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Abstract. The category of finite Milnor–Witt correspondences, in-
troduced by Calmès and Fasel, provides a new type of correspon-
dences closer to the motivic homotopy theoretic framework than
Suslin–Voevodsky’s finite correspondences. A fundamental result in
the theory of ordinary correspondences concerns homotopy invariance
of sheaves with transfers, and in the present paper we address this
question in the setting of Milnor–Witt correspondences. Employing
techniques due to Druzhinin, Fasel–Østvær and Garkusha–Panin, we
show that homotopy invariance of presheaves with Milnor–Witt trans-
fers is preserved under Nisnevich sheafification.
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1 Introduction

A stepping stone toward Voevodsky’s construction of the derived category
of motives DM(k) [Voe00b] is the notion of finite correspondences between
smooth k-schemes. Such correspondences are in a certain sense multivalued
functions taking only finitely many values. By considering finite correspon-
dences instead of ordinary morphisms of schemes, one performs a linearization
which allows for extra elbowroom and flexibility, and which in turn makes it
possible to prove strong theorems. One of the “fundamental theorems” in the
theory of correspondences concerns homotopy invariance, and is crucial for
constructing the theory of motives.
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Theorem 1.1 ([Voe00a, Theorem 5.6]). For any homotopy invariant
presheaf F on the category Cork of finite correspondences, the associated
Nisnevich sheaf FNis is also homotopy invariant.

In [CF17], Calmès and Fasel introduce a new type of correspondences called
finite Milnor–Witt correspondences (or finite MW-correspondences for short).
Milnor–Witt correspondences provide a setting that is closer to the motivic
homotopy theoretic framework than Suslin–Voevodsky’s correspondences; for
example, the zero-line of sheaves of motivic homotopy groups of the sphere spec-
trum do not admit ordinary transfers, but they do admit MW-transfers [CF17].
Roughly speaking, a finite MW-correspondence amounts to an ordinary finite
correspondence along with an unramified quadratic form defined on the func-
tion field of each irreducible component of the support of the correspondence.
We briefly recall some results in the theory of MW-correspondences below. Our
present goal is to prove a homotopy invariance result similar to Theorem 1.1
for sheaves with MW-transfers:

Theorem 1.2. Let k be a field of characteristic1 0. Then, for any homotopy
invariant presheaf F on the category C̃ork of finite MW-correspondences, the
associated Nisnevich sheaf FNis is also homotopy invariant.

We note that this result is already known by work of Déglise and Fasel [DF17,
Theorem 3.2.9]. Their proof uses the fact that there is a functor Fr∗(k) →

C̃ork from the category of framed correspondences to MW-correspondences.
As the analog of Theorem 1.2 is known for framed correspondences by work
of Garkusha and Panin [GP18], it follows that the desired result also holds

for C̃ork. The purpose of this paper is to give a more direct proof by using
geometric input provided in [GP18, §13] to produce homotopies in C̃ork. Along
the way we obtain results on MW-correspondences of independent interest. The
proof strategy is due to Druzhinin [Dru16] and Garkusha–Panin [GP18], and
uses techniques developed in [FØ17].

Recollections on Milnor–Witt correspondences

The Milnor–Witt K-groups KMW
n (k) of a field k arose in the context of motivic

stable homotopy groups of spheres. More precisely, in [Mor04, Theorem 6.4.1]
Morel established isomorphisms

πn,n1 ∼= KMW
−n (k) (1.1)

for all n ∈ Z, where 1 ∈ SH(k) denotes the sphere spectrum. The groups
KMW
n (k) admit a description in terms of generators and relations:

1The assumption on the characteristic is there because Milnor–Witt correspondences are
currently not defined over nonperfect fields. The only place where this assumption is used is
in Section 8 where we need to consider Milnor–Witt correspondences defined over function
fields of smooth k-schemes, which may in general be nonperfect. Otherwise, all excision
results are valid for infinite perfect fields of characteristic different from 2.
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Definition 1.3 (Hopkins–Morel). Let k be a field. The Milnor–Witt K-theory
KMW

∗ (k) of the field k is the graded associative Z-algebra with one generator [a]
for each unit a ∈ k×, of degree +1, and one generator η of degree −1, subject
to the following relations:

(1) [a][1− a] = 0 for any a ∈ k× \ {1} (Steinberg relation).

(2) η[a] = [a]η (η-commutativity).

(3) [ab] = [a] + [b] + η[a][b] (twisted η-logarithmic relation).

(4) (2 + η[−1])η = 0 (hyperbolic relation).

We let KMW
n (k) denote the n-th graded piece of KMW

∗ (k). The product
[a1] · · · [an] ∈ KMW

n (k) may also be denoted by [a1, . . . , an].

Under the isomorphism (1.1) above, the element [a] ∈ KMW
1 (k) corresponds to

a class [a] ∈ π−1,−11. A representative for [a] is given by the pointed map

[a] : Spec(k)+ → (Gm, 1)

sending the non-basepoint to the point a ∈ Gm. On the other hand, the element
η ∈ KMW

−1 (k) corresponds to the motivic Hopf map η ∈ π1,11 represented by
the natural projection [Mor04, §6]

η : A2 \ 0→ P
1.

As the sphere spectrum is initial in the category of motivic ring spectra, the
homotopy groups πp,qE of a motivic ring spectrum E inherits the relations of
πp,q1 via the unit map 1 → E. Thus Milnor–Witt K-theory is a fundamen-
tal object in motivic homotopy theory. In [CF17], Calmès and Fasel employ
sheaves of Milnor–Witt K-theory to set up the theory of MW-correspondences.
Based on the fact that the group Cork(X,Y ) of finite correspondences from X
to Y can be expressed as a colimit of Chow groups with support,

Cork(X,Y ) = lim
−→

T∈A(X,Y )

HdYT (X × Y,KM
dY )

= lim
−→

T∈A(X,Y )

CHdYT (X × Y ),

Calmès and Fasel replace Milnor K-theory (and Chow groups) with (twisted)
Milnor–Witt K-theory (and Chow–Witt groups), and define the group of finite
MW-correspondences from X to Y as

C̃ork(X,Y ) := lim
−→

T∈A(X,Y )

HdYT (X × Y,KMW
dY , p∗Y ωY/k)

= lim
−→

T∈A(X,Y )

C̃H
dY

T (X × Y, p∗Y ωY/k),
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where pY : X × Y → Y is the projection. Here Y is assumed to be equidi-
mensional of dimension dY , and A(X,Y ) is the partially ordered set of closed
subsets T of X×Y such that each irreducible component of T (with its reduced
structure) is finite and surjective over X . Moreover, KMW

n is the n-th unram-
ified Milnor–Witt K-theory sheaf, as defined in [Mor12, §5]. We note that
the Nisnevich cohomology groups Hp(X,KMW

q ,L ) of the Milnor–Witt sheaf

K
MW
q (L ) twisted by a line bundle L can be computed using the Rost–Schmid

complex [Mor12, Chapter 5], which provides a flabby resolution of KMW
q (L ).

Recall that the p-th term of the Rost–Schmid complex is given by

Cp(X,KMW
q ,L ) :=

⊕

x∈X(p)

KMW
q−p (k(x),∧

p(mx/m
2
x)

∨ ⊗k(x) Lx),

where X(p) denotes the set of codimension p-points of X . We let C̃ork denote
the category of finite MW-correspondences. The category C̃ork is symmetric
monoidal, and comes equipped with an embedding Smk → C̃ork from smooth
k-schemes, as well as a forgetful functor C̃ork → Cork to Suslin–Voevodsky’s
correspondences; see [CF17] for details.

Let P̃Sh(k) denote the category of presheaves with MW-transfers, i.e., additive

presheaves of abelian groups F : C̃or
op

k → Ab. As noted in [CF17], there are

more presheaves on C̃ork than on Cork. One example is of course provided
by the sheaves K

MW
∗ , which admit MW-transfers but not ordinary transfers

[CF17]. Among the various presheaves with MW-transfers, the homotopy in-
variant ones will be of most interest to us.

Definition 1.4. A presheaf F ∈ P̃Sh(k) with MW-transfers is homotopy
invariant if for each X ∈ Smk, the projection p : X × A

1 → X induces an

isomorphism p∗ : F (X)
∼=
−→ F (X×A1). Equivalently, the zero section i0 : X →

X ×A
1 induces an isomorphism i∗0 : F (X ×A

1)
∼=
−→ F (X).

Let us also mention that by [DF17, Lemma 1.2.10], the Nisnevich sheaf FNis

associated to a presheaf F ∈ P̃Sh(k) comes equipped with a unique MW-
transfer structure. This result follows essentially from [DF17, Lemma 1.2.6],
which states that if p : U → X is a Nisnevich covering of a smooth k-scheme X ,
and if c̃(X) denotes the representable presheaf c̃(X)(Y ) := C̃ork(Y,X), then
the Čech-complex c̃(U•

X) → c̃(X) → 0 is exact on the associated Nisnevich
sheaves.

Extending presheaves to essentially smooth schemes

In this paper we will consider two closely related ways to extend presheaves
on C̃ork to essentially smooth schemes over k. This allows us to formulate
statements also about local schemes or henselian local schemes.

1. The first method is the standard way of defining the value of a presheaf
on limits of schemes as a colimit of the presheaf values, and will be used
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in Sections 9–13. We briefly recall some details on this matter, follow-
ing [CF17, §5.1]. Let P be the category consisting of projective systems
((Xλ)λ∈I , fλµ) such that Xλ ∈ Smk and such that the transition mor-
phisms fλµ : Xλ → Xµ are affine and étale. By [CF17, §5.1], the limit of
such a projective system exists in the category of schemes Sch. Moreover,
the functor P → Sch sending a projective system to its limit defines an
equivalence of categories between P and the full subcategory Smk of Sch
consisting of schemes over k that are limits of projective systems from P
[CF17, §5.1].

Now let F be a presheaf on Smk. We can extend F to a presheaf F on
Smk by setting F ((Xλ)λ∈I) := lim

−→λ∈I
F (Xλ). By [CF17, §5.1] this gives

a well defined presheaf on Smk that coincides with F when restricted to
Smk. In particular, we can extend the presheaf C̃ork(−, X) to Smk.

The above construction can furthermore be carried out for Chow–Witt
groups with support. Roughly speaking, we can define a category P̃
consisting of projective systems of triples (Xλ, Zλ,Lλ) of a smooth k-
scheme Xλ, a closed subscheme Zλ of Xλ and a line bundle Lλ on Xλ. If
the limit (X,Z,L ) of such a projective system is such that X is regular,
then the pullback induces an isomorphism [CF17, Lemma 5.7]

lim
−→
λ

C̃H
∗

Zλ
(Xλ,Lλ)

∼=
−→ C̃H

∗

Z(X,L ).

This allows us to pass to Chow–Witt groups of local schemes U in order
to produce MW-correspondences on U , which will be needed in Sections
9–12. However, in order to unburden our notation we may drop the bar
both from F and Smk when evaluating presheaves on limits of schemes.

2. A second method of extending presheaves will be carried out in Section 8
in order to show that certain results that hold for open subsets of A1

k are
also valid for open subsets ofA1

K , whereK is some finitely generated field
extension K of the ground field k. This trick was suggested to the author
by I. Panin, and involves extending a presheaf on C̃ork to a certain full
subcategory of C̃orK . See Section 8 for details.

Outline

In Section 2 we establish some notation and collect a few lemmas needed later
on.
In Section 3 we review how Cartier divisors give rise to finite MW-
correspondences, following [FØ17]. This gives a procedure to construct desired
homotopies in the later sections.
In Section 4 we prove the first main ingredient of the proof of Theorem 1.2,
which is a Zariski excision result for MW-presheaves. More precisely, in Theo-
rem 4.1 we show that if V ⊆ U ⊆ A

1 are two Zariski open neighborhoods of a

Documenta Mathematica 24 (2019) 2339–2379
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closed point x ∈ A
1, then the inclusion i : V →֒ U induces an isomorphism2

i∗ :
F (U \ x)

F (U)

∼=
−→

F (V \ x)

F (V )

for any homotopy invariant F ∈ P̃Sh(k). The proof of Zariski excision consists

of producing left and right inverses in C̃ork of i up to homotopy. This is done
in Sections 6 and 7.
In Section 8, we extend the results of Section 4 to open subsets of A1

K , whereK
is a finitely generated field extension of the ground field k.
In Section 9 we prove a “moving lemma” for MW-correspondences (see Theo-
rem 9.1), which can be informally stated as follows. Let X ∈ Smk, and pick
a closed point x ∈ X along with a closed subscheme Z ( X containing the
point x. Then, up to A

1-homotopy, we are able to “move the point x away
from Z” using MW-correspondences. See Section 9 for more details.
In Section 10 we prove the last main ingredient of the proof of Theorem 1.2,
namely a Nisnevich excision result. The situation is as follows. Given an
elementary distinguished Nisnevich square

V ′ X ′

V X

Π

with X and X ′ affine and k-smooth, let S := (X \V )red and S′ := (X ′ \V ′)red.
Assume in addition that S is k-smooth. Suppose that x ∈ S and x′ ∈ S′ are two
points satisfying Π(x′) = x, and put U := Spec(OX,x) and U

′ := Spec(OX′,x′).
Then the map Π induces an isomorphism3

Π∗ :
F (U \ S)

F (U)

∼=
−→

F (U ′ \ S′)

F (U ′)

for any homotopy invariant F ∈ P̃Sh(k). Again the proof consists of producing
left and right inverses to Π up to homotopy, which is done in Sections 11 and 12.
Finally, in Section 13 we will see how homotopy invariance of the associated
Nisnevich sheaf FNis follows from the above results.

Conventions

Throughout we will assume that k is an infinite perfect field of characteris-
tic different from 2. In Sections 8 and 13, k is furthermore assumed to be
of characteristic 0. We let Smk denote the category of smooth separated

2We show in Section 5 that the restriction maps F (U) → F (U \x) and F (V ) → F (V \x)
are injective, justifying the notation used in the formulation of Zariski excision.

3It follows from Theorem 9.1 that the restriction maps F (U) → F (U \ S) and F (U ′) →
F (U ′ \S′) are injective, justifying the notation used in the formulation of Nisnevich excision.
See Section 10 for details.
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schemes of finite type over k. All undecorated fiber products mean fiber prod-
uct over k. Throughout, the symbols i0 and i1 will denote the rational points
i0, i1 : Spec(k)→ A

1 given by 0 and 1, respectively.

We will frequently abuse notation and write simply f ∈ C̃ork(X,Y ) for γ̃f ,
where γ̃f is the image of a morphism of schemes f : X → Y under the em-

bedding γ̃ : Smk → C̃ork of [CF17, §4.3]. We let ∼A1 denote A
1-homotopy

equivalence. Following Calmès–Fasel [CF17], if pY : X × Y → Y is the projec-
tion, we may write ωY as shorthand for p∗Y ωY/k if no confusion is likely to arise.
Note that ωY is then canonically isomorphic to ωX×Y/X . In general, given a
morphism of schemes f : X → Y we write ωf := ωX/k ⊗ f

∗ω∨
Y/k.
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2 Pairs of Milnor–Witt correspondences

We will frequently encounter the situation of a pair U ⊆ X of schemes, and we
will be led to study the associated quotient F (U)/ im(F (X) → F (U)) for a

given presheaf F on C̃ork. It is therefore notationally convenient to introduce

a category C̃or
pr

k of pairs of MW-correspondences.
Following [GP18] we let SmOpk denote the category whose objects are pairs
(X,U) with X ∈ Smk and U a Zariski open subscheme of X , and whose mor-
phisms are maps f : (X,U) → (Y, V ), where f : X → Y is a morphism of
schemes such that f(U) ⊆ V . Below we extend this notion of morphisms of
pairs to MW-correspondences.

Definition 2.1 ([GP18, Definition 2.3]). Let C̃or
pr

k denote the category whose
objects are those of SmOpk and whose morphisms are defined as follows. For
(X,U), (Y, V ) ∈ SmOpk, with open immersions jX : U → X and jY : V → Y ,
let

C̃or
pr

k ((X,U), (Y, V )) :=

ker

(
C̃ork(X,Y )⊕ C̃ork(U, V )

j∗X−(jY )∗
−−−−−−→ C̃ork(U, Y )

)
.

Thus a morphism in C̃or
pr

k is a pair (α, β), where α ∈ C̃ork(X,Y ) and β ∈
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C̃ork(U, V ), such that the diagram

X Y

U V

α

jX

β

jY

commutes in C̃ork. Composition in C̃or
pr

k is defined by (α, β) ◦ (γ, δ) := (α ◦
γ, β ◦ δ).

The category SmOpk contains Smk as a full subcategory, the embedding Smk →
SmOpk being defined by X 7→ (X,∅). Moreover, the embedding Smk →

SmOpk induces a fully faithful embedding C̃ork → C̃or
pr

k which on morphisms
is given by α 7→ (α, 0).

Proposition 2.2 ([GP18, Construction 2.8]). Suppose that F is a presheaf on

C̃ork. For any (X,U) ∈ SmOpk, let F (X,U) := F (U)/ im(F (X) → F (U)).

Then, for any (α, β) ∈ C̃or
pr

k ((X,U), (Y, V )), F induces a morphism

(α, β)∗ : F (Y, V )→ F (X,U).

Definition 2.3 ([GP18, Definition 2.3]). Define the homotopy category hC̃ork
of C̃ork as follows. The objects of hC̃ork are the same as those of C̃ork, and
the morphisms are given by

hC̃ork(X,Y ) := C̃ork(X,Y )/ ∼A1

= coker

(
C̃ork(A

1 ×X,Y )
i∗0−i

∗

1−−−→ C̃ork(X,Y )

)
.

Similarly, let hC̃or
pr

k denote the category whose objects are those of C̃or
pr

k , and
whose morphisms are given by

hC̃or
pr

k ((X,U), (Y, V )) :=

coker

(
C̃or

pr

k (A1 × (X,U), (Y, V ))
i∗0−i

∗

1−−−→ C̃or
pr

k ((X,U), (Y, V ))

)
.

Here A
1 × (X,U) is shorthand for (A1 × X,A1 × U). If α ∈ C̃ork(X,Y ) is

a finite MW-correspondence, we write α for the image of α in hC̃ork(X,Y ).

Similarly, if (α, β) is a morphism in C̃or
pr

k from (X,U) to (Y, V ), write (α, β)

for the image of α in hC̃or
pr

k ((X,U), (Y, V )). Note that a presheaf on C̃ork
is homotopy invariant if and only if it factors through hC̃ork. Moreover, the

embedding C̃ork → C̃or
pr

k induces a fully faithful embedding hC̃ork → hC̃or
pr

k .

Next we record a few observations that will come in handy later on:
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Lemma 2.4. Suppose that α is a finite MW-correspondence from X to Y . Let
T1, . . . , Tn be the connected components of the support T of α. Then, for each
i = 1, . . . , n there are uniquely determined finite MW-correspondences αi sup-
ported on Ti such that α =

∑
i αi.

Proof. Since α ∈
⊕

x∈(X×Y )(dY ) KMW
0 (k(x),∧dY (mx/m

2
x)

∨ ⊗ (ωY )x), we may

write α =
∑

i αi where αi is supported on Ti. To conclude we must show that

αi ∈ C̃H
dY

Ti
(X × Y, ωY ), i.e., that ∂(αi) = 0 for all i. Now ∂x(αi) = 0 for all

x ∈ X × Y except perhaps for x ∈ Ti. But since Ti is disjoint from the other
Tj ’s and ∂(α) = 0 by assumption, we must have ∂x(αi) = 0 also for x ∈ Ti.

Lemma 2.5. Let X be a smooth scheme, let q ∈ Z be an integer, and let L be
a line bundle over X. Let j : U → X be a Zariski open subscheme, and suppose
that T ⊆ U is a subset which is closed in both U and X. Then the map

j∗ : HpT (X,K
MW
q ,L )→ HpT (U,K

MW
q , j∗L )

is an isomorphism for each p ∈ Z, with inverse j∗, the finite pushforward of
[CF17, §3].

Proof. The map j∗ is an isomorphism by étale excision [CF17, Lemma 3.7].
The composition j∗j∗ is the identity map on the Rost–Schmid complex
C∗
T (U,K

MW
q , j∗L ) supported on T , which implies the claim.

Corollary 2.6. Let X,Y ∈ Smk, and let j : V → Y be a Zariski open sub-
scheme. Suppose that α ∈ C̃ork(X,Y ) is a finite MW-correspondence such
that suppα ⊆ X × V . Then there is a unique finite MW-correspondence
β ∈ C̃ork(X,V ) such that j ◦ β = α. In fact, we have β = (1× j)∗α.

Proof. Let T := suppα, so that by Lemma 2.5 we have mutually inverse iso-
morphisms

(1× j)∗ : C̃H
dY

T (X × Y, ωY ) ⇄ C̃H
dY

T (X × V, ωV ) : (1 × j)∗

with α ∈ C̃H
dY

T (X × Y, ωY ). Thus, if β := (1× j)∗(α) then (1× j)∗β = α. We
conclude the equality (1 × j)∗β = j ◦ β from [CF17, Example 4.18].

Lemma 2.7. Suppose that jX : U → X and jY : V → Y are open subschemes
of smooth connected k-schemes X, Y . Assume further that α ∈ C̃ork(X,Y )
is a finite MW-correspondence such that the support T := suppα satisfies
T ∩ (U × Y ) ⊆ U × V . Let α′ := (jX × jY )

∗(α). Then we have (α, α′) ∈

C̃or
pr

k ((X,U), (Y, V )).

Proof. First we show that α′ ∈ C̃ork(U, V ). By contravariant functorial-
ity of Chow–Witt groups we may write α′ = (1 × jY )

∗(jX × 1)∗(α). Now
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(jX × 1)∗(α) = α ◦ jX ∈ C̃ork(U, Y ) by [CF17, Example 4.17]. By [CF17, Lem-
mas 4.8, 4.10], supp(jX × 1)∗(α) = T ∩ (U × Y ) is finite and surjective over U .
Since T ∩ (U × Y ) ⊆ U × V , we have

α′ ∈ C̃H
dY

T∩(U×Y )(U × V, (1 × jY )
∗ωY ),

where dY := dimY . As jY is an open embedding we have (1 × jY )
∗ωY ∼= ωV ;

hence α′ is a finite MW-correspondence from U to V .
Next we show that the diagram

X Y

U V

α

jX

α′

jY

commutes in C̃ork. As T ∩ (U × Y ) = T ∩ (U × V ), the morphism (jX × 1)∗

factors as

C̃H
dY

T (X × Y, ωY ) C̃H
dY

T∩(U×V )(U × V, ωV )

C̃H
dY

T∩(U×Y )(U × Y, ωY ).

(jX×jY )∗

(jX×1)∗
(1×jY )∗

Hence

jY ◦ α
′ = (1× jY )∗(jX × jY )

∗(α) = (jX × 1)∗(α) = α ◦ jX

by [CF17, Examples 4.17, 4.18].

Relative Milnor–Witt correspondences

For later reference, let us also briefly mention the notion of finite MW-
correpondences relative to a base scheme S ∈ Smk.

Definition 2.8. Let S ∈ Smk be a smooth k-scheme. For any X,Y ∈ SmS , let
p : X×S Y → X denote the projection, and let d denote the relative dimension
of p. We define the group of finite relative MW-correspondences from X to Y
as

C̃orS(X,Y ) := lim
−→
T

C̃H
d

T (X ×S Y, ωp),

where the colimit runs over all closed subsets T of X ×S Y such that each
irreducible component of Tred is finite and surjective over X .

One can show that the groups C̃orS(X,Y ) define the mapping sets of a category

C̃orS of finite relative MW-correspondences. However, below we will only need
the definition of the groups C̃orS(X,Y ), and so we will not pursue the study

of the category C̃orS in further detail here.
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Lemma 2.9. Let S ∈ Smk be a smooth k-scheme, and let X,Y ∈ SmS. Then
the canonical morphism f : X ×S Y → X × Y induces a homomorphism

f∗ : C̃orS(X,Y )→ C̃ork(X,Y )

given as the pushforward on Chow–Witt groups.

Proof. Let dY := dimY and dS := dimS. Then the projection p : X×SY → X
has relative dimension dY −dS , and the pushforward map on Chow–Witt groups
is given as

f∗ : C̃H
dY −dS

T (X ×S Y, ωp)→ C̃H
dY

f(T )(X × Y, ωY ),

for any admissible subset T . Since f is finite, f(T ) is also an admissible subset.

Hence, composing with the canonical map to the colimit C̃ork(X,Y ) on the
right hand side, we obtain the desired homomorphism.

3 Milnor–Witt correspondences from Cartier divisors

Let us recall from [FØ17, §2] how a Cartier divisor gives rise to a finite MW-
correspondence. Suppose that X ∈ Smk is a smooth integral k-scheme, and let
D = {(Ui, fi)} be a Cartier divisor on X , with support |D|. We can associate
a cohomology class

d̃iv(D) ∈ H1
|D|(X,K

MW
1 ,OX(D)) = C̃H

1

|D|(X,OX(D))

to D as follows. If x ∈ X(1) is a codimension 1-point on X , choose i such that
x ∈ Ui. Consider the element

[fi]⊗ f
−1
i ∈ KMW

1 (k(X),OX(D)⊗ k(X)).

Definition 3.1 ([FØ17, Definition 2.1.1]). In the above setting, define

õrdx(D) := ∂x([fi]⊗ f
−1
i ) ∈ KMW

0 (k(x), (mx/m
2
x)

∨ ⊗k(x) OX(D)x),

and
õrd(D) :=

∑

x∈X(1)∩|D|

õrdx(D) ∈ C1(X,KMW
1 ,OX(D)).

By [FØ17, Lemma 2.1.2], the definition of õrdx(D) does not depend on the

choice of Ui, and by [FØ17, Lemma 2.1.3] we have ∂(õrd(D)) = 0. Therefore

the element õrd(D) defines a cohomology class in C̃H
1

|D|(X,OX(D)), which we

denote by d̃iv(D).

Lemma 3.2. Let X ∈ Smk be a smooth integral k-scheme and suppose that D
and D′ are two Cartier divisors on X such that
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• the supports of D and D′ are disjoint, and

• there are trivializations χ : OX
∼=
−→ O(D) and χ′ : OX

∼=
−→ O(D′).

Then χ and χ′ induce an isomorphism

C̃H
1

|D+D′|(X,O(D +D′)) ∼= C̃H
1

|D|(X,O(D)) ⊕ C̃H
1

|D′|(X,O(D
′)).

Under this isomorphism we have the identification d̃iv(D + D′) = d̃iv(D) +

d̃iv(D′).

Proof. Since O(D +D′) ∼= O(D)⊗O(D′), χ and χ′ furnish a trivialization

χ⊗ χ′ : O(D +D′) ∼= OX .

As |D +D′| = |D| ∐ |D′|, we thus obtain isomorphisms

C̃H
1

|D+D′|(X,O(D +D′)) ∼= C̃H
1

|D|(X,O(D +D′))⊕ C̃H
1

|D′|(X,O(D +D′))

∼= C̃H
1

|D|(X)⊕ C̃H
1

|D′|(X)

∼= C̃H
1

|D|(X,O(D))⊕ C̃H
1

|D′|(X,O(D
′)).

To show the last claim, let D and D′ be given by the data {(Ui, fi)} respectively
{(Ui, f

′
i)}, so that D + D′ = {(Ui, fif

′
i)}. Let x ∈ X(1) ∩ |D|, and choose an

i such that x ∈ Ui. Since the vanishing loci of fi and f
′
i are disjoint we may

assume that f ′
i ∈ Γ(Ui,O

×
X), shrinking Ui if necessary. Hence ∂x([f

′
i ]) = 0, and

we obtain

∂x([fif
′
i ]⊗ (fif

′
i)

−1) = ∂x(([f
′
i ] + 〈f

′
i〉[fi])⊗ (fif

′
i)

−1)

= 〈f ′
i〉〈(f

′
i)

−1〉∂x([fi]⊗ f
−1
i )

= ∂x([fi]⊗ f
−1
i ).

Thus ∂x([fif
′
i ]⊗ (fif

′
i)

−1) = õrdx(D). A similar argument shows that

∂x([fif
′
i ]⊗ (fif

′
i)

−1) = õrdx(D
′)

for all x ∈ X(1) ∩ |D′|, and the result follows.

If we require a condition on the line bundle O(D) and on the support of D, the

class d̃iv(D) does indeed give rise to a finite MW-correspondence:

Lemma 3.3. Let X and Y be smooth connected k-schemes with dim Y = 1. Let
D be a Cartier divisor on X × Y . Suppose that

• there is an isomorphism χ : OX×Y (D)
∼=
−→ ωY , and

• each irreducible component of the support |D| of D is finite and surjective
over X.
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Then the image of d̃iv(D) under the isomorphism

C̃H
1

|D|(X × Y,OX×Y (D))
∼=
−→ C̃H

1

|D|(X × Y, ωY )

induced by χ defines a finite MW-correspondence d̃iv(D,χ) ∈ C̃ork(X,Y ).

Proof. By assumption, |D| is an admissible subset, hence the claim follows.

Lemma 3.4. Assume the hypotheses of Lemma 3.3, and let f : X ′ → X be a
morphism of smooth k-schemes. Then

d̃iv(D,χ) ◦ f = d̃iv((f × 1)∗D, (f × 1)∗χ) ∈ C̃ork(X
′, Y ).

Proof. As d̃iv(D,χ)◦f = (f×1)∗d̃iv(D,χ), the claim follows from the fact that
(f × 1)∗ commutes with the boundary map ∂ in the Rost–Schmid complex.

For later reference, let us also state the version of Corollary 2.6 for Cartier-
divisors:

Lemma 3.5. Assume the hypotheses of Lemma 3.3. Suppose moreover that
j : V → Y is a Zariski open subscheme of Y such that support |D| is contained

in X×V . Then there exists a unique finite MW-correspondence β ∈ C̃ork(X,V )

such that j ◦ β = d̃iv(D,χ). In fact, β is given by

β = d̃iv((1 × j)∗D, (1× j)∗χ).

Proof. By the same argument as in the proof of Lemma 3.4 we have

(1× j)∗d̃iv(D,χ) = d̃iv((1 × j)∗D, (1× j)∗χ).

Hence the claim follows from Corollary 2.6.

The above lemmas give a procedure to construct a morphism of pairs from a
Cartier divisor:

Lemma 3.6. Assume the hypotheses of Lemma 3.3, and let jX : U → X and
jY : V → Y be open subschemes. Let D′ := D|U×Y be the restriction of D to
U × Y . Suppose that |D′| ⊆ U × V . Then

(d̃iv(D,χ), d̃iv((jX × jY )
∗D, (jX × jY )

∗χ)) ∈ C̃or
pr

k ((X,U), (Y, V )).

Proof. By Lemma 3.4, d̃iv((jX × jY )
∗D) = (jX × jY )

∗d̃iv(D), hence the claim
follows from Lemma 2.7.

We will frequently make use of the following well known fact in order to de-
termine if the support of a given principal divisor satisfies the hypotheses of
Lemma 3.3:
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Lemma 3.7. Let A be a ring, and suppose that P is a monic polynomial in A[t].
Then Spec(A[t]/(P )) → Spec(A) is finite, and every irreducible component of
Spec(A[t]/(P )) surjects onto Spec(A).

Proof. Write P (t) = tn+an−1t
n−1+· · ·+a0, and letM := A[t]/(P ). ThenM is

generated as an A-module by 1, t, . . . , tn−1, hence Spec(A[t]/(P ))→ Spec(A) is
finite. As A[t]/(P ) is integral over A, it follows that the morphism is surjective
as well.

4 Zariski excision on the affine line

The aim of this section is to prove the following excision result:

Theorem 4.1. Let x ∈ A
1 be a closed point and suppose that V ⊆ U ⊆ A

1 are
two Zariski open neighborhoods of x. Let i : V →֒ U denote the inclusion, and

let F ∈ P̃Sh(k) be a homotopy invariant presheaf with MW-transfers. Then
the induced map

i∗ :
F (U \ x)

F (U)
→

F (V \ x)

F (V )

is an isomorphism.

The proof of Zariski excision proceeds in three steps. First we prove:

Theorem 4.2 (Injectivity on the affine line). With the notation in Theorem 4.1,

there exists a finite MW-correspondence Φ ∈ C̃ork(U, V ) such that

i ◦ Φ = idU

in hC̃ork.

Theorem 4.2 implies that Φ∗ ◦ i∗ = idF(U) for any homotopy invariant F ∈

P̃Sh(k), i.e., that i∗ is injective. Letting V = U \ x, this means that F (U) is
a subgroup of F (U \ x), justifying the notation of Theorem 4.1.

The next step is then to extend Theorem 4.2 to the category C̃or
pr

k of pairs.
By abuse of notation, write i also for the inclusion i : (V, V \x) →֒ (U,U \x) in
SmOpk. By Proposition 2.2, i induces a map

i∗ :
F (U \ x)

F (U)
→

F (V \ x)

F (V )

on the quotient, and the following theorem tells us that i∗ is injective:

Theorem 4.3 (Injectivity of Zariski excision). There exists a finite MW-

correspondence Φ ∈ C̃or
pr

k ((U,U \ x), (V, V \ x)) such that

i ◦Φ = id(U,U\x)

in hC̃or
pr

k .
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In the final step we establish surjectivity of i∗:

Theorem 4.4 (Surjectivity of Zariski excision). With the notation in Theo-

rem 4.1, there exist finite MW-correspondences Ψ ∈ C̃or
pr

k ((U,U \x), (V, V \x))

and Θ ∈ C̃or
pr

k ((V, V \ x), (V \ x, V \ x)) such that

Ψ ◦ i− jV ◦Θ = id(V,V \x)

in hC̃or
pr

k , where jV : (V \x, V \x) →֒ (V, V \x) denotes the inclusion in SmOpk.

We note that Theorem 4.1 is a consequence of Theorems 4.3 and 4.4:

Proof of Theorem 4.1. As Φ is a morphism of pairs by Theorem 4.3, Proposi-
tion 2.2 tells us that Φ induces a morphism on the quotient

Φ∗ :
F (V \ x)

F (V )
→

F (U \ x)

F (U)
.

Moreover, Φ∗ ◦ i∗ = id by Theorem 4.3, hence i∗ is injective.
On the other hand, as Θ maps to (V \ x, V \ x) by Theorem 4.4, it follows that
jV ◦Θ induces the trivial map on the quotient. Hence

i∗ ◦Ψ∗ = id:
F (V \ x)

F (V )
→

F (V \ x)

F (V )
,

so that i∗ is surjective.

It is therefore enough to prove Theorems 4.2, 4.3, and 4.4.

5 Injectivity on the affine line

We continue with the same notation as in Theorem 4.1. Thus V ⊆ U ⊆ A
1

are two Zariski open neighborhoods of a closed point x ∈ A
1, with in-

clusion i : V → U . In order to produce the desired MW-correspondence
Φ ∈ C̃ork(U, V ) of Theorem 4.2, we will need to consider certain “thick di-

agonals” ∆m ∈ C̃ork(U,U), constructed as follows.
Let U ×U ⊆ A

2 have coordinates X and Y , respectively, and let ∆ := ∆(U) ⊆
U × U denote the diagonal. For each m ≥ 1, let fm denote the polynomial
fm(X,Y ) := (Y − X)m ∈ k[U × U ]. As fm is monic in Y , it follows from
Lemma 3.7 that the support of the divisor

Dm := V(fm) := {fm = 0} ⊆ U × U

is finite and surjective over U . Moreover, asDm is a principal Cartier divisor on
U ×U , there is a trivialization O(Dm) ∼= OU×U given by f−1

m 7→ 1. We further
obtain an isomorphism χm : O(Dm) ∼= ωU by f−1

m 7→ dY . By Lemma 3.3, it
follows that the divisor Dm gives rise to a finite MW-correspondence from U
to U .
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Definition 5.1. For each m ≥ 1, let ∆m := d̃iv(Dm, χm) ∈ C̃ork(U,U) be the
finite MW-correspondence defined by the data Dm and χm above.

Remark 5.2. By the definition of d̃iv(Dm, χm), we see that ∆m is given by the
total residue

∆m = ∂([fm]⊗ dY ) ∈ C̃H
1

∆(U × U, ωU )

of the element [fm] ⊗ dY ∈ KMW
1 (k(U × U), ωU ). Thus the support of the

MW-correspondence ∆m is the diagonal ∆ = D1 ⊆ U × U .

Lemma 5.3. For any m ≥ 0 we have ∆m+1 −∆m = 〈−1〉
m
·∆1 ∈ C̃ork(U,U),

with ∆1 = idU .

Proof. Since ∆m is supported on the diagonal ∆ ⊆ U × U , it suffices to com-
pute the residue ∂y([fm] ⊗ dY ) at the codimension 1-point y ∈ (U × U)(1)

corresponding to the diagonal.
Recall from [Mor12, Lemma 3.14] that for any integer n ≥ 0 we have [an] =
nǫ[a] in KMW

1 , where nǫ =
∑n
i=1〈(−1)

i−1〉. We thus get

∂y([fm]⊗ dY ) = mǫ ⊗ (Y −X)dY ∈ KMW
0 (k(y), (my/m

2
y)

∨ ⊗ (ωU )y).

For m = 1, this reads ∆1 = 〈1〉 ⊗ (Y −X)dY = idU . In the general case we
obtain

∆m+1 −∆m = ((m+ 1)ǫ −mǫ)⊗ (Y −X)dY = 〈(−1)m〉 · idU ,

using that ∆1 = idU ∈ C̃ork(U,U).

Our next objective is to prove the following:

Lemma 5.4. For m≫ 0 there exists a finite MW-correspondence Φm : U → V
such that i ◦ Φm = ∆m in hC̃ork(U,U).

Having established these properties of ∆m and Φm, we will set Φ := Φm+1−Φm
and show that we then have i ◦ Φ ∼A1 idU provided m is an even integer ≫ 0.
To define Φm, we will need to ensure the existence of polynomials with certain
specified properties.

Lemma 5.5 ([GP18, §5]). Let A := A
1 \U and B := U \ V . For m≫ 0, there

exists a polynomial Gm ∈ k[U ][Y ] = k[U ×A
1], monic and of degree m in Y ,

satisfying the following properties:

(1) Gm(Y )|U×B = 1.

(2) Gm(Y )|U×A = (Y −X)m|U×A.

(3) Gm(Y )|U×x = (Y −X)m|U×x.

Documenta Mathematica 24 (2019) 2339–2379



Homotopy Invariance of MW-Sheaves 2355

Remark 5.6. The above polynomials, as well as those in Sections 6 and 7, are
all constructed using variants of the Chinese remainder theorem, allowing us
to find polynomials with specified behavior at given subschemes. The require-
ment that the desired polynomial be monic can be thought of as specifying its
behavior at infinity. For example, the Chinese remainder theorem establishes
a surjection k[U × A

1] → k[U × A] ⊕ k[U × B], from which we can deduce
Lemma 5.5.

Lemma 5.7. Let DGm
be the divisor on U × U defined by Gm, and let

φm : O(DGm
) ∼= ωU be the isomorphism determined by choosing the genera-

tor dY for ωU . Then

d̃iv((1 × i)∗DGm
, (1× i)∗φm) ∈ C̃ork(U, V ).

Proof. Since Gm is monic in Y , the support V(Gm) of DGm
is finite and sur-

jective over U by Lemma 3.7. Using the trivializations of O(DGm
) and of ωU ,

Lemma 3.3 implies that d̃iv(DGm
, φm) ∈ C̃ork(U,U). Now, the polynomial Gm

satisfies the following:

• Gm|U×A ∈ k[U×A]
×. This follows from the fact that U×A = U×(A1\U)

contains no diagonal points.

• Gm|U×B ∈ k[U ×B]×. This is obvious, as Gm|U×B = 1.

The above properties imply that V(Gm) ⊆ U × V . Hence the claim follows
from Lemma 3.5.

Definition 5.8. For m≫ 0, we define Φm := d̃iv((1 × i)∗DGm
, (1 × i)∗φm) ∈

C̃ork(U, V ).

We now aim to define a homotopy Hm : i ◦Φm ∼A1 ∆m. Consider the product
A

1×U×A1, where θ is the coordinate of the first copy ofA1, U has coordinate
X and the lastA1 has coordinate Y . LetHθ ∈ k[A

1×U×A1] be the polynomial

Hθ(Y ) := θGm + (1 − θ)(Y −X)m.

Since U × A contains no diagonal points, the restriction Gm(Y )|U×A = (Y −
X)m|U×A does not vanish on U ×A. It follows that

Hθ(Y )|A1×U×A = (Y −X)m|A1×U×A ∈ k[A
1 × U ×A]×.

Hence V(Hθ) ⊆ A
1 × U × U . Let DHθ

be the principal Cartier divisor on
A

1×U ×U defined by Hθ, and let ψ : O(DHθ
) ∼= ωU be the isomorphism given

by choosing the generator dY for ωU .

Lemma 5.9. Let Hm := d̃iv(DHθ
, ψ). Then Hm ∈ C̃ork(A

1 × U,U).

Proof. As Gm is monic and of degree m in Y , it follows that the linear combi-
nation Hθ of Gm and (Y −X)m is also monic and of degree m in Y . Therefore
the support V(Hθ) of DHθ

is finite and surjective over A1 × U by Lemma 3.7.
The result then follows from Lemma 3.3.
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Lemma 5.10. Let Hm|0 := Hm ◦ i0,Hm|1 := Hm ◦ i1 ∈ C̃ork(U,U) denote the

respective precompositions of Hm ∈ C̃ork(A
1 × U,U) with the rational points

i0, i1 : U → A
1 × U . Then Hm|0 = ∆m and Hm|1 = i ◦ Φm.

Proof. By Lemma 3.4 we have

H0 = d̃iv((i0 × 1)∗DHθ
, (i0 × 1)∗ψ) = d̃iv(Dm, χm) = ∆m.

On the other hand,

H1 = d̃iv((i1 × 1)∗DHθ
, (i0 × 1)∗ψ) = d̃iv(DGm

, φm) = i ◦ Φm

by Lemma 3.5.

We are now ready to prove the injectivity of the induced morphism i∗ : F (U)→

F (V ), for any homotopy invariant F ∈ P̃Sh(k).

Proof of Theorem 4.2. Let m ≫ 0 be an integer large enough so that the
polynomial Gm of Lemma 5.5 exists. If Φ := Φ2m+1 − Φ2m, we then have
i ◦ Φ ∼A1 (∆2m+1 − ∆2m) = 〈(−1)2m〉 idU = idU by Lemma 5.3. As F is
homotopy invariant, this yields Φ∗ ◦ i∗ = idF(U), hence i

∗ is injective.

6 Injectivity of Zariski excision

We wish to extend Theorem 4.2 to the category of pairs C̃or
pr

k —in other words

to produce a morphism (Φm,Φ
x
m) ∈ C̃or

pr

k ((U,U \x), (V, V \x)) and a homotopy

(Hm,H
x
m) ∈ C̃or

pr

k (A1×(U,U \x), (U,U \x)) from ∆m to (i, i|V \x)◦(Φm,Φ
x
m).

This establishes Theorem 4.3.

Let jU and jV denote the respective open immersions jU : U \ x → U and
jV : V \ x→ V .

Lemma 6.1. Let Φxm := d̃iv((jU × jV )
∗DGm

, (jU × jV )
∗φm). Then (Φm,Φ

x
m)

constitutes a morphism in C̃or
pr

k from (U,U \ x) to (V, V \ x).

Proof. By Lemma 3.6, it suffices to show that the support of (jU × 1)∗DGm

is contained in (U \ x) × (V \ x). As we already know that V(Gm) ∩ ((U \
x) × A

1) ⊆ (U \ x) × V , it is enough to check that Gm does not vanish on
(U \ x)× x. By condition (3) of Lemma 5.5, Gm(Y )|U×x = (Y −X)m|U×x. As
(U \ x)× x contains no diagonal points, it therefore follows that Gm|(U\x)×x ∈
k[(U \ x)× x]×. Hence V(Gm) ∩ ((U \ x)×A

1) ⊆ (U \ x)× (V \ x).

Lemma 6.2. Let H x
θ := d̃iv(((1 × jU )× jU )

∗DHθ
, ((1 × jU )× jU )

∗ψ). Then

(Hθ,H
x
θ ) ∈ C̃or

pr

k (A1 × (U,U \ x), (U,U \ x)).
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Proof. In light of Lemma 3.6, it remains to check that

V(Hθ) ∩ (A1 × (U \ x)×A
1) ⊆ A

1 × (U \ x)× (U \ x).

It is sufficient to show that Hθ does not vanish on A
1 × (U \ x)× x. But

Hθ(Y )|A1×(U\x)×x = θ ·(Y −X)m+(1−θ) ·(Y −X)m = (Y −X)m|A1×(U\x)×x,

and (Y −X)m|A1×(U\x)×x ∈ k[A
1 × (U \ x) × x]× as (U \ x) × x contains no

diagonal points. Whence the claim.

Proof of Theorem 4.3. By a similar argument as in the proof of Lemma 5.10,
(Hθ ,H

x
θ ) is a homotopy from ∆m to (i, i|V \x) ◦ (Φm,Φ

x
m). Thus the same

proof as that of Theorem 4.2 applies.

7 Surjectivity of Zariski excision

We proceed to prove Theorem 4.4. To begin with, we interpolate polynomials
in a similar fashion as Lemma 5.5:

Lemma 7.1 ([GP18, §5]). For m ≫ 0 there exists a polynomial Gm(Y ) ∈
k[U ][Y ] = k[U × A

1], monic and of degree m in Y , satisfying the following
properties:

(1′) Gm(Y )|U×B = 1.

(2′) Gm(Y )|U×A = (Y −X)|U×A.

(3′) Gm(Y )|U×x = (Y −X)|U×x.

Lemma 7.2 ([GP18, §5]). For m ≫ 0 there exists a polynomial Fm−1(Y ) ∈
k[V ][Y ] = k[V ×A

1], monic and of degree m− 1 in Y , satisfying the following
properties:

(1′′) Fm−1(Y )|V×B = (Y −X)−1 ∈ k[V ×B]×.

(2′′) Fm−1(Y )|V×A = 1.

(3′′) Fm−1(Y )|∆(V ) = 1.

Remark 7.3. As B = U \V , the set V ×B does not contain any diagonal points.
Hence the function Y −X is invertible on V ×B, so (1′′) makes sense.

Definition 7.4. Set Em := (Y −X) · Fm−1 ∈ k[V ][Y ] and Hθ := θGm + (1−
θ)Em ∈ k[A

1 × V ][Y ], where θ is the coordinate of A1.

Observe that the divisor V(Em) satisfies V(Em) = V(Y − X) ∪ V(Fm−1) =
∆(V ) ∪ V(Fm−1). In fact, by (3′′), this union is a disjoint union. Moreover,
using the definition of Fm−1 we see that Em enjoys the following properties:

(1E) Em(Y )|V×B = 1 = Gm(Y )|V×B.
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(2E) Em(Y )|V×A = (Y −X)|V×A = Gm(Y )|V×A.

(3E) Em(Y )|V×x = (Y −X)|V×x = Gm(Y )|V×x.

The last property (3E) implies:

(3′E) Em(Y )|(V \x)×x = Gm(Y )|(V \x)×x ∈ k[(V \ x)× x]
×.

Let us first construct the finite MW-correspondence Ψ ∈ C̃ork(U, V ) using the
polynomial Gm of Lemma 7.1 for m ≫ 0. By Lemma 7.1, V(Gm) ⊆ U × V ,
and we may consider the principal divisor DGm

on U × V defined by Gm. Let
ψ : O(DGm

) ∼= ωV be the isomorphism determined by choosing the generator
dY for ωV .

Lemma 7.5. Put Ψ := d̃iv(DGm
, ψ) and Ψx := d̃iv((jU × jV )

∗DGm
, (jU ×

jV )
∗ψ). Then

(Ψ,Ψx) ∈ C̃or
pr

k ((U,U \ x), (V, V \ x)).

Proof. Since Gm is monic in Y , V(Gm) is finite and surjective over U by
Lemma 3.7. Thus Lemma 3.3 ensures that Ψ is a finite MW-correspondence
from U to V . Moreover, as Gm(Y )|U×x = (Y − X)|U×x, it follows that
Gm|(U\x)×x is invertible on (U \ x)× x. Hence there is an inclusion

V(Gm) ∩ ((U \ x)× V ) ⊆ (U \ x)× (V \ x).

By Lemma 3.6 it follows that (Ψ,Ψx) is a morphism of pairs from (U,U \x) to
(V, V \ x).

In order to define the desired homotopy, we proceed in a familiar fashion. By
(1E) and (2E), Hθ is invertible on A

1 × V × B and A
1 × V × A. Hence

V(Hθ) ⊆ A
1 × V × V , and we may consider the divisor DHθ

on A
1 × V × V .

We let χ : O(DHθ
) ∼= ωV be the isomorphism given by choosing the generator

dY for ωV .

Lemma 7.6. Let Hθ := d̃iv(DHθ
, χ) and

H
x
θ := d̃iv(((1 × jV )× jV )

∗DHθ
, ((1 × jV )× jV )

∗χ).

Then
(Hθ ,H

x
θ ) ∈ C̃or

pr

k (A1 × (V, V \ x), (V, V \ x)).

Proof. To see that Hθ is a finite MW-correspondence from A
1 × V to V , note

that both Gm and Em are monic and of the same degree in Y . Therefore the
linear combination Hθ of Gm and Em is also monic in Y , and it follows that
the support V(Hθ) of DHθ

is finite and surjective over A1 × V by Lemma 3.7.

Hence Hθ ∈ C̃ork(A
1 × V, V ) by Lemma 3.3.

Turning to H x
θ , we must show that

V(Hθ) ∩ (A1 × (V \ x)× V ) ⊆ A
1 × (V \ x) × (V \ x).
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We already know thatHθ is invertible onA
1×(V \x)×A and onA

1×(V \x)×B.
It remains to check the set A1 × (V \ x)× x. But by (3E) and (3′E) we have

Em(Y )|(V \x)×x = Gm(Y )|(V \x)×x = (Y −X)|(V \x)×x,

which is invertible as (V \ x) × x does not intersect the diagonal. Therefore
the linear combination Hθ of Em and Gm is also invertible on (V \ x)× x, and
the claim follows. Using Lemma 3.6, this shows that (Hθ ,H

x
θ ) constitutes a

morphism of pairs from A
1 × (V, V \ x) to (V, V \ x).

Let us compute the start-, and endpoints H0, H1 of the homotopy Hθ—that
is, the precomposition of Hθ with the rational points i0, i1 : V → A

1 × V .

Lemma 7.7. We have H0 = idV +jV ◦ Θ where Θ ∈ C̃ork(V, V \ x). On the
other hand, H1 = Ψ ◦ i, where i : V →֒ U is the inclusion.

Proof. By Lemma 3.4 we have H1 = d̃iv((i1 × 1)∗DHθ
, (i1 × 1)∗χ) = Ψ ◦ i. As

for H0, we have

H0 = d̃iv((i0 × 1)∗DHθ
, (i0 × 1)∗χ) = d̃iv(DEm

, (i0 × 1)∗χ),

where DEm
is the principal Cartier divisor on V ×V defined by the polynomial

Em. Let DFm−1 be the principal divisor on V × V defined by Fm−1. As
V(Em) = ∆(V ) ∐ V(Fm−1), Lemma 3.2 tells us that

H0 = ∆1 + d̃iv(DFm−1 , (i0 × 1)∗χ).

Here ∆1 is the divisor defined in Definition 5.1, satisfying ∆1 = idV . As
V(Fm−1) ⊆ V × (V \ x), Lemma 3.5 ensures that there is a unique element

Θ ∈ C̃H
1

V(Fm−1)(V × (V \ x), ωV \x)

such that jV ◦Θ = d̃iv(DEm
, (i0×1)∗χ). By Lemma 7.2, V(Fm−1) is finite and

surjective over V \ x, and hence Θ ∈ C̃ork(V, V \ x).

Proof of Theorem 4.4. The content of Theorem 4.4 is a rephrasing of
Lemma 7.7.

8 Zariski excision on A
1
K

We now aim to extend the results of Section 4 to open subsets of A1
K , where

K = k(X) is the function field of some integral k-scheme X ∈ Smk. This can
be achieved by the following trick, which was suggested to the author by I.

Panin: given a presheaf F ∈ P̃Sh(k), we can extend F to a presheaf FX on a

certain full subcategory of C̃orK , and then use Zariski excision for presheaves
on C̃orK .
In this section, the field k is assumed to be of characteristic 0.
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Remark 8.1. Notice that the results of Section 4 show that Zariski excision on
A

1
K holds for any homotopy invariant presheaf on C̃orK by simply letting the

ground field be K. The point of this section, however, is to show that we can
obtain Zariski excision on A

1
K also for homotopy invariant presheaves on C̃ork.

Definition 8.2. Let X ∈ Smk be a smooth integral k-scheme, and let K :=

k(X) be the function field of X . We define the category C̃or
X

K as follows. Its
objects are are pairs (Y, V ⊆ YK) consisting of a smooth k-scheme Y ∈ Smk

along with an open subscheme V of YK := Y ×k Spec(k(X)). The morphisms

of C̃or
X

K are given as

Hom
C̃or

X

K

((Y, V ), (Y ′, V ′)) := C̃orK(V, V ′).

Abusing notation, we may write simply V for an object (Y, V ) of C̃or
X

K .

Remark 8.3. Since any open subscheme V of YK is K-smooth, C̃or
X

K is equiv-

alent to the full subcategory of C̃orK whose objects are those V ∈ C̃orK for
which there exists Y ∈ Smk along with an open embedding V →֒ YK .

Let us fix some notation:

Definition 8.4. If (Y, V ) ∈ C̃or
X

K , we define the following subschemes of YK
and Y ×k X :

• Z := YK \ V ;

• Z := Z, the Zariski closure of Z in Y ×k X ;

• V := (Y ×k X) \Z .

Let also VK := V ×X Spec(K) denote the generic fiber of the projection
pX |V : V → X . Note that we then have VK = V . Furthermore, for each
open subscheme Xi of X , set

V (Xi) := V ∩ (Y ×k Xi),

the intersection being taken in Y ×k X . Then we have V = VK =
lim
←−Xi⊆X

V (Xi), where the limit runs over all nonempty open subsets of X .

In particular, V = V (X).

Definition 8.5. Let F ∈ P̃Sh(k) be a presheaf. For any V ∈ C̃or
X

K , we set

F
X(V ) := lim

−→
i

F (V (Xi)).

In particular, if (Y, V ) = (A1
k,A

1
K), then FX(V ) = F (A1

K) = lim
−→i

F (A1
k ×k

Xi).
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Remark 8.6. Notice that if F ∈ P̃Sh(k) is homotopy invariant, then
FX(A1

K) ∼= FX(K).

Our goal is now to promote FX to a presheaf on C̃or
X

K . For U, V ∈ C̃or
X

K , this
means that we need to define a natural restriction map α∗ : FX(U)→ FX(V )

for any α ∈ C̃or
X

K(V, U). To do this we need some preparations. First, recall
that we can write U = lim

←−i
U (Xi), V = lim

←−i
V (Xi), where U , V and Xi are

as in Definition 8.5.

Lemma 8.7. With the notations as above, we have a natural isomorphism

lim
−→
i

C̃orXi
(V (Xi),U (Xi))

∼=
−→ C̃orK(V, U).

Proof. Rewriting U as U ×X Spec(K), we obtain the chain of natural isomor-
phisms

C̃orK(V, U) ∼= C̃orK(V,U ×X Spec(K))

∼= C̃orX(V,U )

∼= lim
−→
i

C̃orX(V (Xi),U )

∼= lim
−→
i

C̃orXi
(V (Xi),U (Xi)).

Here the penultimate isomorphism follows from a similar argument as that of
[CF17, Lemmas 4.6 and 5.10].

For any α ∈ C̃or
X

K(V, U), we can now define a natural map

α∗ : F
X(U)→ F

X(V )

as follows. Using Lemma 8.7, we may choose a representative αi ∈
C̃orXi

(V (Xi),U (Xi)) mapping to α. Let

fi : V (Xi)×Xi
U (Xi)→ V (Xi)×k U (Xi)

denote the canonical morphism. By Lemma 2.9, fi induces a homomorphism

(fi)∗ : C̃orXi
(V (Xi),U (Xi))→ C̃ork(V (Xi),U (Xi)).

Definition 8.8. With the notations as above, set

α∗ := lim
−→
j≥i

((fj)∗(αj))
∗ : F

X(U)→ F
X(V ).

For any pair of indices i ≤ j, the following commutative diagram in C̃ork,

V (Xj) V (Xi)

U (Xj) U (Xi),

(fj)∗(αj) (fi)∗(αi)

shows that the definition of α∗ does not depend on the lift αi.
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Lemma 8.9 (Injectivity on A
1
K). Let (A1

k, U) and (A1
k, V ) be two objects of

C̃or
X

K such that V is nonempty and V ⊆ U . Write i : V →֒ U for the inclusion.
Then the induced map

i∗ : F
X(U)→ F

X(V )

is injective for any homotopy invariant presheaf F ∈ P̃Sh(k).

Proof. Injectivity on the affine line gives a homotopy Φ ∈ C̃orK(U, V ) such

that i ◦ Φ ∼A1 idU . Since Φ is a morphism in C̃or
X

K and FX is a presheaf on

C̃or
X

K , the result follows.

Lemma 8.10 (Zariski excision on A
1
K). Let x ∈ A

1
K be a closed point, and let

(A1
k, U) ∈ C̃or

X

K be such that x ∈ U . Denote by i : U →֒ A
1
K the inclusion.

Then i induces an isomorphism

i∗ :
FX(A1

K \ x)

FX(A1
K)

∼=
−→

FX(U \ x)

FX(U)

for any homotopy invariant presheaf F ∈ P̃Sh(k).

Proof. This follows similarly as in Lemma 8.9 above.

9 Injectivity for local schemes

The goal of this section is to prove the following theorem.

Theorem 9.1. Let X be a smooth k-scheme and x ∈ X a closed point. Let
U := Spec(OX,x) and write can: U → X for the canonical inclusion. Suppose
that i : Z → X is a closed subscheme of codimension ≥ 1 in X satisfying x ∈ Z.
Let j : X \ Z →֒ X denote the open complement. Then there exists a finite

MW-correspondence Φ ∈ C̃ork(U,X \ Z) such that the diagram

X \ Z

U X

jΦ

can

commutes in hC̃ork.

For homotopy invariant presheaves on C̃ork we immediately obtain:

Corollary 9.2. Suppose that F ∈ P̃Sh(k) is a homotopy invariant presheaf
with MW-transfers. If s ∈ F (X) is a section such that s|X\Z = 0, then
s|U = 0.
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Let X◦ ⊆ X be a Zariski open neighborhood of the point x, and let Z◦ :=
Z ∩ X◦. As noted in [GP18, §8], it is enough to solve the problem for the
triple U , X◦ and X◦ \ Z◦. In particular, we may assume that X is irreducible
and that the canonical sheaf ωX/k is trivial. In fact, we will shrink X so that
we are in the situation of a relative curve over a quasi-projective scheme. The
advantage of this approach is that it turns problems regarding subschemes
of high codimension into problems regarding divisors, which is a much more
flexible setting. For the shrinking process we refer to the following theorem,
which is originally due to M. Artin.

Theorem 9.3 ([PSV09, Proposition 1]). Let X, Z and x ∈ Z be as in The-
orem 9.1. Then there is a Zariski open neighborhood X◦ ⊆ X of the point x,
an open immersion X◦ →֒ X

◦
, a Zariski open subscheme B of PdimX−1 and a

commutative diagram

X◦ X
◦

X◦
∞

B

p
p

p∞

satisfying the following properties:

(1) p is a smooth projective morphism, whose fibers are irreducible projective
curves.

(2) X◦
∞ = X

◦
\X◦, and p∞ : X◦

∞ → B is finite étale.

(3) The morphism p|Z∩X◦ : Z ∩ X◦ → B is finite (where the intersection is

taken in X
◦
).

The morphism p : X◦ → B is called an almost elementary fibration.

Following [GP18, §8], we may shrink X such that there exists an almost el-
ementary fibration p : X → B and such that ωX/k and ωB/k are trivial, i.e.,
ωX/k ∼= OX and ωB/k ∼= OB. Let X := X ×B U and Z := Z ×B U . Let also
pX : X → X and pU : X → U be the projections onto X and U , respectively,
and let dX denote the dimension of X . Finally, let ∆ denote the morphism
∆ := (can, id) : U →X .

Lemma 9.4 ([GP18, Lemma 8.1]). There exists a finite surjective morphism

Hθ = (hθ, pU ) : X → A
1 × U

over U , such that if we let D1 := H−1
θ (1 × U) and D0 := H−1

θ (0 × U) denote
the scheme-theoretic preimages, then the following hold:

(1) D1 ⊆X \Z .

(2) D0 = ∆(U) ∐D ′
0 with D ′

0 ⊆X \Z .
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We will use Lemma 9.4 to produce the desired MW-correspondence Φ. The aim

is to define Φ as the image (Hθ × 1)∗(pX) of the projection pX ∈ C̃H
dX

ΓpX
(X ×

X,ωX) under the pushforward map

(Hθ × 1)∗ : C̃H
dX

ΓpX
(X ×X,ωHθ×1 ⊗ ωX)→ C̃H

dX

(Hθ×1)(ΓpX
)(A

1 × U ×X,ωX).

To this end, we need a trivialization of ωHθ×1 = ωX ×X/k⊗(Hθ×1)
∗ω∨

A1×U×X/k.
Now, as U is local we have ωU/k ∼= OU . Keeping in mind the discussion
preceding Lemma 9.4, it follows that the relative bundle ωHθ×1 is also trivial.
Thus we may choose an isomorphism χ : OX ∼= ωHθ×1.

Definition 9.5. Let pX ∈ C̃ork(X , X) denote the projection. Using the

trivialization χ above, we let H
χ
θ ∈ C̃ork(A

1 × U,X) denote the image of

pX ∈ C̃ork(X , X) under the composition

C̃H
dX

ΓpX
(X ×X,ωX)

∼=
−→ C̃H

dX

ΓpX
(X ×X,ωHθ×1 ⊗ ωX)

(Hθ×1)∗
−−−−−→ C̃H

dX

(Hθ×1)(ΓpX
)(A

1 × U ×X,ωX).

Lemma 9.6. The morphism Hθ × 1 maps ΓpX
∼= X isomorphically onto its

image. Let H
χ
0 := H

χ
θ ◦ i0 and H

χ
1 := H

χ
θ ◦ i1. Identifying X with its

image in A
1 × U × X, we then have suppH

χ
θ = X , suppH

χ
0 = D0, and

suppH
χ
1 = D1.

Proof. If y = ((x, u), x), y′ = ((x′, u′), x′) ∈ ΓpX is such that

(Hθ × 1)(y) = (hθ(x, u), u, x) = (Hθ × 1)(y′) = (hθ(x
′, u′), u′, x′),

it follows that x = x′ and u = u′, hence y = y′. Thus we can consider X

as a subscheme of A1 × U × X by (x, u) 7→ (hθ(x, u), u, x). Now, the MW-
correspondence pX is supported on ΓpX , hence suppH

χ
θ = (Hθ × 1)(ΓpX ) ∼=

X . We turn to the restrictions H
χ
0 and H

χ
1 of the homotopy H

χ
θ . By

[CF17, Example 4.17] we have H
χ
θ ◦ iǫ = (iǫ × 1)∗(H χ

θ ), where ǫ = 0, 1. It
follows that suppH χ

ǫ = (iǫ × 1)−1((Hθ × 1)(ΓpX )), and this closed subset is
determined by those points (x, u) ∈X satisfying hθ(x, u) = ǫ. In other words,
suppH χ

ǫ = Dǫ.

Lemma 9.7. There is an invertible regular function λ on U such that

H
χ
0 = can ◦ 〈λ〉 + j ◦ Φ′

0

and

H
χ
1 = j ◦ Φ1,

where Φ′
0,Φ1 ∈ C̃ork(U,X \ Z) and 〈λ〉 ∈ K

MW
0 (U).
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Proof. By Lemmas 9.4 and 9.6 we have suppH
χ
0 = ∆(U) ∐ D ′

0, where D ′
0 ⊆

X \ Z . By Lemma 2.4 we may therefore write H
χ
0 = α + β where α ∈

C̃ork(U,X) is supported on ∆(U) and β ∈ C̃ork(U,X) is supported on D ′
0.

Since suppβ = D ′
0 ⊆ X \Z , Corollary 2.6 ensures that there exists a unique

finite MW-correspondence Φ′
0 ∈ C̃ork(U,X \ Z) such that j ◦ Φ′

0 = β. Hence

H
χ
0 is of the form H

χ
0 = α + j ◦ Φ′

0 for Φ′
0 ∈ C̃ork(U,X \ Z). The same

reasoning shows that, since suppH
χ
1 = D1 ⊆ X \Z , there is a unique MW-

correspondence Φ1 ∈ C̃ork(U,X \ Z) such that H
χ
1 = j ◦ Φ1.

It therefore only remains to understand the finite MW-correspondence α ∈

C̃H
dX

∆(U)(U ×X,ωX). Recall that, by definition,

H
χ
0 = (i0 × 1)∗(Hθ × 1)∗(ΓpX )∗(〈1〉).

Let i∆(U) and iD0 denote the respective inclusions i∆(U) : ∆(U) ⊆ X and
iD0 : D0 ⊆X . The base change formula [CF17, Proposition 3.2] applied to the
pullback square

(∆(U) ∐D ′
0)×X X ×X

U ×X A
1 × U ×X

iD0
×1

Hθ|D0
×1 Hθ×1

i0×1

reveals that α = (Hθ|∆(U) × 1)∗(i∆(U) × 1)∗(ΓpX )∗(〈1〉). Using that ∆: U →
X is an isomorphism onto its image and that Hθ|∆(U) : ∆(U) → U is an
isomorphism, we may write α = (∆ × 1)∗(ΓpX )∗(〈1〉). Next, consider the
pullback diagram

U X

U ×X X ×X.

∆

Γcan ΓpX

∆×1

Using base change once more, we obtain α = (Γcan)∗∆
∗(〈1〉). Comparing this

expression with the definition γ̃can := (Γcan)∗(〈1〉) of γ̃can, we see that two
possibly different trivializations of the line bundle ωU are involved. Letting
λ ∈ k[U ]× be the fraction of these two trivializations, it follows that α =
γ̃can ◦ 〈λ〉.

Proof of Theorem 9.1. In the notation of Lemma 9.7, define Hθ := H
χ
θ ◦〈λ

−1〉
and Φ := (Φ1−Φ′

0) ◦ 〈λ
−1〉. By Lemma 9.7, Hθ provides a homotopy can ∼A1

j ◦ Φ.

10 Nisnevich excision

The setting of this section is as follows. Suppose that X,X ′ ∈ Smk are
smooth affine k-schemes such that there is an elementary distinguished Nis-
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nevich square

V ′ X ′

V X.

Π (10.1)

Define the closed subschemes S := (X \V )red ⊆ X and S′ := (X ′ \V ′)red ⊆ X
′.

Let x ∈ S and x′ ∈ S′ be two points satisfying Π(x′) = x. Moreover, we set
U := Spec(OX,x) and U

′ := Spec(OX′,x′). Let can: U → X and can′ : U ′ → X ′

be the canonical inclusions and let π := Π|U ′ : U ′ → U . We can summarize the
situation with the following diagram:

V ′ X ′ U ′

V X U.

Π

can′

π

can

(10.2)

The main result of this section is the following excision theorem for Nisnevich
squares.

Theorem 10.1 (Nisnevich excision). Let F be a homotopy invariant presheaf

on C̃ork. Given any elementary distinguished Nisnevich square as (10.1), sup-
pose in addition that the closed subscheme S is smooth over k. Then the induced
morphism

π∗ :
F (U \ S)

F (U)
→

F (U ′ \ S′)

F (U ′)

is an isomorphism.

The proof of Theorem 10.1 relies on the two following results, establishing
respectively injectivity and surjectivity of π∗:

Theorem 10.2 (Injectivity of Nisnevich excision). With the notations in (10.2),

there exist finite MW-correspondences Φ ∈ C̃or
pr

k ((U,U \ S), (X ′, X ′ \ S′)) and

Θ ∈ C̃or
pr

k ((U,U \ S), (X \ S,X \ S)) such that

Π ◦ Φ− jX ◦Θ = can

in hC̃or
pr

k ((U,U \ S), (X,X \ S)). Here jX : (X \ S,X \ S) →֒ (X,X \ S) is the
inclusion.

Theorem 10.3 (Surjectivity of Nisnevich excision). With the notations in
(10.2), assume in addition that S is smooth over k. Then there exist finite MW-

correspondences Ψ ∈ C̃or
pr

k ((U,U \ S), (X ′, X ′ \ S′)) and Ξ ∈ C̃or
pr

k ((U ′, U ′ \
S′), (X ′ \ S′, X ′ \ S′)) such that

Ψ ◦ π − jX′ ◦ Ξ = can′

in hC̃or
pr

k ((U ′, U ′\S′), (X ′, X ′\S′)). Here jX′ : (X ′\S′, X ′\S′) →֒ (X ′, X ′\S′)
is the inclusion.
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Assuming Theorems 10.2 and 10.3, Theorem 10.1 now follows:

Proof of Theorem 10.1. Let F be a homotopy invariant presheaf with MW-
transfers. First, note that Theorem 9.1 implies that the restriction maps
F (U) → F (U \ S) and F (U ′) → F (U ′ \ S′) are injective. Indeed, suppose
that sx ∈ F (U) maps to 0 in F (U \S). We may assume that sx is represented
by a section s ∈ F (W ) for some Zariski open neighborhood W of x, such that
s|W\S = 0. But then sx = 0 by Corollary 9.2. Hence F (U) → F (U \ S) is
injective. It follows similarly that F (U ′)→ F (U ′ \ S′) is injective.
Now, as the MW-correspondence Θ of Theorem 10.2 maps to (X \ S,X \ S),
jX ◦Θ induces the trivial map

(jX ◦Θ)∗ = 0:
F (X \ S)

F (X)
→

F (U \ S)

F (U)
.

Hence Φ∗ ◦Π∗ = can∗. Similarly, Ξ∗ = 0 and hence π∗ ◦Ψ∗ = (can′)∗. We use
this to show that π∗ is an isomorphism.
To show that π∗ is injective, let us assume that sx ∈ F (U \S)/F (U) is a germ
such that π∗(sx) = 0. As

F (U \ S)

F (U)
= lim
−→
W∋x

F (W \ S)

F (W )
,

we may assume that sx is represented by a section s ∈ F (W \ S)/F (W )
for some affine k-smooth Zariski open neighborhood W of x. Thus s is a
section satisfying can∗(s) = sx and π∗(sx) = 0. Now, since π∗(sx) = 0 in
F (U ′ \ S′)/F (U ′), there is some affine k-smooth Zariski open neighborhood
W ′ of x′ in X ′×XW such that Π∗(s)|W ′ = 0. ReplacingX byW and X ′ byW ′,
we may then apply Theorem 10.2 to obtain a finite MW-correspondence Φ ∈
C̃ork(U,X

′) such that Φ∗◦Π∗ = can∗. But then sx = can∗(s) = Φ∗(Π∗(s)) = 0.
Hence π∗ is injective.
To show surjectivity, let s′x′ ∈ F (U ′ \ S′)/F (U ′). Similarly as above, we
may assume that s′x′ is represented by a section s′ ∈ F (X ′ \ S′)/F (X ′), i.e.,
(can′)∗(s′) = s′x′ . By Theorem 10.3, there is a finite MW-correspondence Ψ ∈

C̃ork(U,X
′) such that π∗ ◦ Ψ∗ = (can′)∗. We then have s′x′ = (can′)∗(s′) =

π∗(Ψ∗(s′)), and thus π∗ is surjective.

We proceed to prove Theorems 10.2 and 10.3.

11 Injectivity of Nisnevich excision

In this section we aim to prove Theorem 10.2. As preparation, we need to
perform a shrinking process similar to that in Section 9. By [GP18, Lemma 9.4],
there is a Zariski open subscheme X◦ ⊆ X along with an almost elementary
fibration q : X◦ → B such that ωB/k ∼= OB and ωX◦/k

∼= OX◦ . By [GP18, §9]
we may replace X by X◦ and X ′ by Π−1(X◦). We regard X ′ as a B-scheme
via the map q ◦Π.
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Let ∆ denote the morphism ∆ := (id, can): U → U ×B X , and let pX and
pA1×U denote the projections from A

1 ×U ×B X onto X respectively A
1 ×U .

Proposition 11.1 ([GP18, Proposition 9.9]). Let θ be the coordinate of A1.
There exists a function hθ ∈ k[A

1×U ×BX ] such that the following properties
hold for the functions hθ, h0 := hθ|0×U×BX and h1 := hθ|1×U×BX :

(a) The morphism Hθ := (pA1×U , hθ) : A
1×U×BX → A

1×U×A
1 is finite

and surjective. Letting Zθ := h−1
θ (0) ⊆ A

1 × U ×B X, it follows that Zθ
is finite, surjective and flat over A

1 × U .

(b) Let Z0 := h−1
0 (0) ⊆ U ×B X. Then there is the equality of schemes

Z0 = ∆(U) ∐G, where G ⊆ U ×B (X \ S).

(c) The closed subscheme V((idU ×Π)
∗(h1)) ⊆ U×BX

′ is a disjoint union of
two closed subschemes Z ′

1∐Z
′
2. Moreover, the map (idU ×Π)|Z′

1
identifies

Z ′
1 with Z1 := h−1

1 (0).

U ×B X
′ U ×B X A

1

Z ′
1 Z1 = V(h1)

1×Π h1

∼=

(d) We have Zθ ∩ (A1 × (U \ x)×B X) ⊆ A
1 × (U \ x)×B (X \ x).

Corollary 11.2 ([GP18, Remark 9.10]). We have the following inclusions:

(1) Zθ ∩ (A1 × (U \ S)×B X) ⊆ A
1 × (U \ S)×B X \ S.

(2) Z0 ∩ ((U \ S)×B X) ⊆ (U \ S)×B (X \ S).

(3) Z1 ∩ ((U \ S)×B X) ⊆ (U \ S)×B (X \ S).

(4) Z ′
1 ∩ ((U \ S)×B X

′) ⊆ (U \ S)×B (X ′ \ S′).

Definition 11.3. Choose a trivialization χ of ωHθ×1. We define H
χ
θ ∈

C̃ork(A
1 × U,X) as the image of the projection pX ∈ C̃H

dX

ΓpX
(A1 × U ×B

X ×X,ωX) under the composition

C̃H
dX

ΓpX
(A1 × U ×B X ×X,ωX)

∼=
−→ C̃H

dX

ΓpX
(A1 × U ×B X ×X,ωHθ×1 ⊗ ωX)

(Hθ×1)∗
−−−−−→ C̃H

dX

(Hθ×1)(ΓpX
)(A

1 × U ×A
1 ×X,ωX)

(1×i0×1)∗

−−−−−−−→ C̃H
dX

T (A1 × U ×X,ωX),

where dX := dimX , T := (1 × i0 × 1)−1((Hθ × 1)(ΓpX )), and where the first
isomorphism is induced by χ.
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Lemma 11.4. The finite MW-correspondence H
χ
θ is supported on Zθ. More-

over, for ǫ = 0, 1 we have suppH χ
ǫ = Zǫ (where H χ

ǫ := H
χ
θ ◦ iǫ).

Proof. Let T denote the support of H
χ
θ . As indicated in Definition 11.3 we

have T = (1×i0×1)
−1((Hθ×1)(ΓpX )). By the same argument as in Lemma 9.6,

Hθ × 1 injects ΓpX onto its image, hence (Hθ × 1)(ΓpX ) ∼= A
1×U ×BX . Thus

T consists of those points (t, u, x) ∈ A
1×U ×BX such that hθ(t, u, x) = 0, i.e.,

T = Zθ.
Turning to the support of H χ

ǫ , note that H χ
ǫ is the image of pX under the

map

C̃H
dX

ΓpX
(A1 × U ×B X ×X,ωX)→ C̃H

dX

suppH
χ
ǫ
(ǫ × U ×X,ωX)

given as the composition (iǫ × 1)∗ ◦ (1 × i0 × 1)∗ ◦ (Hθ × 1)∗. By the same
reasoning as above, pulling back along iǫ × 1 amounts to substituting θ = ǫ in
hθ, which yields the desired result.

Lemma 11.5. There are finite MW-correspondences Θ ∈ C̃ork(U,X \ S) and

Φ ∈ C̃ork(U,X
′) along with an invertible regular function λ on U such that

H
χ
0 = can ◦ 〈λ〉+ jX ◦Θ and H

χ
1 = Π ◦ Φ.

Proof. By Proposition 11.1 (b), we can write H
χ
0 = α + Θ′, where Θ′ ∈

C̃ork(U,X) is supported on G and α ∈ C̃ork(U,X) is supported on ∆(U).
Using Proposition 11.1 (b), Lemma 2.5 ensures that there is a unique finite

MW-correspondence Θ ∈ C̃ork(U,X \ S) such that Θ′ = jX ◦ Θ. We proceed
similarly for H

χ
1 : by Proposition 11.1 (c), the pullback

(1 ×Π)∗(H χ
1 ) ∈ C̃H

dX

(1×Π)−1(Z1)(U ×X
′, ωX′)

is supported on Z ′
1 ∐ Z

′
2, and (1 × Π)|Z′

1
is an isomorphism from Z ′

1 onto Z1.
It follows that we have an isomorphism

(1×Π)∗ : C̃H
dX

Z′

1
(U ×X ′, ωX′)

∼=
−→ C̃H

dX

Z1
(U ×X,ωX).

Hence Φ := (1 × Π)−1
∗ (H χ

1 ) = (1 × Π)∗(H χ
1 ) ∈ C̃ork(U,X

′) satisfies Π ◦ Φ =
H

χ
1 .

It remains to show that α = can ◦ 〈λ〉, the proof of which being similar as in
the proof of Lemma 9.7. As

(1× i0 × 1) ◦ (i0 × 1) = (i0 × 1× i0 × 1): U ×X → A
1 × U ×A

1 ×X,

we can write H
χ
0 = (i0 × 1 × i0 × 1)∗(Hθ × 1)∗(ΓpX )∗(〈1〉). Using the base

change formula twice as in Lemma 9.7, we find that

α = (Hθ|∆(U) × 1)∗(i∆(U) × 1)∗(ΓpX )∗(〈1〉) = (Γcan)∗(〈1〉) ◦ 〈λ〉 = γ̃can ◦ 〈λ〉,

where λ ∈ k[U ]× is the fraction of two trivializations of ωU , and i∆(U) : ∆(U) →֒
U ×B X is the inclusion.
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Lemma 11.6. Let jU : U \ S →֒ U , jX : X \ S →֒ X and jX′ : X ′ \ S′ →֒ X ′

denote the inclusions, and set:

H
χ,S
θ := (1× jU × jX)∗(H χ

θ ) ∈ C̃ork(A
1 × (U \ S), X \ S).

ΦS := (jU × jX′)∗(Φ) ∈ C̃ork(U \ S,X
′ \ S′).

ΘS := (jU × 1)∗(Θ) ∈ C̃ork(U \ S,X \ S).

Then we have:

(H χ
θ ,H

χ,S
θ ) ∈ C̃or

pr

k (A1 × (U,U \ S), (X,X \ S)).

(Φ,ΦS) ∈ C̃or
pr

k ((U,U \ S), (X ′, X ′ \ S′)).

(Θ,ΘS) ∈ C̃or
pr

k ((U,U \ S), (X \ S,X \ S)).

Proof. In light of Corollary 11.2, this follows from Lemma 2.7.

Proof of Theorem 10.2. Replacing H
χ
θ , Θ and Φ by the respective precompo-

sitions with 〈λ−1〉, it follows from Lemmas 11.5 and 11.6 that we have the
identity

Π ◦ Φ− jX ◦Θ = can

in hC̃or
pr

k .

12 Surjectivity of Nisnevich excision

We proceed to prove Theorem 10.3. In this section, the closed subscheme
S ⊆ X is assumed to be smooth over k. Performing a similar shrinking process
as in Section 11, we may assume that there is an almost elementary fibration
q : X → B such that ωB/k ∼= OB and ωX/k ∼= OX . Since Π is étale, it follows
that ωX′/k

∼= OX′ .
Let ∆′ := (id, can′) : U ′ → U ′ ×B X ′, and let pX′ and pA1×U ′ denote the
projections from A

1 × U ′ ×B X
′ to X ′ respectively A

1 × U ′. First we recall
the following fact from [GP18]:

Proposition 12.1 ([GP18, Proposition 11.6]). Let A
1 have coordinate θ.

There exist functions F ∈ k[U × X ′] and h′θ ∈ k[A1 × U ′ ×B X ′] such that
the following properties hold for the functions F , h′θ, h

′
0 := h′θ|0×U ′×BX′ , and

h′1 := h′θ|1×U ′×BX′ :

(a) The morphism H ′
θ := (pA1×U ′ , h′θ) : A

1 × U ′ ×B X
′ → A

1 × U ′ ×A
1 is

finite and surjective. Letting Z ′
θ := (h′θ)

−1(0) ⊆ A
1×U ′×BX

′, it follows
that Z ′

θ is finite, surjective and flat over A
1 × U ′.

(b) Let Z ′
0 := (h′0)

−1(0). Then there is the equality of schemes Z ′
0 = ∆′(U ′)∐

G′, where G′ ⊆ U ′ ×B (X ′ \ S′).

(c) h′1 = (π × idX′)∗(F ). We write Z ′
1 := (h′1)

−1(0).
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(d) Z ′
θ ∩ (A1 × (U ′ \ S′)×B X

′) ⊆ A
1 × (U ′ \ S′)×B (X ′ \ S′).

(e) The morphism (prU , F ) : U×X
′ → U×A1 is finite and surjective. Letting

Z1 := F−1(0), it follows that Z1 is finite and surjective over U .

(f) Z1 ∩ ((U \ S)×X ′) ⊆ (U \ S)× (X ′ \ S′).

Corollary 12.2 ([GP18, Remark 11.7]). We have the following inclusions:

(1) Z ′
θ ∩ (A1 × (U ′ \ S′)×B X

′) ⊆ A
1 × (U ′ \ S′)×B (X ′ \ S′).

(2) Z ′
0 ∩ ((U ′ \ S′)×B X

′) ⊆ (U ′ \ S′)×B (X ′ \ S′).

(3) Z ′
1 ∩ ((U ′ \ S′)×B X

′) ⊆ (U ′ \ S′)×B (X ′ \ S′).

(4) Z1 ∩ ((U \ S)×X ′) ⊆ (U \ S)× (X ′ \ S′).

Definition 12.3. Choose a trivialization χ of ωH′

θ
×1. We define H

χ
θ ∈

C̃ork(A
1 × U ′, X ′) as the image of the projection pX′ ∈ C̃H

dX

Γp
X′

(A1 × U ′ ×B

X ′ ×X ′, ωX′) under the composition

C̃H
dX

Γp
X′

(A1 × U ′ ×B X
′ ×X ′, ωX′)

∼=
−→ C̃H

dX

Γp
X′

(A1 × U ′ ×B X
′ ×X ′, ωH′

θ
×1 ⊗ ωX′)

(H′

θ×1)∗
−−−−−→ C̃H

dX

(H′

θ
×1)(Γp

X′
)(A

1 × U ′ ×A
1 ×X ′, ωX′)

(1×i0×1)∗

−−−−−−−→ C̃H
dX

T ′ (A1 × U ′ ×X ′, ωX′),

where T ′ := (1× i0× 1)−1((H ′
θ × 1)(ΓpX′

)), and where the first isomorphism is
induced by χ′.

The same argument as in Lemma 11.4 readily yields:

Lemma 12.4. The finite MW-correspondence H
χ
θ is supported on Z ′

θ. More-
over, for ǫ = 0, 1 we have suppH χ

ǫ = Z ′
ǫ (where, as usual, H χ

ǫ := H
χ
θ ◦ iǫ).

Lemma 12.5. There are finite MW-correspondences Ψ′ ∈ C̃ork(U,X
′) and Ξ ∈

C̃ork(U
′, X ′ \ S′) along with an invertible regular function λ′ on U ′ such that

H
χ
0 = can′ ◦ 〈λ′〉+ jX′ ◦ Ξ and H

χ
1 = Ψ′ ◦ π.

Proof. The claim about H
χ
0 follows from an identical argument as in the proof

of Lemma 11.5 by using Proposition 12.1 (b), so let us turn our attention to
H

χ
1 . By Proposition 12.1 (c), the morphism π × 1 identifies Z ′

1 with Z1. By
étale excision [CF17, Lemma 3.7], π × 1 induces an isomorphism

(π × 1)∗ : C̃H
dX

Z1
(U ×X ′, ωX′)

∼=
−→ C̃H

dX

Z′

1
(U ′ ×X ′, ωX′).

Arguing similarly to the proof of Lemma 11.5, it follows that there exists a

unique element Ψ′ ∈ C̃H
dX

Z′

1
(U ′ × X ′, ωX′) ⊆ C̃ork(U

′, X ′) such that H
χ
1 =

Ψ′ ◦ π.

Documenta Mathematica 24 (2019) 2339–2379
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Let us check also that the finite MW-correspondences constructed above are in
fact morphisms of pairs:

Lemma 12.6. Let jU ′ : U ′ \ S′ →֒ U ′ denote the inclusion, and define:

H
χ,S′

θ := (1× jU ′ × jX′)∗(H χ
θ ) ∈ C̃ork(A

1 × (U ′ \ S′), X ′ \ S′).

ΨS
′

:= (jU × jX′)∗(Ψ) ∈ C̃ork(U \ S,X
′ \ S′).

ΞS
′

:= (jU ′ × 1)∗(Ξ) ∈ C̃ork(U
′ \ S′, X ′ \ S′).

Then

(H χ
θ ,H

χ,S′

θ ) ∈ C̃or
pr

k (A1 × (U ′, U ′ \ S′), (X ′, X ′ \ S′)).

(Ψ,ΨS
′

) ∈ C̃or
pr

k ((U,U \ S), (X ′, X ′ \ S′)).

(Ξ,ΞS
′

) ∈ C̃or
pr

k ((U ′, U ′ \ S′), (X ′ \ S′, X ′ \ S′)).

Proof. By Corollary 12.2, the supports of the given MW-correspondences sat-
isfy the hypothesis of Lemma 2.7.

We are almost in position to prove Theorem 10.3. However, as opposed to the
situation in Section 11 we cannot immediately precompose the homotopy H

χ
θ

of Definition 12.3 with 〈(λ′)−1〉 and obtain a homotopy of the desired form. In
order to remedy this, we need the following lemma (see also [Dru18, Proof of
Proposition 6.7]):

Lemma 12.7. Let X, S, U and can be as in Theorem 10.1, and suppose that
λ ∈ k[U ]× is an invertible regular function satisfying λ|U∩S = 1. Then

can ◦ 〈λ〉 ∼A1 can ∈ C̃or
pr

k ((U,U \ S), (X,X \ S)).

Proof. The germ λ is represented by an invertible section µ on some smooth
affine Zariski open neighborhood W of x in X . Moreover, by assumption there
is some affine Zariski open neighborhood W ′ ⊆ W of x such that µ|S∩W ′ = 1.
Replacing X by W ′, we may assume that µ is an invertible regular function on
the smooth affine k-scheme X satisfying µ|S = 1.

Define an étale covering Π: X ′ → X by letting X ′ := Spec(k[X ][t]/(t2 − µ)).
Consider the closed subscheme S′ := Spec(k[S][t]/(t− 1)) of X ′. As Π induces

an isomorphism S′
∼=
−→ S, it follows that we have an elementary distinguished

Nisnevich square

X ′ \ S′ X ′

X \ S X.

Π
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Thus Theorem 10.2 provides us with a finite MW-correspondence Φ ∈
C̃ork(U,X

′) such that Π ◦ Φ ∼A1 can as correspondences of pairs. But then

can ◦ 〈λ〉 = 〈µ〉 ◦ can

∼A1 〈µ〉 ◦Π ◦ Φ

= Π ◦ 〈Π∗(µ)〉 ◦ Φ

= Π ◦ 〈t2〉 ◦ Φ

= Π ◦ Φ ∼A1 can,

where we have used the left and right actions of K
MW
0 on finite MW-

correspondences [CF17, Example 4.14], along with the fact that 〈a2〉 = 1 in
KMW

0 .

Proof of Theorem 10.3. Using that k(x) ∼= k(x′), we can find an invertible
regular function ν on U such that π∗(ν)(x′) = λ′(x′)−1. Then put

Hθ := H
χ
θ ◦ 〈π

∗(ν)〉

and

Ψ := Ψ′ ◦ 〈ν〉.

By Lemmas 12.5 and 12.6, Hθ provides a homotopy of correspondences of pairs

can′ ◦ 〈λ′ · π∗(ν)〉 ∼A1 Ψ′ ◦ π ◦ 〈π∗(ν)〉 = Ψ′ ◦ 〈ν〉 ◦ π = Ψ ◦ π.

We conclude by noting that can′ ◦ 〈λ′ · π∗(ν)〉 ∼A1 can′ by Lemma 12.7.

13 Homotopy invariance

In this section we show, following [GP18, Proof of Theorem 2.1] and [Dru14],
how homotopy invariance of the sheaves FZar and FNis follows from the ex-
cision theorems along with injectivity for local schemes. Throughout this
section F will denote a homotopy invariant presheaf with MW-transfers,
and X ∈ Smk will denote a smooth irreducible k-scheme with generic point
η : Spec(k(X))→ X . Write K := k(X) for the function field of X .
In this section, the field k is assumed to be of characteristic 0.

Homotopy invariance of FZar

Below we will use Zariski excision along with injectivity for local schemes to
show homotopy invariance of the Zariski sheaf FZar associated to F . Let
x ∈ X be a closed point of X . We may write F (Spec(OX,x)) or F (OX,x) for
the stalk Fx of F at x in the Zariski topology.

Lemma 13.1. The natural map η∗ : F (OX,x)→ F (K) is injective.

Documenta Mathematica 24 (2019) 2339–2379
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Proof. For U := Spec(OX,x) we have F (U) = lim
−→V ∋x

F (V ), and F (K) =

lim
−→W 6=∅

F (W ). Let sx ∈ F (OX,x) be a germ mapping to 0 in F (K). This

means that there is some nonempty open W ⊆ X such that s|W = 0. If x ∈ W
then sx = 0 in F (OX,x) and we are done. So suppose that x 6∈ W , and
let Z denote the closed complement of W in X . Then s|X\Z = 0, and thus
Corollary 9.2 applies, yielding sx = 0 in F (OX,x).

Corollary 13.2. The map η∗ : FZar(X)→ FZar(K) is injective.

Proof. Suppose that s ∈ FZar(X) maps to 0 in FZar(K). By Lemma 13.1, the
germs sx ∈ Fx of s vanish at all closed points of X , which yields s = 0.

Corollary 13.3. For any nonempty open subscheme i : V →֒ X, the map
i∗ : FZar(X)→ FZar(V ) is injective.

Proof. We know that K = k(V ), hence Corollary 13.2 ensures that there are
injections FZar(X) →֒ F (K) and FZar(V ) →֒ F (K) induced by the generic
point. Since FZar(X) →֒ F (K) factors through FZar(V ), the result follows.

For the next lemma we will need to pass to the presheaf FX on C̃or
X

K , defined
in Section 8.

Lemma 13.4. Let x be a closed point in A
1
K , and write Ux := Spec(OA1

K
,x) for

its local scheme. Then the restriction map

FX(A1
K \ x)

FX(A1
K)

∼=
−→

FX(Ux \ x)

FX(Ux)

is an isomorphism.

Proof. We have
FX(Ux \ x)

FX(Ux)
= lim
−→
W∋x

FX(W \ x)

FX(W )
,

and so Zariski excision on A
1
K (Lemma 8.10) applied to the pair x ∈W ⊆ A

1
K

yields an isomorphism

FX(A1
K \ x)

FX(A1
K)

∼=
−→

FX(W \ x)

FX(W )
.

The isomorphism is given by the pullback along the inclusion, so it is compatible
with the transition maps in the directed system. It follows that the natural
map from FX(A1

K \ x)/F
X(A1

K) to the colimit FX(Ux \ x)/F
X(Ux) is an

isomorphism.

Lemma 13.5. The sheafification map ψ : FX(A1
K)→ FX

Zar(A
1
K) is an isomor-

phism.
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Proof. Let ξ be the generic point of A1
K . Since stalks remain the same after

sheafification, the commutative diagram

FX(K) FX(A1
K)

FX
Zar(A

1
K)

FX
Zar(K)

∼=

p∗

∼=

ψ

i∗0

(in which p∗ is an isomorphism by Remark 8.6) shows that ψ is injective. It
remains to show surjectivity.
Let s ∈ FX

Zar(A
1
K) be a section, mapping to the germ sξ ∈ FX

ξ at the

generic point ξ of A
1
K under the morphism ξ∗ : FX

Zar(A
1
K) → FX

ξ . As

FX
ξ = lim

−→V⊆A1
K

FX(V ), we can find a nonempty Zariski open V ⊆ A
1
K and

a section s′ ∈ FX(V ) such that ψ(s′) = s|V ∈ FX
Zar(V ). Thus s′v = sv for any

v ∈ V . The idea from here is to extend the section s′ ∈ FX(V ) to a global
section s′′ ∈ FX(A1

K).
We may assume that V = A

1
K \ x, where x is a closed point. Indeed, the

general case follows by induction since V is then the complement of finitely
many closed points. For Ux := Spec(OA1

K
,x), the commutative diagram

Ux \ x A
1
K \ x

Ux A
1
K

induces a commutative diagram

FX(V )

FX(A1
K)

FX(Ux \ x)

FX(Ux)

FX(V ) FX(Ux \ x) = FX
ξ

FX(A1
K) FX(Ux).

∼=

Here the upper horizontal arrow is an isomorphism by Lemma 13.4. Moreover,
note that FX(Ux \ x) and FX(Ux) are both stalks, as FX(Ux \ x) = FX

ξ .
Thus we have the isomorphism

FX(Ux \ x)

FX(Ux)
∼=

FX
Zar(Ux \ x)

FX
Zar(Ux)

.
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We want to lift s′ ∈ FX(V ) to FX(A1
K), which is possible if and only if

s′ maps to 0 in the cokernel of the map FX(A1
K) → FX(V ). But s′ maps

to sξ under the map FX(V ) → FX(Ux \ x) by the choice of s′. Moreover,
sξ ∈ FX

ξ is the image of the germ sx ∈ FX(Ux) of s at x. Hence sξ vanishes

in FX(Ux \ x)/F
X(Ux). By the excision isomorphism we conclude that s′

vanishes in FX(V )/FX(A1
K), and hence there is a section s′′ ∈ FX(A1

K)
such that s′′|V = s′.
Finally, we need to check that s′′ ∈ FX(A1

K) maps to s under the morphism
ψ : FX(A1

K) → FX
Zar(A

1
K). It suffices to show that the germs of s′′ and s

coincide at every point ofA1
K . For the points v ∈ V we know that s|V = ψ(s′) =

ψ(s′′|V ), so it remains to check that s′′x = sx in FX(Ux). By Lemma 13.1 we
have an injection

ξ∗ : F
X(Ux) →֒ F

X
ξ .

Since ξ∗(sx) = ξ∗(s′′x) = sξ, we conclude that s′′x = sx.

Theorem 13.6. If F ∈ P̃Sh(k) is a homotopy invariant presheaf with MW-
transfers, then FZar is homotopy invariant.

Proof. Let i0 be the zero section i0 : X → X×A1, and write K for the function
field k(X) of X . We then have p ◦ i0 = idX , where p : X × A

1 → X is the
projection. Hence the induced map i∗0 : FZar(X × A

1) → FZar(X) is split
surjective, and it remains to show that i∗0 is injective. Consider the commutative
diagram

FZar(X ×A
1) FZar(A

1
K) FX

Zar(A
1
K)

FZar(X) FZar(K) FX
Zar(K),

(η×1)∗

i∗0 i∗0 (iX0 )∗

η∗

where the right hand vertical map is the map on FX
Zar induced by the zero

section. The homomorphisms η∗ and (η×1)∗ are injective by Corollary 13.2 and
Corollary 13.3, respectively. Now, notice that (iX0 )∗ = i∗0 by the definition of the
presheaf FX . Hence the right hand square is commutative, and thus it suffices
to show that the map i∗0 : FX

Zar(A
1
K)→ FX

Zar(K) is injective. Using Lemma 13.5
along with homotopy invariance of the presheaf FX (see Remark 8.6) we find

F
X
Zar(A

1
K) ∼= F

X(A1
K) ∼= F

X(K) = F
X
Zar(K).

Hence the right hand vertical map is an isomorphism. We conclude that
i∗0 : FZar(X ×A

1)→ FZar(X) is injective.

Homotopy invariance of FNis

We proceed to prove homotopy invariance of the associated Nisnevich sheaf
FNis, the proof being similar to the one for Zariski sheafification using Nisnevich
excision. If A is a local ring, let Ah denote the henselization of A. We may write
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F (Spec(OhX,x)) or F (OhX,x) for the stalk of F at x in the Nisnevich topology.

Thus F (OhX,x) = lim
−→V

F (V ), where the colimit runs over the filtered system
of étale neighborhoods of x in X , i.e., étale morphisms p : V → X such that
p−1(x) ∼= x.

Lemma 13.7. For Uhx := Spec(OhX,x), the natural map F (Uhx )→ F (k(Uhx )) is
injective.

Proof. Suppose that s ∈ F (Uhx ) maps to 0 in F (k(Uhx )). This means that
there is some étale neighborhood p : W → X such that s|W = 0. Replacing
W by its open image, we may assume that W ⊆ X . Let Z be the closed
complement of W in X . If x ∈ W then s = 0 in F (Uhx ); if not then x ∈ Z,
and thus Corollary 9.2 shows that s|V = 0 for some Zariski neighborhood V of
x. Since V is also an étale neighboorhood, it follows that s = 0 in F (Uhx ).

The next two corollaries follow from Lemma 13.7 similarly to the Zariski case.

Corollary 13.8. The map η∗ : FNis(X)→ FNis(K) is injective.

Corollary 13.9. For any nonempty open subscheme i : V →֒ X, the map
i∗ : FNis(X)→ FNis(V ) is injective.

Lemma 13.10. Let x be a closed point in A
1
K . Write Ux := Spec(OA1

K
,x) and

Uhx := Spec(Oh
A1

K
,x
). Then there is a natural isomorphism

FX(Ux \ x)

FX(Ux)

∼=
−→

FX(Uhx \ x)

FX(Uhx )
.

Proof. We have

FX(Uhx \ x)

FX(Uhx )
= lim
−→

W→A1
K

FX(W \ x)

FX(W )

= lim
−→

W→A1
K

lim
−→

W ′⊆W

FX(W ′ \ x)

FX(W ′)

= lim
−→

W→A1
K

FX(Spec(OW,x) \ x)

FX(Spec(OW,x))

∼=
−→ lim

−→
W→A1

K

FX(Ux \ x)

FX(Ux)
=

FX(Ux \ x)

FX(Ux)
.

Here W runs over all étale neighborhoods of x in A
1
K ; W ′ runs over all Zariski

open neighborhoods of x in W ; and the fourth isomorphism is given by Nis-
nevich excision.

Lemma 13.11. The sheafification map ψ : FX(A1
K) → FX

Nis(A
1
K) is an iso-

morphism.
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Proof. Let ξ be the generic point of A1
K . By the same reasoning as in the proof

of Lemma 13.5, the map FX(A1
K)→ FX

Nis(A
1
K) is injective, and it remains to

show surjectivity. Let s ∈ FX
Nis(A

1
K) be a section. Since the stalks FX

ξ and

(FX
Nis)ξ coincide, there exists a Zariski open subscheme V ⊆ A

1
K and a section

s′ ∈ FX(V ) such that ψ(s′) = s|V in FX
Nis(V ). We wish to extend s′ ∈ FX(V )

to a global section s′′ ∈ FX(A1
K). Considering one point at a time, we may

assume that V = A
1
K \ x for some closed point x. Let Ux := Spec(OA1

K
,x) and

Uhx := Spec(Oh
A1

K
,x
). A lift of s′ to a section of FX(A1

K) exists if and only if

s′ maps to 0 in the quotient FX(V )/FX(A1
K). Consider the sequence

FX(V )

FX(A1
K)

∼=
−→

FX(Ux \ x)

FX(Ux)

∼=
−→

FX(Uhx \ x)

FX(Uhx )

∼=
−→

FX
Nis(U

h
x \ x)

FX
Nis(U

h
x )

.

Here the left hand map is an isomorphism by Lemma 13.4; the middle map is
an isomorphism by Lemma 13.10; and the right hand map is an isomorphism
since both FX(Uhx \x) and FX(Uhx ) are stalks in the Nisnevich topology. Thus
it is enough to show that s′ ∈ FX(V ) maps to 0 in FX

Nis(U
h
x \ x)/F

X(Uhx ).
But this follows from the commutativity of the diagram

FX(V ) FX(Uhx \ x)

FX(A1
K) FX(Uhx ).

Hence we can lift s′ to s′′ ∈ FX(A1
K). It remains to check that s′′ maps to

s ∈ FX
Nis(A

1
K). Knowing that ψ(s′′|V ) = s|V ∈ FX

Nis(V ), it remains to show
that s′′x = sx ∈ FX

Nis(U
h
x ) = FX(Uhx ). As FX(Uhx ) injects into FX(Uhx \ x) =

FX(k(Uhx )) by Lemma 13.7, it is sufficient to prove the equality in the latter
stalk. This follows from the commutativity of the above diagram, using that
both s and s′′ map to s|V in FX

Nis(V ).

Theorem 13.12. If F is a homotopy invariant presheaf on C̃ork, then FNis

is also homotopy invariant.

Proof. We must show that the map i∗0 : FNis(X ×A
1)→ FNis(X) induced by

the zero section is injective. As in the proof of Theorem 13.6 we consider the
commutative diagram

FNis(X ×A
1) FX

Nis(A
1
K)

FNis(X) FX
Nis(K).

i∗0

(η×1)∗

i∗0

η∗

The homomorphisms η∗ and (η× 1)∗ are injective by Corollary 13.8 and Corol-
lary 13.9, respectively. Using Lemma 13.11 along with homotopy invariance of
the presheaf FX , we find that the right hand vertical map i∗0 is an isomorphism.
Hence i∗0 : FNis(X ×A

1)→ FNis(X) is injective.
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