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Abstract. This is the last part of a series of articles on a family of
geometric structures (PACS–structures) which all have an underlying
almost conformally symplectic structure. While the first part of the
series was devoted to the general study of these structures, the second
part focused on the case that the underlying structure is conformally
symplectic (PCS–structures). In that case, we obtained a close rela-
tion to parabolic contact structures via a concept of parabolic con-
tactification. It was also shown that special symplectic connections
(and thus all connections of exotic symplectic holonomy) arise as the
canonical connection of such a structure.

In this last part, we use parabolic contactifications and constructions
related to Bernstein–Gelfand–Gelfand (BGG) sequences for parabolic
contact structures, to construct sequences of differential operators nat-
urally associated to a PCS–structure. In particular, descending BGG
sequences gives rise to a large family of complexes of differential op-
erators associated to a special symplectic connection. For some types
of structures, descending relative BGG sequences and subcomplexes
in BGG sequences provides large families of complexes for more gen-
eral instances of PCS–structures. In the last part of the article we
prove several results on the cohomology of the complexes obtained by
descending BGG sequences.
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1. Introduction

This article is the last part in a series of three which aims at constructing a
large family of differential complexes naturally associated to certain geometric
structures. These structures are associated to certain parabolic subalgebras
in simple Lie algebras and they come with an underlying almost conformally
symplectic structure, so we call them parabolic almost conformally symplectic
structures or PACS–structures for short. The precise definition of these struc-
tures was given in the first part [8] of the series, where we also showed that any
such structure gives rise to a canonical connection on the tangent bundle of
the underlying manifold. Hence the torsion and the curvature of this canonical
connection are natural invariants of a PACS–structure. The torsion naturally
splits into two components, one of which is exactly the obstruction to the un-
derlying structure being conformally symplectic. If this obstruction vanishes,
the structure is called a PCS–structure, and if the remaining component of
torsion also vanishes, one talks about a torsion–free PCS–structure.
Using the classification of simple Lie algebras, one can give an explicit de-
scription of the PACS–structures. In [8] it was shown that, on the one hand,
these structures provide natural extensions of several well known and interest-
ing geometries. For example, for any Kähler metric, the Kähler form and the
complex structure define a torsion–free PCS–structure corresponding to the
simple Lie algebra su(n + 1, 1). Indeed, torsion–free PCS–structures of this
type are equivalent to Kähler metrics. Allowing torsion for the PCS–structure,
one obtains certain more general types of almost Hermitian manifolds, while
for PACS–structures of that type, there is no obvious description in terms of
Hermitian metrics. Things work similarly in indefinite signatures and for para–
Hermitian metrics. Another type of PCS–structure is closely related to almost
quaternionic manifolds endowed with a conformally symplectic structure that
is Hermitian in the quaternionic sense.
On the other hand, there is a close relation between PCS–structures and spe-
cial symplectic connections in the sense of [3]. Indeed any special symplectic
connection turns out to be the canonical connection of a torsion–free PCS–
structure, so in particular, this applies to all connections of exotic symplectic
holonomy. There is a nice characterization of the PCS–structures whose canon-
ical connection is special symplectic using local parabolic contactifications (see
below), which is crucial for the developments in this article.

The algebraic data which determine a type of PACS–structures at the same
time determine another geometric structure in one higher dimension. Any of
these structures comes with an underlying contact structure and they are called
parabolic contact structures, see the discussion in Section 4.2 of [10]. Now on
a contact manifold, the Reeb field of any contact form defines a transversal
infinitesimal automorphism of the contact structure. In particular it gives rise
to a one–dimensional foliation and any local space of leaves for this foliation
naturally inherits a conformally symplectic structure. As discussed in [7], any
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conformally symplectic structure can be locally realized in this way (“local
contactification”) and this realization is unique up to local contactomorphism.
For parabolic contact structures, transversal infinitesimal automorphisms are
much more rare (and don’t exist generically). Still, as shown in the second
part [9] of this series there is a perfect analog of the above constructions in the
setting of parabolic contact structures and PCS–structures. For any transver-
sal infinitesimal automorphism of a parabolic contact structure of any type, a
local leaf space naturally inherits a PCS–structure of the corresponding type
(“PCS–quotients”). Locally, any PCS–structure can be realized in this way
(“parabolic contactification”) and this realization is unique up to local isomor-
phism (of parabolic contact structures). So one can view PCS–structures as
geometric structures characterizing reductions of parabolic contact structures
by a transversal infinitesimal symmetry.
In the language of parabolic contactifications, one can also deal with geome-
tries corresponding to Lie algebras of type Cn (which are excluded in [8]), see
Section 3 of [9]. Here the parabolic contact structure is a contact projective
structure (see [18]) with vanishing contact torsion, while the analog of a PCS–
structure is a conformally Fedosov structure as introduced in [17] (with slight
modifications). Finally, in all cases, the PCS–structures for which the distin-
guished connection is special symplectic (which in the conformally Fedosov case
means that it is of Ricci–type) are exactly those, for which any local parabolic
contactification is locally isomorphic to the homogeneous model. This puts the
construction for special symplectic connections from [3] into a broader context.

As stated above, this last part of the series aims at constructing differential
complexes, which are naturally associated to special symplectic connections
or more general PCS–structures. The original motivation for the series were
the differential complexes on CPn constructed in [16] and applied to prob-
lems in integral geometry there. In that construction, it was not clear what
kind of geometric structure on CPn is “responsible” for the existence of the
complexes. A surprising feature is that these complexes are one step longer
than the de–Rham complex, which suggests that they have their origin in one
higher dimension. The simplest instance of such a complex is the so–called
co–effective complex on a conformally symplectic manifold, which looks like
the Rumin complex associated to a contact structure in one higher dimension.
Indeed, as a “proof of concept” for the current series, it was shown in [7] that
the co–effective complex can be constructed from the Rumin complex on local
contactifications.
Basically, we carry out a similar procedure in this article, starting from a large
family of differential complexes that are naturally associated to parabolic con-
tact structures. These are derived from BGG sequences as introduced in [11].
Standard BGG sequences are complexes only on locally flat geometries, so
pushing them down, one obtains sequences of differential operators naturally
associated to a PCS–structure, which are complexes provided that the canonical
connection of the PCS–structure is special symplectic. For certain geometries,
it has been shown in [12] that certain parts of BGG sequences are subcomplexes
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under weaker assumptions than local flatness. For parabolic contact structures,
this only applies in the case of structures of type An, so this gives rise to a con-
struction of complexes (of unusual length) for certain PCS–structures of Kähler
and para–Kähler type. In the para–Kähler case, one can also start from the
relative version of BGG sequences which were constructed in the recent arti-
cle [14], and which are complexes under much weaker assumptions than local
flatness.
In the situation of the co–effective complex and the Rumin complex, both
the construction of the upstairs complex and the procedure of pushing down
can be phrased in terms of differential forms. In the general situation of BGG
sequences and their variants, one has to deal with differential forms with values
in a tractor bundle on the level of parabolic contact structures, and constructing
the BGG sequence is much more involved. Therefore, we use a slightly different
approach than in [7]. The main observation here is that for a completely
reducible natural bundle on a parabolic contact structure (i.e. a bundle induced
by a completely reducible representations of the parabolic subgroup) there is an
obvious counterpart for PCS–structures of the corresponding type. For a local
contactification, there is a rather simple relation between sections upstairs and
downstairs, which allows one to directly descend invariant differential operators
acting between sections of such bundles. Hence we can directly descend the
operators in the BGG sequence to any PCS–quotient, without the need to think
about descending tractor bundles or tractor connections. It should be remarked
that also an approach via downstairs tractor bundles should be feasible. For
the case of conformally Fedosov structures, this has been carried out in [17].
After a short review of the geometric structure involved and the parabolic ver-
sion of contactification, the push down procedure for invariant operators acting
between sections of completely reducible bundles is described in Section 2; the
main results are Theorems 2.4 and 2.5. Section 3 discusses the applications
of this technique to BGG sequences and the related constructions described
above. We describe in detail the complexes associated to connections of Ricci
type in Theorem 3.1 and those associated to Bochner–bi–Lagrangean metrics
in Theorem 3.3. The complexes for para–Kähler manifolds obtained from rel-
ative BGG sequences are described in detail in Theorem 3.4. The cases of
complexes for Bochner–Kähler metrics (of any signature) coming from BGG
sequences and for Kähler metrics coming from subcomplexes in BGG sequences
are briefly outlined in Section 3.4 and Remark 3.5.
In Section 4, we describe results on the cohomology of the descended version
of BGG sequences. This is similar to the results for the co–effective complex
in [7], but this time, the main work is done on the level of the parabolic contact
structure. The basic ingredient here is that on that level, the cohomology of a
BGG sequence can be described as a twisted de–Rham cohomology. A detailed
analysis of the construction of BGG sequences shows that there is a sequence of
subsheaves in the upstairs sheaves of tractor–bundle–valued differential forms
which computes the cohomology of the descended complex. In Theorem 4.8 we
construct a long exact sequence involving the cohomology groups of that sheaf.
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Specializing to the case of the homogeneous model, Theorem 4.10 then allows
one to interpret this sequence in terms of “downstairs” data. The results are
analyzed locally as well as for the global contactification of CPn by the sphere
S2n+1, where we obtain a vast generalization of the results on cohomology
needed for the applications in [16].
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2. Pushing down invariant operators

We first review PCS–structures and their relation to parabolic contact struc-
tures. Then we show that each invariant differential operator acting between
sections of irreducible natural bundles on the parabolic contact structure de-
scends to a natural differential operator on the corresponding PCS–structure.

2.1. The types of geometric structures

To specify a type of PCS–structure and corresponding parabolic contact struc-
ture, we have to choose some algebraic data, see Section 2.1 of [9] for more
details. We first need a semisimple Lie group G, whose Lie algebra g admits
a so–called contact grading g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2. Next, we have
to choose a parabolic subgroup P ⊂ G corresponding to the Lie subalgebra
p := g0 ⊕ g1 ⊕ g2. Then we define a closed subgroup G0 ⊂ P with Lie alge-
bra g0 as consisting of those elements of P whose adjoint action preserves the
grading of g. It turns out that the exponential mapping restricts to a diffeo-
morphism from p+ := g1 ⊕ g2 onto a closed normal subgroup P+ ⊂ P such
that P is the semi–direct product of G0 and P+. In particular, P/P+

∼= G0.
By definition, g− := g−2 ⊕ g−1 is a Heisenberg algebra, so its Lie bracket
defines a non–degenerate line in Λ2(g−1)

∗. This in turn defines the conformally
symplectic group CSp(g−1) ⊂ GL(g−1). It turns out that for any element
ϕ ∈ CSp(g−1), there is a unique linear isomorphism ψ : g−2 → g−2 such that
(ψ, ϕ) defines an automorphism of the graded Lie algebra g−, so one obtains an
isomorphism Autgr(g−) ∼= CSp(g−1). By definition, the adjoint action of G0

restricts to an action by automorphisms on the graded Lie algebra g−, so one
obtains a homomorphism G0 → CSp(g−1) which turns out to be infinitesimally
injective.
If g is not of type Cn, then both geometric structures we need are determined
by this homomorphism. In [8], we have defined the PACS–structure associated
to (G,P ) as the first order structure on manifolds of dimension dim(g−1) de-
termined by the homomorphism G0 → GL(g−1). Hence such a structure on a
smooth manifoldM is given by a principal G0–bundle together with a soldering
form, a strictly horizontal, G0–equivariant g−1–valued one–form on the total
space of this bundle. Since the image of our homomorphism is contained in
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CSp(g−1), any such structure induces an underlying almost conformally sym-
plectic structure. A PCS–structure of type (G,P ) is then such a first order
structure for which this underlying structure is conformally symplectic.
On the other hand, for a contact manifold of dimension dim(g−), one considers
the associated graded to the tangent bundle, which has a natural frame bundle
with structure group Autgr(g−) ∼= CSp(g−1). A parabolic contact structure
of type (G,P ) is then given by a reduction of structure group of this frame
bundle corresponding to the homomorphism G0 → CSp(g−1), respectively by
the canonical Cartan geometry that such a reduction determines, see Section
4.2 of [10].
If g is of type Cn, then it turns out that the homomorphism G0 → CSp(g−1)
induces an isomorphism between the Lie algebras of the two groups. Thus
reductions of structure group as considered above carry very little information.
Nonetheless, there are analogs for both types of geometries in the Cn–case.
On the parabolic contact side, these are contact projective structures (with
vanishing contact torsion) as discussed in [18] and in Section 4.2.6 of [10]. On
the conformally symplectic side, these are the conformally Fedosov structures
discussed in Section 3 of [9] based on the earlier treatment in the first preprint
version of [17].
Treating the structures in terms of principal bundles and soldering forms (of
appropriate type) the Cn–case looks essentially the same as the other cases.
Hence we will give a uniform treatment below and also refer to conformally
Fedosov structures as PCS–structures of type Cn.

2.2. Invariant operators on parabolic contact structures

The uniform description of parabolic contact structures is via Cartan geome-
tries of type (G,P ). A parabolic contact structure of type (G,P ) on a manifold
M# determines a principal P–bundle p# : G# → M# and a normal Cartan
connection ω ∈ Ω1(G#, g). Factoring by the free action of P+ ⊂ P , we obtain

a principal G0–bundle G
#
0 →M#. The Cartan connection ω descends to a sol-

dering form θ# that defines a reduction of the frame bundles of the associated
graded to the tangent bundle, see Section 2.3 of [9] for more details. If g is not
of type Cn, then this is the equivalent encoding of the geometry as discussed
in Section 2.1.
Any representation of the group P gives rise to a natural vector bundle on
parabolic contact structures of type (G,P ) via forming associated bundles to
the Cartan bundle. We will only meet natural bundles obtained in this way
in this article. The general representation theory of P is rather complicated,
but irreducible and hence completely reducible representations of P are easy to
understand. If W is such a representation, then the nilpotent normal subgroup
P+ ⊂ P acts trivially on W, so we obtain a representation of G0. This imme-
diately implies that the associated bundle G#×P W can be naturally identified

with G#
0 ×G0

W. Hence natural bundles associated to completely reducible
representations can be readily understood in terms of the underlying structure.
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Finally, the group G0 is always reductive, so its representation theory is well
understood.
The equivalence between parabolic contact structures and Cartan geometries
in particular implies that any automorphism of a parabolic contact structure
on M# lifts to a bundle–automorphism of G# which preserves ω. This implies
an analogous result for an infinitesimal automorphism ξ ∈ X(M#), i.e. a vector
field whose local flows are automorphisms. Such a vector field always uniquely
lifts to a P–invariant vector field ξ̃ ∈ X(G#) such that for the Lie derivative L,
we get Lξ̃ω = 0. Invariance of ξ̃ implies that there is an intermediate vector field

ξ0 ∈ X(G#
0 ) whose flow preserves the soldering form. We will be particularly

interested in the case of transverse infinitesimal automorphisms, i.e. the case
that all values of ξ ∈ X(M#) are transverse to the contact subbundle (so in
particular, ξ is nowhere vanishing).
Given a representation W of P , the space of sections of the natural bundle
G# ×P W can be naturally identified with the space of P–equivariant smooth
functions G# → W. Given a vector field ξ̃ ∈ X(G#), we can differentiate such

equivariant functions and if ξ̃ is P–invariant, then the resulting function will
be equivariant and hence correspond to a section. Hence an equivariant vector
field acts on sections of any natural vector bundle, and we will denote this
action by Lξ̃.

IfW is completely reducible then P–equivariancy of a function G# → W implies
invariance under the group P+. Hence such a function descends to G#/P+ =

G#
0 and is G0–equivariant there. A P–invariant vector field ξ̃ as above induces

a G0–invariant vector field ξ0 on G#
0 and we can use ξ0 to differentiate sections

as above, thus obtaining the same action as above.
There is a general concept of invariant differential operators acting between
sections of natural vector bundles over manifolds endowed with a parabolic
contact structure of some fixed type. For our purposes it suffices to know that
such an operator is defined on any manifold endowed with a structure of the
given type and that these operators are compatible with the inclusion of open
subsets (endowed with the restricted structure) and with the action of isomor-
phisms. Hence they are compatible with the action of local isomorphism and
in particular of local automorphisms. Applying this to local flows, we conclude
that for an infinitesimal automorphism ξ̃ of the Cartan geometry determined by
a parabolic contact structure, any invariant differential operator D commutes
with the action of Lξ̃. In the case of completely reducible bundles, one may as

well work on the G0–principal bundle G#
0 using Lξ0 .

2.3. PCS–quotients

The fundamental notion for the study of contactifications in the realm of PCS–
structures and parabolic contact structures in [9] is a PCS–quotient. Suppose
that we have given a parabolic contact structure of type (G,P ) onM# together
with a transverse infinitesimal automorphism ξ ∈ X(M#) of this geometry.
Then ξ is nowhere vanishing and hence defines a one–dimensional foliation
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of M#. Basically, a PCS–quotient is a global space of leaves for this foliation
which is endowed with a PCS–structure of type (G,P ) that can be viewed as
a quotient of the parabolic contact structure.

To formulate the precise definition, let p#0 : G#
0 → M# be the G0–bundle

determined by the parabolic contact structure and let θ# be its soldering form.
Now for a PCS–quotient, one requires

• a surjective submersion q :M# →M onto a smooth manifold M such
that the fibers of q are connected and their tangent spaces are spanned
by ξ

• a PCS–structure of type (G,P ) onM with G0–bundle p : G0 →M and
soldering form θ

• a lift q0 : G#
0 → G0 of q to a morphism of principal bundles which is a

surjective submersion with connected fibers, whose tangent spaces are

spanned by ξ0 and such that q∗0θ coincides with the component θ#−1 of
the “upstairs” soldering form (see Sections 2.3 and 2.4 of [9] for details)

Remark 2.1. If g is not of type Cn, then the above is exactly the definition of a
PCS–quotient from Section 2.4 of [9]. If g is of type Cn, then the discussion in
Section 3.3 of [9] shows that the same setup is available for a projective contact
structure (with vanishing contact torsion) on M# and a conformally Fedosov
structure on M , see in particular the proof of the first part of Theorem 8 of [9].

As it stands, the concept of a PCS–quotient may look rather restrictive and
one might doubt whether there are many examples. However, the results of
[7] and of [9] imply that there are lots of examples. This is best formulated in
the language of parabolic contactifications of PCS–structures. By a parabolic
contactifications of a PCS–structure M , we simply mean a realization of M as
a PCS–quotient of a parabolic contact structure of type (G,P ) (respectively
that parabolic contact structure). For later use, let us collect the fundamental
results on parabolic contactifications:

Theorem 2.2. (1) Let M be a PCS–structure with underlying conformally
symplectic structure ℓ ⊂ Λ2T ∗M . Then any open subset U ⊂ M over which ℓ
admits a nowhere–vanishing section which is exact as a two–form on M admits
a parabolic contactification.
(2) Let M and N be two PCS–structures endowed with fixed parabolic contacti-
fications. Then locally any morphism of PCS–structures (compare with Section
2.5 below) lifts to a contactomorphism between the contactifications.
(3) Any lift of a morphism of PCS–structures to a contactomorphism of par-
abolic contactifications is automatically compatible with the infinitesimal auto-
morphisms up to a nowhere–vanishing, locally constant factor and a morphism
of parabolic contact structures.

Proof. (1) By Lemma 3.1 of [7], U can be realized as the quotient q : U# → U
of a contact manifold U# by a transverse infinitesimal contactomorphism. By
Theorem 4 (for g not of type Cn) respectively part 2 of Theorem 8 (for g of
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type Cn) of [9], a PCS–structure of type (G,P ) on U lifts to a parabolic contact
structure of type (G,P ) on U#, thus providing the required PCS–quotient.

The statement of (3) is proved in Theorem 5 (for g not of type Cn) respectively
in part 3 of Theorem 8 (for g of type Cn) of [9]. Moreover, by Proposition 3.1
of [7], the assumption of part (3) is locally satisfied for each morphism between
PCS–structures endowed with contactifications, so (2) follows. �

We want to remark that in [9] we also constructed examples of global contact-
ifications which will play an important role later on.

2.4. Descending invariant differential operators to PCS–
quotients

Now suppose that W is a representation of G0, which we can also view as a
completely reducible representation of P . Then as discussed in Section 2.2,
this gives rise to a (completely reducible) natural vector bundle on parabolic
contact structures of type (G,P ). Given such a geometry (p# : G# → M#, ω)
we denote the resulting bundle by WM# := G#×P W. As noted in Section 2.2,

we can also view WM# as the bundle G#
0 ×G0

W associated to the underlying
G0–bundle.
On the other hand, one also obtains a natural vector bundle on PCS–structures
of type (G,P ), since they are also defined by a principal G0–bundle. Given
such a geometry (p : G0 →M, θ) we write WM := G0 ×G0

W for this bundle.
Now it is well known that sections of an associated bundle can be viewed
as equivariant functions on the total space of the inducing principal bundle.
Explicitly, the space Γ(WM →M) of sections is naturally isomorphic to

C∞(G0,W) = {f ∈ C∞(G0,W) : f(u · g) = g−1 · f(u) ∀g ∈ G0}.

Evidently, such a function can be pulled back via q0 : G#
0 → G0 to a smooth

equivariant function G#
0 → W, which then defines a smooth section ofWM# →

M#. This defines an injection Γ(WM) →֒ Γ(WM#), which we denote by q∗0 .

Lemma 2.3. Let q :M# →M be a PCS–quotient by a transversal infinitesimal
automorphism ξ ∈ X(M#) of a parabolic contact structure of type (G,P ) with

bundle map q0 : G#
0 → G0. Let W be a representation of G0 and consider the

corresponding induced bundles WM# and WM as above. Let ξ0 ∈ X(G#
0 ) be

the G0–invariant vector field induced by ξ and consider the induced map Lξ0

on the space Γ(WM#).
Then the the image of q∗0 : Γ(WM) → Γ(WM#) coincides with the kernel of
Lξ0 .

Proof. In the language of equivariant functions, Lξ0 is simply given by dif-
ferentiating vector valued functions using the vector field ξ0. (This preserves
the space of equivariant functions since ξ0 is G0–invariant.) In view of this,
the result follows from the description of q∗0 in terms of equivariant functions,
since the fibers of q0 are connected by assumption and their tangent spaces are
spanned by ξ0. �
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Having this at hand, we can formulate the fundamental results about descend-
ing invariant differential operators.

Theorem 2.4. Let q : M# → M be a PCS–quotient by a transversal infin-
itesimal automorphism ξ ∈ X(M#) of a parabolic contact structure of type

(G,P ) with bundle map q0 : G#
0 → G0, and let W and W̃ be representations of

G0. Further, let D# : Γ(WM#) → Γ(W̃M#) be a linear invariant differential
operator for the given parabolic contact structure.
Then there is a unique linear differential operator D : Γ(WM) → Γ(W̃M) such
that q∗0 ◦D = D# ◦ q∗0 .

Proof. SinceD# is an invariant differential operator, it commutes with pullback
along the flow of ξ0. Infinitesimally, this means that D# ◦ Lξ0 = Lξ0 ◦D

#, so

in particular D# maps ker(Lξ0) ⊂ Γ(WM#) to ker(Lξ0) ⊂ Γ(W̃M#). Using
Lemma 2.3, we conclude that given σ ∈ Γ(WM), there is a unique section σ̃
such that D#(q∗0σ) = q∗0 σ̃, so we can define D(σ) := σ̃ to obtain an operator
with the desired property. Clearly, D is linear, and in local coordinates it is
evident that D is a differential operator. Alternatively, one may observe that
if σ vanishes on an open subset U ⊂M , then q∗0σ vanishes on (q0)

−1(U). Since
D# is a differential operator, the same holds for D#(q∗0σ) so D(σ) vanishes
on U . Thus D is a local operator and thus a differential operator by the Peetre
theorem. �

2.5. Naturality of the descended operators

We next show that pushing down to PCS–quotients can be used to construct
natural operators on the category of PCS–structures from invariant differential
operators for the corresponding parabolic contact structure. To explain the
meaning of “natural operator”, we have to recall some concepts.
First a morphism of PCS–structures is defined to be a principal bundle mor-
phism ϕ which covers a local diffeomorphism ϕ of the base manifolds and is
compatible with the soldering forms. Next, we need the concept of a natu-
ral vector bundle on the category of PCS–structures, but here we restrict to
bundles associated to the defining principal bundle. So as in Section 2.4, we
take a representation W of G0 and for a PCS–structure (G0 →M, θ) we define
WM := G0 ×G0

W. The soldering form θ can then be used to identify natural
bundles of this type with more traditional natural bundles like tensor bundles.
This implies that any morphism ϕ of PCS–structures, say onM and N , induces
a vector bundle map Wϕ : WM → WN , which restricts to a linear isomor-
phism on each fiber. Compatibility with the soldering forms implies that this
is compatible with the identifications with tensor bundles, i.e. one obtains the
usual induced bundle maps there. The induced vector bundle maps can then
be used to pull back sections of associated bundles: For σ ∈ Γ(WN), there is
a unique section ϕ∗σ ∈ Γ(WM) such that σ ◦ ϕ = Wϕ ◦ ϕ∗σ.

Now given a second representation W̃, a natural operator between sections
of the corresponding associated bundles is defined as a family of differential
operators DM : Γ(WM) → Γ(W̃M) which is compatible with the actions of
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all pullback operators associated to morphisms of PCS–structures. Hence for
any morphism ϕ to a PCS–structure over N , and any section σ ∈ Γ(WN)
we require DM (ϕ∗σ) = ϕ∗(DN (σ)), where (as usual) we denote all pullback
operators by the same symbol.

Theorem 2.5. Let W and W̃ be two representations of G0, which we also view
as completely reducible representations of P . Then any invariant operator on
the category of parabolic contact structures of type (G,P ) between sections of
the natural bundles induced by the two representations canonically induces a
natural differential operator on the category of PCS–structures of type (G,P )
acting between sections of the induced bundles corresponding to the two repre-
sentations.

Proof. This follows rather easily from the results on PCS–contactifications in
Theorem 2.2. Let us start with a PCS–structure on M , a section σ ∈ Γ(WM)
and a point x ∈M . By part (1) of Theorem 2.2, there is an open neighborhood
U of x in M which can be realized as a PCS–quotient q : U# → U . Given the
invariant operator D# on parabolic contact structures, we can use Theorem
2.4 to obtain an operator DU : Γ(WU) → Γ(W̃U). In particular, we can apply

this to σ|U to obtain a section of W̃M defined over U .
To complete the proof, we need a fact on pullbacks of sections. (This may
look rather obvious in written form, but this is slightly deceiving, since this
relates two different concepts of pullback, which are denoted in the same way.
In particular, one of this is non–standard since it relates bundles over different
manifolds.) Suppose that M and M̃ are PCS–structures endowed with para-

bolic contactifications q : M# → M and q̃ : M̃# → M̃ , and let us denote the

corresponding bundles by G0, G̃0, G
#
0 and G̃#

0 , respectively. Assume further

that Φ : G0 → G̃0 is a morphism of PCS–structures and that Ψ : G#
0 → G̃#

0 is a
lift to a morphism of parabolic contact structures which is compatible with the
infinitesimal automorphisms up to a constant multiple. Then for any section
σ of a natural bundle over M̃ , we have Ψ∗q̃∗0σ = q∗0Φ

∗σ.

To prove this claim, observe that if f is the equivariant function on G̃0 cor-
responding to σ, then q̃∗0σ and Ψ∗q̃∗0σ correspond to f ◦ q̃0 and f ◦ q̃0 ◦ Ψ,
respectively. Since Ψ is compatible with the infinitesimal automorphisms up to
constant multiple, the fact that q̃∗0σ lies in the kernel of Lξ̃0

implies that Ψ∗q̃∗0σ
lies in the kernel of Lξ0 . Thus it must be of the form q∗0τ for some section τ
and then q̃0 ◦Ψ = Φ ◦ q0 implies that τ = q∗0Φ

∗σ, which completes the proof of
the claim.
Returning to WM and W̃M , we can carry out the above construction for the
elements of an open covering {Ui : i ∈ I} of M , so for each i we descend

D#(q∗i (σ|Ui
)) to a section Di(σ) of W̃M defined over Ui. If Ui ∩Uj = Uij 6= ∅,

then by parts (2) and (3) of Theorem 2.2, the identity on Uij locally lifts to
an isomorphism Ψij of the parabolic contact structures which is compatible
with the transversal infinitesimal automorphisms up to a constant multiple.
By the claim, this implies that over the open subset in question, we have
Ψ∗

ijq
∗
jσ = q∗i σ. Invariance of D# now implies that D#(q∗i σ) = Ψ∗

ijD
#(q∗jσ),
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so q∗i (Di(σ)) = Ψ∗
ijq

∗
j (Dj(σ)). Again by the claim, the right hand side equals

q∗i (Dj(σ)). Thus, locally on Uij , we have Di(σ) = Dj(σ), so this has to hold
on all of Uij .
On the one hand, this shows that the sections Di(σ) can be pieced together to
define a global section DM (σ). On the other hand, applying the argument to
the union of two coverings, we see that DM (σ) is independent of the choice of
covering, so we have obtained a well defined linear differential operator DM .
Thus it remains to prove that the DM define a natural operator. Naturality
of a differential operator can be verified locally, so in view of Theorem 2.2, it
suffices to do this for PCS–structures admitting a global contactification and
for morphisms which lift to the contactifications. But in this case, the required
property follows immediately from the claim. �

3. (Relative) BGG complexes and subcomplexes

Since PCS–structures admit canonical connections, constructing differential op-
erators, which are intrinsic to such structures, is not difficult. As in Riemannian
geometry, one can simply form iterated covariant derivatives with respect to
induced linear connections, combine them with iterated covariant derivatives
of the torsion and the curvature of the canonical connection and then apply
tensorial operations. Constructing differential complexes naturally associated
to such geometries is a completely different issue, and it is not at all clear, how
to do this “by hand”.
On the other hand, there are general constructions for a large number of differ-
ential complexes on locally flat parabolic contact structures as well as on certain
non–flat structures of type An. All these complexes can be pushed down to
PCS–quotients thus providing a large number of differential complexes, which
are naturally associated to such structures.

3.1. BGG sequences

Let us start with a type (G,P ) of parabolic geometries and a finite dimen-
sional representation V of G. Associated to these data there is a sequence of
invariant differential operators acting on sections of certain irreducible natu-
ral vector bundles over parabolic geometries of type (G,P ). A construction
for these sequences was given in [11] and improved in [4]. More recently, the
construction was generalized and substantially improved in [14]. In the case
of the homogeneous model G/P of the geometry, the resulting sequence turns
out to be a complex and a fine resolution of the locally constant sheaf V. In a
certain sense this resolution is dual to Lepowsky’s generalization (see [20]) of
the Bernstein–Gelfand–Gelfand resolution of V by homomorphisms of Verma
modules. The fact that the BGG sequence is a complex, extends from the
homogeneous model G/P to all parabolic contact structures which are locally
isomorphic to G/P , i.e. to the locally flat geometries. Also in this more general
case, the BGG complex is a fine resolution of a sheaf. This can be described
explicitly as the sheaf of those sections of the vector bundle induced by V (a
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so-called tractor bundle) which are parallel for a canonical flat connection on
that bundle.
Applying the push–down construction from Section 2 to a BGG-sequence,
one therefore obtains a complex if all local contactifications of a given PCS–
structure are locally flat. The latter property is analyzed in Theorem 7 and
Corollary 1 of [9], where it is shown to be equivalent to the fact that the
canonical connection associated to the PCS–structure is a special symplectic
connection in the sense of [3]. Since conversely any special symplectic connec-
tion is the canonical connection associated to a PCS–structure, we conclude
that the pushed down versions of BGG complexes are associated to special
symplectic connections. We should point out that global contactifications as
discussed in Sections 2.6 and 3.4 of [9] are of particular interest here. These
are contactifications of compact PCS–structures, which are circle bundles, and
in this case it is possible to analyze the cohomology of the resulting complexes,
see Section 4.
The bundles showing up in a BGG sequence are associated to the represen-
tations of P on the Lie algebra homology groups H∗(p+,V). Here p+ is the
nilradical of the parabolic subalgebra p ⊂ g, and there is a general result that
these homology representations are always completely reducible. Hence in the
complex case, they can be described in terms of weights and Kostant’s theorem
(see [19]) gives an explicit way to compute the relevant weights algorithmically.
These results can be extended to the real case using complexifications. In
what follows, we will usually suppress such computations and just state the
descriptions of the resulting bundles.
Invariance of the operators in a BGG sequence can also be used to determine
the principal part of the operator. By construction, the principal symbol of any
operator showing up in a BGG sequence has to be a natural bundle map and
thus is induced by a P–homomorphism between the inducing representations.
As noted above, the inducing representations are completely reducible, so the
action of P comes from a representation of the reductive group G0, whose
representation theory is well understood.
To described the BGG complexes associated to special symplectic connections,
the main task therefore is to convert the representation theory information
available for the parabolic contact structures into information on bundles on
PCS–quotients. We will do this in a bit more detail for the Cn and An types
and sketch how things look for the other types.

3.2. Example: Complexes associated to connections of Ricci type

This is the case discussed in Section 3 of [9]. One starts with a conformally
Fedosov structure on a smooth manifold M , which is given by a conformally
symplectic structure ℓ ⊂ Λ2T ∗M and a projective class of torsion free linear
connections on TM , which satisfy a certain compatibility condition. Locally,
this structure determines a symplectic form ω onM (up to a constant multiple)
and a unique connection ∇ in the projective class such that ∇ω = 0. So
locally, the structure is just given by a torsion–free symplectic connection, see
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Proposition 2 in [9]. Any local contactification of M then inherits a canonical
contact projective structure, which is locally flat if and only if the connection
∇ is of Ricci type, see Theorem 8 and Corollary 1 in [9]. This means that in
the decomposition of the curvature of ∇ into irreducible pieces, the trace-free
part vanishes. Thus all the curvature is concentrated in the trace part, which
encodes the Ricci curvature of ∇.
The irreducible natural bundles available in this situation are easy to de-
scribe. They are equivalent to irreducible representation of g0 ∼= csp(2n), where
2n = dim(g−1). Irreducible representations of the center are one–dimensional
and thus give rise to natural line bundles. On the other hand the irreducible
representations of sp(2n) can all be constructed from the standard represen-
tation by tensorial operations. For a contact projective structure on M#, the
standard representation of g0 corresponds to the contact subbundle H ⊂ TM#.
The basic natural line bundle in this case is the quotient Q := TM#/H , and
one can construct density bundles as (real) roots of the line bundle Q ⊗ Q,
which has to be trivial.
For a PCS–structure on M , the standard representation of g0 corresponds to
the tangent bundle TM . Now onM#, the Levi bracket induces an isomorphism
H ∼= H∗⊗Q, whereas onM , inserting vector fields into elements of ℓ defines an
isomorphism TM ⊗ ℓ→ T ∗M , which shows that the representation g−2 of g0,
which gives rise to Q onM# corresponds to ℓ∗ onM , compare with Section 3.2
of [7]. This is sufficient to explicitly associate to any irreducible representation
of g0 a weighted tensor bundle (a tensor product of a natural line bundle with
a natural subbundle of a tensor bundle) on M .
Using this, we can give a description of the resulting sequences in the spirit of
the parametrization of BGG sequences for AHS–structures introduced in [1].
To do this, we make one more observation. Suppose that V and W are two
irreducible representations of g0. Then in the tensor product V ⊗W , there is
a specific irreducible component called the Cartan product, which we denote
by V ⊙ W . This is the component of maximal highest weight respectively
the subrepresentation generated by the tensor product of two highest weight
vectors. Given two natural tensor bundles E and F , we denote byE⊙F ⊂ E⊗F
the irreducible tensor subbundle corresponding to the Cartan product of the
inducing representations. Since V ⊙W occurs in V ⊗W with multiplicity one,
there is a unique (up to scale) natural bundle map E ⊗ F → E ⊙ F , which we
call the canonical projection onto the Cartan product.

Theorem 3.1. Let E be an irreducible tensor bundle on conformally symplectic
manifolds of dimension 2n ≥ 4 and let k ≥ 0 be an integer, which, depending on
E has to be even or odd. Then pushing down an appropriate BGG sequence on
local contactifications, one obtains on any conformally Fedosov manifold M of
dimension 2n a sequence of weighted irreducible tensor bundles and invariant
differential operators of the form

Γ(E0)
D0−→ Γ(E1)

D1−→ · · ·
D2n−1

−→ Γ(E2n)
D2n−→ Γ(E2n+1).
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This sequence is a complex if the canonical connection ∇ of M is of Ricci–
type. Moreover, E0 is a tensor product of E with some density bundle, and E1

is the Cartan product Sk+1T ∗M ⊙ E0. The operator D0 has order k + 1 and
its principal part is given by forming the k + 1–fold covariant derivative with
respect to (the connection induced by) ∇, symmetrizing and then projecting to
the Cartan product.

Proof. We have g = sp(2n + 2,R) and p ⊂ g is the stabilizer of a line in the
standard representation. The semisimple part g00 of g0, which is isomorphic to
sp(2n,R), can be identified with the space of those maps, which vanish on a
non–degenerate plane containing this line. Since g is a split real form, it has
a root decomposition and there is a simple root α1, such that a root space
gα lies in g00 if and only if α is linear combination of the other simple roots
α2, . . . , αn+1. Now let ω1, . . . , ωn+1 be the corresponding fundamental weights,
so dominant integral weights for g are linear combinations of these weights with
non–negative integral coefficients. If such a linear combination does not involve
ω1, then it can naturally be viewed as a weight of g00, and all weights of g00 arise
in this way.
For our purposes, it is better to describe representations by the negatives of low-
est weights rather than using the usual description in terms of highest weights,
but this causes only small differences. The irreducible tensor bundle E then
corresponds to a weight of g00. Representing this weight as a linear combination
of ω2, . . . , ωn+1 and adding kω1 (where k is the chosen integer), we obtain a
dominant integral weight. This corresponds to a finite dimensional irreducible
representation V of g, which integrates to the group Sp(2n+2,R). Now let us
in addition assume that the sum of the coefficients of those ωi with odd i is
even, which, depending on E, means that k has to be even or that k has to be
odd. Then the homomorphism Sp(2n,R) → GL(V) defining the representation
factorizes to G := PSp(2n+2,R), and hence V gives rise to a BGG–sequence on
parabolic geometries of type (G,P ) which are equivalent to contact projective
structures.
Via the construction in Section 2 we can descend this to a sequence of invariant
differential operators on conformally Fedosov structures. The BGG sequence
is a complex if the contact projective structure is locally flat, so we obtain a
complex if the canonical connection of the conformally Fedosov structure is of
Ricci type. To prove the rest of the theorem we need some information on the
bundles occurring in the BGG sequence, which all follow from the description of
the homology groups H∗(p+,V) via Kostant’s theorem. The homology groups
split into a direct sum of different irreducible representations of g0, and the
corresponding weights are obtained from the weight determined by V by the
affine action of a certain subset W p of the Weyl group W of g. The homology
degree in which an irreducible component occurs is given by the length of the
corresponding Weyl group element.
Using the algorithms from Section 3.2.16 of [10], one easily verifies that W p

consists of 2n + 2 elements, which have length 0, 1, . . . , 2n + 1, respectively.
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This implies that the BGG sequence and hence the descended sequence has
the claimed form with an irreducible bundle in each degree between 0 and
2n+ 1. The unique element of length zero in W p is the identity, so H0(p+,V)
is the representation of g0 corresponding to the same weight as V. But this
exactly says that E0 is the tensor product of E with a natural line bundle.
The unique element of length one in W p is the simple reflection corresponding
to α1. The affine action by this reflection maps kω1 + a2ω2 +

∑
i≥3 aiωi to

(−k − 2)ω1 + (a2 + k + 1)ω2 +
∑

i≥3 aiωi, which is just the sum of the initial

weight with −(k+1)α1. Now α1 is the lowest weight of g1 ∼= g∗−1, so −(k+1)α1

is the negative of the lowest weight of the representation inducing Sk+1T ∗M ,
which implies the claim on E1. The claim on the principal part of D0 then
follows from invariance on the level of contact projective structures. �

Via Kostant’s theorem, the representations inducing the bundles Ei in the
sequence can be determined explicitly and algorithmically. However, for i ≥ 2,
the explicit form of the bundles depends on the initial representation in a more
complicated way. Let us just describe one situation in a bit more detail, which
in particular covers the complexes used in [16]. To obtain these complexes, we
use the global contactification S2n+1 → CPn defined by the Hopf–fibration.
This can be interpreted as a PCS–contactification of the conformally Fedosov
structure on CPn defined by the Levi–Civita connection of the Fubini–Study
metric by the flat contact projective structure on S2n+1, see Section 3.4 in [9].
In the language of Theorem 3.1, the relevant complexes correspond to the case
that E0 = SℓT ∗M for some ℓ ∈ N and to k = 0. Hence one starts with a
completely symmetric covariant tensor of valence ℓ and D0 is given by taking
a covariant derivative and then completely symmetrizing the result. For the
applications in [16] one mainly needs the principal part of the operator D1 in
that complex and the information that, on CPn, one has ker(D1) = im(D0) ⊂
Γ(E1). Here we indicate how to get the necessary information on the principal
part, the cohomology of the sequence will be discussed in Section 4 below, see
in particular Theorem 4.13.
We actually discuss a slightly more general setting, looking at the case that
E0 = SℓT ∗M with an arbitrary even number k. In the language of the proof of
Theorem 3.1, the weight determining V is λ := kω1 + ℓω2. The unique element
of length two in W p is given by σ1 ◦ σ2, where we write σi for the reflection
corresponding to the ith simple root. The affine action of this composition
maps λ to (−k− ℓ− 3)ω1+ kω2+(ℓ+1)ω3, so this is the weight corresponding
to the bundle E2, which we denote by Ek

2 to indicate the dependence on k.
The bundle E0

2 is described in [16] in detail. Up to a twist by a natural line
bundle, this is the Cartan product of ℓ+1 copies of the trace-free part Λ2

0T
∗M

of Λ2T ∗M , i.e. it corresponds to the highest weight subspace in Sℓ+1(Λ2
0T

∗M).
Hence it can be viewed as tensors with 2ℓ + 2 indices which come up as ℓ + 1
skew symmetric pairs and the tensor is symmetric under permutations of the
pairs of indices.
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Representation theory also implies that there is a unique (up to a constant)
natural bundle map Sℓ+1T ∗M ⊗ Sℓ+1T ∗M → E0

2 on conformally symplectic
manifolds. This is basically given by grouping the indices into pairs and then
alternating each pair. By Theorem 3.1, the bundle E1 is, for k = 0, isomorphic
to Sℓ+1T ∗M . Hence one can use information on BGG sequences on contact
projective structures, to see that D1 has order ℓ+1 and obtain information on
its principal part.
For general k, the situation is similar. Up to a twist by a natural line bundle,
Ek

2 is the Cartan product of SkT ∗M and E0
2 , while E

k
1 = Sk+ℓ+1T ∗M . Basic

representation theory again shows that there is a unique (up to scale) natural
bundle map Sℓ+1T ∗M ⊗ Ek

1 → Ek
2 on conformally symplectic manifolds. This

shows that D1 still has order ℓ+ 1 in the general case, and one can use results
on BGG sequences to get information on its principal part.

Remark 3.2. Let us briefly discuss the restriction on the parity of the integer
k which determines the order of the first operator in the sequence in Theorem
3.1. From the proof it is clear that this is only needed in order that a certain Lie
algebra representation integrates to a group representation of PSp(2n+ 2,R).
However, for any choice of k, the Lie algebra representations integrate to rep-
resentations of Sp(2n + 2,R). Hence this restriction could be avoided if one
can construct a parabolic geometry of type (Sp(2n+2), P ) on the contactifica-
tions, for example by choosing some additional data on the given conformally
Fedosov structure.
It seems very plausible that this is possible, at least locally, or provided that the
line bundle ℓ defining the conformally symplectic structure is trivial. However,
Section 3.4 of [9] shows that this does not work in a straightforward way for
the global contactification S2n+1 → CPn defined by the Hopf–fibration. We
will not study this question further here.

3.3. Complexes associated to Bochner–bi–Lagrangean metrics

We next discuss the case of PCS–structures associated to simple Lie algebras
of type An. Here there are two basic structures related to different real forms
of sl(n + 2,C), see Section 3.2 of [8]. For the split real form sl(n + 2,R), the
corresponding PCS–structure is given by a conformally symplectic structure
ℓ ⊂ Λ2T ∗M and a decomposition TM = E ⊕ F into a sum of Lagrangean
subbundles. Such a structure is torsion–free if and only if the subbundles E
and F in TM are involutive. In this case, one obtains a para–Kähler–metric
on M and the canonical connection for the PCS–structure is the Levi–Civita
connection of this metric.
Parabolic contactification for PCS–structures of this type produces a so–called
Lagrangean contact structure, i.e. a contact structure together with a decompo-
sition of the contact subbundle into a direct sum of Lagrangean subbundles, see
Section 4.2.3 of [10]. Torsion–freeness in this picture again is equivalent to in-
volutivity of the two Lagrangean subbundles. To obtain differential complexes
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from BGG–sequences on the parabolic contactification, we need this contacti-
fication to be locally flat (and thus in particular torsion–free). By Theorem 7
of [9], this is the case if and only if the metric is Bochner–bi–Lagrangean.
To formulate the theorem on BGG sequences in this case, observe that for
g = sl(n + 2,R) the algebra g0 has center R

2 and semi–simple part sl(n,R).
Up to twisting by natural line bundles the subbundles E,F ⊂ TM correspond
to the standard representation of sl(n,R) and its dual. Hence all bundles
corresponding to irreducible representations of g0 can be obtained from natural
line bundles and these two basic bundles via tensorial constructions. Thus we
can use a similar parametrization of BGG sequences as in Theorem 3.1.

Theorem 3.3. Let W be an irreducible representation of sl(n,R) and let W
be the corresponding natural tensor bundle on a PCS–manifold (M, ℓ,E, F ) of
para–Kähler type of dimension 2n ≥ 6 (with E playing the role of the standard
representation and F playing the role of its dual). Let k, ℓ ≥ 0 be integers such
that for even n, the number k + ℓ is, depending on W , either even or odd.
Then pushing down an appropriate BGG sequence on parabolic contactifications
leads to a sequence of tensor bundles and invariant differential operators of the
form

Γ(W0)
D0−→ Γ(W1)

D1−→ · · ·
D2n−1

−→ Γ(W2n)
D2n−→ Γ(W2n+1).

This sequence is a complex, if (M, ℓ,E, F ) is Bochner–bi–Lagrangean. More-
over, the bundles W0 and W2n+1 are irreducible, while for i = 1, . . . , n the
bundles Wi and W2n+1−i each split into a direct sum of i+1 irreducible tensor
bundles. Finally, W0 is the tensor product of W with a natural line bundle,
while W1 =W(1,0)⊕W(0,1) with W(1,0) = SkE∗⊙W0 and W(0,1)

∼= SℓF ∗⊙W0.

Proof. Put g = sl(n + 2,R) and let g00
∼= sl(n,R) be the semisimple part of

g0. Then for the standard numbering α1, . . . , αn+1 of simple roots of g, a root
space gα is contained in g00 if and only if α is a linear combination of α2, . . . , αn

only. Hence these roots form a simple system for g00. Denoting by ω1, . . . , ωn+1

the fundamental weights corresponding to the simple system {α1, . . . , αn+1},
dominant weights for g00 are equivalent to linear combinations of ω2, . . . , ωn

with non–negative integral coefficients. As before, we use negatives of lowest
weights rather than highest weights. Anyway, the irreducible representation W

determines a dominant integral weight of g00, which can be written as a linear
combination of ω2, . . . , ωn with non–negative integral coefficients.
Adding kω1+ ℓωn+1 to this weight, we obtain a dominant integral weight for g,
which determines an irreducible representation V of g. Now we have to discuss
whether the representation V integrates to the group G := PGL(n+2,R), thus
giving rise to a tractor bundle and hence to a BGG sequence on Lagrangean
contact structures. For odd n, this is not a problem, since the map A 7→
det(A)−1/(n+2)A induces an isomorphism PGL(n + 2,R) ∼= SL(n + 2,R) in
this case. In the case of even n, PGL(n,R) is well known to be isomorphic to
PSL(n,R). Hence V integrates if and only if the center {±I} of SL(n+ 2,R)
acts trivially on V. In terms of the negative of the lowest weight, written as
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a1ω1 + · · · + an+1ωn+1, this boils down to the condition that the sum of all
coefficients with odd indices is even. Depending on W, this means that k + ℓ
either has to be even or has to be odd.
Having V as a representation of G, the existence of a BGG sequence on par-
abolic geometries of type (G,P ) which are equivalent to Lagrangean contact
structures follows from the general theory developed in [4, 11, 14]. Using the
results from Section 2, this can be pushed down to a sequence of invariant
differential operators on PCS–structures of para–Kähler type. The BGG se-
quence is a complex if the Lagrangean contact structure is locally flat, so we
obtain complexes on Bochner–bi–Lagrangean manifolds.
The bundles showing up in the BGG sequence correspond to the Lie algebra
homology groups H∗(p+,V), which can be computed using Kostant’s theorem.
In particular, H0(p+,V) is the P–irreducible quotient of V which has the same
lowest weight. This is the tensor product of W with the one–dimensional
representation corresponding to kω1+ℓωn+1, which shows thatW0 is the tensor
product of W with a natural line bundle.
As noted in the proof of Theorem 3.1, the basic structure of H∗(p+,V) is
encoded in the Hasse diagram W p associated to the parabolic p, which is de-
termined in Section 3.6 of [12]. In particular, this contains the information of
the number of irreducible components in Hk(p+,V) for each k, thus proving
the claims on the number of irreducible summands in each Wi. Finally, the
components of H1(p+,V) correspond to simple reflections contained in W p.
These are exactly the reflections corresponding to α1 and αn+1, respectively.
Their action on the weight kω1+ a2ω2 + · · ·+ anωn + ℓωn+1 is given by adding
−2(k+1)ω1+(k+1)ω2 and (ℓ+1)ωn− 2(ℓ+1)ωn+1, respectively. Since these
are the negatives of the lowest weights of Sk+1E∗ and Sℓ+1F ∗, respectively,
the claim on W1 follows. �

3.4. Remarks on BGG sequences associated to Bochner–Kähler
metrics

PACS–structures of Kähler type correspond to the real forms su(p + 1, q + 1)
of sl(p + q + 2,C). Such a structure corresponds to a conformally symplectic
structure ℓ ⊂ Λ2T ∗M and an almost complex structure J on M , for which ℓ
is Hermitian. Torsion–freeness of the structure is equivalent to J being a com-
plex structure, which then gives rise to a pseudo–Kähler metric of signature
(p, q) onM . Parabolic contactifications of PCS–structures of this type are par-
tially integrable almost CR structures of the appropriate signature, see Section
4.2.4 of [10]. Torsion–freeness is equivalent to the structure being integrable
and hence a CR structure. It turns out that such a parabolic contactifica-
tion is locally flat if and only if it is torsion free and the corresponding metric
is Bochner–Kähler (of any signature). This is originally due to S.M. Web-
ster ([22]), see [15] for a modern discussion and Theorem 7 of [9].
As the description suggests, there are strong similarities to para–Kähler type as
discussed in Section 3.3 above. In view of this similarities, we will only briefly
outline the differences to the para–Kähler case.
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For g = su(p + 1, q + 1), the subalgebra g0 has center C and semi–simple
part su(p, q). Up to twisting by natural line bundles, the tangent bundle TM
corresponds to the standard representation Cp+q of g0. The analogy to the
para–Kähler case becomes clear after complexification, where we get TM⊗C =
T 1,0M ⊕ T 0,1M and the two summands correspond to dual representations of
su(p, q). This shows that, after complexification, the situation is parallel to the
para–Kähler case, with complex linearity and anti–linearity properties replacing
the decomposition into E and F .
BGG sequences on partially integrable almost CR structures are associated
both to real and to complex representations of the group G := PSU(p+1, q+1)
which governs the geometry. A complex representation of g is again determined
by its restriction to g0 (which also is a complex representation) and two non–
negative integers describing the action of the center. However, in this case the
center of SU(p + 1, q + 1) is isomorphic to Zp+q+2, so the condition that a
representation integrates to G imposes more restrictive conditions on the two
integers describing the action of the center. Correspondingly, there are less
BGG sequences available then in the para–Kähler case, unless it is possible to
choose an additional structure as discussed in Remark 3.2.
Once a complex representation W of g0 and two non–negative integers k and
ℓ give rise to a complex representation V of G, the situation becomes very
similar to Theorem 3.3, compare with Sections 3.6 and 3.8 of [12]. There is
a sequence Di : Γ(Wi) → Γ(Wi+1) differential operators for i = 0, . . . , 2n,
which is a complex provided that one starts with a Bochner–Kähler metric
of any signature. The bundles W0 and W2n+1 are irreducible, whereas Wi

and W2n+1−i split into a direct sum of i + 1 bundles associated to complex
irreducible representations for i = 1, . . . , n. One may also describe W1 and the
principal parts of the two components of D0 similarly to Theorem 3.3, with
complex linearity and conjugate linearity replacing the appearance of copies of
E and F .
There are also BGG sequences of partially integrable almost CR structures
induced by real representations ofG (which do not admit aG–invariant complex
structure). Again, such a representation is determined by its restriction to g00,
which is a real irreducible representation, and by the action of the center. Since
there is no complex structure available, there are stronger restrictions for the
action of the center than in the complex case here. Next, one needs to make
sure that the resulting representation V of g integrates to G. Given a real
representation of G, there again is a BGG sequence of the same length as in
the complex case, see again Section 3.8 of [12]. The main difference to the
complex case is the number of irreducible components of the bundles Wi and
W2n+1−i, which now is (i+1)/2 for odd i and i/2+ 1 for even i. In particular,
in this caseW0 andW1 both are irreducible and the principal part of D0 is just
given by a symmetrized iterated covariant derivative followed by a projection
to the Cartan product.
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3.5. Relative BGG sequences

We now turn to a second general construction of sequences and complexes of
invariant differential operators on parabolic geometries, which was introduced
in the recent article [14]. To simplify comparison to that reference, we briefly
change notation and denote by Q ⊂ G the parabolic subgroup corresponding
to a contact grading. The construction of relative BGG sequences on geome-
tries of type (G,Q) in addition needs a second parabolic subgroup P such that
G ⊃ P ⊃ Q. Hence in the case of parabolic contact structures, this construc-
tion is only available for the An–series, since for the other series the parabolic
subalgebra q ⊂ g corresponding to the contact grading is maximal. Even
in the An–case, an intermediate parabolic is only available for the real form
sl(n + 1,R), for the real forms su(p + 1, q + 1) the parabolic q corresponding
to the contact grading again is maximal. Hence relative BGG sequences can
only be used to construct invariant differential operators on PCS–structures
of para–Kähler type. However, in this case the resulting sequences are highly
interesting since they give rise to differential complexes under much weaker
assumptions than coming from a Bochner–bi–Lagrangean metric.
Given a type (G,Q) and an intermediate parabolic P , the input needed to con-
struct a relative BGG sequence is a finite dimensional, completely reducible
representation V of the group P . Complete reducibility means that the nilpo-
tent subgroup P+ ⊂ P acts trivially, so V is a representation of the reductive
Levi–factor P0

∼= P/P+. The bundles showing up in the relative BGG sequence
determined by V are induced by certain Lie algebra homology groups which
we describe next. The setup easily implies that P+ ⊂ Q+ and that p+ ⊂ q+
is an ideal. Hence q+/p+ naturally is a Lie algebra, which acts on V since the
restriction to q+ of the derivative of the P–action descends to the quotient.
The homology groups in question then are the groups H∗(q+/p+,V), which
can be computed algorithmically using a relative version of Kostant’s theorem,
see [13]. As before, we will simply state the resulting descriptions of bundles
in the sequence.
There are general results showing that relative BGG sequences are complexes
under much weaker assumptions than local flatness. The relevant concept
here is called relative curvature. Given a parabolic geometry p : G → M#

of type (G,Q) and an intermediate parabolic P , the Q–invariant subspace
p/q ⊂ g/q gives rise to a subbundle TρM

# ⊂ TM called the relative tan-
gent bundle. Likewise, the Q–invariant subspaces p+ ⊂ p ⊂ g corresponds
to subbundles Ap+

M# ⊂ ApM
# in the adjoint tractor bundle AM#. One

defines the relative adjoint tractor bundle AρM
# of the geometry to be

G ×Q (p/p+) ∼= ApM
#/Ap+

M#.

Now the first condition one has to impose is that TρM
# ⊂ TM# is an in-

volutive distribution. This is easily seen to be equivalent to the curvature
κ ∈ Ω2(M,AM#) having the property that its values on two tangent vectors
from TρM

# ⊂ TM# always lie in ApM
#. Assuming this, the values can be

projected to the relative adjoint tractor bundle, thus defining a section κρ of
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the bundle Λ2T ∗
ρM

# ⊗AρM
#. This is the relative curvature of the geometry,

and if this vanishes identically, any relative BGG sequence onM# is a complex
and a fine resolution of a certain sheaf on M#, which locally descends to leaf
spaces of the distribution TρM

#.

3.6. Relative BGG complexes associated to para–Kähler metrics

In the case of PCS–structures of para–Kähler type in dimension 2n, the group
G is PGL(n + 2,R) and the parabolic subgroup Q ⊂ G comes from the sta-
bilizer of a flag consisting of a line contained in a hyperplane in the standard
representation. Hence Q = P ∩P̃ , where P comes from the stabilizer of the line
and P̃ comes from the stabilizer of the hyperplane. Since P and P̃ are maximal
parabolic subgroups in G, they are the only two possible choices of interme-
diate parabolic subgroups in this case. A parabolic geometry p : G → M# of
type (G,Q) is given by a contact structure H ⊂ TM# and a decomposition
H = E# ⊕ F# into a direct sum of Legendrean subbundles. It is easy to see
that the relative tangent bundles corresponding to P and P̃ are just the sub-
bundle E# and F#, respectively. In particular, the situation between P and
P̃ is completely symmetric, so it suffices to discuss one of the two cases.
On the level of PCS–structures, we have a smooth manifoldM of dimension 2n,
a conformally symplectic structure ℓ ⊂ Λ2T ∗M and a decomposition TM =
E ⊕ F into subbundles which are Lagrangean for ℓ. As discussed in Section
3.2 of [8], this gives rise to a split–signature conformal structure on M , by
extending the pairing between E and F induced by a local section of ℓ to
a symmetric tensor field, for which the two subbundles are isotropic. In the
PCS–case, local closed sections of ℓ are uniquely determined up to constant
multiples, so we even get local split signature metrics which are unique up
to a constant factor (and hence all have the same Levi–Civita connection). In
Section 4.5 of [8], it is shown that torsion freeness of the PCS–structure defined
by ℓ, E and F is equivalent to the fact that the subbundles E and F are both
involutive. Since the canonical connection of the PCS–structure preserves the
distinguished metrics by construction, torsion–freeness shows that it has to
coincide with the Levi–Civita connection in this case.
Here we can work in a slightly more general situation, namely that the one of
the subbundles, say F , is involutive. Assuming that E is non–involutive, the
canonical connection ∇ of the PCS–structure has non–trivial torsion (since is
preservesE). More precisely, identifying Λ2T ∗M with Λ2E∗⊕(E∗⊗F ∗)⊕Λ2F ∗

the restriction of the torsion to the last two summands has to be trivial, whereas
the restriction to the first summand coincides with the negative of the tensorial
map Λ2E∗ → F induced by projecting the Lie bracket to F . In particular, ∇
has to be different from the Levi–Civita connection of the distinguished metric.
However, since ∇ by construction preserves the distinguished metric (since it
preserves E, F and ℓ), and its torsion is known, there is an explicit formula
relating it to the Levi–Civita connection.
To formulate the result on complexes induced by relative BGG complexes,
we need a bit more information on the groups involved. Recall that G =
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PGL(n + 2,R), P ⊂ G comes from the stabilizer of a line in the standard
representation, while Q ⊂ P comes from the stabilizer of the flag consisting
of that line and a hyperplane containing it. Via the restriction of the adjoint
action of G, P acts on g/p and it is well known that this induces an isomorphism
P/P+

∼= GL(g/p) ∼= GL(n+1,R), compare with Section 4.1.5 of [10]. Moreover,
the sum of all but the lowest grading components of g with respect to the
grading defined by q is a codimension–one subspace q−1 ⊂ g containing p.
Hence q−1/p ⊂ g/p is a hyperplane and Q ⊂ P can be characterized as those
elements whose action on g/p stabilizes this hyperplane, see Section 4.4.2 of
[10]. This gives rise to a surjection Q → GL(q−1/p) ∼= GL(n,R) which has
Q+ in its kernel. For a parabolic contact structure (M#, H = E# ⊕ F#) of
type (G,Q), the vector bundle induced by this representation is E#. Viewing
the above homomorphism as Q/Q+ → GL(q−1/p) its kernel is isomorphic to
R \ {0}. A faithful representation of this kernel corresponds to ΛnF# on each
parabolic contact structure.

Theorem 3.4. Let W be an irreducible representation of GL(n,R) and let W
be the corresponding natural tensor bundle on a PCS–manifold (M, ℓ,E, F ) of
para–Kähler type of dimension 2n (with E playing the role of the standard
representation) and let k ≥ 0 be an integer.
Then pushing down an appropriate relative BGG sequence on parabolic con-
tactifications leads to a sequence of irreducible tensor bundles and invariant
differential operators of the form

Γ(W0)
D0−→ Γ(W1)

D1−→ · · ·
Dn−2

−→ Γ(Wn−1)
Dn−1

−→ Γ(Wn).

This sequence is a complex, if the subbundle F ⊂ TM is involutive. The bundle
W0 is the tensor product of W with a real power of the line bundle (ΛnF )2 and
W1

∼= SkF ∗ ⊙W0.
Finally suppose that W is chosen in such a way that W0 coincides with one
of the irreducible summands in the bundles from Theorem 3.3. Then the same
holds for all the bundles Wj and the sequence constructed here is a subsequence
respectively a subcomplex in the sequence from that Theorem.

Proof. Consider g = sl(n+2,R) with simple roots αi and corresponding funda-
mental weights ωi as in the proof of Theorem 3.3. The corresponding Cartan
subalgebra h ⊂ g also is a Cartan subalgebra for the reductive subalgebras
p ∼= gl(n+ 1,R) and q0 ⊂ p. Let us decompose q0 ∼= gl(n,R)⊕ R as described
on the group level before the theorem. Then the negative of the lowest weight of
the representationW can be expressed as a linear combination a1ω1+· · ·+anωn

with a1 ∈ R and non–negative integers a2, . . . , an. Adding kωn+1 to this, we ob-
tain a weight which is the negative of the lowest weight of a finite dimensional,
irreducible representation V of p. (The part a2ω2+· · ·+anωn+kωn+1 is a dom-
inant integral weight for the semisimple part of p, and adding a1ω1 corresponds
to tensorizing by a one–dimensional representation of the center.) There is no
problem with the representation integrating to the group P ∼= GL(n+ 1,R).
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Hence the general results of [14] imply the existence of an associated relative
BGG–sequence for each parabolic geometry of type (G,Q). Via the mecha-
nism introduced in Section 2, this sequence can be pushed down a manifold
endowed with a PCS–structure from local contactifications. The bundles show-
ing up in the resulting sequence are induced by the Lie algebra homology groups
Hk(q+/p+,V), in particular the degrees range from 0 to dim(q+)−dim(p+) = n.
To obtain the shape of the sequence, one has to determine the relative Hasse
diagram W q

p as described in Lemma 2.6 and Example 3.2 of [13]. It is easy to
seeW q

p consists of n+1 elements of length 0, . . . , n. This implies the statement
on irreducibility ofWi for each i. Moreover, H0(q+/p+,V) is the Q–irreducible
quotient of V, which implies the description of W0. The unique element of
length 1 in W p

q is the simple reflection corresponding to αn+1, from which the
description of W1 follows as in the proof of Theorem 3.3.
Suppose next, that the subbundle F ⊂ TM is involutive. Then for each local
parabolic contactification (M#, H = E# ⊕F#), the subbundle F# ⊂ TM# is
involutive, too. As we have observed above, this is exactly the relative tangent
bundle TρM

# for the intermediate parabolic P . By Proposition 4.2.3 of [10] this
implies that one of the three harmonic curvature components of the parabolic
geometry onM# vanishes identically. But the discussion of harmonic curvature
in Section 4.2.3 of [10] shows that the assumptions of part (1) of Proposition
4.18 of [14] are satisfied, so the relative curvature of the geometry vanishes. By
part (1) of Theorem 4.11 of that reference, any relative BGG sequence on M#

is a complex, so the descended sequence is a complex, too.
To prove that last claim, we observe that by Kostant’s theorem, all p–dominant
weights in the affine Weyl orbit of the negative of the lowest weight of V

are realized by irreducible components of the representations Hj(p+,V) for
j = 0, . . . , dim(p+). Hence our assumptions mean that W0 occurs as an ir-
reducible component in one of these homology representations (which happen
to be irreducible in our case). But by Theorem 3.3 of [13], the homologies
Hi(q+/p+, Hj(p+,V)) are contained in Hi+j(q+,V), so all bundles Wi occur in
the sequence from Theorem 3.3. It is proved in Theorem 5.2 of [14] that then
the absolute and the relative BGG constructions produce the same differential
operators between these bundles, which implies the last claim. �

Remark 3.5. As already remarked above, relative BGG sequences are not avail-
able for the parabolic contact geometries associated to g = su(p + 1, q + 1).
However, there is a case in which our methods can produce differential com-
plexes on general Kähler manifolds (i.e. without the assumption on vanishing
Bochner curvature). This is related to those cases in Theorem 3.4 in which a
relative BGG sequence is included in a proper BGG sequence. In these cases,
the existence of subcomplexes can also be proved more directly, see [12]. While
these techniques require slightly stronger assumption (involutivity of both E
and F ), they also work for the other real forms.
In the setting of Section 3.4 this method applies to torsion–free PCS–structures
of Kähler type, which are equivalent to pseudo–Kähler metrics of any signature,
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see Proposition 4.5 of [8]. The local contactifications of such a geometry carry
an (integrable) CR structure of hypersurface type of the same signature. As
discussed in Section 3.4 there are BGG sequences on such structures associated
to real and complex representations of the groups PSU(p+1, q+1). Theorem
3.8 in [12] shows that, both in the real and in the complex case, there are
several subcomplexes in such a BGG sequences, which descend to differential
complexes on the underlying pseudo–Kähler manifolds.

4. The cohomology of descended BGG complexes

In this last section, we will derive some results on the cohomology of the dif-
ferential complexes associated to special symplectic connections via descending
BGG sequences. The strongest results are obtained in the case of global con-
tactifications with compact fibers, thus in particular applying to complexes on
CPn and Gr(2,Cn) as treated in Sections 2.6 and 3.4 of [9]. Several steps
towards these main results are proved in a more general setting.

4.1. The relation to twisted de–Rham cohomology

For the first step in the description, we need a few details on the construction
of BGG sequences. As discussed in Section 3.1, a BGG sequence on parabolic
contact structures of type (G,P ) is determined by a representation V of the Lie
group G. Via taking the associated bundle to the Cartan bundle determined
by V, this representation gives rise to a natural vector bundle on such geome-
tries. On the homogeneous model G/P , this is just the homogeneous vector
bundle G ×P V. Bundles of this type are called tractor bundles. Their main
feature is that the Cartan connection induces a canonical linear connection on
each tractor bundle, which is flat if and only if either V is a trivial representa-
tion or the geometry is locally flat. Since the case of the trivial representation
is treated in [7], we will always assume that V is a non–trivial, irreducible
representation from now on.
Given a parabolic contact geometry (p : G# → M#, ω), let us denote by VM#

the tractor bundle on M# induced by V and by ∇V the canonical tractor
connection induced by ω. Coupling ∇V to the exterior derivative, one obtains
the covariant exterior derivative d∇ : Ωk(M#,VM#) → Ωk+1(M#,VM#) for
each k. Obviously, this is a sequence of invariant differential operators and it is
well known that they form a complex if and only if the connection ∇V is flat.
We will refer to this as the twisted de–Rham sequence respectively the twisted
de–Rham complex determined by V.
Now it turns out that, via the Cartan connection ω, the cotangent bundle
T ∗M# can be naturally identified with the associated bundle G# ×P p+.
Hence the bundle of VM#–valued k–forms is induced by the representation
Λkp+ ⊗ V, which is the space of k–chains in the standard complex com-
puting the Lie algebra homology H∗(p+,V). Since the standard differen-
tials in this complex are P–equivariant, they induce natural bundle maps
ΛkT ∗M# ⊗ VM# → Λk−1T ∗M# ⊗ VM#, which traditionally are denoted by
∂∗. Hence im(∂∗) and ker(∂∗) are nested natural subbundles in ΛkT ∗M ⊗VM
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and the quotient ker(∂∗)/ im(∂∗) is by construction isomorphic to the associ-
ated bundle G ×P Hk(p+,V) which we denote by HV

kM
#.

By construction, there is a bundle projection Π = Πk : ker(∂∗) → HV
kM

#

which induces a tensorial operator on the spaces of sections of these bundles
that we denote by the same symbol. Now the key to the construction of BGG
sequences is that there is an invariant differential operator S = Sk which splits
this tensorial projection. Otherwise put, to any section σ ∈ Γ(HV

kM
#) we can

associate S(σ) ∈ Ωk(M#,VM#) such that ∂∗ ◦ S(σ) = 0 and Π(S(σ)) = σ.
Moreover it turns out that this splitting operator has the property that
∂∗ ◦ d∇(S(σ)) = 0 for any σ (which uniquely determines S). Hence one can

define an invariant differential operatorD# = D#
k : Γ(HV

kM
#) → Γ(HV

k+1M
#)

by D#(σ) := Π(d∇(S(σ))), and these operators form the BGG sequence.
Moreover, if ∇V is flat, then the splitting operators have the property that

d∇ ◦Sk = Sk+1 ◦D
#
k for all k. This readily implies that the BGG sequence is a

complex, and that the Sk define a homomorphism of complexes from the BGG
complex to the twisted de–Rham complex.
Now suppose that we have given a PCS–quotient q :M# →M of type (G,P ),
and let π : G0 → M be the corresponding G0–principal bundle. Then by
construction, the operators D obtained by descending the operators D# act
on sections of the bundle HV

kM := G0 ×G0
Hk(p+,V) for all k. (Here one

uses that each Hk(p+,V) is a completely reducible representation of P , so it
descends to P/P+

∼= G0.) Recall that the infinitesimal automorphism ξ ∈
X(M#) giving rise to the PCS–quotient induces a P–invariant vector field ξ̃ ∈
X(G#) which projects onto ξ. Similarly as discussed in Section 2.4, sections of
associated bundles to G# can be identified with smooth functions with values in
the inducing representation, so there is a natural action of ξ̃ via a Lie derivative
Lξ̃. In particular, we define Ωk

ξ (M
#,VM#) as the subspace of those forms ϕ,

for which Lξ̃(ϕ) = 0. This works in the same way on open subsets of M# so

that we have actually defined a subsheaf of the sheaf of VM#–valued k–forms.

Theorem 4.1. Consider a PCS–quotient q : M# → M of type (G,P ). Let V
be a representation of G, VM# →M# the tractor bundle determined by V and
(Ω∗(M#,VM∗), d∇) the induced twisted de–Rham sequence. Let (HV

∗M,D∗)
be the sequence of differential operators on M obtained by descending the BGG
sequence determined by V as in Theorem 2.4.
Then d∇ commutes with Lξ̃, and hence it preserves the subspaces

Ω∗
ξ(M

#,VM#). Moreover, if ∇ is flat, then these subspaces form a sub-
complex in the twisted de–Rham complex, whose cohomology is naturally
isomorphic to the cohomology of the complex (HV

∗M,D∗).

Proof. Since any local flow of ξ̃ ∈ X(G#) is an automorphism of the Cartan
geometry (p : G# → M#, ω), it follows as in Lemma 2.3 that any invariant
differential operator commutes with Lξ̃. In particular, applying this to d∇ we

readily conclude that d∇(Ωk
ξ (M

#,VM#)) ⊂ Ωk+1
ξ (M#,VM#). In the case

that ∇ is flat, we hence get a subcomplex in the twisted de–Rham complex.
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We can also apply this argument to the BGG operators D#. For a natu-
ral vector bundle WM# let us denote by Γξ(WM#) ⊂ Γ(WM#) the kernel
of Lξ̃. Naturality of the BGG operators then shows that we get a subcom-

plex (Γξ(HV
∗M

#), D#
∗ ) in the BGG complex. Now since each Hk(p+,V) is

a completely reducible representation of P , we can equivalently describe sec-
tions of the corresponding associated bundle via the intermediate principal

bundle G#
0 := G#/P+. Recall from Section 2.2 that there is a vector field

ξ0 ∈ X(G#
0 ) which lies between ξ̃ and ξ. By construction, identifying Γ(HV

kM
#)

with C∞(G0, Hk(p+,V))
G0 , the subspace Γξ exactly corresponds to the kernel

of the Lie derivative Lξ0 . Theorem 2.4 and Lemma 2.3 thus imply that the

complex (Γξ(HV
∗M

#), D#
∗ ) is isomorphic to (Γ(HV

∗M), D∗).

Thus we can complete the proof by showing that (Γξ(H
V
∗M

#), D#
∗ ) computes

the same cohomology as the subcomplex (Ω∗
ξ(M

#,VM#), d∇) in the twisted
de–Rham complex. For this, we can adapt the usual proof for BGG sequences
from Theorem 2.6 and Lemma 2.7 of [11]. Naturality of the splitting operators
implies that for each k we get S(Γξ(HV

kM
#)) ⊂ Γξ(ker(∂

∗)) ⊂ Ωk
ξ (M

#,VM#).

In particular, the fact that d∇ ◦S = S ◦D# verified in Lemma 2.7 of [11] shows
that S defines a complex map between the two subcomplexes, and we claim that
this induces an isomorphism in cohomology. Suppose that ϕ ∈ Ωk

ξ (M
#,VM#)

satisfies d∇ϕ = 0. Then in Lemma 2.7 of [11] it is shown that there is a
form ψ ∈ Ωk−1(M#,VM#) such that ϕ + d∇ψ ∈ Γ(ker(∂∗)). As shown in
Theorems 3.9 and 3.14 of [14], a form with this property can be obtained as
the value of an invariant differential operator on ϕ. Thus we may assume that
Lξ̃ψ = 0 and hence ϕ+ d∇ψ ∈ Γξ(ker(∂

∗)). But then naturality of the bundle

map Π shows that α := Π(ϕ + d∇ψ) ∈ Γξ(HV
kM

#). Now by construction
d∇(ϕ + d∇ψ) = 0 which shows that ϕ + d∇ψ = S(α) and D#(α) = 0. Hence
the cohomology class of α is mapped to the cohomology class of ϕ, so the
induced map in cohomology is surjective.
On the other hand, suppose that α ∈ Γξ(HV

kM
#) satisfies D#(α) = 0 and

S(α) = d∇ψ for some ψ ∈ Ωk−1
ξ (M#,VM#). As in the previous step, we may

without loss of generality assume that ψ ∈ Γξ(ker(∂
∗)) and then project this

to β = Π(ψ) ∈ Γξ(HV
k−1M

#). Then d∇ψ = S(α) ∈ Γ(ker(∂∗)) shows that

ψ = S(β) and hence D#(β) = Π ◦ S(α) = α, which shows injectivity of the
induced map in cohomology. �

4.2. Reduction to horizontal equivariant forms

Suppose that q :M# →M is a PCS–quotient with corresponding infinitesimal
automorphism ξ ∈ X(M#) corresponding to ξ̃ ∈ X(G#). Then the forms in

Ω∗
ξ(M

#,VM#) as studied above, are (in an appropriate sense) equivariant for ξ̃.

Similarly to the case of ordinary forms treated in Section 2.3 of [7], it is natural
to next look at forms which in addition are horizontal, since these essentially
are objects on M already. Hence we define Ωk

ξ (M
#,VM#)hor to be the space

of those ϕ ∈ Ωk(M#,VM#), for which Lξ̃ϕ = 0 and iξϕ = 0. To simplify
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notation, we will write Ak := Ωk
ξ (M

#,VM#) and Ak
hor := Ωk

ξ (M
#,VM#)hor

in what follows.
Recall that the infinitesimal automorphism ξ determines a unique contact form
α ∈ Ω1(M#) for which ξ is the Reeb field, i.e. such that iξα = 1 and iξdα = 0,
see Proposition 2.2 of [7]. Observe also, that there is an obvious wedge product
Ωk(M#)× Ωℓ(M#,VM#) → Ωk+ℓ(M#,VM#). In terms of these operations,
we can now derive a description of Ak.

Lemma 4.2. Let q : M# → M be a PCS–quotient of type (G,P ) with cor-
responding infinitesimal automorphism ξ ∈ X(M#) and let α ∈ Ω1(M#) be
the contact form associated to ξ. Then the maps ϕ 7→ (ϕ − α ∧ iξϕ, iξϕ)
and (ϕ1, ϕ2) 7→ (ϕ1 + α ∧ ϕ2) define inverse isomorphisms between Ak and

Ak
hor

⊕Ak−1
hor

.

Proof. Since iξ ◦ iξ = 0, we see that both iξϕ and ϕ − α ∧ iξϕ are horizontal,
and then one immediately verifies that the two maps in the claim are inverse
to each other. So it remains to show that the construction can be restricted to
the kernels of Lξ̃ on both sides.
To do this, we have to derive some results on the operator Lξ̃, which by def-

inition is given by differentiating the equivariant functions corresponding to
sections of natural vector bundles in the direction of ξ̃. Let us denote by
(p : G# → M#, ω) the Cartan geometry describing the parabolic contact struc-
ture on M#. Then the isomorphism TM# ∼= G#×P (g/p) comes from the fact
that for u ∈ G the map ω(u) : TuG# → g descends to a linear isomorphism
Tp(u)M

# → g/p. Otherwise put, the equivariant smooth function f : G# → g/p

corresponding to a vector field η ∈ X(M#) can be written as ω(η̃) + p, where
η̃ ∈ X(G#) is a P–equivariant lift of η. Since ξ is an infinitesimal automorphism,

the lift ξ̃ ∈ X(G#) satisfies 0 = Lξ̃ω. This implies that for η̃ as above, we get

ξ̃ · ω(η̃) = ω([ξ̃, η̃]). Since [ξ̃, η̃] is a lift of [ξ, η], we conclude that Lξ̃η = [ξ, η].

Hence on X(M) the operator Lξ̃ coincides with the usual Lie derivative Lξ

along ξ, and in particular, Lξ̃ξ = 0.
By construction, Lξ̃ satisfies the usual compatibility conditions with tensor
products and contractions. Using this, the result for vector fields easily implies
that Lξ̃ coincides with the usual Lie derivative Lξ on all tensor fields and in

particular on (real valued) differential forms. The definition of the contact form
α then implies that 0 = Lξα = Lξ̃α. Together with naturality and Lξ̃ξ = 0,
this now implies that all the maps we have used preserve the kernels of Lξ̃. �

For the next step, we have to impose an additional restriction on the infin-
itesimal automorphism in question. Since ξ̃ ∈ X(G#) is P–invariant vector

field, equivariancy of the Cartan connection ω implies that ω(ξ̃) : G# → g is
a P–equivariant function. Thus it defines a smooth section of the associated
bundle AM# := G# ×P g, the adjoint tractor bundle of the parabolic geome-
try (p : G# → M#, ω). Indeed, this establishes a bijection between Γ(AM#)
and the space of P–invariant vector fields on G#. It turns out that infinites-
imal automorphisms can be nicely characterized in this picture, see [5]. Since
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AM# is a tractor bundle, it carries the tractor connection ∇A. It turns out
(see Proposition 3.2 of [5]) that this connection can be naturally modified by

a term involving the Cartan curvature to a linear connection ∇̃ whose parallel
sections exactly correspond to the canonical lifts ξ̃ ∈ X(G#) of infinitesimal
automorphisms ξ ∈ X(M#). This bijection is implemented by an analog of
the splitting operator S discusses in Section 4.1 above. Moreover, it turns out
that if a section of AM# is parallel for ∇A, then it is also parallel for ∇̃, see
Corollary 3.5 of [5]. Hence parallel sections of ∇A correspond to a subclass of
infinitesimal automorphisms.

Definition 4.3. Let (p : G# →M#, ω) be a parabolic geometry of type (G,P ).
An infinitesimal automorphism ξ ∈ X(M#) of the geometry is called normal

if and only if the induced P–invariant vector field ξ̃ ∈ X(G#) corresponds to a
section of AM# which is parallel for the tractor connection ∇A.

By Corollary 3.5 of [5] an infinitesimal automorphism ξ is normal if and only
if ξ inserts trivially into the curvature two–form of the Cartan connection ω. In
particular, any infinitesimal automorphism on a locally flat geometry is normal.

Next, we can use the infinitesimal automorphism ξ and its lift ξ̃ to define a
smooth bundle map Ξ : VM# → VM# on a tractor bundle VM# → M#. To
define this, observe that VM# = G# ×P V for a representation V of G, so we
have the infinitesimal representation g → L(V,V). This means that any point
u ∈ G# defines a linear isomorphism ψu : V → VxM

#, where x = p(u) ∈M#.
For any g ∈ P and v ∈ V, we then get ψu·g(v) = ψu(g · v), so ψu·g = ψu ◦ ρ(g),
where ρ denotes the representation of G. On the other hand, the function
ω(ξ̃) : G# → g satisfies ω(ξ̃)(u · g) = Ad(g−1)(ω(ξ̃)(u)). This shows that,
denoting by ρ′ the infinitesimal representation, we conclude that

ψu ◦ ρ′(ω(ξ̃)(u)) ◦ ψ−1
u = ψu·g ◦ ρ

′(ω(ξ̃)(u · g)) ◦ ψ−1
u·g.

Thus we get a well defined linear map Ξ(x) : VxM
# → VxM

# and hence a
smooth bundle map as claimed.

Proposition 4.4. Let (p : G# → M#, ω) be a parabolic geometry of type
(G,P ) such that M# is connected. Let ξ ∈ X(M#) be a normal infinitesimal
automorphism and let Ξ : VM# → VM# be the induced bundle map on a
tractor bundle VM# → M#. Then Ξ has constant rank, so its kernel ker(Ξ)
and its image im(Ξ) are smooth subbundles of VM#, and we get a smooth
vector bundle coker(Ξ) := VM#/ im(Ξ).

Proof. In Lemma 2.3 of [6] it is shown that connectedness of M# implies that

for a normal infinitesimal automorphism ξ, the image of the function ω(ξ̃) :
G# → g is contained in a single orbit of the adjoint action of g. Now for g ∈ G
and X ∈ g, and the actions ρ of G and ρ′ of g on V, it is well known that
ρ′(Ad(g)(X)) = ρ(g) ◦ ρ′(X) ◦ ρ(g)−1. This shows that the maps ρ′(X) and
ρ′(Ad(g)(X)) have the same rank, which by construction implies that Ξ has
constant rank. All other claims are well known consequences of this fact. �
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Using Ξ, we can now define several subspaces in the space of VM–valued dif-
ferential forms. First, we of course have Ωk(M#, ker(Ξ)) ⊂ Ωk(M#,VM#).
Moreover, even though ker(ξ) is not a natural vector bundle, it makes no prob-
lem to require Lξ̃ϕ = 0 as well as iξϕ = 0 for ϕ ∈ Ωk(M#, ker(Ξ)). Thus

we can define Ki := Ωi
ξ(M

#, ker(Ξ))hor ⊂ Ai
hor. The cokernel of Ξ is more

complicated to deal with, and we need some preliminary results to do this.

4.3. The Cartan formula

We next derive an analog of the Cartan formula for the covariant exterior
derivative d∇ on Ω∗(M#,VM#). This will be a crucial step towards the con-
struction of various subcomplexes and to a description of the cohomology of
the subcomplex from Theorem 4.1.

Lemma 4.5. For any ϕ ∈ Ω∗(M#,VM#) we have

Lξ̃ϕ = iξd
∇ϕ+ d∇iξϕ− Ξ∗(ϕ),

where Ξ∗ : Ω∗(M#,VM#) → Ω∗(M#,VM#) is given by applying Ξ to the
values of VM#–valued forms.
In particular, for ϕ ∈ A∗

hor
, we have iξd

∇ϕ = Ξ∗(ϕ).

Proof. The first step is as in the proof of Cartan’s formula for the exterior
derivative. Using the standard formula for d∇, one verifies that the value of
iξd

∇ϕ+ d∇iξϕ maps vector fields η1, . . . , ηk ∈ X(M#) to

(1) ∇VM
ξ ϕ(η1, . . . , ηk) +

∑k
i=1(−1)iϕ([ξ, ηi], η1, . . . , η̂i, . . . , ηk).

Let us denote by s ∈ Γ(AM#) the section of the adjoint tractor bundle cor-

responding to ξ̃ ∈ X(G#)P . Then by the construction from Section 4.1, the
operator Lξ̃ coincides with the so–called fundamental derivative Ds, see Sec-

tion 1.5.8 of [10]. Likewise, the bundle map Ξ by construction coincides with
the operation s• from Section 1.5.7 of [10]. Thus the formula for the tractor
connection in Theorem 1.5.8 of [10] shows that the first summand in (1) can
be rewritten as

(2) Lξ̃(ϕ(η1, . . . , ηk)) + Ξ(ϕ(η1, . . . , ηk)).

In the second part of (1), we can move the Lie bracket to the ith entry of ϕ at
the expense of a sign (−1)i−1. As noted in the proof of Lemma 4.2, we have
[ξ, ηi] = Lξ̃ηi, so the second term in (1) can be written as

−
∑k

i=1 ϕ(η1, . . . ,Lξ̃ηi, . . . , ηk),

and naturality of Lξ̃ implies that this adds up with the first term in (2) to

(Lξ̃ϕ)(η1, . . . , ηk). �

The last statement of the Lemma shows that d∇ does not preserve the subspace
Ω∗

ξ(M
#,VM#)hor. Of course there is the possibility of combining d∇ with the

projection to horizontal forms from Lemma 4.2:
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Definition 4.6. We define the horizontal derivative

d̂ : Ωk(M#,VM#) → Ωk+1(M#,VM#)

by d̂ϕ = d∇ϕ− α ∧ iξd∇ϕ.

Notice that by definition iξd̂ϕ = 0 for all ϕ ∈ Ω∗(M#,VM#). Moreover, all

the operations used in the definition are compatible with Lξ̃, so d̂(A
k) ⊂ Ak+1

hor .

Proposition 4.7. Assuming that ξ ∈ X(M#) is a normal infinitesimal auto-
morphism, we have:

(1) The operator Ξ∗ commutes with d∇ and with d̂.
(2) If d∇ ◦ d∇ = 0, then the subspaces Kk = Ωk

ξ (M
#, ker(Ξ))hor form a sub-

complex of (A∗, d∇).
(3) Denoting by Ck the quotient Ak

hor
/Ξ∗(A

k
hor

), the horizontal derivative in-

duces a well defined operator d̂ : Ck → Ck+1 for each k. If d∇ ◦ d∇ = 0, then

(C∗, d̂) is a complex.

Proof. (1) Let s ∈ Γ(AM#) be the section corresponding to ξ̃ ∈ X(G#), so by
assumption ∇As = 0. As we have noted in the proof of Lemma 4.5 above, we
get Ξ∗ϕ(η1, . . . , ηk) = s • (ϕ(η1, . . . , ηk)) for arbitrary vector fields η1, . . . , ηk ∈
X(M#). Using Proposition 1.5.7 of [10], this shows that

∇V
η (Ξ∗ϕ(η1, . . . , ηk)) = Ξ∗(∇

V
η ϕ(η1, . . . , ηk))

holds for arbitrary vector fields η, η1, . . . , ηk. Using the standard formula for d∇,
this readily implies that d∇◦Ξ∗ = Ξ∗◦d∇. Since we evidently get Ξ∗(α∧iξϕ) =

α ∧ iξ(Ξ∗ϕ), this also implies d̂ ◦ Ξ∗ = Ξ∗ ◦ d̂.
(2) Theorem 4.1 and the last part of Lemma 4.5 show that for ϕ ∈ Kk, we

get d∇ϕ ∈ Ak+1
hor . By part (1), we also get Ξ∗(d

∇ϕ) = d∇(Ξ∗ϕ) = 0, so indeed

d∇(Kk) ⊂ Kk+1, and the last claim is obvious.

(3) For ψ ∈ Ak
hor we get d̂Ξ∗ψ = Ξ∗(d̂ψ) by part (1). But as observed above,

d̂ψ ∈ Ak+1
hor , so we conclude that d̂ induces a well defined operator Ck → Ck+1.

Next, for ϕ ∈ Ak
hor, the definition of d̂ and the last part of Lemma 4.5 show

that d̂ϕ = d∇ϕ − α ∧ Ξ∗ϕ. The standard formula for d∇ easily implies that
we can compute d∇(α ∧ Ξ∗ϕ) as dα ∧ Ξ∗ϕ− α ∧ d∇(Ξ∗ϕ). Since ξ is the Reeb
field for α, the first summand is horizontal already. On the other hand, the
second summand lies in the kernel of the projection to horizontal forms, so

d̂(α ∧ Ξ∗ϕ) = Ξ∗(dα ∧ ϕ). But assuming d∇ ◦ d∇ = 0, the fact that d̂ϕ =
d∇ϕ− α ∧ Ξ∗ϕ implies that

d̂d̂ϕ = −d̂(α ∧ Ξ∗ϕ) = −Ξ∗(dα ∧ ϕ),

so the last claim follows. �

4.4. A long exact sequence

We are now ready to construct a long exact sequence of cohomology groups,
which will be the fundamental tool to compute the cohomology of descended
BGG sequences. To define the necessary maps, let us first make the definition
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of the cohomology of (C∗, d̂) more explicit. We assume that d∇ ◦ d∇ = 0 from

now on. A k–cocycle in the complex (C∗, d̂) by definition is represented by a

form ϕ ∈ Ak
hor for which there is a form ψ ∈ Ak+1

hor such that d̂ϕ = Ξ∗ψ. We

then simply write [ϕ] ∈ Hk(C∗, d̂) for the cohomology class represented by ϕ,

and [ϕ] = [ϕ̃] if and only if there are forms ψ1 ∈ Ak−1
hor and ψ2 ∈ Ak

hor such that

ϕ̃ = ϕ+ d̂ψ1 + Ξ∗ψ2.
Now let us assume that τ ∈ Ak such that d∇τ = 0. Then by Lemma 4.2 we get
iξτ ∈ Ak−1

hor and Lemma 4.5 shows that d∇iξτ = Ξ∗τ . By definition, this implies

that d̂iξτ = Ξ∗(τ − α ∧ iξτ), so we can form the class [iξτ ] ∈ Hk−1(C∗, d̂). We

obtain a map π from ker(d∇) ⊂ Ak to Hk−1(C∗, d̂).

On the other hand, suppose that we have given ϕ ∈ Ak−1
hor and ψ ∈ Ak

hor

such that d̂ϕ = Ξ∗ψ. Then we can form dα ∧ ϕ + d̂ψ and using that ξ is
the Reeb field for α, we see that this lies in Ak+1

hor . Moreover by part (1) of

Proposition 4.7 we get Ξ∗(d̂ψ) = d̂(Ξ∗ψ) = d̂d̂ϕ. In the proof of part (3) of that

Proposition, we have seen that d̂d̂ϕ = −Ξ∗(dα∧ϕ), which shows that actually

dα ∧ ϕ+ d̂ψ ∈ Kk+1.

By the last part of Lemma 4.5, iξd
∇ψ = Ξ∗ψ = d̂ϕ, so d̂ψ = d∇ψ − α ∧ d̂ϕ,

and in the last term we can replace d̂ϕ by d∇ϕ. Using this and (d∇)2 = 0,

we get d∇d̂ψ = −dα ∧ d∇ϕ. But this clearly cancels with d∇(dα ∧ ϕ), so

dα ∧ ϕ + d̂ψ is a cocycle in Kk+1 and we can form the cohomology class

[dα ∧ ϕ+ d̂ψ] ∈ Hk+1(K∗, d∇).

In the beginning we had fixed a form ψ such that d̂ϕ = Ξ∗ψ. Of course this
pins down ψ up to adding an element of Kk. This shows that the cohomology

class [dα ∧ ϕ+ d̂ψ] depends only on ϕ, so we get a well defined map

δ : {ϕ ∈ Ak−1
hor : d̂ϕ ∈ Ξ∗(A

k
hor)} → Hk+1(K∗, d∇).

Theorem 4.8. The maps π and δ induce well defined maps in cohomology,

which we denote by the same symbols, i.e. π : Hk(A∗, d∇) → Hk−1(C∗, d̂) and

δ : Hk−1(C∗, d̂) → Hk+1(K∗, d∇). Together with the map j induced by the
inclusion K∗ →֒ A∗, these fit into a long exact sequence of the form

. . .
δ
→ Hk(K∗, d∇)

j
→ Hk(A∗, d∇)

π
→ Hk−1(C∗, d̂)

δ
→ Hk+1(K∗, d∇)

j
→ . . .

Proof. Since both π and δ are evidently linear, we have to show that they vanish
on elements representing trivial cohomology classes to obtain well defined maps
in cohomology. If τ ∈ Ak−1, then Lemma 4.5 shows that iξd

∇τ = −d∇iξτ +

Ξ∗τ . Writing −d∇iξτ as −d̂iξτ − α ∧ iξd
∇iξτ , the second summand can be

rewritten as −α∧Ξ∗(iξτ) by Lemma 4.5. Hence we see that π(d∇τ) = Ξ∗(τ −

α ∧ iξτ), and since τ − α ∧ iξτ ∈ Ak−1
hor , this has trivial class in H

k(C∗, d̂).
On the other hand, take ψ1, ψ2 ∈ A∗

hor of degrees k − 2 and k − 1 respectively.

To determine δ(d̂ψ1+Ξ∗ψ2), we first have to compute the image of this element

under d̂. This gives −dα ∧ Ξ∗ψ1 + Ξ∗d̂ψ2, so

δ(d∇ψ1 + Ξ∗ψ2) = dα ∧ d̂ψ1 + dα ∧ Ξ∗ψ2 + d̂(−dα ∧ ψ1 + d̂ψ2).
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Now the second and last term in the right hand side clearly cancel, and a short

computation shows that d̂(dα∧ψ1) = dα∧ d̂ψ1, so the other two terms cancel,
too. This shows that δ induces a well defined map in cohomology.
To prove exactness of the sequence, we first observe that for ϕ ∈ Kk, we
have iξϕ = 0 by definition, so π ◦ j = 0. On the other hand, suppose that

τ ∈ Ak satisfies d∇τ = 0 and π([τ ]) = 0. Then iξτ = d̂ψ1 + Ξ∗ψ2 for elements
ψ1, ψ2 ∈ A∗

hor of degree k − 2 and k − 1, respectively. Then consider the form

τ̃ := τ + d∇(α ∧ ψ1 − ψ2) = τ + dα ∧ ψ1 − α ∧ d∇ψ1 − d∇ψ2,

which represents the same cohomology class as τ . Under insertion of ξ, the
second summand in the right hand side vanishes, while the third summand

produces −d∇ψ1 + α ∧ iξd∇ψ1 = −d̂ψ1 and the last one gives −Ξ∗ψ2. Hence
iξ τ̃ = 0 and since also d∇τ̃ = 0, Lemma 4.5 shows that Ξ∗τ̃ = 0. Hence τ̃ is a
cocycle in Kk and ker(π) = im(j).
Next, we claim that δ ◦ π = 0. Taking τ ∈ Ak with d∇τ = 0, we have observed

above that d̂iξτ = Ξ∗(τ −α∧ iξτ). So by definition, δ([iξτ ]) is the cohomology

class of dα ∧ iξτ + d̂(τ − α ∧ iξτ). Computing d∇(τ − α ∧ iξτ) using that τ is
closed, we get −dα ∧ iξτ + α ∧ d∇iξτ . Projecting to the horizontal part leaves
the first term untouched and kills the second term, so δ([iξτ ]) = 0.

Conversely, let us assume that ϕ ∈ Ak−1
hor has the property that d̂ϕ = Ξ∗ψ for

some ψ ∈ Ak
hor and that δ([ϕ]) = 0. This means that there is ψ̃ ∈ Kk such

that dα∧ ϕ+ d̂ψ = d∇ψ̃. Taking into account that iξd
∇ψ̃ = 0, we may simply

replace ψ by ψ − ψ̃, and assume that d̂ϕ = Ξ∗ψ and dα ∧ ϕ + d̂ψ = 0. Now
consider τ := α ∧ ϕ+ ψ ∈ Ak, which evidently satisfies iξτ = ϕ. Now

d∇τ = dα ∧ ϕ− α ∧ d∇ϕ+ d∇ψ

Now in the second summand, we can clearly replace d∇ by d̂. In the third

summand, we rewrite d∇ψ = d̂ψ + α ∧ iξd
∇ψ. Rewriting the last term as

α ∧ Ξ∗ψ we conclude that d∇τ = 0, so [ϕ] = π([τ ]) and ker(δ) = im(π).

Finally, if ϕ ∈ Ak−1
hor has the property that d̂ϕ = Ξ∗ψ for some ψ ∈ Ak

hor, then

δ([ϕ]) = dα ∧ ϕ+ d̂ψ. But then τ := α ∧ ϕ+ ψ ∈ Ak and we get

d∇τ = dα ∧ ϕ− α ∧ d∇ϕ+ d̂ψ + α ∧ Ξ∗ψ.

This vanishes since in the second term we may replace d∇ by d̂, and we see
that j ◦ δ = 0.
Conversely, assume that ϕ ∈ Kk+1 has the property that ϕ = d∇τ for some
τ ∈ Ak. Then by assumption, we have 0 = iξd

∇τ and Lemma 4.5 shows that

d∇iξτ = Ξ∗τ . Thus we get d̂iξτ = Ξ∗(τ − α ∧ iξτ) and we may form [iξτ ] ∈

Hk−1(C∗, d̂). But then δ([iξτ ]) is the class of dα ∧ iξτ − d̂(τ − α ∧ iξτ). Now

d̂τ = d∇τ = ϕ, while d∇(α∧ iξτ) = dα∧ iξτ −α∧d∇iξτ . As before, projecting
the right hand side to the horizontal part leaves the first term unchanged and
kills the second term, so δ([iξτ ]) = [ϕ], which completes the proof. �
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4.5. The case of the homogeneous model

As a last step, we specialize further to the case of PCS–quotients of connected
open subsets of the homogeneous model G/P of a parabolic contact structure.
In particular, this includes the global contactification S2n+1 → CPn in the two
geometric interpretations discussed in Proposition 1 and Section 3.4 of [9]. In
the second case, we obtain generalizations of all results on cohomology needed
for the applications in [16].
Observe that all restrictions we have imposed so far are satisfied for a connected
open subset in G/P , since any infinitesimal automorphism of a locally flat ge-
ometry is normal. The crucial additional ingredient we get for the homogeneous
model is that any tractor bundle admits a global parallel frame.

Lemma 4.9. Let M# = G/P be the homogeneous model of a parabolic contact
structure, let V be a representation of G and VM# = G×P V the corresponding
tractor bundle. For v ∈ V consider the section σv ∈ Γ(VM#) corresponding
to the P–equivariant function fv : G → V defined by fv(g) := g−1 · v. Then
∇Vσv = 0, so starting from a basis of V, we obtain a global parallel frame for
VM#.

Proof. It is well known that the extended principal bundleG×PG is canonically
trivialized by the map sending the class of (g1, g2) to (g1P, g1g2) ∈ G/P ×G.
Now we can also realize VM# as (G ×P G) ×G V, thus obtaining a canonical
trivialization of VM#. The canonical connection ∇V is well known to be the
flat connection induced by this trivialization which implies the result. �

Now of course we also get a global parallel trivialization of VM# in the case
thatM# is a connected open subset in G/P . In this case G# ⊂ G is the (open)
pre–image of M# ⊂ G/P in G. Now assume that q : M# → M is a PCS–

quotient, and let ξ̃ ∈ X(M#) be the corresponding infinitesimal automorphism.
Since any infinitesimal automorphism corresponds to a parallel section of AM ,
we see that ξ̃ must be the restriction to G# of a right invariant vector field RX

on G. Using this, one easily verifies that the corresponding bundle map Ξ on
VM# satisfies Ξ ◦ σv = σ−X·v. Now let W1 ⊂ V be the kernel and W2 the
cokernel of the map V → V defined by v 7→ X · v. Then of course mapping
(x,w) to σw(x) defines a trivializationM#×W1

∼= ker(Ξ) and similarly we get
a trivialization of coker(Ξ).

Theorem 4.10. Suppose that M# is a connected open subset of the homoge-
neous model G/P of some parabolic contact structure and that q :M# →M is
a PCS–quotient for which the infinitesimal automorphism defining the quotient
corresponds to X ∈ g. Let V be a representation of g, let ρX : V → V be the
action of X and put W1 := ker(ρX) and W2 := V/ im(ρX).
(1) For the complex (K∗, d∇) from Proposition 4.7, the cohomology is given by
Hk(K∗, d∇) ∼= Hk(M) ⊗W1, where H

k(M) is the k–th de–Rham cohomology
of M .
(2) Suppose further that ker(ρX) ∩ im(ρX) = {0}. Then there is a natural

isomorphism W1
∼= W2 and also for the complex (C∗, d̂) from Proposition 4.7,
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the cohomology is given by Hk(C∗, d̂) ∼= Hk(M) ⊗W1. Moreover, under this
identification and the one from part (1), the homomorphism δ in the long exact
sequence from Theorem 4.8 corresponds to map Hi−1(M)⊗W1 → Hi+1(M)⊗
W1 is given by taking the wedge product with the cohomology class [ω] ∈ H2(M),
where ω ∈ Ω2(M) is characterized by q∗ω = dα.

Proof. The global trivialization VM# ∼= M# × V constructed above of course
defines an isomorphism

(3) Ωk(M#,VM#) ∼= Ωk(M#)⊗ V.

By definition, the map Ξ∗ corresponds to id⊗ρX under this isomorphism while
iξ corresponds to iξ⊗idV. Moreover, the fact that the trivializing frame consists
of parallel sections implies that d∇ corresponds to d ⊗ idV under the isomor-
phism (3). Finally, the considerations about naturality of Lξ̃ from Section 4.2

together with the observations on the trivializing sections above show that Lξ̃

corresponds to Lξ ⊗ id− id⊗ρX under the isomorphism (3).
Now by definition Kk ⊂ Ωk(M#,VM#) consists of those forms ϕ such that
Lξϕ = 0, iξϕ = 0 and Ξ∗(ϕ) = 0. Hence we see restricting the above map, we
obtain an isomorphism between Kk and the joint kernel of id⊗ρX , iξ ⊗ id and
Lξ⊗ id. Of course, this joint kernel is exactly Ω∗(M)⊗W1, and d

∇ corresponds
to d⊗ id, so (1) follows.
In the setting of (2), we first observe that restricting the projection V → W2

to W1, we obtain an injection by assumption, so this must be a linear iso-
morphism for dimensional reasons. Now we can compose the isomorphism
(3) with the projection onto Ωk(M#) ⊗W2 and restrict the resulting map to
Ak

hor ⊂ Ωk(M#,VM#). By the above observations on compatibility, the val-
ues of this map lie in the kernels of Lξ ⊗ id and iξ ⊗ id, so we actually land in
Ωk(M)⊗W2.
Moreover, by assumption, any form in Ωk(M#,VM#) can be written as ϕ =
ϕ1 + ϕ2, where ϕ1 has values in ker(Ξ) while ϕ2 has values in im(Ξ). From
above, we see that Lξ̃ preserves these two subspaces, so we see that Lξ̃ϕ = 0
if and only if Lξ̃ϕi = 0 for i = 1, 2. The same result trivially holds for iξ so

we see that ϕ ∈ Ak
hor implies ϕi ∈ Ak

hor for i = 1, 2, so in particular ϕ1 ∈ Kk.
Again by assumption Ξ restricts to an isomorphism on im(Ξ), which shows that
ϕ2 ∈ Ξ∗(A

k
hor), so the class of ϕ in Ck coincides with the class of ϕ1.

On the other hand, given τ ∈ Ωk(M) and w ∈ W2, we can find an element
w̃ ∈ W1 projecting onto w and then consider q∗τ ⊗ σw̃ ∈ Ωk(M#,VM#).
Since Ξ∗(σw̃) = 0, we see that this lies in Ak

hor, so we can look at its class
in Ck. Together with the above, this shows that we get an inverse, so Ck ∼=
Ωk(M)⊗W2. Of course, d∇(q∗τ ⊗ σw̃) = (q∗dτ)⊗ σw̃ , and since the pullback

is horizontal, this coincides with d̂(q∗τ ⊗ σw̃). Hence under our isomorphism d̂

on C∗ again corresponds to d ⊗ id. Finally, if dτ = 0, then d̂(q∗τ ⊗ σw̃) = 0,
which readily implies the claim about δ. �
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4.6. Examples

Let us first observe that the conditions of part (2) of Theorem 4.10 are often
satisfied.

Proposition 4.11. Let g be a simple Lie algebra with complexification gC and
suppose that X ∈ g ⊂ gC is semisimple, i.e. such that adX is diagonalizable on
gC. Then the assumption of part (2) of Theorem 4.10 is satisfied for any finite
dimensional representation of g.

Proof. It is a classical result of Lie theory that X acts diagonalizably on any
complex representation of gC. But for a diagonalizable map, the kernel is the
eigenspace for the eigenvalue 0, while the image coincides with the sum of all
other eigenspaces. Hence ker(ρX)∩ im(ρX) = {0} on such representations, and
via complexifications, this easily extends to all real representations of g. �

Next, we can sort out the local case.

Corollary 4.12. Suppose that the assumptions of part (2) of Theorem 4.10
are satisfied and that q : M# → M has the property that the form ω ∈ Ω2(M)
such that q∗ω = dα is exact. Then for each k, the cohomology Hk in degree k
of the descended BGG sequence fits into an exact sequence

0 → Ωk(M)⊗W1 → Hk → Ωk−1(M)⊗W1 → 0.

In particular, the local cohomology of the complex vanishes except in degrees 0
and 1, where it is isomorphic to W1.

Proof. Part (2) of Theorem 4.10 gives an interpretation of the cohomology
groups of K∗ and C∗ showing up in the long exact sequence from Theorem
4.8 and shows that the connecting homomorphisms δ in that sequence are all
0. Hence the sequence decomposes into short exact sequences as claimed. The
result on local cohomology follows readily. �

Finally, we can sort out the case of complex projective space in either of the
two interpretations from [9]. Note that the only information needed for the
applications in [16] is vanishing of the first cohomology for a class of descended
BGG sequences.

Theorem 4.13. For n ≥ 2 consider the global PCS–quotient q : M# :=
S2n+1 → CPn =: M , either for the PCS–structure of Kähler type on CPn

as discussed in Proposition 1 of [9] or the induced conformal Fedosov structure
as in Section 3.4 of that reference. Let V be a representation of the corre-
sponding group G, let X ∈ g be the element generating the parallel section of
AM# giving rise to the PCS–quotient and put W := {v ∈ V : X · v = 0}. Let
VM# →M# be the tractor bundle induced by V.
Then the cohomology of the sequence of differential operators on M obtained by
descending the BGG sequence induced by V vanishes in degrees different from
0 and 2n+ 1, while in degrees 0 and 2n+ 1 it is isomorphic to W.

Documenta Mathematica 24 (2019) 2203–2240



PCS-Structures III 2239

Proof. The Lie algebra g of G either equals su(n + 1, 1) or sp(2n + 2,R). In
the first case, g naturally acts on Cn+2 and in the second case we consider
it as acting on Cn+1 ∼= R2n+2. In both cases, the discussion in [9] shows
that X acts diagonalizably (over C) in this representation. Thus we can apply
Proposition 4.11 to see that the assumptions of part (2) of Theorem 4.10 are
satisfied for V. Together with the well known description ofH∗(CPn), Theorem

4.10 shows that both (K∗, d∇) and (C∗, d̂) have vanishing cohomology in odd
degrees. Moreover, all the connecting homomorphisms δ : Hk−1(K∗, d∇) →

Hk+1(C∗, d̂) in the long exact sequence from Theorem 4.8 are isomorphisms
whenever 1 ≤ k ≤ 2n− 1. Using this, the long exact sequence readily implies
vanishing of the cohomology of (A∗, d∇) in degrees different from 0 and 2n+
1. For these two degrees the long exact sequence contains the parts 0 →
H0(K∗, d∇) → H0(A∗, d∇) → 0 and 0 → H2n+1(A∗, d∇) → H2n(C∗, d̂) → 0
which together with Theorem 4.10 completes the proof. �
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