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1 Introduction

The purpose of this paper is to establish the explicit Ichino formula for twisted
triple product L-functions. As an application of our formula, we establish new
cases on the algebraicity of central critical values of certain class of automorphic
L-functions for GL(3)×GL(2) divided by the associated Deligne’s periods. To
begin with, let f and g be elliptic newforms of weights κ′ and κ, level Γ0(N1)
and Γ0(N2), respectively. We let L(s, Sym2(g) ⊗ f) be the motivic L-function
associated with Sym2(g) ⊗ f . Recall we have the functional equation which
relates L(s, Sym2(g)⊗ f) and L(w+1− s, Sym2(g)⊗ f), where w = 2κ+κ′− 3
(cf. see (7.1)). Put ǫ = (−1)κ

′/2−1. Denote by Ω±
f the Shimura’s periods of f
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in [Shi77], and Ωf,g ∈ C× be Deligne’s period of the tensor motive associated
to Sym2(g)⊗ f with sign ǫ. Then

Ωf,g =

{
(2π

√
−1)3−3κ(

√
−1)1−κ′〈f, f〉Ωǫ

f if 2κ ≤ κ′,

(2π
√
−1)2−κ−κ′〈g, g〉2Ωǫ

f if 2κ > κ′.
(1.1)

Here 〈f, f〉 and 〈g, g〉 are the Petersson norms of f and g, respectively. For σ ∈
Aut(C), let fσ and gσ be the Galois conjugates of f and g by σ, respectively.
Our main result is as follows.

Theorem A. (Cor. 7.1) Suppose that N1 and N2 are square-free. For σ ∈
Aut(C), we have

(
L((w + 1)/2, Sym2(g)⊗ f)

(2π
√
−1)3(w+1)/2Ωf,g

)σ

=
L((w + 1)/2, Sym2(gσ)⊗ fσ)

(2π
√
−1)3(w+1)/2Ωfσ,gσ

.

Remark 1.1.

(1) The period Ωf,g coincides with Deligne’s period for the motive attached
to Sym2(g)⊗f . Indeed, it is a direct consequence of the period calculation
due to Blasius in [Bla87].

(2) If the central value L(κ
′

2 , f) is non-zero, then Theorem A follows from the
algebraicity of the central value L(w+1

2 , g⊗g⊗f) proved by Harris-Kudla
in [HK91].

(3) If N1 = 1 and 2κ > κ′, then the above algebraicity result was obtained by
Ichino [Ich05, Corollary 2.6] via the explicit pullback formula for Saito-
Kurokawa lifts (N2 = 1 and κ = κ′/2 + 1) and by Xue (N2 = 1) using
a different but closely related approach [Xue19]. The first author has
generalized Ichino’s pullback formula of Saito-Kurokawa lifts in [Che19]
if N2 is furthter assumed to be odd and cubic-free.

Our result covers the remaining cases and thus settles down Deligne’s
conjecture for the central value of the L-functions for Sym2(g) ⊗ f at
least when the levels of f and g are square-free.

(4) If 2κ > κ′ + 4, then Sym2(g) ⊗ f has a non-zero critical value
L(n, Sym2(g) ⊗ f) such that n has the same parity with (w + 1)/2. In
this case, Theorem A also follows from the results of Garrett-Harris and
Januszewski in [GH93, Theorem 4.6] and [Jan18, Theorem A], respec-
tively, and the factorization of motivic L-functions

L(s, g ⊗ g ⊗ f) = L(s, Sym2(g)⊗ f)L (s− κ+ 1, f) .

We remark that Raghuram has proved the algebraicity of the central critical
values of the Rankin-Selberg L-functions attached to regular algebraic cuspidal
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automorphic representations on GL(n)× GL(n− 1) in a quite general setting
[Rag09]. His method is based on a cohomological interpretation of the Rankin-
Selberg zeta integral, and specializing the result of Raghuram to n = 3, one
also obtains the algebraicity of the central critical value of L(s, Sym2(g) ⊗ f)
divided by certain cohomological period for GL(3)×GL(2) in the case 2κ > κ′.
However, our result in this case is not covered by [Rag09] in the sense that the
periods in both results are quite different. More precisely, the periods in our
main theorem coincide with Deligne’s period described by Blasius in [Bla87]
while Raghuram uses the period p±(Π) obtained from the comparison between
the rational structures defined by Whittaker models and relative Lie algebra
cohomology groups for GL(3)×GL(2) [Rag09, §3.2.1]. It seems a difficult prob-
lem to study directly the relation between Deligne’s period and Raghuram’s
cohomological period. Our result combined with the non-vanishing hypothesis
of central L-values would give a comparison between these two periods. In
the case 2κ > κ′ + 4, the comparison of periods follows from the results of
Garrett-Harris and Januszewski (cf. Remark 1.1-(4)).
Our approach also offers the algebraicity of the central critical value of sym-
metric cube L-functions with the assumption on the non-vanishing of L-values
with cubic twist. Put

w = 3κ′ − 3; ǫ = (−1)κ
′/2−1.

Denote Ωf,Sym3 ∈ C× be Deligne’s period of the motive associated to Sym3(f)
with sign ǫ. Then

Ωf,Sym3 = (2π
√
−1)1−κ′

(
√
−1)1−κ′〈f, f〉(Ωǫ

f )
2. (1.2)

Theorem B (Cor. 7.3). Suppose that N1 > 1 is square-free and there exist a

cubic Dirichlet character χ such that L
(

κ′

2 , f ⊗ χ
)
6= 0. For σ ∈ Aut(C), we

have
(
L((w + 1)/2, Sym3(f))

(2π
√
−1)w+1Ωf,Sym3

)σ

=
L((w + 1)/2, Sym3(fσ))

(2π
√
−1)w+1Ωfσ,Sym3

.

The hypothesis on the non-vanishing of cubic twists of L-values is expected
to hold in general but seems unfortunately a far-reaching problem at this
moment. So far this hypothesis is only known to be satisfied for cuspidal
automorphic representations on GL2(AK) when Q(

√
−3) ⊂ K in [BFH05].

Combining with the results of Januszewski in [Jan16] and [Jan18], and Jiang-
Sun-Tian in [JST19], we obtain conditional results on Deligne’s conjecture for
arbitrary critical values with abelian twists.

Theorem C (Cor. 7.2 and 7.4). For a Dirichlet character χ, denote by G(χ)
the Gauss sum associated to χ.
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(1) Suppose that N1 and N2 are square-free, 2κ > κ′, and L(w+1
2 , Sym2(g)⊗

f) 6= 0. Let n ∈ Z be a critical integer for L(s, Sym2(g)⊗ f) and χ be a
Dirichlet character such that (−1)nχ(−1) = ǫ. For σ ∈ Aut(C), we have

(
L(n, Sym2(g)⊗ f ⊗ χ)

G(χ)3(2π
√
−1)3nΩf,g

)σ

=
L(n, Sym2(gσ)⊗ fσ ⊗ χσ)

G(χσ)3(2π
√
−1)3nΩfσ ,gσ

.

(2) Suppose that N1 > 1 is square-free, L(w+1
2 , Sym3(f)) 6= 0, and there exist

a cubic Dirichlet character χ such that L
(
κ′

2 , f ⊗ χ
)
6= 0. Let n ∈ Z be

a critical integer for L(s, Sym3(f)) and µ be a Dirichlet character such
that (−1)nµ(−1) = ǫ. For σ ∈ Aut(C), we have

(
L(n, Sym3(f)⊗ µ)

G(µ)2(2π
√
−1)2nΩf,Sym3

)σ

=
L(n, Sym3(fσ)⊗ µσ)

G(µσ)2(2π
√
−1)2nΩfσ,Sym3

.

Remark 1.2. The algebraicity of the non-central critical values of
L(s, Sym3(f)) was proved by Garrett-Harris in [GH93, Theorem 6.2]. In
particular, if κ′ ≥ 6, then Theorem C-(2) also follows from the results of
Garrett-Harris and Januszewski in [Jan16, Theorem A] and Jiang-Sun-Tian in
[JST19, Theorem 1.1].

Our proof of Theorem A is based on an explicit Ichino’s central value formula
for the twisted triple product L-functions. Let K be a real quadratic field and
let gK be the Hilbert modular newform over K associated to g obtained by the
base change lift. Let L(s, gK ⊗ f) be the triple product L-function associated
to gK ⊗ f . Let τK be the quadratic Dirichlet character associated with K/Q.
From the following factorization of L-functions

L(s, gK ⊗ f) = L(s, Sym2(g)⊗ f)L (s− κ+ 1, f ⊗ τK) ,

one can deduce easily the algebraicity of L
(
w+1
2 , Sym2(g)⊗ f

)
(divided by the

associated Deligne’s period) from that of the central value L
(
w+1
2 , gK ⊗ f

)

of the twisted triple product and that of the central value L
(

κ′

2 , f ⊗ τK

)
of

elliptic modular forms whenever L(κ
′

2 , f⊗τK) does not vanish. The algebraicity
of critical L-values of elliptic modular forms with Dirichlet twists is a classical
result due to Shimura, so the main task is to choose a nice real quadratic
field K with L(κ

′

2 , f ⊗ τK) 6= 0 and show the algebraicity of the central value
L(w+1

2 , gK ⊗ f), for which one appeals to Ichinos’s formula in [Ich08]. More
precisely, if the global sign in the functional equation of the automorphic L-
function for the twisted triple product gK⊗f is +1, then Ichino’s formua alluded
to above asserts that there exists a quaternion algebra D over Q so that the
central critical value L

(
w+1
2 , gK ⊗ f

)
is the ratio between the square of the

global trilinear period integral of an automorphic form on D×(AK)×D×(A)
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and a product of certain local zeta integrals. Taking into account the functional
equation and the Galois invariance of the global sign, we may assume the global
sign of Sym2(g)⊗ f is +1. Then by using a result of Friedberg and Hofffstein
[FH95], we can choose a real quadratic field K such that (i) L(κ

′

2 , f ⊗ τK) 6= 0,
(ii) the sign of gK ⊗ f is +1 and (iii) the quaternion algebra D in Ichino’s
formula is the matrix algebra (resp. a definite quaternion algebra) over Q in
the case 2κ ≤ κ′ (resp. 2κ > κ′ if we assume further that N1 > 1). To obtain
the explicit Ichino’s central value formula, we calculate the local period integral
at each place (Theorems 6.2 and 6.3) in terms of global period integral, and as
a consequence, we obtain the algebraicity of the central value L

(
w+1
2 , gK ⊗ f

)

(cf. Corollary 6.4) by a standard argument. In fact, we prove in Corollary
6.6 that the ratio between the central L-value of the twisted triple product
L-function and the Petersson norms is essentially a square in the Hecke field.

The idea of the proof for Theorem B is similar. Assume χ is a cubic Dirichlet

character such that L
(

κ′

2 , f ⊗ χ
)
6= 0. Let E be the totally real cubic Galois

extension over Q cut out by χ and let fE be the Hilbert modular newform over
E associated to f via the base change lift. Consider the degree eight triple
product L-function L(s, fE) associated to fE. Then we have the factorization
of L-functions :

L(s, fE) = L
(
s, Sym3(f)

)
L(s− κ′ + 1, f ⊗ χ)L(s− κ′ + 1, f ⊗ χ2).

Thus the algebraicity of L
(
w+1
2 , Sym3(f)

)
is a consequence of the algebraicity

of L
(
w+1
2 , fE

)
, which again can be deduced from the explicit Ichino central

value formula in this case.

This paper is organized as follows. We first study the local zeta integrals in
Ichino’s formula. In §2, we introduce the local zeta integrals and fix the test
vectors used in the subsequent local calculation. After recalling basic properties
of local matrix coefficients for GL(2) in §3, we carry out the calculations of
local zeta integrals in the cases of the matrix algebra and the division algebra
in §4 and §5, respectively. In particular, we compute the archimedean zeta
integrals explicitly. In §6, we recall Ichino’s central value formula and establish
its explicit version in Theorem 6.2 and Theorem 6.3. Finally, we prove our
main results in §7 as an application of the explicit central value formulae.
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2 Local zeta integrals

In this section, we setup the notation and assumptions for our local compu-
tations in §3 and §4. We also fix the test vectors, raising elements and define
the local zeta integrals which appear in our local calculation. These local zeta
integrals are used to establish explicit Ichino’s formulae in §6.

2.1 Notation and assumptions

Let F be a local field of characteristic zero. When F is non-archimedean, denote
by OF , ̟F and qF , the valuation ring, a uniformizer and the cardinality of the
residue field of F , respectively. Moreover, let ordF be the valuation on F
normalized so that ordF (̟F ) = 1, and let | · |F be the absolute value on F
with |̟F |F = q−1

F . When F is archimedean, let | · |R be the usual absolute
value on R and |z|C = zz on C. Let E be an étale cubic algebra over a local
field F . Then E is (i) F × F × F three copies of F , or (ii) K × F , where K is
a quadratic extension of F , or (iii) is a cubic field extension of F . Let D be a
quaternion algebra over F . If L is a F -algebra, let D×(L) := (D ⊗F L)

×. Let
Π be a unitary irreducible admissible representation of D×(E) whose central
character we assume to be trivial on F×. Let Π ′ be the unitary irreducible
admissible representation of GL2(E) associated to Π via the Jacquet-Langlands
correspondence. Therefore Π ′ = Π if D = M2(F ) is the matrix algebra. Notice
that Π ′ = π1 ⊠ π2 ⊠ π3 (if E = F × F × F ), or Π ′ = π′

⊠ π (if E = K × F ),
where πj (j = 1, 2, 3) and π are unitary irreducible admissible representations
of GL2(F ), and π

′ is a unitary irreducible admissible representation of GL2(K).
We make the following assumptions on the triplet (F,E,Π ) in the rest of this
section and §4, §5.

• When F is archimedean, we assume F = R and E = R ×R×R.

• When F = R, we assume Π ′ is a (limit of) discrete series with the
minimal weight k = (k1, k2, k3) and the central character Sgnk1

⊠Sgnk2
⊠

Sgnk3 for some positive integers k1, k2, k3.

• When F is non-archimedean and π′′ is a unitary irreducible admissible
generic representation of GL2(L), where L ∈ {F,K,E} is a field, we
assume π′′ is either spherical or is a unramified special representation.
Moreover, we assume π′′ has trivial central character.

• We assume Λ(Π ′) < 1/2, where Λ(Π ′) is defined in [Ich08, pp. 284-285].

• We assume HomD×(F )(Π ,C) 6= {0}.

There are some remarks.
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Remark 2.1.

(1) By the results of Prasad [Pra90] and [Pra92], the space HomD×(F )(Π ,C)
has dimension at most one. When F = R, it follows from [Pra90, Theo-
rem 9.5] that HomD×(R)(Π ,C) 6= {0} precisely when (i) D = M2(R)
and 2max {k1, k2, k3} ≥ k1 + k2 + k3, or (ii) D is the division alge-
bra and 2max {k1, k2, k3} < k1 + k2 + k3. We call the first case the
unbalanced case, while the second case is called the balanced case. No-
tice that k1 + k2 + k3 ≡ 0 (mod 2) by our assumption.

(2) Suppose L is a non-archimdean local field. By a unramified special repre-
sentation π′′ of GL2(L) we mean π′′ = StL⊗χ, where StL is the Steinberg
representation of GL2(L), and χ is a unramified character of L×. Note
that if π′′ has trivial central character, then χ is a quadratic character.

2.2 The new line

Denote by VΠ the representation space of Π . In what follows, we shall introduce
a special one-dimensional subspace in VΠ , which is called the new line V new

Π
of

VΠ . If F is non-archimedean and a is an ideal of OE , let

U0(a) =

{
g =

(
a b
c d

)
∈ GL2(OE) | c ∈ a

}
.

Suppose that D = M2(F ). If F is non-archimedean, then by [Cas73], there is
a unique ideal c(Π ) of OE such that

dimC V
U0(c(Π ))
Π

= 1.

The ideal c(Π ) is called the conductor of Π , and define the new line

V new
Π

:= V
U0(c(Π ))
Π

. The conductor c(Π ) is of the following form (i) C(Π ) =
(̟a

F , ̟
b
F , ̟

c
F )OE when E = F × F × F ; (ii) C(Π ) = (̟a

K , ̟
b
F )OE when

E = K × F ; (iii) C(Π ) = ̟a
EOE when E is a field. Note that our assumption

implies 0 ≤ a, b, c ≤ 1. If F = R, then E = R ×R ×R according to our as-
sumption. In this case, the new line V new

Π
is defined to be the one-dimensional

subspace of the minimal weight under the SO2(E)-action.
Suppose that D is division. If F is non-archimedean, and E 6= K × F , then
VΠ is already one-dimensional according to our assumption. In this case, we
put V new

Π
= VΠ . When E = K × F , we have Π = π′

⊠ π, where π (resp.
π′) is a unitary irreducible admissible (resp. generic) representation of D×(F )
(resp. GL2(K)). Note that π is one-dimensional by our assumption. In this
case, we have VΠ = Vπ′ ⊗Vπ and we define the new line V new

Π
to be V new

π′ ⊗Vπ .
Of course V new

π′ stands for the one-dimensional subspace spanned by the new
vector of π′. Finally, if F = R and 2max{k1, k2, k3} < k1 + k2 + k3, we define

the new line V new
Π

to be the one-dimensional subspace V
D×(R)
Π

of VΠ [Pra90,
Theorem 9.3].
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2.3 Raising elements

Let g = Lie(GL2(R))⊗RC and U be the universal enveloping algebra of g. We
put UE = U⊗ U⊗ U. Let

Ṽ+ := (− 1

8π
) · V+ ∈ U with V+ =

(
1 0
0 −1

)
⊗ 1 +

(
0 1
1 0

)
⊗
√
−1

be the weight raising operator [JL70, Lemma 5.6]. Let τF ∈ GL2(F ) be given
by

τF =





(
−1 0

0 1

)
if F = R,

1 if F is nonarchimedean.

(2.1)

Define a special element t ∈ UE×SO(2, E) or D×(E) attached to Π as follows:

• F = R, D = M2(F ) and 2max{k1, k2, k3} ≥ k1 + k2 + k3. Suppose that
k3 = max {k1, k2, k3}. Then

t =

(
1⊗ Ṽ

k3−k1−k2
2

+ ⊗ 1, (1, 1, τR)

)
∈ UE × SO(2, E).

• F non-archimedean, E = F ×F ×F , D = M2(F ), Π = π1 ⊠ π2 ⊠ π3 and
precisely one of πj is unramified special, say π1:

t =

(
1,

(
̟−1

F 0
0 1

)
, 1

)
∈ GL2(F )×GL2(F )×GL2(F ).

• F non-archimedean,E = K×F ,K/F is ramified,D = M2(F ), Π = π′
⊠π

with π′ spherical and π unramified special:

t =

((
̟−1

K 0
0 1

)
, 1

)
∈ GL2(K)×GL2(F ).

• F non-archimedean,E = K×F ,K/F is ramified,D = M2(F ), Π = π′
⊠π

with π′ unramified special and π spherical:

t =

((
̟F 0
0 1

)
, 1

)
∈ GL2(K)×GL2(F ).

• F non-archimedean, E ramified cubic extension, D = M2(F ), Π unram-
ified special:

t =

(
̟−1

E 0
0 1

)
∈ GL2(E).

• For all other cases:
t = 1 ∈ D×(E).
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2.4 Definition of local zeta integrals

We now define the local zeta integrals in our local computation except for the
balanced case, which will be defined by equation (5.6).
Let J ∈ D×(E) be given as follows:

J =

{
(τR, τR, τR) ∈ GL2(R)3 if F = R and D = M2(R),

1 otherwise.

Let ζF (s) denote the local zeta function. Therefore,

ζF (s) =





2(2π)−sΓ(s) if K = C,

π−s/2Γ(s/2) if K = R,

(1− q−s
F )−1 if K is nonarchimedean,

where qF is the cardinality of the residue field of F when F is non-archimedean.

Definition 2.2. Fix a nonzero D×(E)-invariant pairing BΠ : VΠ × VΠ → C.
Let φΠ ∈ V new

Π
be a non-zero vector in the new line. The normalized local zeta

integral is defined by

I(Π , t) =

∫

F×\D×(F )

BΠ (Π (ht)φΠ ,Π (t)φΠ )

BΠ (Π (J )φΠ , φΠ )
dh,

I∗(Π , t) =
ζF (2)

ζE(2)
· L(1,Π

′,Ad)

L(1/2,Π ′, r)
· I(Π , t).

Here the L-factors are defined in [Ich08, pp. 282-283].

Remark 2.3.

(1) Since the central character of Π is trivial on F×, the integrals are well-
defined. Moreover, our assumption Λ(Π ′) < 1/2 implies these integrals
converge absolutely [Ich08, lemma 2.1].

(2) We note that φΠ is unique up to a constant as well as BΠ . Thus I(Π , t)
is independence of the choice of φΠ and BΠ . But it does depend on the
choice of the measure dh.

3 Matrix coefficients for GL(2)

Let F be eitherR or a non-archimdean local field. Let π be a unitary irreducible
admissible generic representation of GL2(F ). Define a non-zero element φπ as
follows. When F = R, let φπ be a vector with minimal non-negative weight
under the SO(2)-action. When F is non-archimedean, let φπ be a new vector.
Fix a non-zero GL2(F )-invariant bilinear pairing Bπ : π × π̃ → C, where π̃ is
the admissible dual of π.
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Definition 3.1. We define the matrix coefficient associate with an element
t ∈ U×O(2) or t ∈ GL2(F ) by

Φπ(h; t) =
Bπ(π(ht)φπ , π̃(t)φπ̃)

Bπ(π(τF )φπ , φπ̃)
, h ∈ GL2(F ).

Recall that τF is given by (2.1). When t = 1, we simply denote Φπ(h) for
Φπ(h; t).

Remark 3.2. Note that Φπ(h; t) is independent of the choice of elements φπ
and φπ̃ in the one dimensional subspaces of π and π̃ which consisting of either
minimal non-negative weight elements or new vectors. Moreover, it is also
independent of Bπ and the models for which we used to realize π and π̃.

3.1 A formula of Φπ(h, t): the archimedean case

Let π be a (limit of) discrete series representation of GL2(R) with minimal
weight k ≥ 1 and the central character sgnk. Note that π ∼= π̃. Let ψ be
the additive character of R defined by ψ(x) = e2π

√
−1x. Let W(π, ψ) be the

Whittaker model of π with respect to ψ. Let Bπ : W(π, ψ)×W(π, ψ) → C be
the GL2(R)-invariant bilinear pairing given by

Bπ(W,W
′) =

∫

R×

W

((
t 0
0 1

))
W ′
((

−t 0
0 1

))
d×t, (3.1)

forW,W ′ ∈ W(π, ψ). Here d×t = |t|−1
R dt, and dt is the usual Lebesgue measure

on R.
Let Wπ ∈ W(π, ψ) be the weight k element characterized by

Wπ

((
a 0
0 1

))
= a

k
2 e−2πa · IR+(a), a ∈ R×. (3.2)

For each m ∈ Z≥0, we put

Wm
π = ρ

(
Vm
+

)
Wπ .

Here ρ denotes the right translation. In particular, we have W 0
π = Wπ . We

note that Wm
π has weight k + 2m. The following recursive formula can be

deduced from the proof of [JL70, Lemma 5.6]

Wm+1
π

((
a 0
0 1

))
= 2a · d

da
Wm

π

((
a 0
0 1

))
+(k+2m−4πa)·Wm

π

((
a 0
0 1

))
.

(3.3)

Lemma 3.3. We have

Wm
π

((
a 0
0 1

))
= 2mPm

π (a)e−2πa · IR+(a),
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where Pm
π is the polynomial given by

Pm
π (a) =

m∑

j=0

(−4π)j
(
m
j

)
Γ(k +m)

Γ(k + j)
· a k

2+j .

Proof. This follows from (3.2), (3.3) and the induction on m.

Lemma 3.4. Let a ∈ R× and x ∈ R. Then

Bπ

(
ρ

((
1 x
0 1

)(
a 0
0 1

))
Wm

π ,Wm
π

)

is equal to

2−k+2mπ−kΓ(k +m)2 IR−
(a)

m∑

i,j=0

(−2)i+j

×
(
m
i

)(
m
j

)
Γ(k + i+ j)

Γ(k + i)Γ(k + j)

(−a) k
2+i

[
(1− a) +

√
−1x

]k+i+j
.

Proof. By (3.1) and Lemma 3.3 we have

Bπ

(
ρ

((
1 x
0 1

)(
a 0
0 1

))
Wm

π ,Wm
π

)

=

∫

R×

Wm
π

((
at 0
0 1

))
Wm

π

((
−t 0
0 1

))
ψ(xt)d×t

= 22m
∫

R×

Pm
π (at)Pm

π (−t)e−2π{(1−a)+
√
−1 x}(−t) · IR+(at)IR+(−t)d×t

= 22mIR−
(a)

m∑

i,j=0

(−4π)i+j

(
m
i

)(
m
j

)
Γ(k +m)2

Γ(k + i)Γ(k + j)
· a k

2+i · Iij ,

where

Iij = (−1)
k
2+i

∫ ∞

0

tk+i+je−2π[(1−a)+
√
−1x]td×t

= (−1)
k
2+i

(
2π
[
(1− a) +

√
−1x

])−(k+i+j)
Γ(k + i+ j).

This proves the lemma.

Lemma 3.5. Let N be a nonnegative integer. We have the following identity

N∑

i=0

(−1)i
(
N
i

)
Γ(z + i)

Γ(w + i)
=

Γ(z)

Γ(w − z)
· Γ(w − z +N)

Γ(w +N)
,

for every z, w ∈ C.
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Proof. This is [Ike98, Lemma 2.1].

Lemma 3.6. We have

Bπ

(
ρ

((
−1 0
0 1

))
Wm

π ,Wm
π

)
= 4−k+mπ−kΓ(k +m)Γ(m+ 1).

Proof. By Lemma 3.4 we have

Bπ

(
ρ

((
−1 0
0 1

))
Wm

π ,Wm
π

)

= 4−k+mπ−kΓ(k +m)2
m∑

i,j=0

(−1)i+j

(
m
i

)(
m
j

)
Γ(k + i+ j)

Γ(k + i)Γ(k + j)
.

Applying Lemma 3.5, we find that

m∑

i,j=0

(−1)i+j

(
m
i

)(
m
j

)
Γ(k + i+ j)

Γ(k + i)Γ(k + j)

=

m∑

i=0

(
m
i

)
(−1)i

Γ(k + i)

m∑

j=0

(−1)j
(
m
j

)
Γ(k + i+ j)

Γ(k + j)

=

m∑

i=0

(−1)i
(
m
i

)
Γ(m− i)

Γ(−i)Γ(k +m)

= (−1)m
Γ(0)

Γ(−m)Γ(k +m)
=

Γ(m+ 1)

Γ(k +m)
.

This proves the lemma.

Combining the above results, we obtain the following corollary.

Corollary 3.7. Let m ∈ Z≥0, x ∈ R and a ∈ R×. We have

(1)

Φπ

((
a x
0 1

)
;V m

+

)

= 2k+2m Γ(k +m)2

Γ(k)
IR−

(a)
m∑

i,j=0

(−2)i+j

(
m
i

)(
m
j

)

× Γ(k + i+ j)

Γ(k + i)Γ(k + j)

(−a) k
2+i

[
(1− a) +

√
−1x

]k+i+j
.

(2)

Φπ

((
a x
0 1

)
; τR

)
= 2k

(−a) k
2

[
(1− a)−

√
−1x

]k IR−
(a).
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3.2 A formula of Φπ(h, t): the non-archimedean case

Let F be a non-archimdean local field. Let B(F ) be the subgroup of upper
triangular matrices in GL2(F ). Denote by StF the Steinberg representation
of GL2(F ). Namely, StF is the unique irreducible subrepresentation in the
induced representation

Ind
GL2(F )
B(F ) (| · |1/2F ⊠ | · |−1/2

F ).

Lemma 3.8. Suppose that π = Ind
GL2(F )
B(F )

(
| · |λF ⊠ | · |−λ

F

)
is spherical. Let α =

|̟|λF . Then for n ∈ Z, we have

Φπ

((
̟n

F 0
0 1

))
=

q
−|n|/2
F

1 + q−1
F

(
α|n| · 1− α−2q−1

F

1− α−2
+ α−|n| · 1− α2q−1

F

1− α2

)

Proof. This is Macdonald’s formula. For example, see [Bum98, Theorem
4.6.6].

Lemma 3.9. Suppose π = StF ⊗χ, where χ is a unramified quadratic character
of F×. Then for n ∈ Z, we have

Φπ

((
̟n

F 0
0 1

))
= χ(̟n

F )q
−|n|
F

and

Φπ

((
0 1
1 0

)(
̟n

F 0
0 1

))
= −χ(̟n

F )q
−|n−1|
F .

Proof. See [GJ72, §7].

4 The calculation of local zeta integral (I)

In this section, let D = M2(F ). We compute the normalized local zeta integral
I∗(Π , t) in Definition 2.2.

4.1 Haar measures

If F = R, let dx be the usual Lebesgue measure on R, and the Haar measure
d×x on R× is given by |x|−1

R d×x. The Haar measure dh on GL2(R) is given
by

dh =
dz

|z|R
dxdy

|y|2R
dk

for h = z

(
1 x
0 1

)(
y 0
0 1

)
k with x ∈ R, y ∈ R×, z ∈ R×

+, k ∈ SO(2), where

dx, dy, dz are the usual Lebesgue measures and dk is the Haar measure on
SO(2) such that Vol(SO(2), dk) = 2.
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If F is non-archimedean, let dx be the Haar measure on F so that the total
volume of OF is equal to 1 and let d×x on F× be the Haar measure on F×

so that O×
F also has volume 1. On GL2(F ), we let dh be the Haar measure

determined by Vol (GL2(OF ), dh) = 1.
The measure on the quotient space F×\GL2(F ) is the unique quotient measure
induced from the measure dh on GL2(F ) and the measure d×x on F×.

4.2 The archimedean case

Let πj (j = 1, 2, 3) be a (limit of) discrete series representation of GL2(R) with
minimal weight kj ≥ 1 and central character sgnkj such that

2max {k1, k2, k3} ≥ k1 + k2 + k3.

We may assume k3 = max {k1, k2, k3} and let 2m = k3 − k1 − k2 for some
integer m ≥ 0.

Proposition 4.1. We have

I∗ (Π , t) = 2k1+k2−k3+1.

Proof. Note that the L-factor given by

L(s,Π , r) =ζC(s+ (k3 + k2 + k1 − 3)/2))ζC(s+ (k3 − k2 − k1 + 1)/2)

× ζC(s+ (k3 − k2 + k1 − 1)/2)ζC(s+ (k3 + k2 − k1 − 1)/2)).

We proceed to compute I(Π , t). By definition

I (Π , t) =

∫

R×\GL2(R)

Φπ1(h)Φπ2

(
h; Ṽ m

+

)
Φπ3(h; τR)dh

=

(
1

8π

)2m ∫

R×\GL2(R)

Φπ1(h)Φπ2

(
h;Vm

+

)
Φπ3(h; τR)dh.

Put
Φ(h) = Φπ1(h)Φπ2

(
h;V m

+

)
Φπ3(h; τR), h ∈ GL2(R).

We now focus our attention to compute the following integral:

I :=

∫

R×\GL2(R)

Φ(h)dh.

Note that Φ(h) is right SO(2)-invariant. By the choice of measure, we see that
the total volume of {±1} \SO(2) is 1, and it follows that

∫

R×\GL2(R)

Φ(h)dh

=

∫

R

∫

R+

[
Φ

((
1 x
0 1

)(
a 0
0 1

))
+Φ

((
1 x
0 1

)(
−a 0
0 1

))]
d×a

|a|R
dx,
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by the Iwasawa decomposition. Since Φ

((
1 x
0 1

)(
a 0
0 1

))
vanishes when

a ∈ R+, we find that

I =

∫

R×\GL2(R)

Φ(h)dh =

∫

R

∫

R+

Φ

((
1 x
0 1

)(
−a 0
0 1

))
d×a

|a|R
dx.

By Corollary 3.7, we have Φ

((
1 x
0 1

)(
a 0
0 1

))
is equal to 22k3 Γ(k2+m)2

Γ(k2)
times

IR−
(a)

m∑

i,j=0

(−2)i+j

(
m
i

)(
m
j

)
Γ(k2 + i+ j)

Γ(k2 + i)Γ(k2 + j)

× (−a)k3−m+i

[(1 − a)−
√
−1x]k3 [(1− a) +

√
−1x]k3−2m+i+j

.

(4.1)

By (4.1) we have

I = 22k3
Γ(k2 +m)2

Γ(k2)

m∑

i,j=0

(−2)i+j

(
m
i

)(
m
j

)
Γ(k2 + i+ j)

Γ(k2 + i)Γ(k2 + j)
· Ii,j ,

where for 0 ≤ i, j ≤ m,

Ii,j :=

∫

R

∫

R+

ak3−m+i−1

[(1 + a)−
√
−1x]k3 [(1 + a) +

√
−1x]k3−2m+i+j

d×a dx

=

∫

R+

ak3−m+i−1

(1 + a)2k3−2m+i+j−1
d×a

×
∫

R

dx

[1 +
√
−1x]k3−2m+i+j [1−

√
−1x]k3

= 22−(2k3−2m+i+j)π
Γ(k3 −m+ i− 1)Γ(k3 −m+ j)

Γ(k3 − 2m+ i+ j)Γ(k3)
.

The last equality follows from the following lemma.

Lemma 4.2. For |arg z| < π, 0 < Re(β) < Re(α), we have

∫

R+

tβ

(t+ z)α
d×t = zβ−α · Γ(α− β)Γ(β)

Γ(α)
.

For Re(α+ β) > 1, we have

∫

R

dx

(1 +
√
−1x)α(1−

√
−1x)β

= 22−α−β · π · Γ(α+ β − 1)

Γ(α)Γ(β)
.

Proof. These are [Ike98, Lemmas 2.4 and 2.5]
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Thus we obtain

I = 22+2mπ
Γ(k2 +m)2

Γ(k2)Γ(k3)

m∑

i,j=0

(−1)i+j

(
m
i

)(
m
j

)

× Γ(k2 + i+ j)

Γ(k2 + i)Γ(k2 + j)
· Γ(k3 −m+ i− 1)Γ(k3 −m+ j)

Γ(k3 − 2m+ i+ j)
.

To simply the above expression of I, we need one more combinatorial identity
from [Orl87, Lemma 3].

Lemma 4.3. Let N ∈ Z≥0 and t, α, β ∈ C. Then

Γ(α+N)

N∑

i=0

(−1)i
(
N
i

)
Γ(t+ i)

Γ(α+ i)
· Γ(t+ β + α+N − 1 + i)

Γ(2t+ β + i)

= (−1)N
Γ(t)Γ(t+ β + α+N − 1)

Γ(2t+ β +N)
· Γ(t+ β +N)

Γ(t+ β)
· Γ(t− α+ 1)

Γ(t− α−N + 1)
.

Now we write

I = 22+2mπ
Γ(k2 +m)

Γ(k1)Γ(k2)

m∑

j=0

(−1)j
(
m
j

)
Γ(k3 −m+ j)

Γ(k2 + j)
· I ′,

where

I ′ = Γ(k2 +m)

m∑

i=0

(−1)i
(
m
i

)
Γ(k2 + j + i)

Γ(k2 + i)
· Γ(k3 −m− 1 + i)

Γ(k3 − 2m+ j + i)
.

Applying Lemma 4.3 to I ′ with t = k2 + j, α = k2 and β = k3 − 2m− 2k2 − j,
we find that

I ′ = (−1)m · Γ(k2 + j)Γ(k3 −m− 1)

Γ(k3 −m+ j)
· Γ(k3 − k2 −m)

Γ(k3 − k2 − 2m)
· Γ(j + 1)

Γ(j −m+ 1)
.

It follows that

I = (−1)m22+2mπ
Γ(k3 −m− 1)Γ(k2 +m)Γ(k1 +m)

Γ(k3)Γ(k2)Γ(k1)

×
m∑

j=0

(−1)j
(
m
j

)
Γ(1 + j)

Γ(1−m+ j)
.

Applying Lemma 3.5, we obtain

I = 22+2mπ
Γ(k3 −m− 1)Γ(k2 +m)Γ(k1 +m)Γ(m+ 1)

Γ(k1)Γ(k2)Γ(k3)
.
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Therefore we find that

I (Π , t) =

(
1

8π

)2m

I

= 22−4mπ1−2mΓ(k3 −m− 1)Γ(k2 +m)Γ(k1 +m)Γ(m+ 1)

Γ(k1)Γ(k2)Γ(k3)
,

and the proposition follows.

We deduce a consequence from Proposition 4.1. Let m1,m2 be two non-
negative integers such that m1 +m2 = m. Put

tm1,m2 =
(
Ṽ m1
+ ⊗ Ṽ m2

+ ⊗ 1, (1, 1, τR)
)
∈ UE ×O(2, E).

Then our original element t is t0,m. Put

I∗ (Π ; tm1,m2) =
L(1,Π ,Ad)

ζR(2)2L(1/2,Π , r)
· I (Π , tm1,m2) ,

where

I (Π , tm1,m2) =

∫

R×\GL2(R)

Φπ1

(
h; Ṽm1

+

)
Φπ2

(
h; Ṽ m2

+

)
Φπ3(h; τR)dh

Then I∗ (Π , t) in Definition 2.2 is nothing but I∗ (Π , t0,m).

Corollary 4.4. Notation is as above. We have

I∗ (Π , tm1,m2) = I∗ (Π , t)

for every non-negative integers m1,m2 such that m1 +m2 = m.

Proof. This is in fact an easy consequence form the multiplicity one result of
local trilinear forms, Proposition 4.1 together with the local Rankin-Selberg

integral. More precisely, let µ2 = | · |(k2−1)/2
R and ν2 = | · |(1−k2)/2

R sgnk2 be two
characters of R×. Then π2 can be realized as the unique irreducible subrepre-

sentation of Ind
GL2(R)
B(R) (µ2 ⊠ ν2) which we denote by Ind

GL2(R)
B(R) (µ2 ⊠ ν2)0. For

every non-negative integer n, we let fn
π2

∈ Ind
GL2(R)
B(R) (µ2 ⊠ ν2)0 be the element

characterized by requiring

fn
π2

((
cosθ sinθ
−sinθ cosθ

))
= ei(k2+2n)θ.

We have the following relation, which can be found in [JL70, Lemma 5.6 (iii)]

ρ
(
Ṽ+

)
fn
π2

= 2(k2 + n)fn+1
π2

.
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Inductively we find that

ρ
(
Ṽ ℓ
+

)
fn
π2

= c(π2, n, ℓ)f
n+ℓ
π2

,

where

c(π2, n, ℓ) = 2ℓ
Γ(k2 + n+ ℓ)

Γ(k2 + n)
, (4.2)

for every ℓ ≥ 0.

Let Ψ : W(π1, ψ)⊠ Ind
GL2(R)
B(R) (µ2 ⊠ ν2)0 ⊠W(π3, ψ) → C be the local Rankin-

Selberg integral defined by

Ψ(W1 ⊗ f2 ⊗W3) =

∫

R×N(R)\GL2(R)

W1(τRg)W3(g)f2(g)dg,

for W1 ∈ W(π1, ψ), f2 ∈ Ind
GL2(R)
B(R) (µ2 ⊠ ν2)0 and W3 ∈ W(π3, ψ). Here

N =

{(
1 ∗
0 1

)
∈ GL2

}
.

One check easily that this integral converges absolutely and certainly it defines
a GL2(R)-invariant trilinear form. From the multiplicity one result of such
trilinear form and the fact that I∗(Π , t) 6= 0, one can deduce that following
equality easily

I∗ (Π , tm1,m2)

I∗ (Π , t)
=

(
c(π2,m1,m2)

c(π2, 0,m)

)2
(
Ψ
(
Wm1

π1
⊗ fm2

π2
⊗ ρ(τR)Wπ3

)

Ψ
(
Wπ1 ⊗ fm

π2
⊗ ρ(τR)Wπ3

)
)2

.

(4.3)

Recall that Wn
π1

= ρ
(
Ṽ n
+

)
Wπ1 for every n ≥ 0. Our task now is to compute

the ratio of these two Rankin-Selberg integrals. Since we can let m1,m2 vary,
it suffices to compute the numerator. Applying Lemma 3.3 and Lemma 3.5,
we find that the numerator is

Ψ
(
Wm1

π1
⊗ fm2

π2
⊗ ρ(τR)Wπ3

)

=

∫

R×

Wm1
π1

((
−a 0
0 1

))
Wπ3

((
−a 0
0 1

))
|a|

k2
2 −1

R d×a

= 2k1+k3+m1

m1∑

j=0

(−4π)j
Γ(k1 +m1)

Γ(k1 + j)

(
m1

j

)∫ ∞

0

a
k1+k2+k3

2 +j−1e−4πad×a

= 2k1+k3+m1(4π)1−
k1+k2+k3

2 Γ(k1 +m1)

m1∑

j=0

(−1)j
(
m1

j

)
Γ
(
k1+k2+k3

2 + j − 1
)

Γ(k1 + j)

= (−1)m12k1+k3+m1(4π)1−
k1+k2+k3

2
Γ
(
k1+k2+k3

2 − 1
)
Γ(k2 +m1 +m2)

Γ(k2 +m2)
.

By letting m1 = 0 and m2 = m, we obtain the value of denominator. Combin-
ing with equation (4.2), we find that the right hand side of the equation (4.3)
is equal to 1. The corollary follows.
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4.3 The non-archimedean case

Let F be a non-archimedean local field. Write ̟ = ̟F and q = qF for
simplicity. Recall that we have assumed

HomGL2(F )(Π ,C) 6= {0} . (4.4)

According to the results of Prasad [Pra90] and [Pra92] and our assumption on
Π , (4.4) holds for the following cases. (i) Suppose E = F × F × F so that
Π = π1 ⊠ π2 ⊠ π3. Then (i-a) one of π1, π2, π3 is spherical; (i-b) πj = StF ⊗χj

are unramified special representations for j = 1, 2, 3 with χ1χ2χ3(̟) = −1.
(ii) Suppose E = K × F so that Π = π′

⊠ π. Then (ii-a) π is spherical; (ii-b)
π′ is spherical, π = StF ⊗ χ is a unramified special representation, K/F is
ramified and χ(̟) = −1; (ii-c) π′ = StK ⊗ χ′, π = StF ⊗ χ are unramified
special representations,K/F is ramified or K/F is unramified and χ′χ(̟) = 1.
(iii) Suppose E is a field. Then (iii-a) Π is spherical; (iii-b) Π = StE ⊗ χ is a
unramified special representation with χ(̟) = −1.
We say that E is unramified over F if either E = F×F×F , or E = K×F , where
K is the unramified extension over F , or E is the unramified cubic extension
over F . The evaluation of I∗(Π , t) has been carried out in the following cases.

Proposition 4.5.

(1) Suppose E/F is unramified and Π is spherical. Then we have

I∗ (Π , t) = 1.

(2) Suppose E = F × F × F and πj = StF ⊗ χj, where χj are unramified
quadratic characters of F× for j = 1, 2, 3. Then we have

I∗ (Π , t) = 2q−1(1 + q−1).

(3) Suppose E = F × F × F and one of πj (j = 1, 2, 3) is spherical and the
other two are unramified special. Then we have

I∗ (Π , t) = q−1.

Here I∗ (Π , t) is defined in §2.4.

Proof. Part (1) is [Ich08, Lemma 2.2], (2) is in [II10, Section 7] and (3) is a
result of [Nel11, Lemma 4.4].

We proceed to compute I∗(Π , t) in the remaining cases. For Φ ∈
L1(F×\GL2(F )) such that Φ(khk′) = Φ(h) for every h ∈ GL2(F ) and
k, k′ ∈ K0(̟), where

K0(̟) =

{(
a b
c d

)
∈ GL2(OF ) | c ∈ ̟OF

}
,
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we have the integration formula
∫

F×\GL2(F )

Φ(h)dh = (1 + q)−1
∑

n∈Z

Φ

((
̟n 0
0 1

))
q|n|

+ (1 + q)−1
∑

n∈Z

Φ

((
0 1
1 0

)(
̟n 0
0 1

))
q|n−1|

(4.5)

(cf. [II10, Section 7]).

Proposition 4.6. Let E = F ×F ×F . Suppose one of πj is unramified special
and the other two are spherical. Then we have

I∗ (Π , t) = q−1(1 + q−1)−1.

Proof. In this case, the L-factor is given by

L(s,Π, r) = (1− χ(̟)αβq−s−1/2)−1(1− χ(̟)αβ−1q−s−1/2)−1

× (1 − χ(̟)α−1βq−s−1/2)−1(1− χ(̟)α−1β−1q−s−1/2)−1.

We continue to compute I(Π , t). Assume π1 = StF ⊗ χ for some unramified
quadratic character χ of F×, and

πj = Ind
GL2(F )
B(F )

(
| · |λj

F ⊠ | · |−λj

F

)

for j = 2, 3. Let α = |̟|λ2

F and β = |̟|λ3

F . Then we have

I (Π , t) =

∫

F×\GL2(F )

Φ(h)dh,

where

Φ(h) = Φπ1(h)Φπ2(h)Φπ3

(
h;

(
̟−1 0
0 1

))
, h ∈ GL2(F ).

By (4.5), Lemma 3.8 and Lemma 3.9, we find that

I(Π , t)

= (1 + q)−1
∞∑

n=−∞
Φ

((
̟n 0
0 1

))
q|n|

+ (1 + q)−1
∞∑

n=−∞
Φ

((
0 1
1 0

)(
̟n 0
0 1

))
q|n−1|

= (1 + q)−1 · (1 − q−1)

(1 + q−1)
· (1− α2q−1)(1 − α−2q−1)(1 − β2q−1)(1− β−2q−1)

× (1 − χ(̟)αβq−1)−1(1− χ(̟)αβ−1q−1)−1

× (1 − χ(̟)α−1βq−1)−1(1− χ(̟)α−1β−1q−1)−1.

This completes the proof.
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Proposition 4.7. Let E = K × F and π be a spherical representation of
GL2(F ).

(1) If K/F is ramified and π′ is spherical, then we have

I∗ (Π , t) = 1.

(2) If π′ is unramified special, then we have

I∗ (Π , t) =

{
q−1(1 + q−1)−2(1 + q−2) if K/F is unramified,

q−1(1 + q−1)−1 if K/F is ramified.

Proof. Let

π = Ind
GL2(F )
B(F )

(
| · |λF ⊠ | · |−λ

F

)
, β = |̟|λF .

We begin with (1). Let

π′ = Ind
GL2(K)
B(K)

(
| · |λ′

K ⊠ | · |−λ′

K

)
, α = |̟K |λ′

K .

For a non-negative integer n, let Xn be the image of

GL2(OF )

(
̟n 0
0 1

)
GL2(OF )

in F×\GL2(F ). Note that

vol(Xn, dh) =

{
1 if n = 0,

qn(1 + q−1) if n ≥ 1.

By Lemma 3.8, we have

I (Π , t)

=

∞∑

n=0

Φπ′

((
̟n 0
0 1

))
Φπ

((
̟n 0
0 1

))
vol(Xn, dh)

=
(1− α2q−1)(1 − α−2q−1)(1 + βq−1/2)(1 + β−1q−1/2)

(1− α2βq−1/2)(1 − α−2βq−1/2)(1− α2β−1q−1/2)(1− α−2β−1q−1/2)
.

Recall that the L-factor is given by

L(s,Π , r) = (1− αβp−s)−1(1− αβ−1p−s)−1(1− βp−s)−1

× (1− β−1p−s)−1(1− α−1βp−s)−1(1− α−1β−1p−s)−1.

This shows (1).
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Now we consider (2). Let π′ = StK⊗χ′ for some unramified quadratic character
χ′ of K×. Suppose K is unramified over F . By definition

I (Π , t) =

∫

F×\GL2(F )

Φπ′(h)Φπ(h)dh.

Applying (4.5), Lemma 3.8 and Lemma 3.9,

I (Π , t) = (1 + q)−1
∞∑

n=−∞
χ′(̟)nΦπ

((
̟n 0
0 1

)){
q−|n| − q−|n−1|

}

=
(1 − q−1)(1 + q−2)

(1 + q−1)
· (1− χ′(̟)αq−1/2)(1− χ′(̟)α−1q−1/2)

(1− χ′(̟)αq−3/2)(1− χ′(̟)α−1q−3/2)
.

Suppose K is ramified over F . Similar calculations shows

I (Π , t) = q−1 (1− q−1)

(1 + q−1)
· (1− α2q−1)((1 − α−2q−1))

(1− α2q−3/2)(1 − α−2q−3/2)
.

Finally, if K/F is unramified, we have

L(s,Π , r) = (1 + χ′(̟)αq−s)−1(1− χ′(̟)αq−s−1)−1

× (1 + χ′(̟)α−1q−s)−1(1− χ′(̟)α−1q−s−1)−1,

while if K/F is ramified,

L(s,Π , r) = (1− αq−s−1)−1(1− α−1q−s−1)−1.

This shows (2) and our proof is complete.

Proposition 4.8. Let E = K × F and π = StF ⊗ χ, where χ is a unramified
quadratic character of F×.

(1) If π′ is spherical, χ(̟) = −1 and K/F is ramified, then we have

I∗ (Π , t) = 2q−1(1 + q−1)−1.

(2) If π′ = StK ⊗ χ′, where χ′ is an unramified quadratic character of K×,
then we have

I∗(Π , t)

=

{
2q−1(1 + q−1)−1(1 + q−2) if K/F is unramified and χ′χ(̟) = 1,

q−1 if K/F is ramified.

Proof. We first consider (1). By definition,

I (Π , t) =

∫

F×\GL2(F )

Φ(h)dh,
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where

Φ(h) = Φπ′

(
h;

(
̟−1

K 0
0 1

))
Φπ(h), h ∈ GL2(F ).

By (4.5), Lemma 3.8 and Lemma 3.9, we have

I (Π , t) = (1 + q)−1(1 − χ(̟))

∞∑

n=−∞
χ(̟)nΦπ′

((
̟n 0
0 1

))

= 2q−1 (1− q−1)

(1 + q−1)2
· (1 + α2q−1)(1 + α−2q−1)

(1 − α2q−1)(1 − α−2q−1)
.

Notice that

L(s,Π , r)

= (1− χ(̟)α2q−s−1/2)−1(1 − χ(̟)α−2q−s−1/2)−1(1− χ(̟)q−s−1/2)−1.

This shows (1).
Now we consider (2). By definition,

I (Π , t) =

∫

F×\GL2(F )

Φ(h)dh,

where
Φ(h) = Φπ′(h)Φπ(h), h ∈ GL2(F ).

Suppose K is umramified over F . Applying (4.5), Lemma 3.9, we find that

I (Π , t) = (1 + q)−1
∞∑

n=−∞
Φ

((
̟n 0
0 1

))
q|n|

+ (1 + q)−1
∞∑

n=−∞
Φ

((
0 1
1 0

)(
̟n 0
0 1

))
q|n−1|

= (1 + q)−1(1 + χ′χ(̟))
(1 + χ′χ(̟)q−2)

(1 − χ′χ(̟)q−2)
.

When K is ramified over F , a similar calculation shows that

I∗ (Π , t) = q−1 (1 + χ′χ(̟)q−1)

(1− χ′χ(̟)q−2)
.

Note that the L-factor L(s,Π , r) is equal to

(1− χ′χ(̟)q−s−3/2)−1(1− q−2s−1)−1

or
(1− χ(̟)q−s−3/2)−1(1− χ(̟)q−s−1/2)−1

according to E/F is unramified or ramified. This proves the proposition.
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Proposition 4.9. Let E is a field.

(1) If E/F is ramified and Π is spherical, then we have

I∗ (Π , t) = 1

(2) If Π = StE⊗χ, where χ is the non-trivial unramified quadratic character
of E×, then we have

I (Π , t) =

{
2q−1(1 + q−1)−1(1− q−1 + q−2) if E/F is unramified,

2q−1(1 + q−1)−1 if E/F is ramified.

Proof. Suppose Π is spherical and E/F is ramified. Let

Π = Ind
GL2(E)
B(E)

(
| · |λE ⊠ | · |−λ

E

)
, α = |̟E |λE .

For a non-negative integer n, let Xn be the image of

GL2(OF )

(
̟n 0
0 1

)
GL2(OF )

in F×\GL2(F ). Note that

Vol(Xn, dh) =

{
1 if n = 0,

qn(1 + q−1) if n ≥ 1.

Applying Lemma 3.8,

I (Π , t) =
∞∑

n=0

ΦΠ

((
̟n 0
0 1

))
Vol(Xn, dh)

=
(1− q−1)(1 + αq−1/2)(1 + α−1q−1/2)

(1 − α3q−1/2)(1 − α−3q−1/2)
.

Notice that

L(s,Π, r) = (1− α3p−s)−1(1 − αp−s)−1(1− α−1p−s)−1(1− α−3p−s)−1.

This proves (2).

Suppose Π = StE⊗χ, where χ is the non-trivial unramified quadratic character
of E×. If E/F is unramified,

I (Π , t) =

∫

F×\GL2(F )

ΦΠ (h)dh.
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By (4.5) and Lemma 3.9, we obtain

I (Π , t) = (1 + q)−1
∞∑

n=−∞
ΦΠ

((
̟n 0
0 1

))
q|n|

+ (1 + q)−1
∞∑

n=−∞
ΦΠ

((
0 1
1 0

)(
̟n 0
0 1

))
q|n−1|

= (1 + q)−1(1 − χ(̟))
(1 + χ(̟)q−2)

(1 − χ(̟)q−2)
.

When E/F is ramified, similar calculations show

I∗(Π , t) =
2q−1

(1 + q−1)
.

On the other hand, the L-factor L(s,Π, r) is equal to

(1− χ(̟)q−s−3/2)−1(1 + χ(̟)q−s−1/2 + q−2s−1)−1

or

(1− χ(̟)q−s−3/2)−1

according to E/F is unramified or ramified. This completes the proof.

5 The calculation of local zeta integral (II)

The purpose of this section is to compute the normalized zeta integral I∗(Π , t)
in Definition 2.2 when D is a division algebra over F .

5.1 Haar measures

Haar measures on F and F× are the same as in §4.1. We describe the choice
of Haar measures on D×(F ). When F = R, let dh be the Haar measure on
D×(R) such that Vol(D×(R)/R×, dh/d×t) = 1, where d×t = |t|−1

R dt and dt is
the usual Lebesgue measure on R. When F is non-archimedean, let OD be its
maximal compact subring. Then dh is chosen so that Vol

(
O×

D, dh
)
= 1.

In any cases, the measure on the quotient space F×\D×(F ) is the unique
quotient measure induced from the measure dh on D×(F ) and the measure
d×x on F×.

5.2 Embeddings

We fix various embeddings in this section. Following results depend on these
embeddings. When F = R, we embedded D(R) in M2(C) in the usual way.
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More precisely, we let

D(R) = H =

{(
a b
−b̄ ā

)
∈ M2(C)

}
.

When F is non-archimedean and E = K ×F , we have D(E) = M2(K)×D(F )
and we fix an embedding:

ι : D(F ) → M2(K),

so that

ι(D(F )) =

{(
α β
ωβ̄ ᾱ

)
| α, β ∈ K

}
,

where x 7→ x̄ is the non-trivial Galois action on x ∈ K, and ω is either ̟ or
a unit u such that F (

√
u) is the unramified extension over F , according to K

is unramified or ramified over F . We then identify D(F ) with its image under
the embedding ι. The maximal order OD in D(F ) is then

{(
α β
ωβ̄ ᾱ

)
| α, β ∈ OK

}
.

Let

̟D =

(
0 1
̟ 0

)
or ̟D =

(
̟K 0
0 −̟K

)
,

according to K is unramified or ramified over F . We have

F×\D×(F ) =
(
O×

F \O×
D

)
⊔̟D

(
O×

F \O×
D

)
. (5.1)

Note that

Vol(O×
F \O×

D, dh) = 1,

according to our choice of measures.

5.3 The archimedean case

In this case, we have following realizations

(
πj , Vπj

)
=
(
ρkj ,Lkj (C)

)

for j = 1, 2, 3, where

Lkj (C) =

kj−2⊕

nj=0

C ·Xnj

j Y
kj−2−nj

j

and

ρkj (g)P (Xj , Yj) = P ((Xj , Yj)g)det(g)
−kj/2−1

,
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for g ∈ D×(R) and P (Xj , Yj) ∈ Lkj−2(C). The representation space of Π is
given by

VΠ = Lk1(C)⊗ Lk2(C)⊗ Lk3(C). (5.2)

Recall the new line V new
Π

in this case is the one-dimensional subspace fixed by
D×(R). This is a consequence of the uniqueness of the trilinear form [Pra92,
Theorem 9.3]. Let Pk be the distinguished vector in V new

Π
defined by

Pk = det

(
X1 X2

Y1 Y2

)k∗

3

⊗ det

(
X2 X3

Y2 Y3

)k∗

1

⊗ det

(
X3 X1

Y3 Y1

)k∗

2

(5.3)

where k∗3 = (k1 + k2 − k3 − 2)/2, k∗1 = (k2 + k3 − k1 − 2)/2 and k∗2 = (k1 + k3 −
k2 − 2)/2. Its clear that Pk is non-zero and invariant by D×(R). Therefore,
we have

V new
Π = C ·Pk.

Let 〈 , 〉kj be the D×(R)-invariant bilinear pairing on Lkj−2(C) defined by

〈Xnj

j Y
kj−2−nj

j , X
mj

j Y
kj−2−mj

j 〉kj

=




(−1)nj

(
kj − 2

nj

)−1

if nj +mj = kj − 2,

0 if nj +mj 6= kj − 2,

(5.4)

for 0 ≤ nj ,mj ≤ kj − 2. Let 〈 , 〉k be the D×(E)-invariant pairing on VΠ given
by

〈 , 〉k = 〈 , 〉k1 ⊗ 〈 , 〉k2 ⊗ 〈 , 〉k3 . (5.5)

In this case, the normalized local zeta integral I∗(Π , t) in Definition 2.2 is equal
to

I∗(Π , t) =
ζF (2)

ζE(2)
· L(1,Π

′,Ad)

L(1/2,Π ′, r)
· 〈Pk,Pk〉k, (5.6)

where Π ′ is the Jacquet-Langlands lift of Π to GL2(R). We proceed to compute
the value 〈Pk,Pk〉k. Let ℓ be the linear map

ℓ : VΠ → V
D×(R)
Π

= V new
Π , v 7→ ℓ(v) =

∫

R×\D×(R)

Π (h)v dh.

Since ℓ(Pk) = Pk 6= 0, we have ℓ 6= 0 and hence surjective. We have the
following equality

〈Pk,Pk〉k · 〈ℓ(v1), ℓ(v2)〉k = 〈v1,Pk〉k · 〈v2,Pk〉k (5.7)

for every v1, v2 ∈ VΠ .

Proposition 5.1. We have

I∗ (Π , t) =
(k1 − 1)(k2 − 1)(k3 − 1)

4π2
.
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Proof. Note that the L-factor is given by

L(s,Π , r) = ζC(s+ (k1 + k2 + k3 − 3)/2))ζC(s+ (−k1 + k2 + k3 − 1)/2)

× ζC(s+ (k1 − k2 + k3 − 1)/2)ζC(s+ (k1 + k2 − k3 − 1)/2)).

In view of (5.6), it suffices to show that

〈Pk,Pk〉k =
Γ(k∗1 + k∗2 + k∗3 + 2)Γ(k∗1 + 1)Γ(k∗2 + 1)Γ(k∗3 + 1)

Γ(k∗1 + k∗2 + 1)Γ(k∗1 + k∗3 + 1)Γ(k∗2 + k∗3 + 1)
.

By direct computation, we have

Pk =

k∗

1∑

n1=0

k∗

2∑

n2=0

k∗

3∑

n3=0

(
k∗1
n1

)(
k∗2
n2

)(
k∗3
n3

)
(−1)(k

∗

1+k∗

2+k∗

3)−(n1+n2+n3)

×X
k∗

2−n2+n3

1 Y
k∗

3+n2−n3

1 ⊗X
k∗

3+n1−n3

2 Y
k∗

1−n1+n3

2 ⊗X
k∗

1−n1+n2

3 Y
k∗

2+n1−n2

3 .

The coefficient in front of the vector v1 := Xk1−2
1 ⊗ Y k2−2

2 ⊗ X
k∗

1
3 Y

k∗

2
3 in the

expression of Pk is equal to (−1)k
∗

1+k∗

2 . On the other hand, the coefficient in

front of the vector v2 := Y k1−2
1 ⊗Xk2−2

2 ⊗X
k∗

2
3 Y

k∗

1
3 is (−1)k

∗

3 . It follows that

〈v1,Pk〉k · 〈v2,Pk〉k = (−1)k
∗

1+k∗

2+k∗

3 · 〈v1, v2〉2k = (−1)k
∗

1+k∗

2+k∗

3

(
k∗1 + k∗2
k∗1

)−2

.

(5.8)
On the other hand, we have

〈ℓ(v1), ℓ(v2)〉k =

∫

R×\D×(R)

〈Π (h)v1, v2〉kdh.

Note that

R×\D×(R) ∼= {±1} \SU(2),

We parametrize u =

(
α β
−β̄ ᾱ

)
∈ SU(2) by setting α = cos θ · eiϕ and β =

sin θ · eiχ with 0 ≤ θ ≤ π/2 and 0 ≤ ϕ, χ ≤ 2π. For Φ ∈ L1(SU(2)), we have

∫

SU(2)

Φ(u) du =
1

2π2

∫ 2π

0

∫ 2π

0

∫ π
2

0

Φ(θ, ϕ, χ) · sin 2θ dθ dϕ dχ. (5.9)

Our choice of the Haar measure on R×\D×(R) implies the total volume of
SU(2) is equal to 2.
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Let u =

(
α β
−β̄ ᾱ

)
∈ SU(2). By (5.9), we have

∫

R×\D×(R)

〈Π (h)v1, v2〉kdh

= (−1)k
∗

1+k∗

2+k∗

3

(
k∗1 + k∗2
k∗1

)−1

×
k∗

1∑

j=0

(
k∗1
j

)(
k∗2
j

)
(−1)j

2

∫

SU(2)

|α|k
∗

1+k∗

1+k∗

3−j
C |β|jCdu

= (−1)k
∗

1+k1−2(k∗1 + k∗2 + k∗3 + 1)−1

(
k∗1 + k∗2
k∗1

)−1 k∗

1∑

j=0

(−1)j

(
k∗1
j

)(
k∗2
j

)

(
k∗1 + k∗2 + k∗3

j

) .

Using (5.7), (5.8) and the equation above, we obtain

〈Pk,Pk〉−1
k = (k∗1 + k∗2 + k∗3 + 1)−1

(
k∗1 + k∗2
k∗1

) k∗

1∑

j=0

(−1)j

(
k∗1
j

)(
k∗2
j

)

(
k∗1 + k∗2 + k∗3

j

)

= (k∗1 + k∗2 + k∗3 + 1)−1

(
k∗1 + k∗2
k∗1

)(
k∗1 + k∗2 + k∗3
k∗2 + k∗3

)−1

×
n∑

j=0

(−1)j
(
k∗2
j

)(
k∗1 + k∗2 + k∗3 − j

k∗2 + k∗3

)

=
Γ(k∗1 + k∗2 + 1)Γ(k∗1 + k∗3 + 1)Γ(k∗2 + k∗3 + 1)

Γ(k∗1 + k∗2 + k∗3 + 2)Γ(k∗1 + 1)Γ(k∗2 + 1)Γ(k∗3 + 1)
.

The last equality follows from Lemma 5.2 below. This completes the proof of
Proposition 5.1.

Lemma 5.2. Let a, b and n be non-negative integers. Suppose a ≥ n. Then we
have

n∑

j=0

(−1)j
(
a
j

)(
a+ b+ n− j

a+ b

)
=

(
b+ n
b

)
. (5.10)

Proof. Consider the generating function

a∑

j=0

(−1)j
(
a
j

)
(1 +X)a+b+n−j = Xa(1 +X)b+n.

The lemma follows at once when one compares the coefficients of the term
Xa+b on both sides.
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5.4 The non-archimedean case

Let F be a non-archimedean local field and D is the quaternion division algebra
over F . Recall that we have assumed HomD×(Π ,C) 6= {0}. Then by the results
of Prasad [Pra90], [Pra92] and our assumption on Π , this happens precisely
for the cases being considered in the following proposition.

Proposition 5.3. Let νD : D× → Gm be the reduced norm of D.

(1) Let E = F × F × F . If πj = χj ◦ νD, where χj is a unramified quadratic
character of F× with χ1χ2χ3(̟) = 1. Then we have

I∗(Π , t) = 2(1− q−1)2

(2) Let E = K × F and π = χ ◦ νD, where χ is a unramified quadratic
character of F×. Then we have

I∗(Π , t)

=





1 if π′ is spherical and K/F is unramified,

2 if π′ is spherical, χ(̟) = 1 and K/F is ramified

2(1 + q−2) if π′ = StK ⊗ χ′ with χ′χ(̟) = −1.

Here χ′ is a unramified quadratic character of K×.

(3) Let E be a field. If Π is the trivial character of D×(E), then we have

I∗(Π , t) =

{
2(1 + q−1 + q−2) if E/F is unramified,

2 if E/F is ramified.

Here I∗ (Π , t) is the local zeta integral in Definition 2.2.

Proof. We first treat (1). Since χ1χ2χ3(̟) = 1, we have

I (Π , t) =

∫

F×\D×(F )

χ1χ2χ3(νD(h))dh = Vol(F×\D×(F ), dh) = 2.

The L-factor is

L(s,Π ′, r) = (1− χ1χ2χ3(̟)q−s−1/2)−2(1 − χ1χ2χ3(̟)q−s−3/2)−1,

where Π ′ is the Jacquet-Langlands lift of Π to GL2(F ). This shows (1).
We proceed to show (2). Suppose π′ is spherical. then by Lemma 3.8 and (5.1),
we find that

I (Π , t)

=

∫

F×\D×(F )

Φπ′(h)π(h)dh = 1 + Φπ′(̟D)χ(̟)

=

{
(1 + q−2)−1(1 + χ(̟)αq−1)(1 + χ(̟)α−1q−1) if K/F is unramified,

2 if K/F is ramified.
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Suppose π′ = StK ⊗ χ′. In this case,

I (Π , t) =

∫

F×\D×(F )

Φπ′(h)π(h)dh = 1 + Φπ′(̟D)χ(̟) = (1− χ′χ(̟)) = 2.

Here we use Lemma 3.9 and the observation that O×
D is contained in the Iwa-

hori subgroup of GL2(K). The L-factors are given in Proposition 4.7 and
Proposition 4.8. This shows (2).
For the case (3), we have

I(Π , t) = Vol
(
F×\D×(F ), dh

)
= 2.

The L-factors are given in Proposition 4.9. This completes the proof.

6 Explicit central value formulae and algebraicity for triple
product

The purpose of this section is to give explicit central value formulae for the
triple product L-functions by combining Ichino’s formula [Ich08, Theorem 1.1
and Remark 1.3] with the local calculations in the previous sections. We use
these formulae to prove the algebraicity of the central values.
Since the work of Garrett [Gar87], special values of triple product L-functions
have been studied extensively by many people such as Orloff [Orl87], Satoh
[Sat87], Harris and Kudla [HK91], Garrett and Harris [GH93], Gross and Kudla
[GK92], Bocherer and Schulze-Pillot [BSP96], Furusawa and Morimoto [FM14],
[FM16].

6.1 Notation

We fix some notations here. If F is a number field, let OF be its ring of integers,
DF be its absolute discriminant, and hF be its class number. Let A be the
ring of adeles of Q and Ẑ =

∏
p Zp be the profinite completion of Z. We will

denote by v a place of Q and by p a finite prime of Q. If R is a Q-algebra, let
AR = A⊗QR and Rv = R⊗QQv. For an abelian groupM , let M̂ =M ⊗Z Ẑ.

We fix an additive character ψ =
∏

v ψv : Q\A → C× defined by ψ∞(x) =

e2π
√
−1x for x ∈ R, and ψp(x) = e−2π

√
−1x for x ∈ Z[p−1].

6.2 Modular forms and Automoprhic forms

We briefly review the definitions of modular forms and automorphic forms on
certain quaternion algebras, and we write down an explicit correspondence
between them. We follow the exposition of [Shi81, section 1], but with some
modifications, so that it will be suitable for our application here.

We first introduce some notations. Let d ≥ 1 be an integer and Hd be the
d-fold product of the upper half complex plane H. Let GL+

2 (R) be the identity
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connect component of GL2(R). If d = 1, we let h ∈ GL+
2 (R) act on z ∈ H and

we define the factor J(h, z) by

h · z =
az + b

cz + d
,

J(h, z) = det(g)−
1
2 (cz + d) h =

(
a b
c d

)
.

In general, we let GL+
2 (R)d acting on Hd component-wise. If k = (k1, . . . , kd) ∈

Zd, we put

J(h, z)k =
d∏

j=1

j(hj , zj)
kj .

for h = (h1, . . . , hd) ∈ GL+
2 (R)d and z = (z1, . . . , zd) ∈ Hd. Let C∞(H) be

the space of C-valued smooth functions on H. Let k be an integer. Recall the
Maass-Shimura differential operators δk and ε on C∞(H) are given by

δk =
1

2π
√
−1

(
∂

∂z
+

k

2
√
−1y

)
and ε = − 1

2π
√
−1

y2
∂

∂z̄
y = Im(z)

(cf. [Hid93, page 310]). Ifm ≥ 0 is an integer, we put δmk = δk+2m−2 · · · δk+2δk.
In general, if k = (k1, . . . , kd), m = (m1, . . . ,md) ∈ Zd with mj ≥ 0 for
1 ≤ j ≤ d, we let δ

m
k and εm be given by

δ
m
k = (δm1

k1
, . . . , δmd

kd
) and εm = (εm1 , . . . , εmd),

and acting on f ∈ C∞(Hd) coordinate-wise.
Let F be a totally real number field over Q with degree d = [F : Q]. Let AF

be the ring of adeles of F and F̂ be its finite part. Let ΣF := HomQ(F,C) and
HΣF be the d-fold product of H. Let D be a quaternion algebra over F . Let
G = D× viewed as an algebraic group defined over F . For any F -algebra L,
G(L) = (D⊗F L)

×. We assume D is either totally indefinite or totally definite.
In other words, we assume either G(F∞) ∼= GL2(R)ΣF or G(F∞) ∼= (H×)ΣF ,
where H is the Hamiltonian quaternion algebra.

6.2.1 The totally indefinite case

Let k = (kσ)σ∈ΣF ,m = (mσ)σ∈ΣF ∈ ZΣF with kσ > 0 and mσ ≥ 0 for all
σ ∈ ΣF . The zero and the identity element ZΣF will be denoted by 0 and
1, respectively. Let U ⊂ G(F̂ ) be an open compact subgroup. We assume

νD(U) = Ô×
F , where νD is the reduced norm of D and we extend it to a map

on D ⊗F F̂ in an obvious way.

We assume that D is totally indefinite. Denote by N [m]
k (D,F ;U) the space of

functions f : HΣF ×G(F̂ ) → C such that f(z, ahu) = f(z, h) for z ∈ HΣF and

(a, h, u) ∈ F̂× × G(F̂ ) × U , and we require for each h ∈ G(F̂ ), the function
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fh(z) := f(z, h) ∈ C∞(HΣF ) is slowly increasing and εm+1fh = 0, and satisfies
the following automorphy condition:

fh(γ · z)J(γ, z)−k = fh(z), γ ∈ G(F ) ∩
(
G+(F∞)× hUh−1

)
, (6.1)

where G+(F∞) is the identity connect component of G(F∞). We put

Nk(D,F ;U) = ∪mN [m]
k (D,F ;U). Notice that if f ∈ Nk(D,F ;U), then

δ
m
k f ∈ Nk+2m(D,F ;U) (cf. [Hid93, page 312]). Assume D = M2 is the matrix
algebra. Let n ⊂ OF be an ideal. Put

K0(n̂) =

{(
a b
c d

)
∈ GL2(ÔF ) | c ∈ n̂

}
.

Then N [0]
k (M2, F ;K0(n̂)) = Mk(M2, F ;K0(n̂)) is the space of holomorphic

Hilbert modular forms of F of weight k and level n. Let Sk(M2, F ;K0(n̂)) be
the subspace of holomorphic cusp forms in Mk(M2, F ;K0(n̂)).

We also define a subspace of automorphic forms on G(AF ) as follows. Let
k and U be as above. We identify U and G(F∞) with subgroups of G(AF )
in an obvious way. Let Ak(D,F ;U) be the space of automorphic forms f :
G(AF ) → C (cf. [BJ79, section 4]) such that

f(aγhk(θ)u) = f(h)e
√
−1k·θ, k · θ =

∑

σ∈ΣF

kσθσ

for a ∈ A×
F , γ ∈ G(F ), u ∈ U, θ = (θσ)σ∈ΣF , k(θ) = (k(θσ))σ∈ΣF with

k(θσ) =

(
cosθσ sinθσ
−sinθσ cosθσ

)
.

Denote by A0
k(D,F ;U) the subspace of cusp forms in Ak(D,F ;U).

Suppose F = Q. Let Ṽ± : Ak(D,F ;U) → Ak±2(D,F ;U) be the normalized
weight raising/lowing elements ([JL70, page 165]) given by

Ṽ± = − 1

8π

([
1 0
0 −1

]
⊗ 1±

[
0 1
1 0

]
⊗
√
−1

)
∈ Lie(GL2(R))⊗R C.

In general, we have Ṽ
m
± : Ak(D,F ;U) → Ak±2m(D,F ;U), where Ṽ

m
± =

(Ṽ mσ
± )σ∈ΣF acts on the archimedean component of f ∈ Ak(D,F ;U) coordinate-

wisely.

We write down an explicit correspondence between the spaces Nk(D,F ;U) and
Ak(D,F ;U). Fix a set of representatives {x1, · · · , xh} for the double cosets
G(F )\G(AF )/G

+(F∞)U . Then

G(AF ) = ∐h
j=1G(F )xjG

+(F∞)U
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is a disjoint union. We may assume every archimedean component of xj is one

for 1 ≤ j ≤ r, and we regard xj as elements in G(F̂ ). For each f ∈ Nk(D,F ;U),
we define Φ(f) ∈ Ak(D,F ;U) the adelic lift of f by the formulae

Φ(f)(γxjh∞u) = fxj(h∞ · i)J(h∞, i)−k, i = (
√
−1, · · · ,

√
−1) ∈ HΣF ,

(γ ∈ G(F ), h∞ ∈ G+(F∞), u ∈ U, 1 ≤ j ≤ h).

Conversely, we can recover f form Φ(f ) by setting

f(z, h) = Φ(f )(h∞h)J (h∞, i)
k , h∞ ∈ G+(F∞) with h∞ · i = z .

The weight raising/lowering operators are the adelic version of the Maass-
Shimura differential operators δ

m
k and εm on the space of automorphic forms.

More precisely, one checks that

Ṽ
k
+Φ(f) = Φ(δ

m
k f) and Ṽ

m
− Φ(f) = Φ(εmf). (6.2)

In particular, f is holomorphic if and only if Ṽ
1
−Φ(f) = 0.

6.2.2 D is totally definite

Let k = (kσ)σ∈ΣF and U be as above. We assume that D is totally definite
and kσ ≥ 2 for all σ ∈ ΣF . We identify G(F∞) with (H×)ΣF ⊂ GL2(C)ΣF .
Let (ρkσ ,Lkσ (C)) be the (kσ−1)-dimensional irreducible representation ofH×,
and 〈·, ·〉kσ be the bilinear pairing on Lkσ (C) defined in §5.3, respectively. We
form an irreducible representation (ρk,Lk(C)) of G(F∞) by setting

ρk = ⊠σ∈ΣF ρkσ and Lk(C) = ⊗σ∈ΣF Lkσ (C).

Then 〈·, ·〉k = ⊗σ∈ΣF 〈·, ·〉kσ defines a bilinear pairing on Lk(C).
Let Mk(D,F ;U) be the space of Lk(C)-valued atomorphic forms of type ρk,
which consists of functions f : G(AF ) → Lk(C) such that

f(aγhh∞u) = ρk(h∞)−1f(h),

(a ∈ A×
F , γ ∈ G(F ), h∞ ∈ G(F∞), u ∈ U)

Let A(G(AF )) be the space of C-valued automorphic forms on G(AF ) (cf.
[BJ79, section 4]). For v ∈ Lk(C) and f ∈ Mk(D,F ;U), we define a function
Φ(v ⊗ f) : G(F )\G(AF ) → C by

Φ(v ⊗ f)(h) = 〈v, f(h)〉k.

Then the map v 7→ Φ(v ⊗ f) gives rise to a G(F∞)-equivalent morphism
Lk(C) → A(G(AF )) for every f ∈ Mk(D,F ;U). Let Ak(D,F ;U) the sub-
space of A(G(AF )), consisting of functions Φ(v ⊗ f) : G(AF ) → C for
v ∈ Lk(C) and f ∈ Mk(D,F ;U).
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More generally, suppose F = F1 × · · · × Fr , where Fj are totally real number
fields. LetD be a quaternionQ-algebra and putDFj = D⊗QFj , DF = D⊗QF .

Let Uj ⊂ Gj(F̂j) be open compact subgroups, where Gj := D×
Fj

viewed as an

algebraic group defined over Fj . Let kj ∈ Z
ΣFj be sets of positive integers.

Put U = (U1, . . . , Ur) and k = (k1, . . . , kr). If D is totally definite, we define

Mk(D,F ;U) = ⊗r
j=1Mkj

(DFj , Fj ;Uj),

Ak(D,F ;U) = ⊗r
j=1Akj

(DFj , Fj ;Uj).

If D is totally indefinite, similar definitions apply to the spaces N [m]
k (D,F ;U)

and Ak(D,F ;U).

6.3 Global settings

Let E be an étale cubic Q-algebra. Then E is (i) Q×Q ×Q three copies of
Q, or (ii) F ×Q, where F is a quadratic extension of Q, or (iii) E is a field.
Let OE be the maximal order in E and let DE be the absolute discriminant of
E. Put

c =





3 if E = Q×Q×Q,

2 if E = F ×Q,

1 if E is a cubic extension of Q.

(6.3)

Here F is a quadratic extension over Q. We assume

E∞ = E ⊗Q R ∼= R×R ×R. (6.4)

In particular, F is a real quadratic extension over Q, and E is a real cubic
extension over Q if it is a field.
Let n ⊂ OE be an ideal. We have n = (N1Z, N2Z, N3Z) or n = (nF , NZ)
according to E = Q×Q×Q or E = F×Q, respectively. HereNj , N (j = 1, 2, 3)
are positive integers and nF is an ideal of OF . Let k = (k1, k2, k3) be a triple
of positive even integers with kj ≥ 2 for j = 1, 2, 3. We put

w = k1 + k2 + k3 − 3. (6.5)

Let fE ∈ Mk(M2, E;K0(n̂)) be a normalized Hilbert newform of weight k and
level K0(n̂) (cf. [Shi78, page 652]). More precisely, if E = Q × Q × Q, then

fE = f1 ⊗ f2 ⊗ f3, where fj ∈ Skj (M1,Q;K0(NjẐ)) is a normalized newform

of weight kj and level K0(NjẐ). On the other hand, if E = F × Q, then
fE = gF ⊗ f , where gF ∈ S(k1,k2)(M2, F ;K0(n̂F )) is a normalized Hilbert new-

form of weight (k1, k2) and level K0(n̂F ), and f ∈ Sk3(M2,Q;K0(N Ẑ)) is a

normalized newform of weight k3 and level K0(N Ẑ). Let fE = Φ(fE) be its
adelic lift to Ak(M2, E;K0(n̂)). Let Π be the unitary irreducible cuspidal au-
tomorphic representation of GL2(AE) generated by fE . By the tensor product
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theorem [Fla79], Π ∼= ⊗′
vΠv, where Πv are irreducible admissible representa-

tions of GL2(Ev). We define the L-function and ǫ-factor associated to Π and
r as product of local L-factors and ǫ-factors. That is, we put

L(s,Π , r) =
∏

v

L(s,Πv, rv) and ǫ(s,Π , r) =
∏

v

ǫ(s,Πv, rv, ψv).

Note that L(s,Π , r) is holomorphic at s = 1/2.

Ichino’s formula relates the period integrals of triple products of certain auto-
morphic forms on quaternion algebras along the diagonal cycles and the central
values of triple L-functions. To describe the choice of the quaternion algebra,
we define the local root number ǫ(Πv) ∈ {±1} associated to Πv for each place
v by the following condition

ǫ(Πv) = 1 ⇔ Hom∗(Πv,C) 6= {0} ,

where ∗ = GL2(Qp) or (g,K) according to v = p or v = ∞, respectively. By
the results of Prasad in [Pra90, Theorem 1.4] and [Pra92, Theorem D], we have

ǫ(Πv) = ǫ

(
1

2
,Πv, rv

)
χKv/Fv

(−1),

where Kv is the quadratic discriminant algebra of Ev/Fv and χKv/Fv
is the

quadratic character associated with Kv/Fv by the local class field theory. De-
fine the global root number ǫ(Π ) associated to Π by

ǫ (Π ) :=
∏

v

ǫ(Πv).

Notice that ǫ(Πv) = 1 for almost all v by the results of [Pra90, Theorem 1.2]
and [Pra92, Theorem B].

In this paragraph, we assume the global root number ǫ(Π ) is equal to 1. By
this assumption, there is a unique quaternion Q-algebra D such that Dv is the
division Qv-algebra if and only if ǫ(Πv) = −1. Applying [Pra90, Theorem 1.2]
and [Pra92, Theorem B], we see that the Jacquet-Langlands lift ΠD = ⊗′

vΠ
D
v

of Π to D×(AE) exists, where ΠD
v is a unitary irreducible admissible repre-

sentation of D×(Ev). Moreover, by the way we chose D, the following local
root number condition is satisfied:

ǫ(Πv) =

{
1 if Dv is the matrix algebra,
−1 if Dv is the division algebra.

(6.6)

Let ΣD be the ramification set of D and Σ
(∞)
D ⊂ ΣD be the subset without the

infinite place. For each v /∈ ΣD, we fix an isomorphism ιv : M2(Qv) ∼= D⊗QQv

once and for all. Let OD be the maximal order of D such that D ⊗Z Zp =
ιp(M2(Zp)) for all p /∈ ΣD. If R is a Q-algebra, we put D(R) := D ⊗Q R. We
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introduce following three sets of places of Q:

Σ3 = {v | Ev
∼= Qv ×Qv ×Qv} ,

Σ2 = {v | Ev
∼= Kv ×Qv, for some quadratic extension Kv of Qv} ,

Σ1 = {v | Ev is a cubic extension of Qv} .
(6.7)

Note that by our assumption, we have∞ ∈ Σ3. Also for every p /∈ ΣD, the map
ιp induces isomorphisms D(Ep) ∼= M2(Ep) and OD ⊗ZOEp

∼= M2(OEp), where
OEp is the maximal order of Ep. For v /∈ Σ2 ∩ ΣD, the canonical diagonal
embedding Qv →֒ Ev induces a diagonal embedding Dv →֒ D(Ev). On the
other hand, for each p ∈ Σ2∩ΣD, we choose an isomorphism D(Kp) ∼= M2(Kp)
so that the embedding Dp →֒ D(Ep) ∼= M2(Kp) × Dp is the identity map in
the second coordinate, and is given by the one in §5.2 for the first coordinate.
In any case, we identify Dv as subalgebras of D(Ev) via these embeddings.

Suppose E is a field, we note that the finite ramification sets Σ
(∞)
D(F ) and Σ

(∞)
D(E)

of D(F ) and D(E) are given by

Σ
(∞)
D(F ) = {p ⊂ OF prime ideal | p divides p for some p ∈ Σ3 ∩ ΣD} ,

Σ
(∞)
D(E) = {p ⊂ OE prime ideal | p divides p for some p ∈ (Σ1 ∪ Σ3) ∩ ΣD} .

We put

N− =
∏

p∈Σ
(∞)
D

p, N−
F =

∏

p∈Σ
(∞)

D(F )

p, N−
E =

∏

p∈Σ
(∞)

D(E)

p. (6.8)

Recall that n is an ideal in OE and n̂ =
∏

p np is the closure of n in Ê. In the
following, we further assume that

n is square-free. (6.9)

More precisely, we assume N1, N2 and N3 are square-free integers if E = Q×
Q×Q and nF ⊂ OF , N ∈ Z are square-free if E = F ×Q. Let

M =
∏

p|NE
Q
(n)

p. (6.10)

If L > 0 is an integer coprime to N−, we denote by R′
L the standard Eichler

order of level L contained in OD. Similar notation is used to indicate the
standard Eichler orders of D(F ) and D(E). We define the order RΠD of D(E)
by

RΠD =





R′
N1/N− ×R′

N2/N− ×R′
N3/N− if E = Q×Q×Q,

R′
nF /N−

F

×R′
N/N− if E = F ×Q,

R′
n/N−

E

if E is a field.

We mention that the divisibility of each ideals appeared in the definition of
RΠD follows from the results of [Pra90] and [Pra92]. We also define an order
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RM/N− of D, which is a twist of the standard Eichler order R′
M/N− . More

precisely, for p such that p ∈ ΣE,2 with p | DE and nOEp = ̟KpOKp ×Zp, we
require

RM/N− ⊗Z Zp =

(
p 0
0 1

)
K0(p)

(
p−1 0
0 1

)
.

Notice that these are precisely the places p so that Ep = Kp×Qp with Kp/Qp

is unramified, and ΠD
p = Πp = π′

p ⊠ πp where π′
p (resp. πp) is a special

(unramified) representation of GL2(Kp) (resp. GL2(Qp)).
To describe our formula, we need a notation. Let ν(Π ) be the number of
prime p such that

• p ∈ Σ3, Πp = π1,p ⊠ π2,p ⊠ π3,p and πj,p are special representations of
GL2(Qp) for j = 1, 2, 3.

• p ∈ Σ2, Πp = π′
p ⊠ πp and π′

p (resp. πp) is a special representation of
GL2(Kp) (resp. GL2(Qp)).

• p ∈ Σ2, Kp/Qp is ramified, Πp = π′
p ⊠ πp and π′

p (resp. πp) is a un-
ramified representation (resp. special representation) of GL2(Kp) (resp.
GL2(Qp)).

• p ∈ Σ1 and Πp is a special representation of GL2(Ep).

6.4 Unbalanced case

Assume ǫ(Π ) = 1 and ǫ(Π∞) = 1 in this section. We assume without loss of
generality that k3 = max {k1, k2, k3}. Then ǫ(Π∞) = 1 implies k3 ≥ k1 + k2.
In this case, we have

D×(E∞) = GL2(R)×GL2(R)×GL2(R) and ΠD
∞ = Π∞,

is the discrete series representation of D×(E∞) of minimal weight k and trivial
central character. Let A(D×(AE)) be the space of C-valued automorphic
forms on D×(AE) and let A(D×(AE))ΠD be the underlying space of ΠD in
A(D×(AE)). Put

Ak(D,E; R̂×
ΠD )[Π

D] = Ak(D,E; R̂×
ΠD ) ∩ A(D×(AE))ΠD .

By the multiplicity one theorem and the theory of newform, we have

Ak(D,E; R̂×
ΠD )[Π

D] = CfDE ,

for some non-zero element fDE ∈ ΠD.

Let fD
E ∈ Nk(D,E; R̂×

ΠD ) so that Φ(fD
E ) = fDE . We define the norm

〈fD
E , f

D
E 〉R̂×

ΠD
of fD

E as follows. Fix a set of representatives {x1, · · · , xr} for

the double cosets D×(E)\D×(AE)/D
×(E∞)+R̂×

ΠD , where D×(E∞)+ is the
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three-fold product of GL+
2 (R). We may assume every archimedean component

of xj is one for 1 ≤ j ≤ r. Let

Γj = D×(E) ∩
(
D×(E∞)+ × xjR̂

×
ΠDx

−1
j

)
, 1 ≤ j ≤ r.

The functions fD
E,xj

: H3 → C satisfy the automorphy condition (6.1) for
γ ∈ Γj . We define

〈fD
E , f

D
E 〉R̂×

ΠD
=

r∑

j=1

∫

Γj\H3

|fD
E,xj

(z)|2Im(z)kdµ(z).

Here z = (z1, z2, z3) ∈ H3, Im(z)k =
∏3

ℓ=1 Im(zℓ)
kℓ , and the measure dµ(z)

on H3 is given by

dµ(z) =

3∏

ℓ=1

y−2
ℓ dxℓdyℓ (zℓ = xℓ + iyℓ, 1 ≤ ℓ ≤ 3),

where dxℓ and dyℓ are the usual Lebesgue measures onR. Clearly, 〈fD
E , f

D
E 〉R̂×

ΠD

is independent of the choice of the set {x1, · · · , xr}. Similarly, we can define
the norm 〈fE , fE〉K0(n̂) of fE .
On the other hand, the Petersson norms of fE and fDE are given by

∫

A
×

EGL2(E)\GL2(AE)

|fE(h)|2dh and

∫

A
×

ED×(E)\D×(AE)

|fDE (h)|2dh,

where dh are the Tamagawa measures on A×
E\GL2(AE) and A×

E\D×(AE),
respectively. By [IP18, Lemma 6.1 and Lemma 6.3], we have

〈fE , fE〉K0(n̂) = hE

[
GL2(ÔE) : K0(n̂)

]
D3/2

E ζE(2)

×
∫

A
×

E GL×

2 (E)\GL×

2 (AE)

|fE(h)|2dh,

〈fD
E , f

D
E 〉R̂×

ΠD
= hE

[
Ô×

D(E) : R̂
×
ΠD

]
D3/2

E ζE(2)

×
∏

p|N−

(p− 1)
∏

p∈Σ1∩ΣD

(p− 1)2
∏

p∈Σ3∩ΣD,p3‖M
(p2 + p+ 1)

×
∫

A
×

ED×(E)\D×(AE)

|fDE (h)|2dh.

(6.11)

Here hE := ♯(E×\A×
E/E

×
∞Ô×

E ) is the class number of E. We mention that

dh = D−3/2
E ζE(2)

−1

×
∏

p|N−

(p− 1)−1
∏

p∈Σ3∩ΣD

(p− 1)−2
∏

p∈Σ1∩ΣD ,p3‖M
(p2 + p+ 1)−1

×
∏

v

dhv,
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where dh is the Tamagawa measures on A×
E\D×(AE) and dhv is the Haar

measure on E×
v \D×(Ev) defined in §4.1 and §5.1 for each place v of Q.

Lemma 6.1. We have

〈fE , fE〉K0(n̂) = 2−k1−k2−k3+c−3hEDEN
E
Q(n) · L(1,Π ,Ad),

where c is given by (6.3).

Proof. By specializing the formula in [Wal85, Proposition 6], we have
∫

A
×

E GL2(E)\GL2(AE)

|fE(h)|2dh

= 2−k1−k2−k3+c−3ζE(2)
−1D−1/2

E NE
Q(n)

[
GL2(ÔE) : K0(n̂)

]−1

L(1,Π ,Ad).

The lemma follows form combining this with the equation (6.11).

For each place v, let tv ∈ D×(Ev) be the element defined in §2.3 for ΠD
v and

put t = ⊗vtv, t̂ = ⊗ptp. Recall N
− =

∏
p∈ΣD

p and M =
∏

p|NE
Q
(n) p. Let

ΓD
M/N− = D×(Q) ∩

(
D×(R)+ × R̂×

M/N−

)
⊂ SL2(R), (6.12)

which is a Fuchsian group of the first kind. Remember that k3 ≥ k1 + k2. Set

2m = k3 − k1 − k2.

Recall that ν(Π ) is the non-negative integer defined in the last paragraph
of §6.3.
Let

(fDE )∗(h) = fDE (hτ∞)

for h ∈ D×(AE), where

τ∞ =

((
−1 0
0 1

)
,

(
−1 0
0 1

)
,

(
−1 0
0 1

))
∈ D×(E∞).

Since ΠD is unitary and self-contragredient, we have Π̄D ∼= Π̃D ∼= ΠD, where
Π̄D is the conjugate representation of ΠD. The multiplicity one theorem then
implies (fDE )∗ ∈ ΠD. By the theory of newform, there exists a non-zero constant
α such that fDE = α · (fDE )∗ for all h ∈ D×(AE). Since ((fDE )∗)∗ = fDE , we see
that αᾱ = 1. It follows that we can always normalize fDE such that fDE = (fDE )∗.

Theorem 6.2.

(1) Suppose fDE is normalized so that fDE = (fDE )∗. We have
(∫

ΓD

M/N−
\H

(1 ⊗ δmk2
⊗ 1)fD

E ((z, z,−z), t̂)yk3−2dxdy

)2

= 2−2k3+ν(Π )−2MD−1/2
E

〈fD
E , f

D
E 〉R̂×

ΠD

〈fE , fE〉K0(n̂)

L

(
1

2
,Π , r

)
.
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(2) The central value is non-negative, that is

L

(
1

2
,Π , r

)
≥ 0.

Proof. We first prove that the central values are non-negative. By our nor-
malization, we have

∫

A×

ED×(E)\D×(AE)

fDE (h)fDE (hτ∞)dh =

∫

A×

ED×(E)\D×(AE)

∣∣fDE (h)
∣∣2 dh.

On the other hand, since AdτR(V+) = V+−2
√
−1I2 and ΠD has trivial central

character, we also have
∫

A×D×\D×(A)

ΠD
∞(t∞)fDE (ht̂)dh =

∫

A×D×\D×(A)

ΠD
∞(t∞τ∞)fDE (ht̂)dh

=

∫

A×D×\D×(A)

ΠD
∞(t∞)fDE (ht̂)dh.

On the other hand, by Ichino’s formula [Ich08, Theorem 1.1 and Remark 1.3])
and the choices of the Haar measures in §4.1 and §5.1, we find that

(∫
A×D×\D×(A)

ΠD(t)fDE (h)dh
)2

∫
A

×

ED×(E)\D×(AE) f
D
E (h)fDE (hτ∞)dh

(6.13)

= 2−c
∏

p|N−

(p− 1)−1 · ζE(2)
ζQ(2)2

· L (1/2,Π , r)

L(1,Π ,Ad)
·
∏

v

I∗(ΠD
v , tv), (6.14)

where c is given by (6.3). Since L(1,Π ,Ad) > 0 by Lemma 6.1 and I∗(Πv, tv) >
0 for all v by our results in the previous sections, we see immediately that
assertion (2) holds.
To drive our formula, we note that from (6.2) and the definition of t∞, the
function ΠD(t)fDE is the adelic lift of the automorphic function

((z1, z2, z3), h) 7→ (1⊗ δmk2
⊗ 1)fD

E ((z1, z2,−z3), ht̂)

for ((z1, z2, z3), h) ∈ H3 ×GL2(Ê). Applying lemmas 6.1 and 6.3 in [IP18], we
obtain

(∫

A×D×\D×(A)

ΠD(t)fDE (h)dh

)2

= ζQ(2)−2
∏

p|M/N−

(1 + p)−2
∏

p|N−

(p− 1)−2

×
(∫

ΓD
M/N−

\H
(1⊗ δmk2

⊗ 1)fD
E ((z, z,−z̄), t̂)yk3−2dxdy

)2

.

The formula then follows from combining this with Lemma 6.1 and our results
for I∗(ΠD

v , tv) in §4 and §5.
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6.5 Balanced case

Assume ǫ(Π ) = 1 and ǫ(Π∞) = −1 in this section. We have

D×(E∞) = H× ×H× ×H× and (ΠD
∞ , VΠD

∞

) = (ρk,Lk(C)).

Let A(D×(AE))ΠD be the underlying space of ΠD in A(D×(AE)) and put

Ak(D,E; R̂×
ΠD )[Π

D] = Ak(D,E; R̂×
ΠD ) ∩ A(D×(AE))ΠD .

By the multiplicity one theorem and the theory of newform, there exists a
unique (up to constants) non-zero element fD

E ∈ Mk(D,E; R̂×
ΠD ) such that

the map v 7→ Φ(v ⊗ fD
E ) defines a D×(E∞)-isomorphism form Lk(C) onto

Ak(D,E; R̂×
ΠD )[Π

D]. Let Pk ∈ Lk(C) be the H×-fixed element given by (5.3).
We put fDE = Φ(Pk ⊗ fD

E ). Then its immediately form the definition that fDE
is right H×-invariant.
To state our central value formula for the balanced case, we need some nota-
tions. Let Cl(RΠD ) and Cl(RM/N−) be sets of representatives of

Ê×D×(E)\D×(Ê)/R̂×
ΠD and Q̂×D×(Q)\D×(Q̂)/R̂×

M/N− ,

respectively. Let Γα be finite sets defined by
(
D×(E) ∩ Ê× α R̂×

ΠD α
−1
)
/E× or

(
D×(Q) ∩ Q̂× α R̂×

M/N− α
−1
)
/Q×,

according to α ∈ Cl(RΠD ) or α ∈ Cl(RM/N−), respectively. We put

〈fD
E , f

D
E 〉R̂×

ΠD
=

∑

α∈Cl(R
ΠD )

1
♯Γα

〈fD
E (α), fD

E (α)〉k.

For each place v, let tv ∈ D×(Ev) be the element defined in §2.3 for ΠD
v and

put t = ⊗vtv. Recall that M =
∏

p|NE
Q
(n) p and that ν(Π ) is the non-negative

integer defined in the last paragraph of §6.3.
Theorem 6.3.

(1) We have


 ∑

α∈Cl(RM/N−)

1
♯Γα

〈fD
E (αt),Pk〉k




2

= 2−(k1+k2+k3+1)+ν(Π )MD−1/2
E

〈fD
E , f

D
E 〉R̂×

ΠD

〈fE , fE〉K0(n̂)

L

(
1

2
,Π , r

)
.

(2) The central value is non-negative, that is

L

(
1

2
,Π , r

)
≥ 0.
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Proof. (1) By Lemmas 6.1 and 6.3 in [IP18], we have


 ∑

α∈Cl(RM/N−)

1
♯Γα

〈fD
E (αt),Pk〉k


 =

1

24

∏

p|M/N−

(1 + p)
∏

p|N−

(p− 1)

×
∫

A×D×(Q)\D×(A)

fDE (ht)dh,

where dh is the Tamagawa measure on A×\D×(A). On the other hand, ap-
plying same lemmas, we obtain

〈fD
E , f

D
E 〉R̂×

ΠD
= 2−6π−3hED3/2

E

[
Ô×

D(E) : R̂
×
ΠD

]

×
∏

p|N−

(p− 1)
∏

p∈Σ1∩ΣD

(p− 1)2
∏

p∈Σ3∩ΣD ,p3‖M
(p2 + p+ 1)

× ζE(2)

∫

A
×

ED×(E)\D×(AE)

〈fD
E (h), fD

E (h)〉kdh,

where dh is the Tamagawa measure on A×
E\D×(AE). Schur’s orthogonal rela-

tion implies

∫

A×

ED×(E)\D×(AE)

fDE (h)fDE (h)dh =
〈Pk,Pk〉k

(k1 − 1)(k2 − 1)(k3 − 1)

×
∫

A
×

ED×(E)\D×(AE)

〈fD
E (h), fD

E (h)〉kdh.

The measure dh on the RHS of the equation above is also the Tamagawa mea-
sure on A×

E\D×(AE). By Ichino’s formula [Ich08, Theorem 1.1 and Remark
1.3 ] and the choices of Haar measures in §4.1 and §5.1, we find that

(∫
A×D×(Q)\D×(A)

fDE (ht)dh
)2

∫
A

×

ED×(E)\D×(AE) f
D
E (h)fDE (h)dh

= 23−c3−1
∏

p|N−

(p− 1)−1 · ζE(2)
ζQ(2)

· L(1/2,Π , r)
L(1,Π ,Ad)

·
∏

v

I∗(ΠD
v , tv).

Here the constant c is given by (6.3). The central value formula follows from
the equations above together with Lemma 6.1 and the results for I∗(ΠD

v , tv)
in §4 and §5.
To prove (2), it suffices to show that the ratio

(∫
A×D×(Q)\D×(A)

fDE (ht)dh
)2

∫
A

×

ED×(E)\D×(AE)〈fD
E (h), fD

E (h)〉kdh
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is non-negative. To do this we consider (fD
E )∗(h) = fD

E (hτ∞) for h ∈ D×(AE),
where

τ∞ =

((
0 1
−1 0

)
,

(
0 1
−1 0

)
,

(
0 1
−1 0

))
∈ D×(E∞).

The function (fD
E )∗ satisfy the same conditions as fD

E . By the uniqueness,

there exists a non-zero constant α such that fD
E (h) = α · fD

E (hτ∞) for all
h ∈ D×(AE). On one hand, we have
∫

A×D×(Q)\D×(A)

〈fD
E (ht),Pk〉kdh = α

∫

A×D×(Q)\D×(A)

〈fD
E (htτ),Pk〉kdh

= α ·
∫

A×D×(Q)\D×(A)

〈fD
E (ht),Pk〉kdh.

On the other hand, recall that

Hk(v, w) = 〈v,ΠD
∞(τ∞)w̄〉k v, w ∈ L(C),

defines an D×(E∞)-invariant Hermitian pairing on VΠD
∞

. We have

∫

A
×

ED×(E)\D×(AE)

〈fD
E (h), fD

E (h)〉kdh

= α

∫

A
×

ED×(E)\D×(AE)

〈fD
E (h), fD

E (hτ∞)〉kdh

= α

∫

A
×

ED×(E)\D×(AE)

Hk(f
D
E (h), fD

E (h))dh.

This finishes the proof.

6.6 Algebraicity of the central critical value

Now we apply Theorems 6.2 and 6.3 to prove the algebraicity of the central
critical values of the triple product L-functions. We keep the notations in §6.3.
When ǫ(Π ) = 1 and ǫ(Π∞) = 1 (resp. ǫ(Π∞) = −1), we will follow the setting
in §6.4 (resp. §6.5). We define the motivic triple product L-function and its
associated completed L-function for fE by

L(s, fE, r) =
∏

p

L
(
s− w

2
,Πp, rp

)
and Λ(s, fE, r) = L

(
s− w

2
,Π , r

)
.

Here w is given by (6.5).
When ǫ(Π ) = 1 and ǫ(Π∞) = 1, we assume that k3 ≥ k1 + k2 and E =
K × Q with K = Q × Q or K is a real quadratic extension of Q. Then
nK = (N1Z, N2Z), N3 = N and gK = f1 ⊗ f2, f3 = f when K = Q ×Q. In
any case, we have

fE = gK ⊗ f and n = (nK , NZ).
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Define the Petersson norm of f by

〈f, f〉Γ0(N) =

∫

Γ0(N)\H
|f(z)|2yk3−2dxdy, (z = x+ iy).

Here dx, dy are the usual Lebesgue measures on R.
The first corollary to Theorems 6.2 and 6.3 is the Galois-equivariant property
of the central L-value.

Corollary 6.4. Let σ ∈ Aut(C).

(1) Assume ǫ(Πv) = 1 for all places v. We have


 L((w + 1)/2, fE, r)

D1/2
E π2k3 〈f, f〉2Γ0(N)




σ

=
L((w + 1)/2, fσ

E)

D1/2
E π2k3〈fσ, fσ〉2Γ0(N)

.

(2) Assume ǫ(Π ) = 1 and ǫ(Π∞) = −1. We have

(
L ((w + 1)/2, fE, r)

D1/2
E πw+2〈fE , fE〉K0(n̂)

)σ

=
L ((w + 1)/2, fσ

E, r)

D1/2
E πw+2〈fσ

E , f
σ
E〉K0(n̂)

.

(3) Assume ǫ(Π ) = −1. We have

L

(
w + 1

2
, fE , r

)
= 0.

Proof. By the Galois equivariance property for the local Langlands correspon-
dence [Hen01, §7] and Π σ

∞ ∼= Π∞, we have ǫ(Πv) = ǫ(Π σ
v ) for all σ ∈ Aut(C).

First we assume ǫ(Πv) = 1 for all v. Then D = M2. Let ι : H → H2 be the
diagonal embedding z 7→ (z, z). The GL2(Qp) component of tp ∈ GL2(Kp) ×
GL2(Qp) is equal to 1 for all p. Thus we may view t̂ as an element in GL2(K̂).
Note that (1 ⊗ δmk2

)ρ(t̂)gK is a nearly holomorphic Hilbert modular form over

K of weight (k1, k2+2m), where ρ denote the right translation of GL2(K̂). Let

ι∗((1 ⊗ δmk2
)ρ(t̂)gK)(z) = (1⊗ δmk2

)ρ(t̂)gK((z, z), 1)

be its pullback along ι at the identity cusp. Then it is a nearly holomorphic
modular form of weight k3 and level Γ0(M). We consider the period integral
〈ι∗((1 ⊗ δmk2

)gK), f〉 defined by

〈ι∗((1⊗ δmk2
)ρ(t̂)gK), f〉 =

∫

Γ0(M)\H
ι∗((1⊗ δmk2

)ρ(t̂)gK)(z)f(z)yk3−2dxdy,

where z = x + iy and dx, dy are the usual Lebesgue measures on R. Let
σ ∈ Aut(C). By our normalization of gK , we have

(ι∗((1 ⊗ δmk2
)ρ(t̂)gK))σ = ι∗((1⊗ δmk2

)ρ(t̂)gσK).
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Since ι∗((1⊗ δmk2
)ρ(t̂)gK) is nearly holomorphic and f is a newform, by [Stu80,

Theorem 4] and [Shi76], we have

(
〈ι∗((1⊗ δmk2

)ρ(t̂)gK), f〉
〈f, f〉Γ0(N)

)σ

=
〈(ι∗((1⊗ δmk2

)ρ(t̂)gσK)), fσ〉
〈fσ, fσ〉Γ0(N)

.

In particular, we have 〈ι∗((1⊗ δmk2
)ρ(t̂)gK), f〉 ∈ R. Note that

(1 ⊗ δmk2
⊗ 1)ρ(t̂)fE((z, z,−z), 1) = ι∗((1⊗ δmk2

)ρ(t̂)gK)(τ)f(z).

By Theorem 6.2, we have

〈ι∗((1⊗ δmk2
)ρ(t̂)gK), f〉2

〈f, f〉2Γ0(N)

= 2−2k3−1+ν(Π)M
Λ((w + 1)/2, fE, r)

D1/2
K 〈f, f〉2Γ0(N)

.

The assertion then follows from applying σ to both sides and applying our
central value formula to the left hand side again.
Assume ǫ(Π ) = 1 and ǫ(Π∞) = −1. Put

〈fD
E ,Pk〉k =


 ∑

α∈Cl(RM/N−)

1
♯Γα

〈fD
E (αt),Pk〉k




2

.

Since the equation above only evaluate at the finite adeles and we are consid-
ering the ratios, we have


 〈fD

E ,Pk〉k
〈fD

E , f
D
E 〉R̂×

ΠD




σ

=
〈(fσ

E)
D,Pk〉k

〈(fσ
E)

D, (fσ
E)

D〉R̂×

ΠD

for all σ ∈ Aut(C). The assertion then follows from Theorem 6.3.
Finally, assume ǫ(Π ) = −1. By the results of [HK04] and [PSP08], we have

LPSR

(
w + 1

2
, fE , r

)
= 0,

where LPSR (s, fE, r) is the triple product L-function associated with fE defined
by the integral representation in [PSR87] and [Ike89]. On the other hand, by
Theorem D in [CCI19], we have

L(s, fE, r) = LPSR(s, fE, r).

This completes the proof.

Remark 6.5. We can also prove the algebraicity of the central value when
ǫ(Π ) = 1 and ǫ(Π∞) = 1 (see Corollary 6.6). However, to prove the Galois-
equivariant property, one needs to refine the results of Harris in [Har93, Lemma
2.5.5] and [Har94, Theorem 1].
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The following corollary is a refinement of the results of Harris-Kudla in [HK91,
Theorems 11.6 and 12.4]. We prove that the ratio between the central L-value
and the Petersson norms is essentially a square in the Hecke field Q(Π ) of Π .

Corollary 6.6. Assume ǫ(Π ) = 1 and fD
E is Q(Π )-arithmetic in the sense

described in [HK91] and [Har93]. Let Q(Π ) be the Hecke field of Π and ΩfE ∈
C× defined by

ΩfE =





2ν(Π )M−1D1/2
E

〈fE , fE〉K0(n̂)

〈fD
E , f

D
E 〉R̂×

ΠD

〈f, f〉2Γ0(N) if ǫ(Π∞) = 1,

21+ν(Π )M−1D1/2
E

〈fE , fE〉K0(n̂)

〈fD
E , f

D
E 〉R̂×

ΠD

if ǫ(Π∞) = −1.

We have
L((w + 1)/2, fE, r)

ΩfE

∈ Q(Π )2.

Proof. First we assume ǫ(Π ) = 1 and ǫ(Π∞) = 1. Since fD
E is Q(Π )-

arithmetic, one can show that (fD
E )∗ is also Q(Π )-arithmetic by the arith-

meticity criterion [HK91, Theorem 14.7]. As Q(Π ) is totally real, we deduce
that fD

E = ±(fD
E )∗. If fD

E = −(fD
E )∗, then it follows from Theorem 6.2-(2) and

(6.13) that L((w + 1)/2, fE, r) = 0. Therefore, we assume fD
E = (fD

E )∗. Let τ
be the irreducible unitary cuspidal automorphic representation of GL2(A) gen-
erated by the adelic lift of f and τD its Jacquet-Langlands lift to D×(A).
Let fD ∈ τD be non-zero holomorphic Q(Π )-arithmetic cusp form. Recall
ΓD
M/N− ⊂ SL2(R) is the Fuchsian group of the first kind defined in (6.12). By

[HK91, Theorem 12.3], we have

〈f, f〉Γ0(N)

〈fD, fD〉ΓD
M/N−

∈ Q(Π ).

Since fD
E is assumed to be Q(Π )-arithmetic, by [Har90, Corollary 7.7.1] and

[Har94, Theorem 1] (see also [HK91, Lemma 15.1]), we have
∫

ΓD

M/N−
\H

(1⊗ δmk2
⊗ 1)fD

E ((z, z,−z), t̂)yk3−2dxdy

〈fD, fD〉ΓD
M/N−

∈ Q(Π ).

The assertion then follows from Theorem 6.2-(1).
Assume ǫ(Π ) = 1 and ǫ(Π∞) = −1. Since fD

E is assumed to be Q(Π )-
arithmetic, we have

∑

α∈Cl(RM/N−)

1
♯Γα

〈fD
E (αt),Pk〉k ∈ Q(Π ).

The assertion then follows from Theorem 6.3. This completes the proof.
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7 Applications

In this section, we prove our main results of this paper. Let N1, N2 be positive
square-free integers, and κ′, κ be positive even integers. Put w = 2κ+ κ′ − 3.
Let N = gcd(N1, N2) and M = lcm(N1, N2). Let f ∈ Sκ′(Γ0(N1)) and g ∈
Sκ(Γ0(N2)) be normalized elliptic newforms and f and g be the adelic lifts
of f and g, respectively. Let τ = ⊗′

vτv and π = ⊗′
vπv be the irreducible

unitary cuspidal automorphic representations of GL2(A) generated by f and g,
respectively.
If F ′ is a cyclic extension of Q with prime degree, we let πF ′ be the base change
lift of π to GL2(AF ′). We note that πF ′ is a unitary irreducible cuspidal
automorphic representation of GL2(AF ′) whose central character is trivial.
Indeed, if η = ⊗′

vηv is a character of A× associated to F ′/Q by the global class
field theory, then π ≇ π ⊗ η. Otherwise, since N2 is square-free, the condition
πp ∼= πp ⊗ ηp for all p implies ηp is unramified for all p, which is impossible
since the ground field is Q. Now we can apply [AC89, Theorem 4.2 (a) and
Theorem 5.1].
We define the motivic L-function and its associated completed L-function for
Sym2(g)⊗ f by

L(s, Sym2(g)⊗ f) =
∏

p

L
(
s− w

2
, Sym2(πp)⊗ τp

)
,

Λ(s, Sym2(g)⊗ f) =
∏

v

L
(
s− w

2
, Sym2(πv)⊗ τv

)
.

Note that L(s, Sym2(g) ⊗ f) is holomorphic at s = (w + 1)/2. We have the
functional equation

Λ(s, Sym2(g)⊗ f) = ǫ(Sym2(g)⊗ f)
(
M4NN−1

1

)−s+(w+1)/2

× Λ(w + 1− s, Sym2(g)⊗ f),
(7.1)

where ǫ(Sym2(g)⊗ f) ∈ {±1} is given by

ǫ(Sym2(g)⊗ f) = (−1)δ(κ,κ
′)+κ′/2

∏

p|N1/N

wf (p),

with

δ(κ, κ′) =

{
1 if 2κ ≤ κ′,

−1 if 2κ > κ′,

and wf (p) ∈ {±1} is the eigenvalue of the Atkin-Lehner involution of f at p.
Recall the Deligne’s period Ωf,g ∈ C× of the tensor motive associated to

Sym2(g)⊗ f with sign ǫ = (−1)κ
′/2−1 defined in (1.1).

Corollary 7.1. For σ ∈ Aut(C), we have
(
L((w + 1)/2, Sym2(g)⊗ f)

(2π
√
−1)3(w+1)/2Ωf,g

)σ

=
L((w + 1)/2, Sym2(gσ)⊗ fσ)

(2π
√
−1)3(w+1)/2Ωfσ,gσ

.
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Proof. First we assume κ′ ≥ 2κ. Define Ξ to be the set of real quadratic
extensions K/Q such that

• N | DK .

• gcd(DK ,M/N) = 1.

•
(

DK

p

)
= 1 for p |M/N2.

Here DK is the discriminant of K/Q. Certainly Ξ contains infinitely many
elements. Let K ∈ Ξ and χK = ⊗vχK,v : K×\A×

K → C be the idele class
character associated to K by class field theory. Put

Π = πK ⊠ τ.

One checks that ǫ(Πv) = 1 for all v. For example, if p | N , then Kp is
a ramified quadratic extension over Qp, and πKp (resp. τp) is a unramified
special representation of GL2(Kp) (resp. GL2(Qp)). Then Proposition 4.8 (2)
implies ǫ(Πp) = 1. On the other hand, by the results of [Pra90] and [Pra92],
we have

ǫ(Πv) = ǫ

(
1

2
,Πv, rv, ψv

)
χK,v(−1),

for all place v. In particular, ǫ (1/2,Π , r) = 1 and the matrix algebra M2

is the unique quaternion algebra over Q satisfying (6.6). We see from the
factorization ǫ(s,Π , r) = ǫ(s, Sym2(π) ⊗ τ)ǫ(s, τ ⊗ χK) that

ǫ

(
1

2
, Sym2(π) ⊗ τ

)
= ǫ

(
1

2
, τ ⊗ χK

)
.

If ǫ (1/2, τ ⊗ χK) = −1, then ǫ
(
1/2, Sym2(π)⊗ τ

)
= −1. On the other hand,

by the Galois equivariance property for the local Langlands correspondence
described in [Hen01, §7], we also have ǫ

(
1/2, Sym2(πσ)⊗ τσ

)
= −1. Therefore

L

(
w + 1

2
, Sym2(gσ)⊗ fσ

)
= L

(
w + 1

2
, Sym2(g)⊗ f

)
= 0

for all σ ∈ Aut(C) by the functional equation. Otherwise, by the nonvanishing
theorem of [FH95], there exists K ′ ∈ Ξ such that L (κ′/2, f ⊗ χK′) 6= 0. Let
σ ∈ Aut(C). By [Shi77], we have

(
L(κ′/2, f ⊗ χK′)

D
1/2
K′ πκ′/2(

√
−1)κ′/2Ω−ǫ

f

)σ

=
L(κ′/2, fσ ⊗ χK′)

D
1/2
K′ πκ′/2(

√
−1)κ′/2Ω−ǫ

fσ

,

(
〈f, f〉

(
√
−1)κ′−1Ω+

f Ω
−
f

)σ

=
〈fσ, fσ〉

(
√
−1)κ′−1Ω+

fσΩ
−
fσ

.
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Let gK′ be the normalized Hilbert modular newform associated to πK′ , the
base change lift of π to GL2(AK′). By Corollary 6.4-(1), we have


L((w + 1)/2, gK′ ⊗ f, r)

D
1/2
K′ π2κ′〈f, f〉2Γ0(N)




σ

=
L((w + 1)/2, gσK′ ⊗ fσ, r)

D
1/2
K′ π2κ′〈fσ, fσ〉2Γ0(N)

.

Note that gσK′ = (gσ)K′ . Now the corollary then follows from combining these
equations with the following factorization

L

(
w + 1

2
, gK′ ⊗ f, r

)
= L

(
w + 1

2
, Sym2(g)⊗ f

)
L

(
κ′

2
, f ⊗ χK′

)
.

This completes the proof in case κ′ ≥ 2κ.
Assume 2κ > κ′. The case when N1 = 1 is proved in [Che19]. We assume
N1 > 1. By the non-vanishing results of [FH95], the assumption N1 > 1 enable
us to choose a real quadratic field K with fundamental discriminant D > 0

such that L
(

κ′

2 , f ⊗ χD
)
6= 0, where χD is the Dirichlet character associated to

K/Q by class field theory. Let gK be the normalized Hilbert modular newform
associated to πK and gK ∈ πK be its adelic lift. By equation (6.11), the
Petersson norm of gK is given by

〈gK , gK〉 = hK

[
GL2(ÔK) : K0(N2OK)

]
D3/2

K ζK(2)

×
∫

A×

K GL×

2 (K)\GL×

2 (AK)

|gK(h)|2dh,

where hK is the class number of K and dh is the Tamagawa measure on
A×

K\GL2(AK). Define the Petersson norm of g by

〈g, g〉 =
∫

Γ0(N2)\H
|g(τ)|2yκ−2dτ.

We have ( 〈gK , gK〉
〈g, g〉2

)σ

=
〈(gσ)K , (gσ)K〉

〈gσ, gσ〉2 .

This equality follows from combining the factorization

L(1, πK ,Ad) = L(1, π,Ad)L(1, π,Ad, χ),

and a result of Sturm [Stu89]. Put

Π = πK ⊠ τ.

Since L
(

κ′

2 , f ⊗ χD
)
6= 0, we deduce that if ǫ(Π ) = −1, then L(w+1

2 , Sym2(g)⊗
f) = 0. Therefore, we may assume ǫ(Π ) = 1. The rest of the proof is similar
to the above case except we use Corollary 6.4-(2) here instead. This completes
the proof.

Documenta Mathematica 24 (2019) 2241–2297



On Deligne’s Conjecture for GL(3)×GL(2) and GL(4) 2291

Combining with the result of Januszewski in [Jan18], we obtain a conditional
result on Deligne’s conjecture for arbitrary critical values with abelian twists.

Corollary 7.2. Assume 2κ > κ′ and L(w+1
2 , Sym2(g) ⊗ f) 6= 0. Let n ∈ Z

be a critical integer for L(s, Sym2(g)⊗ f) and χ be a Dirichlet character such
that (−1)nχ(−1) = ǫ. For σ ∈ Aut(C), we have

(
L(n, Sym2(g)⊗ f ⊗ χ)

G(χ)3(2π
√
−1)3nΩf,g

)σ

=
L(n, Sym2(gσ)⊗ fσ ⊗ χσ)

G(χσ)3(2π
√
−1)3nΩfσ ,gσ

.

Proof. Since N2 is square-free, the functorial lift of Sym2(π) to GL3(A) is a
cuspidal automorphic representation by Theorem 9.3 in [GJ78]. By Theorem A
in [Jan18], there exists cohomological periods Ω±(f, g) ∈ C× such that

(
L(n, Sym2(g)⊗ f ⊗ χ)

G(χ)3(2π
√
−1)3nΩ(−1)nχ(−1)(f, g)

)σ

=
L(n, Sym2(gσ)⊗ fσ ⊗ χσ)

G(χσ)3(2π
√
−1)3nΩ(−1)nχ(−1)(fσ, gσ)

(7.2)

for σ ∈ Aut(C). Note that the condition 2κ > κ′ is equivalent to the balanced
condition in [Jan18]. For n = w+1

2 and χ = 1, by Corollary 7.1, (7.2), and the

assumption L
(
w+1
2 , Sym2(g)⊗ f

)
6= 0, we have

(
Ωf,g

Ωǫ(f, g)

)σ

=
Ωfσ,gσ

Ωǫ(fσ, gσ)
(7.3)

for σ ∈ Aut(C). The assertion follows from (7.2) and (7.3). This completes
the proof.

We consider the case when E is a cubic Galois extension over Q. Put w =
3κ′ − 3. We define the motivic L-function for Sym3(f) by

L(s, Sym3(f)) =
∏

p

L
(
s− w

2
, Sym3(τp)

)
.

Note that L(s, Sym3(f)) is holomorphic at s = w+1
2 . Denote Ωf,Sym3 ∈ C× be

the period defined as in (1.2).

Corollary 7.3. Assume N1 > 1 and there exist a cubic Dirichlet character χ

such that L
(

κ′

2 , f ⊗ χ
)
6= 0. For σ ∈ Aut(C), we have

(
L((w + 1)/2, Sym3(f))

(2π
√
−1)w+1Ωf,Sym3

)σ

=
L((w + 1)/2, Sym3(fσ))

(2π
√
−1)w+1Ωfσ,Sym3

.
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Proof. The argument is similar to that of Corollary 7.1. Let E be the cubic
Galois extension of Q associated to χ by global class filed theory, and χE be
a idele class character associated to E/Q. Let fE be the normalized Hilbert
modular newform associated to πE and 〈fE , fE〉K0(N1OE) be the Petersson
norm of fE defined in §6.4. The factorization

L(1, πE ,Ad) = L(1, π,Ad)L(1, π,Ad, χE)L(1, π,Ad, χ̄E),

toghther with Lemma 6.1 and Sturm’s result [Stu80] yield
( 〈f, f〉3
〈fE , fE〉K0(N1OE)

)σ

=
〈fσ, fσ〉3

〈(fσ)E , (fσ)E〉K0(N1OE)
.

Using again [Shi77], we have
(

L(κ′/2, f ⊗ χ)

G(χ)πκ′/2(
√
−1)κ′/2Ω−ǫ

f

)σ

=
L(κ′/2, fσ ⊗ χ)

G(χσ)πκ′/2(
√
−1)κ′/2Ω−ǫ

fσ

,

(
L(κ′/2, f ⊗ χ̄)

G(χ̄)πκ′/2(
√
−1)κ′/2Ω−ǫ

f

)σ

=
L(κ′/2, fσ ⊗ χ̄)

G(χ̄σ)πκ′/2(
√
−1)κ′/2Ω−ǫ

fσ

,

(
〈f, f〉

(
√
−1)κ′−1Ω+

f Ω
−
f

)σ

=
〈fσ, fσ〉

(
√
−1)κ′−1Ω+

fσΩ
−
fσ

.

Here G(χ) (resp. G(χ)) is the Gauss sum associated to χ (resp. χ) defined in
[Shi77]. Notice that since the Hecke field of f is totally real, we have

L

(
κ′

2
, f ⊗ χ̄

)
= L

(
κ′

2
, f ⊗ χ

)
6= 0.

Also, as E/Q is Galois, DE is a square. The corollary then follows from these
equations together with Corollary 6.4-(2) and the factorization

L

(
w + 1

2
, fE , r

)
= L

(
w + 1

2
, Sym3(f)

)
L

(
κ′

2
, f ⊗ χ

)
L

(
κ′

2
, f ⊗ χ̄

)
.

This finishes the proof.

Combining with the result of Januszewski in [Jan16] and Jiang-Sun-Tian in
[JST19], we obtain a conditional result on Deligne’s conjecture for arbitrary
critical values with abelian twists.

Corollary 7.4. Suppose that N1 > 1, L(w+1
2 , Sym3(f)) 6= 0, and there exist

a cubic Dirichlet character χ such that L
(

κ′

2 , f ⊗ χ
)

6= 0. Let n ∈ Z be

a critical integer for L(s, Sym3(f)) and µ be a Dirichlet character such that
(−1)nµ(−1) = ǫ. For σ ∈ Aut(C), we have

(
L(n, Sym3(f)⊗ µ)

G(µ)2(2π
√
−1)2nΩf,Sym3

)σ

=
L(n, Sym3(fσ)⊗ µσ)

G(µσ)2(2π
√
−1)2nΩfσ ,Sym3

.
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Proof. Since N1 is square-free, the functorial lift of Sym3(τ) to GL4(A) is a
cuspidal automorphic representation by Theorem B in [KS02]. The rest of the
proof is similar to that of Corollary 7.2 except in this case we use Theorem A
in [Jan16] and Theorem 1.1 in [JST19].
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