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Abstract. Mumford and Newstead generalized the classical Torelli
theorem to higher rank, i.e. a smooth, projective curve X is uniquely
determined by the second intermediate Jacobian of the moduli space
of stable rank 2 bundles on X , with fixed odd degree determinant.
In this article we prove the analogous result in the case X is an ir-
reducible nodal curve with one node. As a byproduct, we obtain the
degeneration of the second intermediate Jacobians and the associated
Néron model of a family of such moduli spaces.
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1 Introduction

Throughout this article the underlying field will be C. Recall, that given a
smooth, projective variety Y , the k-th intermediate Jacobian of Y , denoted
Jk(Y ) is defined as:

Jk(Y ) :=
H2k−1(Y,C)

F kH2k−1(Y,C) +H2k−1(Y,Z)
,

where F • denotes Hodge filtration.
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In 1913, Torelli proved that a smooth, projective curve X is uniquely deter-
mined by its Jacobian variety J1(X), along with the polarization on J1(X)
induced by a non-degenerate, integer valued symplectic pairing on H1(X,Z)
(see [4, 36]). Since then several Torelli type theorems for smooth, projec-
tive curves have been proven (see for example [22, 27, 39]). Generalizations
of Torelli’s theorem for singular curves have also been investigated, notably
by Mumford [23], Namikawa [26], Alexeev [2, 3], Caporaso and Viviani [8] and
more recently by Rizzi and Zucconi [31]. In a different direction, Mumford and
Newstead in [24] generalized the classical Torelli to higher rank. More precisely,
they proved that a smooth, projective curve X is uniquely determined by the
moduli space of rank 2 stable vector bundles with fixed odd degree determi-
nant on X . Recently, Basu [7] proved an analogous result for the case when
the curve is reducible with two smooth components meeting at a simple node.
In this article we prove the higher rank Torelli theorem in the case the curve
is an irreducible nodal curve. More precisely, we prove:

Theorem 1.1 (See Theorem 4.4). Let X0 and X1 be projective, irreducible
nodal curves of genus g ≥ 4 with exactly one node such that the normalizations
X̃0 and X̃1 are not hyper-elliptic. Let L0 and L1 be invertible sheaves of odd
degree on X0 and X1, respectively. Denote by GX0(2,L0) (resp. GX1(2,L1))
the Gieseker moduli space of rank 2 semi-stable sheaves with determinant L0

(resp. L1) on curves semi-stably equivalent to X0 (resp. X1). If GX0 (2,L0) is
isomorphic to GX1(2,L1), then X0

∼= X1.

The non hyper-ellipticity assumption in the theorem comes from the fact that
existence of non-trivial linear systems of degree 2 on a curve (equivalent to
hyper-ellipticity of curves) prevents it from being uniquely determined by its
generalized Jacobian (see [26, p. 247]). Recall, generalized Jacobian of a curve
X is the same as the 1-st intermediate Jacobian of X as defined above, with
the mixed Hodge structure on H1(X,C). As we need our curves to be uniquely
determined by its generalized Jacobian, we use this additional hypothesis.
One must note that the strategy of Mumford-Newstead [24] or Basu [7] can-
not be used to prove the above theorem. In particular, the underlying curve
X studied in [24] is smooth, projective, whence the associated moduli space
MX(2,L) of rank 2 stable vector bundles with fixed odd degree determinant is
smooth and equipped with an universal bundle. Using the Chern class of the
universal bundle, Mumford and Newstead give a unimodular isomorphism of
pure Hodge structures from H1(X,Z) to H3(MX(2,L),Z). The higher rank
Torelli theorem for smooth, projective curves follows immediately from this
observation. Clearly this approach fails in our setup (the relevant cohomology
of Xi and GXi

(2,Li) is not pure). Instead, we use degeneration of Hodge struc-
tures to prove Theorem 1.1. Although Basu in [7] also uses variation of Hodge
structures, it turns out that the associated monodromy vanishes, thereby the
resulting limit Hodge structure is pure (see [7, Lemma 4.1 and 4.3]). By compar-
ison, the variation of Hodge structures in our setup has non-trivial monodromy
(see Theorem 2.9), thereby the limit Hodge structure is not pure. Therefore,
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we need to use the theory of Néron model of families of intermediate Jacobians
(see §3).
The first step to prove Theorem 1.1 is to obtain a relative version of the
Mumford-Newstead theorem on a flat family of projective curves of genus g ≥ 2,
over the unit disc ∆, say

π1 : X → ∆,

smooth over the punctured disc ∆∗ with central fiber X0 an irreducible nodal
curve with exactly one node. Fix an invertible sheaf L on X of odd degree
and let L0 := L|X0 . Denote by π2 : G(2,L) → ∆ (resp. GX0(2,L0)) the
relative Gieseker moduli space of rank 2 semi-stable sheaves on families of
curves semi-stably equivalent to X (resp. X0) with determinant L (resp. L0)
(see Notation A.4). Now, GX0(2,L0) is not smooth (Theorem A.6). Define the
second intermediate Jacobian of GX0 (2,L0) to be

J2(GX0(2,L0)) :=
H3(GX0(2,L0),C)

F 2H3(GX0 (2,L0),C) +H3(GX0 (2,L0),Z)
,

with the natural mixed Hodge structure on H3(GX0(2,L0),C). Note that
J2(GX0 (2,L0)) is not an abelian variety. However, we show that in this case
it is a semi-abelian variety. Since the families X and G(2,L) are smooth over
the punctured disc ∆∗, there exists a family of (intermediate) Jacobians J1

X∆∗

(resp. J2
G(2,L)∆∗

) over ∆∗ associated to the family of curves X (resp. family of

Gieseker moduli spaces G(2,L)) restricted to ∆∗ i.e., for all t ∈ ∆∗, the fibers

(
J
1
X∆∗

)
t
∼= J1(Xt) and

(
J
2
G(2,L)∆∗

)
t

∼= J2(G(2,L)t),

where (−)t denotes the fiber over t of the family (−). Using the isomorphism
obtained by Mumford-Newstead (between J1(Xt) and J2(G(2,L)t)), we obtain
an isomorphism of families of intermediate Jacobians over ∆∗:

Φ : J1
X∆∗

→ J
2
G(2,L)∆∗

.

Our next goal is to extend the morphism Φ to the entire disc ∆. Clemens [9]
and Zucker [40] show that under certain conditions there exist holomorphic,

canonical Néron models J
1

X̃ and J
2

G(2,L) extending the families of intermediate

Jacobians J
1
X∆∗

and J
2
G(2,L)∆∗

respectively, to ∆. We prove in Theorem 2.9
that these conditions are satisfied. Although the construction of the Néron
model by Zucker differs from that by Clemens, we prove in Theorem 3.1 that
they coincide in our setup (see Remark 3.2). Moreover, we prove:

Theorem 1.2. Notations as above. Denote by

J1(X0) :=
H1(X0,C)

F 1H1(X0,C) +H1(X0,Z)

the generalized Jacobian of X0, using the mixed Hodge structure onH1(X0,C).
Then,
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1. there exist complex manifolds J
1

X̃ and J
2

G(2,L) over ∆ extending J
1
X∆∗

and

J
2
G(2,L)∆∗

, respectively. Furthermore, the extension is canonical,

2. the central fiber of J
1

X̃ (resp. J
2

G(2,L)) is isomorphic to J1(X0) (resp.

J2(GX0 (2,L0))). Furthermore, J1(X0) and J2(GX0(2,L0)) are semi-
abelian varieties,

3. the isomorphism Φ extends holomorphically to an isomorphism

Φ : J
1

X̃ → J
2

G(2,L),

over the entire disc ∆. Furthermore, the induced isomorphism on the
central fiber is an isomorphism of semi-abelian varieties i.e., the abelian
part of J1(X0) maps isomorphically to that of J2(GX0 (2,L0)).

See Theorem 3.1, Remark 3.2 and Corollaries 3.4 and 4.3 for the proof.
Finally, we use the Torelli theorem on generalized Jacobian of irreducible nodal
curves by Namikawa, to obtain the higher rank analogue as mentioned in The-
orem 1.1.
Note that in this article we use Gieseker’s relative moduli space of semi-stable
sheaves with fixed determinant, since the central fiber of the moduli space is a
simple normal crossings divisor (see [35, §6]), this is not the case for Simpson’s
relative moduli space. This is needed for computing the limit mixed Hodge
structure using Steenbrink spectral sequences. In recent years several authors
have studied the algebraic and geometric properties of the Gieseker’s moduli
space (see for example [5, 6, 11]). We believe that Theorem 1.1 holds for any
number of nodes. However, the references we use formulate their results in the
one node case only, although they claim that analogous results hold for several
node case as well. Therefore, for the sake of consistency we also restrict to the
one node case.
The outline of the article is as follows: in §2 we prove that the conditions
for the existence of Néron models are satisfied. In §3, we obtain the associated
Néron models, mentioned above. In §4, we study the central fibers of the Néron
models and prove the main results.

Acknowledgements We thank Prof. J. F. de Bobadilla for numerous discussions
and Dr. B. Sigurdsson and Dr. S. Das for helpful suggestions. A part of this
work was done when the third author was visiting ICTP. She warmly thanks
ICTP, the Simons Associateship and Prof. C. Araujo for making this possible.

2 Limit mixed Hodge structure on the relative moduli space

In this section we compute the limit mixed Hodge structures and monodromy
associated to degeneration of curves and the corresponding Gieseker moduli
space with fixed determinant, defined in Appendix A (see Theorem 2.9). We
assume familiarity with basic results on limit mixed Hodge structures. See [29]
for reference.
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Notation 2.1. Denote by π1 : X → ∆ a family of projective curves of genus
g ≥ 2 over the unit disc ∆, smooth over the punctured disc ∆∗ and central fiber
isomorphic to an irreducible nodal curve X0 with exactly one node, say at x0.
Assume further that X is regular. To compute the limit mixed Hodge structure,
we need the central fiber to be a reduced simple normal crossings divisor. For
this purpose, we blow-up X at the point x0. Denote by X̃ := Blx0X and by

π̃1 : X̃ → X
π1−→ ∆. Note that for t 6= 0, π̃−1

1 (t) = π−1
1 (t). The central fiber

of π̃1 is the union of two irreducible components, the normalization X̃0 of X0

and the exceptional divisor F ∼= P1
x0

intersecting X̃0 at the two points over x0.
Fix an invertible sheaf L on X of relative odd degree, say d. Set L0 := L|X0 ,

the restriction of L to the central fiber. Let L̃0 be the pullback of L0 by the
normalization X̃0 → X0. Let

π2 : G(2,L) → ∆

the relative Gieseker moduli spaces of rank 2 semi-stable sheaves on X with
determinant L as defined in Notation A.4. We know by [20, Theorem 1.2] that
these moduli spaces are in fact non-empty. Let GX0 (2,L0) denote the central
fiber of the family π2. Recall, G(2,L) is regular, smooth over ∆∗, with reduced
simple normal crossings divisor GX0 (2,L0) as the central fiber (Theorem A.6).

Denote byM
X̃0

(2, L̃0) the fine moduli space of semi-stable sheaves of rank 2 and

with determinant L̃0 over X̃0. See [19] for basic results related to M
X̃0

(2, L̃0).
By Theorem A.6, GX0 (2,L0) can be written as the union of two irreducible
components, say G0 and G1, where G1 (resp. G0 ∩ G1) is isomorphic to a P3

(resp. P1 × P1)-bundle over M
X̃0

(2, L̃0).

2.1 Hodge bundles

Consider the restriction of the families π̃1 and π2 to the punctured disc:

π̃′
1 : X̃∆∗ → ∆∗ and π′

2 : G(2,L)∆∗ → ∆∗,

where X̃∆∗ := π̃−1
1 (∆∗) and G(2,L)∆∗ := π−1

2 (∆∗). Using Ehresmann’s theo-
rem (see [37, Theorem 9.3]), we have for all i ≥ 0,

Hi

X̃∆∗
:= Riπ̃′

1∗Z and Hi
G(2,L)∆∗

:= Riπ′
2∗Z

are the local systems over ∆∗ with fibers Hi(Xt,Z) and Hi(G(2,L)t,Z) respec-
tively, for t ∈ ∆∗. One can canonically associate to these local systems, the
holomorphic vector bundles

H1
X̃∆∗

:= H1
X̃∆∗

⊗Z O∆∗ and H3
G(2,L)∆∗

:= H3
G(2,L)∆∗

⊗Z O∆∗ ,

called the Hodge bundles. There exist holomorphic sub-bundles

F pH1
X̃∆∗

⊂ H1
X̃∆∗

and F pH3
G(2,L)∆∗

⊂ H3
G(2,L)∆∗
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defined by the condition: for any t ∈ ∆∗, the fibers

(
F pH1

X̃∆∗

)
t
⊂

(
H1

X̃∆∗

)
t
and

(
F pH3

G(2,L)∆∗

)
t
⊂

(
H3

G(2,L)∆∗

)
t

can be identified respectively with

F pH1(Xt,C) ⊂ H1(Xt,C) and F pH3(G(2,L)t,C) ⊂ H3(G(2,L)t,C),

where F p denotes the Hodge filtration (see [37, §10.2.1]).

2.2 Canonical extensions

The Hodge bundles and their holomorphic sub-bundles defined above can be

extended to the entire disc. In particular, there exist canonical extensions, H
1

X̃

andH
3

G(2,L) ofH
1
X̃∆∗

andH3
G(2,L)∆∗

respectively, to ∆ (see [29, Definition 11.4]).

Note that, H
1

X̃ and H
3

G(2,L) are locally-free over ∆. Denote by j : ∆∗ → ∆ the
inclusion morphism,

F pH
1

X̃ := j∗

(
F pH1

X̃∆∗

)
∩H

1

X̃ and F pH
3

G(2,L) := j∗

(
F pH3

G(2,L)∆∗

)
∩H

3

G(2,L).

Note that, F pH
1

X̃ (resp. F pH
3

G(2,L)) is the unique largest locally-free sub-sheaf

of H
1

X̃ (resp. H
3

G(2,L)) which extends F pH1
X̃∆∗

(resp. F pH3
G(2,L)∆∗

).

Consider the universal cover h → ∆∗ of the punctured unit disc. Denote by

e : h → ∆∗ j
−→ ∆ the composed morphism and X̃∞ (resp. G(2,L)∞) the

base change of the family X̃ (resp. G(2,L)) over ∆ to h, by the morphism e.
There is an explicit identification of the central fiber of the canonical extensions

H
1

X̃ and H
3

G(2,L) and the cohomology groups H1(X̃∞,C) and H3(G(2,L)∞,C)
respectively, depending on the choice of the parameter t on ∆ (see [29, XI-8]):

gX̃ ,t
: H1(X̃∞,C)

∼
−→

(
H

1

X̃

)
0
and gG(2,L),t : H

3(G(2,L)∞,C)
∼
−→

(
H

3

G(2,L)

)
0
.

(2.1)

This induce (Hodge) filtrations on H1(X̃∞,C) and H3(G(2,L)∞,C) as:

F pH1(X̃∞,C) := (gX̃ ,t
)−1

(
F pH

1

X̃

)
0
and (2.2)

F pH3(G(2,L)∞,C) := (gG(2,L),t)
−1

(
F pH

3

G(2,L)

)
0
. (2.3)

2.3 Limit weight filtration

Let TX̃∆∗
and TG(2,L)∆∗ denote the monodromy automorphisms :

TX̃∆∗
: H1

X̃∆∗
→ H1

X̃∆∗
and TG(2,L)∆∗ : H3

G(2,L)∆∗
→ H3

G(2,L)∆∗
(2.4)
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defined by parallel transport along a counterclockwise loop about 0 ∈ ∆
(see [29, §11.1.1]). By [29, Proposition 11.2] the automorphisms extend to

automorphisms of H
1

X̃ and H
3

G(2,L), respectively. Since the monodromy auto-
morphisms TX̃∆∗

and TG(2,L)∆∗ were defined on the integral local systems, the

induced automorphisms on H
1

X̃ and H
3

G(2,L) after restriction to the central fiber
gives the following automorphisms:

TX̃ : H1(X̃∞,Q) → H1(X̃∞,Q) and

TG(2,L) : H
3(G(2,L)∞,Q) → H3(G(2,L)∞,Q).

Remark 2.2. There exists an unique increasing monodromy weight filtration
W• (see [29, Lemma-Definition 11.9]) on H1(X̃∞,Q) (resp. H3(G(2,L)∞,Q))
such that,

1. for i ≥ 2, logTX̃ (WiH
1(X̃∞,Q)) ⊂ Wi−2H

1(X̃∞,Q)

(resp. logTG(2,L)(WiH
3(G(2,L)∞,Q)) ⊂ Wi−2H

3(G(2,L)∞,Q)),

2. the map (log TX̃ )
l : GrW1+lH

1(X̃∞,Q) → GrW1−lH
1(X̃∞,Q)

(resp. (logTG(2,L))
l : GrW3+lH

3(G(2,L)∞,Q) → GrW3−lH
3(G(2,L)∞,Q))

is an isomorphism for all l ≥ 0.

Using [33, Theorem 6.16] observe that the induced filtrations on H1(X̃∞,C)

(resp. H3(G(2,L)∞,C)) defines a mixed Hodge structure (H1(X̃∞,Z),W•, F
•)

(resp. (H3(G(2,L)∞,Z),W•, F
•)).

2.4 Steenbrink spectral sequences

Let ρ : Y → ∆ be a flat, family of projective varieties, smooth over ∆\{0}
such that the central fiber Y0 is a reduced simple normal crossings divisor in
Y consisting of exactly two irreducible components, say Y1 and Y2. Assume
further that Y is regular. Denote by h is the universal cover of ∆∗ and

ρ∞ : Y∞ → h

the base change of ρ under the natural morphism from h to ∆∗. As Y0 consists
of exactly two irreducible components, we have the following terms of the (limit)
weight spectral sequence:

Proposition 2.3 ( [29, Corollary 11.23] and [34, Example 3.5]). The limit
weight spectral sequence

∞

W
Ep,q

1 ⇒ Hp+q(Y∞,Q) consists of the following terms:

1. if |p| ≥ 2, then
∞

W
Ep,q

1 = 0,

2.
∞

W
E1,q

1 = Hq(Y1 ∩ Y2,Q)(0),
∞

W
E0,q

1 = Hq(Y1,Q)(0) ⊕ Hq(Y2,Q)(0) and
∞

W
E−1,q

1 = Hq−2(Y1 ∩ Y2,Q)(−1),
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3. the differential map d1 :
∞

W
E0,q

1 →
∞

W
E1,q

1 is the restriction morphism and

d1 :
∞

W
E−1,q

1 →
∞

W
E0,q

1

is the Gysin morphism.

The limit weight spectral sequence
∞

W
Ep,q

1 degenerates at E2. Similarly, the
weight spectral sequence

W
Ep,q

1 ⇒ Hp+q(Y0,Q) on Y0 consists of the following
terms:

1. for p ≥ 2 or p < 0, we have
W
Ep,q

1 = 0,

2.
W
E1,q

1 = Hq(Y1 ∩ Y2,Q)(0) and
W
E0,q

1 = Hq(Y1,Q)(0)⊕Hq(Y2,Q)(0),

3. the differential map d1 :
W
E0,q

1 →
W
E1,q

1 is the restriction morphism.

The spectral sequence
W
Ep,q

1 degenerates at E2.

Notation 2.4. To avoid confusions arising from the underlying family, we
denote by

∞

W
Ep,q

1 (ρ) and
W
Ep,q

1 (ρ), the limit weight spectral sequence on Y∞

and the weight spectral sequence on Y0 respectively, associated to the family
ρ, defined above.

2.5 Kernel of a Gysin morphism

We compute the kernel of the Gysin morphism fromH2(G0∩G1,Q) toH4(G1,Q)
(Proposition 2.7). This will play an important role in giving an explicit descrip-
tion of the specialization morphisms associated to the families π1 and π2 defined
above. We first fix some notations:

Notation 2.5. Denote by Yb := M
X̃0

(2, L̃0) and ρ12 : G0 ∩ G1 → Yb the

natural bundle morphism. For any y ∈ Yb, denote by (G0 ∩ G1)y := ρ−1
12 (y)

and αy : (G0 ∩ G1)y →֒ G0 ∩ G1 the natural inclusion. It is well-known that Yb

is rationally connected i.e any two general points are connected by a rational
curve (see [10, Definition 4.3] for the precise definition). For a proof of Yb being
rationally connected see [19, Proposition 2.3.7 and Remark 2.3.8].

Lemma 2.6. The cohomology group H2(G0 ∩ G1,Q) sits in the following short
exact sequence of vector spaces:

0 → H2(Yb,Q)
ρ∗
12−−→ H2(G0 ∩ G1,Q)

α∗
y

−−→ H2((G0 ∩ G1)y,Q) → 0

for a general y ∈ Yb.

Proof. Since G0 ∩ G1 is a P1 × P1-bundle over Yb, there exists an open subset
U ⊂ Yb such that ρ−1

12 (U) ∼= U × (G0 ∩ G1)y and H1(O(G0∩G1)y ) = 0 for any
y ∈ U . By [16, Ex. III.12.6], this implies

Pic(ρ−1
12 (U)) ∼= Pic(U × (G0 ∩ G1)y) ∼= Pic(U)× Pic((G0 ∩ G1)y).
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We then have the following composition of surjective morphisms,

α∗
y : Pic(G0 ∩ G1) ։ Pic(ρ−1

12 (U)) ։ Pic((G0 ∩ G1)y)

where the first surjection follows from [16, Proposition II.6.5] and the second
is simply projection. By [16, Ex. III.12.4], for a general y ∈ Yb, we have
kerα∗

y
∼= ρ∗12Pic(Yb). Using the projection formula and the Zariski’s main

theorem (see proof of [16, Corollary III.11.4]), observe that for any invertible
sheaf L on Yb, we have ρ12∗ρ

∗
12L

∼= L. In particular, the morphism ρ∗12 is
injective and we have the following short exact sequence for a general y ∈ Yb:

0 → Pic(Yb)
ρ∗
12−−→ Pic(G0 ∩ G1)

α∗
y

−−→ Pic((G0 ∩ G1)y) → 0.

As Yb and (G0 ∩ G1)y are rationally connected for any y ∈ Yb, so is G0 ∩ G1

(see [14, Corollary 1.3]). Using the exponential short exact sequence associated
to each of these varieties we conclude that the corresponding first Chern class
maps:

c1 : Pic(Yb) → H2(Yb,Z), c1 : Pic(G0 ∩ G1) → H2(G0 ∩ G1,Z) and

c1 : Pic((G0 ∩ G1)y) → H2((G0 ∩ G1)y,Z)

are isomorphisms. This gives us the short exact sequence in the lemma, thereby
proving it.

Proposition 2.7. Denote by i : G0 ∩ G1 → G1 the natural inclusion. Then,

ker(i∗ : H2(G0 ∩ G1,Q) → H4(G1,Q)) ∼= Q,

where i∗ denotes the Gysin morphism.

Proof. By Proposition A.5, G1 is a P3-bundle over Yb. Denote by ρ1 : G1 → Yb

the corresponding bundle morphism. For any y ∈ Yb, denote by G1,y := ρ−1
1 (y)

and α1,y : G1,y →֒ G1 the natural inclusion. Note that, G0 ∩ G1 is a divisor in
G1. Thus, the cohomology class [G0∩G1] is an element of H2(G1,Q). Moreover,
for every y ∈ Yb, [(G0 ∩G1)y] generate H

2(G1,y,Q) ((G0 ∩G1)y is a hypersurface
in P1,y). By the Leray-Hirsch theorem [37, Theorem 7.33] we have

H4(G1,Q) ∼= ρ∗1H
4(Yb,Q)⊕ ρ∗1H

2(Yb,Q) ∪ [G0 ∩ G1]⊕Q[G0 ∩ G1]
2,

where ∪ denotes cup-product. Since H4(G1,y,Q) = H4(P3,Q) ∼= Q generated
by [(G0 ∩ G1)y ]

2, we have the following short exact sequence:

0 → H4(Yb,Q)⊕H2(Yb,Q)
α
−→ H4(G1,Q)

α∗
1,y

−−−→ H4(G1,y ,Q) → 0,
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where α(ξ, γ) = ρ∗1(ξ) + ρ∗1(γ)∪ [G0 ∩G1]. We claim that the following diagram
of short exact sequences is commutative:

H2(Yb,Q) ⊂
ρ∗12 ✲ H2(G0 ∩ G1,Q)

α∗
y
✲ H2((G0 ∩ G1)y,Q) ✲ 0

	 	

H4(Yb,Q)⊕H2(Yb,Q)

β

❄

⊂
α

✲ H4(G1,Q)

i∗

❄ α∗
1,y

✲ H4(G1,y,Q)

iy∗

❄

✲ 0
(2.5)

where β(ξ) = (0, ξ), the top horizontal short exact sequence follows from
Lemma 2.6 and iy∗

is the Gysin morphism induced by the inclusion of
(G0 ∩ G1)y into G1,y. Indeed, we observed in the proof of Lemma 2.6 that
H2(Yb,Q), H2(G0 ∩ G1,Q) and H2((G0 ∩ G1)y ,Q) are generated by the coho-
mology class of divisors (the corresponding varieties are rationally connected).
The commutativity of the left square then follows from the observation that
for any invertible sheaf L on Yb, we have

i∗ρ
∗
12([L]) = i∗i

∗ρ∗1([L]) = ρ∗1([L]) ∪ [G0 ∩ G1],

where the first equality follows from ρ1◦i = ρ12 and the second by the projection
formula. The commutativity of the right hand square follows from the definition
of pull-back and push-forward of cycles (see [12, Theorem 6.2(a)] for the general
statement). This proves the claim.
Clearly, β is injective. Since the entries in the diagram are vector spaces, the
two rows are in fact split short exact sequences. Then, the diagram (2.5) implies
that ker(i∗) ∼= ker(iy∗

). Since

iy = i|(G0∩G1)y : (G0 ∩ G1)y →֒ G1,y

can be identified with the inclusion P1×P1 →֒ P3, under the Segre embedding,
we have ker(iy∗

) ∼= Q (use H2(P1 × P1,Q) ∼= Q ⊕ Q, H4(P3,Q) ∼= Q and iy∗
is

surjective). This implies ker i∗ ∼= Q. This proves the proposition.

2.6 Specialization morphism

Recall, for any t ∈ ∆∗, there exist natural specialization morphisms:

sp1 : H1(X̃0,Q) → H1(X̃t,Q) and sp2 : H3(GX0 (2,L0),Q) → H3(G(2,L)t,Q)

associated to the families π̃1 and π2 respectively, obtained by composing the
natural inclusion of the special fiber X̃t (resp. G(2,L)t) into X̃ (resp. G(2,L))

with the retraction map to the central fiber X̃0 (resp. GX0(2,L0)). Unfortu-
nately, the resulting specialization maps are not morphism of mixed Hodge
structures. However, if one identifies H1(X̃t,Q) and H3(G(2,L)t,Q) with

H1(X̃∞,Q) and H3(G(2,L)∞,Q), then the resulting (modified) specialization
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morphisms are morphisms of mixed Hodge structures (see [29, Theorem 11.29]).
Furthermore, by the local invariant cycle theorem [29, Theorem 11.43], we have
the following exact sequences:

H1(X̃0,Q)
sp1−−→ H1(X̃∞,Q)

T
X̃
−Id

−−−−→ H1(X̃∞,Q) and (2.6)

H3(GX0(2,L0),Q)
sp2−−→ H3(G(2,L)∞,Q)

TG(2,L)−Id
−−−−−−−→ H3(G(2,L)∞,Q), (2.7)

where spi denotes the (modified) specialization morphisms for i = 1, 2, which
are morphisms of mixed Hodge structures as discussed above. See [34, Ex-

ample 3.5] for the description of the Hodge filtration on H1(X̃0,C) and
H3(GX0 (2,L0),C). By [29, Theorem 5.39], note that

H1(X̃0,Q) = W1H
1(X̃0,Q) and H3(GX0 (2,L0),Q) = W3H

3(GX0 (2,L0),Q).

Since the specialization morphisms spi are morphisms of mixed Hodge struc-
tures, we conclude:

Proposition 2.8. The specialization morphism sp1 (resp. sp2) factors through

W1H
1(X̃∞,Q) (resp. W3H

3(G(2,L)∞,Q)) and the induced morphisms

sp1 : H1(X̃0,Q) → W1H
1(X̃∞,Q) and

sp2 : H3(GX0 (2,L0),Q) → W3H
3(G(2,L)∞,Q)

are isomorphisms. Moreover, the natural inclusions

W2H
1(X̃∞,Q) →֒ H1(X̃∞,Q) and W4H

3(G(2,L)∞,Q) →֒ H3(G(2,L)∞,Q)

are isomorphisms and GrW2 H1(X̃∞,Q) and GrW4 H3(G(2,L)∞,Q) are of Q-
dimension at most one.

Proof. The weight filtration onH1(X̃∞,C) andH3(G(2,L)∞,C) induced by the
limit weight spectral sequences

∞

W
Ep,q

1 (π̃1) and
∞

W
Ep,q

1 (π2) respectively, coincide
with the monodromy weight filtration defined in Remark 2.2 (see [29, Corollary
11.41]). Using the (limit) weight spectral sequence (Proposition 2.3) we then
have the following (limit) weight decompositions:

H
1(X̃0,Q) ∼= GrW0 H

1(X̃0,Q)⊕GrW1 H
1(X̃0,Q) (2.8)

H
1(X̃∞,Q) ∼= GrW0 H

1(X̃∞,Q)⊕GrW1 H
1(X̃∞,Q)⊕GrW2 H

1(X̃∞,Q)
(2.9)

H
3(GX0(2,L0),Q) ∼= GrW2 H

3(GX0(2,L0),Q)⊕GrW3 H
3(GX0(2,L0),Q)

(2.10)

H
3(G(2,L)∞,Q) ∼= GrW2 H

3(G(2,L)∞,Q)⊕GrW3 H
3(G(2,L)∞,Q)⊕

⊕GrW4 H
3(G(2,L)∞,Q) (2.11)

GrWq H
p+q(X̃0,Q) =

W
E

p,q
2 (π̃1), GrWq H

p+q(X̃∞,Q) =
∞

W
E

p,q
2 (π̃1), (2.12)

GrWq H
p+q(GX0(2,L0),Q) =

W
E

p,q
2 (π2) and (2.13)

GrWq H
p+q(G(2,L)∞,Q) =

∞

W
E

p,q
2 (π2) for all p, q. (2.14)
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As observed earlier, we have

W
Ep,q

1 (π̃1) =
∞

W
Ep,q

1 (π̃1) and W
Ep,q

1 (π2) =
∞

W
Ep,q

1 (π2)

for all p ≥ 0 and the differential maps,

d1 :
W
Ep,q

1 (π̃1) → W
Ep+1,q

1 (π̃1) and d1 :
∞

W
Ep,q

1 (π̃1) →
∞

W
Ep+1,q

1 (π̃1)

coincide for all p ≥ 0. Similarly for all p ≥ 0, the differential maps

d1 :
W
Ep,q

1 (π2) → W
Ep+1,q

1 (π2) and d1 :
∞

W
Ep,q

1 (π2) →
∞

W
Ep+1,q

1 (π2) coincide.

Note that,
∞

W
E−1,1

1 (π̃1) = 0 (by definition) and

∞

W
E−1,3

1 (π2) = H1(G0 ∩ G1,Q) = 0

(G0 ∩ G1 is rationally connected as observed in the proof of Lemma 2.6). This
implies

W
Ep,1−p

2 (π̃1) =
∞

W
Ep,1−p

2 (π̃1) and W
Ep,3−p

2 (π2) =
∞

W
Ep,3−p

2 (π2) for all p ≥ 0.

Using (2.9) and (2.11), we conclude that sp1 : H1(X̃0,Q) → W1H
1(X̃∞,Q) and

sp2 : H3(GX0 (2,L0),Q) → W3H
3(G(2,L)∞,Q)

are isomorphisms. Furthermore, the natural inclusions

W2H
1(X̃∞,Q) →֒ H1(X̃∞,Q) and W4H

3(G(2,L)∞,Q) →֒ H3(G(2,L)∞,Q)

are isomorphisms. It remains to show that the Q-vector spaces GrW2 H1(X̃∞,Q)
and GrW4 H3(G(2,L)∞,Q) are of dimension at most one. Using Proposition 2.3
we observe that

∞

W
E−1,2

2 (π̃1) = ker(
∞

W
E−1,2

1 (π̃1)
d1−→

∞

W
E0,2

1 (π̃1)) =

= ker(H0(X̃0 ∩ F,Q)
(i1∗ ,i2∗ )−−−−−→ H2(X̃0,Q)⊕H2(F,Q))

where i1∗ (resp. i2∗) is the Gysin morphism from H0(X̃0 ∩F,Q) to H2(X̃0,Q)
(resp. H2(F,Q)) induced by the inclusion maps

i1 : X̃0 ∩ F →֒ X̃0 (resp. i2 : X̃0 ∩ F →֒ F ).

Since X̃0 ∩ F consists of 2 points and the morphism (i1∗ , i2∗) is non-zero,
one can check that ker(i1∗ , i2∗) is isomorphic to either 0 or Q. Therefore,
∞

W
E−1,2

2 (π̃1) = GrW2 H1(X̃∞,Q) is of dimension at most 1. Similarly, using
Proposition 2.3 we have,

∞

W
E−1,4

2 (π2) = ker(
∞

W
E−1,4

2 (π2) →
∞

W
E0,4

2 (π2)) =
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= ker(H2(G0 ∩ G1,Q)
(j1∗ ,j2∗ )−−−−−−→ H4(G0,Q)⊕H4(G1,Q)),

where j1∗ and j2∗ are the Gysin morphisms associated to the natural inclusions

j1 : G0 ∩ G1 →֒ G0 and j2 : G0 ∩ G1 →֒ G1.

Proposition 2.7 then implies that ker(j1∗ , j2∗) is isomorphic to either 0 or Q.
Thus,

∞

W
E−1,4

2 (π2) = GrW4 H3(G(2,L)∞,Q) is of dimension at most 1. This
completes the proof of the proposition.

We are now ready to prove the main theorem of this section.

Theorem 2.9. Under the natural specialization morphisms spi for i = 1, 2, we
have

1. the natural morphism

H1(X̃0,C)/F
1H1(X̃0,C)

sp1−−→ H1(X̃∞,C)/F 1H1(X̃∞,C)

is an isomorphism, GrW2 H1(X̃∞,Q) is pure of type (1, 1) in the sense that

Gr1FGrW2 H1(X̃∞,C) = GrW2 H1(X̃∞,C) and (TX̃ − Id)2 = 0,

2. the morphism

H3(GX0 (2,L0),C)

F 2H3(GX0 (2,L0),C)

sp2−−→
H3(G(2,L)∞,C)

F 2H3(G(2,L)∞,C)

is an isomorphism, GrW4 H3(G(2,L)∞,Q) is pure of type (2, 2) i.e.,
Gr2FGrW4 H3(G(2,L)∞,C) = GrW4 H3(G(2,L)∞,C) and (TG(2,L) − Id)2

vanishes.

Proof. Since X̃t is smooth for all t ∈ ∆∗, we have GrpFH
1(X̃t,C) = 0 for all

p ≥ 2. As G(2,L)t is smooth, rationally connected for all t ∈ ∆∗, we have by [10,
Corollary 4.18] Gr3FH

3(G(2,L)t,C) = H3,0(G(2,L)t,C) = H0(Ω3
G(2,L)t

) = 0

and GrpFH
3(G(2,L)t,C) = 0, p ≥ 4. Then [29, Corollary 11.24] implies that

GrpFH
1(X̃∞,C) = 0 (resp. GrpFH

3(G(2,L)∞,C) = 0) for all p ≥ 2 (resp.

p ≥ 3). Thus, F 2H1(X̃∞,C) = 0 = F 3H3(G(2,L)∞,C) = 0, which means

Gr1FGrW2 H1(X̃∞,Q) = F 1GrW2 H1(X̃∞,Q) and (2.15)

Gr2FGrW4 H3(G(2,L)∞,Q) = F 2GrW4 H3(G(2,L)∞,Q).

Consider now the following diagram of short exact sequences:

FmWpH
p(A,C) ⊂✲ FmWp+1H

p(A,C) ✲✲ FmGrWp+1H
p(A,C)

	 	

WpH
p(A,C)
❄

∩

⊂ ✲ Wp+1H
p(A,C)
❄

∩

✲✲ GrWp+1H
p(A,C)

f0

❄

(2.16)
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for the two cases {A = X̃∞,m = 1 = p} and {A = G(2,L)∞,m = 2, p = 3},

where FmWjH
p(A,C) := FmHp(A,C) ∩WjH

p(A,C). Since GrW2 H1(X̃∞,Q)

and GrW4 H3(G(2,L)∞,Q) are pure Hodge structures of dimension at most

one (Proposition 2.8), we have GrW2 H1(X̃∞,C) = Gr1FGrW2 H1(X̃∞,C) and

GrW4 H3(G(2,L)∞,C) = Gr2FGrW4 H3(G(2,L)∞,C). Using (2.15), this implies
f0 is an isomorphism in both the cases. Applying Snake lemma to the diagram
(2.16) we conclude that in both cases

WpH
p(A,C)

FmHp(A,C) ∩WpHp(A,C)
∼=

Wp+1H
p(A,C)

FmHp(A,C) ∩Wp+1Hp(A,C)
∼=

Hp(A,C)

FmHp(A,C)

where the last isomorphism follows from Wp+1H
p(A,C) ∼= Hp(A,C) (Propo-

sition 2.8). Proposition 2.8 further implies

H1(X̃0,C)

F 1H1(X̃0,C)

sp1−−→
∼

W1H
1(X̃∞,C)

F 1H1(X̃∞,C) ∩W1H1(X̃∞,C)
∼=

H1(X̃∞,C)

F 1H1(X̃∞,C)
and

H3(GX0 (2,L0),C)

F 2H3(GX0 (2,L0),C)

sp2−−→
∼

W3H
3(G(2,L)∞,Q)

F 2W3H3(G(2,L)∞,C)
∼=

H3(G(2,L)∞,Q)

F 2H3(G(2,L)∞,C)
,

where F 2W3H
3(G(2,L)∞,C) := F 2H3(G(2,L)∞,C) ∩W3H

3(G(2,L)∞,C). It
now remains to check that (TX̃ − Id)2 = 0 = (TG(2,L)− Id)2. Using Proposition
2.8 and the exact sequences (2.6) and (2.7), we have

ker(TX̃ − Id) = Im sp1 = W1H
1(X̃∞,Q) and

ker(TG(2,L) − Id) = Im sp2 = W3H
3(G(2,L)∞,Q).

Hence, TX̃ − Id (resp. TG(2,L) − Id) factors through GrW2 H1(X̃∞,Q) (resp.

GrW4 H3(G(2,L)∞,Q)). Recall, GrW2 H1(X̃∞,Q) (resp. GrW4 H3(G(2,L)∞,Q))
is either trivial or isomorphic to Q (Proposition 2.8). Now, consider the com-
posed morphisms

T1 : GrW2 H
1(X̃∞,Q)

T
X̃

−Id
−−−−→ H

1(X̃∞,Q)
pr1−−→ GrW2 H

1(X̃∞,Q) and

T2 : GrW4 H
3(G(2,L)∞,Q)

TG(2,L)−Id
−−−−−−−→ H

3(G(2,L)∞,Q)
pr2−−→ GrW4 H

3(G(2,L)∞,Q),

where pr1 and pr2 are natural projections. Since T1 (resp. T2) is a morphism
of Q-vector spaces of dimension at most one, TN

1 = 0 (resp. TN
2 = 0) for some

N if and only if T1 = 0 (resp. T2 = 0). As the monodromy operators TX̃ and
TG(2,L) are unipotent, there exists N such that

(TX̃ − Id)N = 0 = (TG(2,L) − Id)N

which implies TN
1 = 0 = TN

2 . Thus, T1 = 0 = T2. This implies,

Im(TX̃ − Id) ⊂ W1H
1(X̃∞,Q) and Im(TG(2,L) − Id) ⊂ W3H

3(G(2,L)∞,Q).

In other words, Im(TX̃−Id) ⊂ ker(TX̃−Id) and Im(TG(2,L)−Id) ⊂ ker(TG(2,L)−
Id). Therefore, (TX̃ − Id)2 = 0 = (TG(2,L) − Id)2. This proves the theorem.

Documenta Mathematica 24 (2019) 1739–1767



Degeneration of Torelli Theorem 1753

3 Néron model for families of intermediate Jacobians

In this section, we compare the various Néron models for families of interme-
diate Jacobians. The Néron model of a family of intermediate Jacobians over
a punctured disc ∆∗, is its extension to the entire disc ∆. We use the same
notations as in §2.

Denote by H
1

X̃ := j∗H
1
X̃∆∗

and H
3

G(2,L) := j∗H
3
G(2,L)∆∗

, where j : ∆∗ →֒ ∆ is

the natural inclusion. By the Hodge decomposition for all t ∈ ∆∗, we have

H1(Xt,Z) ∩ F 1H1(Xt,C) = 0 and H3(G(2,L)t,Z) ∩ F 2H3(G(2,L)t,C) = 0.

Thus the natural morphisms,

H1(Xt,Z) →
H1(Xt,C)

F 1H1(Xt,C)
and H3(G(2,L)t,Z) →

H3(G(2,L)t,C)

F 2H3(G(2,L)t,C)

are injective. This induces natural injective morphisms,

Φ1 : H1
X̃∆∗

→ H1
X̃∆∗

/F 1H1
X̃∆∗

and Φ2 : H3
G(2,L)∆∗

→ H3
G(2,L)∆∗

/F 2H3
G(2,L)∆∗

.

Since F pH
1

X̃ = j∗

(
F pH1

X̃∆∗

)
∩H

1

X̃ and

F pH
3

G(2,L) := j∗

(
F pH3

G(2,L)∆∗

)
∩H

3

G(2,L)

are vector bundles, one can immediately check that the natural morphisms,

Φ1 : H
1

X̃ → H
1

X̃ /F 1H
1

X̃ and Φ2 : H
3

G(2,L) → H
3

G(2,L)/F
2H

3

G(2,L)

extending Φ1 and Φ2 respectively, are injective. Denote by J 1
X̃∆∗

:= coker(Φ1),

J 2
G(2,L)∆∗

:= coker(Φ2),J
1

X̃ := coker(Φ1) and J
2

G(2,L) := coker(Φ2).

Note that for any t ∈ ∆∗, we have the following fibers

J
1

X̃ ⊗ k(t) = J1(Xt) =
H1(Xt,C)

F 1H1(Xt,C) +H1(Xt,Z)
and

J
2

G(2,L) ⊗ k(t) = J2(G(2,L)t) =
H3(G(2,L)t,C)

F 2H3(G(2,L)t,C) +H3(G(2,L)t,Z)
.

Then, J1
X̃

:=
⋃

t∈∆∗

J1(Xt) and J
2
G(2,L) :=

⋃
t∈∆∗

J2(G(2,L)t) has naturally the

structure of a complex manifold such that

J
1
X̃

→ ∆∗ and J
2
G(2,L) → ∆∗

are analytic fibre spaces of complex Lie groups with OJ1

X̃

∼= J 1
X̃∆∗

and

OJ2
G(2,L)

∼= J 2
G(2,L)∆∗

as sheaves of abelian groups.
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Theorem 3.1. The family of intermediate Jacobians J1
X̃

and J
2
G(2,L) over ∆

∗,

extend holomorphically and canonically to J
1

X̃ and J
2

G(2,L) over ∆. Further-

more, J
1

X̃ and J
2

G(2,L) has the structure of smooth, complex Lie groups over ∆
with a natural isomorphism

O
J
1

X̃

∼= J
1

X̃ and O
J
2
G(2,L)

∼= J
2

G(2,L)

of sheaves of abelian groups.

Proof. Fix an s ∈ ∆∗. Denote by TXs
: H1(Xs,Z)

∼
−→ H1(Xs,Z) and

TG(2,L)s : H3(G(2,L)s,Z)
∼
−→ H3(G(2,L)s,Z)

the restriction of the monodromy operators TX̃∆∗
and TG(2,L)∆∗ as in (2.4),

respectively, to the fiber over s. Denote by T ′
Xs,Q

:= (TXs
− Id)H1(Xs,Q)

and T ′
G(2,L)s,Q

:= (TG(2,L)s − Id)H3(G(2,L)s,Q). Consider the following finite

groups (see [15, Theorem II.B.3] for finiteness of the group):

GXs
:=

T ′
Xs,Q

∩H1(Xs,Z)

(TXs
− Id)H1(Xs,Z)

and GG(2,L)s :=
T ′
G(2,L)s,Q

∩H3(G(2,L)s,Z)

(TG(2,L)s − Id)H3(G(2,L)s,Z)
.

Recall by Theorem 2.9, we have

1. (TX̃ − Id)2 = 0 = (TG(2,L) − Id)2,

2. GrW2 H1(X̃∞,C) (resp. GrW4 H3(G(2,L)∞,C)) is pure of type (1, 1) (resp.
of type (2, 2)).

Using [15, Proposition II.A.8 and Theorem II.B.9] (see also [32, Propositions
2.2 and 2.7]) we conclude that if GXs

= 0 = GG(2,L)s , then the family of in-
termediate Jacobians J1

X̃
and J

2
G(2,L) extends holomorphically and canonically

to J
1

X̃ and J
2

G(2,L) over ∆, which have the structure of smooth, complex Lie
groups over ∆. Furthermore, we have a natural isomorphism of sheaves of
abelian groups

O
J
1

X̃

∼= J
1

X̃ and O
J
2
G(2,L)

∼= J
2

G(2,L).

It therefore suffices to check that GXs
= 0 = GG(2,L)s .

Denote by δ ∈ H1(Xs,Z) the vanishing cycle associated to the degeneration
of curves defined by π1 (see [38, §3.2.1]). Note that δ is the generator of the
kernel of the natural morphism

H1(Xs,Z)
is∗−−→ H1(X ,Z)

r0−→ H1(X0,Z),

where is : Xs → X is the natural inclusion of fiber and r0 : X
∼=
−→ X0 is the

retraction to the central fiber. Since X0 is an irreducible nodal curve, the
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homology group H1(X0,Z) is torsion-free. Therefore, δ is non-divisible i.e.,
there does not exist δ′ ∈ H1(Xs,Z) such that nδ′ = δ for some integer n 6= 1.
Denote by (−,−) the intersection form onH1(Xs,Z), defined using cup-product
(see [37, §7.1.2]). Since the intersection form (−,−) induces a perfect pairing
on H1(Xs,Z), the non-divisibility of δ implies that there exists γ ∈ H1(Xs,Z)
such that (γ, δ) = 1. Recall the Picard-Lefschetz formula,

TXs
(η) = η + (δ, η)δ for any η ∈ H1(Xs,Z).

This implies, T ′
Xs,Q

∩H1(Xs,Z) = Zδc = (TXs
− Id)H1(Xs,Z), where δc is the

Poincaré dual to the vanishing cycle δ. Therefore, GXs
= 0.

Now, there exists an isomorphism of local system Φ∆∗ : H1
X∆∗

→ H3
G(2,L)∆∗

which commutes with the respective monodromy operators (see the diagram
(4.2) below). Denote by Φs : H1(Xs,Z)

∼
−→ H3(G(2,L)s,Z) the restriction of

Φ∆∗ to the fiber over s. Note that,

T ′
G(2,L)s,Q

∩H3(G(2,L)s,Z) = ZΦs(δ
c) = (TG(2,L)s − Id)H3(G(2,L)s,Z).

This implies GG(2,L)s = 0, thereby proving the theorem.

Remark 3.2. The extensions J
1

X̃ and J
2

G(2,L) are called Néron models for J 1
X̃∆∗

and J 2
G(2,L)∆∗

(see [15] for this terminology). The construction of the Néron

model by Zucker in [40] differs from that by Clemens in [9] by the group GXs

and GG(2,L)s , mentioned in the proof of Theorem 3.1 above (see [32, Proposition
2.7]). As we observe in the proof above that GXs

and GG(2,L)s vanish in our
setup, thus the two Néron models coincide in our case.

We now describe the central fiber of the Néron model of the intermediate
Jacobians.

Notation 3.3. Recall, H1(X0,C) and H3(GX0(2,L0) are equipped with mixed
Hodge structures. Define the generalized intermediate Jacobian of X0 and
GX0 (2,L0) as

J1(X0) :=
H1(X0,C)

F 1H1(X0,C) +H1(X0,Z)
and

J2(GX0(2,L0)) :=
H3(GX0(2,L0),C)

F 2H3(GX0 (2,L0),C) +H3(GX0 (2,L0),Z)
.

Denote by WiJ
1(X0) (resp. WiJ

2(GX0 (2,L0))) the image of the natural mor-
phism

WiH
1(X0,C) → J

1(X0) (resp. WiH
3(GX0(2,L0),C) → J

2(GX0(2,L0))).

By Theorem 3.1 we have

(
J
1
X̃

)

0

∼=
(
J

1
X̃

)
⊗ k(0) =

H1(X̃∞,C)

F 1H1(X̃∞,C) +
(
H

1
X̃

)

0

and
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(
J
2
G(2,L)

)

0

∼=
(
J

2
G(2,L)

)
⊗ k(0) =

H3(G(2,L)∞,C)

F 2H3(G(2,L)∞,C) +
(
H

3
G(2,L)

)

0

.

Denote by Wi

(
J
1
X̃

)

0
(resp. Wi

(
J
2
G(2,L)

)

0
) the image of the natural morphism

WiH
1(X̃∞,C) →

(
J
1
X̃

)

0
(resp. WiH

3(G(2,L)∞,C) →
(
J
2
G(2,L)

)

0
).

Corollary 3.4. The central fibers of J
1

X̃ and
(
J
2

G(2,L)

)
satisfy the following:

1. denote by i0 : X̃0 → X0 the natural morphism contracting the rational
curve F to the nodal point. The natural morphism of mixed Hodge
structures

(sp1 ◦ i
∗
0) : H

1(X0,C) → H1(X̃∞,C),

induces an isomorphism from J1(X0) to the central fiber
(
J
1

X̃

)
0
such

that WiJ
1(X0) ∼= Wi

(
J
1

X̃

)
0
for all i,

2. the morphism sp2 induces an isomorphism J2(GX0 (2,L0)) to the central

fiber
(
J
2

G(2,L)

)
0
such that WiJ

2(GX0 (2,L0)) ∼= Wi

(
J
2

G(2,L)

)
0
for all i.

Proof. Consider the restriction of the morphisms gX̃ ,t
and gG(2,L),t as in (2.1)

to H1(X̃∞,Z) and H1(G(2,L)∞,Z), respectively:

g0 : H1(X̃∞,Z) →֒ H1(X̃∞,C)
g
X̃ ,t

−−−→
∼

(
H

1

X̃ ∗
∆

)
0
and

g1 : H3(G(2,L)∞,Z) →֒ H3(G(2,L)∞,C)
gG(2,L),t
−−−−−→

∼

(
H

3

G(2,L)

)
0

Using the explicit description of gX̃ ,t
and gG(2,L),t as in [29, XI-6], observe that

ker(TX̃ − Id) ∩H1(X̃∞,Z)
g0
∼= Im g0 ∩

(
H

1

X̃

)
0
and

ker(TG(2,L) − Id) ∩H3(G(2,L)∞,Z)
g1
∼= Im g1 ∩

(
H

3

G(2,L)

)
0
.

By the local invariant cycle theorem (2.6) and (2.7), we have

ker(TX̃ − Id) ∩H1(X̃∞,Z) = Im sp1 ∩H1(X̃∞,Z) = sp1(H
1(X̃0,Z)) and

ker(TG(2,L) − Id) ∩H3(G(2,L)∞,Z) = Im sp2 ∩H3(G(2,L)∞,Z)

which equals sp2(H
3(GX0 (2,L0),Z)). Using Theorem 2.9, we can then conclude

H1(X̃0,C)

F 1H1(X̃0,C) +H1(X̃0,Z)

sp1−−→
∼

H1(X̃∞,C)

F 1H1(X̃∞,C) + sp1(H
1(X̃0,Z))

∼=
(
J
1

X̃

)
0
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and sp2 maps

H3(GX0 (2,L0),C)

F 2H3(GX0 (2,L0),C) +H3(GX0 (2,L0),Z)
isomorphically to

H3(G(2,L)∞,C)

F 2H3(G(2,L)∞,C) + sp2(H
3(GX0 (2,L0),Z))

∼=
(
J
2

G(2,L)

)
0
.

Let f : x0 → X0 be the natural inclusion. Applying [29, Corollary-Definition

5.37] to the proper modification i0 : X̃0 → X0, we obtain the following exact
sequence of mixed Hodge structures:

H0(X0,Z) →֒ H0(X̃0,Z)⊕H0(x0,Z) → H0(F,Z) →

→ H1(X0,Z)
(i∗0 ,f

∗)
−−−−→ H1(X̃0,Z)⊕H1(x0,Z) → H1(F,Z).

Since F ∼= P1 and x0 is a point, we have H1(F,Z) = 0 = H1(x0,Z). More-

over, H0(X0,Z) = H0(X̃0,Z) = H0(x0,Z) = H0(F,Z) = C. This implies

i∗0 : H1(X0,Z) → H1(X̃0,Z) is an isomorphism of mixed Hodge structures.
Therefore,

J1(X0) =
H1(X0,C)

F 1H1(X0,C) +H1(X0,Z)

i∗0∼=
H1(X̃0,C)

F 1H1(X̃0,C) +H1(X̃0,Z)
=

(
J
1

X̃

)
0

and J2(GX0 (2,L0)) ∼=
(
J
2

G(2,L)

)
0
. Since the specialization morphisms and i∗0

are morphisms of mixed Hodge structures, we have WiJ
1(X0) ∼= Wi

(
J
1

X̃

)
0

and WiJ
2(GX0(2,L0)) ∼= Wi

(
J
2

G(2,L)

)
0
for all i. This proves the corollary.

4 Relative Mumford-Newstead and the Torelli theorem

We use notations of §2 and §3. In this section, we prove the relative version
of [24, Theorem p. 1201] (Proposition 4.1). We use this to show that the gener-
alized intermediate Jacobians J1(X0) and J2(GX0 (2,L0)) defined in Notation
3.3 are semi-abelian varieties and are isomorphic (Corollary 4.3). As an ap-
plication, we prove the Torelli theorem for irreducible nodal curves (Theorem
4.4).
We first consider the relative version of the construction in [24]. Denote by
W := X∆∗ ×∆∗ G(2,L)∆∗ and π3 : W → ∆∗ the natural morphism. Recall, for
all t ∈ ∆∗, the fiber Wt := π−1

3 (t), is Xt×G(2,L)t ∼= Xt×MXt
(2,Lt) (Theorem

A.2). There exists a (relative) universal bundle U over W associated to the
(relative) moduli space G(2,L)∆∗ i.e., U is a vector bundle overW such that for
each t ∈ ∆∗, U|Wt

is the universal bundle over Xt×MXt
(2,Lt) associated to fine

moduli spaceMXt
(2,Lt) (use [28, Theorem 9.1.1]). Denote byH4

W := R4π3∗ZW

the local system associated to W . Using Künneth decomposition, we have

H4
W :=

⊕

i

(
Hi

X̃∆∗
⊗H4−i

G(2,L)∆∗

)
.
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Denote by c2(U)
1,3 ∈ Γ

(
H1

X̃∆∗
⊗H3

G(2,L)∆∗

)
the image of the second Chern

class c2(U) ∈ Γ(H4
W) under the natural projection H4

W → H1
X̃∆∗

⊗ H3
G(2,L)∆∗

.

Using Poincaré duality applied to the local system H1
X̃∆∗

, we have

H1
X̃∆∗

⊗H3
G(2,L)∆∗

PD
∼=

(
H1

X̃∆∗

)∨

⊗H3
G(2,L)∆∗

∼= Hom
(
H1

X̃∆∗
,H3

G(2,L)∆∗

)
. (4.1)

Therefore, c2(U)
1,3 induces a homomorphism

Φ∆∗ : H1
X∆∗

→ H3
G(2,L)∆∗

.

By [24, Lemma 1 and Proposition 1], we conclude that the homomorphism Φ∆∗

is an isomorphism such that the induced isomorphism on the associated vector
bundles:

Φ∆∗ : H1
X∆∗

∼
−→ H3

G(2,L)∆∗
satisfies Φ∆∗(F pH1

X∆∗
) = F p+1H3

G(2,L)∆∗
∀ p ≥ 0.

Therefore, the morphism Φ∆∗ induces an isomorphism Φ : J 1
X̃∆∗

∼
−→ J 2

G(2,L)∆∗
.

Since H
1

X∆∗
and H

3

G(2,L)∆∗
are canonical extensions of H1

X∆∗
and H3

G(2,L)∆∗
,

respectively, the morphism Φ∆∗ extend to the entire disc:

Φ̃ : H
1

X̃
∼
−→ H

3

G(2,L).

Using the identification (2.1) and restricting Φ̃ to the central fiber, we have an
isomorphism:

Φ̃0 : H1(X̃∞,C)
∼
−→ H3(G(2,L)∞,C).

We can then conclude:

Proposition 4.1. For the extended morphism Φ̃, we have

Φ̃(F pH
1

X̃ ) = F p+1H
3

G(2,L) for p = 0, 1

and Φ̃(H
1

X̃ ) = H
3

G(2,L). Moreover, Φ̃0(WiH
1(X̃∞,C)) = Wi+2H

3(G(2,L)∞,C)
for all i ≥ 0.

Proof. The proof of Φ̃(F pH
1

X̃ ) = F p+1H
3

G(2,L) for p = 0, 1 and Φ̃(H
1

X̃ ) =

H
3

G(2,L), follows directly from construction. We now prove the second state-
ment.
Since c2(U)

1,3 is a (single-valued) global section of H1
X̃∆∗

⊗ H3
G(2,L)∆∗

, it is

monodromy invariant. In other words, using (4.1), we have the following com-
mutative diagram:

H1
X̃∆∗

Φ∆∗

∼
✲ H3

G(2,L)∆∗

	

H1
X̃∆∗

TX̃∆∗

❄
Φ∆∗

∼
✲ H3

G(2,L)∆∗

TG(2,L)∆∗

❄

(4.2)
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Note that the monodromy operators extend to the canonical extensions H
1

X̃

and H
3

G(2,L) ( [29, Proposition 11.2]). This gives rise to a commutative diagram

similar to (4.2), after substituting H1
X̃∆∗

and H3
G(2,L)∆∗

by H
1

X̃ and H
3

G(2,L), re-

spectively. Restricting this diagram to the central fiber, we obtain the following
commutative diagram (use the identification (2.1)):

H1(X̃∞,C)
Φ̃0

∼
✲ H3(G(2,L)∞,C)

	

H1(X̃∞,C)

TX̃

❄
Φ̃0

∼
✲ H3(G(2,L)∞,C)

TG(2,L)

❄

(4.3)

The exact sequences (2.6) and (2.7) combined with Proposition 2.8 then implies:

W1H
1(X̃∞,C) ∼= Im sp1

∼= ker(TX̃ − Id)
Φ̃0∼= ker(TG(2,L) − Id) ∼= Im sp2

which is isomorphic to W3H
3(G(2,L)∞,C). This implies,

GrW2 H1(X̃∞,C) ∼= Im(TX̃ − Id)
Φ̃0∼= Im(TG(2,L) − Id) ∼= GrW4 H3(G(2,L)∞,C).

By (4.3), it is easy to check that for all k ≥ 0 and α ∈ H1(X̃∞,C), we have

Φ̃0(TX̃ − Id)k(α) = (TG(2,L) − Id)k(Φ̃0(α)).

Using Remark 2.2, we then conclude

GrW0 H
1(X̃∞,C) ∼= log T

X̃
(GrW2 H

1(X̃∞,C))
Φ̃0∼= log TG(2,L)(GrW4 H

3(G(2,L)∞,C))

which is isomorphic to GrW2 H3(G(2,L)∞,C). By Proposition 2.3, it is easy to

check that GrW0 H1(X̃∞,C) ∼= W0H
1(X̃∞,C) and

GrW2 H3(G(2,L)∞,C) ∼= W2H
3(G(2,L)∞,C).

Moreover, by Proposition 2.8 we have

W2H
1(X̃∞,C) ∼= H1(X̃∞,C) and W4H

3(G(2,L)∞,C) ∼= H3(G(2,L)∞,C).

Therefore for all i, we have Φ̃0(WiH
1(X̃∞,C)) = Wi+2H

3(G(2,L)∞,C). This
proves the proposition.

Remark 4.2. Using Proposition 4.1 observe that the isomorphism Φ between
the families of intermediate Jacobians extend to an isomorphism

Φ : J
1

X̃
∼
−→ J

2

G(2,L).
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By Corollary 3.4 and Proposition 4.1, we conclude that the composition

Ψ : J1(X0)
∼
−→

(
J
1
X̃

)

0

∼= J
1
X̃⊗k(0)

Φ
−→
∼

J
2
G(2,L)⊗k(0) ∼=

(
J
2
G(2,L)

)

0
→ J

2(GX0(2,L0))

satisfies Ψ(WiJ
1(X0)) = Wi+2J

2(GX0(2,L0)), where the first morphism is
simply sp1 ◦ i

∗
0 and the last morphism is sp−1

2 .

We prove that Ψ is an isomorphism of semi-abelian varieties which induces an
isomorphism of the associated abelian varieties.

Corollary 4.3. Denote by GrWi J1(X0) := WiJ
1(X0)/Wi−1J

1(X0) and
GrWi J2(GX0(2,L0)) := WiJ

2(GX0 (2,L0))/Wi−1J
2(GX0 (2,L0)). Then,

1. GrW1 J1(X0) and GrW3 J2(GX0(2,L0)) are principally polarized abelian va-
rieties,

2. J1(X0) and J2(GX0 (2,L0))) are semi-abelian varieties. In particu-
lar, J1(X0) (resp. J2(GX0 (2,L0))) is an extension of GrW1 J1(X0)
(resp. GrW3 J2(GX0 (2,L0)) by the complex torus W0J

1(X0) (resp.
W1J

2(GX0(2,L0))),

3. Ψ is an isomorphism of semi-abelian varieties sending GrW1 J1(X0) to
GrW3 J2(GX0 (2,L0)).

Proof. Applying [29, Corollary-Definition 5.37] to the proper modification π :

X̃0 → X0, we obtain the following exact sequence of mixed Hodge structures:

0 → H0(X0,Z) → H0(X̃0,Z)⊕H0(x0,Z) → H0(x1 ⊕ x2,Z) →

→ H1(X0,Z) → H1(X̃0,Z)⊕H1(x0,Z) → 0,

where π−1(x0) := {x1, x2} and surjection on the right follows from the fact

that H1(x1 ⊕ x2,Z) = 0. Since Z = H0(X̃0,Z) = H0(X0,Z) = H0(xi,Z) for
i = 0, 1, 2, we obtain the short exact sequence

0 → Z
δ0−→ H1(X0,Z)

π∗

−→ H1(X̃0,Z) → 0

with F 1H1(X0,C)
π∗

∼= F 1H1(X̃0,C) ∼= H1(X̃0,C), W0H
1(X0,Z)

δ0∼= Z and

GrW1 H1(X0,Z)
π∗

∼= GrW1 H1(X̃0,Z) = H1(X̃0,Z) (as Z ⊂ H0(x1 ⊕ x2,Z) is pure

of weight 0 and H1(X̃0,Z) is pure of weight 1). This induces an isomorphism

GrW1 J
1(X0) ∼=

GrW1 H1(X0,C)

F 1GrW1 H1(X0,C) + GrW1 H1(X0,Z)

π∗

∼=
H1(X̃0,C)

F 1H1(X̃0,C) +H1(X̃0,Z)

which is isomorphic to J1(X̃0). Hence, GrW1 J1(X0) is a principally polarized
abelian variety. By Proposition 4.1, we have

Ψ(GrW1 J1(X0)) = GrW3 J2(GX0 (2,L0))
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(see Remark 4.2). Therefore, GrW3 J2(GX0 (2,L0)) is also a principally polar-
ized abelian variety. Note that F 1GrW0 H1(X0,C) = 0 as GrW0 H1(X0,Z) ∼= Z

(GrW0 H1(X0,Z) must be of Hodge type (0, 0)). Therefore,

GrW0 J1(X0) ∼=
GrW0 H1(X0,C)

F 1GrW0 H1(X0,C) + GrW0 H1(X0,Z)

δ0∼=
C

Z

exp
−−→
∼

C∗.

Similarly as before, Ψ(GrW0 J1(X0)) = GrW2 J2(GX0 (2,L0)) ∼= C∗ (as Ψ is C-
linear). By [29, Theorem 5.39], H1(X0,C) (resp. H

3(GX0(2,L0))) is of weight
at most 1 (resp. 3). Therefore, J1(X0) and J2(GX0 (2,L0)) are isomorphic
(via Ψ) semi-abelian varieties, inducing an isomorphism between the associ-
ated abelian varieties GrW1 J1(X0) and GrW3 J2(GX0 (2,L0)). This proves the
corollary.

We now prove the Torelli theorem for irreducible nodal curves.

Theorem 4.4. Let X0 and X1 be projective, irreducible nodal curves of genus
g ≥ 4 with exactly one node such that the normalizations X̃0 and X̃1 are not
hyper-elliptic. Let L0 and L1 be invertible sheaves of odd degree on X0 and
X1, respectively. If GX0(2,L0) ∼= GX1(2,L1) then X0

∼= X1.

Proof. Since the genus of X0 and X1 is g ≥ 4, the curves X0 and X1 are stable.
As the moduli space of stable curves is complete, we get algebraic families

f0 : X0 → ∆ and f1 : X1 → ∆

of curves with X0 and X1 regular, f0, f1 smooth over the punctured disc ∆∗,
f−1
0 (0) = X0 and f−1

1 (0) = X1. Recall, the obstruction to extending invert-
ible sheaves from the central fiber to the entire family lies in H2(OX0) and
H2(OX1), respectively (see [17, Theorem 6.4]). Since X0 and X1 are curves
the obstruction vanishes. Thus, there exist invertible sheaves M0 and M1

on X0 and X1, respectively, such that M0|X0
∼= L0 and M1|X1

∼= L1. Since
GX0 (2,L0) ∼= GX1(2,L1), Corollary 4.3 implies that

J1(X0) ∼= J2(GX0 (2,L0)) ∼= J2(GX1(2,L1)) ∼= J1(X1) with

GrW1 J1(X0) ∼= GrW1 J1(X1). Recall, the canonical polarization on GrW1 J1(X0)
and GrW1 J1(X1) is induced by the intersection form on H1(X0) and H1(X1),
respectively. Since cup-product commutes with pullback, one can check that
the isomorphism between GrW1 J1(X0) and GrW1 J1(X1) sends the canonical
polarization of one to the other. By [26, Proposition 9], this implies X0

∼= X1.
This proves the theorem.

A Gieseker moduli space of stable sheaves

In this section, we recall the (relative) Gieseker’s moduli space as defined in [25]
and with fixed determinant as in [35]. We observe that the later moduli space
is regular, with central fiber a reduced simple normal crossings divisor.
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Notation A.1. Let X0 be an irreducible nodal curve of genus g ≥ 2 with ex-
actly one node, say at the point x0. Denote by π : X̃0 → X0 the normalization
of X0 and {x1, x2} := π−1(x0). Let S be a smooth curve and s0 ∈ S a closed
point. Let δ : X → S be flat family of projective curves with X regular, smooth
over S\s0 and Xs0

∼= X0. Fix a relative polarization OX (1) on X .

Recall, the Gieseker (relative Gieseker) moduli functors G̃X0 (n, d) (resp.

G̃(n, d)) corresponding to (families of) semi-stable sheaves on curves semi-stably
equivalent to X0 (resp. X ) (see [25, Definition 5 and 7] for detailed definitions).
Recall, there exists a fine moduli space MXt

(n, d) of semi-stable sheaves of rank
n and degree d on Xt for t 6= s0 (see [18, Theorem 4.3.7 and Corollary 4.6.6]).

We know that the moduli functor G̃(n, d) is representable by a scheme G(n, d)
with every fiber G(n, d)t isomorphic to MXt

(n, d) for t 6= s0. More precisely,

Theorem A.2. The functor G̃(n, d) (resp. G̃X0(n, d)) is representable by an
open subscheme G(n, d) (resp. GX0(n, d)) of the S-scheme (resp. k-scheme)
HilbP1(X ×S Gr(m,n)S) (resp. HilbP1(X0 ×k Gr(m,n))), for some Hilbert
polynomial P1. Furthermore,

1. the closed fiber G(n, d)s0 of G(n, d) over s0 ∈ S is irreducible, isomorphic
to GX0 (n, d) and is a (analytic) normal crossings divisor in G(n, d),

2. for all t 6= s0, the fiber G(n, d)S,t is smooth and isomorphic to MXt
(n, d),

3. as a scheme over k, G(n, d) is regular.

Proof. See [25, Proposition 8] (or [13, pp. 179] for the case n = 2).

We now briefly recall the construction of the moduli space GX0(2, d). Let

M
X̃0

(2, d) be the fine moduli space of rank 2, degree d stable bundles over X̃0.

Consider the universal bundle E over X̃0 ×M
X̃0

(2, d). Let

Ex1 := E|x1×M
X̃0

(2,d) and Ex2 := E|x2×M
X̃0

(2,d).

Consider the projective bundle S1 := P(Hom(Ex1 , Ex2) ⊕ OM
X̃0

(2,d)) over

M
X̃0

(2, d). Denote by 0s :=
⋃

t∈M
X̃0

(2,d)

0s,t, the zero section of the projective

bundle S1 over M
X̃0

(2, d), where 0s,t := [0, λ] ∈ S1,t, for λ ∈ OM
X̃0

(2,d)⊗k(t).

Consider the two sub-bundles of S1,

H2 :=
⋃

t∈M
X̃0

(2,d)

H2,t and D1 :=
⋃

t∈M
X̃0

(2,d)

D1,t,

where H2,t := {[φ, 0] ∈ S1,t | φ ∈ Hom(Ex1 , Ex2)⊗ k(t), φ 6= 0} and

D1,t := {[φ, λ] | φ ∈ Hom(Ex1 , Ex2)⊗ k(t), λ ∈ OM
X̃0

(2,d)⊗k(t), ker(φ) 6= 0}.
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For any t ∈ M
X̃0

(2, d), the fiber S1,t of S1 over t is isomorphic to P(End(C2)⊕

C), after identifying E|x1×{t}
∼= C2 ∼= E|x2×{t}. Under this identification, we

have H2,t
∼= P(End(C2)\{0}) ∼= P3 and

H2,t ∩D1,t = {[M, 0] ∈ P(End(C2)⊕ C)|M ∈ End(C2), det(M) = 0}.

It is easy to check that H2,t ∩ D1,t is isomorphic to P1 × P1 (use the Segre
embedding into H2,t

∼= P3). Denote by Q = H2 ∩ D1 and S2 := Bl0s(S1).

Let Q̃ be the strict transform of Q in S2 and S3 := BlQ̃S2. Denote by H1

(resp. D2) the exceptional divisor of the blow-up S2 → S1 (resp. S3 → S2).
Replace H2 and D1 by their strict transforms in S3. There is a natural (open)
embedding

GL2 →֒ P(End(C2)⊕ C) ∼= S1,t defined by End(C2) ∋ M 7→ [M, 1].

Then, S3,t = Bl
Q̃t

(Bl0s,tS1,t) is called the wonderful compactification of GL2

(see [30, Definition 3.3.1]). Denote by SL2 ⊂ S1,t the closure of SL2 in S1,t

under the above mentioned embedding of GL2 →֒ S1,t. Then,

SL2
∼= {[M,λ] ∈ P(End(C2)⊕ C)| det(M) = λ2}.

Note that SL2 is regular, 0s,t 6∈ SL2 and Qt = H2,t ∩ D1,t is a divisor in SL2.
Thus the strict transform of SL2 in S3,t is isomorphic to itself.

Proposition A.3 ( [13]). Denote by G′
X0

(2, d) the normalization of GX0 (2, d).
There exist closed subschemes Z ⊂ D1∩D2 and Z ′ ⊂ G′

X0
(2, d) of codimension

at least g − 1 such that S3\Z ∼= G′
X0

(2, d)\Z ′.

Proof. See [13, §8, 9 and §10 ] for a concrete description of Z,Z ′ and proof.
Also see [35, Chapter 1, §5].

By Theorem A.2, there exists an universal closed immersion

Y →֒ X ×S G(2, d)×S Gr(m, 2)S

corresponding to the functor G̃(2, d). This defines a flat family Y → G(2, d) of
curves. Denote by U the vector bundle on Y obtained as the pull-back of the
tautological quotient bundle of rank 2 on Gr(m, 2)S .

Notation A.4. Let L be an invertible sheaf on X of relative odd degree d i.e.,
for every t ∈ S, we have deg(L|Xt

) = d. Denote by L0 := L|Xs0
. Consider the

reduced family G(2,L) ⊂ G(2, d) such that the fiber over s ∈ S consists of all
points zs ∈ G(2, d)s such that the corresponding vector bundle Uzs satisfies the
property H0(detU∨

zs
⊗ Ls) 6= 0. By upper semi-continuity, G(2,L) is a closed

subvariety of G(2, d). Denote by GX0(2,L0) := G(2,L)s0 the fiber over s0.
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We now study the geometry of the subvariety G(2,L). Denote by Y ′
0 the base-

change to S3\Z of the universal family of curves Y (over G(2, d)) via the com-
position

S3\Z ∼= G′
X0

(2, d)\Z ′ → G′
X0

(2, d) → GX0(2, d) → G(2, d).

Denote by U ′
0 the pullback to Y ′

0 the universal bundle U on G(2, d). Denote by

ES3 the pullback of the universal bundle E on X̃0 ×M
X̃0

(2, d), by the natural

morphism from S3 to M
X̃0

(2, d). Denote by L̃0 := π∗L0. Define,

P0 := {s ∈ S3 | (Y ′
0)s ∼= X0 and detU ′

0,s ≃ L0} ∪ {s ∈ D1 ∩D2 | det ES3,s ≃ L̃0},

P1 := {s ∈ H1 | det ES3,s ≃ π
∗L0(x2 − x1)} and

P2 := {s ∈ H2 | det ES3,s ≃ L̃0(x1 − x2)}.

Recall, there exists a fine moduli space MXt
(2,Lt) of semi-stable sheaves of

rank 2 and determinant Lt on Xt for t 6= s0 (see [21, §3.3]). Observe that

Proposition A.5. The variety P0 (resp. P1, P2) is a SL2 (resp. P3)-bundle

over M
X̃0

(2, L̃0). Each Pi contains a natural P1 × P1-bundle over M
X̃0

(2, L̃0),
namely P0∩D1∩D2, P1∩D1 and P2∩D2. The subvariety Z ⊂ S3 (Proposition
A.3) does not intersect P1 or P2.

Proof. See [35, §6].

Using this we have the following description of G(2,L):

Theorem A.6. The variety G(2,L) is regular and for all t 6= s0, the fiber
G(2,L)t is isomorphic to MXt

(2,Lt). The fiber GX0(2,L0) is a reduced simple
normal crossings divisor in G(2,L), consisting of two irreducible components,
say G0 and G1, with one of the irreducible components isomorphic to P1. More-
over, the intersection G0∩G1 is isomorphic to P1∩D1, which is a P1×P1-bundle
over M

X̃0
(2,L0).

Proof. For proof see [35, §6] or [1, §5 and §6].

Remark A.7. Note that, for any t 6= s0, G(2,L)t ∼= MXt
(2,Lt) is non-singular

( [18, Corollary 4.5.5]). Therefore, G(2,L) is smooth over the punctured disc
S\{s0}.
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Mathématiques, 140(8):953–989, 2016.

[8] L. Caporaso and F. Viviani. Torelli theorem for stable curves. Journal of
the European Mathematical Society, 13(5):1289–1329, 2011.

[9] H. Clemens. The Néron model for families of intermediate Jacobians ac-
quiring algebraic singularities. Publications Mathématiques de l’Institut
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