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Abstract. We show that Zamolodchikov dynamics of a recurrent
quiver has zero algebraic entropy only if the quiver has a weakly sub-
additive labeling, and conjecture the converse. By assigning a pair of
generalized Cartan matrices of affine type to each quiver with an addi-
tive labeling, we completely classify such quivers, obtaining 40 infinite
families and 13 exceptional quivers. This completes the program of
classifying Zamolodchikov periodic and integrable quivers.
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Introduction

Given a bipartite quiver Q which is just a directed bipartite graph without
directed cycles of length 1 and 2, one can define a certain discrete dynamical
system called the T -system associated with Q. It assigns a multivariate rational
function Tv(t) to each vertex v of Q and each integer t and satisfies the following
recurrence relation

Tv(t+ 1)Tv(t− 1) =
∏

u→v

Tu(t) +
∏

v→w

Tw(t). (0.1)

In certain cases, this relation specializes to various well studied objects such as
the octahedron recurrence of Speyer [37].
When a bipartite quiver Q satisfies a certain simple local condition (we call
such quivers recurrent), the T -system dynamics can be viewed as a special case
of a cluster algebra, see [7]. Partially because of this connection to cluster al-
gebras, T -systems have received much attention in the past two decades. One
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particular popular direction of research in this area is the so called Zamolod-
chikov periodicity. It was conjectured by Zamolodchikov [43] that if Q is an
orientation of an ADE Dynkin diagram of finite type then the T -system is
periodic. This conjecture was later generalized by Kuniba-Nakanishi [25] and
Ravanini-Valleriani-Tateo [35] to the case when Q is a tensor product of two
finite ADE Dynkin diagrams. The conjecture stayed open for around twenty
years with various special cases being completed in [35, 25, 26, 8, 16, 42, 40]. It
was finally resolved for all pairs of finite ADE Dynkin diagrams by Keller [22].

For the connections of T -systems with thermodynamic Bethe ansatz [43] as
well as their other appearances in physics and representation theory, see [26,
23, 36, 32, 10, 24, 31], and see [27] for a survey. Of special note is the work of
Hernandez [19], where he studied the occurrence of T -systems in representation
theory for simply-laced quivers beyond Dynkin quivers.

This is the third and final paper in the series [12, 13] of works that classify
bipartite recurrent quivers for which the T -system satisfies a certain algebraic
property. In [12], we have shown that the T -system associated to a bipartite
recurrent quiver Q is periodic if and only if Q admits a strictly subadditive
labeling. Such quivers turn out to exactly correspond to commuting pairs of
Cartan matrices which have been classified earlier by Stembridge [39]. In par-
ticular, tensor products of finite ADE Dynkin diagrams belong to this family,
so the result of [12] is a generalization of the result of [22].

Next, we showed in [13] that the values of the T -system satisfy a linear recur-
rence only if Q admits a subadditive labeling. We gave an analogous classifi-
cation for quivers admitting a subadditive labeling. In particular, it includes
tensor products of an affine ADE Dynkin diagram with a finite ADE Dynkin
diagram. This classification allowed an extensive computational verification of
the conjecture that the converse is also true, i.e., for every bipartite recurrent
quiver Q admitting a subadditive labeling, the associated T -system satisfies a
linear recurrence. We proved this claim for the case when Q has type Â ⊗ A
using a combinatorial formula due to Speyer [37] for the octahedron recurrence.

In this text, we classify (Section 6) bipartite recurrent quivers admitting a
weakly subadditive labeling. We use algebraic entropy as a motivating property
of the T -system that conjecturally characterizes such quivers. Having zero
algebraic entropy is a frequently used criterion for checking integrability of
a discrete dynamical system. It was introduced in [6] and further developed
in [2, 20]. Roughly speaking, the fact that the algebraic entropy of a discrete
dynamical system is nonzero means that its values grow doubly exponentially,
i.e., as exp(exp(ct)) for some positive constant c. We show in Section 3 that
for any bipartite recurrent quiver that does not admit a weakly subadditive
labeling, the T -system has nonzero algebraic entropy. Using our classification
again we get rich computational evidence suggesting that for the remaining
bipartite recurrent quivers (that is, the ones from our classification), the values
of the T -system grow quadratic exponentially, i.e. as exp(ct2). Thus there seems
to be a big gap in the rate of growth that separates the T -systems associated
to the quivers in our classification from all other T -systems.
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For two special cases (quivers of type Â ⊗ Â and twists Λ̂ × Λ̂ of affine ADE
Dynkin diagrams) we prove in Sections 3.1 and 8 respectively that the growth is
quadratic exponential. The former again is a consequence of Speyer’s formula
for the octahedron recurrence. We finish the text (Section 9) by giving some
refinements of the rate of growth conjecture. In particular, we conjecture that
the Y -systems associated to the quivers from our classification are Arnold-
Liouville integrable.

1 Main results

Let us start by introducing some notions necessary to formulate our results.
As we have mentioned, a quiver Q is a directed graph without loops and pairs
of arrows forming a directed 2-cycle.
Given a quiver Q with vertex set Vert(Q), a vertex v ∈ Vert(Q), and a family
T∗ = (Tu)u∈Vert(Q) of rational functions in some set x of variables, one can
define the mutation operation µv that produces a new quiver µv(Q) with the
same set Vert(Q) of vertices and a new family µv(T∗) = (T ′

u)u∈Vert(Q) according
to a certain set of combinatorial rules. The definition of the quiver µv(Q) is
given in Definition 2.14 and µv(T∗) is defined as follows. For u 6= v, we set
T ′
u := Tu, and for u = v we put

T ′
v =

∏

u→v Tu +
∏

v→w Tw
Tv

. (1.1)

Here the product is taken over all arrows in Q. It follows from the definition
that the operations µv and µw commute when there are no arrows between v
and w in Q.
We say that a quiver Q is bipartite if there exists a map ǫ : Vert(Q) →
{0, 1}, v 7→ ǫv called a bipartition such that for every arrow u → v of Q
we have ǫu 6= ǫv. It follows that for a bipartite quiver, the operations

µ0 =
∏

u:ǫu=0

µu; µ1 =
∏

v:ǫv=1

µv (1.2)

are well defined since the results of products are independent of the order. We
are now ready to introduce a crucial notion of a recurrent quiver.

Definition 1.1. We say that a bipartite quiver Q is recurrent if µ0(Q) =
µ1(Q) = Qop where Qop is the quiver obtained from Q by reversing all of its
arrows.

We give an alternative simpler definition for bipartite recurrent quivers in
Corollary 2.15.
Let us now define the T -system. The main part of the definition will be equa-
tion (0.1). Note that for each of the terms Tv(t + 1), Tv(t − 1), Tu(t), Tw(t)
involved in (0.1), the numbers

ǫv + t+ 1, ǫv + t− 1, ǫu + t, ǫw + t
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all have the same parity. Thus it makes sense to restrict the values of the
T -system to only pairs (v, t) such that t ≡ ǫv (mod 2).

Definition 1.2. Given a bipartite recurrent quiver Q with a bipartition ǫ, the
T -system associated with Q is a family Tv(t) of rational functions in variables
x = {xv}v∈Vert(Q) defined for any v ∈ Vert(Q) and any t ∈ Z satisfying t ≡ ǫv
(mod 2). For any v ∈ Vert(Q) and t 6≡ ǫv (mod 2), the values of the T -system
are required to satisfy (0.1). Finally, for each v ∈ Vert(Q), we impose an initial
condition

Tv(ǫv) = xv. (1.3)

One easily observes that (1.3) and (0.1) determine Tv(t) uniquely for any t ≡ ǫv
(mod 2).
Since the T -system is defined for only bipartite recurrent quivers, it can be
viewed as a composition of mutations µ0µ1, see (1.1) and (1.2). As a conse-
quence, it follows from the Laurent phenomenon property of cluster algebras [7]
that for any t ≡ ǫv (mod 2), the value Tv(t) is actually a Laurent polynomial
in x: Tv(t) ∈ Z[x±1].
For v, u ∈ Vert(Q) and t ≡ ǫv (mod 2), define degmax(xu;Tv(t)) to be the
maximal degree of the variable xu in the Laurent polynomial Tv(t).

Definition 1.3. We say that Q has algebraic entropy zero if for any two
vertices u, v ∈ Vert(Q) we have

lim
t→∞

log (degmax(xu, Tv(ǫv + 2t)))

t
= 0. (1.4)

Before we state our main results, let us give one more definition.

Definition 1.4. Given a quiver Q, we say that a map λ : Vert(Q) → R>0 is a
weakly subadditive labeling if for any vertex v ∈ Vert(Q), we have

2λ(v) ≥ max

(
∑

u→v

λ(u),
∑

v→w

λ(v)

)

. (1.5)

This is a generalization of Vinberg’s additive functions [41]. We recall the
analogous definitions of strictly subadditive and subadditive labelings in Defini-
tion 2.19.

Theorem 1.5. Suppose that Q is a bipartite recurrent quiver. If Q does not
admit a weakly subadditive labeling then Q does not have zero algebraic entropy.

Our second main result is the classification (Theorem 6.1) of bipartite recurrent
quivers that admit weakly subadditive labelings.
By Theorem 1.5, every quiver Q that has algebraic entropy zero admits a
weakly subadditive labeling and therefore is necessarily one of the quivers in
our classification. According to our computer experiments, we give a precise
conjecture describing the asymptotics of the T -system.
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Definition 1.6. Let f(0), f(1), . . . be a sequence of positive real numbers. We
say that f

1. is bounded if there exists a constant M such that f(t) < M for all t ≥ 0;

2. grows exponentially if there exists a positive limit of

log(f(t))

t
;

3. grows quadratic exponentially if there exists a positive limit of

log(f(t))

t2
;

4. grows doubly exponentially if there exists a positive limit of

log log(f(t))

t
.

Conjecture 1.7. Let Q be a bipartite recurrent quiver. Substitute some
positive real numbers for each variable in x. Let f(t) = Tv(ǫv + 2t), t ≥ 0 be
the sequence of values of the T -system at vertex v that we get after such a
substitution.

1. If Q admits a strictly subadditive labeling then f is bounded (and in fact
is periodic);

2. otherwise, if Q admits a subadditive labeling then f grows exponentially
(and satisfies a linear recurrence);

3. otherwise, if Q admits a weakly subadditive labeling then f grows
quadratic exponentially;

4. otherwise f grows doubly exponentially.

Some parts of this conjecture are already proven. For example, we proved
part (1) in [12]. A weaker version of part (2) was shown in [13]. In this paper,
we prove part (4) and a weaker version of part (3). When all components of
the bigraph associated with Q (see Definition 2.3) are of type A or Â, we prove
all parts of Conjecture 1.7 in full generality. We do the same when Q is a twist
(see Definition 5.1) of a finite or affine ADE Dynkin diagram.

Remark 1.8. Discrete dynamical systems exhibiting only bounded, linear,
quadratic, or exponential growth of the degrees appear in surprisingly many
diverse contexts. One example is the analogous result for cluster mutation-
periodic quivers with period 1, see [9, Theorem 3.12]. Other instances in-
clude [11, 4]. We thank Andrew Hone for bringing these references to our
attention.
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2 Preliminaries

2.1 Bigraphs

We follow very closely the exposition in [13]. We start by briefly recalling the
correspondence between bipartite quivers and bipartite bigraphs introduced by
Stembridge [39].

Definition 2.1. A bigraph is a pair G = (Γ,∆) of simple undirected graphs on
the same vertex set that do not share any edges. A bigraph is called bipartite
if there is a map ǫ : V → {0, 1} such that for every edge (u, v) of Γ or ∆ we
have ǫu 6= ǫv.

The graphs Γ and ∆ are allowed to have multiple edges but no loops. Through-
out, we assume all bigraphs to be bipartite.
Since our main result is a classification of certain bigraphs, we write down the
obvious definition of an isomorphism between two such objects.

Definition 2.2. Two bigraphsG = (Γ,∆) and G′ = (Γ′,∆′) are called isomor-
phic if there is a map φ : Vert(G) → Vert(G′) such that for any u, v ∈ Vert(G)
we have

• (u, v) ∈ Γ ⇔ (φ(u), φ(v)) ∈ Γ′, and

• (u, v) ∈ ∆ ⇔ (φ(u), φ(v)) ∈ ∆′.

There is a simple correspondence between bipartite quivers and bipartite bi-
graphs that we now explain.

Definition 2.3. Given a bipartite quiver Q with bipartition ǫ : Vert(Q) →
{0, 1}, define the bigraph G(Q) = (Γ(Q),∆(Q)) with the same vertex set as
follows:

• For every directed edge u → v of Q with ǫu = 0, ǫv = 1, Γ(Q) contains
an undirected edge (u, v).

• For every directed edge u → v of Q with ǫu = 1, ǫv = 0, ∆(Q) contains
an undirected edge (u, v).

Thus every arrow of Q corresponds to precisely one edge of G(Q). Note also
that this is a bijection: given a bipartite bigraph G with a bipartition ǫ, one
can easily reconstruct the bipartite quiver Q = Q(G) such that G = G(Q).
We represent a bigraph G = (Γ,∆) as a simple graph with the edges of Γ
colored red and the edges of ∆ colored blue.
Let us recall the definition of a tensor product of two bipartite graphs:

Definition 2.4. Let S and T be two bipartite undirected graphs. Then their
tensor product S⊗T is a bipartite bigraphG = (Γ,∆) with vertex set Vert(S)×
Vert(T ) and the following edge sets:
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Figure 1: A tensor product of a hexagon (type Â5) and a 2-cycle (type Â1).
Tensor products are listed as family #1 in our classification in Section 6.

• for each edge {u, u′} ∈ S and each vertex v ∈ T there is an edge between
(u, v) and (u′, v) in Γ;

• for each vertex u ∈ S and each edge {v, v′} ∈ T there is an edge between
(u, v) and (u, v′) in ∆;

An example of a tensor product is given in Figure 1.

2.1.1 T -systems for bipartite bigraphs

Just as in [12, 13], we reformulate the definition of the T -system in the language
of bigraphs that is more convenient for us to work with.

Definition 2.5. Let G = (Γ,∆) be a bipartite bigraph with vertex set V .
Then the associated T -system for G is defined as follows:

Tv(t+ 1)Tv(t− 1) =
∏

(u,v)∈Γ

Tu(t) +
∏

(v,w)∈∆

Tw(t);

Tv(ǫv) = xv.

It is easy to see that we have Tv(t) = T ′
v(t) where T ′

v(t) is the value of the
T -system associated with Q(G) via Definition 1.2.

2.2 Finite and affine ADE Dynkin diagrams

Definition 2.6. Given an undirected graph G = (V,E) with possibly multiple
edges, we say that a map λ : V → R>0 is an additive function if for all v ∈ V
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Name Finite diagram h(Λ)
Aℓ (ℓ ≥ 1) ℓ+ 1

Dℓ (ℓ ≥ 4) 2ℓ− 2

E6 12

E7 18

E8 30

Figure 2: Finite ADE Dynkin diagrams and their Coxeter numbers. Each
diagram whose name contains index ℓ has ℓ vertices.

Name Affine diagram h(2)(Λ̂)

Âℓ (ℓ ≥ 1)
1

1 1 1
1

111
ℓ+ 1

D̂ℓ (ℓ ≥ 4) 1

1
2 2 2

1

1

4(ℓ− 2)

Ê6

12
1 2

3
21

24

Ê7

2
123

4
3 2 1

48

Ê8

3

2 4 6 5 4 3 2 1 120

Figure 3: Affine ADE Dynkin diagrams together with their additive functions
and McKay numbers. Each diagram whose name contains index ℓ has ℓ + 1
vertices.
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we have
2λ(v) =

∑

(u,v)∈E

λ(u). (2.1)

The following characterization of affine ADE Dynkin diagrams is due to Vin-
berg [41]:

Theorem 2.7. Let G = (V,E) be an undirected graph with possibly multiple
edges. Then G is an affine ADE Dynkin diagram if and only if there exists an
additive function for G.

Finite and affine ADE Dynkin diagrams are given in Figures 2 and 3 respec-
tively. The affine diagrams are drawn together with the values of their additive
functions. We scale the values of the additive function so that they are rela-
tively prime positive integers. Note that the only affine ADE Dynkin diagram
that is not a bipartite graph is Â2n for n ≥ 1.
For each finite ADE Dynkin diagram Λ there is an associated integer h(Λ)
called the Coxeter number, see e.g. [3, Chapter V, §6]. We list Coxeter numbers
of finite ADE Dynkin diagrams in Figure 2. If Λ̂ is an affine ADE Dynkin
diagram, we set h(Λ̂) = ∞.
The Coxeter number has various nice interpretations, we list some of them
below.

Proposition 2.8.

• If Λ is a finite ADE Dynkin diagram then the dominant eigenvalue of its
adjacency matrix equals 2 cos(π/h(Λ));

• if Λ̂ is an affine ADE Dynkin diagram then the dominant eigenvalue of
its adjacency matrix equals 2.

• The Coxeter element of the Coxeter group associated with Λ has period
h(Λ).

• If Λ̂ is the affine ADE Dynkin diagram corresponding to a finite ADE
Dynkin diagram Λ then h(Λ) equals the sum of the values of the additive
function for Λ̂.

In particular, the first three claims justify setting h(Λ̂) := ∞. Motivated by
the last claim, we introduce the following affine analog of the Coxeter number
that will come into play in the proof of our classification in Section 7.

Definition 2.9. Given an affine ADE Dynkin diagram Λ̂, its McKay number
h(2)(Λ̂) is the sum of squares of the values of the additive function for Λ̂.

The values of h(2)(Λ̂) are given in Figure 3. The motivation for the name comes
from the fact that h(2)(Λ̂) is the size of the subgroup of SU(2) associated with
Λ̂ via the McKay correspondence, see [30] or [38].1

1We thank Christian Gaetz for pointing out this connection to us.
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2.3 Generalized Cartan matrices

In this section, we review Kac’s classification [21] of generalized Cartan matrices
of affine type. We will however need to consider a slightly more general class
of matrices.

Definition 2.10. An n× n matrix A = (aij)
n
i,j=1 is called a weak generalized

Cartan matrix if it satisfies the following axioms:

(C1) aii ∈ Z and aii ≤ 2 for i = 1, . . . , n;

(C2) aij are non-positive integers for i 6= j;

(C3) aij = 0 implies aji = 0.

Thus a generalized Cartan matrix is a weak generalized Cartan matrix satis-
fying aii = 2 for all i ∈ [n] := {1, 2, . . . , n}. Following [21, §4.7], to each weak
generalized Cartan matrix A we associate its Dynkin diagram S(A) with vertex
set [n] as follows. We connect each vertex i to itself by 2− aii self-loops. Two
vertices i 6= j ∈ [n] such that |aij | ≥ |aji| are connected by |aij | lines in S(A)
which are equipped with an arrow pointing toward i if |aij | > 1. We say that
A is indecomposable if S(A) is a connected graph. For a column vector u with
coordinates uT = (u1, u2, . . . ), we write u > 0 (resp., u ≥ 0) if all ui > 0 (resp.,
all ui ≥ 0).

Theorem 2.11 ([21, Theorem 4.3]). Let A be a real n×n indecomposable weak
generalized Cartan matrix. Then exactly one of the following holds:

(Fin) There exists u > 0 such that Au > 0.

(Aff) There exists u > 0 such that Au = 0.

(Ind) There exists u > 0 such that Au < 0.

In cases (Fin), (Aff), (Ind), we will say that A is of finite, affine, or indefinite
type, respectively.

Theorem 2.12.

1. If A is an indecomposable weak generalized Cartan matrix of finite type
then S(A) is one of the diagrams in Figure 4.

2. If A is an indecomposable weak generalized Cartan matrix of affine type
then S(A) is one of the diagrams shown in Figure 5.

3. The labels in Figure 5 are the coordinates of the unique vector δ =
(δ1, . . . , δn) such that Aδ = 0 and the δi are positive relatively prime
integers.
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Aℓ ◦ — ◦ — · · · — ◦ — ◦ Bℓ ◦ — ◦ — · · · — ◦ ⇒ ◦

Cℓ ◦ — ◦ — · · · — ◦ ⇐ ◦
Dℓ ◦ — ◦ — · · · — ◦ — ◦

—

◦

E6 ◦ — ◦ — ◦ — ◦ — ◦
—

◦

E7 ◦ — ◦ — ◦ — ◦ — ◦ — ◦

—

◦

E8 ◦ — ◦ — ◦ — ◦ — ◦ — ◦ — ◦

—

◦

F4 ◦ — ◦ ⇒ ◦ — ◦

G2 ◦ ⇛ ◦ 1
2A2ℓ(ℓ ≥ 1) ◦ — ◦ — · · · — ◦ — ◦

Figure 4: Dynkin diagrams of weak generalized Cartan matrices of finite type.
Each diagram whose name contains index ℓ has ℓ vertices.

Proof. Most of the statements follow from [21, Theorem 4.8]. The only addi-
tional work one needs to do is the case where we have aii < 2 for some i ∈ [n].
Suppose that A is a weak generalized Cartan matrix of finite (resp., affine)
type such that aii < 2 for some i ∈ [n]. Introduce a 2n × 2n weak general-
ized Cartan matrix B with indexing set [n] ∪ [n′] = {1, 2, . . . , n, 1′, 2′, . . . , n′}
is obtained from A as follows. For i 6= j ∈ [n], put bij = bi′j′ = aij and put
bij′ = bi′j = 0. For i ∈ [n], set bii = bi′i′ = 2 and bii′ = bi′i = 2− aii. It follows
that B is a generalized Cartan matrix of finite (resp., affine) type. Thus S(A)
is obtained from S(B) by taking a quotient with respect to a fixed-point-free
involutive automorphism of order 2, and it is straightforward to check that the
only Dynkin diagrams in Figures 4 and 5 that admit such an automorphism are

A2n, A
(1)
2n+1, C

(1)
2n+1, D

(1)
2n+1, and D

(2)
2n+3. We denote the corresponding diagram

S(A) by 1
2A2n (Figure 4), 1

2A
(1)
2n+1,

1
2C

(1)
2n+1,

1
2D

(1)
2n+1, and

1
2D

(2)
2n+3 (Figure 5)

respectively.

Note that a 1×1 matrix A with a11 ≤ 2 is an indecomposable weak generalized
Cartan matrix for any a11 including a11 = 0. This zero 1×1 matrix corresponds

to the diagram 1
2A

(1)
2ℓ+1 for ℓ = 0 which is a single vertex with two self-loops.

We also denote this diagram by A
(1)
0 .

Remark 2.13. The diagrams in Figure 2 also appear in Figure 4. Similarly,
the diagrams in Figure 3 also appear (with slightly different names) in Figure 5.
This is done intentionally since we treat diagrams in Figures 2 and 3 as color
components of bigraphs (see next section) while we get diagrams in Figures 4
and 5 as component graphs of bigraphs (see Theorem 4.7).

2.4 Bipartite recurrent quivers and bigraphs

Definition 2.14. Let Q be a quiver. For a vertex v of Q one can define the
quiver mutation µv at v as follows:
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A
(1)
ℓ (ℓ ≥ 2) 1 — 1 — · · · — 1 — 1

D
(1)
ℓ (ℓ ≥ 4) 1 — 2 — 2 — · · · — 2 — 1

—

1

—

1

E
(1)
6 1 — 2 — 3 — 2 — 1

—

2

—

1

E
(1)
7 1 — 2 — 3 — 4 — 3 — 2 — 1

—

2

D
(2)
ℓ+1(ℓ ≥ 2) 1 ⇐ 1 — · · · — 1 ⇒ 1

E
(1)
8 2 — 4 — 6 — 5 — 4 — 3 — 2 — 1

—

3

A
(1)
1 1 ⇔ 1 A

(2)
2 2 1 G

(1)
2 1 — 2 ⇛ 3 D

(3)
4 1 — 2 ⇚ 1

B
(1)
ℓ (ℓ ≥ 3) 1 — 2 — · · · — 2 ⇒ 2

—

1

A
(2)
2ℓ−1(ℓ ≥ 3) 1 — 2 — · · · — 2 ⇐ 1

—

1

C
(1)
ℓ (ℓ ≥ 2) 1 ⇒ 2 — · · · — 2 ⇐ 1 A

(2)
2ℓ (ℓ ≥ 2) 2 ⇐ 2 — · · · — 2 ⇐ 1

F
(1)
4 1 — 2 — 3 ⇒ 4 — 2 E

(2)
6 1 — 2 — 3 ⇐ 2 — 1

1
2A

(1)
2ℓ+1(ℓ ≥ 0) 1 — 1 — · · · — 1 — 1

1
2C

(1)
2ℓ+1(ℓ ≥ 1) 1 ⇒ 2 — · · · — 2 — 2

1
2D

(1)
2ℓ+1(ℓ ≥ 2) 1 — 2 — · · · — 2 — 2

—

1

1
2D

(2)
2ℓ+3(ℓ ≥ 1) 1 ⇐ 1 — · · · — 1 — 1

Figure 5: Dynkin diagrams of weak generalized Cartan matrices of affine type.
Each diagram whose name contains index ℓ has ℓ + 1 vertices. The names of
the diagrams are taken from [21].
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a b

dc

a b

dc

a b

dc

a b

dc

Quiver Q Step 1 Step 2 Step 3. This is µa(Q)

Figure 6: Mutating a quiver Q at vertex a. The edges changed at the corre-
sponding step are highlighted in orange.

1. for each pair of arrows u→ v and v → w, create an arrow u→ w;

2. reverse the direction of all arrows incident to v;

3. if some directed 2-cycle is present, remove both of its arrows; repeat until
there are no more directed 2-cycles.

It is straightforward to check that the resulting quiver µv(Q) is well defined.
See Figure 6 for an example of each step.

Now, let Q be a bipartite quiver. Recall that µ0 (resp., µ1) is the simultaneous
mutation at all white (resp., all black) vertices of Q, and that Q is recurrent if
µ0(Q) = µ1(Q) = Qop, see Definition 1.1.

Corollary 2.15. A bipartite quiver Q is recurrent if and only if the associated
bipartite bigraph G(Q) has commuting adjacency matrices AΓ, A∆.

Equivalently, this means that for any two vertices u,w ∈ Vert(Q), the number
of directed 2-paths u→ v → w in Q equals the number of directed 2-paths w →
v → u in Q. In other words, the number of red-blue paths (u, v) ∈ Γ, (v, w) ∈ ∆
in G equals the number of blue-red paths (u, v) ∈ ∆, (v, w) ∈ Γ in G.
Let us now recall a few facts from [13].

Lemma 2.16 ([13, Lemma 1.1.8]). Let G = (Γ,∆) be a connected bigraph
and assume that the adjacency matrices AΓ, A∆ commute. Then the domi-
nant eigenvalues of all components of Γ are equal to the same value µΓ > 0,
and the dominant eigenvalues of all components of ∆ are equal to the same
value µ∆ > 0. Matrices AΓ and A∆ have a common dominant eigenvector
v > 0 such that

AΓv = µΓv; A∆v = µ∆v.

Applying the well known characterization of affine and finite ADE Dynkin
diagrams by their eigenvalues (see Proposition 2.8), we get the following:

Corollary 2.17. Suppose that a bipartite bigraph G = (Γ,∆) has commuting
adjacency matrices. Then exactly one of the following is true:
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(i) all components of Γ are finite ADE Dynkin diagrams;

(ii) all components of Γ are affine ADE Dynkin diagrams;

(iii) every component of Γ is neither a finite nor an affine ADE Dynkin dia-
gram.

A similar claim holds for the components of ∆.

This motivates us to define three families of bipartite bigraphs that will be of
the most importance to us.

Definition 2.18 ([13, Definition 1.1.7]). Let G = (Γ,∆) be a bipartite bigraph
with commuting adjacency matrices. We say that:

1. G is a finite ⊠ finite ADE bigraph if both Γ and ∆ satisfy (i);

2. G is an affine ⊠ finite ADE bigraph if Γ satisfies (ii) and ∆ satisfies (i);

3. G is an affine ⊠ affine ADE bigraph if both Γ and ∆ satisfy (ii).

The finite ⊠ finite ADE bigraphs have been introduced by Stembridge [39]
under the name admissible ADE bigraphs.
Let G = (Γ,∆) be a bipartite bigraph on vertex set V . A labeling of its vertices
is a function ν : V → R>0, which assigns a positive real number ν(v) to each
vertex v of G.

Definition 2.19 ([13, Definition 1.1.4]). A labeling ν : V → R>0 is called

• strictly subadditive if for any vertex v ∈ V ,

2ν(v) >
∑

(u,v)∈Γ

ν(u), and 2ν(v) >
∑

(v,w)∈∆

ν(w).

• subadditive if for any vertex v ∈ V ,

2ν(v) ≥
∑

(u,v)∈Γ

ν(u), and 2ν(v) >
∑

(v,w)∈∆

ν(w).

• weakly subadditive if for any vertex v ∈ V ,

2ν(v) ≥
∑

(u,v)∈Γ

ν(u), and 2ν(v) ≥
∑

(v,w)∈∆

ν(w).

• additive if for any vertex v ∈ V ,

2ν(v) =
∑

(u,v)∈Γ

ν(u), and 2ν(v) =
∑

(v,w)∈∆

ν(w).

Examples of each type can be found in Figure 7.
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Figure 7: A strictly subadditive labeling (left). A subadditive labeling (mid-
dle). A weakly subadditive labeling which is also an additive labeling (right).

Thus any additive labeling is not subadditive but is weakly subadditive. As
we will see later, the converse is also true: additive labelings are precisely the
weakly subadditive labelings that are not subadditive.
Strictly subadditive, subadditive and weakly subadditive labelings of quivers
have been introduced by the second author in [34].
The connection between Definitions 2.18 and 2.19 is as follows.

Proposition 2.20 ([13, Proposition 1.1.10]). Let Q be a bipartite recurrent
quiver Q and G(Q) = (Γ,∆) be the corresponding bipartite bigraph. Then

1. Q admits a strictly subadditive labeling if and only if G(Q) is a finite ⊠

finite ADE bigraph;

2. Q admits a subadditive labeling which is not strictly subadditive if and
only if G(Q) is an affine ⊠ finite ADE bigraph;

3. Q admits a weakly subadditive labeling which is not subadditive if and
only if G(Q) is an affine ⊠ affine ADE bigraph, in which case Q admits
an additive labeling.

2.5 Tropical T -systems

In this section, we recall how to tropicalize the T -system. We again follow the
exposition of [13].
Given a bipartite recurrent quiver Q, we call the associated T -system from
Definition 1.2 the birational T -system associated with Q in order to distinguish
it from another discrete dynamical system which we introduce in this section.

Definition 2.21. Let Q be a bipartite recurrent quiver, and let λ : Vert(Q) →
R be any assignment of real numbers to the vertices of Q. Then the tropical T -
system associated with Q and λ is a family of real numbers tλv (t) ∈ R defined for
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every v ∈ Vert(Q), t ∈ Z with t ≡ ǫv (mod 2) satisfying the following relations:

t
λ
v (t+ 1) + t

λ
v (t− 1) = max

(
∑

u→v

t
λ
u(t),

∑

v→w

t
λ
w(t)

)

;

t
λ
v (ǫv) = λ(v).

(2.2)

The defining recurrence (2.2) can be translated into the language of bigraphs in
a similar way: if G = (Γ,∆) is a bipartite recurrent bigraph then the relation
becomes

t
λ
v (t+ 1) + t

λ
v (t− 1) = max




∑

(u,v)∈Γ

t
λ
u(t),

∑

(v,w)∈∆

t
λ
w(t)



 .

Let P (x) ∈ Z[x±1] be a multivariate Laurent polynomial in variables x =
(xv)v∈Vert(Q). Define P |x=qλ∈ Z[q±1] to be the (univariate) Laurent poly-

nomial in q obtained from P by substituting xv = qλ(v) for all v ∈ Vert(Q).
Further, define degmax(q, P |x=qλ) to be the maximal degree of q in P |x=qλ .
The following claim gives a connection between the birational and tropical
T -systems:

Proposition 2.22 ([12, Lemma 6.3]). For every v ∈ Vert(Q), t ∈ Z with t+ ǫv
even and any λ : Vert(Q) → R, we have

t
λ
v (t) = degmax

(
q, Tv(t) |x=qλ

)
.

Thus the fact that Q has algebraic entropy zero can be deduced from the
limiting behavior of the tropical T -system associated with Q.

3 Algebraic entropy

In this section, we prove Theorem 1.5 that motivates us to classify affine ⊠

affine ADE bigraphs.

Proof of Theorem 1.5. Let G = (Γ(Q),∆(Q)) be the bigraph associated to
Q. By Lemma 2.16, there exist positive real numbers µΓ, µ∆ and a map λ :
Vert(Q) → R>0 given by λ(v) = vv for any vertex v of Q such that for any
vertex v ∈ Vert(Q) we have

∑

(u,v)∈Γ

λ(u) = µΓλ(v),
∑

(v,w)∈∆

λ(w) = µ∆λ(v). (3.1)

By symmetry we may assume that µΓ ≥ µ∆. We claim that µΓ > 2. Suppose
that this is not the case: 2 ≥ µΓ ≥ µ∆ > 0. Then λ is a weakly subadditive
function for Q which contradicts the assumption of the theorem. Thus we have
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µΓ > 2. Now consider the tropical T -system t
λ. Combining (2.2) with (3.1)

yields

t
λ
v (t+ 1) + t

λ
v (t− 1) = max

(
µΓt

λ
v (t− 1), µ∆t

λ
v (t− 1)

)
= µΓt

λ
v (t− 1).

Here we are using the fact that tλv (t− 1) > 0 which easily follows by induction
as well as the fact that

∑

(u,v)∈Γ

t
λ
u(t) = µΓt

λ
v (t− 1),

∑

(v,w)∈∆

t
λ
w(t) = µ∆t

λ
v (t− 1).

Therefore the values of the tropical T -system t
λ
v (t) for this special choice of λ

are given by
t
λ
v (ǫv + 2t) = λ(v)(µΓ − 1)t.

Since µΓ > 2, it follows that

lim
t→∞

log
(
t
λ
v (ǫv + 2t)

)

t
= log(µΓ − 1) > 0.

Now it remains to note that any point p = (pu)u∈Vert(Q) of the Newton polytope
(see [12, Section 6.1]) of Tv(ǫv+2t) satisfies pu ≤ degmax(xu, Tv(ǫv+2t)). Since
t
λ
v (ǫv + 2t) is just the maximum of the dot product 〈p, λ〉 over all points p of
the Newton polytope and since λ(u) > 0 for all u ∈ Vert(Q), it follows by the
Cauchy-Schwartz inequality that

t
λ
v (ǫv + 2t) ≤ |λ| ·

√
∑

u∈Vert(Q)

(degmax(xu, Tv(ǫv + 2t)))2,

where |λ| =
√∑

u∈Vert(Q) λ(u)
2 does not depend on t. In particular,

t
λ
v (ǫv + 2t) ≤ |λ|

√

|Vert(Q)| max
u∈Vert(Q)

|degmax(xu, Tv(ǫv + 2t))|.

Taking the logarithm of both sides and dividing by t yields that for at least one
u ∈ Vert(Q), (1.4) must fail. We are done with the proof of the theorem.

3.1 Algebraic entropy for quivers of type Â⊗ Â

It turns out that the statement of Conjecture 1.7 applied to the quivers of
type Â⊗ Â can be easily proven using Speyer’s formula [37] for the octahedron
recurrence. Let us first give a quick background before actually stating the
result.

Definition 3.1. The octahedron recurrence is a family Ti,j,k of rational func-
tions in some set of variables x indexed by all triples (i, j, k) ∈ Z

3 of integers.
The values Ti,j,k are required to satisfy

Ti,j,k+1Ti,j,k−1 = Ti,j+1,kTi,j−1,k + Ti+1,j,kTi−1,j,k.
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Again, the parity of i + j + k in each term is the same so the system splits
into two independent parts. One imposes various initial conditions that define
the values Ti,j,k uniquely for all triples (i, j, k), and we will be interested in
assigning Ti,j,0 = Ti,j,1 = xi,j for some family x = (xi,j)i,j∈Z of variables.

Theorem 3.2 ([37]). For k > 1, the value Ti,j,k is a Laurent polynomial in x.

More specifically, it is a sum of 2(
k

2) monomials, and the power of every variable
xi′,j′ in every monomial belongs to the set {−1, 0, 1}.

Consider an infinite quiver Q∞ with vertex set Z
2 such that for each vertex

(i, j) with i+ j even, we have arrows

(i− 1, j) → (i, j), (i+ 1, j) → (i, j), (i, j) → (i, j − 1), (i, j) → (i, j + 1).

For each vertex with (i, j) odd we therefore have the reverses of the above
arrows in Q∞.
Fix two linearly independent vectors A = (a1, a2) and B = (b1, b2) in Z

2 such
that a1 + a2 and b1 + b2 are even. Suppose that the variables xi,j satisfy

xi,j = xi+a1,j+a2 = xi+b1,i+b2 (3.2)

One can take a factor of Q∞ by the lattice generated by A and B, we denote the
resulting quiver by QA,B. Thus the vertices of QA,B correspond to equivalence
classes (i, j) + ZA + ZB and there is an arrow from one such class to another
in QA,B if there is an arrow from a vertex of the first class to a vertex of the
second class in Q∞. It is clear that QA,B is a bipartite recurrent affine ⊠

affine quiver since all components of both Γ(Q) and ∆(Q) are of type Â. In
particular, if A = (2n, 0) and B = (0, 2m) then QA,B has type Â2n−1⊗ Â2m−1.
We will consider these quivers more closely in Section 5.2.1.
One easily observes that if the initial conditions of the octahedron recurrence
satisfy (3.2) then the values of the octahedron recurrence coincide with the
values of the T -system associated with the quiver QA,B that we have just
constructed. Substituting the values into Theorem 3.2 yields the following:

Corollary 3.3. The T -system associated with QA,B grows quadratic expo-
nentially.2

Proof. Indeed, the number of terms grows quadratic exponentially, and since we
have substituted periodic variables into Theorem 3.2, the degree of a variable
in a monomial now grows quadratically as well.

4 The general structure of ADE bigraphs

In this section, we prove some general properties of affine ⊠ affine and affine ⊠
finite ADE bigraphs. The main result of this section will be the construction

2As it was pointed out to us by Andrew Hone, the quadratic growth for the octahedron
recurrence has been shown recently by Mase [29, Theorem 6.8].
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of a weak generalized Cartan matrix A(G) associated to G which will later
help us with the classification. We assume that the red components of G are
affine ADE Dynkin diagrams while the blue components of G are either affine
or finite ADE Dynkin diagrams. If G has one red connected component then
we say that G is a self binding. If G has two red connected components then
we say that G is a double binding.

4.1 The structure of self bindings

Proposition 4.1. Let G be a self binding. If G is an affine ⊠ finite ADE
bigraph, set mult(G) := 1, and if G is an affine ⊠ affine ADE bigraph, set
mult(G) = 2. Let v be the additive function for the unique red connected
component of G.Then we have

mult(G)v(v) =
∑

(u,v)∈∆

v(u). (4.1)

Proof. It follows that v is the common eigenvector for AΓ and A∆ from
Lemma 2.16. Thus for any v we have

∑

(u,v)∈∆

v(u) = µ∆v(v),

which shows that µ∆ is an integer and therefore is either equal to 1 (in which
case all components of ∆ are of type A2) or to 2 (in which case all components
of ∆ are affine ADE Dynkin diagrams).

4.2 Double bindings: scaling factor

Throughout this section, we assume that G = (Γ,∆) is a double binding, and
that Vert(G) = X ⊔ Y , where X and Y are the two connected components of
Γ, and recall that they are affine ADE Dynkin diagrams. We also assume that
every edge of ∆ connects a vertex of X to a vertex of Y . Again, we do not
assume here that h(Γ) = ∞.
A parallel binding is a bigraph of type Λ̂ ⊗ A2. We let v be the common
eigenvector for AΓ and A∆ from Lemma 2.16, and we denote by vX and vY

the additive functions for Γ(X) and Γ(Y ) from Figure 3.

Proposition 4.2. There exist two integers scfX(G) and scfY (G) such that

∑

(v,w)∈∆

vY (w) = scfX(G)vX(v), ∀ v ∈ X ; (4.2)

∑

(v,w)∈∆

vX(v) = scfY (G)vY (w), ∀w ∈ Y. (4.3)

The pair (scfX(G), scfY (G)) is denoted scf(G) and is called the scaling factor
of G. Exactly one of the following holds:
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• scf(G) = (1, 1) and connected components of ∆ are of type A2;

• scf(G) = (2, 1) or scf(G) = (1, 2) and connected components of ∆ are of
type A3;

• scf(G) = (3, 1) or scf(G) = (1, 3) and connected components of ∆ are
either of type A5 or of type D4;

• scf(G) = (4, 1) or scf(G) = (1, 4) and connected components of ∆ are
affine ADE Dynkin diagrams;

• scf(G) = (2, 2) and connected components of ∆ are affine ADE Dynkin
diagrams.

Proof. We copy the proof of [13, Proposition 2.1.4] with slight modifications.

We view maps τ : Vert(G) → R as pairs

(
τX
τY

)

where τX : Vert(X) → R

and τY : Vert(Y ) → R are restrictions of τ to the corresponding subsets.

Let τ =

(
τX
τY

)

be the common dominant eigenvector for AΓ and A∆ from

Lemma 2.16, thus τ(v) = v(v) for all v ∈ Vert(G).3 We may rescale it so that
τX = αvX and τY = vY for some α ∈ R. Since the entries of the dominant
eigenvector are positive, we may assume α > 0. Now, let µ∆ := 2 cos(π/h(∆))
be the dominant eigenvalue for A∆, including the case h(∆) = ∞. Since
A∆τ = µ∆τ , we have

∑

(v,w)∈∆

vY (w) = µ∆αvX(v), ∀ v ∈ X ;

∑

(v,w)∈∆

αvX(v) = µ∆vY (w), ∀w ∈ Y.

In particular, the second equation can be rewritten as

∑

(v,w)∈∆

vX(v) =
µ∆

α
vY (w), ∀w ∈ Y.

If we substitute v ∈ X such that vX(v) = 1 in the first equation, we will get
that µ∆α ∈ Z>0. Similarly, if we substitute w ∈ X such that vY (w) = 1 in
the second equation, we will get that µ∆/α ∈ Z>0. Therefore their product µ

2
∆

belongs to Z>0 as well. This proves the first part of the proposition: we have
scfX(G) = µ∆α and scfY (G) = µ∆/α.
In particular, their product scfX(G) scfY (G) = µ2

∆ is an integer which can only
happen when h(∆) = 3, 4, 6, or ∞ corresponding to µ2

∆ = 1, 2, 3, or 4. This
makes the second part of the proposition obvious.

3Recall that vX denotes the additive function for Γ(X) from Figure 3. On the other hand
τX denote the restriction of τ = v to X.
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Definition 4.3. When X is an affine ADE Dynkin diagram of type Λ̂ and Y
is an affine ADE Dynkin diagram of type Λ̂′ then we say that G is a double
binding of type Λ̂ ∗ Λ̂′.

Note that Proposition 4.2 is not symmetric in X and Y , so if G is a double
binding of type Λ̂ ∗ Λ̂′ then necessarily X has type Λ̂, Y has type Λ̂′ and (4.2)
and (4.3) hold. In other words, we treat double bindings of types Λ̂ ∗ Λ̂′ and
Λ̂′ ∗ Λ̂ differently.
We now show how the McKay number defined in Section 2.2 comes into play.

Proposition 4.4. Suppose G is a double binding of type Λ̂ ∗ Λ̂′ and scaling
factor (a, b). Then we have

a

b
=
h(2)(Λ̂′)

h(2)(Λ̂)
. (4.4)

Proof. Recall that a = scfX(G) and b = scfY (G). By Equations (4.2) and (4.3),
we have

scfX(G)h(2)(Λ̂) =
∑

v∈X

scfX(G)vX(v)2 =
∑

v∈X

vX(v)
∑

(v,w)∈∆

vY (w)

=
∑

(v,w)∈∆

vX(v)vY (w) =
∑

w∈Y

vY (w)
∑

(v,w)∈∆

vX(v)

=
∑

w∈Y

scfY (G)vY (w)
2 = scfY (G)h

(2)(Λ̂′).

This simple double counting argument dramatically reduces the number of
options one needs to consider in the proof of the classification in Section 7.

4.3 The weak generalized Cartan matrix of an ADE bigraph

We are now ready to define the matrix A(G) for an arbitrary affine ⊠ affine or
affine ⊠ finite ADE bigraph G. Given a subset C of vertices of G, denote by
G(C) the restriction (induced subgraph) of G to C. Denote by G◦ the bigraph
obtained from G by removing all blue edges that connect two vertices from the
same red connected component (thus G◦ is obtained from G by removing all
self bindings). It is easy to see that if G is an affine ⊠ affine or affine ⊠ finite
ADE bigraph then the same is true for G◦.

Definition 4.5. Let G be an affine ⊠ affine or affine ⊠ finite ADE bigraph,
and let C1, C2, . . . , Cn be its red connected components. Define an n×n matrix
A(G) = (aij) as follows.

• For i ∈ [n], set aii = 2−mult(G(Ci)).

• For i 6= j ∈ [n], set aij = 0 if there is no blue edge in G connecting a
vertex of Ci to a vertex of Cj .

Documenta Mathematica 24 (2019) 2057–2135



2078 Pavel Galashin and Pavlo Pylyavskyy

• For all other pairs of i 6= j ∈ [n], let scf(G◦(Ci ∪Cj)) = (p, q) and we set
aij = −p, aji = −q.

Thus, given two connected components Ci and Cj that form a double binding
with scaling factor (1, 1), (1, 2), (1, 3), (1, 4), or (2, 2), we connect i and j in

S(A(G)) by an edge of the form i—j, i⇒ j, i⇛ j, i j, or i⇔ j respectively.

Let v be the common eigenvector for AΓ and A∆ from Lemma 2.16, and let
vCi

be the additive function for Γ(Ci) from Figure 3.

Lemma 4.6. For each i ∈ [n], there exists a positive real number δi such that
for any v ∈ Ci we have

δi =
v(v)

vCi
(v)

.

Proof. Since v is the common eigenvector for AΓ and A∆, it must be propor-
tional to vCi

on Ci.

Theorem 4.7. For an affine ⊠ finite (resp., affine ⊠ affine) ADE bigraph
G, the matrix A = A(G) is a weak generalized Cartan matrix of finite (resp.,
affine) type. The vector δ = (δ1, . . . , δn) from Lemma 4.6 satisfies Aδ > 0
(resp., Aδ = 0).

Proof. Since the matrix A is clearly indecomposable, by Theorems 2.11
and 2.12, we only need to show that Aδ > 0 (resp., Aδ = 0).

Recall that v is an eigenvector for A∆ with eigenvalue µ∆ which is either less
than 2 (if h(∆) <∞) or equal to 2 (if h(∆) = ∞). Now let v ∈ Ci be a vertex.
Using (4.1), (4.2), and (4.3), we get

µ∆v(v) =
∑

(u,v)∈∆

v(u) = −
∑

j 6=i

aijδjvCi
(v) + (2− aii)δivCi

(v).

Using the fact that µ∆ < 2 (resp., µ∆ = 2) and v(v) = δivCi
(v), we get Aδ > 0

(resp., Aδ = 0), as desired.

We let S(G) := S(A(G)) be the Dynkin diagram of A(G) from Figure 5.

Let us now introduce a convenient way to encode G that often determines G
uniquely.

Definition 4.8. Let G be an affine ⊠ finite or an affine ⊠ affine ADE bigraph.
The description descr(G) of G is the Dynkin diagram S(G) of A(G) with each
vertex i ∈ [n] labeled by type(Γ(Ci)). Here type(Γ(Ci)) is the type of Γ(Ci) as
an affine ADE Dynkin diagram, in other words, type(Γ(Ci)) belongs to the set

{Â2m−1, D̂m, Ê6, Ê7, Ê8}.

For example, for the bigraph G = D̂5 ⊗ Â2, descr(G) is equal to D̂5 ⇔ D̂5.
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Figure 8: An affine ⊠ finite self-binding S4n+1 for n = 2.

4.4 Affine ⊠ finite self and double bindings

In this section, we review some of our results from [13].
For n ≥ 1, the bigraph S4n+1 is defined as follows. Its unique red connected
component is a (4n + 2)-gon and the blue edges of S4n+1 connect pairs of
opposite vertices of this (4n+ 2)-gon. See Figure 8.

Theorem 4.9 ([13]).

• The only possible affine ⊠ finite self bindings are S4n+1 for n ≥ 1. We
have

descr(S4n+1) = Â4n+1 .

• all the double bindings with scaling factor (1, 2) are listed in Figure 9;

• all the double bindings with scaling factor (1, 3) are listed in Figure 10;

• the only other affine ⊠ finite double bindings are parallel bindings Λ̂—Λ̂.

Definition 4.10. We say that a Dynkin diagram of a weak generalized Cartan
matrix of affine type (see Figure 5) is ambiguous if it either has at most two

vertices (with the exception of 1
2A

(1)
1 ) or it is a path with two double arrows at

the ends. Otherwise, we call it unambiguous. The set of ambiguous diagrams
is equal to

{A
(1)
1 , A

(1)
ℓ (ℓ ≥ 2), A

(2)
2 ,

1

2
A

(1)
1 }

⋃

{D
(2)
ℓ+1, C

(1)
ℓ , A

(2)
2ℓ }.

The terminology is motivated by the following proposition which is a variation
on [39, Remark 2.1].
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D̂n+2 ⇒ Â2n−1 Â4n−1 ⇒ Â2n−1 D̂2n+2 ⇒ D̂n+2 Ê7 ⇒ Ê6

for n = 4 for n = 3 for n = 4

Figure 9: Three infinite and one exceptional family of double bindings with
scaling factor (1, 2). All blue components have type A3.

D̂3n+2 ⇛ D̂n+2 Â6n−1 ⇛ Â2n−1 D̂5 ⇛ Â3 Ê7 ⇛ D̂6 Ê6 ⇛ D̂4

for n = 3 for n = 3

Figure 10: Two infinite and three exceptional families of double bindings with
scaling factor (1, 3). All blue components have types A5 or D4.
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Figure 11: A twist D̂8×D̂8. Twists are listed as family #2 in the classification.

Proposition 4.11. Let G be an affine ⊠ finite or an affine ⊠ affine ADE
bigraph and suppose that its Dynkin diagram S(G) is unambiguous. Then G is
uniquely determined by descr(G).

Proof. This is easy to see because if S(G) is not one of the ambiguous Dynkin
diagrams then S(G) is a tree (with possibly some loops) and at most one affine
⊠ finite double binding. As it follows from Theorem 4.9, each of them is
uniquely determined by its description, and the result follows since an auto-
morphism of the double binding always induces an automorphism of the rest
of G. This is slightly non-trivial to see when G has a loop but in this case the
result easily follows from our considerations in Section 5.3.1.

5 Many affine ⊠ affine ADE bigraphs

In this section we give several constructions that produce affine ⊠ affine ADE
bigraphs. As we will see in the next section, they will be sufficient for us to
state our classification theorem which is the main result of this paper.

5.1 Twists

The following construction is due to Stembridge [39].

Definition 5.1. Given a bipartite undirected graph H with vertex set V , we
define the twist H × H = (Γ,∆) to be a bipartite bigraph with vertex set
V ′ ∪ V ′′ and edge sets defined as follows.

• For any edge (u, v) of H , Γ contains edges (u′, v′) and (u′′, v′′).

• For any edge (u, v) of H , ∆ contains edges (u′, v′′) and (u′′, v′).

In particular, if H is a bipartite affine ADE Dynkin diagram Λ̂ then H × H
is an affine ⊠ affine ADE bigraph (see Corollary 8.4) which is called a twist of
type Λ̂× Λ̂. For G = Λ̂× Λ̂, we have descr(G) = descr(Gop) = Λ̂ ⇔ Λ̂ thus by
Proposition 4.11, twists may not be uniquely determined by their description.
See Figure 11 (or Figure 21) for an example.
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5.2 Toric bigraphs

Let Λ̂ be a bipartite affine ADE Dynkin diagram and let η be its automor-
phism (not necessarily of order two or color-preserving). For an integer n ≥ 1,
we define a toric bigraph T (Λ̂, η, n) = (Γ,∆) as follows. The red connected com-
ponents of T (Λ̂, η, n) are C1, C2, . . . , Cn, and the restriction of Γ on each Ci has
type Λ̂. In particular, for each i ∈ [n], let us fix a map φi : Vert(Λ̂) → Ci that in-
duces an isomorphism between Λ̂ and Γ(Ci). Now, for every i = 1, 2, . . . , n− 1
and every vertex v of Λ̂, ∆ contains an edge (φi(v), φi+1(v)). Also, for ev-
ery v ∈ Vert(Λ̂), ∆ contains an edge (φn(v), φ1(η(v))). Thus if one starts at
some vertex v ∈ C1 and follows the blue path that traverses the components
C1, C2, C3, . . . , Cn, C1, one arrives at η(v).

Lemma 5.2. In the following cases, T (Λ̂, η, n) is an affine ⊠ affine ADE bi-
graph:

1. η is color-reversing and n ≥ 3 is odd;

2. η is color-preserving and n ≥ 2 is even;

3. n = 1, η is color-reversing and does not send any vertex to one of its
neighbors.

Proof. The fact that T (Λ̂, η, n) is always recurrent is trivial to check, thus we
only need to make sure that it is bipartite and that Γ and ∆ do not share edges.
This is easy to see and the result follows since the components of Γ and ∆ are
affine ADE Dynkin diagrams by construction.

If G = T (Λ̂, η, n) is an affine ⊠ affine ADE bigraph and n > 1 then S(G) =

A
(1)
n−1 and descr(G) equals

Λ̂ — Λ̂ — · · · — Λ̂ — Λ̂ ,

where the number of components is n. If n = 1 then S(G) = 1
2A

(1)
1 and

descr(G) equals

Λ̂ .

Even though the main purpose of this section is to produce many affine ⊠ affine
ADE bigraphs and not worry about which of them are isomorphic, we give a
simple criterion for when two toric bigraphs are isomorphic.

Proposition 5.3. Let Λ̂ be an affine ADE Dynkin diagram and let Aut(Λ̂) be
the automorphism group of Λ̂. Let η, η′ ∈ Aut(Λ̂) be two automorphisms of Λ̂.
Then the bigraphs G = T (Λ̂, η, n) and G = T (Λ̂, η′, n) are isomorphic if and
only if η is conjugate to either η′ or its inverse in Aut(Λ̂).

Documenta Mathematica 24 (2019) 2057–2135



Quivers with Additive Labelings 2083

Proof. Suppose that there exists g ∈ Aut(Λ̂) such that η′ = gηg−1. Consider
a map from G to G′ that applies g to each red connected component of G. It
is clear that this map provides an isomorphism between G and G′.

Suppose now that η and η′ are inverses of each other. Then consider a map
from G to G′ that reverses the order of the red connected components. Again,
this map clearly gives an isomorphism between G and G′.

Conversely, suppose that there is an isomorphism ψ between G and G′. Then it
must either preserve or reverse the cyclic ordering of the red connected compo-
nents C1, C2, . . . , Cn. But note that reversing their ordering just corresponds
to replacing η with its inverse, and cyclically permuting the components does
not change η, so we may assume that ψ sends Ci to C

′
i for all i ∈ [n]. It follows

that (φ′i)
−1 ◦ψ◦φi is the same element of Aut(Λ̂) for all i ∈ [n] where φi and φ

′
i

are the maps used in the definitions of T (Λ̂, η, n) and T (Λ̂, η′, n). The result
follows since conjugating by this element takes η to η′.

Let us say that a weak conjugacy class of an element g in a group H is the
union of the conjugacy class of g with the conjugacy class of g−1.

Thus in order to classify affine⊠ affine toric ADE bigraphs it suffices to list rep-
resentatives of weak conjugacy classes in Aut(Λ̂) for each affine ADE Dynkin
diagram Λ̂. Since for any even n we have T (Λ̂, id, n) = Λ̂⊗ Ân−1, we only list
non-identity weak conjugacy classes of Aut(Λ̂) in each case. Thus we do not
consider the case η = id to be a toric bigraph in what follows.

Remark 5.4. Whenever Λ̂ is a diagram from Figure 4 and η ∈ Aut(Λ̂), there
is another diagram in Figure 4 which we denote Λ̂/η. It is obtained from Λ̂
by folding via η. This notion is standard but we do not define it rigorously
here. Note that if G = T (Λ̂, η, n) then S(G∗) is exactly Λ̂/η, and the label of a
vertex v of Λ̂/η in descr(G∗) is Arn−1 where r is the size of the preimage of v
in Λ̂ (i.e. v corresponds to an orbit of some vertex of Λ̂ under η and r is the
size of this orbit).

5.2.1 The case Λ̂ = Â2m−1.

In this case, Aut(Λ̂) is isomorphic to Dih(4m), the dihedral group of the 2m-
gon with 4m elements. It contains a subgroup Z/2mZ whose elements we
represent by exp(πik/m) for every residue k modulo 2m (that is, for every
k = 0, 1, . . . , 2m − 1). There are m + 2 non-identity weak conjugacy classes
in Aut(Λ̂). The representatives of the first m of them are exp(πik/m) for
k = 1, 2, . . . ,m, see Figure 12. The other two are a reflection about a diagonal
(denoted η(1)) and a reflection about a line joining the midpoints of two opposite
edges (denoted η(2)), see Figure 13. For k ∈ [m], exp(πik/m) is color-preserving
if and only if k is even. Additionally, η(1) is color-preserving while η(2) is color-
reversing.
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k = 0, n = 2 k = 1, n = 3

k = 2, n = 2 k = 3, n = 3

Figure 12: The family T (Â2m−1, exp(πik/m), n) for m = 6, k = 0, 1, 2, 3, and
n = 2 or n = 3 depending on the parity of k. In the classification in Section 6,
this is family #3.
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T (Â2m−1, η
(1), n) (#4) T (Â2m−1, η

(2), n) (#5)
for m = 6 and n = 2 for m = 6 and n = 3

Figure 13: The other two families of toric bigraphs of type Â.

5.2.2 The case Λ̂ = D̂m+2, m ≥ 3.

Let us describe the group Aut(Λ̂) in this case. Let u+, u− be two leaves of Λ̂
that have a common neighbor, and let v+, v− be the other two leaves of Λ̂.
Let σ be the automorphism of Λ̂ that switches u+ and u− and fixes the rest
of Λ̂. Similarly, let τ be the automorphism of Λ̂ that switches u+ with v+ and
u− with v−. It is non-trivial to see that Aut(Λ̂) is isomorphic to the group
Dih(8) of symmetries of the square.4 It is clear that Aut(Λ̂) is generated by
σ and τ . There are four non-identity weak conjugacy classes in Aut(Λ̂), and
their representatives are

σ, στστ, τ, στ.

The first three elements have order 2 and the last element has order 4. The
first two elements are always color-preserving while the last two elements are
color-preserving if and only if m is even. If m is odd, the last two elements
send some vertex to its neighbor. See Figure 14 for some examples.

5.2.3 The case Λ̂ = D̂4.

In this case Aut(Λ̂) = S4, the symmetric group on four elements. Two permu-
tations belong to the same (weak) conjugacy class if and only if they have the
same cycle type, thus the weak conjugacy classes are in bijection with partitions
λ of 4 which we denote by

(1 + 1 + 1 + 1), (2 + 1 + 1), (2 + 2), (4), (3 + 1).

4The vertices of the square are u+, v+, u−, v− in this cyclic order.

Documenta Mathematica 24 (2019) 2057–2135



2086 Pavel Galashin and Pavlo Pylyavskyy

T (D̂m+2, σ, n) (#6) T (D̂m+2, στστ, n) (#7)
for m = 4 and n = 2 for m = 4 and n = 2

T (D̂m+2, τ, n) (#8) T (D̂m+2, τ, n) (#9)
for m = 4 and n = 2 for m = 3 and n = 3

T (D̂m+2, στ, n) (#10) T (D̂m+2, στ, n) (#11)
for m = 4 and n = 2 for m = 3 and n = 3

Figure 14: Toric bigraphs of type D̂m+2.
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T (D̂4, (4), n) (#12) T (D̂4, (3 + 1), n) (#13)
for n = 2 for n = 2

Figure 15: Additional toric bigraphs of type D̂4.

Since (1 + 1+ 1+ 1) corresponds to the identity permutation, we only need to
consider the other four cases. The only case that we have not considered in the
previous section is (3 + 1), however, note that the permutations στστ and τ
were not conjugate for m ≥ 3 but are conjugate for m = 2 since they both
have cycle type (2 + 2). In the classification, we treat σ as a representative of
(2+1+1) and στστ as a representative of (2+2) which naturally includes D̂4

as a special m = 2 case of D̂m+2. The cases (4) and (3 + 1) are listed in the
classification as separate items, see also Figure 15.

5.2.4 The case Λ̂ = Ê6.

In this case Aut(Λ̂) = S3 so the non-identity weak conjugacy classes correspond
precisely to partitions (2 + 1) and (3), see Figure 16 (top).

5.2.5 The case Λ̂ = Ê7.

The only non-trivial automorphism θ of Λ̂ has order 2 and thus the only affine
⊠ affine toric ADE bigraphs of the form T (Ê7, η, n) have n even and coincide
with G = T (Ê7, θ, n), see Figure 16 (bottom).

5.2.6 The case Λ̂ = Ê8.

In this case Aut(Λ̂) = {id} so there are no non-identity conjugacy classes.

5.3 Path bigraphs

In this section, we would like to give a list of bigraphs G with S(G) being a
path with two double arrows at the ends, that is,

S(G) ∈ {D
(2)
ℓ+1, C

(1)
ℓ , A

(2)
2ℓ }.

Let us revisit the classification of affine⊠ finite double bindings with scf = (2, 1)
classified in Figure 9. Consider such a double binding G with red components
X of type Λ̂ and Y of type Λ̂′ so that descr(G) equals Λ̂ ⇒ Λ̂′. Thus every blue
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T (Ê6, (2 + 1), n) (#14) T (Ê6, (3), n) (#15)
for n = 2 for n = 2

T (Ê7, θ, n) (#16)
for n = 4

Figure 16: Toric bigraphs of type Ê.
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component of G has type A3, in particular, every vertex v of X either has blue
degree 2 (in which case we set v′ := v) or there exists a unique other vertex
v′ ∈ X that belongs to the same blue connected component of v. One easily
checks that this construction defines a color-preserving involution α ∈ Aut(Λ̂)
via α(v) = v′. Similarly, we define a color-preserving involution β ∈ Aut(Λ̂′).
One easily checks that for every affine ADE Dynkin diagram Λ̂ and every
color-preserving involution α ∈ Aut(Λ̂) (except for the identity in types D̂
and Ê), the pair (Λ̂, α) appears in Figure 9 exactly once in this way. Here
we consider α up to conjugation. In particular, let us rewrite for each double
binding in Figure 9 the corresponding pairs (Λ̂, α) that it involves (we use the
description of conjugacy classes from the previous section):

(D̂m+2, στστ) ⇒ (Â2m−1, η
(1)); (D̂2m+2, τ) ⇒ (D̂m+2, σ);

(Â4m−1, exp(πi)) ⇒ (Â2m−1, id); (Ê7, θ) ⇒ (Ê6, (2 + 1)).
(5.1)

Definition 5.5. Let Λ̂ be an affine ADE Dynkin diagram and consider two
color-preserving non-identity involutions α, β ∈ Aut(Λ̂). Given a positive inte-
ger n ≥ 2, The path bigraph P(Λ̂, α, β, n) is an affine ⊠ affine ADE bigraph G
obtained from the tensor product Λ̂ ⊗ An−1 by attaching on the left a double
binding from (5.1) involving (Λ̂, α) and attaching on the right a double binding
from (5.1) involving (Λ̂, β).

See Figures 17–20 for examples. It is clear that any path bigraph is always an
affine ⊠ affine ADE bigraph since all the blue components are of types Â or D̂.
Just as in the previous section, we give a simple criterion for when two path
bigraphs are isomorphic.

Proposition 5.6. Two path bigraphs G = P(Λ̂, α, β, n) and G′ =
P(Λ̂′, α′, β′, n′) are isomorphic if and only if Λ̂ = Λ̂′, n = n′, and there
exists an element g ∈ Aut(Λ̂) such that at least one of the following holds:

• gαg−1 = α′ and gβg−1 = β′, or

• gαg−1 = β′ and gβg−1 = α′.

Proof. Let C1, . . . , Cn+1 be the red components of G and C′
1, . . . , C

′
n+1 be the

red components of G′. Since the red component graph of G is a path, an
isomorphism φ : Vert(G) → Vert(G′) either flips it or preserves it. In the
former case, φ sends Ci to C′

i and in the former case φ sends Ci to C′
n+2−i

isomorphically in both cases. Suppose that φ sends Ci to C
′
i for all i ∈ [n+1].

Consider a vertex v ∈ C2. If α(v) = v then v has blue degree 2 in G(C1, C2) so
φ(v) must have blue degree 2 in G(C′

1, C
′
2) and thus α′(φ(v)) = φ(v). Similarly,

if there is a blue path of length 2 from v to u = α(v) ∈ C2 through C1 then
there must be a blue path of length 2 from φ(v) to φ(u) in C′

2 through C′
1. The

conclusion is that φ ◦ α = α′ ◦ φ. Similarly we get that φ ◦ β = β′ ◦ φ so we
can just put g to be the restriction of φ to C2 or Cm (they have to coincide).
The case when φ sends Ci to Cn+2−i is completely analogous. This shows one
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direction of the proposition. The converse direction is shown in a way similar
to the proof of Proposition 5.3 and we leave it as an exercise for the reader.

Thus isomorphism classes of path bigraphs correspond to (unordered) pairs of
color-preserving involutions modulo simultaneous conjugation. Let us say that
two pairs (α, β) and (α′, β′) related by these transformations are equivalent.
Note that we can always conjugate α to be a specific fixed representative of a
conjugacy class from the previous section, and after that β will be determined
up to conjugation by an element from the centralizer of α, that is, by an element
g ∈ Aut(Λ̂) (not necessarily color-preserving) that commutes with α. We are
ready to list all pairs of involutions from (5.1) that give non-isomorphic path
bigraphs.

Remark 5.7. We list descr(G) and descr(G∗) for path bigraphs in Sec-
tion 6. We give the following informal explanation on how to quickly compute
descr(G∗) when G = P(Λ̂, α, β, n). Since α and β are involutions, they define
a matching on Vert(Λ̂). Superimposing these matchings yields several cycles
and paths. Each path with r vertices corresponds to a node labeled D̂rn+2 in
descr(G∗). Each cycle with r vertices corresponds to a node labeled Ârn−1 in
descr(G∗). The Dynkin diagram S(G∗) is obtained from Λ̂ by folding via the
subgroup generated by α and β.

5.3.1 The case Λ̂ = Â2m−1.

There are three color-preserving involutions in (5.1) for type Â2m−1:

• a reflection about a diagonal η(1) for m ≥ 2,

• a 180◦ rotation exp(πi) for even m, and

• the identity id for m ≥ 1.

Note that for the last two cases, the size of the conjugacy class is equal to
1. For the case η(1), the conjugacy class consists of m reflections which we
denote η0 = η(1), η1, . . . , ηm−1 in the cyclic order. The elements that commute
with η(1) are id, η(1), exp(πi), and a reflection η⊥0 that switches the two fixed
points of η(1). Conjugating ηp for p ∈ [m − 1] by η(1) or by η⊥0 produces the
reflection ηm−p. Thus the list of all the non-equivalent pairs in this case is:

• (η(1), ηp) for 1 ≤ p ≤ m/2;

• (η(1), exp(πi)) when m is even;

• (η(1), id);

• (exp(πi), exp(πi)) when m is even;

• (exp(πi), id) when m is even;

• (id, id).
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p = 0 p = 1

p = 2 p = 3

Figure 17: Path bigraphs of the form P(Â2m−1, η
(1), ηp, n) for m = 6, n = 3,

and p = 0, 1, 2, 3. The case p = 1 belongs to family #18, the remaining cases
p = 0, 2, 3 belong to family #17.
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P(Â4m−1, η
(1), exp(πi), n) (#20)

for m = 3 and n = 3

P(Â3, η
(1), exp(πi), n) (#21) P(Â2m−1, η

(1), id, n) (#22)
for n = 3 for m = 3 and n = 2

Figure 18: The remaining (non-toric) path bigraphs of type Â.
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All the cases are possible for m ≥ 2 except for the last case which is possible
for m ≥ 1. For the last three cases, G∗ is a toric bigraph and thus G will
not be listed as a path bigraph in the classification. The first case is shown in
Figure 17, and the second and third cases are shown in Figure 18.

5.3.2 The case Λ̂ = D̂m+2, m ≥ 3.

The three involutions from (5.1) in this case are σ, στστ , and τ when m is
even. We see that σ has conjugacy class {σ, σ⊥} of size 2, στστ has conjugacy
class of size 1, and τ has conjugacy class τ, τ⊥ of size 2. Conjugating τ by σ
gives τ⊥. Thus in this case the list of all non-equivalent pairs is as follows:

• (σ, σ);

• (σ, σ⊥);

• (σ, στστ);

• (σ, τ) when m is even;

• (στστ, στστ);

• (στστ, τ) when m is even;

• (τ, τ) when m is even.

• (τ, τ⊥) when m is even.

The last case will not appear in the classification as the bigraph
P(D̂2m+2, τ, τ

⊥, n) is dual to P(Â2n−1, η
(1), id,m). The rest of the cases

are shown in Figure 19.

5.3.3 The case Λ̂ = D̂4.

In this case, Aut(D̂4) is the symmetric group S4 so we write elements in the
cycle notation. For example, the permutation (12) is the transposition of 1 and
2. The involutions from (5.1) now split into two conjugacy classes: (2 + 1 + 1)
of size 6 and (2+ 2) of size 3 with respective representatives (12) and (12)(34).
The centralizer of each of the permutations is generated by the transpositions
(12) and (34). Therefore we get the following list of non-equivalent pairs:

• ((12), (12));

• ((12), (34));

• ((12), (13));

• ((12), (12)(34));

• ((12), (13)(24));

Documenta Mathematica 24 (2019) 2057–2135



2094 Pavel Galashin and Pavlo Pylyavskyy

P(D̂m+2, σ, σ, n) (#23) P(D̂m+2, σ, σ
⊥, n) (#24)

for m = 3 and n = 3 for m = 3 and n = 3

P(D̂m+2, σ, στστ, n) (#25) P(D̂2m+2, σ, τ, n) (#26)
for m = 3 and n = 3 for m = 2 and n = 3

P(D̂m+2, στστ, στστ, n) (#27) P(D̂m+2, στστ, τ, n) (#28)
for m = 3 and n = 2 for m = 2 and n = 2

P(D̂m+2, τ, τ, n) (#29) P(D̂4, (12), (13), n) (#30)
for m = 2 and n = 2 for n = 3

P(D̂4, (12), (13)(24), n) (#31) P(D̂4, (12)(34), (13)(24), n) (#32)
for n = 3 for n = 3

Figure 19: Path bigraphs of type D̂.
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P(Ê6, (12), (12), n) (#33) P(Ê6, (12), (13), n) (#34) P(Ê7, θ, θ, n) (#35)
for n = 3 for n = 3 for n = 2

Figure 20: Path bigraphs of type Ê.

• ((12)(34), (12)(34));

• ((12)(34), (13)(24)).

Just as for toric bigraphs, the case of D̂4 naturally becomes a special case of
D̂m+2 when all the permutations involved belong to the set

{σ = (12), σ⊥ = (34), στστ = (12)(34)}.

See Figure 19 for examples.

5.3.4 The case Λ̂ = Ê6.

In this case Aut(Λ̂) = S3 so there is just one conjugacy class (2+1) from (5.1)
with three permutations (12), (13), and (23). The centralizer of (12) is just
{id, (12)} and conjugating (13) by (12) produces (23). Thus we get only two
non-equivalent pairs:

• ((12), (12));

• ((12), (13)).

See Figure 20.

5.3.5 The case Λ̂ = Ê7.

The only involution in (5.1) is θ so the only pair that we can have here is (θ, θ),
see Figure 20.

5.4 Pseudo twists of type D̂m+2 ⋊p D̂m+2

Let X and Y be two red components of type D̂m+2. Label the vertices of X
by

u+0 , u
−
0 , u1, u2, . . . , um−1, u

+
m, u

−
m

Documenta Mathematica 24 (2019) 2057–2135



2096 Pavel Galashin and Pavlo Pylyavskyy

p = 1 p = 2 p = 3 p = 4

Figure 21: Pseudo twists D̂m+2⋊pD̂m+2 form = 8 and p = 1, 2, 3, 4. The cases
p = 1, 3 belong to family #19 while the cases p = 2, 4 belong to family #18.

so that the leaves u+0 and u−0 are connected to u1 and the leaves u+m and
u−m are connected to um−1. Let p ∈ [m − 1] be an integer. We denote by
X0, X1, X2, . . . , Xm+p a sequence of subsets of X defined as follows:

X0 = {u+0 , u
−
0 }, X1 = {u1}, . . . , Xm−1 = {um−1}, Xm = {u+m, u

−
m},

Xm+1 = Xm−1, Xm+2 = Xm−2, . . . , Xm+p = Xm−p.

We similarly label the vertices of Y by

v+0 , v
−
0 , v1, v2, . . . , vm−1, v

+
m, v

−
m

and introduce the subsets Y0, Y1, Y2, . . . , Ym+p.

Definition 5.8. The bigraph D̂m+2 ⋊p D̂m+2 = (Γ,∆) is a double binding
with two red components X and Y as above and blue edges as follows: for
every i ∈ {0, 1, . . . ,m}, connect every vertex in Xi with every vertex in Yi+p

and every vertex in Yi with every vertex in Xi+p by an edge of ∆.

An example is given in Figure 21. It is easy to see that for every p ∈ [m− 1],

G = D̂m+2 ⋊p D̂m+2 is an affine ⊠ affine ADE bigraph with S(G) = A
(1)
1 and

descr(G) = D̂m+2 ⇔ D̂m+2 .

Note that the case p = 1 recovers the twist D̂m+2 × D̂m+2.

5.5 Five exceptional affine ⊠ affine double bindings

In this section we list five affine ⊠ affine ADE bigraphs G such that both S(G)

and S(G∗) are equal to either A
(1)
1 or A

(2)
2 . This is equivalent to saying that
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Ê8 ⇔ Ê8 (#36) Ê7 D̂5 (#38)
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2

1

2
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2

1

2

2
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2
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1 12

2

21 1
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222

1

1

2

1

1

22

Ê6 Â5 (#37) D̂6 Â3 (#39) D̂4 Â1 (#40)

Figure 22: Five exceptional affine ⊠ affine double bindings given together
with their subadditive functions. Each double binding G is sefl-dual, i.e., is
isomorphic to G∗.
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both G and G∗ are affine ⊠ affine double bindings. As we will see later in
Section 7, these five bigraphs are the only affine ⊠ affine ADE bigraphs with
this property that do not belong to any of the infinite families that we have
already constructed in the previous sections. The five bigraphs are shown in
Figure 22.

6 The classification of affine ⊠ affine ADE bigraphs

Theorem 6.1. Let G be an affine ⊠ affine ADE bigraph. Then either of the
following is true.

• Both G and G∗ appear exactly once in the below list. They are members
of the same self-dual family.

• The below list contains a unique bigraph that is isomorphic to either G
or G∗.

Here we say that a self-dual family of bigraphs is a collection of bigraphs that
is closed under taking duals. In the below list, such families are marked with
[SD] .

For each affine ⊠ affine ADE bigraph G, define the Kac quadruple of G to be
one of the following tables:

S(G) descr(G)
S(G∗) descr(G∗)

OR S(G) descr(G) S(G∗) descr(G∗)

We list each family of affine⊠ affineADE bigraphs together with its parameters
and the corresponding Kac quadruples, except that we do not list the Kac
quadruples for tensor products. For exceptional families, we just give Kac
quadruples (KQ for short) and omit the name and parameters.

#1. [SD] (Fig. 1) Name: a tensor product Λ̂ ⊗ Λ̂′. Parameters: Λ̂, Λ̂′ —
two bipartite affine ADE Dynkin diagrams.

#2. [SD] (Fig. 11) Name: a twist Λ̂ × Λ̂. Parameters: a bipartite affine
ADE Dynkin diagram Λ̂. KQ:

A
(1)
1 Λ̂ ⇔ Λ̂ A

(1)
1 Λ̂ ⇔ Λ̂

#3. [SD] (Fig. 12) Name: T (Ârd−1, exp(2πip/r), n) . Parameters: r ≥ 1
and 1 ≤ p ≤ r/2 coprime with r; n, d ≥ 1 such that either n, d are both
even or n, d, p are odd and r is even. The forbidden cases are n = d = p =
1, r even (in which case Γ and ∆ share edges) and n = d = 2, p = 1, r ≥ 1
(in which case G is a twist Â2r−1 × Â2r−1). KQ:
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A
(1)
n−1 Ârd−1 — Ârd−1 — · · · — Ârd−1 — Ârd−1

A
(1)
d−1 Ârn−1 — Ârn−1 — · · · — Ârn−1 — Ârn−1

The dual bigraph is T (Ârn−1, exp(2πiq/r), d), where 1 ≤ q ≤ r/2 is the
unique integer satisfying pq ≡ ±1 (mod r). For the case n = 1 (resp.,
d = 1), we have

descr(G) = Ârd−1 , resp., descr(G∗) = Ârn−1 .

#4. (Fig. 13) Name: T (Â2m−1, η
(1), n). Parameters: m ≥ 2; n ≥ 2 even.

KQ:

A
(1)
n−1 Â2m−1 — Â2m−1 — · · · — Â2m−1 — Â2m−1

D
(2)
m+1 Ân−1 ⇐ Â2n−1 — · · · — Â2n−1 ⇒ Ân−1

The dual bigraph is P(Â2n−1, exp(πi), exp(πi),m).

#5. (Fig. 13) Name: T (Â2m−1, η
(2), n). Parameters: m ≥ 2; n ≥ 3 odd.

KQ:

A
(1)
n−1 Â2m−1 — Â2m−1 — · · · — Â2m−1 — Â2m−1

1
2A

(1)
2m−1 Â2n−1 — Â2n−1 — · · · — Â2n−1 — Â2n−1

#6. (Fig. 14) Name: T (D̂m+2, σ, n). Parameters: m ≥ 2; n ≥ 2 even. KQ:

A
(1)
n−1 D̂m+2 — D̂m+2 — · · · — D̂m+2 — D̂m+2

A
(2)
2m+1 Ân−1 — Ân−1 — · · · — Ân−1 ⇐ Â2n−1

—

Ân−1
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#7. (Fig. 14) Name: T (D̂m+2, στστ, n). Parameters: m ≥ 2; n ≥ 2 even.
KQ:

A
(1)
n−1 D̂m+2 — D̂m+2 — · · · — D̂m+2 — D̂m+2

C
(1)
m Â2n−1 ⇒ Ân−1 — · · · — Ân−1 ⇐ Â2n−1

The dual bigraph is P(Ân−1, id, id,m).

#8. (Fig. 14) Name: T (D̂2m+2, τ, n). Parameters: m ≥ 2; n ≥ 2 even. KQ:

A
(1)
n−1 D̂2m+2 — D̂2m+2 — · · · — D̂2m+2 — D̂2m+2

B
(1)
m+1 Â2n−1 — Â2n−1 — · · · — Â2n−1 ⇒ Ân−1

—

Â2n−1

#9. (Fig. 14) Name: T (D̂2m+1, τ, n). Parameters: m ≥ 2; n ≥ 3 odd. KQ:

A
(1)
n−1 D̂2m+1 — D̂2m+1 — · · · — D̂2m+1 — D̂2m+1

1
2D

(1)
2m+1 Â2n−1 — Â2n−1 — · · · — Â2n−1 — Â2n−1

—

Â2n−1

#10. (Fig. 14) Name: T (D̂2m+2, στ, n). Parameters: m ≥ 2; n ≥ 2 even.
KQ:

A
(1)
n−1 D̂2m+2 — D̂2m+2 — · · · — D̂2m+2 — D̂2m+2

A
(2)
2m Ân−1 ⇐ Â2n−1 — · · · — Â2n−1 ⇐ Â4n−1

The dual bigraph is P(Â2n−1, exp(πi), id,m).

Documenta Mathematica 24 (2019) 2057–2135



Quivers with Additive Labelings 2101

#11. (Fig. 14) Name: T (D̂2m+3, στ, n). Parameters: m ≥ 1; n ≥ 3 odd.
KQ:

A
(1)
n−1 D̂2m+3 — D̂2m+3 — · · · — D̂2m+3 — D̂2m+3

1
2C

(1)
2m+1 Â4n−1 ⇒ Â2n−1 — · · · — Â2n−1 — Â2n−1

#12. (Fig. 15) Name: T (D̂4, (4), n). Parameters: n ≥ 2 even. KQ:

A
(1)
n−1 D̂4 — D̂4 — · · · — D̂4 — D̂4

A
(2)
2 Ân−1 Â4n−1

#13. (Fig. 15) Name: T (D̂4, (3 + 1), n). Parameters: n ≥ 2 even. KQ:

A
(1)
n−1 D̂4 — D̂4 — · · · — D̂4 — D̂4

D
(3)
4 Ân−1 — Ân−1 ⇚ Â3n−1

#14. (Fig. 16) Name: T (Ê6, (2 + 1), n). Parameters: n ≥ 2 even. KQ:

A
(1)
n−1 Ê6 — Ê6 — · · · — Ê6 — Ê6

E
(2)
6 Ân−1 — Ân−1 — Ân−1 ⇐ Â2n−1 — Â2n−1

#15. (Fig. 16) Name: T (Ê6, (3), n). Parameters: n ≥ 2 even. KQ:

A
(1)
n−1 Ê6 — Ê6 — · · · — Ê6 — Ê6

G
(1)
2 Â3n−1 — Â3n−1 ⇛ Ân−1

#16. (Fig. 16) Name: T (Ê7, θ, n). Parameters: n ≥ 2 even. KQ:
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A
(1)
n−1 Ê7 — Ê7 — · · · — Ê7 — Ê7

F
(1)
4 Â2n−1 — Â2n−1 — Â2n−1 ⇒ Ân−1 — Ân−1

#17. [SD] (Fig. 17) Name: P(Â2rd−1, η
(1), ηpd, n). Parameters: n, d ≥ 2;

r ≥ 1; 1 ≤ p ≤ r/2 coprime with r ≥ 2 or p = 0 if r = 1. KQ:

C
(1)
n D̂rd+2 ⇒ Â2rd−1 — · · · — Â2rd−1 ⇐ D̂rd+2

C
(1)
d D̂rn+2 ⇒ Â2rn−1 — · · · — Â2rn−1 ⇐ D̂rn+2

The dual bigraph is P(Â2rn−1, η
(1), ηqn, d), where 1 ≤ q ≤ r/2 is defined

by pq ≡ ±1 (mod r).

#18. (Fig. 17) Name: P(Â2r−1, η
(1), ηp, n). Parameters: n ≥ 2; r ≥ 1;

1 ≤ p ≤ r/2 coprime with r. KQ:

C
(1)
n D̂r+2 ⇒ Â2r−1 — · · · — Â2r−1 ⇐ D̂r+2

A
(1)
1 D̂rn+2 ⇔ D̂rn+2

The dual bigraph is D̂rn+2 ⋊qn D̂rn+2, where 1 ≤ q ≤ r/2 is defined by
pq ≡ ±1 (mod r).

#19. [SD] (Fig. 21) Name: D̂m+2 ⋊p D̂m+2. Parameters: m ≥ 2; 2 ≤ p ≤
m/2 coprime with m. KQ:

A
(1)
1 D̂m+2 ⇔ D̂m+2 A

(1)
1 D̂m+2 ⇔ D̂m+2

The dual bigraph is D̂m+2 ⋊q D̂m+2 where 2 ≤ q ≤ m/2 is the unique
integer such that pq ≡ ±1 (mod m). The case p = q = 1 is not included
here as it corresponds to the twist D̂m+2 × D̂m+2.

#20. [SD] (Fig. 18) Name: P(Â4m−1, η
(1), exp(πi), n). Parameters: n,m ≥

2. KQ:

A
(2)
2n Â2m−1 ⇐ Â4m−1 — · · · — Â4m−1 ⇐ D̂2m+2

A
(2)
2m Â2n−1 ⇐ Â4n−1 — · · · — Â4n−1 ⇐ D̂2n+2

The dual bigraph is P(Â4n−1, η
(1), exp(πi),m).
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#21. (Fig. 18) Name: P(Â3, η
(1), exp(πi), n). Parameters: n ≥ 2. KQ:

A
(2)
2n Â1

⇐ Â3 — · · · — Â3
⇐ D̂4

A
(2)
2 Â2n−1 D̂2n+2

#22. (Fig. 18) Name: P(Â2m−1, η
(1), id, n). Parameters: n,m ≥ 2. KQ:

C
(1)
n Â4m−1 ⇒ Â2m−1 — · · · — Â2m−1 ⇐ D̂m+2

D
(2)
m+1 D̂n+2 ⇐ D̂2n+2 — · · · — D̂2n+2 ⇒ D̂n+2

The dual bigraph is P(D̂2n+2, τ, τ
⊥,m).

#23. (Fig. 19) Name: P(D̂m+2, σ, σ, n). Parameters: n,m ≥ 2. KQ:

C
(1)
n D̂2m+2 ⇒ D̂m+2 — · · · — D̂m+2 ⇐ D̂2m+2

B
(1)
m+1 D̂n+2 — D̂n+2 — · · · — D̂n+2 ⇒ Â2n−1

—

D̂n+2

#24. [SD] (Fig. 19) Name: P(D̂m+2, σ, σ
⊥, n). Parameters: n,m ≥ 2. KQ:

C
(1)
n D̂2m+2 ⇒ D̂m+2 — · · · — D̂m+2 ⇐ D̂2m+2

C
(1)
m D̂2n+2 ⇒ D̂n+2 — · · · — D̂n+2 ⇐ D̂2n+2

The dual bigraph is P(D̂n+2, σ, σ
⊥,m).

#25. [SD] (Fig. 19) Name: P(D̂m+2, σ, στστ, n). Parameters: n,m ≥ 2.
KQ:

A
(2)
2n Â2m−1 ⇐ D̂m+2 — · · · — D̂m+2 ⇐ D̂2m+2

A
(2)
2m Â2n−1 ⇐ D̂n+2 — · · · — D̂n+2 ⇐ D̂2n+2

The dual bigraph is P(D̂n+2, σ, στστ,m).

#26. [SD] (Fig. 19) Name: P(D̂2m+2, σ, τ, n). Parameters: n,m ≥ 2. KQ:
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A
(2)
2n D̂m+2 ⇐ D̂2m+2 — · · · — D̂2m+2 ⇐ D̂4m+2

A
(2)
2m D̂n+2 ⇐ D̂2n+2 — · · · — D̂2n+2 ⇐ D̂4n+2

The dual bigraph is P(D̂2n+2, σ, τ,m).

#27. [SD] (Fig. 19) Name: P(D̂m+2, στστ, στστ, n). Parameters: n,m ≥ 2.
KQ:

D
(2)
n+1 Â2m−1 ⇐ D̂m+2 — · · · — D̂m+2 ⇒ Â2m−1

D
(2)
m+1 Â2n−1 ⇐ D̂n+2 — · · · — D̂n+2 ⇒ Â2n−1

The dual bigraph is P(D̂n+2, στστ, στστ,m).

#28. [SD] (Fig. 19) Name: P(D̂2m+2, στστ, τ, n). Parameters: n,m ≥ 2.
KQ:

D
(2)
n+1 Â4m−1 ⇐ D̂2m+2 — · · · — D̂2m+2 ⇒ D̂m+2

D
(2)
m+1 Â4n−1 ⇐ D̂2n+2 — · · · — D̂2n+2 ⇒ D̂n+2

The dual bigraph is P(D̂2n+2, στστ, τ,m).

#29. (Fig. 19) Name: P(D̂2m+2, τ, τ, n). Parameters: n,m ≥ 2. KQ:

D
(2)
n+1 D̂m+2 ⇐ D̂2m+2 — · · · — D̂2m+2 ⇒ D̂m+2

A
(2)
2m+1 Â2n−1 — Â2n−1 — · · · — Â2n−1 ⇐ D̂n+2

—

Â2n−1

#30. (Fig. 19) Name: P(D̂4, (12), (13), n). Parameters: n ≥ 2. KQ:

C
(1)
n D̂6

⇒ D̂4 — · · · — D̂4
⇐ D̂6

D
(3)
4 D̂n+2 — D̂n+2 ⇚ D̂3n+2

#31. (Fig. 19) Name: P(D̂4, (12), (13)(24), n). Parameters: n ≥ 2. KQ:
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A
(2)
2n Â3

⇐ D̂4 — · · · — D̂4
⇐ D̂6

A
(2)
2 D̂n+2 D̂4n+2

#32. (Fig. 19) Name: P(D̂4, (12)(34), (13)(24), n). Parameters: n ≥ 2. KQ:

D
(2)
n+1 Â3

⇐ D̂4 — · · · — D̂4
⇒ Â3

A
(1)
1 A4n−1 ⇔ Dn+2

#33. (Fig. 20) Name: P(Ê6, (12), (12), n). Parameters: n ≥ 2. KQ:

C
(1)
n Ê7

⇒ Ê6 — · · · — Ê6
⇐ Ê7

F
(1)
4 D̂n+2 — D̂n+2 — D̂n+2 ⇒ Â2n−1 — Â2n−1

#34. (Fig. 20) Name: P(Ê6, (12), (13), n). Parameters: n ≥ 2. KQ:

C
(1)
n Ê7

⇒ Ê6 — · · · — Ê6
⇐ Ê7

G
(1)
2 D̂3n+2 — D̂3n+2 ⇛ D̂n+2

#35. (Fig. 20) Name: P(Ê7, θ, θ, n). Parameters: n ≥ 2. KQ:

D
(2)
n+1 Ê6

⇐ Ê7 — · · · — Ê7
⇒ Ê6

E
(2)
6 Â2n−1 — Â2n−1 — Â2n−1 ⇐ D̂n+2 — D̂n+2

#36. [SD] (Fig. 22) KQ:

A
(1)
1 Ê8

⇔ Ê8 A
(1)
1 Ê8

⇔ Ê8

#37. [SD] (Fig. 22) KQ:

A
(2)
2 Â5 Ê6 A

(2)
2 Â5 Ê6

#38. [SD] (Fig. 22) KQ:
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A
(2)
2 D̂5 Ê7 A

(2)
2 D̂5 Ê7

#39. [SD] (Fig. 22) KQ:

A
(2)
2 Â3 D̂6 A

(2)
2 Â3 D̂6

#40. [SD] (Fig. 22) KQ:

A
(2)
2 Â1 D̂4 A

(2)
2 Â1 D̂4

#41. (Fig. 23) KQ:

D
(3)
4 Â3 — Â3 ⇚ D̂5 A

(1)
1 D̂6

⇔ D̂6

#42. (Fig. 23) KQ:

G
(1)
2 D̂5 — D̂5 ⇛ Â3 A

(1)
1 Ê7

⇔ Ê7

#43. [SD] (Fig. 23) KQ:

D
(3)
4 D̂6 — D̂6 ⇚ Ê7 D

(3)
4 D̂6 — D̂6 ⇚ Ê7

#44. [SD] (Fig. 23) KQ:

G
(1)
2 Ê7 — Ê7 ⇛ D̂6 G

(1)
2 Ê7 — Ê7 ⇛ D̂6

#45. [SD] (Fig. 23) KQ:

D
(3)
4 D̂4 — D̂4 ⇚ Ê6 D

(3)
4 D̂4 — D̂4 ⇚ Ê6

#46. [SD] (Fig. 23) KQ:

G
(1)
2 Ê6 — Ê6 ⇛ D̂4 G

(1)
2 Ê6 — Ê6 ⇛ D̂4

#47. [SD] (Fig. 24) Name: (D̂2m+2)
n+1D̂m+2. Parameters: n,m ≥ 2. KQ:
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B
(1)
n+1 D̂2m+2 — D̂2m+2 — · · · — D̂2m+2 ⇒ D̂m+2

—

D̂2m+2

B
(1)
m+1 D̂2n+2 — D̂2n+2 — · · · — D̂2n+2 ⇒ D̂n+2

—

D̂2n+2

The dual bigraph is (D̂2n+2)
m+1D̂n+2.

#48. [SD] (Fig. 24) Name: (D̂m+2)
n+1D̂2m+2. Parameters: n,m ≥ 2. KQ:

A
(2)
2n+1 D̂m+2 — D̂m+2 — · · · — D̂m+2 ⇐ D̂2m+2

—

D̂m+2

A
(2)
2m+1 D̂n+2 — D̂n+2 — · · · — D̂n+2 ⇐ D̂2n+2

—

D̂n+2

The dual bigraph is (D̂n+2)
m+1D̂2n+2.

#49. (Fig. 24) Name: (Ê7)
n+1Ê6. Parameters: n ≥ 2. KQ:

B
(1)
n+1 Ê7 — Ê7 — · · · — Ê7

⇒ Ê6

—

Ê7

F
(1)
4 D̂2n+2 — D̂2n+2 — D̂2n+2 ⇒ D̂n+2 — D̂n+2

#50. (Fig. 24) Name: (Ê6)
n+1Ê7. Parameters: n ≥ 2. KQ:

A
(2)
2n+1 Ê6 — Ê6 — · · · — Ê6

⇐ Ê7

—

Ê6

E
(2)
6 D̂n+2 — D̂n+2 — D̂n+2 ⇐ D̂2n+2 — D̂2n+2
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#51. [SD] (Fig. 25) KQ:

F
(1)
4 Ê7 — Ê7 — Ê7

⇒ Ê6 — Ê6

F
(1)
4 Ê7 — Ê7 — Ê7

⇒ Ê6 — Ê6

#52. [SD] (Fig. 25) KQ:

E
(2)
6 Ê6 — Ê6 — Ê6

⇐ Ê7 — Ê7

E
(2)
6 Ê6 — Ê6 — Ê6

⇐ Ê7 — Ê7

#53. [SD] (Fig. 26) Name: D̂2m+3(Â4m+1)
n. Parameters: n,m ≥ 1. KQ:

1
2C

(1)
2n+1 D̂2m+3 ⇒ Â4m+1 — · · · — Â4m+1 — Â4m+1

1
2C

(1)
2m+1 D̂2n+3 ⇒ Â4n+1 — · · · — Â4n+1 — Â4n+1

The dual bigraph is D̂2n+3(Â4n+1)
m.

Note that for families #1–#40, the illustrations have been given in Section 5
(and in Figure 1). The rest of the families are shown in Figures 23–26. The
exceptional bigraphs are #36–#46, #51, and #52. Thus there are 13 of them,
and the rest 40 items in the classification are infinite families (including two
3-parameter families #3 and #17).

7 Proof of the classification

First, it is straightforward to check that each of #1–#53 is an affine ⊠ affine
ADE bigraph. One helpful result [39, Lemma 2.4] of Stembridge states that G
has commuting adjacency matrices if and only if all of the self and double
bindings involved have commuting adjacency matrices. From this it follows
almost immediately that each of #1–#53 has commuting adjacency matrices;
one needs to check this fact separately for affine ⊠ affine and affine ⊠ finite
self and double bindings. The fact that all red and blue components are affine
ADE Dynkin diagrams is clear from looking at descr(G) and descr(G∗).
Second, it is easy to verify that no two of the bigraphs #1–#53 are isomorphic.
Indeed, the only cases where we can have both descr(G1) = descr(G2) and
descr(G∗

1) = descr(G∗
2) without G1 and G2 being isomorphic arise when both

G1 and G2 belong to one of the following families: #2, #3, #17, #18, #19,
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Â3—Â3 ⇚ D̂5 (#41) D̂6—D̂6 ⇚ Ê7 (#43) Ê7—Ê7 ⇛ D̂6 (#44)

D̂5—D̂5 ⇛ Â3 (#42) D̂4—D̂4 ⇚ Ê6 (#45) Ê6—Ê6 ⇛ D̂4 (#46)

Figure 23: Bigraphs G such that S(G) contains a triple arrow.

and in each case the fact that they are not isomorphic follows from the results
of Section 5.
Thus it remains to prove that we listed all possible affine ⊠ affine ADE bi-
graphs.
Suppose that G is an affine ⊠ affine ADE bigraph and consider the diagram
S(G) which by Theorem 4.7 is a diagram from Figure 5. According to whether
S(G) is ambiguous (see Proposition 4.11), we will consider the following disjoint
cases:

(i) S(G) = A
(1)
ℓ for ℓ ≥ 2;

(ii) S(G) is either one of D
(2)
ℓ+1, C

(1)
ℓ , or A

(2)
2ℓ for ℓ ≥ 2;

(iii) S(G) is either one of A
(1)
1 , A

(2)
2 , or 1

2A
(1)
1 ;

(iv) S(G) is none of the above, i.e. is unambiguous.

For the case (i), we showed in Section 5.2 that such graphs are classified by
weak conjugacy classes of automorphisms of diagrams in Figure 5. One can
verify directly that these graphs are exactly the ones listed in families #3–#16
together with tensor products Λ̂⊗ Â from #1.
Similarly, for the case (ii), we showed in Section 5.3 that such graphs are clas-
sified by pairs of color-preserving involutions of affine ADE Dynkin diagrams
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(D̂2m+2)
n+1D̂m+2 (#47) (D̂m+2)

n+1D̂2m+2 (#48)
for m = 2 and n = 4 for m = 2 and n = 4

(Ê7)
n+1Ê6 (#49) (Ê6)

n+1Ê7 (#50)
for n = 5 for n = 5

Figure 24: Bigraphs G such that S(G) is of type D with a double arrow at
the end.
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Ê7—Ê7—Ê7 ⇒ Ê6—Ê6 (#51) Ê6—Ê6—Ê6 ⇐ Ê7—Ê7 (#52)

Figure 25: Bigraphs #51 and #52.

Figure 26: The family D̂2m+3(Â4m+1)
n (#53) for m = 2 and n = 4.
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up to simultaneous conjugation. Since we have listed all such pairs in Sec-
tion 5.3, it is straightforward to check that these graphs are exactly the ones
listed in families #17, #18, #20–#35, together with the duals of #4, #7, #10,
and #22.
Suppose now that (iv) holds. By Proposition 4.11 then G is uniquely deter-
mined by descr(G). It remains to go through all the possible unambiguous
diagrams S in Figure 5 and for each of them list all possible assignments of
double bindings with scf = (2, 1), double bindings with scf = (3, 1), and self
bindings to double arrows, triple arrows, and loops in S(G) respectively that
yield affine ADE Dynkin diagrams as blue components. This can be done in a
straightforward way producing the families #41–#53 and their duals, together
with the duals of some toric and path bigraphs. Note also that family #1 of
tensor products falls into this category as well.
Similarly, if G∗ falls into categories (i), (ii), or (iv) then G∗ appears in the list.
It remains to consider the case when both G and G∗ satisfy (iii).

7.1 Affine ⊠ affine self bindings

In this section, we consider the case S(G) = 1
2A

(1)
1 which means that G is an

affine ⊠ affine self binding.
Let v : Vert(G) → R be the common eigenvector for AΓ and A∆ from
Lemma 2.16. Thus AΓv = 2v and A∆v = 2v. Since Γ has just one connected
component, we may rescale v so that it is equal to vΓ. By Proposition 4.1, we
have that for every v ∈ Vert(G),

∑

(v,w)∈∆

v(w) =
∑

(v,w)∈Γ

v(w) = 2v(v). (7.1)

Theorem 7.1. The only possible affine ⊠ affine self bindings are

T (Â2n−1, exp(πi(2m− 1)/n), 1), for n ≥ 2 and 1 < 2m− 1 ≤ n,

and any two such bigraphs are non-isomorphic.

Proof. Let G be an affine ⊠ affine self binding, thus Γ is an affine ADE Dynkin
diagram. We are first going to eliminate the cases when Γ has type Ê6, Ê7,
or Ê8. Suppose Γ is of one of these exceptional types. Consider the vertex
u ∈ Vert(G) with the maximum value of vu. Thus vu = 3 for Ê6, vu = 4 for
Ê7, and vu = 6 for Ê8, see Figure 3. Note that since G is a bigraph, Γ and
∆ do not share edges. In particular, the neighbors of u in Γ cannot be the
neighbors of u in ∆. It remains to note that the sum of vw over w ∈ Vert(G)
with ǫw 6= ǫu and (u, v) 6∈ Γ is less than 2vu so (7.1) cannot hold even if u is
connected to all available vertices of G.
Let us now assume that Γ is of type D̂n+2 for n ≥ 2. Thus G has n+3 vertices
which we denote v+0 , v

−
0 , v1, . . . , vn−1, v

+
n , v

−
n . Here Γ consists of edges (vi, vi+1)

for i ∈ [n− 2] together with four edges (v±0 , v1), (vn−1, v
±
n ).
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Suppose ∆ contains an edge (vk, vk+m) for k, k+m ∈ [n− 1]. Among all such
edges, choose the one with the minimal value of m. Since vk and vk+m are
not neighbors in Γ, we have m ≥ 2. There is a red-blue path from vk+1 to
vk+m so there must be a blue-red path as well by Corollary 2.15. Since vk+1

cannot be connected to vk+m−1 by a blue edge, we have either k +m = n− 1
or (vk+1, vk+m+1) ∈ ∆. Similarly, we have either k = 1 or (vk−1, vk+m−1) ∈ ∆.
Thus for every i = 1, 2, . . . , n−m−1, we have an edge (vi, vi+m) ∈ ∆. Consider
the blue edge (v1, v1+m). There is a red-blue path from vm to v1 so without loss
of generality we may assume that (v+0 , vm) ∈ ∆. But then there is a blue-red
path from v0 to vm−1 so there must be a red-blue path which necessarily passes
through v1, the only red neighbor of v+0 . Thus (v1, vm−1) ∈ ∆, a contradiction.
This shows that ∆ has no edges of the form (vk, vk+m) for k, k +m ∈ [n− 1].
Now, consider any vertex vk for k ∈ [n− 1]. It can only be connected by a blue
edge to v±0 and v±n , and by (7.1), it is connected to all these four vertices. This
holds for any k ∈ [n− 1] but by (7.1) applied to v+0 , there can be only one such
vertex. It follows that n = 2 in which case the edge (v+0 , v1) belongs to both
Γ and ∆ which is impossible. Thus there are no self bindings with Γ being of
type D̂n+2.

Finally, suppose Γ is of type Â2n−1 Let v1, . . . , v2n be the vertices of Γ, and
we label them cyclically so that v2n+1 = v1, etc. Let (vk, vk+2m−1) ∈ ∆ be an
edge with the minimal positive value of m, where again m ≥ 1 (in fact, m ≥ 2
because (vk, vk+1) is already an edge of Γ). Then by the above reasoning, we
have (vi, vi+2m−1) ∈ ∆ for every i ∈ [2n]. By (7.1), there are no other edges in
∆. We get precisely the bigraph T (Â2n−1, exp(πi(2m−1)/n), 1). The fact that
any two of these bigraphs are not isomorphic follows from Proposition 5.3.

Thus every affine ⊠ affine self binding appears as a special case for n = 1 in
family #3.

7.2 Affine ⊠ affine double bindings: preliminaries

We are left with the case (iii) where both S(G) and S(G∗) belong to the set

{A
(1)
1 , A

(2)
2 }. This implies that each of G and G∗ is an affine ⊠ affine double

binding. Proving Theorem 6.1 reduces to showing the following.

Theorem 7.2. Suppose that both S(G) and S(G∗) belong to the set {A
(1)
1 , A

(2)
2 }.

Then either G or G∗ belongs to one of the families #1, #2, #3, #12, #19, or
#36–#40.

Proof. We use the notation of Section 4.2: letX and Y be the two red connected
components of G, every edge of ∆ connects a vertex of X to a vertex of Y .
We let v be the common eigenvector for AΓ and A∆ from Lemma 2.16, and we
denote by vX and vY the additive functions for Γ(X) and Γ(Y ) from Figure 3.

Recall that G is a double binding of type Λ̂ ∗ Λ̂′ if X has type Λ̂ and Y has
type Λ̂′.
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Definition 7.3. We say that G is a double binding of type Λ̂ ⇔ Λ̂′ if X has
type Λ̂ and Y has type Λ̂′ and scf(G) = (2, 2). We similarly introduce double

bindings of type Λ̂ Λ̂′ and of type Λ̂ Λ̂′ for the cases scf(G) = (1, 4) and
scf(G) = (4, 1) respectively.

As it follows from (4.4), the values of v, vX , and vY are related as follows. For
any u ∈ X and v ∈ Y , we have

• v(u) = vX(u),v(v) = vY (v) if G is of type Λ̂ ⇔ Λ̂′;

• v(u) = 2vX(u),v(v) = vY (v) if G is of type Λ̂ Λ̂′;

• v(u) = vX(u),v(v) = 2vY (v) if G is of type Λ̂ Λ̂′.

Thus if we know descr(G) then we know v.

Definition 7.4. Given an affine ADE Dynkin diagram Λ̂, denote byM(Λ̂) the
multiset of values of vΛ̂. We also define M0(Λ̂) and M1(Λ̂) to be the multisets

of values of vΛ̂ restricted to the set of black (resp., white) vertices of Λ̂. For

example,M(Ê6) = {1, 1, 1, 2, 2, 2, 3}which splits intoM0(Ê6) = {1, 1, 1, 3} and
M1(Ê6) = {2, 2, 2}.

We denote X = X0 ⊔X1 and Y = Y0 ⊔ Y1 the partitions of X and Y into sets
of vertices that have the same color. Thus either of the following is true:

• every edge of ∆ connects a vertex of Xi to a vertex of Y1−i for i = 0, 1;

• every edge of ∆ connects a vertex of Xi to a vertex of Yi for i = 0, 1.

We denote byM(X0) the multiset of values of v restricted to X0. We similarly
define M(X1),M(Y0),M(Y1). We identify two multisets if one of them is ob-
tained from another one via rescaling every element by a positive real number.
The following lemma is immediate.

Lemma 7.5. Suppose that G and G∗ are both double bindings and suppose that
G∗ has type Λ̂ ∗ Λ̂′. Then after a possible swapping of Λ̂ with Λ̂′, one of the
following holds:

• M(X0) =Mi(Λ̂) and M(Y0) =M1−i(Λ̂) for some i ∈ {0, 1};

• M(X0) =Mi(Λ̂) and M(Y1) =M1−i(Λ̂) for some i ∈ {0, 1}.

Let us sum up these observations. Suppose that both G and G∗ are double
bindings and let G∗ have type Λ̂ ∗ Λ̂′. If we know descr(G) then we know v

and this gives us the multisets M(X0),M(X1),M(Y0),M(Y1). There are two
options for the components Λ̂ and Λ̂′ of ∆ described in the above lemma. Since
an affine ADE Dynkin diagram can be recovered from its additive function,
we get that knowing descr(G) gives two possibilities for the types of its blue
components. In each case, we recover descr(G∗).
We now finish the proof with a simple case analysis according to the types of
X and Y .
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7.3 Affine ⊠ affine double bindings involving type Ê

7.3.1 The case Ê ∗ Ê

Applying (4.4), we get that there are the following possibilities for descr(G):

(a) Ê6 ⇔ Ê6;

(b) Ê7 ⇔ Ê7;

(c) Ê8 ⇔ Ê8.

Indeed, all the other cases are impossible since the ratio of any pair of numbers
from {24, 48, 120} is not equal to 4.
From looking at the multisets of values, it follows that for each case we have
descr(G) = descr(G∗). This actually implies that in the first two cases, G is
a twist. For example, in case (a), take a vertex v1 of X with vX(v1) = 1. It
must be connected to a vertex u2 of Y with vY (u2) = 2 which in turn must be
connected to a vertex v3 of X with vX(v3) = 3. Thus u2 is not connected to
anything else in ∆. We can now consider another leaf v′1 ∈ X with vX(v′1) = 1.
It must be connected to a vertex u′2 ∈ Y with vY (u

′
2) = 2 and by the above

observation, u′2 6= u2. Continuing in this fashion, we get that G is a twist
Ê6 × Ê6.
Let us now give a similar but a bit more complicated argument for Ê7. Let
v4 and u4 be the vertices of X and Y respectively with vX(v4) = vY (u4) =
4. Then they must be of the same color since v4 must be connected to the
neighbors u3 and u′3 of u4 with vY (u3) = vY (u

′
3) = 3. This implies that u3 is

connected to a vertex v2 of X with vX(v2) = 2 that has the same color as v4
and now we this argument is finished in the same way as our proof for Ê6.
For the third case, we actually get something besides twists, namely, the bi-
graph #36. Label the vertices of the two copies of Ê8 with v1 through v9 and
with u1 through u9 as shown in Figure 27.
From looking at the multisets of values, we get that the vertices v3 and u3 have
the same color. We see that there are two cases to consider: v3 is connected to
either u2, u4, u9 or to u2, u4, u6.
Assume v3 is connected to u2, u4, u6. The same consideration as for v3 can
be applied to u3, with the only possible choice now of u3 being connected to
v2, v4, v6. Since u2 is connected to v3, its only other blue neighbor has to be
a vertex v with vX(v) = 2 so either v = v1 or v = v7. Counting the red-blue
and blue-red paths5 between u2 and v6, we conclude that u2 is connected to
v = v7. Since u8 is connected to either v7 or v1, it follows that u8 is connected
to v1. Since the vertex u6 is already connected to v3, it cannot be connected
to v1, and now it follows that ∆ contains a path with vertices

u8, v1, u9, v5, u4, v3, u2, v7

5Throughout the text, the phrase counting the red-blue and blue-red paths refers to Corol-
lary 2.15 and the discussion after it.
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Figure 27: Labeling the nodes of X and Y .

which determines the graph uniquely and we see that it is exactly the bi-
graph #36.
Assume v3 is connected to u2, u4, u9. The same consideration as for v3 can
be applied to u3, with the only possible choice now of u3 being connected to
v2, v4, v9. We know that v2 is connected to either u1 or u7 and counting the
red-blue and blue-red paths between u1 and v3 we conclude v2 is connected to
u1. We now have enough information to conclude that ∆ contains a path with
vertices

u1, v2, u3, v4, u5, v6, u7, v8

which implies that G is a twist Ê8 × Ê8.

7.3.2 The case Ê6 ∗ Â

The component X of type Ê6 has a vertex v3 with vX(v3) = 3 and therefore it
cannot be connected to anything by an edge of ∆ unless scf(G) = (1, 4). Thus

we only need to find all double bindings of type Ê6 Â5.
It follows from looking at the multisets of values that descr(G∗) = descr(G) in
this case, and because of the symmetries of X and Y , there is essentially one
way to connect the vertices v2, v

′
2, v

′′
2 of X with vX(v2) = vX(v′2) = vX(v′′2 ) = 2

to the vertices u2, u4, u6 of Y to form a 6-cycle in ∆. The rest of the edges are
reconstructed uniquely and we get the bigraph #37.

7.3.3 The case Ê7 ∗ Â

The component X of type Ê7 has a vertex v4 with vX(v4) = 4 and therefore
it cannot be connected to anything by an edge of ∆ unless scf(G) = (1, 4).

Thus we only need to find all double bindings of type Ê7 Â11. We get an
immediate contradiction from looking at the multisets of values since there is
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Figure 28: Labeling the nodes of X and Y .

no affine ADE Dynkin diagram Λ̂ with M0(Λ̂) = {2, 2, 2, 2, 2, 2} and M1(Λ̂) =
{1, 1, 2, 3, 3}.

7.3.4 The case Ê8 ∗ Â

The component X of type Ê8 has a vertex v6 with vX(v6) = 6 and therefore
it cannot be connected to anything by an edge of ∆, regardless of scf(G).

7.3.5 The case Ê6 ∗ D̂

Let X be the component of type Ê6 and let Y the the component of type D̂.
The cases scf(G) = (4, 1) or scf(G) = (1, 4) are impossible. Indeed, if Y gets
a scaling factor of 1, none of its vertices can be connected to the vertex v3 of
X with vX(v3) = 3. If on the other hand Y gets scaling factor of 4, there is
just not enough vertices in X of the same color to collect vY (u)× 4 = 8 for a
vertex u ∈ Y with vY (u) = 2.

Thus scf(G) = (2, 2) and descr(G) = descr(G∗) = Ê6 ⇔ D̂8. Label vertices of
X with v1 through v7, and label vertices of Y with u1 through u9 as shown in
Figure 28.

Assume v1 is white, and then it follows that u1 is also white from looking at the
multisets of values. By the same reason, v3 is connected to u3, u5 and u7, which
must be connected to v1, v5, v7. Without loss of generality we can assume that
we have edges (u3, v1), (u5, v7), (u7, v5). This determines the position of the
blue component of type Ê6 from which we can uniquely reconstruct the edges of
the blue component of type D̂8 by counting the corresponding red-blue paths:
we get that v2 is connected to u1, u2, v4 is connected to u8, u9, and thus v6 is
connected to u4, u6 which are connected to v2 and v4 or vice versa, and we see
that in any case we get a contradiction.
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7.3.6 The case Ê7 ∗ D̂

Let X be the component of type Ê7 and let Y the the component of type D̂.
Our three possibilities by (4.4) are:

• Ê7 ⇔ D̂14;

• Ê7 D̂50;

• Ê7 D̂5;

Since M0(X) = {1, 1, 3, 3} and since there is no Dynkin diagram Λ̂ for which
the maximum of v(Λ̂) is greater than 2 and is achieved more than once, it
follows that only the third case is possible. From looking at the multisets of

values, we get that descr(G) = descr(G∗) = Ê7 D̂5, and in fact all the edges
of ∆ can be immediately reconstructed from knowing the additive function for
each component of ∆, yielding the bigraph #38.

7.3.7 The case Ê8 ∗ D̂

The cases Ê8 ⇔ D̂m+2 and Ê8 D̂m+2 are impossible because the vertex in Ê8

with v = 6 cannot be connected to any vertex in D̂m+2. The only possibility

is the case Ê8 D̂m which is also impossible because by (4.4), m must satisfy
4× 4m = 120, but 120 is not divisible by 16.

7.4 Affine ⊠ affine double bindings involving type Â

7.4.1 The case Â ∗ Â

By (4.4), there are two possibilities:

• Â2n−1 ⇔ Â2n−1, n ≥ 1;

• Â8n−1 Â2n−1, n ≥ 1.

In the second case, the multisets of values tell us that the red components of
G∗ are 2n copies of D̂4, and since G∗ is also required to be a double binding, we
get that n = 1, in which case there is only one possible double binding which
already is listed in family #12.
In the first case, the multisets of values tell us that descr(G) = descr(G∗) =
Â2n−1 ⇔ Â2n−1. Label the vertices of X with v1 through v2n, and label the
vertices of Y with u1 through u2n (we will be taking the indices modulo 2n).
Since the case n = 1 is trivial, we assume that ∆ has no double edges.

Lemma 7.6. Assume edges (vi, uj) and (vi+1, uj+1) are present. Then so are
the edges (vi+2, uj+2) and (vi−1, uj−1). Similarly, assume the edges (vi, uj) and
(vi+1, uj−1) are present. Then so are edges (vi+2, uj−2) and (vi−1, uj+1).
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Proof. Due to symmetry, it is enough to prove the first claim. Again due
to symmetry, it is enough to argue (vi+2, uj+2) exists. Assume not. Count-
ing blue-red and red-blue paths between vi+1 and uj+2 we see that the edge
(vi, uj+2) must exist. Similarly the edge (uj , vi+2) exists. Counting blue-red
and red-blue paths between uj+1 and vi we see that the edge (vi−1, uj+1) exists.
A similar logic gives us the edge (vi+1, uj−1). Continuing this way we get edges
between vi−k and vj+k and vj+k+2 for k = 1, 2, . . .. For k = 2n− 2 we see that
vi+2 is connected to uj+2 after all – a contradiction to our assumption.

Now it is easy to see that all edges of ∆ consist of two such families as in
Lemma 7.6: each family consisting of all viui±k for fixed k. Furthermore, if
one family has a plus sign and the other has a minus sign, we would have a
double edge. Therefore both families have the same sign, which without loss
of generality we can assume to be plus. Thus, there are two fixed choices k, k′

of residues modulo 2n such that the edges of ∆ are viui+k and viui+k′ for all
i. Such a bigraph is therefore listed in family #3.

7.4.2 The case Â ∗ D̂

Since the component Y of type D̂n+2 has a vertex v with vY (v) = 2, we cannot

have a bigraph of type Â2n−1 D̂n. Thus the only two possibilities that we
have are:

• Â4n−1 ⇔ D̂n+2, n ≥ 2;

• Â2n−1 D̂2n+2, n ≥ 1.

In the first case, the multisets of values tell us the following. If n = 2k + 2 is
even for k ≥ 0, one blue component will have 2n = 4k+4 ones and k twos and
the other component will have 2n + 4 ones and k + 1 twos. Thus the second
component must be of type D̂ which implies that n = 0, a contradiction. Now
if n = 2k + 1 is odd for k ≥ 1, each blue component has 2n+ 2 = 4k + 4 ones
and k twos which is also impossible.

For the case Â2n−1 D̂2n+2, one blue component has 2n twos while the other
blue component has 4 ones and 2n − 1 twos. Thus the first component must
be of type Â2n−1 and the second component must be of type D̂2n+2 so we get
descr(G) = descr(G∗).
Let v1 and v2 be two vertices with vX(v1) = vX(v2) = 1 adjacent to a vertex
v3 in X with vX(v3) = 2. Label the vertices of Y as u1 through u2n. Let v2 be
connected to u1 ∈ Y . Without loss of generality we can assume v3 is connected
to u2. Counting red-blue and blue-red paths between v1 and u2 we see that
there are two options: v1 is either connected to u1, or to u3.
Assume v1 is connected to u3. Counting the red-blue and blue-red paths be-
tween v1 and u4 we see that v3 has to be connected to u4. Counting the red-blue
and blue-red paths between v2 and u2n we see that v3 has to be connected to
u2n. By (4.2) applied to v3 we see that this is impossible unless u2n = u4, that
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is, n = 2. In this case v4 has to be connected to u1 and u3 and now we uniquely
recover another exceptional bigraph listed as #39 in our classification.
Assume now v1 is connected to u1. Counting red-blue and blue-red paths
between v3 and u1 we see that there are two options to consider: either v3 is
connected by a double edge to u2, or it is connected by a single edge to u2 and
a single edge to u2n.
In the former case, we get a component of type Â1 so n = 1 and we get the
bigraph #40.
Consider now the latter case. Counting red-blue and blue-red paths between v3
and u3 and u2n−1 we see that again there are two options: either 2n−1 = 3 and
v4 is connected to it by a double edge, or not, in which case v4 is connected to
both u3 and u2n−1. Continuing in this manner we arrive to the moment when
vn+2 is connected to un+1 by a double edge. Thus, the option of a double edge
does get realized sooner or later, with the only choice of how soon it comes to
be. But for n > 1 this contradicts the assumption that G∗ is a double binding.

7.5 Affine ⊠ affine double bindings involving only type D̂

By (4.4), we have the following two possibilities:

• D̂n+2 ⇔ D̂n+2, n ≥ 2;

• D̂n+2 D̂4n+2, n ≥ 2.

Let us start with the second case. Assume that n = 2k is even for some k ≥ 1.
Without loss of generality we may assume that

M(X0) = {2, 2, 2, 2, 4, . . . , 4
︸ ︷︷ ︸

k−1

}, M(X1) = {4, . . . , 4
︸ ︷︷ ︸

k

};

M(Y0) = {1, 1, 1, 1, 2, . . . , 2
︸ ︷︷ ︸

4k−1

}, M(Y1) = {2, . . . , 2
︸ ︷︷ ︸

4k

}.

We see that if k > 1 then there is no way to combineM(X0) with eitherM(Y0)
or M(Y1) to get M(Λ̂) in the union for any affine ADE Dynkin diagram Λ̂.
For k = 1, the blue components are necessarily X0 ∪ Y0 of type D̂10 and

X1 ∪ Y1 of type D̂4 so we get descr(G) = descr(G∗) = D̂4 D̂10. We would
like to show that such a double binding does not exist. Let v be the unique
vertex of X of degree 4 and suppose that it is black. Then it is connected
to all four white vertices of Y , and each of them satisfies vY (u) = 2. By
repeatedly counting red-blue and blue-red paths, we recover the dual of #31
with descr(G∗) = D̂6 ⇒ D̂4 ⇒ Â3. In particular, G∗ has three red components
so is not a double binding.
Assume now that n = 2k + 1 is odd for some k ≥ 1. Then without loss of
generality we get that

M(X0) = {2, 2, 4, . . . , 4
︸ ︷︷ ︸

k

}, M(X1) = {2, 2, 4, . . . , 4
︸ ︷︷ ︸

k

};
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M(Y0) = {1, 1, 1, 1, 2, . . . , 2
︸ ︷︷ ︸

4k+1

}, M(Y1) = {2, . . . , 2
︸ ︷︷ ︸

4k+2

}.

We see that there is no way to combine M(Y0) with either M(X0) or M(X1)
to get M(Λ̂) because if 1, 4 ∈M(Λ̂) then we must also have 3 ∈M(Λ̂).
For the first case, both blue components have to also have type D̂n+2 so we get

descr(G) = descr(G∗) = D̂n+2 ⇔ D̂n+2.

First, assume n = 2. Since the blue components are two copies of D̂4, the
unique way to get them is to connect the vertex of X of red degree 4 to all the
leaves of Y and vice versa. We obtain a twist D̂4 × D̂4.
Suppose now that n ≥ 3. We would like to show that in this case we get
family #19 or #2, i.e., G = D̂n+2⋊p D̂n+2 for some p ∈ [n−1]. Recall that the

bigraphs D̂n+2⋊pD̂n+2 and D̂n+2⋊n−pD̂n+2 are isomorphic and D̂n+2⋊1D̂n+2

is isomorphic to the twist D̂n+2 × D̂n+2.
Let us label the vertices of X and Y as in Section 5.4. Thus the vertices of X
are labeled by

u+0 , u
−
0 , u1, u2, . . . , un−1, u

+
n , u

−
n

so that the leaves u+0 and u−0 are connected to u1 and the leaves u+n and u−n
are connected to un−1. Similarly, the vertices of Y are labeled in a similar way
by

v+0 , v
−
0 , v1, v2, . . . , vn−1, v

+
n , v

−
n .

Since we know that the blue components have type D̂n+2, we get that the
leaves of X are not connected to the leaves of Y by blue edges. Without loss of
generality we can assume that u+0 is connected to some vp, where p ∈ [n− 1].
Counting red-blue and blue-red paths we see that u1 is connected to a neighbor
v′ of vp. Counting red-blue and blue-red paths between u−0 and v′, we get cases:
u−0 has to be connected to either vp or to another neighbor v′′ of v′.
Consider the case when u−0 is connected to v′′. Since u−0 is a leaf of X , v′′

cannot be a leaf of Y . Moreover, v′ has two different neighbors vp and v′′ so it
also cannot be a leaf of Y . Without loss of generality we can therefore assume
that p ≤ n− 3, v′ = vp+1 and v′′ = vp+2. Hence there exists a path of length 5

in Y of the form (v
(+)
p−1, vp, vp+1, vp+2, v

(+)
p+3), where v

(+)
i is equal to vi if i 6= 0, n

and to v+i if i = 0 or i = n. Counting red-blue and blue-red paths between v
(+)
p−1

and u+0 we get that v
(+)
p−1 is connected to u1. Counting red-blue and blue-red

paths between v
(+)
p+3 and u−0 we get that v

(+)
p+3 is connected to u1 as well. This

contradicts (4.3) for u1.
Thus u−0 is connected to vp as well as u+0 . Since vp is connected to a leaf u+0
by a blue edge, every red neighbor of vp must be connected to u1. Thus u1

is connected to v
(+)
p−1. Then either p − 1 = 0 or p − 1 > 0. Similarly either

p + 1 = n or p + 1 < n. Assume that 1 < p < n − 1. Note that vp cannot
be connected to u2 since counting red-blue and blue-red paths between vp and
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u1 we would arrive at a contradiction. Then counting red-blue and blue-red

paths between u2 and vp−1, vp+1 we conclude that v
(+)
p−2 and v

(+)
p+2 exist and are

connected to u2. Again, either p− 2 = 0 or p− 2 > 0, and either p+ 2 = n or
p + 2 < n. Also, again, vp±1 are not connected to u3, since otherwise we get
a contradiction by counting red-blue and blue-red paths between vp±1 and u2,
etc. Continuing this way we get ui to be connected to vp±i for i = 0, 1, . . . .

Eventually we arrive at a situation when without loss of generality p − i = 0,
that is, i = p. Thus, v+0 is connected to up, and so is v2p. Counting red-blue
and blue-red paths between v+0 and up+1 we conclude that v1 is connected to
up+1. Counting red-blue and blue-red paths between v−0 and up+1 we conclude
that v−0 is connected to either up+2 or to up. The former case as before leads
to a contradiction. In the latter case we proceed as before, with u-s and v-s
swapped, concluding the existence of edges between vj and up±j for 1 ≤ j ≤ p.

Counting blue-red and red-blue paths between up+1 and v2p, and taking into
account that the edge (v2p−1, up+1) does not exist in ∆ since (v2p−2, up) does
not, we conclude that up+1 is connected to v2p+1, etc. Continuing in this man-

ner we get edges connecting up+j to v
(+)
2p+j , and also edges connecting vp+j to

u
(+)
2p+j for 1 ≤ j ≤ n − 2p. Finally, in a symmetric way to the previous argu-

ment we obtain edges connecting un−2p+j to vn−j , and also edges connecting
vn−2p+j to un−j for 1 ≤ j ≤ p.

As a result we obtain precisely the pseudo twist D̂n+2 ⋊p D̂n+2.

8 Twists

In this section, we concentrate on the case when the bigraph G = (Γ,∆) is a
twist Λ̂ × Λ̂ for some affine ADE Dynkin diagram Λ̂. First, we introduce a
certain game one can play on any undirected graph that very much resembles
the Kostant’s find the highest root game which is due to Allen Knutson. We
deduce a positivity result for this game from the theory of Kac-Moody alge-
bras [21]. We then give a general construction of a twist for any quiver in
Section 8.2. We prove a factorization theorem for any such twist in Section 8.3
thus directly generalizing [28, Proposition 2.4] where this was done for the del
Pezzo 3 quiver which can be seen as a twist of a triangle with itself as we
explain in Section 8.2. Finally, in Section 8.4 we apply these results to the case
Λ̂ × Λ̂ where Λ̂ is an affine ADE Dynkin diagram and deduce Conjecture 1.7
for such twists as a special case.

8.1 Reflections on undirected graphs

Let G = (I, E) be a connected undirected graph with possibly multiple edges
but no loops. We denote by V = {h : I → R} the vector space of all functions
from I to R and for each i ∈ I, denote by αi : I → R the i-th basis vector
defined by αi(j) = δij .
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h a b c d
s2(h) a a+ c− b c d
s3s2(h) a a+ c− b a+ d− b d
s2s3s2(h) a a+ d− c a+ d− b d

h a b c d

s
(b)
2 (h) a a+ c− b+ 1 c d

s
(b)
3 s

(b)
2 (h) a a+ c− b+ 1 a+ d− b + 1 d

s
(b)
2 s

(b)
3 s

(b)
2 (h) a a+ d− c+ 1 a+ d− b + 1 d

Table 1: An example of applying the operators si and s
(b)
i .

Suppose that G has one distinguished vertex b ∈ V . For every vertex i ∈ I, we

define two reflections si, s
(b)
i : V → V as follows. Given a vector h ∈ V , put

(sih)(j) =







h(j), if i 6= j;

−h(j) +
∑

(j,k)∈E

h(k), if i = j; s
(b)
i h =

{

sih, if i 6= b;

sih+ αb, if i = b.

Example 8.1. Let I = {1, 2, 3, 4} and let G be an undirected path with
edges E = {(1, 2), (2, 3), (3, 4)}. Thus V can be identified with R

4. Let
b = 2 be the distinguished vertex. Suppose that h = (a, b, c, d) ∈ V , thus
for example h(2) = b. The values of s2(h), s3s2(h), s2s3s2(h), as well as of

s
(b)
2 (h), s

(b)
3 s

(b)
2 (h), and s

(b)
2 s

(b)
3 s

(b)
2 (h) are given in Table 1.

For an element h ∈ V , we write h ≥ 0 if for any i ∈ I, h(i) ≥ 0. The rest of
this section will be concentrated on showing the following result:

Proposition 8.2. For any sequence i = (i1, i2, . . . , ip) of vertices of G, we
have

s
(b)
ip
s
(b)
ip−1

· · · s
(b)
i1

(0) ≥ 0. (8.1)

Proof. First, one easily checks (for example, using Table 1) that if the vertices
i and j are connected by exactly one edge (resp., zero edges) in G, we have

(s
(b)
i s

(b)
j )mij = id for mij = 3 (resp., mij = 2). Thus the operators s

(b)
i define

a representation of the Weyl group W of the Kac-Moody algebra associated to
the generalized Cartan matrix AG = (aij)i,j∈I of G defined by

aij =

{

2, if i = j;

−qij , otherwise,
(8.2)

where qij is the number of edges in G connecting i to j. This follows from [21,
Proposition 3.13]. Thus we may assume that the word i is reduced, that is,
the element sipsip−1 · · · si1 cannot be represented as a product of less than p
elements in W .

Documenta Mathematica 24 (2019) 2057–2135



2124 Pavel Galashin and Pavlo Pylyavskyy

1

2

3

1′

2′

3′

1′′

2′′

3′′

a quiver Q its twist Q×Q

Figure 29: The del Pezzo 3 quiver is a twist.

We prove (8.1) by induction on p. The case p = 0 is trivial so suppose that
p > 0.
Since si(0) = 0 for all i ∈ I, we may assume that i1 = b. One easily checks
that in this case,

s
(b)
ip
s
(b)
ip−1

· · · s
(b)
i1

(0) = s
(b)
ip
s
(b)
ip−1

· · · s
(b)
i2

(0) + sipsip−1 · · · si2(αb).

This is true because for any i ∈ I and h1, h2 ∈ V , we have

s
(b)
i (h1 + h2) = si(h1) + s

(b)
i (h2). (8.3)

Since i was reduced, the same is true for i′ = (i2, . . . , ip), and thus the posi-
tivity of the first summand follows by induction. The positivity of the second
summand is an immediate application of [21, Lemma 3.11(a)].

8.2 Twists for arbitrary quivers

Let Q be a quiver, and let I := Vert(Q) be the set of its vertices. Let G be
the underlying undirected graph for Q with the same set I of vertices. We let
I ′ = {i′ | i ∈ I} and I ′′ = {i′′ | i ∈ I}. We are going to construct a new quiver
Q ×Q with vertex set Vert(Q ×Q) = I ′ ∪ I ′′. For every edge i → j of Q, the
quiver Q×Q contains edges

i′ → j′, i′′ → j′′, j′′ → i′, j′ → i′′.

For example, when Q is a cycle with edges 1 → 2 → 3 → 1 then Q ×Q is the
well studied del Pezzo 3 quiver, see Figure 29.
For each i ∈ I, we define a new quiver τi(Q×Q) to be σi◦µi′ ◦µi′′ (Q×Q), where
µi′ is the usual quiver mutation (see Definition 2.14) and σi is the operation
that swaps the vertices i′ and i′′ in the quiver. We introduced this operation
in [12], however, for the del Pezzo 3 quiver it already appeared in [28] under
the name τ-mutation.
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Lemma 8.3. We have τi(Q ×Q) = Q×Q.

Proof. Suppose that u → i′ → w is a path of length 2 in Q × Q. We then
therefore have a path w → i′′ → u of length 2 as well. The mutation µi′

introduces an edge u → w, but then the mutation µi′′ introduces an edge
w → u so these edges cancel each other out.
For any edge u → i′, there is an edge i′′ → u so reversing both of these edges
and swapping the vertices i′ and i′′ preserves both of these edges. We get that
any edge of Q×Q is preserved by τi and no new edges are introduced. We are
done with the proof.

Corollary 8.4. If G is bipartite then Q is a bipartite recurrent quiver.

For each i ∈ I, we introduce two variables x′i and x′′i corresponding to the
vertices i′ and i′′ of Q respectively, and thus the set of vertex variables for
Q×Q is x′ ∪ x′′ where x′ = {x′i}i∈I and x′′ = {x′′i }i∈I .
Consider a map T : Vert(Q × Q′) → Z[(x′)±1, (x′′)±1] assigning a Laurent
polynomial to each vertex of Q × Q. The operation τi for i ∈ I can be lifted
to an operation on such maps T . More specifically, it is defined as follows: for
j 6= i ∈ I, we set

(τiT )(j
′) = T (j′), (τiT )(j

′′) = T (j′′).

For the remaining two vertices, we put

(τiT )(i
′) =

∏

u→i′′ T (u) +
∏

i′′→v T (v)

T (i′′)
;

(τiT )(i
′′) =

∏

u→i′ T (u) +
∏

i′→v T (v)

T (i′)
.

(8.4)

Here u, v ∈ I ′ ∪ I ′′ are the vertices of Q × Q. Thus the operation τi can be
viewed as a composition of two quiver mutations τi′ ◦ τi′′ followed by swapping
the values of T at i′ and i′′.

8.3 A product formula for any τ-mutation sequence

We let T0 : Vert(G) → Z[x′,x′′] be the initial seed, that is, T0(i
′) = x′i and

T0(i
′′) = x′′i for all i ∈ I. Consider a sequence i = (i1, i2, . . . , ip) of elements of

I and let
T1 = τi1T0, T2 = τi2T1, . . . , Tp = τipTp−1. (8.5)

We are interested in giving a formula for Tp(j) for any j ∈ I. For each i ∈ I,
define Xi ∈ Z[(x′)±1, (x′′)±1] by

Xi =

∏

j→i x
′
j

∏

i→j x
′′
j +

∏

j→i x
′′
j

∏

i→j x
′
j

x′ix
′′
i

. (8.6)

Just as in Section 8.1, we define the operators s
(j)
i for each i, j ∈ I to be the

reflections s
(b)
i for G with b = j.
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Proposition 8.5. Let i = (i1, i2, . . . , ip) and T0, T1, . . . , Tp be as in (8.5).
Then there exists a matrix A(i) = (aiij)i,j∈I with nonnegative integer entries
such that for any i ∈ I we have

Tp(i
′) = x′i

∏

j∈I

X
ai

ij

j ; Tp(i
′′) = x′′i

∏

j∈I

X
ai

ij

j . (8.7)

The j-th column (aiij)i∈I of A(i) is equal to

s
(j)
ip
s
(j)
ip−1

· · · s
(j)
i1

(0). (8.8)

Proof. We prove (8.7) and (8.8) by induction on p, the case p = 0 being trivial.
Suppose that we already know the result for p − 1. The induction step is
straightforward to check by substituting (8.6) into (8.4). The nonnegativity of
the coefficients of A(i) follows from Proposition 8.2

Corollary 8.6. If Q is an orientation of a finite (resp., affine) ADE Dynkin
diagram Λ (resp., Λ̂) then the operators τi define a simply transitive action of
the Weyl group W (resp., the affine Weyl group Wa) of Λ (resp., Λ̂) on the
clusters that can be obtained from the initial seed T0 by applying τ-mutations.
In particular, such clusters are in bijection with Weyl chambers of W (resp.,
with alcoves of Wa).

Proof. This follows immediately from Proposition 8.5. We refer the reader
to [3, Chapter V, §4] for the background on alcoves and Weyl chambers.

8.4 Twists of ADE Dynkin diagrams

In this section, we return to the case when Q is a finite or affine ADE Dynkin
diagram with every edge oriented towards a white vertex (see Definition 5.1).
Let I = {0, 1, 2, . . . , n} be the set of its vertices and suppose that the vertices
0, 1, 2, . . . , k − 1 are white while the vertices k, . . . , n are black. We would like
to apply the product formula (8.7) to the T -system associated with Q × Q.
Proposition 8.5 implies that we only need to analyze the left hand side of (8.1)
for the specific mutation sequence i = (0, 1, 2, . . . , n, 0, 1, 2, . . . ). Let us choose
some distinguished vertex, say, b = 0. Let V be a vector space with basis
α0, α1, . . . , αn as in Section 8.1 and a bilinear form B associated to the gen-
eralized Cartan matrix AG of G from (8.2). In particular, for h1, h2 ∈ V , we
have

B(h1, h2) = 〈h1, h2〉 := hT1 AGh2.

Thus it is well known (see e.g. [38, Section 2.17]) that B is positive definite
(resp., nonnegative definite) if and only if Q is an orientation of a finite (resp.,
affine) ADE Dynkin diagram. The reflections si can be alternatively defined
by

si(h) = h− 〈h, αi〉αi
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for i ∈ I. Define the Coxeter transformation C by

C = ω2ω1, where ω1 = sk−1sk−2 . . . s0, ω2 = snsn−1 . . . sk.

Let (h0, h1, . . . ) be the sequence of elements of V associated with i =
(0, 1, 2, . . . , n, 0, 1, 2, . . . ) in the left hand side of (8.1). In other words, h0 = 0

is the origin and hk+1 = s
(b)
ik
hk for k ≥ 0. Here ik ∈ I is defined by ik ≡ k

(mod n) + 1 so that i = (i0, i1, . . . ). The following lemma follows immediately
from (8.3):

Lemma 8.7. For any integer m ≥ 0, we have

hm(n+1) = C(hmn + α0) =

m∑

k=1

Ckα0. (8.9)

Since the whole calculation amounts to computing the powers of the Coxeter
transformation, it would be nice to find its Jordan normal form J which is
actually well studied:

Proposition 8.8 ([38, Theorems 3.15 and 4.1]).

1. If Q is an orientation of a finite ADE Dynkin diagram then J is diagonal
and C is periodic, and the eigenvalues of J are roots of unity not equal
to 1;

2. If Q is an orientation of an affine ADE Dynkin diagram then J has one
2 × 2 block corresponding to the eigenvalue 1, the rest of its blocks are
1× 1 and all the other eigenvalues of C are roots of unity not equal to 1;

3. otherwise there is a simple maximal eigenvalue of C that is greater than
one.

Theorem 8.9. Let Q be a bipartite quiver.

1. If Q is an orientation of a finite ADE Dynkin diagram then the T -system
associated with Q×Q is periodic;

2. If Q is an orientation of an affine ADE Dynkin diagram then the T -
system associated with Q×Q grows quadratic exponentially;

3. otherwise the T -system associated with Q×Q grows doubly exponentially.

Proof. Note that the first part follows from [12] while the third part follows
from Theorem 1.5. However, it is easy to prove all the parts directly using (8.9)
and Propositions 8.8 and 8.5. Let C = P−1JP be the Jordan normal form of
C and consider the vector Pα0. Suppose that Q is an orientation of a finite
ADE Dynkin diagram Λ. Then C is periodic with some period h (the Coxeter
number) so the sum of Ck over the period will be zero. Indeed, the matrix J is
diagonal and by Proposition 8.8, its entries are roots of unity that are not equal
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to 1. Thus the sequence hk is periodic, and by Proposition 8.5, this sequence
describes the degrees of the factors Xi in the values of the T -system associated
with Q×Q. This proves the first claim.

Suppose now that Q is an orientation of an affine ADE Dynkin diagram. Then
the unique 2× 2 block of Jk will have the form

(
1 k
0 1

)

.

Since all the other 1× 1 blocks correspond to roots of unity that are not equal
to 1, the corresponding entries of J1+J2+ · · ·+Jm will be bounded while the
unique 2× 2 block of J1 + J2 + · · ·+ Jm will have the form

(
m

(
m+1
2

)

0 m

)

.

This shows that the sequence hm(n+1) grows quadratically and thus the values
of the T -system associated with Q ×Q grow quadratic exponentially6 and we
are done with the second claim.

Finally, suppose that the underlying graph G of Q is not a finite or affine
ADE Dynkin diagram. Then there is a simple maximum eigenvalue λ in J
and therefore we will have λk in Jk dominating all the other terms. Thus the
sequence hm(n+1) grows exponentially which implies that the values of the T -
system associated with Q×Q grow doubly exponentially and we are done with
the third claim.

9 Conjectures

In addition to the main Conjecture 1.7 we make several other conjectures de-
scribing the behavior of T -systems in our affine ⊠ affine classification. We
prove some of them for twists.

9.1 Arnold-Liouville integrability

In this paper we worked with zero algebraic entropy, which is one of the ways
to define integrability. An alternative way is to look for the Arnold-Liouville
integrability, which means finding a non-degenerate Poisson bracket, and a
number of algebraically independent conserved quantities in involution with
respect to this Poisson bracket. We refer the reader to [1] for a classical account.

Conjecture 9.1. Y -systems associated with all the affine ⊠ affine ADE bi-
graphs in our classification are integrable in Arnold-Liouville sense.

6it may happen that even though some entries of J grow fast, the vector P−1JPα0 is
bounded. But then we can relabel the vertices and choose some other vertex b for which the
growth will be quadratic exponential.
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This conjecture has already been verified in the special case of our
T (Ârd−1, exp(2πip/r), n) family #3. Specifically, it is a special case of a
theorem of Goncharov and Kenyon [17, Theorem 3.7]. It is also present
in Ovsienko-Schwartz-Tabachnikov [33, Theorem 2] and Gekhtman-Shapiro-
Tabachnikov-Vainshtein [14, Theorem 4.4]. The latter two sources prove it in
a somewhat narrower generality than our family #3, however their methods
extend easily to cover the whole family.

Note that all three of the above sources prove Arnold-Liouville integrability for
the Y -variable dynamics. It remains to be understood if a similar claim can be
made about the T -systems in our classification.

9.2 Devron property

Glick has introduced the Devron property in [15] as a counterpart to singularity
confinement, often used to detect integrability. Roughly speaking, Devron
property is a property of systems where time flow is reversible. Assume that
going backward in time one fails due to a really bad singular behavior, i.e. a
Devron singularity. Then the system has Devron property if this implies similar
failure after a number of steps when going forward in time.

For a T -system associated with an affine ⊠ affine ADE bigraph from our clas-
sification, let us say that the initial values Tv(t) for t = 0, 1 form a backward
Devron singulairty if for any v of color ǫv = 1 we have Tv(−1) = 0. Let us
say that for some time t0, the values of the T -system form a forward Devron
singulairty if for any v of color ǫv 6≡ t0 (mod 2) we have Tv(t0 + 1) = 0.

Conjecture 9.2. If the initial values of a T -system associated with an affine ⊠
affine ADE bigraph from our classification form a backward Devron singularity,
then after a finite number of steps t0, the T -system will reach a state that forms
a forward Devron singularity.

We prove this conjecture for twists of arbitrary bipartite quivers.

Proposition 9.3. Let Q be any bipartite quiver. Then the twist Q×Q has the
Devron property with t0 = 2.

Proof. This follows immediately from Proposition 8.5. Indeed, having a back-
ward Devron singularity at t = 0 means that Xv = 0 for any v ∈ Vert(Q) with
ǫv = 1. Since Xv appears in Tv(3) with exponent equal to 1 by Proposition 8.5,
we are done.

For the case when Q is a tensor product of type Â2n−1 ⊗ Â2m−1, our limited
computer evidence suggests that we have

t0 ∈ {max(2n, 2m), 2max(2n, 2m)},

depending on the parity of n and m.
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Λ̂ Â2n−1 D̂n, n even D̂n, n odd Ê6 Ê7 Ê8

ha(Λ̂) n n− 2 2(n− 2) 6 12 30

g(Λ̂) 2 1 2 1 1 1

Table 2: The affine Coxeter number and the Coxeter-McKay ratio for affine
ADE Dynkin diagrams.

9.3 Time-dependent conserved quantities

A notion of time dependent conserved quantities is sometimes used when
analysing integrability of dynamical systems, see [18] for an accessible intro-
duction. Let A(t) be a function of the system parameters evaluated at time t.
We say that A is a time-dependent conserved quantity if there exist integers
m, t0 ≥ 1 such that for any t ∈ Z, we have A(t+t0) = A(t)Bm, where B = B(t)
is a fixed genuine conserved quantity of the system, that is, B(t + t0) = B(t)
for all t ∈ Z.

Conjecture 9.4. The T -systems associated with affine⊠ affineADE bigraphs
from our classification possess non-trivial time-dependent conserved quantities.

We again prove this conjecture for twists, but now only of affine ADE Dynkin
diagrams. In order to state the result, we need to associate one more integer
ha(Λ̂) to each affine ADE Dynkin diagram Λ̂ which is called the affine Coxeter
number in [38], not to be confused with the McKay number h(2)(Λ̂) of Λ̂ from
Figure 3.

Definition 9.5. The affine Coxeter number of an affine ADE Dynkin diagram
Λ̂ is the smallest positive integer m = ha(Λ̂) such that λm = 1 for any eigen-
value λ of the Coxeter transformation associated to Λ̂. The values of ha(Λ̂) are
given in [38, Table 4.1]. Moreover, define the Coxeter-McKay ratio g(Λ̂) by

g(Λ̂) =
4ha(Λ̂)

h(2)(Λ̂)
.

The values of ha(Λ̂) and g(Λ̂) are given in Table 2. In particular, g(Λ̂) is always
equal to either 1 or 2.

The Coxeter-McKay ratio is closely related to the Dlab-Ringel defect, see [5]
or [38, Section 6.3.3].

Proposition 9.6. Let Λ̂ be an affine ADE Dynkin diagram with vertex set I,
edge set E, additive function λ : I → Z, and affine Coxeter number m = ha(Λ̂).
Consider the twist Λ̂ × Λ̂ with vertex set I ′ ∪ I ′′. Then for each vertex i ∈ I,
there is a time-dependent conserved quantity Ai(t) defined as follows: for t ≡ ǫi
(mod 2), we put

Ai(t) =
Ti′(t)

2

∏

(i,j)∈Λ̂ Tj′(t− 1)
.
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These functions satisfy

Ai(t+ 2m) = Ai(t)B
g(Λ̂)λ(i), (9.1)

where B = B(t) is defined as follows. For t even, we put

B(t) =
∏

j

X
λ(j)
j (t− ǫj).

For odd t, one replaces ǫj by 1− ǫj. Here Xj(t) is defined analogously to (8.6),
namely,

Xj(t) =

∏

k→j Tk′(t)
∏

j→k Tk′′(t) +
∏

k→j Tk′′(t)
∏

j→k Tk′(t)

Tj′(t− 1)Tj′′(t− 1)
.

The function B(t) is a genuine conserved quantity: B(t + m) = B(t) for all
t ∈ Z.

Proof. Let us fix some j ∈ I with say ǫj = 0 and look at the exponent atij of
Xj = Xj(0) from (8.6) in Ti(t). By Lemma 8.7, this value equals to the i-th
coordinate of

δj(t) =

t∑

k=1

Ckαj .

Now, the degree of Xj in Ai(t) is therefore the value of 〈αi, δj(t)〉. We would
like to show (9.1), and the exponent of Xj in Ai(t + m)/Ai(t) is given by
〈αi, δj(t+m)− δj(t)〉. Note that

δj(t+m)− δj(t) = Ct

(
m∑

k=1

Ckαj

)

.

From Proposition 8.8 it follows that the right hand side, written in the Jordan
basis for C, has nonzero coordinates corresponding only to the two eigenvectors
of C associated to the 2 × 2 Jordan block. One of these vectors is exactly λ
and 〈αi, λ〉 = 0. The other vector ν satisfies Cν = ν + λ so its coefficient
in δj(t + m) − δj(t) is independent of t and is equal to mcj , where cj is the
coefficient of ν in the expansion of αj in the Jordan basis of C. Let us calculate
cj explicitly. The vector ν is orthogonal to the other Jordan basis vectors of
C with respect to the scalar product (·, ·) defined by (αi, αj) = δij , see [38,

(6.47)]. Thus cj equals to
(αj ,ν)
(ν,ν) . For any k ∈ I, we have ν(k) = 1

4 (−1)ǫkλ(k).

Therefore (ν, ν) = 1
16h

(2)(Λ̂). On the other hand, (αj , ν) is equal up to sign

to 1
4λ(j). Thus cj equals to 4λ(j)

h(2)(Λ̂)
. Multiplying this by m shows that the

coefficient of ν in δj(t+m)− δj(t) equals g(Λ̂)λ(j). It remains to note that up
to sign we have 〈αi, ν〉 = λ(i) which yields the result.
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Note that for the T (Ârd−1, exp(2πip/r), n) family #3 one can use the topology
of the torus embedding of the quiver to define conserved quantities, as it was
done in a slightly different language by Goncharov and Kenyon in [17]. In
[13] we performed this construction in our language for cylindric rather than
toric quivers, resulting in what we called Goncharov-Kenyon Hamiltonians.
However, as evident from the definition, the task of finding time-dependent
conserved quantities is strictly harder than that of finding conserved quantities:

if one knows A(t), one can find the associated function B(t) =
(

A(t+t0)
A(t)

)1/m

,

but there is no simple way to go in the other direction. Thus, even for the
T -systems from family #3 we do not know of a construction of time-dependent
conserved quantities in general.
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