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2038 Ryo Kanda

1 Introduction

The class of Grothendieck categories is a large framework that includes

• the category ModR of right modules over a ring R,

• the category QCohX of quasi-coherent sheaves on a scheme X , and

• the category of sheaves of abelian groups on a topological space.

One of the significant properties of ModR for rings R among Grothendieck
categories is the exactness of direct products, which is known as Grothendieck’s
condition Ab4*. This is immediately verified by direct computation, but it is
also a consequence of the fact that ModR has enough projectives. In general,
for a Grothendieck category, the exactness of direct products is equivalent to
the category having projective effacements, which is a weak lifting property that
resembles the property of having enough projectives. However, it is known that
there exists a Grothendieck category that has exact direct products but does
not have any nonzero projective objects (see Remark 2.8). The main source of
Grothendieck categories with exact direct products is a pair of a ring and an
idempotent ideal of it (Remark 2.28). Such a pair is used as the basic setup of
almost ring theory ([GR03, 2.1.1]).
For a scheme X , it is apparently rare that QCohX has exact direct products.
Indeed, it is known that direct products in QCohX are not exact when X is
either

• the projective line over a field ([Kra05]), or

• the punctured spectrum of a regular local (commutative noetherian) ring
with Krull dimension at least two ([Roo66]);

see Theorems 2.6 and 2.7.
The aim of this paper is to generalize these observations to a wide class of
schemes:

Theorem 1.1 (Theorem 3.15). Let X be a divisorial noetherian scheme. Then
the following conditions are equivalent:

(1) Direct products in QCohX are exact.

(2) QCohX has enough projectives.

(3) X is an affine scheme.

A noetherian scheme is called divisorial if it admits an ample family of invertible
sheaves (Definition 3.1). Since the exactness of direct products is inherited by
closed subschemes, we obtain the following corollary:

Corollary 1.2 (Corollary 3.16). Let X be a scheme that contains a non-affine
divisorial noetherian scheme as a closed subscheme. Then direct products in
QCohX are not exact.
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Non-Exactness of Direct Products 2039

Remark 1.3. Since a divisorial noetherian scheme is a generalization of a
noetherian scheme having an ample invertible sheaf, Theorem 1.1 can be ap-
plied to quasi-projective schemes over commutative noetherian rings. Therefore
the aforementioned results of [Kra05] and [Roo66] can be derived from Theo-
rem 1.1.
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2 Gabriel-Popescu embedding and Roos’ theorem

2.1 Preliminaries

Convention 2.1.

(1) Throughout this paper, we fix a Grothendieck universe. A small set is
an element of the universe. For objects X and Y in a category C, the set
HomC(X,Y ) is assumed to be small. Colimits and limits always mean
those whose index sets are in bijection with small sets. The index set of
a generating set is also in bijection with a small set. All rings, schemes,
and modules are assumed to be small.

(2) Since we mainly work on Grothendieck categories (which resemble the
category of modules over a ring), coproducts of objects are called direct
sums, and products are called direct products. For a family {Mi}i∈I of
objects in a category, its direct sum and direct product are denoted by
⊕

i∈I Mi and
∏

i∈I Mi, respectively. A direct limit (resp. inverse limit)
is a colimit (resp. limit) of a direct system (resp. inverse system) indexed
by a directed set.

We recall Grothendieck’s conditions on exactness of colimits and limits and the
definition of a generating set:

Definition 2.2.

(1) Let A be an abelian category that admits direct sums (resp. direct prod-
ucts).

(a) We say that A satisfies Ab4 (resp. Ab4* ) if direct sums (resp. direct
products) are exact in A, that is, for every family of short exact
sequences

0 → Li → Mi → Ni → 0 (i ∈ I)
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in A (where I is in bijection with a small set), the termwise direct
sum (resp. direct product)

0 →
⊕

i∈I

Li →
⊕

i∈I

Mi →
⊕

i∈I

Ni → 0

is again a short exact sequence.

(b) We say that A satisfies Ab5 (resp. Ab5* ) if direct limits (resp. in-
verse limits) are exact in A, that is, for every direct system (resp.
inverse system) of short exact sequences in A, the termwise direct
limit (resp. inverse limit) is again exact.

(2) Let A be an abelian category. A set U of objects in A that is in bijection
with a small set is called a generating set if for every nonzero morphism
f : X → Y in A, there exists U ∈ U and a morphism g : U → X such
that fg 6= 0. An object U ∈ A is called a generator if the singleton {U}
is a generating set.

(3) An abelian category is called a Grothendieck category if it satisfies Ab5
and has a generator.

Remark 2.3.

(1) If an abelian category admits direct sums (resp. direct products), then
it admits colimits (resp. limits) (see [KS06, Proposition 2.2.9]). Direct
sums and direct limits (resp. direct products and inverse limits) are always
right exact (resp. left exact). So the conditions in Definition 2.2 (1) only
require left exactness (resp. right exactness).

(2) For an abelian category with direct sums, Ab5 implies Ab4 ([Pop73,
Corollary 2.8.9]). See [Pop73, Theorem 2.8.6] for conditions equivalent
to Ab5.

(3) It is known that every Grothendieck category admits direct products
([Pop73, Corollary 3.7.10]).

(4) If an abelian category A admits direct sums and has a generating set
{Ui}i∈I , then the direct sum

⊕

i∈I Ui is a generator in A ([Pop73, Propo-
sition 2.8.2]).

Example 2.4. Let R be a ring. Then the category ModR of right R-modules
is a Grothendieck category satisfying Ab4*.

Example 2.5. Let X be a scheme. Then the category QCohX of quasi-
coherent sheaves on X is an abelian category satisfying Ab5. It was shown
by Gabber that QCohX has a generator (see [Bra18, Remarks A.1 and A.2]).
Hence QCohX is a Grothendieck category.
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Example 2.5 implies that QCohX for a scheme X admits direct products.
However, direct products are not necessarily exact as the following two results
show (see also [Wu88] and [Kan19, Example 3.10] for related results):

Theorem 2.6 (Keller; see [Kra05, Example 4.9]). Let X := P1
k be the projective

line over a field k. Then QCohX does not satisfy Ab4*.

Theorem 2.7 (Roos [Roo66, Example 3]). Let R be a regular local (commu-
tative noetherian) ring with maximal ideal m. Define X := SpecR \ {m} as
an open subscheme of SpecR. Then QCohX satisfies Ab4* if and only if
dimR ≤ 1.

Remark 2.8. Recall that an abelian category A is said to have enough projec-
tives if each object in A is a quotient object of some projective object. Every
Grothendieck category that has enough projectives satisfies Ab4* (the dual of
[Pop73, Corollary 3.2.9]). The converse does not hold. Indeed, it is shown in
[Roo06, Example 4.2] that there exists a nonzero Grothendieck category that
satisfies Ab4* but has no nonzero projective objects.
It is known that a Grothendieck category satisfies Ab4* if and only if it has
projective effacements ([Gro57, Remark 1 in p. 137]; see also [Roo06, Corol-
lary 1.4]), which can be regarded as a weak form of having enough projectives.

Remark 2.9. The category of sheaves of abelian groups on a topological space
is also a typical example of a Grothendieck category. The exactness of direct
products in such a category is characterized in [Roo66, Corollary 1] (see also
[Roo06, Theorem 1.7]).

We recall the definitions and basic properties of some classes of subcategories.

Definition 2.10. Let G be a Grothendieck category.

(1) A Serre subcategory of G is a full subcategory of G closed under subob-
jects, quotient objects, and extensions. If X ⊂ G is a Serre subcategory,
then we have the quotient category of G by X , which is denoted by G/X ,
together with a canonical functor G → G/X (see [Pop73, Section 4.3]).

(2) A Serre subcategory X ⊂ G is called a localizing subcategory if the canon-
ical functor G → G/X admits a right adjoint.

(3) A localizing subcategory X ⊂ G is called a bilocalizing subcategory if the
canonical functor G → G/X also admits a left adjoint.

Remark 2.11. If X is a localizing subcategory of a Grothendieck category G,
then G/X is again a Grothendieck category ([Pop73, Corollary 4.6.2]). The
right adjoint G : G/X → G of the canonical functor F : G → G/X is fully
faithful, and thus the counit FG → 1G/X is an isomorphism ([Pop73, Proposi-
tion 4.4.3]).
See [Pop73, Section 4.3] or [Kan15b, Theorem 5.11] for basic properties of the
quotient category G/X .
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2042 Ryo Kanda

Example 2.12 (See [Bra18, Example 4.3]). Let X be a quasi-separated scheme
and let i : U →֒ X be an open immersion from a quasi-compact open subscheme
U . Then i∗ : QCohU → QCohX and its left adjoint i∗ : QCohX → QCohU
induces an equivalence

QCohX

Y
∼−→ QCohU,

where Y ⊂ QCohX is the localizing subcategory consisting of all objects M ∈
QCohX with i∗M = 0.

Proposition 2.13. Let G be a Grothendieck category.

(1) Let X ⊂ G be a Serre subcategory. Then the following conditions are
equivalent:

(a) X is a localizing subcategory.

(b) X is closed under direct sums.

(c) Every object M ∈ G has a largest subobject belonging to X .

(2) Let X ⊂ G be a localizing subcategory. Then the following conditions are
equivalent:

(a) X is a bilocalizing subcategory.

(b) X is closed under direct products.

(c) Every object M ∈ G has a largest quotient object belonging to X , that
is, M has a smallest subobject among those L satisfying M/L ∈ X .

Proof. (1) [Pop73, Theorem 4.5.2 and Proposition 4.6.3].
(2) This can be shown in a similar way to the proof of [Pop73, Theorem 4.21.1]
for the category of modules over a ring.

Definition 2.14. Let G be a Grothendieck category. A closed subcategory of
G is a full subcategory closed under subobjects, quotient objects, direct sums,
and direct products.

Remark 2.15. Since the direct sum
⊕

i∈I Mi of objects in a Grothendieck
category can be regarded as a subobject of the direct product

∏

i∈I Mi, the
condition of being closed under direct sums in Definition 2.14 can be omitted.
By Proposition 2.13 (2), a full subcategory of a Grothendieck category is bilo-
calizing if and only if it is localizing and closed.

Proposition 2.16. Let G be a Grothendieck category and let C ⊂ G be a full
subcategory closed under subobjects and quotient objects. Then the following
conditions are equivalent:

(1) C is a closed subcategory.

(2) Every object M ∈ G has a largest quotient object belonging to C.
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Proof. [Kan15a, Proposition 11.2].

Remark 2.17. For a ring R, there exists a bijective correspondence between
the two-sided ideals of R and the closed subcategories of ModR that sends each
I to Mod(R/I). The bilocalizing subcategories correspond to the idempotent
ideals. See [Kan15a, Theorem 11.3 and Proposition 12.6] for more details.
For a scheme X , it is known that the closed subcategories of QCohX are in
bijection with the closed subschemes of X provided that one of the following
conditions holds:

• X is locally noetherian ([Kan15a, Theorem 1.3]).

• X is separated ([Bra18, Proposition A.5]).

2.2 Gabriel-Popescu embedding

A generalization of the Gabriel-Popescu embedding is one of the main tools to
prove Theorem 1.1. First we recall the original version:

Theorem 2.18 (Gabriel-Popescu embedding [PG64]). Let G be a Grothendieck
category and let U ∈ G be a generator. Then the functor HomG(U,−) : G →
ModEndG(U) induces an equivalence

G ∼−→
ModEndG(U)

X
,

where X ⊂ ModEndG(U) is the localizing subcategory consisting of all M ∈
ModEndG(U) annihilated by the left adjoint of HomG(U,−).

If we have a generating set {Ui}i∈I in a Grothendieck category G, then the
direct sum

⊕

i∈I Ui is a generator in G and we can apply the Gabriel-Popescu
embedding. On the other hand, there is a generalized version of the embedding
that respects the structure of the given generating set (Theorem 2.21). To state
the result, we recall some basic facts on rings that do not necessarily have an
identity element.

Definition 2.19. Let R be a ring not necessarily with identity.

(1) A complete set of orthogonal idempotents in R is a set of idempotents
{ei}i∈I ⊂ R such that

• {ei}i∈I is orthogonal, that is, eiej = 0 for i 6= j, and

• R =
⊕

i,j∈I eiRej (or equivalently, R =
⊕

i∈I eiR =
⊕

i∈I Rei).

We say that R has enough idempotents if it admits a complete set of
orthogonal idempotents.

(2) Suppose that R has enough idempotents. The category of all right R-
modules is denoted by ModR. Define MODR ⊂ ModR to be the full
subcategory consisting of right R-modules M with MR = M .
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Remark 2.20. Let R be a ring not necessarily with identity and let {ei}i∈I be
a complete set of orthogonal idempotents.

(1) For every M ∈ ModR, the condition M = MR is equivalent to M =
⊕

i∈I Mei.

(2) The Dorroh overring R∗ of R is Z × R as an abelian group and has
multiplication

(n1, r1) · (n2, r2) := (n1n2, n1r2 + n2r1 + r1r2).

The Dorroh overring R∗ is a ring with identity (1, 0), and R is identified
with 0 × R ⊂ R∗ (see [Wis91, Sections 1.5 and 6.3]). Since the forgetful
functor ModR∗ → ModR is an equivalence, the category ModR is a
Grothendieck category satisfying Ab4*, and colimits and limits in ModR
can be computed in the same way as the category of right modules over
a ring with identity.

(3) MODR ⊂ ModR is closed under subobjects, quotient objects, exten-
sions, and direct sums ([CIENT04, Proposition 0.1]) and R is a projec-
tive generator in MODR. Hence MODR is also a Grothendieck category
satisfying Ab4*, but limits in MODR are different from those computed
in ModR in general.

Theorem 2.21 (Năstăsescu and Chiteş [NC10, Theorem 2.1]). Let G be a
Grothendieck category and let {Ui}i∈I be a generating set in G. Then R :=
⊕

i,j∈I HomG(Ui, Uj) is a ring with enough idempotents, and the functor G :=
⊕

i∈I HomG(Ui,−) : G → MODR induces an equivalence

G ∼−→
MODR

X
,

where X ⊂ MODR is the localizing subcategory consisting of all M ∈ MODR
annihilated by the left adjoint of G.

Remark 2.22. For Z-linear categories C and D, let FuncZ(C,D) denote the
category of Z-functors from C to D. In the setting of Theorem 2.21, we have an
equivalence FuncZ(Uop,ModZ) ∼−→ MODR given by F 7→

⊕

i∈I F (Ui), where
U := {Ui}i∈I is regarded as a full subcategory of G. Hence Theorem 2.21 can
be interpreted in terms of the functor category.

Theorem 2.23 (Prest [Pre80, Theorem 1.1]; see also [NC10, Corollary 2.5]).
Let G be a Grothendieck category and let U be a generating set in G. Then the
functor G : G → FuncZ(Uop,ModZ) defined by M 7→ HomG(−,M) induces an
equivalence

G ∼−→
FuncZ(U

op,ModZ)

X
,

where X ⊂ FuncZ(U
op,ModZ) is the localizing subcategory consisting of all

objects annihilated by the left adjoint of G.
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2.3 Roos’ theorem

A generalization of Roos’ theorem (Theorem 2.30) is another main ingredient
of the proof of Theorem 1.1. To state the result, we recall Grothendieck’s
condition Ab6:

Definition 2.24. We say that an abelian category A with direct sums satisfies
Ab6 if the following assertion holds for every object M ∈ A: For every family
{{Lj

i}i∈Ij
}j∈J of directed sets of subobjects of M with respect to inclusion, we

have
⋂

j∈J

(

∑

i∈Ij

Lj
i

)

=
∑

(ij)j∈J∈
∏

j∈J
Ij

(

⋂

j∈J

Lj
ij

)

.

Remark 2.25. For an abelian category with direct sums, Ab6 implies Ab5
([Pop73, Corollary 2.8.13]).

Remark 2.26. Roos [Roo67, Theorem 1] showed that condition Ab6 has
the following characterization (see also [Pop73, Exercise 3.5.7]): Let G be a
Grothendieck category. A subobject L of an object M ∈ G is said to be of
finite type relative to M if for every directed set {Li}i∈I of subobjects of M
with respect to inclusion satisfying

∑

i∈I Li = M , the directed set {Li ∩L}i∈I

eventually stabilizes, that is, Li ∩ L = L for some i ∈ I. Then G satisfies Ab6
if and only if every object M ∈ G is the sum of all subobjects of finite type
relative to M .

Remark 2.27. Grothendieck categories that we encounter in practice often
satisfy Ab6:

(1) Let U be a small Z-category and let G be a Grothendieck category satis-
fying Ab6. Then FuncZ(U ,G) is a Grothendieck category satisfying Ab6
([Pop73, Theorem 3.4.2]). In particular, for every ring R, ModR is a
Grothendieck category satisfying Ab6.

(2) A Grothendieck category is called locally noetherian if admits a gen-
erating set consisting of noetherian objects. Every locally noetherian
Grothendieck category satisfies Ab6. This follows from Remark 2.26 since
all noetherian subobjects of an object M are of finite type relative to M .

(3) Let G be a Grothendieck category satisfying Ab6 (resp. Ab4*) and let X ⊂
G be a bilocalizing subcategory. Then G/X is a Grothendieck category
satisfying Ab6 (resp. Ab4*). This follows because the canonical functor
G → G/X preserves all colimits and limits.

Remark 2.28. Let R be a ring and let I ⊂ R be an idempotent ideal. Then,
as in Remark 2.17, Mod(R/I) is a bilocalizing subcategory of ModR. Thus the
quotient category of ModR by Mod(R/I) is a Grothendieck category satisfying
Ab6 and Ab4* by Remark 2.27.
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2046 Ryo Kanda

Roos’ theorem shows that all Grothendieck categories satisfying Ab6 and Ab4*
arise in the way of Remark 2.28:

Theorem 2.29 (Roos [Roo65, Theorem 1]). Let G be a Grothendieck cate-
gory and let U ∈ G be a generator. Define the localizing subcategory X ⊂
ModEndG(U) as in Theorem 2.18. Then the following conditions are equiva-
lent:

(1) G satisfies Ab6 and Ab4*.

(2) X is closed under direct products, that is, X ⊂ ModEndG(U) is a bilo-
calizing subcategory.

Roos’ theorem can be generalized so that it fits into the setting of the general-
ized Gabriel-Popescu embedding:

Theorem 2.30. Let G be a Grothendieck category and let {Ui}i∈I be a generat-
ing set in G. Let R :=

⊕

i,j∈I HomG(Ui, Uj). Define the localizing subcategory
X ⊂ MODR as in Theorem 2.21. Then the following conditions are equivalent:

(1) G satisfies Ab6 and Ab4*.

(2) X is closed under direct products, that is, X ⊂ MODR is a bilocalizing
subcategory.

Proof. The proof of Theorem 2.29 written in [Pop73, Theorem 4.21.6] also
works in this setting. The proof is modified as follows:

(a) Use the generating set {Ui}i∈I instead of the generator U . Use MODR
instead of ModA.

(b) Define S and F to be G and X in Theorem 2.21, respectively.

(c) In the conclusion of [Pop73, Lemma 4.21.3], f should run over all elements
of M that are homogeneous in the sense that each of them belongs to
HomG(Ui, X) for some i ∈ I.

(d) In [Pop73, Lemma 4.21.4], define X ′ to be
⊕

i∈I U
⊕HomG(Ui,X)
i .

(e) In [Pop73, Lemma 4.21.5], define R(X) to be the submodule consisting
of all finite sums of elements f : Ui → X for various i satisfying the same
property with U replaced by Ui. The conclusion of [Pop73, Lemma 4.21.5]
is modified in the same way as (c).

Theorem 2.30 can also be stated in terms of a functor category:

Corollary 2.31. Let G be a Grothendieck category and let U be a generat-
ing set in G. Define the localizing subcategory X ⊂ FuncZ(Uop,ModZ) as in
Theorem 2.23. Then the following conditions are equivalent:

(1) G satisfies Ab6 and Ab4*.
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(2) X is closed under direct products, that is, X ⊂ FuncZ(Uop,ModZ) is a
bilocalizing subcategory.

Proof. This is immediate from Theorem 2.30 in view of Remark 2.22.

3 Divisorial noetherian schemes

In this section, we prove the main results. Whenever we consider a scheme X ,
unadorned tensor products are tensor products of quasi-coherent sheaves on X .
The structure sheaf of X is denoted by OX , and Γ (X,−) is the global section
functor.
We recall the definition of a divisorial scheme:

Definition 3.1 ([BS03, Proposition 1.1]; see also [Bor67, Definition 3.1]). Let
X be a quasi-compact and quasi-separated scheme.

(1) A finite family {L1, . . . ,Lr} of invertible sheaves on X is called an ample
family if the set

{Xs | s ∈ Γ (X,L⊗d1

1 ⊗ · · · ⊗ L⊗dr

r ), d1, . . . , dr ≥ 0 are integers }

is an open basis of X , where Xs ⊂ X is the open subset consisting of
all x ∈ X such that sx does not belong the unique maximal ideal of
(L⊗d1

1 ⊗ · · · ⊗ L⊗dr
r )x.

(2) X is called divisorial if it admits an ample family of invertible sheaves.

Remark 3.2. An ample family of invertible sheaves is a generalization of an
ample invertible sheaf (see [Gro61, Section 4.5]). In particular, every quasi-
projective scheme over a commutative noetherian ring is divisorial.

The following fact is essential for our proof:

Proposition 3.3 ([Bor67, Theorem 3.3]). Let X be a divisorial noetherian
scheme. Then every coherent sheaf on X is isomorphic to a quotient of a
direct sum of invertible sheaves.

Remark 3.4. For a noetherian scheme X , the category QCohX is a locally
noetherian Grothendieck category ([Gab62, Theorem 1 in p. 443]). An object
in QCohX is noetherian if and only if it is a coherent sheaf on X .
Hence Proposition 3.3 implies that if X is a divisorial noetherian scheme, then
QCohX has a generating set consisting of invertible sheaves.

Setting 3.5. In the rest of this section, letX be a divisorial noetherian scheme.
We use the following notations:

(1) Fix a generating set {Lλ}λ∈Λ in QCohX consisting of invertible sheaves
(see Remark 3.4).
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2048 Ryo Kanda

(2) Let I be the free abelian group generated by Λ, that is, I =
⊕

λ∈Λ Zλ.
For each i =

∑

j njλj ∈ I, where nj ∈ Z and λj ∈ Λ, define the invertible
sheaf

Li :=
⊗

j

L
⊗nj

λj
.

Then {Li}i∈I = {L−i}i∈I is also a generating set in QCohX . Define the
ring not necessarily with identity

R :=
⊕

i,j∈I

HomX(L−i,L−j).

Let ei ∈ HomX(L−i,L−i) be the identity morphism for every i ∈ I. Then
{ei}i∈I is a complete set of orthogonal idempotents of R.

(3) Define the I-graded ring

S :=
⊕

i∈I

Γ (X,Li) =
⊕

i∈I

HomX(OX ,Li)

with the following multiplication: For each f ∈ HomX(OX ,Li) and g ∈
HomX(OX ,Lj), gf ∈ HomX(OX ,Li+j) is defined to be the composite

OX Li Li+j

Li ⊗OX Li ⊗ Lj ,

f

≀

Li⊗g

≀

where the isomorphisms are the canonical ones. It is straightforward to
see that S is a commutative ring (with identity). Denote by ModI S
the category of I-graded S-modules whose morphisms are homogeneous
S-homomorphisms of degree 0. For an object M ∈ ModI S and j ∈ I,
define the degree shift M(j) ∈ ModI S to be the same S-module with
new grading M(j)i = Mi+j . This defines the equivalence

(j) : ModI S ∼−→ ModI S.

Remark 3.6. The I-algebra associated to the I-graded ring S is the ring A
not necessarily with identity defined by

A :=
⊕

i,j∈I

Ai,j , where Ai,j := Sj−i,

The multiplication Ai,j × Aj′,k → A is given by that of S for j = j′ and the
zero map for j 6= j′ (see the last paragraph in [VdB11, p. 3988]). There is an
isomorphism A ∼−→ R of rings not necessarily with identities given by

−⊗ L−j : Ai,j = HomX(OX ,Lj−i) ∼−→ HomX(L−j ,L−i) = eiRej.
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There is an equivalence MODR ∼−→ ModI S that sends each M ∈ MODR to
⊕

i∈I Mei, where the S-actionMei×Sj → Mei+j is induced from the A-action
Mei ×Ai,i+j → Mei+j, or the R-action Mei ×HomX(L−i−j ,L−i) → Mei+j .

Lemma 3.7. Assume that QCohX satisfies Ab4*. Then there exists an equiv-
alence

QCohX ∼−→
ModI S

Y
,

where Y ⊂ ModI S is a bilocalizing subcategory closed under degree shifts, that
sends OX ∈ QCohX to an object isomorphic to the image of S ∈ ModI S by
the canonical functor to (ModI S)/Y.

Proof. QCohX satisfies Ab6 since it is locally noetherian (Remark 2.27 (2)).
Applying Theorem 2.30 to the generating set {L−i}i∈I , we deduce that the
functor

⊕

i∈I HomX(L−i,−) : QCohX → MODR induces an equivalence

QCohX ∼−→
MODR

Y ′

for some bilocalizing subcategory Y ′ ⊂ MODR. The equivalence MODR ∼−→
ModI S in Remark 3.6 induces an equivalence

MODR

Y ′
∼−→

ModI S

Y

for some bilocalizing subcategory Y ⊂ ModI S.
Denote by G the composite

QCohX → MODR ∼−→ ModI S

and let F be the left adjoint of G. Then G(OX) =
⊕

i∈I HomX(L−i,OX),
which is isomorphic to S via

−⊗ Li : HomX(L−i,OX) ∼−→ HomX(OX ,Li).

Let j ∈ I. For every object M ∈ QCohX ,

G(M⊗Lj)i = HomX(L−i,M⊗Lj)
∼= HomX(L−i−j ,M)

= G(M)i+j = G(M)(j)i,

and it is straightforward to see that this gives an isomorphism G(M⊗Lj) ∼=
G(M)(j) that is functorial in M. Thus the diagram

QCohX ModI S

QCohX ModI S

−⊗Lj ≀

G

(j)≀

G
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commutes up to isomorphism. The adjoint property implies that the diagram

QCohX ModI S

QCohX ModI S

−⊗Lj ≀ (j)≀

F

F

also commutes up to isomorphism. Since Y consists of all objects in ModI S
annihilated by F , it is closed under degree shifts.

Setting 3.8. In the subsequent lemmas, we assume that QCohX satisfies
Ab4*, and use the following notations in addition to Setting 3.5:

(1) Let Y ⊂ ModI S be the bilocalizing subcategory closed under degree shifts
obtained in Lemma 3.7. Let F : ModI S → QCohX be the composite

ModI S →
ModI S

Y
∼−→ QCohX

of the canonical functor and the equivalence obtained in Lemma 3.7.
Let G be its right adjoint. These are the same functors as those ap-
peared in the proof of Lemma 3.7. Note that G(OX) ∼= S by the proof
of Lemma 3.7, and F (S) ∼= FG(OX) ∼= OX is a noetherian object by
Remarks 2.11 and 3.4.

(2) Define Z ⊂ ModI S to be the full subcategory consisting of all objects
M ∈ ModI S such that none of the nonzero subquotients of M belong to
Y.

We will show that Y = 0 and Z = ModI S in Lemma 3.14. So Lemmas 3.9,
3.10, 3.12 and 3.13 are only used to prove Lemma 3.14 and they will eventually
become trivial.

Lemma 3.9. Let M ∈ ModI S be an object that belongs to Y. Then every
N ∈ ModI S satisfying N AnnS(M) = 0 belongs to Y.

Proof. Since AnnS(M) =
⋂

xAnnS(x), where x runs over all homogeneous
elements of M , we have the canonical monomorphism

S

AnnS(M)
→
∏

x

S

AnnS(x)
,

and S/AnnS(x) ∼= (xS)(deg x) ⊂ M(deg x) ∈ Y. Hence S/AnnS(M) belongs
to Y. The condition N AnnS(M) = 0 implies that N is a quotient of a direct
sum of copies of S/AnnS(M). Therefore N ∈ Y.

Lemma 3.10.

(1) Z ⊂ ModI S is a localizing subcategory closed under degree shifts.
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(2) Let M ∈ ModI S be a noetherian object that belongs to Z. Then every
N ∈ ModI S satisfying N AnnS(M) = 0 belongs to Z.

Proof. (1) It is obvious that Z is closed under subobjects and quotient objects.
By [Kan12, Proposition 2.4 (4)], every nonzero subquotient of an extension of
two objects in Z is a nonzero extension of subquotients of objects in Z, which
does not belong to Y. Hence Z is closed under extensions. In a similar way
to the proof of [Kan15b, Proposition 2.12 (1)], we deduce that Z is also closed
under direct sums. Since Y is closed under degree shifts, Z is also closed under
degree shifts.
(2) Since M is noetherian, there are a finite number of elements x1, . . . , xn ∈ S
such that AnnS(M) =

⋂n
i=1 AnnS(xi). Therefore the claim can be shown

similarly to Lemma 3.9.

Remark 3.11. If an object M ∈ ModI S has an ascending chain of subobjects
L0 ⊂ L1 ⊂ · · · such that Li+1/Li /∈ Y for all i ≥ 0, then we obtain the
strictly ascending chain F (L0) ( F (L1) ( · · · of subobjects of F (M) since
F (Li+1)/F (Li) ∼= F (Li+1/Li) 6= 0. Hence, if F (M) ∈ QCohX is noetherian,
then there are no such chains of subobjects of M .
In particular, if M ∈ Z, then M is noetherian if and only if F (M) is noetherian
(see [Pop73, Lemma 5.8.3] for the “only if” part).

Lemma 3.12. Let
0 → L → M → N → 0

be a short exact sequence in ModI S such that F (M) ∈ QCohX is noetherian
and one of the following conditions is satisfied:

(1) L ∈ Y and N ∈ Z.

(2) L ∈ Z and N ∈ Y.

Then the exact sequence splits.

Proof. Since S is a commutative ring, we have

M AnnS(L)AnnS(N) = M AnnS(N)AnnS(L) = 0.

Assume (1). Then N is noetherian by Remark 3.11, and Lemma 3.10 im-
plies L′ := M AnnS(L) ∈ Z. Since N ′ := M/L′ is annihilated by AnnS(L),
Lemma 3.9 implies N ′ ∈ Y.
Let K be the kernel of the composite L → M → N ′. Then the composite
K →֒ L → M factors through some morphism K → L′. Since L ∈ Y and Y is
closed under subobjects, K ∈ Y. Thus the only morphism from K to L′ ∈ Z
is zero. This means K = 0. The dual argument shows that the cokernel of the
composite L → M → N ′ is also zero. Therefore it is an isomorphism, and the
given exact sequence splits.
The proof for (2) is similar.
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Lemma 3.13. Let C ⊂ ModI S be the collection of objects H such that

(1) no nonzero subobjects of H belong to Y, and

(2) no nonzero subobjects of H belong to Z.

If M ∈ ModI S does not have any nonzero subquotient that belongs to C and
F (M) ∈ QCohX is a noetherian object, then M is a direct sum of an object
in Y and an object in Z.

Proof. Assume that M satisfies the assumption but it is not a direct sum of
an object in Y and an object in Z. Since F (M) is noetherian, we can assume
that for every nonzero subobject L ⊂ M with F (L) 6= 0, the quotient M/L
is a direct sum of an object in Y and an object in Z. Indeed, if it is not the
case, we can replace M by M/L since M/L satisfies the same assumption. This
procedure eventually terminates due to Remark 3.11.
Take the largest subobject L ⊂ M belonging to Y using Proposition 2.13 (1).
Assume L = 0. Then M satisfies (1), and hence it does not satisfy (2). M
has a nonzero subobject N ⊂ M that belongs to Z. Since Z ⊂ ModI S is a
localizing subcategory by Lemma 3.10 (1), N can be taken to be largest among
the subobjects belonging to Z. Since N 6= 0, we have M/N ∼= M1 ⊕ M2 for
some M1 ∈ Y and M2 ∈ Z, and the maximality of N implies that M2 = 0. By
Lemma 3.12, the short exact sequence

0 → N → M → M1 → 0

splits. This contradicts the assumption that L = 0.
Assume L 6= 0. Then the argument for L = 0 shows that M/L ∼= M1 ⊕ M2

for some M1 ∈ Y and M2 ∈ Z. By the maximality of L, we have M1 = 0. By
Lemma 3.12, the short exact sequence

0 → L → M → M2 → 0

splits. This is again a contradiction.

Lemma 3.14. Y = 0 and Z = ModI S.

Proof. Assume that S ∈ ModI S has a nonzero subquotient H that belongs
to the collection C defined in Lemma 3.13. If there is a nonzero subobject
L ⊂ H such that H/L has a nonzero subquotient belonging to C, then replace
H by H/L. Since F (S) ∼= OX is noetherian and L does not belong to Y, this
procedure eventually terminates by Remark 3.11. Thus we can assume that for
every nonzero subobject L ⊂ H , the quotient H/L does not have any nonzero
subquotient belonging to C.
Since Y ⊂ ModI S is a bilocalizing subcategory, H has the smallest subobject
H ′ ⊂ H among those satisfying H/H ′ ∈ Y by Proposition 2.13 (2). Since
H ′ 6= 0 and H ′ also belongs to C, we can assume that no nonzero quotient
object of H belong to Y by replacing H by H ′.
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By property (2) in the definition of C, there exist subobjects L ( L′ ⊂ H such
that L′/L ∈ Y. Then H/L meets the requirement on M in Lemma 3.13. Hence
H/L ∼= M1 ⊕ M2 for some M1 ∈ Y and M2 ∈ Z. Since H/L has a nonzero
subobject L′/L ∈ Y, the direct summand M1 is nonzero. This contradicts to
that H has no nonzero quotient object that belongs to Y.
Therefore S ∈ ModI S does not have any nonzero subquotient that belongs to
C. Again by Lemma 3.13, S ∼= N1 ⊕N2 for some N1 ∈ Y and N2 ∈ Z. Since
F (N1) = 0, we have

HomS(N1, S) ∼= HomS(N1, G(OX)) ∼= HomS(F (N1),OX) = 0.

Hence N1 = 0, and S = N2 ∈ Z. Since {S(i)}i∈I is a generating set in ModI S

and Z ⊂ ModI S is a localizing subcategory closed under degree shifts by
Lemma 3.10 (1), we obtain Z = ModI S. This implies that Y = 0.

We prove our main results:

Theorem 3.15 (Theorem 1.1). Let X be a divisorial noetherian scheme. Then
the following conditions are equivalent:

(1) QCohX satisfies Ab4*.

(2) QCohX has enough projectives.

(3) X is an affine scheme.

Proof. (3)⇒(2): Since QCohX ∼= ModΓ (X,OX), it has enough projectives.
(2)⇒(1): See Remark 2.8.
(1)⇒(3): By Lemma 3.7 and Lemma 3.14, we have an equivalence QCohX ∼−→
ModI S that sends OX to an object isomorphic to S. Hence OX ∈ QCohX is
a projective object, and we obtain

Hd(X,−) ∼= ExtdX(OX ,−) = 0

for all integers d ≥ 1. By Serre’s criterion of affineness ([Har77, Theo-
rem III.3.7]), we conclude that X is an affine scheme.

Corollary 3.16 (Corollary 1.2). Let X be a scheme that contains a non-affine
divisorial noetherian scheme as a closed subscheme. Then QCohX does not
satisfy Ab4*.

Proof. Let Y ⊂ X be a closed subscheme with the stated property. It is shown
in the proof of [BCJF15, Corollary 3.9] that the closed immersion i : Y →֒ X
induces the fully faithful functor i∗ : QCohY → QCohX whose essential image
is the full subcategory C of QCohX consisting of all objects N ∈ QCohX
annihilated by the quasi-coherent subsheaf IY ⊂ OX corresponding to the
closed subscheme Y . For every object M ∈ QCohX , the quotient object
M/MIY is largest among those belonging to C. Hence C ⊂ QCohX is a
closed subcategory by Proposition 2.16.
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By Theorem 3.15, QCohY does not satisfy Ab4*. Since condition Ab4* on a
Grothendieck category is inherited by its closed subcategories, QCohX does
not satisfy Ab4*, either.
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