 +

∑

n>0

(−wpp−2)n +
∑

n<0

(−wpp−2)−n
)
.

The two geometric sums on the right hand side are the same, and equal
−wp

p2+wp
.

Hence,

∑

n∈Z

Ωp(αn)vol(Γ0αnΓ0) = p−1(1− p−1)

(
1− 2wp

p2 + wp

)
=

= p−1(1− p−1)
p2 − wp
p2 + wp

. (59)

Besides, for m = 0 we have Ωp(β0)vol(Γ0β0Γ0) = (−p−1)(−p−1)(1 − p−1) =
p−2(1 − p−1). And if m 6= 0, we have again Φφφφp

(βm) = χψp
(pm)p−|m|/2, and

Propositions 7.5 and 7.12 tell us that

Φğp
(βm) = −p−|2m−1|, Φhp

(βm) = p−|3m/2−1|(−1)m+1χψ(p
m).

Using again that χψ(p
m) = wmp χψp

(pm), and the volumes from Lemma 7.3, it

follows that when m 6= 0

Ωp(βm)vol(Γ0βmΓ0) =

{
p−2m(−wp)m(1− p−1) if m > 0,

p2m−2(−wp)m(1− p−1) if m < 0.

Summing up all the terms, one easily checks that

∑

m∈Z

Ωp(βm)vol(Γ0βmΓ0) = (1− p−1)
1− wp
p2 + wp

. (60)
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Finally, combining (59) and (60) we conclude that

α♯p(h, ğ,φφφ) =
1− p−1

p2 + wp
(p−1(p2 − wp) + 1− wp) =

=
p− 1

p2
· p

2 + p(1− wp)− wp
p2 + wp

=
p− wp
p2 + wp

ζp(2)
−1.

Proposition 7.15. Let p be a prime dividing N/M . Then I♯p(h, ğ,φφφ) = p−1.

Proof. Recall from the definition of I♯p(h, ğ,φφφ) that

I♯p(h, ğ,φφφ) =
L(1, πp, ad)L(1, τp, ad)

L(1/2, πp × adτp)
α♯p(h, ğ,φφφ).

Since p | N/M , both πp and τp are (unramified) special representations, say
πp = ξ1Stp, τp = ξ2Stp. And recall that ε(1/2, πp) = −ξ1(p) and similarly for
τp. Then (cf. [JL70] and [Kud94, Section 3]) we have

L(1/2, πp ⊗ τp ⊗ τp) =
1

(1 + wpp−2)(1 + wpp−1)2
=

p4

(p2 + wp)(p+ wp)2
,

where wp = ε(1/2, πp). On the other hand, it is well-known that L(1/2, πp) =
p

p+wp
, so that (since p ∤M)

L(1/2, πp × adτp) =
L(1/2, πp ⊗ τp ⊗ τp)

L(1/2, πp)
=

p3

(p2 + wp)(p+ wp)
.

Also, from [Hid86, Section 10] (cf. also [GJ78]), we have L(1, πp, ad) =
L(1, τp, ad) = ζp(2). It thus follows from the previous proposition that

I♯p(h, ğ,φφφ) =
ζp(2)

2(p2 + wp)(p+ wp)

p3
p− wp

ζp(2)(p2 + wp)
=

= ζp(2)
(p+ wp)(p− wp)

p3
=
p2(p2 − 1)

(p2 − 1)p3
=

1

p
.

8 Computation of local integrals at primes p | M

In this section we focus on the regularized local periods I♯p(h, ğ,φφφ) at primes
p |M . First we will recall the local types of the representations τ and π̃ at such
primes, and describe explicitly the local components ğp and hp. After this, we
will be concerned with the matrix coefficients 〈τp(g)ğp, ğp〉 and 〈π̃p(g)hp,hp〉,
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together with the Weil pairings 〈ωψp
(g)φφφp,φφφp〉, for g ∈ SL2(Qp), towards ob-

taining an explicit expression for I♯p(h, ğ,φφφ). As in the previous section, for
g ∈ SL2(Qp) we write

Φğp
(g) :=

〈τp(g)ğp, ğp〉
||ğp||2

, Φhp
(g) :=

〈π̃p(g)hp,hp〉
||hp||2

, Φφφφp
(g) :=

〈ωψp
(g)φφφp,φφφp〉
||φφφp||2

.

When p divides M , ğp and hp are not Γ0-invariant, although our choice
guarantees that for any element g ∈ SL2(Qp), the product Ωp(g) :=

Φhp
(g)Φgp

(g)Φφφφp
(g) depends only on the double coset Γ00gΓ00. Because of

this, we will need to refine our decomposition of SL2(Qp) in (48) into a decom-
position in terms of double cosets for Γ00. Then, we will need to compute the
products Ωp(g) for g varying in a set of representatives for the double cosets for
Γ00 in SL2(Qp). As we will see, many of the involved matrix coefficients vanish,
so we will not need to compute all of them in order to obtain the quantities
Ωp(g).
Fix a prime p | M through all this section. As before, write ψp for the p-th
component of the standard additive character ψ : A/Q → C×.

8.1 Local types and explicit description of test vectors

As in last section, we start considering the GL2 case. Now τp is a (ramified)
principal series. More precisely, τp = π(ξ1, ξ2) is the principal series represen-
tation induced by two characters ξ1, ξ2 : Q×

p → C×. In the induced model, this
space is realized as the space of those functions ϕ : GL2(Qp) → C such that

ϕ
((

a b
0 d

)
x
)
= ξ1(a)ξ2(d)

∣∣∣a
d

∣∣∣
1/2

p
ϕ(x) for a, d ∈ Q×

p , b ∈ Qp, x ∈ GL2(Qp). (61)

Because of our assumption that N is square-free, we may assume that ξ1 is
unramified (hence ξ1(a) = 1 for all a ∈ Z×

p ) and ξ2 is ramified of (p-power)
conductor 1 (meaning that ξ2(1 + pZp) = 1). Define

K1
0 =

{(
a b
c d

)
∈ GL2(Zp) : c ≡ 0, d ≡ 1 (mod p)

}
,

and notice that GL2(Zp) = B(Zp)K1
0 ⊔ B(Zp)wK1

0 , where B(Zp) = B(Qp) ∩
GL2(Zp) is the subgroup of matrices of GL2(Zp) which belong to the Borel
subgroup of upper triangular matrices in GL2(Qp), and w = ( 0 1

1 0 ). In the

induced model for τp = π(ξ1, ξ2), the subspace τ
K1

0
p ⊂ τp of vectors fixed by

K1
0 turns out to be one-dimensional, and a non-trivial K1

0 -invariant vector is
described in [Sch02, Proposition 2.1.2]. Namely, the vector ϕp : GL2(Qp) → C
characterized by requiring that

ϕp(h) =

{
ξ1(p)

−1ξ1(a)ξ2(d)|ad−1|1/2 if h ∈ ( a ∗
0 d )K

1
0 , a, d ∈ Q×

p ,

0 ifh 6∈ B(Qp)K1
0 .

(62)
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Since we are only interested in the normalized value Φğp
(g), we may assume

that gp coincides with the local vector ϕp given by the above recipe. In contrast
to the case of the previous section, however, when p divides M the new vector
gp does not ensure the non-vanishing of the local periods Ip. To remedy this,
we replace gp by ğp = Vpgp ∈ τp, where Vp is the p-th level raising operator

acting on τp by ϕ 7→ τp(̟p)ϕ, with ̟p =
(
p−1 0
0 1

)
∈ GL2(Qp). The vector ğp

is no longer K1
0 -invariant, but defining

K1
00 =

{(
a b
c d

)
∈ GL2(Zp) : c ≡ 0, d ≡ 1 (mod p2)

}
,

we have the following:

Lemma 8.1. With the above notation, ğp is K1
00-invariant. Moreover, we have

||ğp||2 = (p+ 1)−1.

Proof. It is straightforward to check the first assertion, hence we focus in the
computation of ||ğp||2. By definition, we have ||ğp||2 = 〈ğp, ğp〉. Using the
decomposition GL2(Zp) = K0 ⊔K0wK0, we have

〈ğp, ğp〉 =
∫

GL2(Zp)

gp(h̟p)gp(h̟p)dh =

=

∫

K0

gp(h̟p)gp(h̟p)dh+

∫

K0wK0

gp(h̟p)gp(h̟p)dh.

We deal separately each of the two integrals. If h = ( x yz t ) ∈ K0 is an arbitrary
element in K0, using Iwasawa decomposition in K0, we can write

h̟p =

(
xp−1 y
zp−1 t

)
=

(
p−1t−1 det(h) y

0 t

)(
1 0

t−1p−1z 1

)
,

where the rightmost element, call it h0, belongs to GL2(Zp). Moreover, if
h ∈ K00 then h0 clearly belongs to K1

0 ; and one can check that if h 6∈ K00 then
h0 6∈ B(Qp)K1

0 , where recall that B(Qp) stands for the upper triangular Borel
subgroup of GL2(Qp). Thus, it follows from (62) (recall that ξ1 is unramified,
ξ2 is ramified of conductor 1, and ξ1ξ2 = χ

p
) that

gp(h̟p) =

{
p1/2ξ1(p)

−2χ
p
(h) if h ∈ K00,

0 if h 6∈ K00.

Now suppose that h = ( x yz t ) ∈ K0wK0 is an arbitrary element in K0wK0.
Then, again using Iwasawa decomposition and noticing that z ∈ Z×

p , we have

h̟p =

(
xp−1 y
zp−1 t

)
=

(
−z−1 det(h) xp−1

0 zp−1

)(
0 1
1 z−1tp

)
.
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The rightmost element belongs to GL2(Zp), but not to K1
0 . And further, it can

be easily shown that it does not belong to B(Qp)K1
0 either, hence by applying

(62) we deduce that gp(h̟p) = 0 for all h ∈ K0wK0. Therefore, we conclude
that 〈ğp, ğp〉 = pvol(K00) = (p+ 1)−1.

Remark 8.2. The same arguments of the proof of the previous lemma show
that, for an arbitrary g ∈ SL2(Qp), we have

〈τp(g)ğp, ğp〉 =
∫

K00

gp(hg̟p)g(h̟p)dh = p1/2ξ1(p)
2

∫

K00

gp(hg̟p)χ
−1
p

(h)dh.

Now we turn our attention to the representation π̃p of S̃L2(Qp). In order

to lighten the notation, we will write as in the previous section ψ = ψ
D

p ,

where ψp = ψ−1
p . Then, as explained in Section 5.2.1, π̃p is the odd Weil

representation r−ψ (which is supercuspidal). The space of r−ψ is the subspace
of odd functions in S(Qp) (where Qp is regarded as a quadratic space endowed

with the bilinear form (x, y) = 2xy). Recall that the action of S̃L2(Qp) is
determined by the following properties: if ϕ ∈ S(Qp) is odd, a ∈ Q×

p , x ∈ Q×
p ,

and we write s =
(

0 1
−1 0

)
, then

r−ψ

[(
a

a−1

)
, 1

]
ϕ(x) = |a|1/2p χψ(a)ϕ(ax),

r−ψ

[(
1 b

1

)
, 1

]
ϕ(x) = ψ(bx2)ϕ(x),

r−ψ [s, 1]ϕ(x) = γ(ψ)

∫

Qp

ϕ(y)ψ(2xy)dy.

For our choice of ψ, we have γ(ψ) = 1, hence the third identity above simplifies
to

r−ψ [s, 1]ϕ(x) =

∫

Qp

ϕ(y)ψ(2xy)dy.

Let Γ̃00 denote the image of Γ00 in S̃L2(Zp). The following is proved in [BM07,
Lemma 8.5]:

Lemma 8.3. The space of vectors ϕp in r−ψ satisfying r−ψϕp = χ
p
(k)ϕp for all

k ∈ Γ̃00 is one-dimensional, and it is generated by the function 1Z×

p
· χ−1

p
.

The p-th component hp of the vector h is thus a scalar multiple of the function
given in the lemma. Since the matrix coefficients Φhp

(g) are normalized so that
they are invariant under replacing hp by a scalar multiple, we will assume in
the following that hp = 1Z×

p
· χ−1

p
. Notice that

||hp||2 =

∫

Qp

hp(x)hp(x)dx =

∫

Z×

p

dx = vol(Z×
p ) = 1− p−1. (63)
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Having described our choices for the p-th components ğp and hp, we should note

that by construction the function of SL2(Qp) defined by g 7→ Φğp
(g)Φhp

(g) is
Γ00-biinvariant (and it is not Γ0-biinvariant). Indeed, this follows immediately
from the invariance properties of ğp and hp, together with the properties of
the matrix coefficients 〈τp(g)ğp, ğp〉 and 〈r−ψ (g)hp,hp〉.
Finally, as in the previous section we write ωp = ωψp

for the Weil representation

of S̃L2(Qp) acting on the space of Bruhat–Schwartz functions S(Qp), with
respect to the character ψp = ψ−1

p . As before, by our choice of test vector we
have φφφp = 1Zp

, and recall that Proposition 7.13 continues to hold when p|M .

8.2 Computation of α♯p(h, ğ,φφφ) for p |M
Recall from last section that

SL2(Qp) =
⊔

n∈Z

Γ0αnΓ0 ⊔
⊔

n∈Z

Γ0βnΓ0. (64)

By the comment we have just made above, now one cannot compute α♯p(h, ğ,φφφ)
by only computing the matrix coefficients for ğp, hp, and φφφp at the elements αn
and βm. However, starting from this decomposition we can refine it to obtain a
decomposition in terms of double cosets for Γ00. First of all, one might observe
that Γ00 is not normal in Γ0. However, one has

Γ0 =
⊔

γ∈Zp/pZp

Γ00νγ =
⊔

γ∈Zp/pZp

νγΓ00, νγ =

(
1 0
γp 1

)
∈ SL2(Zp),

so that for each n and m we can write

Γ0αnΓ0 =
⋃

γ,δ∈Zp/pZp

Γ00νγαnνδΓ00, Γ0βmΓ0 =
⋃

γ,δ∈Zp/pZp

Γ00νγβmνδΓ00. (65)

However, these unions are not disjoint. Nevertheless, it is not so difficult (al-
though labourious) to reduce these expressions to disjoint unions, so that even-
tually one obtains a set of representatives for the double cosets for Γ00 in
SL2(Qp). We describe this set in the following lemma, whose proof is skipped.

Lemma 8.4. Fix a non-quadratic residue u ∈ Z×
p . Then

SL2(Qp) =
⊔

r∈R
Γ00rΓ00, (66)

where the set R is the union of the following sets:

I) {1, ν1, νu};

II) {αn, αnν1, αnνu : n > 0};

III) {αn, ν1αn, νuαn : n < 0};
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IV) {βm : m ∈ Z};
V) {βmν1, βmνu : m > 0} ⊔ {ν1βmνδ, νuβmνδ : m > 0, δ ∈ Z/pZ}.

Now, we can finally proceed with the main goal of this section, namely
the computation of α♯p(h, ğ,φφφ), and therefore of the regularized local period

I♯p(h, ğ,φφφ). To ease the notation, for g ∈ SL2(Qp) we will write Ωp(g) :=

Φhp
(g)Φğp

(g)Φφφφp
(g), so that

α♯p(h, ğ,φφφ) =

∫

SL2(Qp)

Ωp(g)dg.

By our choice of hp, ğp, and φφφp, we see that Ωp(g) depends only on the double
coset Γ00gΓ00. By using the decomposition explained in Lemma 8.4, we see
that

α♯p(h, ğ,φφφ) =
∑

r∈R
Ωp(r)vol(Γ00rΓ00). (67)

Therefore, we will proceed by computing Ωp(r)vol(Γ00rΓ00) for each r ∈ R.
We will deal with the cases I - V listed in Lemma 8.4 one by one. First we will
concentrate in computing Ωp(r).

8.2.1 Case I

We start computing Ωp(νγ) for γ ∈ Zp. First of all we have the following
vanishing statement for Φğp

.

Lemma 8.5. If γ ∈ Z×
p , then Φğp

(νγ) = 0.

Proof. Let γ ∈ Z×
p . By Remark 8.2, we have

〈τp(νγ)ğp, ğp〉 =
∫

K00

gp(hνγ̟p)gp(h̟p)dh.

But for h ∈ K00, an Iwasawa decomposition for hνγ̟p reads

hνγ̟p =

(
p−1t−1 det(h) y

0 t

)(
1 0

t−1p−1z + γ 1

)
.

Under the assumption that γ ∈ Z×
p , and taking into account that h ∈ K00,

we see from this identity that hνγ̟p does not belong to B(Qp)K1
0 , thus it

follows from (62) that gp(hνγ̟p) = 0 for all h ∈ K00, and hence the statement
follows.

With this we can easily deduce Ωp(r) for elements r as in Case I.

Proposition 8.6. We have Ωp(1) = 1. And for γ ∈ Z×
p , Ωp(νγ) = 0.

Proof. Recall that Ωp(g) := Φhp
(g)Φğp

(g)Φφφφp
(g). By our normalization of

Φhp
, Φğp

, and Φφφφp
, it is clear that Ωp(1) = 1. And for g = νγ with γ ∈ Z×

p ,
the previous lemma implies that Ωp(νγ) = 0.
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8.2.2 Case II

Now we focus on elements of the form αnνc, with n > 0 and c ∈ Zp. When
c 6∈ Z×

p , νc ∈ K00 and therefore Ωp(αnνc) = Ωp(αn).

Lemma 8.7. The following assertions hold:

i) Φhp
(αn) = 0 for all n > 0.

ii) If n > 0 and c ∈ Z×
p , then Φhp

(αnνc) = 0.

Proof. From one of the rules for the odd Weil representation r−ψ , we have

(r−ψ (αn)hp)(x) = |p|n/2p χψ(p
n)hp(p

nx) = |p|n/2p χψ(p
n)1p−nZ×

p
(x)χ−1

p
(pnx).

Therefore, if n 6= 0 we find that

〈r−ψ (αn)hp,hp〉 = |p|n/2p χψ(p
n)

∫

Qp

1p−nZ×

p
(x)χ−1

p
(pnx)1Z×

p
(x)χ

p
(x)dx = 0,

and i) follows. Notice that the argument does not require n > 0, but only
n 6= 0. To show ii), notice that

νc = (−1)s

(
1 −cp
0 1

)
s.

By applying repeatedly the rules for the Weil representation to the elements
on the right hand side of this identity, one arrives to

r−ψ (νc)hp(x) =

∫

Qp

ψ(−2xy − cpy2)G(2y, χ−1
p

)dy =

= 1Zp
(x)

∫

Qp

ψ(−2xy − cpy2)G(2y, χ−1
p

)dy,

and applying r−ψ (αn) to this expression we get

r−ψ (αnνc)hp(x) = χψ(p
n)p−n/21Zp

(xpn)

∫

Qp

ψ(−2xpny − cpy2)G(2y, χ−1
p

)dy.

Completing the squares and with some elementary computation, we find more
explicitly

r−ψ (αnνc)hp(x) = p(1−n)/2χψ(p
n)ε(1/2, χ

p
)χ
p
(2)1p−nZp

(x)ψ

(
p2nx2

cp

)
×

×
∫

Z×

p

ψ

(
−c
p

(
y +

pnx

c

)2
)
χ
p
(y)dy.
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Using that ψ(p
2nx2

cp ) = 1 and that

∫

Z×

p

ψ(
−c
p
(y +

pnx

c
)2)χ

p
(y)dy =

∫

Z×

p

ψ(
−cy2
p

)χ
p
(y)dy

for n > 0 and x ∈ Z×
p , it follows that

〈r−ψ (αnνc)hp,hp〉 = p(1−n)/2χψ(p
n)ε(1/2, χ

p
)χ
p
(2)×

×
∫

Z×

p

ψ

(−cy2
p

)
χ
p
(y)dy

∫

Z×

p

χ
p
(x)dx.

But the last integral vanishes by orthogonality of Dirichlet characters, hence
〈r−ψ (αnνc)hp,hp〉 = 0, which gives Φhp

(αnνc) = 0 as we wanted to prove.

As a consequence, we immediately have the next vanishing statement.

Proposition 8.8. For all n > 0 and c ∈ Zp, Ωp(αnνc) = 0.

8.2.3 Case III

Now we consider the case of elements νcαn with n < 0 and c ∈ Zp.

Lemma 8.9. The following assertions hold:

i) Φhp
(αn) = 0 for all n < 0.

ii) If n < 0 and c ∈ Z×
p , then Φhp

(νcαn) = 0.

Proof. The first assertion follows as in Lemma 8.7, where we only used n 6= 0.
To prove ii), observe that

r−ψ (αn)hp(x) = χψ(p
n)p−n/21Z×

p
(pnx)χ−1

p
(pnx) =

= χψ(p
n)p−n/21p−nZ×

p
(x)χ−1

p
(x).

Secondly, using again the decomposition νc = (−1)s
(
1 −cp
0 1

)
s as in the previous

case, one finds

r−ψ (νcαn)hp(x) = χψ(p
n)p−n/2

∫

Qp

ψ(−2xpnz − cp2n+1z2)G(2z, χ−1
p

)dz.

From this, 〈r−ψ (νcαn)hp,hp〉 equals

χψ(p
n)p−n/2

∫

Z×

p

(∫

Qp

ψ(−2xpnz − cp2n+1z2)G(2z, χ−1
p

)dz

)
χ
p
(x)dx.
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We have G(2z, χ−1
p

) = p−1/2ε(1/2, χ
p
)χ
p
(2)1p−1Z×

p
(z)χ

p
(z), thus the inner in-

tegral in the above expression for 〈r−ψ (νcαn)hp,hp〉 equals

p1/2ε(1/2, χ
p
)χ
p
(2)

∫

Z×

p

ψ(−2xpn−1z − cp2n−1z2)χ
p
(z)dz.

By completing squares and plugging this in the expression for 〈r−ψ (νcαn)hp,hp〉,
one eventually obtains

〈r−ψ (νcαn)hp,hp〉 = χψ(p
n)p(1−n)/2ε(1/2, χ

p
)χ
p
(2)×

×
∫

Z×

p

ψ(−cp2n−1z2)χ
p
(z)G(−2zpn−1, χ

p
)dz.

But notice that −2zpn−1 6∈ p−1Z×
p for z ∈ Z×

p because n < 0. Since χ
p
has con-

ductor 1, it follows that G(−2zpn−1, χ
p
) = 0, and therefore 〈r−ψ (νcαn)hp,hp〉 =

0 as well, which implies Φhp
(νcαn) = 0.

Proposition 8.10. For all n < 0 and c ∈ Zp, Ωp(νcαn) = 0.

8.2.4 Case IV

Now we deal with Case IV in Lemma 8.4, consisting only of elements βm with
m ∈ Z.

Lemma 8.11. The following assertions hold:

i) Φhp
(βm) = 0 for all m 6= 1.

ii) Φğp
(β1) = 0.

Proof. i) Since βm = sαm, we compute r−ψ (βm)hp(x) by applying first r−ψ (αm)

and then r−ψ (s). We have

r−ψ (αm)hp(x) = χψ(p
m)p−m/21Z×

p
(pmx)χ−1

p
(pmx) =

= χψ(p
m)p−m/21p−mZ×

p
(x)χ−1

p
(x),

and therefore applying r−ψ (s) gives

r−ψ (βm)hp(x) = χψ(p
m)p−m/2

∫

p−mZ×

p

ψ(2xy)χ−1
p

(y)dy =

= χψ(p
m)pm/2G(2xp−m, χ−1

p
).

From this, we have

〈r−ψ (βm)hp,hp〉 = χψ(p
m)pm/2

∫

Z×

p

G(2xp−m, χ−1
p

)χ
p
(x)dx.
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But G(2xp−m, χ−1
p

) = p−1/2ε(1/2, χ
p
)1pm−1Z×

p
(x)χ

p
(2x). If m 6= 1, we have

pm−1Z×
p ∩ Z×

p = ∅, which implies that 〈r−ψ (βm)hp,hp〉 = 0 and therefore
Φhp

(βm) = 0.
ii) If h = ( x yz t ) ∈ K00 is an arbitrary element inK00, an Iwasawa decomposition
for hβ1̟p reads

hβ1̟p =

(
−y xp−1

−t zp−1

)
=

(
t−1 det(h)p−1 −y

0 −t

)(
0 1
1 −t−1p−1z

)
,

and it is easy to check from this expression that hβ1̟p 6∈ B(Qp)K1
0 . Thus

we have gp(hβ1̟p) = 0 for all h ∈ K00 by (62), and Remark 8.2 implies that
〈τp(β1)ğp, ğp〉 = 0. Therefore Φğp

(β1) = 0 as well.

Directly from the lemma, and the definition of Ωp, we deduce:

Proposition 8.12. Ωp(βm) = 0 for all m ∈ Z.

8.2.5 Case V

Finally, we consider the computation of matrix coefficients for elements in Case
V from Lemma 8.4. We start considering the elements of the form βmνδ with
m > 0 and δ ∈ Z×

p . First of all, we note the following vanishing statement for
m > 1:

Lemma 8.13. If δ ∈ Z×
p , then Φhp

(βmνδ) = 0 for all m > 1.

Proof. As in previous lemmas, we have

r−ψ (αmνδ)hp(x) = χψ(p
m)p−m/21p−mZp

(x)

∫

Qp

ψ(−2xpmy−δpy2)G(2y, χ−1
p

)dy.

By applying r−ψ (s), we deduce that r−ψ (βmνδ)hp(x) equals

χψ(p
m)p−m/2

∫

p−mZp

ψ(2xz)

(∫

Qp

ψ(−2zpmy − δpy2)G(2y, χ−1
p

)dy

)
dz =

= χψ(p
m)pm/2

∫

Qp

ψ(−δpy2)G(2y, χ−1
p

)

(∫

Zp

ψ(2(xp−m − y)z)dz

)
dy.

Using that G(2y, χ−1
p

) = p−1/2ε(1/2, χ
p
)χ
p
(2)1p−1Z×

p
(y)χ

p
(y), one finds

r−ψ (βmνδ)hp(x) = χψ(p
m)p(m+1)/2ε(1/2, χ

p
)χ
p
(2)×

×
∫

Z×

p

ψ

(−δy2
p

)(∫

Zp

ψ

(
2(xp1−m − y)z

p

)
dz

)
χ
p
(y)dy.
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The inner integral vanishes unless x ∈ pm−1Z×
p and xp1−m ≡ y (mod p), so

one easily gets

r−ψ (βmνδ)hp(x) = χψ(p
m)p(m−1)/2ε(1/2, χ

p
)χ
p
(2)1pm−1Z×

p
(x)ψ

(−δx2
p2m−1

)
χ
p
(x).

From this, it follows easily that 〈r−ψ (βmνδ)hp,hp〉 = 0 for all m > 1, since

Z×
p ∩ pm−1Z×

p = ∅.

It follows from this lemma that Ωp(βmνδ) = 0 for all δ ∈ Z×
p and m > 1. So

we are left with the case m = 1. However, looking at Φğp
(β1νδ) we find:

Lemma 8.14. For all δ ∈ Z×
p , one has Φğp

(β1νδ) = 0.

Proof. Let h = ( x yz t ) ∈ K00 be an arbitrary element. An Iwasawa decomposi-
tion for hβ1νδ̟p reads

hβ1νδ̟p =

(
t−1 det(h)p−1 ∗

0 −t

)(
δ 1

1− δt−1p−1z −t−1p−1z

)
.

Using this decomposition we see that hβ1νδ̟p 6∈ B(Qp)K1
0 . Thus it follows

from (62) that gp(hβ1νδ̟p) = 0 for all h ∈ K00, and hence by Remark 8.2
〈τp(β1νδ)ğp, ğp〉 = 0, which implies that Φğp

(β1νδ) = 0.

Therefore, together with the above discussion we see that Ωp(βmνδ) = 0 for all
m > 0 and all δ ∈ Z×

p . Let us next consider the elements of the form νγβmνδ
when both γ, δ ∈ Z×

p . In the next lemma we will deal with matrix coefficients
of the form 〈τp(νγβmνδ)ğp, ğp〉, with m > 0. To compute these, we need to find
an Iwasawa decomposition for elements hνγβmνδ̟p with h ∈ K00 (cf. Remark
8.2). Using that hνγβmνδ̟p = hνγβm̟p ( 1 0

δ 1 ), one can first determine an
Iwasawa decomposition for

hνγβm̟p =

(
−ypm−1 xp−m + γyp1−m

−tpm−1 zp−m + γtp1−m

)
,

and then multiply it on the right by ( 1 0
δ 1 ). This is how we proceed in the proof

of the next lemma.

Lemma 8.15. Let m > 0 be an integer, and let γ, δ ∈ Z×
p . Then Φğp

(νγβmνδ) =
0 unless m = 1 and γδ ≡ 1 (mod p), and in that case one has Φğp

(νγβ1νδ) =
χ
p
(γ).

Proof. Let us first consider the case m = 1. In this case, if h ∈ K00 then one
has

hνγβ1νδ̟p =

(
t−1p−1 det(h) −y

0 −t

)(
δ 1

1− δη(h) −η(h)

)
,

where η(h) = t−1p−1z+γ ∈ Zp. Since h ∈ K00, observe that η(h) ≡ γ (mod p),
and therefore 1 − δη(h) ≡ 1− γδ (mod p). By looking at the right hand side,
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it is easy to check that hνγβ1νδ̟p belongs to B(Qp)K1
0 if and only if γδ ≡ 1

(mod p). We deduce from (62) that

gp(hνγβ1νδ̟p) =

{
p1/2ξ1(p)

−2χ
p
(γ)χ

p
(h) if γδ ≡ 1 (mod p),

0 otherwise.

In particular, it immediately follows from this that 〈τp(νγβ1νδ)ğp, ğp〉 = 0
whenever γδ 6≡ 1 (mod p), and so Φğp

(νγβ1νδ) = 0 as well in this case. When
γδ ≡ 1 (mod p), the above tells us that

〈τp(νγβ1νδ)ğp, ğp〉 = p1/2ξ1(p)
2

∫

K00

gp(hνγβ1νδ̟p)χ
−1
p

(h)dh =

= pχ
p
(γ)vol(K00) =

χ
p
(γ)

p+ 1
.

Dividing by ||ğp||2 = (p + 1)−1 (cf. Lemma 8.1), we get Φğp
(νγβ1νδ) = χ

p
(γ)

when γδ ≡ 1 (mod p).
Now suppose that m > 1. Then an Iwasawa decomposition for hνγβmνδ̟p

reads

hνγβmνδ̟p =

(
pm−2 det(h)

tη(h) xp−m + γyp1−m

0 p1−mtη(h)

)(
1 0

δ − η(h)−1p2m−2 1

)
,

where η(h) = t−1p−1z + γ as before. Since h ∈ K00, we have η(h) ∈ Z×
p , and

since we are now assuming m > 1, we see that δ − η(h)−1p2m−2 ∈ Z×
p because

δ ∈ Z×
p . Therefore, the rightmost element in the above identity does not belong

to K1
0 , and it is not difficult to see that it does not belong to B(Qp)K1

0 either.
Hence, by applying (61) we deduce that gp(hνγβmνδ̟p) = 0 for all h ∈ K00. It
follows that 〈τp(νγβmνδ)ğp, ğp〉 = 0, and hence Φğp

(νγβmνδ) = 0 as well.

By virtue of the last lemma, for any integer m > 0 we have Ωp(νγβmνδ) = 0
unless m = 1 and γδ ≡ 1 (mod p). Therefore, we only need to compute
Φhp

(νγβmνδ) for m = 1 and γ, δ ∈ Z×
p with γδ ≡ 1 (mod p). Further, we

see from Case V in Lemma 8.4 that the latter condition is only satisfied for
the representatives ν1β1ν1 and νuβ1νu−1 . That is to say, there will be only
two elements r arising in Case V for which Ωp(r) might be non-zero. The
next lemma addresses the computation of Φhp

(νγβ1νγ−1) for γ ∈ Z×
p ; for γ =

1, u it thus provides the values that we are looking for. In the proof we will
need to deal with certain quadratic Gauss sums. For each a ∈ Q×

p , we write

G(a) :=
∫
Zp
ψ(az2)dz. Here, recall that ψ = ψ

D

p = ψ−D
p , and that D ∈ Z×

p is a

square thanks to hypothesis (H2), together with the fact that (Dp ) = −wp. In

particular, if a ∈ Z×
p , then we have G(a/p) = p−1G(a, p), where G(a, p) denotes

the usual quadratic Gauss sum defined by

G(a, p) =

p−1∑

j=0

ζax
2

, with ζ = e2π
√
−1/p.
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Recall that one has G(a, p) =
(
a
p

)
G(1, p), and G(1, p)2 =

(
−1
p

)
p.

Lemma 8.16. Let γ ∈ Z×
p , and put ν = νγ and ν′ = νγ−1 . Then

Φhp
(νβ1ν

′) =
χψ(p)χp(γ)p

−1/2

p− 1
(p−G(−γ, p)).

Proof. From previous lemmas, we know that

r−ψ (α1ν
′)hp(x) = χψ(p)p

−1/21p−1Zp
(x)

∫

Qp

ψ(−2xyp− γ−1y2p)G(2y, χ−1
p

)dy.

Observing that

νβ1ν
′ = (−1)s

(
1 −γp
0 1

)
ssα1ν

′ = s

(
1 −γp
0 1

)
α1ν

′

we compute (r−ψ (νβ1ν
′)hp)(x) by applying r−ψ

(
s
(
1 −γp
0 1

))
to the above expres-

sion. This gives

χψ(p)p
1/2

∫

Zp

ψ

(
z(2x− γz)

p

)(∫

Qp

ψ(−y(2z + γ−1yp))G(2y, χ−1
p

)dy

)
dz.

Using that G(2y, χ−1
p

) = p−1/2ε(1/2, χ
p
)χ
p
(2)1p−1Z×

p
(y)χ

p
(y), the inner inte-

gral becomes

p1/2ε(1/2, χ
p
)χ
p
(2)

∫

Z×

p

ψ

(−y(2z + γ−1y)

p

)
χ
p
(y)dy.

Setting C = pχψ(p)ε(1/2, χp)χp(2), one can then rewrite r−ψ (νβ1ν
′)hp(x) as

r−ψ (νβ1ν
′)hp(x) = C

∫

Z×

p

ψ

(−γ−1y2

p

)
χ
p
(y)

(∫

Zp

ψ

(
2xz − 2zy − γz2

p

)
dz

)
dy.

Completing squares, the inner integral is essentially a (translated) quadratic
Gauss sum, and it is not difficult to see that the above expression can be
simplified to

r−ψ (νβ1ν
′)hp(x) = CG

(−γ
p

)
1Zp

(x)ψ

(
x2

γp

)
G

(−2x

γp
, χ

p

)
.

Replacing G
(

−2x
γp , χp

)
and C by their value, we eventually find that

r−ψ (νβ1ν
′)hp(x) = χψ(p)p

1/2χ
p
(γ)G

(−γ
p

)
1Z×

p
(x)ψ

(
x2

γp

)
χ−1
p

(x),
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and using this expression, we deduce that

〈r−ψ (νβ1ν′)hp,hp〉 = χψ(p)p
1/2χ

p
(γ)G

(−γ
p

)∫

Z×

p

ψ

(
x2

γp

)
dx =

= χψ(p)p
1/2χ

p
(γ)G

(−γ
p

)(
G
(

1

γp

)
− 1

p

)
.

Dividing by ||hp||2 = 1− p−1 = p−1(p− 1), we obtain

Φhp
(νβ1ν

′) =
χψ(p)χp(γ)p

3/2

p− 1
· G
(−γ
p

)(
G
(
γ−1

p

)
− 1

p

)
.

Finally, using that G
(

−γ
p

)
= 1

p

(
−γ
p

)
G(1, p), and G

(
γ−1

p

)
= 1

p

(
γ
p

)
G(1, p),

we conclude that

Φhp
(νβ1ν

′) =
χψ(p)χp(γ)p

−1/2

p− 1
(p−G(−γ, p)).

Combining the previous four lemmas, we summarize our discussion for Case V:

Proposition 8.17. Let m > 0 be an integer, and let γ, δ ∈ Z×
p . Then

Ωp(βmνδ) = 0, and

Ωp(νγβmνδ) =

{
p−G(γ,p)
p(p−1) if m = 1, γδ ≡ 1 (mod p),

0 otherwise.

Proof. The first assertion follows immediately from Lemmas 8.13 and 8.14. As
for the second one, combining Lemmas 8.15 and 8.16 yields that Ωp(νγβmνδ) =
0 unless m = 1 and γδ ≡ 1 (mod p). And in that case, the same lemmas
together with Proposition 7.13 tell us that

Φhp
(νγβ1νδ) =

χψ(p)χp(γ)p
−1/2

p− 1
(p−G(−γ, p)), Φφφφp

(νγβ1νδ) = χψp
(p)p−1/2,

Φğp
(νγβ1νδ) = χ

p
(γ).

Notice that χψ(p) = χψp
(p)χD(p) = χψp

(p) because D ∈ Z×
p is a square.

Therefore,

Ωp(νγβ1νδ) = Φhp
(νγβ1νδ)Φğp

(νγβ1νδ)Φφφφp
(νγβ1νδ) =

=
p−G(−γ, p)
p(p− 1)

=
p−G(γ, p)

p(p− 1)
.
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8.3 Computation of I♯p(h, ğ,φφφ)

Finally, we conclude with the computation of the regularized local periods
I♯p(h, ğ,φφφ) at primes p |M . Recall from (67) that

α♯p(h, ğ,φφφ) =
∑

r∈R
Ωp(r)vol(Γ00rΓ00),

where R is the set described in Lemma 8.4. However, by Propositions 8.6, 8.8,
8.10, 8.12, 8.17,

α♯p(h, ğ,φφφ) = Ωp(1)vol(Γ00) + Ωp(r1)vol(Γ00r1Γ00) + Ωp(ru)vol(Γ00ruΓ00),
(68)

where u ∈ Z×
p is a fixed non-quadratic residue, and rγ = νγβ1νγ−1 for γ = 1, u.

It is not hard to see that vol(Γ00) = p−3(p− 1), and that

vol(Γ00r1Γ00) = vol(Γ00ruΓ00) =
p−3(p− 1)2

2
.

Proposition 8.18. Let p be a prime dividing M . Then α♯p(h, ğ,φφφ) = 2p−3(p−
1).

Proof. We just need to compute the three terms on the right hand side of (68).
Clearly, we have Ωp(1)vol(Γ00) = vol(Γ00) = p−3(p− 1). As for the other two
terms, it follows from Proposition 8.17 that

Ωp(r1)vol(Γ00r1Γ00) =
p−G(1, p)

p(p− 1)
vol(Γ00r1Γ00),

Ωp(ru)vol(Γ00ruΓ00) =
p−G(u, p)

p(p− 1)
vol(Γ00ruΓ00).

Therefore, the sum of these two equals

p−3(p− 1)

2p
(2p−G(1, p)−G(u, p)) = p−3(p− 1),

since G(u, p) = −G(1, p). It follows that α♯p(h, ğ,φφφ) = 2p−3(p− 1).

Proposition 8.19. Let p be a prime dividing M . Then

I♯p(h, ğ,φφφ) =
2

p(p+ 1)
.

Proof. From the definition of the regularized local period, we have

I♯p(h, ğ,φφφ) =
L(1, πp, ad)L(1, τp, ad)

ζQp
(2)L(1/2, πp × adτp)

α♯p(h, ğ,φφφ).
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As in the case where p divides N/M , πp is an unramified Steinberg represen-
tation, so that we have again

L(1, πp, ad) =
p2

p2 − 1
, L(1/2, πp) =

1

(1 + wpp−1)
=

p

p+ wp
=

p

p− 1
,

where now we are using that wp = −1 by hypothesis (H2). In contrast, as
already explained, τp = π(ξ1, ξ2) is a (ramified) principal series representation
induced by a pair of characters ξ1, ξ2 : Q×

p → C× (with ξ1 unramified and ξ2
of conductor 1). In this case, from [Hid86, Section 10] (or [GJ78]) we have

L(1, τp, ad) =
1

1− p−1
=

p

p− 1
.

Besides, one can now check using [JL70] and [Kud94, Section 3] that

L(1/2, πp ⊗ τp ⊗ τ∨p ) = L(1/2, πp)
2 =

p2

(p− 1)2
.

Therefore, L(1/2, πp × adτp) =
p

(p−1) and the statement follows.

9 Computation of local integrals at p = 2 and v = ∞

Let f ∈ S2k(N), g ∈ Sk+1(N,χ), and h ∈ S+
k+1/2(4N,χ) be as usual, and

let f , g, and h be their adelizations. Write π, τ and π̃ for the corresponding
automorphic representations as in Section 6. Continue to consider our test
vector h⊗ ğ⊗φφφ ∈ π̃⊗τ ⊗ω, where ω = ωψ. Recal that ψ denotes the standard

additive character of A/Q, and ψ = ψ−1.

9.1 Computation at p = 2

For simplicity, in the following we write ψ for the local additive character
ψ2 = ψ−1

2 of Q2, so that ω2 = ωψ. Write also t(2) =
(
2 0
0 2−1

)
∈ SL2(Q2), which

we identify with [t(2), 1] ∈ S̃L2(Q2), and recall that ğ2 = g
♯
2 = τ2(t(2)

−1)g2.
Then define

h
(2)
2 := π̃2(t(2))h2, φφφ

(2)
2 := 21/2ω2(t(2))φφφ2.

Lemma 9.1. With the above notation, we have φφφ
(2)
2 = 1 1

2
Z2
. Furthermore, the

following identities hold:

〈h(2)
2 ,h

(2)
2 〉 = 〈h2,h2〉, 〈ğ2, ğ2〉 = 〈g2,g2〉, 〈φφφ(2)

2 ,φφφ
(2)
2 〉 = 2〈φφφ2,φφφ2〉.

Proof. Recall that φφφ2 = 1Z2
. Then by applying the rules of the Weil represen-

tation we have

ω2(t(2))φφφ2 = ω2(t(2))1Z2
= χψ(2)|2|1/22 1 1

2
Z2
.
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One can check that χψ(2) = 1 for our choice of ψ, and hence ω2(t(2))φφφ2 =

2−1/21 1
2
Z2
. It follows that φφφ

(2)
2 = 1 1

2
Z2

as stated. Furthermore, by definition
we have

〈φφφ(2)
2 ,φφφ

(2)
2 〉 =

∫

Qp

1 1
2
Z2
(x)1 1

2
Z2
(x)dx = vol(2−1Z2) = 2 = 2vol(Z2) = 2〈φφφ2,φφφ2〉.

As for the other identities, we show only the one concerning g (the other one
can be dealt with similarly). First of all, g2 is a GL2(Z2)-fixed vector in the
unramified principal series representacion τ2 = π(ξ, ξ−1), where ξ : Q×

2 → C×

is an unramified character. The space of such vectors is known to be one-
dimensional, and a non-trivial choice is given by the function ϕ2 : GL2(Z2) → C
defined by (cf. [Sch02, Section 2])

ϕ2(γ) =

{
ξ(ad−1)|ad−1|1/22 if γ ∈ ( a ∗

0 d )GL2(Z2), a, d ∈ Q×
2 ,

0 otherwise.
(69)

Since we are only interested in the ratio 〈ğ2, ğ2〉/〈g2,g2〉, we may assume that
g2 = ϕ2. Then, one has 〈g2,g2〉 =

∫
GL2(Z2)

g2(x)g2(x)dx = vol(GL2(Z2)) = 1.

To compute

〈ğ2, ğ2〉 = 〈g♯2,g♯2〉 =
∫

GL2(Z2)

g2(xt(2
−1))g2(xt(2−1))dx,

we divide GL2(Z2) into three subregions, namely

L0 :=
{
x =

(
a b
c d

)
∈ GL2(Z2) : c ∈ Z×

2

}
,

L1 :=
{
x =

(
a b
c d

)
∈ GL2(Z2) : c ∈ 2Z×

2

}
,

and L2 := GL2(Z2) − L0 − L1 = K0(4). Working separately each of these
regions, finding an Iwasawa decomposition for xt(2−1) one checks that

g2(xt(2
−1))g2(xt(2−1)) =





2−2 if x ∈ L0,

1 if x ∈ L1,

22 if x ∈ L2.

Therefore, 〈ğ2, ğ2〉 = 2−4vol(L0)+ vol(L1)+ 24vol(L2). Since L0 = GL2(Z2)−
K0(2) and L2 = K0(4), and K0(2) (resp. K0(4)) has index 3 (resp. 6) in
GL2(Z2), one can easily compute 〈ğ2, ğ2〉 = 1 = 〈g2,g2〉.

The next proposition computes the local regularized period I♯2(h, ğ,φφφ), by re-

lating it to the period I♯2(h(2),g,φφφ(2)) and invoking the computation done in
[Xue18, Section 6].

Proposition 9.2. I♯2(h, ğ,φφφ) = 1.
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Proof. Recall that by definition we have

I♯2(h, ğ,φφφ) =
I2(h, ğ,φφφ)

〈h2,h2〉〈ğ2, ğ2〉〈φφφ2,φφφ2〉
,

where

I2(h, ğ,φφφ) =
L(1, π2, ad)L(1, τ2, ad)

L(1/2, π2 × adτ2)
×

×
∫

SL2(Q2)

〈π̃2(g)h2,h2〉〈τ2(g)ğ2, ğ2〉〈ω2(g)φφφ2,φφφ2〉dg.

Denote by α2(h2, ğ2,φφφ2) the integral on the right hand side. By replacing g
with t(2)−1gt(2), one checks

α2(h2, ğ2,φφφ2) = α2(π̃2(t(2))h2, τ2(t(2))ğ2, ω2(t(2))φφφ2) =

= α2(π̃2(t(2))h2,g2, ω2(t(2))φφφ2),

using that ğ2 = g
♯
2 = τ2(t(2)

−1)g2. Since π̃2(t(2))h2 = h
(2)
2 and ω2(t(2))φφφ2 =

2−1/2φφφ
(2)
2 by definition, the above shows that I2(h, ğ,φφφ) = 2−1I2(h(2),g,φφφ(2)).

Hence, by the previous lemma,

I♯2(h, ğ,φφφ) =
I2(h, ğ,φφφ)

〈h2,h2〉〈ğ2, ğ2〉〈φφφ2,φφφ2〉
=

2−1I2(h(2),g,φφφ(2))

〈h(2)
2 ,h

(2)
2 〉〈g2,g2〉2−1〈φφφ(2)

2 ,φφφ
(2)
2 〉

=

= I♯2(h(2),g,φφφ(2)).

Finally, it follows from Xue’s computation in [Xue18, Section 6] that the right
hand side equals 1.

9.2 Computation at the archimedean place

Finally, we deal with the computation of the regularized local period
I♯∞(h, ğ,φφφ) at the real place v = ∞. The approach we follow here has already
been considered in [Xue] (where the case that g has weight ℓ+1 with ℓ ≥ k odd is
also covered). For simplicity, in what follows we will write ψ = ψ−1

∞ for the twist

of the standard additive character ψ∞ on R by −1, so that ψ(x) = e−2π
√
−1x

for all x ∈ R. Then ω∞ = ωψ. By Iwasawa decomposition, every element
g ∈ SL2(R) can be written as

g =

(
y 0
0 y−1

)(
1 x
0 1

)
k

for some y ∈ R>0, x ∈ R and k ∈ SO(2). We consider the Haar measure
dg = y−2dxdydk, where dx and dy are the Lebesgue measure on R, and dk is
the Haar measure on SO(2) with vol(SO(2)) = π.
Observe that τ∞ (resp. π∞) is a discrete series representation of PGL2(R) of
weight k+1 (resp. 2k). The archimedean component ğ∞ = g∞ of ğ is a lowest
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weight vector in τ∞. Similarly, π̃∞ is a discrete series representation of S̃L2(R)
of lowest K-type k + 1/2, and h∞ is a lowest weight vector in π̃∞.
Let J be the Jacobi group, which arises as the semidirect product of SL2 with
the so-called Heisenberg group H , and it can be realized as a subgroup of Sp4

(see [BS98, Section 1.1]). In explicit terms, elements in J can be written as
products

(
a b
c d

)
(λ, µ, ξ) =




a b
1

c d
1







1 µ
λ 1 µ ξ

1 −λ
1


 ,

with

(
a b
c d

)
∈ SL2, (λ, µ, ξ) ∈ H.

By virtue of [BS98, Theorem 7.3.3], π̃∞ ⊗ω∞ is isomorphic to a discrete series
representation ρ∞ of J(R) of lowest K-type k + 1. In particular, the vector
h∞ ⊗ φφφ∞ ∈ π̃∞ ⊗ ω∞ is then identified under the previous isomorphism with
a lowest weight vector J∞ ∈ ρ∞. Being the isomorphism π̃∞ ⊗ ω∞ ≃ ρ∞ an
isometry (see loc. cit.), we have

α♯∞(h, ğ,φφφ) =

∫

SL2(R)

〈τ(g)ğ∞, ğ∞〉
||ğ∞||2

〈π̃(g)h∞,h∞〉
||h∞||2

〈ω∞(g)φφφ∞,φφφ∞〉
||φφφ∞||2 dg =

=

∫

SL2(R)

〈τ(g)ğ∞, ğ∞〉
||ğ∞||2

〈ρ(g)J∞,J∞〉
||J∞||2 dg =: α♯∞(ğ∞,J∞).

To compute α♯∞(h, ğ,φφφ), we will consider the explicit model D(k+1, N) of the
discrete series representation ρ∞ that can be found in [BS98, Chapter 3]. As
vector spaces, one has

D(k + 1, N) =
⊕

m,ℓ≥0,ℓ even

C · vm,ℓ,

and SO2(R) acts on vm,ℓ through the character u 7→ uk+1+m+ℓ. The element
v0,0 is a lowest weight vector, and SO2(R) acts on the line spanned by v0,0
through the character u 7→ uk+1. Let r be the Lie algebra of R(R), and denote
by rC its complexification. Then there are certain operators X+, X−, Y+, Y−
acting on rC (see loc. cit.). One has that sl2 is a Lie subalgebra of r, and
X± ∈ sl2,C. Also, one has dρ∞X−J∞ = dρ∞Y−J∞ = 0. The action of these
operators is given by the following recipe:

dρ∞Y+vm,ℓ = vm+1,ℓ, dρ∞X+vm,ℓ = − 1

2πN
vm+2,ℓ,

dρ∞Y−vm,ℓ = −2πNmvm−1,ℓ,

dρ∞X−vm,ℓ = πNm(m− 1)vm−2,ℓ −
ℓ

4
(2k + ℓ− 1)vm,ℓ−2.
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The space D(k + 1, N) is endowed with an inner product 〈 , 〉, and the vectors
vm,ℓ form an orthogonal basis with respect to this inner product. We put
||v||2 = 〈v, v〉. For each pair of integers m, ℓ ≥ 0 with ℓ even, one can compute
||vm,ℓ||2 in a recursive manner from ||v0||2, where we abbreviate v0 := v0,0. We
shall normalize the inner product 〈 , 〉 so that ||v0||2 = 1.

Lemma 9.3. With the above notation, α♯∞(h, ğ,φφφ) = 2π2k−1.

Proof. With respect to the above model, τ∞ might be realized as a subrepresen-
tation of ρ∞|SL2(R), spanned by v0. Then we can assume the inner product for

τ∞ to be given by the restriction of the inner product for ρ∞. As α♯∞(ğ∞,J∞)
is normalized so that it is invariant under replacing ğ∞ and J∞ by scalar
multiples of them, we can therefore assume that ğ∞ = J∞ = v0. Then we have

α♯∞(h, ğ,φφφ) = α♯∞(ğ∞,J∞) =
1

||v0||4
∫

SL2(R)

|〈τ∞(g)v0, v0〉|2dg =

=

∫

SL2(R)

|〈τ∞(g)v0, v0〉|2dg.

Write A+ :=
{(

et

e−t

)
: t ≥ 0

}
, and consider the map

(SO2(R)×A+ × SO2(R))/{±1} −→ SL2(R)/{±1},
(
k,

(
et

e−t

)
, k′
)

7−→ k

(
et

e−t

)
k′,

where on the left hand side −1 is identified with the element (−1, 1,−1). This
map is bijective outside the boundary ofA+, by virtue of Cartan decomposition.
Using a similar argument to the one in [II10, Section 12], one deduces that
dg = 2sinh(2t)dtdkdk′, where dk and dk′ are the Haar measure as above for
which SO2(R) has volume π, and dt is the Lebesgue measure. It is well-known
(cf. [Kna79]) that

〈
τ∞

((
et

e−t

))
v0, v0

〉
= cosh(t)−(k+1),

and hence it follows that

α♯∞(h, ğ,φφφ) =

∫

SL2(R)

|〈τ∞(g)v0, v0〉|2dg =

= vol(SO2(R))2
∫ ∞

0

cosh(t)−2(k+1)2sinh(2t)dt =

= 2π2

∫ ∞

0

cosh(t)−2(k+1)sinh(2t)dt = 2π2k−1.

Proposition 9.4. We have I♯∞(h, ğ,φφφ) = 1.
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Proof. We have seen in the previous lemma that α♯∞(h, ğ,φφφ) = 2π2k−1. Be-
sides, the ratio

L(1, π∞,Ad)L(1, τ∞,Ad)

L(1/2, π∞ ×Ad(g))

equals

2(2π)−k−1Γ(k + 1)π−1Γ(1) · 2(2π)−2kΓ(2k)π−1Γ(1)

22(2π)−2k−1Γ(2k)Γ(k − k + 1) · 2(2π)−kΓ(k) =
k

2π2
,

and thus it follows from the definition of I♯∞(h, ğ,φφφ) that

I♯∞(h, ğ,φφφ) =
L(1, π∞,Ad)L(1, τ∞,Ad)

L(1/2, π∞ ×Ad(g))
α♯∞(h, ğ,φφφ) = 1.
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