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Abstract. We study the set PS consisting of all branched holomor-
phic projective structures on a compact Riemann surface X of genus
g ≥ 1 and with a fixed branching divisor S :=

∑d
i=1 ni · xi, where

xi ∈ X . Under the hypothesis that ni = 1, for all i, with d a positive
even integer such that d 6= 2g − 2, we show that PS coincides with a
subset of the set of all logarithmic connections with singular locus S,
satisfying certain geometric conditions, on the rank two holomorphic
jet bundle J1(Q), where Q is a fixed holomorphic line bundle on X
such that Q⊗2 = TX ⊗ OX(S). The space of all logarithmic con-
nections of the above type is an affine space over the vector space
H0(X,K⊗2

X ⊗OX(S)) of dimension 3g − 3 + d. We conclude that PS

is a subset of this affine space that has codimension d at a generic
point.
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1 Introduction

A (holomorphic) projective structure on a Riemann surface X is a holomorphic
atlas with local coordinates in the projective line CP1 such that the transition
maps are restrictions of elements in the Möbius group PGL(2,C). Such struc-
tures arise naturally in the study of second order ordinary differential equa-
tions and had a major role in the understanding of uniformization theorem for
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Riemann surfaces (see, for example, [Gu] or Chapter VIII of [St]). More pre-
cisely, the uniformization theorem asserts that any Riemann surface admits a
holomorphic projective structure such that the corresponding developing map,
which is a holomorphic map from the universal cover X̃ of X to CP1, is an
embedding (with image a round unitary disk, if X is compact of genus g ≥ 2).
A compact Riemann surface X with genus g ≥ 2 is thus uniformized as a
quotient of the Poincaré’s upper-half plane by a Fuchsian group. Using the
corresponding projective structure on X as the base point, the space of holo-
morphic projective structures on X is naturally identified with the space of
holomorphic sections H0(X, K⊗2

X ) of the square of the canonical bundle KX

of X . This space of holomorphic quadratic differentials has complex dimension
3g − 3 [Gu].
A more flexible notion of projective structure, which is stable under pull-back
through ramified covers (and not just étale covers), is that of a branched

(holomorphic) projective structure, introduced and studied by Mandelbaum
in [Ma1, Ma2]. A branched projective structure is defined by a holomorphic
atlas with local charts being finite branched coverings of open subsets in CP1,
while the transition maps are restrictions of elements in the Möbius group
PGL(2,C) (its definition is recalled in Section 2.1). Away from the branching
divisor S, the Riemann surface X inherits a holomorphic projective structure
in the classical sense. These structures arise, for example, in the study of coni-
cal hyperbolic structures on Riemann surfaces or in the theory of codimension
one transversally projective holomorphic foliations (see, for example, [CDF]).
Geometrically, a holomorphic projective structure on a Riemann surface X
is known to be given by a flat CP1-bundle over X endowed with a holomor-
phic section which is transverse to the horizontal distribution defining the flat
structure (this section is also called the developing map of the projective struc-
ture). In the branched case, this section fails to be transverse to the horizontal
distribution exactly at points in the branching divisor S (see, for example,
[CDF, GKM, LM] or Section 2.1 here).
An unbranched projective structure on a compact Riemann surface X produces
a flat holomorphic connection on a certain rank two holomorphic vector bun-
dle on X . This holomorphic vector bundle does not depend on the projective

structure: it is the unique nontrivial extension of K
−1/2
X by K

1/2
X . The projec-

tivization of this flat rank two vector bundle yields the flat CP1–bundle over X
mentioned above. Given a branched projective structure on X , we again have
a flat holomorphic connection on a holomorphic CP1–bundle over X . But now
this CP1–bundle, and hence the corresponding holomorphic rank two vector
bundle, in general depends on the branched projective structure. The main
result in this article is that a branched projective structure produces a holo-
morphic vector bundle of rank two equipped with a logarithmic connection,
such that the holomorphic vector bundle is independent of the choice of the
branched projective structure, as long as the branching divisor is fixed.
More precisely, fix a Riemann surface X with genus g ≥ 1 and an effective
divisor S :=

∑d
i=1 ni · xi on X . Consider PS , the space all branched holomor-
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phic projective structures on X with S as the branching divisor. To ease our
notation, we work under the simplifying assumption that

Assumption 1.1. Each ni = 1 and d = #S is an even integer such that
d 6= 2g − 2.

Fix a holomorphic line bundle Q on X such that Q⊗2 = TX ⊗OX(S).
Our first main result (Theorem 5.1) shows that a branched projective structure
on X with branching divisor S is the same data as a logarithmic connection D1

on the (rank two) first jet bundle J1(Q) with singular locus S (so D1 is non-
singular over X \S) that satisfies certain geometric conditions. The conditions
in question are:

1. the residue of D1 at each point of S has eigen-values 0 and −1,

2. the eigen-space for the eigen-value −1 is the line given by the kernel of
the natural projection J1(Q) −→ J0(Q) = Q,

3. for each point y ∈ S, the homomorphism ρ(D1, y) in Proposition 4.2
(from the eigen-space of Res(D1, y) for the eigen-value 0 to the eigen-
space of Res(D1, y) for the eigen-value −1 tensored with the fiber (KX)y)
vanishes; this is equivalent to the condition that the local monodromy of
D1 around y is trivial (see Proposition 4.2), and

4. the logarithmic connection on
∧2

J1(Q) = OX(S) coincides with the one
given by the de Rham differential.

Let C(Q) denote the space of all logarithmic connections satisfying the first,
second and fourth conditions (note that condition three is omitted). So the
elements of C(Q) that satisfy the third condition produce branched projective
structure on X with branching divisor S. However, two different elements of
this subset of C(Q) can produce the same branched projective structure on X
with branching divisor S. Indeed, two elements of this subset of C(Q) that differ
by an automorphism of J1(Q) produce the same branched projective connection
(see Remark 5.2). This ambiguity is removed by identifying a special class of
logarithmic connections, which we now explain.
Given a logarithmic connections on J1(Q), singular over S, there is a homomor-
phism J1(Q) −→ Q ⊗KX ⊗OX(S) (see Lemma 7.1). An element of C(Q) is
called special if the corresponding homomorphism J1(Q) −→ Q⊗KX⊗OX(S)
vanishes identically (see Definition 7.2). Let C0(Q) ⊂ C(Q) be the locus of
special logarithmic connections. The space of PS of all branched projective
structures with branching divisor S is in bijection with the subset of C0(Q) de-
fined by the special logarithmic connections that satisfy the third of the above
four conditions (Corollary 7.5). This is proved by showing that the composition

C0(Q) →֒ C(Q) −→ C(Q)/Aut(J1(Q))

is a bijection, where Aut(J1(Q)) is the group of all holomorphic automorphisms

of J1(Q) that act trivially on
∧2

J1(Q).
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Summarizing: there is a natural surjective map to PS from the space of logarith-
mic connections on J1(Q) singular over S satisfying the above four conditions;
the restriction of this map to the subset of special connections is both injective
and surjective.
On the other hand, the space of all special connections C0(Q) is an affine
space over the vector space of H0(X, K⊗2

X ⊗ OX(S)) (Proposition 7.3 and
Corollary 7.4). As a consequence, we obtain the following result:

Theorem 1.2. Let X be a Riemann surface of genus g ≥ 1, and S be a divisor

of degree d satisfying Assumption 1.1. Then the space of branched projective

structures PS on X is canonically a subset of codimension d of an affine space

over the vector space H0(X,K⊗2
X ⊗OX(S)) of holomorphic quadratic differen-

tials with at most simple poles over S.

This generalizes Theorem 3 of [Ma1] which handled the case when the degree
of the divisor does not exceed 2g − 2.
The structure of the paper is as follows. Section 2 introduces the main defi-
nitions and presents the geometric description of elements of PS as flat CP1–
bundles over X endowed with a generically transverse section. Section 3 gives
an equivalent linear description of elements in PS as flat rank two holomorphic
vector bundles with a special line subbundle L of degree g − 1− d

2 . From this
view-point S appears as the divisor of the second fundamental form of L with
respect to the flat connection (see Lemma 3.3). In Section 4, we first recall
the definitions of logarithmic connections and their residue. Proposition 4.2
plays a crucial role in relating branched projective structures with logarithmic
connections. Section 5 contains the proof of Theorem 5.1 which describes ele-
ments in PS as logarithmic connections on the jet bundle J1(Q) satisfying some
specific residue conditions at points in S. In Section 6 we show that we can
construct such logarithmic connections on the jet bundle J1(Q), prescribing the
previous residue conditions at S. In Section 7 we define a special class of loga-
rithmic connections on J1(Q) which parametrizes PS bijectively (Definition 7.2
and Corollary 7.5). This implies that the space of these logarithmic connections
is naturally identified with an affine space over H0(X,K⊗2

X ⊗OX(S)) (Propo-
sition 7.3). Section 8 identifies PS with a subspace of second order differential
operators satisfying some natural geometric conditions (Lemma 8.1).

2 Preliminaries

2.1 Branched projective structure

Let X be a connected Riemann surface. Fix a nonempty finite subset

S0 := {x1, · · · , xd} ⊂ X

of d distinct points. For each xi, 1 ≤ i ≤ d, fix an integer ni ≥ 1. Let

S :=
d∑

i=1

ni · xi (1)
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be an effective divisor on X .
The group of all holomorphic automorphisms of CP1 is the Möbius group
PGL(2,C). Any (

a b
c d

)
∈ PGL(2,C)

acts on CP1 = C ∪ {∞} as z 7−→ az+b
cz+d .

A branched projective structure on X with branching type S (defined in (1))
is given by data {(Uj, φj)}j∈J , where

1. Uj ⊂ X is a connected open subset with #(Uj

⋂
S0) ≤ 1 such that⋃

j∈J Uj = X ,

2. φj : Uj −→ CP1 is a holomorphic map which is an immersion on the
complement Uj \ (Uj

⋂
S0),

3. if Uj

⋂
S0 = xi, then φj is of degree ni + 1 and totally ramified at xi,

while φj is an embedding if Uj

⋂
S0 = ∅, and

4. for every j, j′ ∈ J and every connected component U of Uj

⋂
Uj′ there

is an element fj,j′ ∈ PGL(2,C), such that φj = fj,j′ ◦ φj′ on U .

Two data {(Uj, φj)}j∈J and {(U ′
j , φ

′
j)}j∈J′ satisfying the above conditions are

called equivalent if their union {(Uj, φj)}j∈J

⋃{(U ′
j, φ

′
j)}j∈J′ also satisfies the

above conditions.
A branched projective structure on X with branching type S is an equivalence
class of data {(Uj, φj)}j∈J satisfying the above conditions. This definition was
introduced in [Ma1], [Ma2].
We now give an equivalent geometric description in terms of a flat CP1-bundle
over X and a holomorphic section which fails to be transverse exactly at points
in S (compare with [LM]).
Over CP1, we have the trivial holomorphic bundle

p1 : P0 := CP1 × CP1 −→ CP1

with fiber CP1, where p1 is the projection to the first factor. This projective
bundle P0 is equipped with the trivial holomorphic connection, which we will
denote by D0. The bundle P0 is also equipped with a holomorphic section

s0 : CP1 −→ CP1 × CP1 = P0 , x 7−→ (x, x) .

The earlier mentioned action of PGL(2,C) on CP1 lifts to CP1 × CP1 as the
diagonal action. This action of PGL(2,C) on P0 = CP1 × CP1 evidently
preserves the connection D0 and also the above section s0.
Given a branched projective structure {(Uj , φj)}j∈J , for every j ∈ J , we have
the projective bundle φ∗jP0 −→ Uj equipped with the holomorphic connection
φ∗jD0 and the holomorphic section φ∗js0. Since (P0, D0, s0) is PGL(2,C)–
equivariant, for any connected component U ⊂ Uj

⋂
Uj′ , the two bundles with
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connection and section (φ∗jP0, φ
∗
jD0, φ

∗
js0) and (φ∗j′P0, φ

∗
j′D0, φ

∗
j′s0) patch to-

gether compatibly over U ⊂ Uj

⋂
Uj′ using fj,j′ ∈ PGL(2,C) (see the fourth

condition in the earlier definition of data giving a branched projective struc-
ture). Therefore, we get a holomorphic projective bundle

q : P1 −→ X (2)

equipped with a flat holomorphic connectionD1 and also a holomorphic section

s1 : X −→ P1 (3)

(hence q ◦ s1 = IdX).
In the sequel, the holomorphic tangent bundle of a complex manifold Z will be
denoted by TZ.
Let dq : TP1 −→ q∗TX be the differential of the projection q in (2). The
connection D1 constructed above is given by a holomorphic homomorphism

HD1
: q∗TX −→ TP1

such that dq ◦ HD1
= Idq∗TX . The subbundle HD1

(q∗TX) ⊂ TP1 is called
the horizontal subbundle for the connection D1. Let

Tq := kernel(dq) ⊂ TP1

be the relative tangent bundle for the projection q. We note that

TP1 = Tq ⊕HD1
(q∗TX) . (4)

Let
D̂1 : TP1 −→ Tq (5)

be the projection for the decomposition in (4).
IdentifyX with the image s1(X) ⊂ P1 using the map s1 in (3). The differential
ds1 identifies TX with the tangent bundle T (s1(X)) of the manifold s1(X).
Now consider the restriction

S(D1) := D̂1|T (s1(X)) : T (s1(X)) = TX −→ s∗1Tq , (6)

where D̂1 is the projection in (5). The divisor for the above section S(D1) of
the line bundle

Hom(TX, s∗1Tq) = (s∗1Tq)⊗KX −→ X

is the divisor S in (1), where KX is the holomorphic cotangent bundle of X .
Conversely, let q′1 : P ′ −→ X be a holomorphic CP1–bundle, equipped with a
flat holomorphic connection D′ and also a holomorphic section s′. Let

D̂′ : TP ′ −→ Tq′
1
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be the projection given by the connection D′ such that the kernel is the hor-
izontal subbundle for D′ (as in (5)). Then (P ′, D′, s′) defines a branched
projective structure on X with branching type S if and only if the divisor of
the homomorphism restricted to s′(X)

D̂′|T (s′(X)) : T (s′(X)) = TX −→ (s′)∗Tq′
1

coincides with S. To see this construct local holomorphic trivializations of P ′

such that D′ becomes the trivial connection. Now use s′ to have local holo-
morphic coordinate functions: they define the branched projective structure.

2.2 Differential operators

For a holomorphic vector bundle E on X and any positive integer n, let Jn(E)
be the n-th order jet bundle for E. (See 2(b) of [BR].) We recall that

Jn(E) := p1∗((p
∗
2E)⊗ (OX×X/OX×X(−(n+ 1) ·∆))) ,

where pi : X × X −→ X is projection to the i-th factor (i = 1, 2) and
∆ ⊂ X ×X is the diagonal divisor. There is a natural short exact sequence
of vector bundles

0 −→ E ⊗K⊗n
X

ιn−→ Jn(E) −→ Jn−1(E) −→ 0 (7)

given by the inclusion of the sheaf OX×X(−(n+1) ·∆) in OX×X(−n ·∆). The
sheaf of holomorphic differential operators of order n from E to a holomorphic
vector bundle E′ is defined to be

Diffn(E, E′) := Hom(Jn(E), E′) = E′ ⊗ Jn(E)∗ .

Consider the homomorphism

γn : Diffn(E, E′) −→ Hom(E, E′)⊗ (TX)⊗n (8)

defined by the composition

Diffn(E, E′) = E′ ⊗ Jn(E)∗

IdE′⊗ι∗n−→ E′ ⊗ E∗ ⊗ (TX)⊗n = Hom(E, E′)⊗ (TX)⊗n ,

where ιn is the homomorphism in (7). This γn is known as the symbol homo-
morphism; we shall use this terminology throughout the paper.

3 Topological properties of projective bundles

Henceforth, we will always assume that X is compact.
The isomorphism classes of topological CP1–bundles on X are parametrized
by Z/2Z. This classification can be described as follows. Given a CP1–bundle
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P −→ X , there is a complex vector bundle E on X of rank two such that
P(E) = P . This E is not unique. However, if E′ is another rank two complex
vector bundle on X such that P(E′) = P(E) = P , then E′ = E ⊗ L, where
L is a complex line bundle on X . This implies that degree(E′) = degree(E) +
2 · degree(L). Hence

degree(E′) ≡ degree(E) mod 2 .

The isomorphism class of P is determined by the image of degree(E) in Z/2Z.
Take a branched projective structure P1 on X with branching type S. Let
P1 −→ X be the holomorphic CP1–bundle corresponding to P1 constructed
in (2). Let E be a holomorphic vector bundle on X of rank two such that
P(E) = P1. Now the holomorphic section s1 in (3) produces a holomorphic
line subbundle

L1 ⊂ E . (9)

The holomorphic line bundle s∗1Tq in (6) is identified with (E1/L1) ⊗ L∗
1 =

Hom(L1, E/L1). Since the divisor of the homomorphism S(D1) in (6) is S, it
follows immediately that

s∗1Tq = Hom(L1, E/L1) = TX ⊗OX(S) . (10)

Therefore, we have

degree(E) = degree(L1) + degree(E/L1)

= degree(Hom(L1, E/L1)) + 2 · degree(L1)

= degree(OX(S)) + degree(TX) + 2 · degree(L1)

=

d∑

i=1

ni + degree(TX) + 2 · degree(L1) .

This implies that

degree(E) ≡
d∑

i=1

ni mod 2 ,

because degree(TX) + 2 · degree(L1) is an even integer.
Henceforth, for simplicity, we will always assume the following:

Assumption 3.1.

1. All ni = 1, 1 ≤ i ≤ d, and

2. d = degree(OX(S)) in an even integer.

In view of Assumption (3.1)(2), after substituting E by E ⊗ L2, where L2 is a

holomorphic line bundle on X with L⊗2
2 =

∧2
E∗, we get that

∧2
E = OX .
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We will always use this normalization
∧2

E = OX of E, that is, the determi-
nant line bundle of E will be trivial.
Notice that Assumption 3.1(2)) is equivalent to the vanishing of the second
Stiefel–Whitney class of the bundle P1 constructed in (2). It is also equiva-
lent to the fact that the monodromy representation of the branched projective
structure is liftable to SL(2,C) (see Corollary 11.2.3 in [GKM]).
Consider the holomorphic line subbundle L1 in (9). From (10) we have

∧2
E = L1 ⊗ (E/L1) = Hom(L1, E/L1)⊗ L⊗2

1 = TX ⊗OX(S)⊗ L⊗2
1 .

Since
∧2

E = OX , this implies that

L⊗2
1 = KX ⊗OX(−S) = ((E/L1)

∗)⊗2 . (11)

So we have
(E/L1)

⊗2 = TX ⊗OX(S) . (12)

Let F be a holomorphic vector bundle on X of rank two equipped with a
holomorphic connection D. Let L ⊂ F be a holomorphic line subbundle. The
quotient map F −→ F/L will be denoted by q′. The composition

L →֒ F
D−→ F ⊗KX

q′⊗IdKX−→ (F/L)⊗KX

is evidently OX–linear. Let

F(L,D) ∈ H0(X, Hom(L, (F/L)⊗KX)) (13)

be the homomorphism obtained by this composition; it is called the second
fundamental form of the subbundle L for the connection D.
A holomorphic connection on E induces a holomorphic connection on

∧2E =
OX . Note that OX has a canonical holomorphic connection given by the de
Rham differential f 7−→ df . This canonical holomorphic connection on OX

will be denoted by D0.

Remark 3.2. Note that any holomorphic connection on a Riemann surface is
automatically flat; the curvature vanishes because there are no nonzero (2, 0)–
forms.

Lemma 3.3. Giving a branched projective structure on X, with branching type

S, is equivalent to giving a triple (F, L, D), where

1. F is a holomorphic vector bundle on X of rank two with
∧2

F = OX ,

2. L ⊂ F is a holomorphic line subbundle whose degree is genus(X)−1− d
2 ,

3. D is a holomorphic connection on F such that the divisor for the section

F(L,D) in (13) is S, and
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4. the holomorphic connection on
∧2

F = OX induced by D coincides with

the canonical connection D0.

Proof. Take a branched projective structure P1 on X with branching type S.
We saw that P1 gives

1. a holomorphic vector bundle F on X of rank two with
∧2

F = OX ,

2. a holomorphic line subbundle L ⊂ F whose degree is genus(X)− 1 − d
2

(see (11)), and

3. a holomorphic connection D1 on P1 = P(F ) such that the divisor for the
homomorphism S(D1) constructed as in (6) is S.

Since
∧2

F = OX , giving a holomorphic connection on F , such that the con-

nection on
∧2

F = OX induced by it coincides with the canonical connection
D0, is equivalent to giving a holomorphic connection on the projective bundle
P(F ). Indeed, this follows immediately from the fact that the homomorphism
of Lie algebras corresponding to the quotient homomorphism of Lie groups

SL(2,C) −→ PGL(2,C)

is an isomorphism. A holomorphic connection is a Lie algebra valued holo-
morphic one-form satisfying certain conditions on the total space of the cor-
responding principal bundle. The principal PGL(2,C)–bundle for P(F ) is the
quotient of the principal SL(2,C)–bundle for F by the action of the center of
SL(2,C). So there is an isomorphism between the connections on them simply
by pulling back the connection form.
Let D be the holomorphic connection on F corresponding to the above men-
tioned holomorphic connection D1 on P(F ).
Recall that the line subbundle L ⊂ F corresponds to the section s1 of P1

in (6) by the identification P1 = P(F ). Using the isomorphism s∗1Tq =
Hom(L, F/L) (given in (10)), the section F(L,D) in (13) corresponds to the
section S(D1) constructed as in (6). Therefore, the triple (F, L, D) satisfies
all the conditions in the statement of the lemma.
Conversely, take (F, L, D) satisfying the conditions in the lemma. Then L
defines a holomorphic section of the holomorphic projective bundle P(F ); this
section will be denoted by s1. The holomorphic connection D on F induces
a holomorphic connection on P(F ); this induced connection on P(F ) will be
denoted by D1.
Since the section F(L,D) in (13) coincides with the one constructed as in (6),
the triple (P(F ), s1, D1) produces a branched projective structure on X with
branching type S.

Remark 3.4. Fix a holomorphic line bundle Q on X such that Q⊗2 = TX ⊗
OX(S) (as in (12)). In Lemma 3.3 we may choose F such that F/L = Q. To
see this take any triple (F, L, D) satisfying the conditions in Lemma 3.3. Then
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(F/L)⊗L0 = Q, where L0 is a holomorphic line bundle of order two, because
(F/L)⊗2 = TX ⊗ OX(S) = Q⊗2 (see (12)). There is a unique holomorphic
connection D0 on L0 such that the connection on L⊗2 = OX induced by
D0 coincides with the trivial connection D0 on OX given by the de Rham
differential. Let D′ be the holomorphic connection on F ⊗ L0 induced by D
and D0. Then the triple (F ⊗ L0, L ⊗ L0, D

′) satisfies all the conditions in
Lemma 3.3. Note that using the natural isomorphism

Hom(L, (F/L)⊗KX) = (F/L)⊗KX ⊗ L∗

= Hom(L ⊗ L0, ((F ⊗ L0)/(L⊗ L0))⊗KX) ,

the second fundamental form F(L,D) in (13) coincides with the second fun-
damental F(L ⊗ L0, D

′) of the subbundle L ⊗ L0 for the connection D′. The
branched projective structure on X , with branching type S, given by the triple
(F ⊗ L0, L⊗ L0, D

′) clearly coincides with the one given by (F, L, D).

4 Logarithmic connection and residue

In this section Y is any connected Riemann surface and S′ is a finite subset of
points of Y . Like before, the divisor on Y given by the formal sum of the points
of S′ will also be denoted by S′. The holomorphic cotangent bundle of Y will
be denoted by KY .

We note that for any point y ∈ S′, the fiber (KY ⊗ OY (S
′))y is identified

with C by sending any meromorphic 1-form defined around y to its residue
at y. More precisely, for any holomorphic coordinate function z on Y defined
around the point y with z(y) = 0, consider the homomorphism

Ry : (KY ⊗OY (S
′))y −→ C , c · dz

z
7−→ c . (14)

This homomorphism is in fact independent of the choice of the above coordinate
function z.

Let V be a holomorphic vector bundle on Y . A logarithmic connection on V
singular over S′ is a holomorphic differential operator of order one

D : V −→ V ⊗KY ⊗OY (S
′)

such that D(fs) = fD(s)+s⊗df for all locally defined holomorphic function f
and all locally defined holomorphic section s of V . In other words,

D ∈H0(Y, Hom(J1(V ), V ⊗KY ⊗OY (S
′)))

= H0(Y, Diff1(V, V ⊗KY ⊗OY (S
′)))

such that the symbol of D is the holomorphic section of End(V )⊗OY (S
′) given

by IdV ⊗ 1.
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For a logarithmic connection D on V singular over S′, and a point y ∈ S′,
consider the composition

V
D−→ V ⊗KY ⊗OY (S

′)
IdV ⊗Ry−→ Vy ⊗ C = Vy ,

where Ry is the residue homomorphism constructed in (14). This composition
homomorphism vanishes on the subsheaf V ⊗ OY (−y) ⊂ V , and hence it
produces a homomorphism

Res(D, y) : V/(V ⊗OY (−y)) = Vy −→ Vy .

This endomorphism Res(D, y) of Vy is called the residue of the connection D
at the point y; see [De, p. 53].
Fix a point y ∈ S′. Let L be a holomorphic line bundle on Y , and let

D : L −→ L⊗KY ⊗OY (S
′)

be a logarithmic connection on L singular over S′ such that the residue

Res(D, y) = −1 = −IdLy
.

Lemma 4.1. Let s be a holomorphic section of L defined on an open neighbor-

hood U of the point y of S′ such that s(y) = 0. Then the section

D(s) ∈ H0(U, (L⊗KY ⊗OY (S
′))|U )

vanishes at y at order at least two.

Proof. The local model of (L, D) around y is the line bundle OY (y) equipped
with the logarithmic connection D0 given by the de Rham differential. For a
holomorphic coordinate function z on U with z(y) = 0, and a holomorphic
function f defined on U , we have

df

dz
= z2

(
f ′

z

)(
dz

z

)
.

Hence the lemma follows.

Let E be a holomorphic vector bundle on Y of rank two. Fix two distinct lines
ℓ0, ℓ1 ⊂ Ey (so Ey = ℓ0 ⊕ ℓ1), where y ∈ S′ is a fixed point as before. Let

D : E −→ E ⊗KY ⊗OY (S
′)

be a logarithmic connection on E singular over S′, such that

• the residue Res(D, y) has two eigen-values −1 and 0, and

• ℓ1 (respectively, ℓ0) is the eigen-line for the eigen-value −1 (respectively,
0) of Res(D, y).
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Proposition 4.2.

1. The logarithmic D connection produces a homomorphism

ρ(D, y) : ℓ0 −→ ℓ1 ⊗ (KY )y ,

where (KY )y is the fiber of KY over the point y ∈ Y .

2. The local monodromy of D around the point y is trivial if and only if

ρ(D, y) = 0.

Proof. To construct the homomorphism ρ(D, y), take any vector α ∈ ℓ0. Let
sα be a holomorphic section of E, defined on an open neighborhood of y, such
that sα(y) = α. Now consider the locally defined holomorphic sectionD(sα) of
the vector bundle E⊗KY ⊗OY (S

′). Since ℓ0 is the eigen-bundle of the residue
Res(D, y) for the eigen-value zero, it follows that the evaluation D(sα)(y), of
the section D(sα) at y, vanishes. This implies that Res(D, y) is given by a
locally defined holomorphic section of the vector bundle E ⊗ KY using the
natural inclusion of the sheaf E ⊗ KY in E ⊗ KY ⊗ OY (S

′). This section of
E ⊗KY giving Res(D, y) will also be denoted by Res(D, y). So the evaluation
D(sα)(y) of this section of E ⊗KY is an element of

(E ⊗KY )y = (ℓ0 ⊗ (KY )y)⊕ (ℓ1 ⊗ (KY )y) . (15)

Let α̃ be the component of D(sα)(y) ∈ (E ⊗ KY )y in the direct summand
ℓ1 ⊗ (KY )y in (15)
We will show that the above element

α̃ ∈ ℓ1 ⊗ (KY )y

is independent of the choice of the holomorphic section sα passing through α.
To prove the above independence, first set α = 0. Then from the computation
in the proof of Lemma 4.1 if follows that α̃ = 0. From this it follows that for
any general α (not necessarily the zero vector), the element α̃ is independent
of the choice of the holomorphic section sα passing through α.
Now define

ρ(D, y) : ℓ0 −→ ℓ1 ⊗ (KY )y , α 7−→ α̃ .

We have shown that this map is well-defined.
To prove the second statement of the proposition, let F be the holomorphic
vector bundle on Y of rank two that fits in the following short exact sequence
of sheaves on Y

0 −→ F
ι′′−→ E −→ Ey/ℓ0 −→ 0 . (16)

Since ℓ0 is an eigen-space for Res(D, y), the logarithmic connection D on E
induces a logarithmic connection on the subsheaf F in (16). Let D′ denote the
logarithmic connection on F induced by D.
Consider the homomorphism of fibers Fy −→ Ey given by the homomor-
phism ι′′ of sheaves in (16). Since the image of Fy under this homomorphism
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is contained in the eigen-space of Res(D, y) for the eigen-value zero (in fact
ι′′(Fy) ⊂ Ey is the eigen-space for the eigen-value zero of Res(D, y)), it fol-
lows that the residue of the logarithmic connection D′ at y has only zero as
the eigen-value. Indeed, this is an immediate consequence of the fact that
the eigen-values of the residue Res(D, y) give the eigen-values of the residue
Res(D′, y) of the induced connection D′. Therefore, the residue Res(D′, y) is
nilpotent.
It is now straight-forward to check that Res(D′, y) is given by the homomor-
phism ρ(D, y) in the first statement of the proposition. Hence Res(D′, y) = 0
if and only if we have ρ(D, y) = 0.
The local monodromy of D around y evidently coincides with the local mon-
odromy of D′ around y, because the two vector bundles with connection,
namely, (E, D) and (F, D′), are canonically identified, using ι′′ in (16), over
the complement of the point y ∈ Y . On the other hand, the local monodromy
of D′ around y is trivial if and only if the nilpotent residue Res(D′, y) actually
vanishes (see Remark 4.3). This completes the proof of the proposition.

Remark 4.3. If D is a logarithmic connection on E singular over y, then
the eigen-values of the local monodromy of D around the point y are of the
form exp(2π

√
−1µ1), exp(2π

√
−1µ2), where µ1 and µ2 are the eigen-values of

Res(D, y). Therefore, if Res(D, y) is nonzero nilpotent, then the local mon-
odromy of D around the point y is conjugate to the matrix

(
1 1
0 1

)
∈ SL(2,C) .

5 Branched projective structure as logarithmic connection on

jet bundle

Assume that d := #S 6= 2g − 2 (see also Assumption 3.1(2)).
Let Q be a holomorphic line bundle on X such that

Q⊗2 = TX ⊗OX(S) (17)

(same condition as in (12)). In particular, we have

degree(Q) =
d

2
− g + 1 6= 0 (18)

because d 6= 2g − 2.
Let J1(Q) denote the first order jet bundle for Q. It fits in the following short
exact sequence of vector bundles on X :

0 −→ Q⊗KX
ι0−→ J1(Q)

q0−→ J0(Q) = Q −→ 0 (19)

(see (7)).
For notational convenience, we will often identify ι0(Q ⊗ KX) with Q ⊗ KX

using ι0.
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From (17) and (19) it follows that

∧2
J1(Q) = Q⊗KX ⊗Q = OX(S) . (20)

We note that OX(S) has a canonical logarithmic connection given by the de
Rham differential. Indeed, the sheaf of sections of OX(S) are locally defined
meromorphic functions with pole of order at most one on S. For any such
function f , the differential df has pole on S of order at most two.
The canonical logarithmic connection on OX(S) given by the de Rham differ-
ential will be denoted by DS . The singular locus of DS is S, and the residue
of DS at any y ∈ S is −1.
Any logarithmic connection on the vector bundle J1(Q) induces a logarithmic

connection on
∧2

J1(Q) = OX(S) (this isomorphism is in (20)).

Theorem 5.1. Giving a branched projective structure on X with branching

type S is equivalent to giving a flat logarithmic connection D1 on J1(Q) such

that

• D1 is nonsingular over X \ S,

• trace(Res(D1, xi)) = −1 and Res(D1, xi)(w) = −w for every xi ∈ S
and w ∈ (Q⊗KX)xi

, where (Q⊗KX)xi
⊂ J1(Q)xi

is the line in (19),

• for every y ∈ S, the homomorphism ρ(D1, y) in Proposition 4.2 vanishes,

and

• the logarithmic connection on
∧2

J1(Q) = OX(S) induced by D1 coin-

cides with the canonical logarithmic connection DS.

Proof. Let P1 be a branched projective structure on X with branching type
S. In view of Lemma 3.3 and Remark 3.4, this P1 gives a triple (F, L, D)
satisfying the conditions in Lemma 3.3 such that F/L = Q. Let

q′ : F −→ Q = F/L (21)

be the quotient homomorphism.
Using the flatness of D (see Remark 3.2) we will construct a homomorphism

ϕ : F −→ J1(Q) . (22)

For this, take any x ∈ X and v ∈ Fx. Let v̂ be the unique flat section of
(F, D), defined on a simply connected neighborhood of x, such that v̂(x) = v.
Therefore, q′(v̂) is a holomorphic section of Q defined around x, where q′ is the
projection in (21). Now restricting q′(v̂) to the first order neighborhood of x
we get an element q′(v̂)′ ∈ J1(Q)x. The homomorphism ϕ in (22) is defined
by

ϕ(v) = q′(v̂)′ .
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We will show that ϕ constructed in (22) is an isomorphism over the complement
X \ S.
For this, take any x ∈ X and

v ∈ Fx (23)

such that ϕ(v) = 0. Now consider the commutative diagram

F
ϕ−→ J1(Q)yq′

yq0
Q

=−→ Q

(24)

where q′ and q0 are the homomorphisms in (21) and (19) respectively. Note
that both q′ and q0 are surjective. Therefore, we conclude that v in (23) satisfies
the equation

v ∈ kernel(q′(x)) = Lx ⊂ Fx .

From the commutative diagram in (24) it follows that

ϕ(L) ⊂ kernel(q0) = Q⊗KX .

From the construction of the second fundamental formF(L,D) in (13) it follows
immediately that F(L,D) coincides with

ϕ|L : L −→ Q⊗KX = (F/L)⊗KX .

On the other hand, the divisor for F(L,D) is S, so F(L,D) does not vanish on
the complement X \ S. Therefore, we conclude that the element x in (23) lies
in S, and v ∈ Lx. Conversely, for any x ∈ S, we have ϕ(x)(Lx) = 0, because
F(L,D)(x) = 0 and F(L,D)(x) = ϕ|L(x).
For each y ∈ S, let

ℓ0y := ϕ(y)(Fy) = image(ϕ(y)) ⊂ J1(Q)y

be the line. From the commutative diagram in (24) it follows that q0(y)(ℓ
0
y) =

Qy. Hence we have a direct sum decomposition

J1(Q)y = ℓ0y ⊕ (Q⊗KX)y = ℓ0y ⊕ kernel(q0)y (25)

of the fiber J1(Q)y.
The vector bundle F and J1(Q) are evidently related by the following short
exact sequence of sheaves:

0 −→ F
ϕ−→ J1(Q) −→

⊕

y∈S

J1(Q)y/ℓ
0
y −→ 0 . (26)

Note that from (20) we have

degree(J1(Q))− degree(F ) = degree(J1(Q)) = #S = d ;
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(recall from Lemma 3.3(1) that
∧2

F = OX). Hence degree(J1(Q)/ϕ(F )) = d,
which also follows from (26).
The holomorphic connection D on the subsheaf ϕ(F ) ⊂ J1(Q) extends to a
logarithmic connection on J1(Q). Indeed, D induces a logarithmic connection
on F ⊗OX(S), which we denote by D2. The singular locus of D2 is S, and for
each y ∈ S, the residue of D2 at y is −IdFy

. Indeed, this follows immediately
from the fact that the residue of the logarithmic connection on OX(S) given
by the de Rham differential is −1 at each point of S. On the other hand, from
(26) it follows, by taking the duals, that

F ∗ ⊃ J1(Q)∗ ⊃ F ∗ ⊗OX(−S) ,

because J1(Q)⊗OX(−S) ⊂ F . Now again taking dual, we have

J1(Q) ⊂ F ⊗OX(S) . (27)

The above logarithmic connection D2 on F ⊗ OX(S) preserves the subsheaf
J1(Q) in (27). Indeed, this follows from the fact that the residue of D2 at any
y ∈ S is −IdFy

. Hence D2 induces a logarithmic connection on J1(Q). The
logarithmic connection on J1(Q) induced by D2 will be denoted by D1. The
singular locus of D1 coincides with that of D2, namely the subset S.
From the earlier observation that Res(D2, y) = −IdFy

for y ∈ S, and the
above construction of D1, it follows that the residue

Res(D1, y) ∈ End(J1(Q)y)

of D1 at y preserves the decomposition in (25) for every y ∈ S. Moreover, we
have

Res(D1, y)(w1, w2) = −w2 , ∀ w1 ∈ ℓ0y , w2 ∈ (Q ⊗KX)y

for each y ∈ S. Note that the image of ℓ0y in the fiber (F ⊗ OX(S))y by the
inclusion map of sheaves in (27) vanishes (this is because the image of Fy in
(F ⊗OX(S))y vanishes).
Since D is a regular holomorphic connection, it does not have any nontrivial
local monodromy. Therefore, for any point y ∈ S, the local monodromy
of D1 around y is trivial. Indeed, the two vector bundles with holomorphic
connections, namely (F, D) and (J1(Q), D1), are canonically identified over
the complement X \ S using ϕ in (26). Hence from the second statement
in Proposition 4.2 it follows that the homomorphism ρ(D1, y) vanishes for all
y ∈ S.
From the exact sequence in (26) it follows immediately that the homomorphism
of second exterior powers induced by ϕ

∧2
ϕ : OX =

∧2
F −→

∧2
J1(Q) = OX(S)

(see (20) for the last isomorphism) coincides with the natural inclusion of OX

in OX(S). Since D induces the canonical connection D0 on
∧2

F = OX given
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by the de Rham differential (see Lemma 3.3(4)), the logarithmic connection

on
∧2 J1(Q) = OX(S) induced by D1 also coincides with the one given by

the de Rham differential (in other words, it is the logarithmic connection DS).
Therefore, D1 satisfies all the three conditions in the statement of the theorem.
To prove the converse, let D1 be a logarithmic connection on the vector bundle
J1(Q), singular over S, such that for every y ∈ S, we have

trace(Res(D1, y)) = −1 and Res(D1, y)(w) = −w

for all w ∈ (Q ⊗ KX)y, the logarithmic connection on
∧2

J1(Q) = OX(S)
induced by D1 coincides with the tautological logarithmic connection DS , and
the homomorphism ρ(D1, y) in Proposition 4.2 vanishes for every y ∈ S.
Therefore, the eigen-values of Res(D1, y) are −1 and 0 for all y ∈ S. Denote

ℓ′y := kernel(Res(D1, y)) ⊂ J1(Q)y ,

the eigen-space for 0. As done in (16), let F ′ be the holomorphic vector bundle
on X of rank two that fits in the following short exact sequence of sheaves on X

0 −→ F ′ ι−→ J1(Q) −→
⊕

y∈S

J1(Q)y/ℓ
′
y −→ 0 . (28)

From (28) it follows immediately that

∧2
F ′ = (

∧2
J1(Q))⊗OX(−S) = OX(S)⊗OX(−S) = OX (29)

(see (20)).
Repeating the argument in the proof of the second statement of Proposition
4.2 we conclude that the connection D′ on the vector bundle F ′ induced from
D1 is in fact a regular holomorphic connection.
Since ι in (28) is an isomorphism over X \ S, the line subbundle Q ⊗ KX of
J1(Q) in (19) produces a line subbundle of F ′|X\S . Let

L′ ⊂ F ′ (30)

be the line subbundle over X generated by this line subbundle of F ′|X\S . We
note that this L′ is uniquely determined by the condition that a locally defined
holomorphic section s of F ′ is a section of L′ if and only if ι(s) is a section
of the subbundle Q ⊗ KX of J1(Q). From this it follows that ι induces a
homomorphism

ι′ : F ′/L′ −→ J1(Q)/(Q ⊗KX) = Q . (31)

For each point y ∈ S, the composition

ι′(F ′
y) = ℓ′y →֒ J1(Q)y −→ J1(Q)y/(Q⊗KX)y = Qy
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is surjective, and hence from the exact sequence in (28) it follows that the
homomorphism ι′ in (31) is an isomorphism. Consequently, we have

−degree(L′) = degree(F ′/L′) = degree(Q) =
d

2
− g + 1 (32)

(see (18) and (29) for the above equalities).

Claim A. We will show that the logarithmic connection D1 on J1(Q) does
not preserve the subbundle Q⊗KX in (19).

To prove the claim by contradiction, assume that D1 preserves Q ⊗ KX .
Then D1 induces a logarithmic connection on the quotient bundle J1(Q)/(Q⊗
KX) = Q in (19). Let D̂1 be this induced logarithmic connection on Q.

The residue of D̂1 at any xi ∈ S is induced by the residue of D1 at xi.
Note that for each xi ∈ S, the endomorphism of Qxi

induced by the residue
Res(D1, xi) ∈ End(J1(Q)xi

) is the zero map. Consequently, all the residues

of the logarithmic connection D̂1 vanish. Therefore, D̂1 is in fact a regular
holomorphic connection on Q. This implies that we have

degree(Q) = 0 ,

because holomorphic connections on X are flat (Remark 3.2). But this con-
tradicts (18). Hence we conclude that D1 does not preserve the subbundle
Q⊗KX ⊂ J1(Q). This proves Claim A.
Let

η : Q⊗KX −→ Q⊗KX ⊗OX(S) (33)

be the homomorphism given by the composition

Q⊗KX
ι0→֒ J1(Q)

D1

−→ J1(Q)⊗KX ⊗OX(S)
q0⊗Id−→ Q ⊗KX ⊗OX(S) ,

where ι0 and q0 are the homomorphisms in (19), while Id stands for the iden-
tity map of the line bundle KX ⊗ OX(S). From the Leibniz identity for D1

it follows immediately that this η is in fact OX–linear. Therefore, η is a holo-
morphic section of OX(S). Note that this is the second fundamental form of
the subbundle Q⊗KX for the logarithmic connection D1.
Since D1 does not preserve the subbundle Q⊗KX (Claim A), the above section
η of OX(S) does not vanish identically. On the other hand, η vanishes at every
y ∈ S, because (Q ⊗ KX)y is an eigen-space for Res(D1, y). Therefore, we
conclude that the section η of OX(S) does not vanish at any point of X \ S.
Since we have a canonical identification of triples

(J1(Q), KX ⊗OX(S), D1)|X\S = (F ′, L′, D′)|X\S , (34)

where L′ is the line subbundle constructed in (30), it can be deduced that the
second fundamental form of L′ for the connection D′

F(L′, D′) ∈ H0(X, Hom(L′, (F ′/L′)⊗KX)) = H0(X, Hom(L′, Q⊗KX))
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does not vanish at any point of X \S (the isomorphism F ′/L′ = Q used above
is constructed in (31)). Indeed, η|X\S = F(L′, D′)X\S (constructed in (33))
using the identification in (34) (recall that η is the second fundamental form of
the subbundle Q⊗KX for D1). It was observed above that η does not vanish
on X \S; therefore, F(L′, D′) does not vanish at any point of X \S. However,
from the constructions of L′ and D′ it follows that F(L′, D′) vanishes on S.
On the other hand, from (32) it follows that degree(Hom(L′, Q ⊗KX)) = d.
Therefore, the divisor for the section F(L′, D′) is exactly S with multiplicity
one. In view of Lemma 3.3, the triple (F ′, L′, D′) produces a branched pro-
jective structure on X with branching divisor S. This completes the proof of
the theorem.

Remark 5.2. While Theorem 5.1 produces a logarithmic connection on J1(Q),
satisfying four conditions, when we are given a branched projective structure on
X with branching divisor S, there are many logarithmic connection on J1(Q),
satisfying the four conditions, that produce the same branched projective struc-
ture on X . Indeed, if two logarithmic connections on J1(Q), satisfying the four
conditions, differ by a holomorphic automorphism of J1(Q), then they produce
the same branched projective structure. On the other hand, given a branched
projective structure on X with branching divisor S, the logarithmic connection
on J1(Q) given by Theorem 5.1 is clearly unique.

6 Logarithmic connections on jet bundle and quadratic forms

with simple poles

6.1 Existence of logarithmic connection on the jet bundle

Take Q satisfying (17). Consider the jet bundle J1(Q) in (19). For every
xi ∈ S, fix a complex line

ℓi ⊂ J1(Q)xi

different from the line (Q ⊗ KX)xi
⊂ J1(Q)xi

in (19); as before, we identify
ι0(Q⊗KX) with Q⊗KX using ι0. Therefore, we have

J1(Q)xi
= ℓi ⊕ (Q ⊗KX)xi

. (35)

Let

Ai : J1(Q)xi
−→ J1(Q)xi

, (v1, v2) 7−→ (0, v2) (36)

be the projection to the direct summand (Q ⊗KX)xi
⊂ J1(Q)xi

in (35).

Proposition 6.1. There is a logarithmic connection D on J1(Q), nonsingular
over X \ S, which satisfies the residue condition Res(D, xi) = −Ai at each

xi ∈ S, where Ai is defined in (36).

Proof. We follow closely the proof Proposition 4.1 in [BDP, p. 86]. It should be
clarified that Proposition 4.1 in [BDP] is not directly applicable in our present
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set-up because the residues Ai do not satisfy the crucial rigidity condition in
[BDP, Proposition 4.1].
Once we have fixed the residues to be −Ai, there is a short exact sequence of
vector bundles on X

0 −→ End(J1(Q))⊗OX(−S) −→ V −→ TX ⊗OX(−S) −→ 0 (37)

such that there is a logarithmic connection on J1(Q) satisfying the conditions
in the statement of the proposition if and only if the short exact sequence in
(37) splits holomorphically (see [BDP, p. 81, (2.7)] and [BDP, p. 81, Lemma
2.2] for the construction of V and this property of it). So we need to show that
the exact sequence in (37) splits holomorphically.
Let

φQ ∈H1(X, Hom(TX ⊗OX(−S), End(J1(Q))⊗OX(−S)))
= H1(X, End(J1(Q))⊗KX)

be the extension class for the short exact sequence in (37). Consider Serre
duality

H1(X, End(J1(Q))⊗KX) = H0(X, End(J1(Q))∗)∗ = H0(X, End(J1(Q)))∗ ;

note that End(J1(Q))∗ = End(J1(Q)). Let

φ̃Q ∈ H0(X, End(J1(Q)))∗ (38)

be the image, under this isomorphism, of the above extension class φQ (see
[BDP, p. 83, (3.7)]).
Take any

τ ∈ H0(X, End(J1(Q))) .

We will show that
τ = c · IdJ1(Q) +N , (39)

where c ∈ C, and N is a nilpotent endomorphism of J1(Q) with

N(J1(Q)) ⊂ Q⊗KX and N(Q⊗KX) = 0 ,

where Q⊗KX ⊂ J1(Q) is the subbundle in (19).
To prove (39), we will first show that J1(Q) does not decompose holomor-
phically into a direct sum of two holomorphic line bundles. To prove the
indecomposability of J1(Q) by contradiction, assume that

J1(Q) = L1 ⊕ L2 ,

where L1 and L2 are holomorphic line bundles with degree(L1) ≥ degree(L2).
If

degree(L1) > degree(Q) ,
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then the composition homomorphism

L1 →֒ J1(Q)
q0−→ Q

is zero, where q0 is the projection in (19). In that case, the composition

L2 →֒ J1(Q)
q0−→ Q

must be an isomorphism, and consequently the short exact sequence in (19)
would split holomorphically.
If, on the other hand, degree(L1) ≤ degree(Q), consider the inequality

2 · degree(Q) ≤ 2 · degree(Q) + degree(KX) = degree(J1(Q))

= degree(L1) + degree(L2)

(recall that g ≥ 1). Since degree(L1) ≥ degree(L2), this implies that

degree(L1) = degree(Q) = degree(L2) = degree(Q⊗KX) .

Now take i ∈ {1, 2} such that the composition

Li →֒ J1(Q)
q0−→ Q

is nonzero. Since degree(Li) = degree(Q), this composition is an isomorphism,
because it is nonzero. So if degree(L1) ≤ degree(Q) we again conclude that
the short exact sequence in (19) splits holomorphically.
Hence the short exact sequence in (19) splits holomorphically. But this
means that Q admits a holomorphic connection, because the homomorphism
J1(Q) −→ Q⊗KX given by such a splitting defines a holomorphic differential
operator of order one (see Section 2.2) that is indeed a holomorphic connec-
tion on Q. This in turn implies that degree(Q) = 0 (Remark 3.2). But this
contradicts (18).
Therefore, we conclude that the vector bundle J1(Q) does not decompose into
a direct sum of two holomorphic line bundles. This implies that τ in (39) is of
the form

τ = c · IdJ1(Q) +N ,

where c ∈ C and N is nilpotent [At, p. 201, Proposition 15]. Since N is
nilpotent, to prove (39) it suffices to show that

N(Q⊗KX) ⊂ Q⊗KX ,

where Q⊗KX ⊂ J1(Q) is the subbundle in (19). If N(Q⊗KX) ( Q⊗KX ,
then the composition of sheaf homomorphisms

Q⊗KX
N→֒ J1(Q)

q0−→ Q

is nonzero, where q0 is the projection in (19). But this implies that this com-
position is an isomorphism because degree(Q⊗KX) ≥ degree(Q) (recall that
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g ≥ 1). Therefore, the short exact sequence in (19) splits holomorphically,
which contradicts (18) as before.
This completes the proof of (39).

Consider the functional φ̃Q in (38). We have

φ̃Q(IdJ1(Q)) = degree(J1(Q)) +
d∑

i=1

trace(−Ai)

(see the proof of Lemma 3.2 in [BDP]). Consequently, from (20) and (36) it
follows immediately that

φ̃Q(IdJ1(Q)) = d− d = 0 .

Now take any N as in (39). Since N(J1(Q)) ⊂ Q ⊗KX , from the definition
of Ai it follows immediately that

trace(Ai ◦N(xi)) = 0

for all i; note that in fact N(xi) ◦ Ai = 0 for all i. Now as in the proof

Proposition 4.1 in [BDP, p. 86] we conclude that φ̃Q(N) = 0. Consequently,

from (39) it follows that φ̃Q = 0. This implies that φQ = 0. Consequently, the
short exact sequence in (37) splits holomorphically. Hence there is a logarithmic
connectionD on J1(Q), which is nonsingular overX\S, such that Res(D, xi) =
−Ai at each xi ∈ S.

The following is a rather straight-forward consequence of Proposition 6.1.

Corollary 6.2. Fix Ai as in (36). There is a logarithmic connection D on

J1(Q), nonsingular over X \ S, such that

1. Res(D, xi) = −Ai at each xi ∈ S, and

2. the logarithmic connection on
∧2

J1(Q) = OX(S) induced by D coin-

cides with the canonical logarithmic connection DS given by the de Rham

differential.

Proof. Let D1 be a logarithmic connection on J1(Q) given by Proposition 6.1.

The logarithmic connection on
∧2

J1(Q) = OX(S) induced by D1 will be
denoted by D′

1. The difference

D′
1 −DS ∈ H0(X, KX ⊗OX(S)) .

For any point y ∈ S, we have

Res(D′
1, y) = trace(Res(D1, y)) = −trace(Ai) = −1 = Res(DS , y) .

Therefore, we have

θ := D′
1 −DS ∈ H0(X, KX) ⊂ H0(X, KX ⊗OX(S)) .

Documenta Mathematica 24 (2019) 2299–2337



2322 I. Biswas, S. Dumitrescu, and S. Gupta

Now it is straight-forward to check that the logarithmic connection

D = D1 −
θ

2
· IdJ1(Q)

on J1(Q) satisfies all the conditions in the statement of the corollary.

6.2 Quadratic forms with simple poles at S

Let C(Q) denote the space of all logarithmic connectionsD1 on J1(Q) satisfying
the following conditions:

1. D1 is nonsingular over X \ S,

2. trace(Res(D1, xi)) = −1 and Res(D1, xi)(w) = −w for every xi ∈ S
and w ∈ (Q⊗KX)xi

, where (Q ⊗KX)xi
⊂ J1(Q)xi

is the line in (19),
and

3. the logarithmic connection on
∧2

J1(Q) = OX(S) induced by D1 coin-
cides with the canonical logarithmic connection DS .

From Theorem 5.1 we know that an element D1 ∈ C(Q) corresponds to a
branched projective structure on X with branching type S if and only if the
homomorphism ρ(D1, y) in Proposition 4.2 vanishes for every y ∈ S. As noted
in Remark 5.2, this correspondence is not bijective.
The space of all logarithmic connections on J1(Q) singular over S is an affine
space for the vector space H0(X, End(J1(Q)) ⊗KX ⊗ OX(S)). However, for
any D1 ∈ C(Q) and ω ∈ H0(X, End(J1(Q))⊗KX ⊗OX(S)), the logarithmic
connection D1 + ω may not satisfy the conditions (2) and (3) in the above
definition of C(Q). We note that D1+ω satisfies condition (3) in the definition
of C(Q) if and only if trace(ω) ∈ H0(X, KX ⊗OX(S)) vanishes.
Let Aut(J1(Q)) denote the group of all holomorphic automorphisms

T : J1(Q) −→ J1(Q)

such that the induced automorphism
∧2

T :
∧2

J1(Q) −→ ∧2
J1(Q) is the

identity map of the line bundle
∧2 J1(Q). This group Aut(J1(Q)) has a natural

action on the space of all logarithmic connections on J1(Q) singular over S.
The action of any T ∈ Aut(J1(Q)) on any logarithmic connectionD′ on J1(Q),
singular over S, will be denoted by T ◦D′.
Since T induces the trivial automorphism of

∧2 J1(Q), the two logarithmic

connections D and T ◦D′ induce the same logarithmic connection on
∧2

J1(Q).

Lemma 6.3. The natural action of Aut(J1(Q)) on the space of all logarithmic

connections on J1(Q) singular over S preserves the subset C(Q) defined above.

Proof. In the proof of Proposition 6.1 we saw that any T ∈ Aut(J1(Q)) is of

the form c · IdJ1(Q)+N , where c = ±1 (since T acts trivially on
∧2

J1(Q)) and
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N is a nilpotent endomorphism of J1(Q) with N(J1(Q)) ⊂ Q⊗KX (see (39)).
Using this it is straightforward to check for any D′ ∈ C(Q), the logarithmic
connection T ◦D′ also satisfies the residue conditions in the definition of C(Q).

From Lemma 6.3 we know that the group Aut(J1(Q)) acts on C(Q).

Lemma 6.4. Take any D′ ∈ C(Q) and T ∈ Aut(J1(Q)) such that T ◦D′ = D′.

Then T = ±IdJ1(Q).

Proof. Let D̃′ be the logarithmic connection on End(J1(Q)) induced by the
logarithmic connection D′ on J1(Q).
Take T = c · IdJ1(Q) +N , where c = ±1 and N is as in (39). Since T ◦D′ =
D′, it follows that the section N of End(J1(Q)) is flat with respect to the

logarithmic connection D̃′ on End(J1(Q)). Therefore, image(N) ⊂ J1(Q)
is preserved by the logarithmic connection D′. If N 6= 0, then image(N)
generates the subbundle ι0(Q⊗KX) ⊂ J1(Q) in (19). In the proof of Theorem
5.1 we saw that D′ does not preserve the subbundle ι0(Q ⊗KX) (see Claim

A). Hence we have N = 0.

Since ±IdJ1(Q) ⊂ Aut(J1(Q)) acts trivially on the logarithmic connections on
J1(Q), the above action of Aut(J1(Q)) on C(Q) produces an action of

Aut′(J1(Q)) := Aut(J1(Q))/(±IdJ1(Q))

on C(Q).
The following is a direct consequence of Lemma 6.4:

Corollary 6.5. The action of Aut′(J1(Q)) on C(Q) is free.

The orbit Aut′(J1(Q)) ◦ D′ ⊂ C(Q) of any D′ ∈ C(Q) under the action of
Aut′(J1(Q)) will be denoted by Orb(D′).
Consider the injective homomorphism of vector bundles

ψ′ : KX = Hom(Q, Q⊗KX) −→ End(J1(Q)) ,

defined by
t 7−→ (v 7−→ ι0(t(q0(v))))

∀ t ∈ Hom(Q, Q⊗KX)x , ∀ v ∈ J1(Q)x , ∀ x ∈ X ,

where ι0 and q0 are the homomorphisms in (19). This produces a homomor-
phism

ψ = ψ′ ⊗ Id : K⊗2
X ⊗OX(S)

= KX ⊗KX ⊗OX(S) −→ End(J1(Q))⊗KX ⊗OX(S) ,

where Id stands for the identity map of KX ⊗OX(S). Let

ψ∗ : H0(X, K⊗2
X ⊗OX(S)) −→ H0(X, End(J1(Q))⊗KX ⊗OX(S)) (40)

be the homomorphism of global sections induced by this ψ.
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Proposition 6.6. Take any D ∈ C(Q) and θ ∈ H0(X, K⊗2
X ⊗OX(S)).

1. Then

D + ψ∗(θ) ∈ C(Q) ,

where ψ∗ is constructed in (40).

2. The map

ΓD : H0(X, K⊗2
X ⊗OX(S)) −→ C(Q) , θ 7−→ D + ψ∗(θ)

is an embedding.

3. For any D′ ∈ image(ΓD),

image(ΓD) ∩Orb(D′) = {D′} .

Proof. For any y ∈ S, we have, by definition of ψ′ and ψ, that

ψ∗(θ)(y) = Ny ⊗ u ,

where u ∈ (KX ⊗ OX(S))y and Ny ∈ End(J1(Q))y is a nilpotent endomor-
phism with Ny(ι0(Q ⊗KX)y) = 0 (the homomorphism ι0 is the one in (19)).
Since Ny(ι0(Q⊗KX)y) = 0 and trace(ψ∗(θ)) = 0, it follows immediately that
D + ψ∗(θ) satisfies the residue conditions in the definition of C(Q). Also the

logarithmic connections on
∧2

J1(Q) induced by D and D + ψ∗(θ) coincide,
because trace(ψ∗(θ)) = 0. Hence we have D + ψ∗(θ) ∈ C(Q).
The map ΓD is evidently an embedding as ψ∗ is injective.
To prove the final part of the proposition, note that for any T ∈ Aut(J1(Q))
and θ ∈ H0(X, K⊗2

X ⊗OX(S)), we have

ψ∗(θ) ◦ T = (T ⊗ IdKX⊗OX(S)) ◦ ψ∗(θ) ; (41)

both sides are homomorphisms from J1(Q) to J1(Q) ⊗ KX ⊗ OX(S). The
equality in (41) follows immediately form the fact that T is of the form c ·
IdJ1(Q) +N , where c = ±1 and N is a nilpotent endomorphism of J1(Q) with
N(J1(Q)) ⊂ Q⊗KX .
Take D′ = D + ψ∗(θ1) ∈ image(ΓD) and any T1 ∈ Aut(J1(Q)) such that

T ◦D′ = D + ψ∗(θ2) ∈ image(ΓD) , (42)

where θ1, θ2 ∈ H0(X, K⊗2
X ⊗OX(S)). From (41) we have T ◦D′ = T ◦D +

ψ∗(θ1), so from (42) it follows that

T ◦D = D + ψ∗(θ2)− ψ∗(θ1) = D + ψ∗(θ2 − θ1) . (43)

Write T in (43) as
T = c · IdJ1(Q) +N , (44)
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where c = ±1 and N is nilpotent with N(J1(Q)) ⊂ ι0(Q ⊗KX); the homo-
morphism ι0 is the one in (19). This implies that T−1 = c−1 · IdJ1(Q) − N .
Hence we have

(T ◦D)(s) = D(s) + c(D(N(s)) −N(D(s)))−N(D(N(s)))

for every locally defined holomorphic section s of J1(Q). Therefore, from (43),
we have

c(D(N(s)) −N(D(s)))−N(D(N(s))) = (ψ∗(θ2 − θ1))(s) . (45)

Now take s to be a locally defined holomorphic section of J1(Q) that does not
lie in the image of the homomorphism ι0 in (19). Note that −cN(D(s)) −
N(D(N(s))) lies in ι0(Q⊗KX)⊗KX ⊗OX(S). Also, (ψ∗(θ2 − θ1))(s) lies in
ι0(Q⊗KX)⊗KX ⊗OX(S), because

image(ψ)(J1(Q)) ⊂ J1(Q)⊗KX ⊗OX(S)

is actually contained in ι0(Q⊗KX)⊗KX ⊗OX(S). Hence from (45) it follows
that D(N(s)) lies in ι0(Q⊗KX)⊗KX ⊗OX(S).
Assume that N is nonzero. Then the subbundle of J1(Q) generated by the
image of N is ι0(Q⊗KX). Since D(N(s)) lies in ι0(Q⊗KX)⊗KX ⊗OX(S), it
now follows that D preserves the subbundle ι0(Q⊗KX) ⊂ J1(Q). But we saw
in Claim A in the proof of Theorem 5.1 that D does not preserve ι0(Q⊗KX).
Hence we conclude that N = 0. This implies that T ◦D = D. Now from (43)
it follows that θ1 = θ2.

7 A special class of logarithmic connections on jet bundle

Consider the vector bundle J1(Q), where Q is the line bundle in (17). Let

0 −→ J1(Q)⊗KX
ι1−→ J1(J1(Q))

q1−→ J0(J1(Q)) = J1(Q) −→ 0 (46)

be the jet sequence for J1(Q) as in (7). Any holomorphic homomorphism of
vector bundles

h : V −→ W

produces a homomorphism

h∗ : J1(V ) −→ J1(W )

of jet bundles. Let
q0∗ : J1(J1(Q)) −→ J1(Q) (47)

be the homomorphism produced by the projection q0 in (19). It is straight-
forward to check that

q0 ◦ q0∗ = q0 ◦ q1 ∈ H0(X, Hom(J1(J1(Q)), Q)) ,
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where q1 is the homomorphism in (46). Therefore, we have

q1 − q0∗ : J1(J1(Q)) −→ kernel(q0) = Q⊗KX . (48)

Take a logarithmic connection D on J1(Q) singular over S. So D produces a
homomorphism

D̃ : J1(J1(Q)) −→ J1(Q)⊗KX ⊗OX(S) (49)

such that D̃ ◦ ι1 is the homomorphism J1(Q)⊗KX −→ J1(Q)⊗KX ⊗OX(S)
given by the natural inclusion of sheaves, where ι1 is the homomorphism in
(46). Define

K(D̃) := kernel(D̃) ⊂ J1(J1(Q)) . (50)

The restriction
q1|K(D̃) : K(D̃) −→ J1(Q)

is an isomorphism over the complement

X ′ := X \ S , (51)

where q1 is the homomorphism in (46); this follows form the fact D̃ ◦ ι1 is the
natural inclusion of J1(Q)⊗KX in J1(Q)⊗KX⊗OX(S). Hence the restriction

D̃|X′ is a regular connection on J1(Q)|X′ . Let

qD1 := (q1|K(D̃))|X′ : K(D̃)|X′ −→ J1(Q)|X′ (52)

be this isomorphism over X ′, where K(D̃) is constructed in (50).

Lemma 7.1. The homomorphism

((q1 − q0∗)|X′) ◦ (qD1 )−1 : J1(Q)|X′ −→ (Q⊗KX)|X′

over X ′ ⊂ X, where q1 − q0∗ and qD1 are the homomorphisms constructed in

(48) and (52) respectively, extends to a homomorphism

J1(Q) −→ Q⊗KX ⊗OX(S)

over entire X.

Proof. Consider the natural inclusion of sheaves J1(Q)⊗KX →֒ J1(Q)⊗KX⊗
OX(S). Using it, we have the injective homomorphism of vector bundles

J1(Q)⊗KX −→ (J1(Q)⊗KX ⊗OX(S))⊕ J1(J1(Q)), v 7−→ (v, −ι1(v)) ,

where ι1 is the homomorphism in (46). The corresponding quotient

H := ((J1(Q)⊗KX ⊗OX(S))⊕ J1(J1(Q)))/(J1(Q)⊗KX)
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is a vector bundle, because ι1 is fiberwise injective. The holomorphic vector
bundle H fits in the short exact sequence

0 −→ J1(Q)⊗KX ⊗OX(S)
ι′
1−→ H q′

1−→ J1(Q) −→ 0 , (53)

where q′1 is induced by the projection

(J1(Q)⊗KX ⊗OX(S))⊕ J1(J1(Q)) −→ J1(Q), v 7−→ (0, q1(v))

(q1 is the homomorphism in (46)), while ι′1 sends any v ∈ J1(Q)⊗KX⊗OX(S)
to the image of (v, 0) ∈ (J1(Q)⊗KX ⊗OX(S))⊕ J1(J1(Q)) in the quotient
bundle H. Also, note that

H|X′ = J1(J1(Q))|X′ .

Consider the homomorphism

(J1(Q)⊗KX ⊗OX(S))⊕ J1(J1(Q)) −→ J1(Q)⊗KX ⊗OX(S)

defined by

(v, w) 7−→ v + D̃(w) ,

where D̃ is the homomorphism in (49). In descends to a homomorphism

D̃1 : H −→ J1(Q)⊗KX ⊗OX(S)

which satisfies the equation D̃1 ◦ ι′1 = IdJ1(Q)⊗KX⊗OX(S), where ι′1 is the

homomorphism in (53). In other words, the homomorphism D̃1 produces a
holomorphic splitting of the short exact sequence in (53). Let

β1 : J1(Q) −→ H (54)

be the homomorphism corresponding to this holomorphic splitting, so we have

q′1 ◦ β1 = IdJ1(Q) ,

where q′1 is the homomorphism in (53).
Using the homomorphism ι1 in (46) and the natural inclusion of sheaves

J1(J1(Q)) →֒ J1(J1(Q))⊗OX(S) ,

we have the homomorphism

(J1(Q)⊗KX ⊗OX(S))⊕ J1(J1(Q)) −→ J1(J1(Q))⊗OX(S)

defined by

(v, w) 7−→ (ι1 ⊗ Id)(v) + w ,

Documenta Mathematica 24 (2019) 2299–2337



2328 I. Biswas, S. Dumitrescu, and S. Gupta

where Id stands for the identity map of OX(S). This descends to a homomor-
phism

β2 : H −→ J1(J1(Q))⊗OX(S) .

Now we have the composition homomorphism

β2 ◦ β1 : J1(Q) −→ J1(J1(Q))⊗OX(S) ,

where β1 is constructed in (54). Note that

(β2 ◦ β1)|X′ = (qD1 )−1 ,

where qD1 is constructed in (52). Finally, consider

((q1 − q0∗)⊗ Id) ◦ (β2 ◦ β1) : J1(Q) −→ Q ⊗KX ⊗OX(S) ,

where q1 − q0∗ is constructed in (48), and Id stands for the identity map of
OX(S). The restriction of this homomorphism over X ′ clearly coincides with
((q1 − q0∗)|X′) ◦ (qD1 )−1.

Definition 7.2. A special logarithmic connection on J1(Q) is a logarithmic
connection D ∈ C(Q) (see Section 6.2 for C(Q)) such that

((q1 − q0∗)|X′) ◦ (qD1 )−1 = 0 ,

where q1 − q0∗ and qD1 are the homomorphisms constructed in (48) and (52)
respectively; equivalently, the homomorphism J1(Q) −→ Q ⊗ KX ⊗ OX(S)
given by Lemma 7.1, whose restriction to X ′ is ((q1−q0∗)|X′)◦(qD1 )−1, vanishes
identically.
The space of special logarithmic connections on J1(Q) will be denoted by
C0(Q).

Proposition 7.3.

1. The set C0(Q) in Definition 7.2 is non-empty. More precisely, for any

D ∈ C(Q), there is an element of Aut(J1(Q)) that takes D into C0(Q)
by the action in Lemma 6.3.

2. For any given D ∈ C0(Q), the corresponding subset

image(ΓD) = ΓD(H0(X, K⊗2
X ⊗OX(S))) ⊂ C(Q)

in Proposition 6.6 coincides with C0(Q).

Proof. Take a logarithmic connection D ∈ C(Q). We will produce an element
of Aut(J1(Q)) that takes D into C0(Q) by the action in Lemma 6.3.
For any y ∈ S consider the residue Res(D, y) ∈ End(J1(Q)y). Let

ℓ′y := kernel(Res(D, y)) ⊂ J1(Q)y
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be the line. Let F ′ be the holomorphic vector bundle over X defined by the
exact sequence in (28). From the second part in the proof of Theorem 5.1 we

know that
∧2

F ′ = OX (see (29)), and the line subbundle ι0(Q⊗KX) ⊂ J1(Q)
in (19) produces a line subbundle

L′ ⊂ F ′ (55)

(see (30)), so we have an isomorphism

ι′ : F ′/L′ −→ Q

as in (31). Let
q′ : F ′ −→ F ′/L′ = Q (56)

be the quotient map.
The logarithmic connection D on J1(Q) produces a holomorphic connection on
F ′; this holomorphic connection on F ′ will be denoted by D′, as done in the
proof of Theorem 5.1.
Now we have a homomorphism

ϕ : F ′ −→ J1(Q)

as in (22) that sends any v ∈ F ′
x to the element of J1(Q)x given by the locally

defined section q′(v̂) of Q, where v̂ is the unique flat section of F ′ for the
connection D′, defined around x ∈ X , such that v̂(x) = v, and q′ is the
projection in (56).
We claim that there is a unique isomorphism

ξ : J1(Q) −→ J1(Q)

such that the following diagram of homomorphisms is commutative:

F ′ ϕ−→ J1(Q)

‖
yξ

F ′ ι−→ J1(Q)

(57)

where ι is the homomorphism in (28).
To prove the above claim, first note that ϕ and ι are isomorphisms over X ′

(defined in (51)). Therefore, there is an unique automorphism ξ′ of J1(Q)|X′

such that the diagram

F ′|X′

ϕ−→ J1(Q)|X′

‖
yξ′

F ′|X′

ι−→ J1(Q)|X′

is commutative.
Next, for any y ∈ S, the kernel of ϕ(y) coincides with the kernel of ι(y).
Indeed, both the kernels coincide with the line L′

y ⊂ F ′
y in (55). From this
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it follows immediately that the above automorphism ξ′ of J1(Q)|X′ extends to
an automorphism of J1(Q) such that (57) is commutative. Indeed, the data
(F ′, {L′

y ⊂ F ′
y}y∈S) determine the bigger subsheaf J1(Q) uniquely using the

following exact sequence

0 −→ J1(Q)∗ −→ (F ′)∗ −→
⊕

y∈S

(L′
y)

∗ −→ 0 .

We may set the above injective homomorphism of sheaves J1(Q)∗ −→ (F ′)∗

to be both ϕ∗ and ι∗. After doing that we see that the identity map of (F ′)∗

produces an automorphism of J1(Q)∗. In other words, there is a commutative
diagram of homomorphisms

0 −→ J1(Q)∗
ι∗−→ (F ′)∗ −→ ⊕

y∈S(L
′
y)

∗ −→ 0yξ1 ‖ ‖
0 −→ J1(Q)∗

ϕ∗

−→ (F ′)∗ −→ ⊕
y∈S(L

′
y)

∗ −→ 0

where ξ1 is an isomorphism. Now set ξ = ξ∗1 ; clearly, ξ|X′ = ξ′. Therefore,
we have shown that there is a unique automorphism ξ of J1(Q) such that the
diagram in (57) is commutative.
As in the first part of the proof of Theorem 5.1, let D1 denote the logarithmic
connection on J1(Q) induced by the holomorphic connection D′ on F ′ using
the homomorphism ϕ in (57). From the commutativity of the diagram in (57)
it follows immediately that the automorphism ξ of J1(Q) takes the logarithmic
connection D1 to the logarithmic connection D. Indeed, ϕ and ι take the
connection D′ on F ′ to D1 and D respectively.
We know from the proof of Theorem 5.1 that D1 ∈ C(Q). We will now show
that

D1 ∈ C0(Q) . (58)

Over the open subset X ′ in (51), the homomorphism ϕ in (57) is an isomor-
phism. Take any x ∈ X ′ and v ∈ F ′

x. Let v̂ be the unique flat section of F ′, for
the holomorphic connectionD′|X′ , defined on a simply connected neighborhood
U ⊂ X ′ of x such that v̂(x) = v. Consider the section q′(v̂) ∈ H0(U, Q),
where q′ is the projection in (56). Let

q′(v̂)1 ∈ H0(U, J1(Q)) (59)

be the section defined by q′(v̂). Let

q′(v̂)11 ∈ H0(U, J1(J1(Q))) (60)

be the section defined by q′(v̂)1.

Construct K(D̃1) ⊂ J1(J1(Q)) as in (50) by substituting D in (50) by the
above logarithmic connection D1. Similarly, define

qD
1

1 := (q1|K(D̃1)
)|X′ : K(D̃1)|X′ −→ J1(Q)|X′
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as done in (52), where q1 is the projection in (46).

Now from the construction of the logarithmic connection D1 on J1(Q) we have

q′(v̂)11 ∈ H0(U, K(D̃1)) ,

where q′(v̂)11 is constructed in (60), and moreover,

qD
1

1 (q′(v̂)11) = q′(v̂)1 ∈ H0(U, J1(Q)) ,

where q′(v̂)1 is constructed in (59). On the other hand, we evidently have

q1(q
′(v̂)11) = q0∗(q

′(v̂)11) ∈ H0(U, J1(Q)) ,

where q0∗ is constructed in (47), because the section q′(v̂)11 of J
1(J1(Q)) is given

by a section of Q (namely, q′(v̂)). In other words, we have ((q1 − q0∗)|X′) ◦
(qD

1

1 )−1 = 0. This proves (58) and the first part of the proposition.

To prove the second part of the proposition, we first note that the second jet
bundle fits in an exact sequence

0 −→ Q⊗K⊗2
X

ι2−→ J2(Q)
q2−→ J1(Q) −→ 0

(see (7)). The exact sequence in (46) and the homomorphism q1 − q0∗ in (48)
fit in the following commutative diagram of homomorphisms

0 0 0y
y

y

0 −→ Q⊗K⊗2
X

ι0⊗IdKX−→ J1(Q)⊗KX

q0⊗IdKX−→ Q⊗KX −→ 0yι2
yι1 ‖

0 −→ J2(Q)
µ−→ J1(J1(Q))

q1−q0∗−→ Q⊗KX −→ 0yq2
yq1

y
0 −→ J1(Q)

=−→ J1(Q) −→ 0 −→ 0y
y

y
0 0 0

(61)
of exact columns rows, where the top row is the exact sequence in (19) tensored
with KX and µ is constructed in a standard way (see [Bi, p. 14, (4.1)]).

Take any logarithmic connection

D : J1(J1(Q)) −→ J1(Q)⊗KX ⊗OX(S)

on J1(Q) such that D ∈ C0(Q). The condition in Definition 7.2 that ((q1 −
q0∗)|X′) ◦ (qD1 )−1 = 0 implies that from (61) we have a commutative diagram
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of exact columns

0 0y
y

J2(Q)
µD−→ Q⊗K⊗2

X ⊗OX(S)yµ
yι0 ⊗ Id

J1(J1(Q))
D−→ J1(Q)⊗KX ⊗OX(S)yq1 − q0∗

yq0 ⊗ Id

Q ⊗KX →֒ Q⊗KX ⊗OX(S)y
y

0 0

where Id stands for the identity map of KX ⊗OX(S), while ι0 and q0 are the
homomorphisms in (19); the above homomorphism µD is uniquely defined by
the commuting diagram. In other words,

µD ∈ H0(X, Diff2(Q, Q⊗K⊗2
X ⊗OX(S))) (62)

is a second order holomorphic differential operator.
Recall that the logarithmic connection on

∧2
J1(Q) = OX(S) induced by D

coincides with the tautological connection DS on OX(S) given by the de Rham
differential (the third condition in the definition of C(Q)). From this it follows
that the two second order differential operators given by any two elements of
C0(Q) differ by a 0-th order differential operator, or in other words, they differ
by a holomorphic section of

Hom(Q, Q ⊗K⊗2
X ⊗OX(S)) = K⊗2

X ⊗OX(S) ;

this is elaborated in Section 8.
Conversely, take any surjective homomorphism

θ : J2(Q) −→ Q⊗K⊗2
X ⊗OX(S) −→ 0

such that the composition

θ ◦ ι2 : Q⊗K⊗2
X −→ Q⊗K⊗2

X ⊗OX(S)

coincides with the natural inclusion of the sheaf Q⊗K⊗2
X in Q⊗K⊗2

X ⊗OX(S),
where ι2 is the homomorphism in (61).
Let Kθ := kernel(θ) ⊂ J2(Q) be the kernel. The quotient

V := J1(J1(Q))/µ(Kθ) ,

where µ is the homomorphism in (61), fits in the following exact sequence:

0 −→ Q⊗K⊗2
X ⊗OX(S) −→ V q1−q0∗−→ Q⊗KX −→ 0 ,
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where q1 − q0∗ is the restriction of the homomorphism q1 − q0∗ in (61); in fact,
the above exact sequence fits in the commutative diagram, with short exact
sequences as columns,

0 0y
y

Q⊗K⊗2
X

ι̂−→ Q⊗K⊗2
X ⊗OX(S)yι0 ⊗ IdKX

y
J1(Q)⊗KX

̟−→ Vyq0 ⊗ IdKX

yq1 − q0∗

Q⊗KX = Q⊗KXy
y

0 0

(63)

where ̟ is given by the inclusion J1(Q)⊗KX →֒ J1(J1(Q)) (see (7)) and the
map ι̂ is the natural inclusion of sheaves. From this it follow that

V →֒ J1(Q)⊗KX ⊗OX(S) .

Now consider the composition homomorphism

J1(J1(Q)) −→ J1(J1(Q))/µ(Kθ) = V →֒ J1(Q)⊗KX ⊗OX(S) . (64)

The first order holomorphic differential operator defined by it is a logarithmic
connection on J1(Q) singular over S.
Now it follows that the space of special logarithmic connections C0(Q) is iden-
tified with the space of all surjective homomorphisms

θ : J2(Q) −→ Q⊗K⊗2
X ⊗OX(S) −→ 0

such that

• the composition

θ ◦ ι2 : Q⊗K⊗2
X −→ Q⊗K⊗2

X ⊗OX(S)

coincides with ι̂ in (63), and

• the corresponding logarithmic connection on J1(Q) has the property that

the induced logarithmic connection on
∧2

J1(Q) = OX(S) coincides with
the canonical logarithmic connection DS on OX(S) given by the de Rham
differential.

From this the second part of the proposition follows.

Consider the action of Aut(J1(Q)) on C(Q) in Lemma 6.3.
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Corollary 7.4. The quotient space C(Q)/Aut(J1(Q)) is canonically identified

with C0(Q).

Proof. From Proposition 6.6(3) and Proposition 7.3(2) it follows that the com-
position

C0(Q) →֒ C(Q) −→ C(Q)/Aut(J1(Q))

is injective. This composition is surjective by Proposition 7.3(1).

Corollary 7.5. The space of all branched projective structures on X with

branching divisor S is canonically identified with a subset of C0(Q) consist-

ing of all logarithmic connections D for which the homomorphism ρ(D, y) in

Proposition 4.2 vanishes for every y ∈ S.
This space C0(Q) is an affine space over the vector space H0(X, K⊗2

X ⊗OX(S))
whose complex dimension is 3g − 3 + d.

Proof. From Theorem 5.1 it follows that the space of all branched projective
structures on X with branching type S is identified with the subset of the
quotient space C(Q)/Aut(J1(Q)) given by all logarithmic connections D for
which the homomorphism ρ(D, y) in Proposition 4.2 vanishes for every y ∈ S.
Now Proposition 7.3 (2) and Corollary 7.4 together complete the proof. The
dimension count follows from the Riemann–Roch theorem.

Remark 7.6. For each point y ∈ S, the condition ρ(D, y) = 0 on C0(Q)
defines a hypersurface of C0(Q) of codimension one. Hence the space of all
branched projective structures on X with branching divisor S is a subspace of
C0(Q) of codimension d at a generic point. Similarly, in Mandelbaum’s work
in [Ma1] and [Ma2], there is a codimension one condition at each branch point
that arises as an “integrability condition” (also called indicial equation) for the
Schwarzian equation at the poles (cf. Lemma 1 of [He] or § 11.2 of [GKM]).

8 Second order differential operators

Fix a holomorphic line bundle Q on X as in (17). Take a second order holo-
morphic differential operator from Q to Q⊗K⊗2

X ⊗OX(S)

D ∈ H0(X, Diff2(Q, Q⊗K⊗2
X ⊗OX(S))) .

Its symbol is

γ2(D) ∈ H0(X, Hom(Q, Q⊗OX(S))) = H0(X, OX(S)) ,

where γ2 is the homomorphism in (8).
Assume that this symbol γ2(D) is the section of OX(S) given by the constant
function 1. We also assume that the homomorphism D : J2(Q) −→ Q ⊗
K⊗2

X ⊗OX(S) is surjective.
Take any x ∈ X ′ = X \ S (see (51)). Let z be a holomorphic coordinate
function on a neighborhood U ⊂ X ′ of x. Note that the restriction OX(S)|X′
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is the trivial holomorphic line bundle equipped with the holomorphic trivial-
ization given by the constant function 1. So, we have

(Q|X′)⊗2 = TX ′ .

Let (∂z)
1/2 denote a holomorphic section of Q|U such that the section (∂z)

1/2⊗
(∂z)

1/2 of Q⊗2|U coincides with the section ∂
∂z of TU . Note that the section

(∂z)
1/2 produces a holomorphic trivialization of Q|U because it does not vanish

on any point of U . Clearly, (∂z)
1/2 ⊗ (dz)⊗2 is a holomorphic section of (Q ⊗

K⊗2
X )|U which does not vanish on any point of U . Consider the restriction

D|U of the differential operator D. For any holomorphic function f on U , the
holomorphic section D|U (f · (∂z)1/2) of (Q⊗K⊗2

X )|U is of the form

D|U (f · (∂z)1/2) = (
d2f

dz2
+ a · df

dz
+ b)(∂z)

1/2 ⊗ (dz)⊗2 ,

where a and b are fixed holomorphic functions on U independent of f ; the

coefficient of d2f
dz2 is 1 because the symbol of D|U is the constant function 1.

It is straight-forward to check that the condition that

a = 0 (65)

is independent of the holomorphic coordinate function z. In other words, if we
replace z by another holomorphic coordinate function z1 on U , then (∂z)

1/2

will change, hence a and b will change. But if a = 0 for one coordinate
function, then a vanishes for all coordinate functions. Therefore, the condition
that a = 0 is well-defined. We will explain this condition in (65) intrinsically
without using coordinates.
First recall from (64) that the differential operator D gives a logarithmic con-
nection on J1(Q) singular over S. We will denote this logarithmic connection

by D̃. Let D̃det be the logarithmic connection on
∧2

J1(Q) = OX(S) induced

by D̃. On the other hand, OX(S) has the tautological logarithmic connection
DS given by the de Rham differential. Therefore, we have

D̃det −DS ∈ H0(X, KX ⊗OX(S)) .

Since the residues of D̃det and DS coincides (both are −1 at each point of S),
it follows that

D̃det −DS ∈ H0(X, KX) ⊂ H0(X, KX ⊗OX(S)) .

Moreover, a in (65) satisfies the equation

(D̃det −DS)|U = a · dz . (66)

Therefore, the condition in (65) holds if and only if the two logarithmic con-

nections D̃det and DS coincide. In particular, the holomorphic one-form a · dz
on U is independent of the choice of the holomorphic coordinate function z.
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Lemma 8.1. The space of all branched projective structures on X with branch-

ing type S is canonically identified with a subset of the space of all second order

holomorphic differential operators

D ∈ H0(X, Diff2(Q, Q ⊗K⊗2
X ⊗OX(S)))

satisfying the following three conditions:

1. the homomorphism D : J2(Q) −→ Q⊗K⊗2
X ⊗OX(S) is surjective,

2. the symbol of D is the section of OX(S) given by the constant function

1, and

3. the condition in (65) holds.

Proof. In the proof of Proposition 7.3 it was shown that C0(Q) is identified
with the space of all holomorphic differential operators

D ∈ H0(X, Diff2(Q, Q⊗K⊗2
X ⊗OX(S)))

satisfying the three conditions in the statement of the lemma. Note that for any
logarithmic connection D ∈ C0(Q) on J1(Q), the connection on

∧2 J1(Q) =
OX(S) induced by D coincides with the one given by the de Rham differential.
Therefore, from (66) if follows that for the second order differential operator
corresponding to D, the condition in (65) holds. Now the lemma follows from
Corollary 7.5.
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