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Abstract. Let L/K be a finite Galois extension of number fields
with Galois group G. Let p be an odd prime and r > 1 be an integer.
Assuming a conjecture of Schneider, we formulate a conjecture that
relates special values of equivariant Artin L-series at s = r to the com-
pact support cohomology of the étale p-adic sheaf Zp(r). We show that
our conjecture is essentially equivalent to the p-part of the equivariant
Tamagawa number conjecture for the pair (h0(Spec(L))(r),Z[G]). We
derive from this explicit constraints on the Galois module structure
of Banaszak’s p-adic wild kernels.
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1 Introduction

Let L/K be a finite Galois extension of number fields with Galois group G.
To each finite set S of places of K containing all archimedean places, one can
associate a so-called ‘Stickelberger element’ θS in the center of the complex
group algebra C[G]. This Stickelberger element is defined via L-values at zero
of S-truncated Artin L-functions attached to the (complex) characters of G.
Let us denote the roots of unity of L by µL and the class group of L by clL.
Assume that S contains all finite primes of K that ramify in L/K. Then it was
independently shown in [Bar78], [CN79] and [DR80] that when G is abelian we
have

AnnZ[G](µL)θS ⊆ Z[G], (1.1)
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where we denote by AnnΛ(M) the annihilator ideal of M regarded as a mod-
ule over the ring Λ. Now a conjecture of Brumer asserts that AnnZ[G](µL)θS
annihilates clL.

Using L-values at integers r < 0, one can define higher Stickelberger ele-
ments θS(r). When G is abelian, Coates and Sinnott [CS74] conjectured that
these elements can be used to construct annihilators of the higher K-groups
K−2r(OL,S), where we denote by OL,S the ring of S(L)-integers in L for any
finite set S of places of K; here, we write S(L) for the set of places of L which
lie above those in S. Coates and Sinnott essentially proved a p-adic étale co-
homological version of their conjecture in the case K = Q. First results on the
K-theoretic version are due to Banaszak [Ban92, Ban93] and Nguyen Quang
Do [NQD92]. However if, for example, L is totally real and r is even, these
conjectures merely predict that zero annihilates K−2r(OL,S) if r < 0 and clL
if r = 0.

In the case r = 0, Burns [Bur11] presented a universal theory of refined Stark
conjectures. In particular, the Galois group G may be non-abelian, and he uses
leading terms rather than values of Artin L-functions to construct conjectural
nontrivial annihilators of the class group. His conjecture thereby extends the
aforementioned conjecture of Brumer (we point out that there are different
generalizations of Brumer’s conjecture due to the author [Nic11b] and Dejou
and Roblot [DR14]). Similarly, in the case r < 0 the author [Nic11a] has formu-
lated a conjecture on the annihilation of higher K-groups which generalises the
Coates–Sinnott conjecture and a conjecture of Snaith [Sna06]. More precisely,
using leading terms at negative integers a certain ‘canonical fractional Galois
ideal’ J S

r is defined. It is then conjectured that for every odd prime p and
every x ∈ AnnZp[G](K1−2r(OL,S)tor ⊗Z Zp) one has

NrdQp[G](x) · Hp(G) · J S
r ⊆ AnnZp[G](K−2r(OL,S)⊗Z Zp).

Here, the subscript ‘tor’ refers to the torsion submodule of K1−2r(OL,S), we
denote the reduced norm of any x ∈ Qp[G] by NrdQp[G](x), and Hp(G) denotes
a certain ‘denominator ideal’ (introduced in [Nic10]; see §7.2).
When G is abelian and r = 1, Solomon [Sol08] has defined a certain ideal which
he conjectures to annihilate the p-part of the class group. This has recently
been generalized to arbitrary (finite) Galois groups G by Castillo and Jones
[CJ13]. All these annihilation conjectures are implied by appropriate special
cases of the equivariant Tamagawa number conjecture (ETNC) formulated by
Burns and Flach [BF01].

Now let r > 1 be a positive integer. When L/K is an abelian extension of
totally real fields and r is even, Barrett [Bar09] has defined a ‘Higher Solomon
ideal’ which he conjectures to annihilate the p-adic wild kernel Kw

2r−2(OL,S)p
of Banaszak [Ban93] (see also [NQD92]). There is an analogue on ‘minus parts’
when L/K is an abelian CM-extension and r is odd. Under the same conditions
Barrett and Burns [BB13] have constructed conjectural annihilators of the p-
adic wild kernel via integer values of p-adic Artin L-functions. This approach
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has been further generalized to the non-abelian situation by Burns and Macias
Castillo [BMC14].

In this paper we consider the most general case, where L/K is an arbitrary (not
necessarily abelian or totally real) Galois extension and r > 1 is an arbitrary
integer. Let GL be the absolute Galois group of L. Assuming conjectures of
Gross [Gro05] and of Schneider [Sch79], we define a canonical fractional Galois
ideal J S

r and conjecture that for every x ∈ AnnZp[G](Zp(r−1)GL
) we have that

NrdQp[G](x) · Hp(G) · J S
r ⊆ AnnZp[G](K

w
2r−2(OL,S)p).

Note that the conjectures of Gross and Schneider are known when L is totally
real and r is even (see Theorem 5.2 and Theorem 3.9 below, respectively).
When in addition L/K is abelian, we show that our conjecture is compatible
with that of Barrett.

In order to show that our conjecture is implied by the appropriate special case
of the ETNC, we reformulate the ETNC for the pair h0(Spec(L)(r),Z[G]) in
the spirit of the ‘lifted root number conjecture’ of Gruenberg, Ritter and Weiss
[GRW99] and the ‘leading term conjectures’ of Breuning and Burns [BB07].
Note that the leading term conjecture at s = 1 is equivalent to the ETNC for
the pair h0(Spec(L)(1),Z[G]) when Leopoldt’s conjecture holds (see [BB10]),
and that Schneider’s conjecture is a natural analogue when r > 1. This refor-
mulation is more explicit than the rather involved and general formulation of
Burns and Flach [BF01]. This will actually occupy a large part of the paper
and is interesting in its own right. Moreover, the relation to the ETNC will
lead to a proof of our annihilation conjecture in several important cases.

In a little more detail, we modify the compact support cohomology of the étale
p-adic sheaf Zp(r) such that we obtain a complex which is acyclic outside de-
grees 2 and 3. We show that this complex is a perfect complex of Zp[G]-modules
provided that Schneider’s conjecture holds. Assuming Gross’ conjecture we de-
fine a trivialization of this complex that involves Soulé’s p-adic Chern class
maps [Sou79] and the Bloch–Kato exponential map [BK90]. These data define
a refined Euler characteristic which our conjecture relates to the special val-
ues of the equivariant Artin L-series at s = r and determinants of a certain
regulator map. This relation is expressed as an equality in a relative algebraic
K-group.

This article is organized as follows. In §2 we review the higher QuillenK-theory
of rings of integers in number fields. We discuss its relation to étale cohomology
and introduce Banaszak’s wild kernels. In §3 we prove basic properties of the
compact support cohomology of the étale p-adic sheaf Zp(r), where r > 1 is
an integer. We recall Schneider’s conjecture and provide a reformulation in
terms of Tate–Shafarevich groups (which originates with Barrett [Bar09]). We
then construct the aforementioned complex of Zp[G]-modules which is perfect
when Schneider’s conjecture holds. We recall some background on relative
algebraic K-theory and in particular on refined Euler characteristics in §4.
We state Gross’ conjecture on leading terms of Artin L-functions at negative
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integers in §5 and give a reformulation at positive integers by means of the
functional equation. In §6 we construct a trivialization of our conjecturally
perfect complex and formulate a leading term conjecture at s = r for every
integer r > 1. We show that our conjecture is essentially equivalent to the
ETNC for the pair h0(Spec(L)(r),Z[G]). Finally, in §7 we define the canonical
fractional Galois ideal and give a precise formulation of our conjecture on the
annihilation of p-adic wild kernels. We show that this conjecture is implied by
the leading term conjecture of §6. The relation to the ETNC then implies that
our conjectures hold in several important cases. We also discuss the relation
to a recent conjecture of Burns, Kurihara and Sano [BKS].
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Poland. Finally, the author thanks the anonymous referees for their valuable
suggestions.

Notation and conventions

All rings are assumed to have an identity element and all modules are assumed
to be left modules unless otherwise stated. Unadorned tensor products will
always denote tensor products over Z. If K is a field, we denote its absolute
Galois group by GK . For a module M we write Mtor for its torsion submodule
and set Mtf := M/Mtor which we regard as embedded into Q ⊗M . If R is a
ring, we write Mm×n(R) for the set of all m × n matrices with entries in R.
We denote the group of invertible matrices in Mn×n(R) by GLn(R).

2 Higher K-theory of rings of integers

2.1 The setup

Let L/K be a finite Galois extension of number fields with Galois group G.
We write S∞ for the set of archimedean places of K and let S be a finite set
of places of K containing S∞. We let OL,S be the ring of S(L)-integers in L,
where S(L) denotes the finite set of places of L that lie above a place in S; we
will abbreviate OL,S∞

to OL.
For any place v of K we choose a place w of L above v and write Gw and Iw
for the decomposition group and inertia subgroup of L/K at w, respectively.
We denote the completions of L and K at w and v by Lw and Kv, respectively,
and identify the Galois group of the extension Lw/Kv with Gw. We put Gw :=
Gw/Iw which we identify with the Galois group of the residue field extension
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which we denote by L(w)/K(v). Finally, we let φw ∈ Gw be the Frobenius
automorphism, and we denote the cardinality of K(v) by N(v).

2.2 Higher K-theory

For an integer n ≥ 0 and a ring R we write Kn(R) for the Quillen K-theory
of R. In the case R = OL,S or R = L the groups Kn(OL,S) and Kn(L) are
equipped with a natural G-action and for every integer r > 1 the inclusion
OL,S ⊆ L induces an isomorphism of Z[G]-modules

K2r−1(OL,S) ≃ K2r−1(L). (2.1)

Moreover, if S′ is a second finite set of places of K containing S, then for every
r > 1 there is a natural exact sequence of Z[G]-modules

0 → K2r(OL,S) → K2r(OL,S′) →
⊕

w∈S′(L)\S(L)

K2r−1(L(w)) → 0. (2.2)

Both results, (2.1) and (2.2), follow from work of Soulé [Sou79], see [Wei13,
Chapter V, Theorem 6.8]. We also note that sequence (2.2) remains left-exact
in the case r = 1. The structure of the finite Z[Gw]-modules K2r−1(L(w)) has
been determined by Quillen [Qui72] (see also [Wei13, Chapter IV, Theorem 1.12
and Corollary 1.13]) to be

K2r−1(L(w)) ≃ Z[Gw]/(φw −N(v)r). (2.3)

If S contains all places of K that ramify in L/K, we thus have an isomorphism
of Z[G]-modules

⊕

w∈S′(L)\S(L)

K2r−1(L(w)) ≃
⊕

v∈S′\S

IndGGw
Z[Gw]/(φw −N(v)r), (2.4)

where we write IndGUM := Z[G]⊗Z[U ]M for any subgroup U of G and any Z[U ]-
module M . We also note that the even K-groups K2r(F) of a finite field F all
vanish.

2.3 The regulators of Borel and Beilinson

Let Σ(L) be the set of embeddings of L into the complex numbers C; we then
have |Σ(L)| = r1+2r2, where r1 and r2 are the number of real embeddings and
the number of pairs of complex embeddings of L, respectively. For an integer
k ∈ Z we define

Hk(L) :=
⊕

Σ(L)

(2πi)−kZ

which is endowed with a natural Gal(C/R)-action, diagonally on Σ(L) and on
(2πi)−k. The invariants of Hk(L) under this action will be denoted by H+

k (L),
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and it is easily seen that

dk := rankZ(H
+
1−k(L)) =

{

r1 + r2 if 2 ∤ k
r2 if 2 | k. (2.5)

Let r > 1 be an integer. Borel [Bor74] has shown that the even K-groups
K2r−2(OL) (and thus K2r−2(OL,S) for any S as above by (2.2) and (2.3)) are
finite, and that the odd K-groups K2r−1(OL) are finitely generated abelian
groups of rank dr. More precisely, Borel constructed regulator maps

ρr : K2r−1(OL) → H+
1−r(L)⊗ R (2.6)

with finite kernel. Its image is a full lattice inH+
1−r(L)⊗R. The covolume of this

lattice is called the Borel regulator and will be denoted by Rr(L). Moreover,
Borel showed that

ζ∗L(1 − r)

Rr(L)
∈ Q×, (2.7)

where ζ∗L(1 − r) denotes the leading term at s = 1 − r of the Dedeking zeta
function ζL(s) attached to L.

Remark 2.1. In the context of the ETNC it is often more natural to work
with Beilinson’s regulator map [Bĕı84]. However, by a result of Burgos Gil
[BG02] Borel’s regulator map is twice the regulator map of Beilinson. As we
will eventually work prime by prime and exclude the prime 2, there will be no
essential difference which regulator map we use.

2.4 Derived categories and Galois cohomology

Let Λ be a noetherian ring and PMod(Λ) be the category of all finitely gen-
erated projective Λ-modules. We write D(Λ) for the derived category of Λ-
modules and Cb(PMod(Λ)) for the category of bounded complexes of finitely
generated projective Λ-modules. Recall that a complex of Λ-modules is called
perfect if it is isomorphic in D(Λ) to an element of Cb(PMod(Λ)). We de-
note the full triangulated subcategory of D(Λ) comprising perfect complexes
by Dperf(Λ).
If M is a Λ-module and n is an integer, we write M [n] for the complex

· · · → 0 → 0 →M → 0 → 0 → · · · ,

where M is placed in degree −n. We will also use the following convenient
notation: When t ≥ 1 and n1, . . . , nt are integers, we put

M{n1, . . . , nt} :=

t
⊕

i=1

M [−ni].

Note that M{n} =M [−n] and M{n1, . . . , nt}[n] =M{n1 − n, . . . , nt − n}.
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Recall the notation of §2.1. In particular, L/K is a Galois extension of number
fields with Galois group G. For a finite set S of places of K containing S∞

we let GL,S be the Galois group over L of the maximal extension of L that
is unramified outside S(L). For any topological GL,S-module M we write
RΓ(OL,S,M) for the complex of continuous cochains of GL,S with coefficients
in M . If F is a field and M is a topological GF -module, we likewise define
RΓ(F,M) to be the complex of continuous cochains of GF with coefficients
in M .

If F is a global or a local field of characteristic zero, and M is a discrete
or a compact GF -module, then for r ∈ Z we denote the r-th Tate twist of
M by M(r). Now let p be a prime and suppose that S also contains all p-
adic places of K. Then we will particularly be interested in the complexes
RΓ(OL,S,Zp(r)) in D(Zp[G]). Note that for an integer i the cohomology group
in degree i of RΓ(OL,S ,Zp(r)) naturally identifies with Hi

ét(OL,S ,Zp(r)), the
i-th étale cohomology group of the affine scheme Spec(OL,S) with coefficients
in the étale p-adic sheaf Zp(r).

2.5 p-adic Chern class maps

Fix an odd prime p and assume that S contains S∞ and the set Sp of all p-
adic places of K. Then for any integer r > 1 and i = 1, 2 Soulé [Sou79] has
constructed canonical G-equivariant p-adic Chern class maps

ch
(p)
r,i : K2r−i(OL,S)⊗ Zp → Hi

ét(OL,S ,Zp(r)).

We need the following deep result.

Theorem 2.2 (Quillen–Lichtenbaum Conjecture). Let p be an odd prime.

Then for any integer r > 1 and i = 1, 2 the p-adic Chern class maps ch
(p)
r,i

are isomorphisms.

Proof. Soulé [Sou79] proved surjectivity. Building on work of Rost and Voe-
vodsky, Weibel [Wei09] completed the proof of the Quillen–Lichtenbaum Con-
jecture.

Corollary 2.3. Let r > 1 be an integer and let p be an odd prime. Then we
have isomorphisms of Zp[G]-modules

HiRΓ(OL,S,Zp(r)) ≃ Hi
ét(OL,S,Zp(r)) ≃







K2r−1(OL,S)⊗ Zp if i = 1
K2r−2(OL,S)⊗ Zp if i = 2
0 if i 6= 1, 2

Proof. This follows from Theorem 2.2 and the fact that the Galois group GL,S
has cohomological p-dimension 2 by [NSW08, Proposition 8.3.18].
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2.6 K-theory of local fields

Let p be a prime. For an integer n ≥ 0 and a ring R we write Kn(R;Zp) for the
K-theory of R with coefficients in Zp. Now let p be odd and let w be a finite
place of L. We write Ow for the ring of integers in Lw. If w does not belong
to Sp(L), then for r > 1 and i = 1, 2 we have isomorphisms of Zp[Gw]-modules

K2r−i(Ow ;Zp) ≃ K2r−i(L(w);Zp) ≃ (Qp/Zp(r − i + 1))
GLw .

Here, the first isomorphism is a special case of Gabber’s Rigidity Theo-
rem [Wei13, Chapter IV, Theorem 2.10]. As the even K-groups of a finite
field vanish, the Universal Coefficient Theorem [Wei13, Chapter IV, Theo-
rem 2.5] identifies K2r−i(L(w);Zp) with K2r−1(L(w)) ⊗ Zp if i = 1 and with
K2r−3(L(w))⊗Zp if i = 2. Now (2.3) gives the second isomorphism. Note that
in particular K2r−i(Ow;Zp) is a finite group. We likewise have

H1
ét(Lw,Zp(r)) ≃ H0

ét(Lw,Qp/Zp(r)) = (Qp/Zp(r))
GLw ,

H2
ét(Lw,Zp(r)) ≃ H0

ét(Lw,Qp/Zp(1− r))∨ ≃ (Qp/Zp(r − 1))
GLw ,

where (−)∨ := Hom(−,Qp/Zp) denotes the Pontryagin dual and we have used
local Tate duality (see also [NSW08, Proposition 7.3.10] and the subsequent
remark). This shows the case w 6∈ Sp(L) of the following well-known theorem.
The case w ∈ Sp(L) is another instance of the Quillen–Lichtenbaum Conjecture
and has been proven by Hesselholt and Madsen [HM03].

Theorem 2.4 (Gabber rigidity and Hesselholt-Madsen). Let p be an odd prime
and let w be a finite place of L. Then for any integer r > 1 and i = 1, 2 there
are canonical isomorphisms of Zp[Gw]-modules

K2r−i(Ow;Zp) ≃ Hi
ét(Lw,Zp(r)).

2.7 Wild Kernels

Let p be an odd prime and let S be a finite set of places of K containing
all archimedean and all p-adic places. The following definition is due to Ba-
naszak [Ban93] (a variant has been defined slightly earlier by Nguyen Quang
Do [NQD92]).

Definition 2.5. Let r > 1 be an integer. The kernel of the natural map

K2r−2(OL,S)⊗ Zp →
⊕

w∈S(L)

H2
ét(Lw,Zp(r))

is called the p-adic wild kernel and will be denoted by Kw
2r−2(OL,S)p.

Remark 2.6. This can be described in purely K-theoretic terms as follows. As p
is odd, the cohomology groups H2

ét(Lw,Zp(r)) vanish for archimedean w. Thus
Theorem 2.4 implies that Kw

2r−2(OL,S)p identifies with the kernel of the map

K2r−2(OL,S)⊗ Zp →
⊕

w∈S(L)\S∞(L)

K2r−2(Ow;Zp).
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Remark 2.7. Let S′ be a second finite set of places of K such that S ⊆ S′. As
we have observed in §2.6, we have isomorphisms

K2r−2(Ow ;Zp) ≃ K2r−2(L(w);Zp) ≃ K2r−3(L(w)) ⊗ Zp

for every w ∈ S′(L) \ S(L). Taking sequence (2.2) into account, a diagram
chase shows that the p-adic wild kernel Kw

2r−2(OL,S)p does in fact not depend
on the set S.

3 The conjectures of Leopoldt and Schneider

3.1 Local Galois cohomology

We keep the notation of §2.1. In particular, L/K is a finite Galois extension
of number fields with Galois group G. Let p be an odd prime. We denote the
(finite) set of places of K that ramify in L by Sram and let S be a finite set
of places of K containing Sram and all archimedean and p-adic places (i.e. we
have S∞ ∪ Sp ∪ Sram ⊆ S).
Let M be a topological GL,S-module. Then M becomes a topological GLw

-
module for every w ∈ S(L) by restriction. For any i ∈ Z we put

P i(OL,S ,M) :=
⊕

w∈S(L)

Hi
ét(Lw,M).

We write Sf for the subset of S comprising all finite places in S.

Lemma 3.1. Let r > 1 be an integer. Then we have isomorphisms of Zp[G]-
modules

P i(OL,S ,Zp(r)) ≃















H+
−r(L)⊗ Zp if i = 0

⊕

w∈Sf (L)
K2r−1(Ow ;Zp) if i = 1

⊕

w∈Sf (L)
K2r−2(Ow ;Zp) if i = 2

0 otherwise.

Proof. We first observe that H0
ét(Lw,Zp(r)) vanishes unless w is a complex

place or w is a real place and r is even, whereas in these cases we have
H0

ét(Lw,Zp(r)) = Zp(r). Thus the isomorphism

⊕

Σ(L)

Zp(r) ≃





⊕

Σ(L)

(2πi)rZ



 ⊗ Zp

that maps a generator of Zp(r) to (2πi)r restricts to an isomorphism

P 0(OL,S ,Zp(r)) =
⊕

w∈S∞(L)

H0
ét(Lw,Zp(r)) ≃ H+

−r(L)⊗ Zp.
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Now let i > 0. As p is odd, it is clear that Hi
ét(Lw,Zp(r)) vanishes for

all archimedean w. Now let w be a finite place of L. Since the cohomo-
logical dimension of GLw

equals 2 by [NSW08, Theorem 7.1.8(i)], we have
Hi

ét(Lw,Zp(r)) = 0 for i > 2. The remaining cases now follow from Theo-
rem 2.4.

Corollary 3.2. Let r > 1 be an integer. Then

rankZp

(

P i(OL,S ,Zp(r))
)

=







dr+1 if i = 0
[L : Q] if i = 1
0 otherwise.

Proof. In degree zero the result follows from Lemma 3.1 and the definition of
dr+1. We have already observed that the groups K2r−i(Ow ;Zp) are finite for
i = 1, 2 and all finite places w of L which are not p-adic. If w belongs to Sp(L),
then K2r−2(Ow ;Zp) is finite, whereas K2r−1(Ow;Zp) has Zp-rank [Lw : Qp] by
[Wei13, Chapter VI, Theorem 7.4]. The result for i 6= 0 now follows again from
Lemma 3.1 and the formula [L : Q] =

∑

w∈Sp(L)
[Lw : Qp].

For any integers r and i we define P i(OL,S ,Qp(r)) to be P
i(OL,S ,Zp(r))⊗Zp

Qp.
The following result is also proven in [Bar09, Lemma 5.2.4].

Lemma 3.3. Let r > 1 be an integer. Then we have isomorphisms of Qp[G]-
modules

P i(OL,S ,Qp(r)) ≃







H+
−r(L)⊗Qp if i = 0

L⊗Q Qp if i = 1
0 otherwise.

Proof. This follows from Lemma 3.1 and Corollary 3.2 unless i = 1. To handle
this case we let w ∈ Sp(L) and put DLw

dR (Qp(r)) := H0(Lw, BdR ⊗Qp
Qp(r)),

where BdR denotes Fontaine’s de Rham period ring. Then the Bloch–Kato
exponential map

expBKr : Lw = DLw

dR (Qp(r)) → H1
ét(Lw,Qp(r))

is an isomorphism for every w ∈ Sp(L) as follows from [BK90, Corollary 3.8.4
and Example 3.9]. Thus we have isomorphisms of Qp[G]-modules

P 1(OL,S,Qp(r)) ≃
⊕

w∈Sp(L)

H1
ét(Lw,Qp(r)) ≃

⊕

w∈Sp(L)

Lw ≃ L⊗Q Qp.

By abuse of notation we write expBKr also for the isomomrphism L ⊗Q Qp ≃
P 1(OL,S ,Qp(r)).
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3.2 Schneider’s conjecture

We recall the following conjecture of Schneider [Sch79, p. 192].

Conjecture 3.4 (Schneider). Let r 6= 0 be an integer. Then the cohomology
group H2

ét(OL,S ,Qp/Zp(1− r)) vanishes.

Remark 3.5. It can be shown that Schneider’s conjecture for r = 1 is equivalent
to Leopoldt’s conjecture (see [NSW08, Chapter X, §3]).
Remark 3.6. For a given number field L and a fixed prime p, Schneider’s con-
jecture holds for almost all r. This follows from [Sch79, §5, Corollar 4] and
[Sch79, §6, Satz 3].

Definition 3.7. Let M be a topological GL,S-module. For any integer i we
denote the kernel of the natural localization map

Hi
ét(OL,S ,M) → P i(OL,S,M)

by X
i(OL,S ,M). We call Xi(OL,S ,M) the Tate–Shafarevich group of M in

degree i.

The relation of Tate–Shafarevich groups to Schneider’s conjecture is explained
by the following result (see also [Bar09, Lemma 3.2.10]).

Proposition 3.8. Let r 6= 0 be an integer and let p be an odd prime. Then
the following holds.

(i) The Tate–Shafarevich group X
1(OL,S ,Zp(r)) is torsion-free.

(ii) Schneider’s conjecture holds at r and p if and only if the Tate–Shafarevich
group X

1(OL,S,Zp(r)) vanishes.

Proof. We first claim that the group H2
ét(Lw,Qp/Zp(1− r)) vanishes for every

place w of L. This is clear when w is archimedean. If w is a finite place,
then the Pontryagin dual of H2

ét(Lw,Qp/Zp(1 − r)) naturally identifes with
H0

ét(Lw,Zp(r)) = 0 by local Tate duality. Now by Poitou–Tate duality [NSW08,
Theorem 8.6.9] and the claim we have

X
1(OL,S ,Zp(r)) ≃ X

2(OL,S,Qp/Zp(1− r))∨ = H2
ét(OL,S ,Qp/Zp(1− r))∨.

This implies (ii) and also (i) as the groupsH2
ét(OL,S ,Qp/Zp(1−r)) are divisible

[Sch79, Lemma 2].

We record some cases, where Schneider’s conjecture is known.

Theorem 3.9. Let p be an odd prime.

(i) If r < 0 is an integer, then Schneider’s conjecture holds at r and p.

(ii) If r > 0 is even and L is a totally real field, then Schneider’s conjecture
holds at r and p.
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Proof. Case (i) is due to Soulé [Sou79] (see also [NSW08, Theorem 10.3.27]).
Now suppose that r > 0 is even and that L is totally real. Then the K-groups
K2r−1(OL,S) are finite by work of Borel (see §2.3). The Quillen–Lichtenbaum
Conjecture (Theorem 2.2) implies that the groups H1

ét(OL,S ,Zp(r)) are finite
as well. It follows that the Tate–Shafarevich group X

1(OL,S,Zp(r)) is finite
and thus vanishes by Proposition 3.8 (i). Now (ii) follows from Proposition
3.8 (ii).

3.3 Compact support cohomology

Let M be a topological GL,S-module. Following Burns and Flach [BF01] we
define the compact support cohomology complex to be

RΓc(OL,S ,M) := cone



RΓ(OL,S,M) →
⊕

w∈S(L)

RΓ(Lw,M)



 [−1],

where the arrow is induced by the natural restriction maps. For any i ∈ Z
we abbreviate HiRΓc(OL,S,M) to Hi

c(OL,S ,M). If r is an integer, we set
Hi
c(OL,S,Qp(r)) := Hi

c(OL,S ,Zp(r)) ⊗Zp
Qp.

Lemma 3.10. For every topological GL,S-module M we have

H0
c (OL,S,M) = X

0(OL,S,M) = 0.

Proof. This is [Bar09, Lemma 3.1.6]. We repeat the short argument for the
reader’s convenience.
By definition, the groups H0

c (OL,S,M) and X
0(OL,S ,M) both identify with

the kernel of the map

H0
ét(OL,S,M) → P 0(OL,S ,M)

which is just the diagonal embedding MGL,S →֒
⊕

w∈S(L)M
GLw .

Proposition 3.11. Let r be an integer. Then the complex RΓc(OL,S ,Zp(r))
belongs to Dperf(Zp[G]).

Proof. This is a special case of [BF96, Proposition 1.20], for example.

Proposition 3.12. Let r > 1 be an integer and let p be an odd prime. Then
the following holds.

(i) We have an exact sequence of Zp[G]-modules

0 → H+
−r(L)⊗ Zp → H1

c (OL,S ,Zp(r)) → X
1(OL,S ,Zp(r)) → 0.

In particular, we have H1
c (OL,S,Zp(r)) ≃ H+

−r(L) ⊗ Zp if and only if
Schneider’s conjecture 3.4 holds.
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(ii) We have an isomorphism of Zp[G]-modules

H3
c (OL,S,Zp(r)) ≃ Zp(r − 1)GL

(iii) We have an exact sequence of Zp[G]-modules

0 → X
2(OL,S ,Zp(r)) → H2

ét(OL,S,Zp(r))
→

⊕

w∈S(L) Zp(r − 1)GLw
→ Zp(r − 1)GL

→ 0.

(iv) We have an isomorphism of Zp[G]-modules

X
2(OL,S ,Zp(r)) ≃ Kw

2r−2(OL,S)p.

In particular, X2(OL,S ,Zp(r)) is finite and does not depend on S.

(v) Schneider’s conjecture 3.4 holds if and only if the Zp-rank of
H2
c (OL,S,Zp(r)) equals dr+1.

Proof. We first observe that Artin–Verdier duality implies

H3
c (OL,S ,Zp(r)) ≃ H0

ét(OL,S ,Qp/Zp(1− r))∨

= (Qp/Zp(1 − r)GL)∨ = Zp(r − 1)GL

giving (ii). For any w ∈ S(L) local Tate duality likewise implies

H2
ét(Lw,Zp(r)) ≃ H0

ét(Lw,Qp/Zp(1− r))∨

= (Qp/Zp(1− r)GLw )∨ = Zp(r − 1)GLw
.

As H0
c (OL,S ,Zp(r)) vanishes by Lemma 3.10, the long exact sequence in coho-

mology associated to the exact triangle

RΓc(OL,S ,Zp(r)) → RΓ(OL,S,Zp(r)) →
⊕

w∈S(L)

RΓ(Lw,Zp(r))

now gives the exact sequences in (i) and (iii) by Lemma 3.1 and the very
definition of Tate–Shafarevich groups (in view of (iv) the sequence in (iii) then
actually coincides with the sequence in [Sch79, Satz 8]). It is then also clear that
Schneider’s conjecture implies that we have an isomorphismH1

c (OL,S ,Zp(r)) ≃
H+

−r(L)⊗Zp. Conversely, if these two Zp[G]-modules are isomorphic, they are
in particular finitely generated Zp-modules of the same rank. The short exact
sequence in (i) then implies that the Tate–Shafarevich group X

1(OL,S ,Zp(r))
is torsion and thus vanishes by Proposition 3.8 (i). Hence Schneider’s conjecture
holds by Proposition 3.8 (ii). This completes the proof of (i). Claim (iv) is
an easy consequence of Theorem 2.2 and Remark 2.7. Alternatively, it can be
derived from [Ban13, Corollary 4.2 and Theorem 5.10(7)]. Finally, it follows
from Theorem 2.2, Corollary 3.2 and the exact sequence

0 → X
1(OL,S ,Zp(r)) → H1

ét(OL,S ,Zp(r)) → P 1(OL,S ,Zp(r))
→ H2

c (OL,S ,Zp(r)) → X
2(OL,S ,Zp(r)) → 0
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that the Zp-rank of H2
c (OL,S,Zp(r)) equals

[L : Q]− dr + rankZp
(X1(OL,S ,Zp(r))) = dr+1 + rankZp

(X1(OL,S,Zp(r))).

Thus (v) is a consequence of Proposition 3.8.

3.4 A conjecturally perfect complex

We keep the notation of the last subsection and also recall the notation of §2.4.
Let CL,S(r) ∈ D(Zp[G]) be the cone of the map

H1
c (OL,S ,Zp(r)){1, 4} → RΓc(OL,S,Zp(r)) ⊕ (H+

1−r(L)⊗ Zp){2, 3}

which on cohomology induces the identity map in degree 1 and the zero map
in all other degrees.

Proposition 3.13. Let r > 1 be an integer and let p be an odd prime. Then
the following holds.

(i) The complex CL,S(r) is acyclic outside degrees 2 and 3.

(ii) There is an isomorphism of Zp[G]-modules

H2(CL,S(r)) ≃ H2
c (OL,S ,Zp(r)) ⊕H+

1−r(L)⊗ Zp.

In particular, there is a surjection H2(CL,S(r)) → X
2(OL,S ,Zp(r)).

(iii) Assume that Schneider’s conjecture 3.4 holds. Then the complex CL,S(r)
belongs to Dperf(Zp[G]) and we have an isomorphism of Zp[G]-modules

H3(CL,S(r)) ≃ H3
c (OL,S ,Zp(r)) ⊕

(

H+
−r(L)⊕H+

1−r(L)
)

⊗ Zp.

Proof. This follows easily from Propositions 3.12 and 3.11 once we have ob-
served that the Zp[G]-module H+

k (L) ⊗ Zp is projective for every k ∈ Z. In-
deed, the Z[G×Gal(C/R)]-module Hk(L) is free over Z[G] of rank [K : Q] and
H+
k (L)⊗ Zp is a direct summand of Hk(L)⊗ Zp as p is odd.

4 Relative algebraic K-theory

For further details and background on algebraic K-theory used in this section,
we refer the reader to [CR87] and [Swa68].

4.1 Algebraic K-theory

Let R be a noetherian integral domain of characteristic 0 with field of fractions
E. Let A be a finite-dimensional semisimple E-algebra and let Λ be an R-order
in A. Recall that PMod(Λ) denotes the category of finitely generated projective
left Λ-modules. ThenK0(Λ) naturally identifies with the Grothendieck group of
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PMod(Λ) (see [CR87, §38]) and K1(Λ) with the Whitehead group (see [CR87,
§40]). For any field extension F of E we set AF := F⊗EA. LetK0(Λ, F ) denote
the relative algebraic K-group associated to the ring homomorphism Λ →֒ AF .
We recall that K0(Λ, F ) is an abelian group with generators [X, g, Y ] where X
and Y are finitely generated projective Λ-modules and g : F ⊗R X → F ⊗R Y
is an isomorphism of AF -modules; for a full description in terms of generators
and relations, we refer the reader to [Swa68, p. 215]. Furthermore, there is a
long exact sequence of relative K-theory

K1(Λ) −→ K1(AF )
∂Λ,F−→ K0(Λ, F ) −→ K0(Λ) −→ K0(AF ) (4.1)

(see [Swa68, Chapter 15]). We write ζ(A) for the center of (any ring) A. The
reduced norm map

NrdA : A −→ ζ(A)

is defined componentwise (see [Rei03, §9]) and extends to matrix rings over A
in the obvious way; hence this induces a map K1(A) → ζ(A)× which we also
denote by NrdA.
Let P be a finitely generated projective A-module and let γ be an A-
endomorphism of P . Choose a finitely generated projective A-module Q such
that P ⊕Q is free. Then the reduced norm of γ⊕ idQ with respect to a chosen
basis yields a well-defined element NrdA(γ) ∈ ζ(A). In particular, if γ is in-
vertible, then γ defines a class [γ] ∈ K1(A) and we have NrdA(γ) = NrdA([γ]).

4.2 Refined Euler characteristics

For any C• ∈ Cb(PMod(Λ)) we define Λ-modules

Cev :=
⊕

i∈Z

C2i, Codd :=
⊕

i∈Z

C2i+1.

Similarly, we define Hev(C•) and Hodd(C•) to be the direct sum over all even
and odd degree cohomology groups of C•, respectively. A pair (C•, t) consisting
of a complex C• ∈ Dperf(Λ) and an isomorphism t : Hodd(C•

F ) → Hev(C•
F )

is called a trivialized complex, where we write C•
F for F ⊗L

R C•. We refer
to t as a trivialization of C•. One defines the refined Euler characteristic
χΛ,F (C

•, t) ∈ K0(Λ, F ) of a trivialized complex as follows: Choose a complex
P • ∈ Cb(PMod(Λ)) which is quasi-isomorphic to C•. Let Bi(P •

F ) and Z
i(P •

F )
denote the i-th cobounderies and i-th cocycles of P •

F , respectively. For every
i ∈ Z we have the obvious exact sequences

0 → Bi(P •
F ) → Zi(P •

F ) → Hi(P •
F ) → 0,

0 → Zi(P •
F ) → P iF → Bi+1(P •

F ) → 0.

If we choose splittings of the above sequences, we get an isomorphism of AF -
modules

φt : P
odd
F ≃

⊕

i∈Z

Bi(P •
F )⊕Hodd(P •

F ) ≃
⊕

i∈Z

Bi(P •
F )⊕Hev(P •

F ) ≃ P evF ,
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where the second map is induced by t. Then the refined Euler characteristic is
defined to be

χΛ,F (C
•, t) := [P odd, φt, P

ev] ∈ K0(Λ, F )

which indeed is independent of all choices made in the construction. For fur-
ther information concerning refined Euler characteristics we refer the reader to
[Bur04].

4.3 K-theory of group rings

Let p be a prime and let G be a finite group. By a well-known theorem of
Swan (see [CR81, Theorem (32.1)]) the map K0(Zp[G]) → K0(Qp[G]) induced
by extension of scalars is injective. Thus from (4.1) we obtain an exact sequence

K1(Zp[G]) −→ K1(Qp[G]) −→ K0(Zp[G],Qp) −→ 0. (4.2)

The reduced norm map induces an isomorphism K1(Qp[G]) −→ ζ(Qp[G])
×

(use [CR87, Theorem (45.3)]) and NrdQp[G](K1(Zp[G])) = NrdQp[G]((Zp[G])
×)

(this follows from [CR87, Theorem (40.31)]). Hence from (4.2) we obtain an
exact sequence

(Zp[G])
×

NrdQp[G]−→ ζ(Qp[G])
× ∂p−→ K0(Zp[G],Qp) −→ 0, (4.3)

where we write ∂p for ∂Zp[G],Qp
. The canonical maps K0(Z[G],Q) →

K0(Zp[G],Qp) induce an isomorphism

K0(Z[G],Q) ≃
⊕

p

K0(Zp[G],Qp) (4.4)

where the sum ranges over all primes (see the discussion following [CR87,
(49.12)]). By abuse of notation we let

∂p : ζ(Q[G])× → K0(Zp[G],Qp)

also denote the composite map of the inclusion ζ(Q[G])× → ζ(Qp[G])
× and

the surjection ∂p in sequence (4.3). Finally, the reduced norm NrdR[G] :
K1(R[G]) → ζ(R[G])× is injective and there is an extended boundary homo-
morphism

∂̂ : ζ(R[G])× −→ K0(Z[G],R)

such that ∂̂ ◦NrdR[G] coincides with the usual boundary homomorphism ∂Z[G],R

in sequence (4.1) (see [BF01, §4.2]).

5 Rationality conjectures

5.1 Artin L-series

Let L/K be a finite Galois extension of number fields with Galois group G and
let S be a finite set of places of K containing all archimedean places. For any
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irreducible complex-valued character χ of G we denote the S-truncated Artin
L-series by LS(s, χ), and the leading coefficient of LS(s, χ) at an integer r by
L∗
S(r, χ). We will use this notion even if L∗

S(r, χ) = LS(r, χ) (which will happen
frequently in the following).
There is a canonical isomorphism ζ(C[G]) ≃ ∏

χ∈IrrC(G) C, where IrrC(G) de-
notes the set of irreducible complex characters of G. We define the equivariant
S-truncated Artin L-series to be the meromorphic ζ(C[G])-valued function

LS(s) := (LS(s, χ))χ∈IrrC(G).

For any r ∈ Z we also put

L∗
S(r) := (L∗

S(r, χ))χ∈IrrC(G) ∈ ζ(R[G])×.

Now let v ∈ S∞ be an archimedean place ofK. Let χ be an irreducible complex
character of G and let Vχ be a C[G]-module with character χ. We set

nχ := dimC(Vχ) = χ(1), n+
χ,v := dimC(V

Gw
χ ), n−

χ,v := nχ − n+
χ,v.

We write SR and SC for the subsets of S∞ consisting of real and complex places,
respectively, and define ǫ-factors

ǫv(s, χ) :=

{

(2 · (2π)−sΓ(s))nχ if v ∈ SC,

LR(s)
n+
χ,v · LR(s+ 1)n

−

χ,v if v ∈ SR,

where LR(s) := π−s/2Γ(s/2) and Γ(s) denotes the usual Gamma function. The
completed Artin L-series is then defined to be

Λ(s, χ) :=

(

∏

v∈S∞

ǫv(s, χ)

)

LS∞
(s, χ) =

∏

v

ǫv(s, χ),

where the second product runs over all places of K and for a finite place v of
K we have

ǫv(s, χ) := det(1 − φwN(v)−s | V Iwχ )−1.

We denote the contragradient of χ by χ̌. Then the completed Artin L-series
satisfies the functional equation

Λ(s, χ) = ǫ(s, χ)Λ(1− s, χ̌), (5.1)

where the ǫ-factor ǫ(s, χ) is defined as follows. Let dK be the absolute discrim-
inant of K. We write W (χ) and f(χ) for the Artin root number and the Artin
conductor of χ, respectively. We then have

c(χ) := |dK |nχN(f(χ)),

ǫ(s, χ) := W (χ)c(χ)1/2−s.
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We also define equivariant ǫ-factors and the completed equivariant Artin L-
series by

ǫv(s) := (ǫv(s, χ))χ∈IrrC(G), ǫ(s) := (ǫ(s, χ̌))χ∈IrrC(G),

Λ(s) := (Λ(s, χ))χ∈IrrC(G).

The functional equations (5.1) for all irreducibe characters then combine to
give an equality

Λ(s)♯ = ǫ(s)Λ(1− s), (5.2)

where x 7→ x♯ denotes the C-linear anti-involution of C[G] which sends each
g ∈ G to its inverse.

5.2 A conjecture of Gross

Let r > 1 be an integer. Since the Borel regulator map ρr induces an isomor-
phism of R[G]-modules, the Noether–Deuring theorem (see [NSW08, Lemma
8.7.1] for instance) implies the existence of Q[G]-isomorphisms

φ1−r : H
+
1−r(L)⊗Q

≃−→ K2r−1(OL)⊗Q. (5.3)

Let χ be a complex character of G and let Vχ be a C[G]-module with
character χ. Composition with ρr ◦ φ1−r induces an automorphism of
HomG(Vχ̌, H

+
1−r(L) ⊗ C). Let Rφ1−r

(χ) ∈ C× be its determinant. If χ′ is
a second character, then clearly Rφ1−r

(χ+ χ′) = Rφ1−r
(χ) · Rφ1−r

(χ′) so that
we obtain a map

Rφ1−r
: R(G) −→ C×

χ 7→ det(ρr ◦ φ1−r | HomG(Vχ̌, H
+
1−r(L)⊗ C)),

where R(G) denotes the ring of virtual complex characters of G. We likewise
define

ASφ1−r
: R(G) −→ C×

χ 7→ Rφ1−r
(χ)/L∗

S(1− r, χ).

Gross [Gro05, Conjecture 3.11] conjectured the following higher analogue of
Stark’s conjecture.

Conjecture 5.1 (Gross). We have ASφ1−r
(χσ) = ASφ1−r

(χ)σ for all σ ∈
Aut(C).

It is straightforward to see that Gross’ conjecture does not depend on S and
the choice of φ1−r (see also [Nic11a, Remark 6]). We briefly collect what is
known about Conjecture 5.1. When L/K is a CM-extension, recall that χ is
odd when χ(j) = −χ(1), where j ∈ G denotes complex conjugation.

Theorem 5.2. Conjecture 5.1 holds in each of the following cases:
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(i) χ is the trivial character;

(ii) χ is absolutely abelian, i.e. Lker(χ)/Q is abelian;

(iii) Lker(χ) is totally real and r is even;

(iv) Lker(χ)/K is a CM-extension, χ is an odd character and r is odd.

Proof. (i) is Borel’s result (2.7) above. In cases (iii) and (iv) the regulator map
disappears, and Conjecture 5.1 boils down to the rationality of the L-values
at negative integers which is a classical result of Siegel [Sie70]. Finally, Gross’
conjecture for all characters χ of G is equivalent to the rationality statement of
the ETNC for the pair (h0(Spec(L))(1− r),Z[G]) by [Bur10, Lemma 6.1.1 and
Lemma 11.1.2] (see also [Nic11a, Proposition 2.15]). In fact, the full ETNC is
known for absolutely abelian extensions by work of Burns and Greither [BG03]
and of Flach [Fla11] (see also Huber and Kings [HK03]) which implies (ii).

Remark 5.3. Let f : R(G) → C× be a homomorphism. Then we may view f
as an element in ζ(C[G])× ≃ ∏

χ∈IrrC(G) C
× by declaring its χ-component to

be f(χ), χ ∈ IrrC(G). Conversely, each f = (fχ)χ∈IrrC(G) in ζ(C[G])× defines
a unique homomorphism f : R(G) → C× such that f(χ) = fχ for each χ ∈
IrrC(G). Under this identification Conjecture 5.1 asserts that ASφ1−r

∈ ζ(C[G])×

actually belongs to ζ(Q[G])×.

5.3 A reformulation of Gross’ conjecture

In this subsection we give a reformulation of Gross’ conjecture using the func-
tional equation of Artin L-series. For any integer k we write

ιk : L⊗Q C →
⊕

Σ(L)

C =
(

H+
1−k(L)⊕H+

−k(L)
)

⊗ C (5.4)

for the canonical C[G × Gal(C/R)]-equivariant isomorphism which is induced
by mapping l ⊗ z to (σ(l)z)σ∈Σ(L) for l ∈ L and z ∈ C. Now fix an integer
r > 1. We define an R[G]-isomorphism

λr :
(

K2r−1(OL)⊕H+
−r(L)

)

⊗ R ≃
(

H+
1−r(L)⊕H+

−r(L)
)

⊗ R

≃ (L⊗Q C)+ = L⊗Q R.

Here, the first isomorphism is ρr ⊕ idH+
−r(L)

and the second isomorphism is

induced by ι−1
r . As above, there exist Q[G]-isomorphisms

φr : L
≃−→
(

K2r−1(OL)⊕H+
−r(L)

)

⊗Q.

We now define maps

Rφr
: R(G) −→ C×

χ 7→ det (λr ◦ φr | HomG(Vχ̌, L⊗Q C))
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and

ASφr
: R(G) −→ C×

χ 7→ Rφr
(χ)/L∗

S(r, χ̌).

Conjecture 5.4. We have ASφr
(χσ) = ASφr

(χ)σ for all σ ∈ Aut(C).

It is again easily seen that this conjecture does not depend on S and the choice
of φr. In fact we have the following result.

Proposition 5.5. Fix an integer r > 1 and a character χ. Then Gross’
Conjecture 5.1 holds if and only if Conjecture 5.4 holds.

Proof. Let k be an integer. If k is even, multiplication by (2πi)k induces a
Q[G]-isomorphism H+

0 (L) ⊗ Q ≃ H+
−k(L) ⊗ Q. Similarly, multiplication by

(2πi)k−1 induces a Q[G]-isomorphism H−
0 (L) ⊗ Q ≃ H+

1−k(L) ⊗ Q. When k

is odd, we likewise have Q[G]-isomorphisms H+
0 (L) ⊗ Q ≃ H+

1−k(L) ⊗ Q and

H−
0 (L)⊗Q ≃ H+

−k(L)⊗Q induced by multiplication by (2πi)k−1 and (2πi)k,
respectively. So for any k we obtain a Q[G]-isomorphism

µk : H0(L)⊗Q ≃
(

H+
1−k(L)⊕H+

−k(L)
)

⊗Q. (5.5)

Moreover, we define an R[G]-isomorphism

πL : L⊗Q R ≃
(

H+
0 (L)⊕H+

−1(L)
)

⊗ R
(1,−i)−→ H0(L)⊗ R,

where the first isomorphism is induced by ι1. It is clear that πL agrees with the
map πL in [BB03, p. 554]. Bley and Burns define an explicit Q[G]-isomorphism

φ : L
≃−→ H0(L)⊗Q. (5.6)

Building on a result of Fröhlich [Frö89] on Galois Gauss sums, the authors
[BB03, equation (12) and (13)] then show that

NrdR[G]((φ ⊗ 1) ◦ π−1
L ) · ǫ(0) ∈ ζ(Q[G])×. (5.7)

Now choose a Q[G]-isomorphism φ1−r as in (5.3). We define φr to be the
composite map

φr := (φ1−r ⊕ idH+
−r(L)⊗Q

) ◦ µr ◦ φ.

Let a, b ∈ ζ(C[G])×. In the following we write a ∼ b if ab−1 ∈ ζ(Q[G])×. Under
the identification in Remark 5.3 we thus have to show that ASφr

∼ ASφ1−r
. We

observe that

λr ◦ φr = ι−1
r ◦ (ρr ⊕ idH+

−r(L)
) ◦ (φ1−r ⊕ idH+

−r(L)
) ◦ µr ◦ φ,

where we view each map as a C[G]-isomorphism by extending scalars. This
implies that

Rφr
= Rφ1−r

· NrdC[G](ι
−1
r ◦ µr ◦ φ)♯.
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We now use (5.7), the fact that c(χσ) = c(χ)σ for all χ ∈ IrrC(G) and σ ∈
Aut(C), the definition of ǫ and the functional equation (5.2) to compute

Rφr
∼ Rφ1−r

·
(

NrdC[G](ι
−1
r ◦ µr ◦ πL) · ǫ(0)−1

)♯

∼ Rφ1−r
·
(

NrdC[G](ι
−1
r ◦ µr ◦ πL) · ǫ(1− r)−1

)♯

∼ Rφ1−r
·NrdC[G](ι

−1
r ◦ µr ◦ πL)♯ ·

Λ∗(r)♯

Λ∗(1− r)

Now let v be an archimedean place of K. As Γ(k) is a non-zero rational number
for every positive integer k and Γ(s) has simple poles with rational residues at
s = k for every non-positive integer k, an easy computation shows that for
v ∈ SC one has

ǫv(r)
♯

ǫ∗v(1− r)
∼
(

π(1−2r)nχ

)

χ∈IrrC(G)
. (5.8)

Moreover, using Γ(s+1) = sΓ(s) and Γ(1/2) =
√
π we find that Γ((2k+1)/2) ∈√

π · Q× for every integer k. Then a computation shows that for v ∈ SR one
has

ǫv(r)
♯

ǫ∗v(1− r)
∼











(

π(1−r)n+
χ,v−rn

−

χ,v

)

χ∈IrrC(G)
if 2 ∤ r

(

π(1−r)n−

χ,v−rn
+
χ,v

)

χ∈IrrC(G)
if 2 | r.

(5.9)

The automorphism µr ◦πL ◦ ι−1
r on (H+

1−r(L)⊕H+
−r(L))⊗C is given up to sign

by multiplication by (2π)r−1 and (2π)r on the first and second direct summand,
respectively. It follows that

NrdC[G](ι
−1
r ◦ µr ◦ πL)♯ = NrdC[G](µr ◦ πL ◦ ι−1

r )♯

∼







(

π
(r−1)(|SC|nχ+

∑
v∈SR

n+
χ,v)+r(|SC|nχ+

∑
v∈SR

n−

χ,v)
)

χ
if 2 ∤ r

(

π
(r−1)(|SC|nχ+

∑
v∈SR

n−

χ,v)+r(|SC|nχ+
∑

v∈SR
n+
χ,v)
)

χ
if 2 | r.

If we compare this to (5.8) and (5.9) we find that

NrdC[G](ι
−1
r ◦ µr ◦ πL)♯ ∼

(

∏

v∈S∞

ǫv(r)
♯

ǫ∗v(1− r)

)−1

.

Finally, by the very definition of Λ(s) we have Λ(s) =
(
∏

v∈S∞
ǫv(s)

)

·LS∞
(s).

We obtain

Rφr
∼ Rφ1−r

·NrdC[G](ι
−1
r ◦ µr ◦ πL)♯ ·

(

∏

v∈S∞

ǫv(r)
♯

ǫ∗v(1 − r)

)

·
L∗
S∞

(r)♯

L∗
S∞

(1 − r)

∼ Rφ1−r
·
L∗
S∞

(r)♯

L∗
S∞

(1 − r)
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which exactly means that

AS∞

φr
=

Rφr

L∗
S∞

(r)♯
∼ Rφ1−r

L∗
S∞

(1− r)
= AS∞

φ1−r
.

As both conjectures do not depend on the choice of S we are done.

6 Equivariant leading term conjectures

We fix a finite Galois extension L/K with Galois group G and an odd prime p.
Let r > 1 be an integer. In this section we assume throughout that Schneider’s
conjecture 3.4 holds. In particular, if S is a sufficiently large finite set of places
of K as in §3, then the complex CL,S(r) ∈ D(Zp[G]) constructed in §3.4 is
perfect by Proposition 3.13.

6.1 Choosing a trivialization

In this subsection we construct a trivialization of CL,S(r). We first choose a
Q[G]-isomorphism

αr : L→
(

H+
1−r(L)⊕H+

−r(L)
)

⊗Q. (6.1)

For instance, we may take αr = µr ◦ φ, where µr and φ are the isomorphisms
(5.5) and (5.6), respectively. Moreover, we choose a Q[G]-isomorphism

φ1−r : H
+
1−r(L)⊗Q

≃−→ K2r−1(OL)⊗Q

as in (5.3). We let ψr := (φ1−r , αr) be the corresponding pair of
Q[G]-isomorphisms. As X

1(OL,S,Zp(r)) vanishes by Proposition 3.8 and
X

2(OL,S ,Zp(r)) is finite by Proposition 3.12 (iv), we have an exact sequence
of Qp[G]-modules

0 → H1
ét(OL,S ,Qp(r)) → P 1(OL,S ,Qp(r)) → H2

c (OL,S,Qp(r)) → 0. (6.2)

Since Qp[G] is semisimple, we may choose a Qp[G]-equivariant splitting σr
of this sequence. We now define a trivialization t(ψr, σr, S) of CL,S(r) to
be the composite of the following Qp[G]-isomorphisms (note that we have
Hev(CL,S(r)) = H2(CL,S(r)) and Hodd(CL,S(r)) = H3(CL,S(r)) by Propo-
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sition 3.13):

H3(CL,S(r)) ⊗Zp
Qp −→

(

H+
1−r(L)⊕H+

−r(L)
)

⊗Qp

α−1
r−→ L⊗Q Qp

expBK
r−→ P 1(OL,S ,Qp(r))
σr−→ H1

ét(OL,S,Qp(r)) ⊕H2
c (OL,S ,Qp(r))

(ch
(p)
r,1)

−1⊕id
−→ (K2r−1(OL,S)⊗Qp)⊕H2

c (OL,S,Qp(r))

−→ (K2r−1(OL)⊗Qp)⊕H2
c (OL,S ,Qp(r))

φ−1
1−r⊕id
−→ (H+

1−r(L)⊗Qp)⊕H2
c (OL,S ,Qp(r))

−→ H2(CL,S(r)) ⊗Zp
Qp.

Here, the unlabelled isomorphisms come from Propositions 3.13 and 3.12 (ii)
and (2.1). We now define

Ωψr ,S := χZp[G],Qp
(CL,S(r), t(ψr , σr , S)) ∈ K0(Zp[G],Qp)

which is easily seen to be independent of the splitting σr (see §4.1 and §4.2).

6.2 The leading term conjecture at s = r

We are now in a position to formulate the central conjectures of this article.
We keep the notation of the last subsection. In particular, recall the pair
ψr = (φ1−r, αr). Define a Q[G]-isomorphism

φr : L
≃−→
(

K2r−1(OL)⊕H+
−r(L)

)

⊗Q

by φr := (φ1−r ⊕ idH+
−r(L)

) ◦ αr.

Conjecture 6.1. Let L/K be a finite Galois extension of number fields with
Galois group G and let r > 1 be an integer. Let p be an odd prime.

(i) The Tate–Shafarevich group X
1(OL,S ,Zp(r)) vanishes.

(ii) We have that ASφr
belongs to ζ(Q[G])×.

(iii) We have an equality ∂p(A
S
φr
)♯ = −Ωψr,S.

Remark 6.2. Part (i) and (ii) of Conjecture 6.1 are equivalent to Schneider’s
conjecture 3.4 and Gross’ conjecture 5.1 by Propositions 3.8 and 5.5, respec-
tively.

Proposition 6.3. Suppose that part (i) and part (ii) of Conjecture 6.1 both
hold. Then part (iii) does not depend on any of the choices made in the con-
struction.
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Proof. Let S′ be a second sufficiently large finite set of places of K. By em-
bedding S and S′ into the union S ∪ S′ we may and do assume that S ⊆ S′.
By induction we may additionally assume that S′ = S ∪ {v}, where v is not
in S. In particular, v is unramified in L/K and v ∤ p. We compute

AS
′

φr
(χ)/ASφr

(χ) = L∗
S(r, χ̌)/L

∗
S′(r, χ̌) = ǫv(r, χ̌). (6.3)

On the other hand, by [BF01, (30)] we have an exact triangle

IndGGw
RΓf(Lw,Zp(r))[−1] −→ RΓc(OL,S′ ,Zp(r)) −→ RΓc(OL,S ,Zp(r)),

where RΓf (Lw,Zp(r)) is a perfect complex of Zp[Gw]-modules which is natu-
rally quasi-isomorphic to

Zp[Gw]
1−φwN(v)−r

// Zp[Gw]

with terms in degree 0 and 1. As Schneider’s conjecture holds by assumption,
the cohomology group H1

c (OL,S,Zp(r)) does not depend on S by Proposition
3.12. Thus by the definition of CL,S(r) we likewise have an exact triangle

IndGGw
RΓf (Lw,Zp(r))[−1] −→ CL,S′(r) −→ CL,S(r).

We therefore may compute

Ωψr ,S − Ωψr,S′ = χZp[G],Qp

(

IndGGw
RΓf(Lw,Zp(r)), 0

)

= ∂p(ǫv(r))

= ∂p(A
S′

φr
)♯ − ∂p(A

S
φr
)♯,

where the last equality follows from (6.3). This shows that Conjecture 6.1
(iii) does not depend on S. Now suppose that α′

r is a second choice of Q[G]-
isomorphism as in (6.1). Let φ′r := (φ1−r ⊕ idH+

−r(L)
) ◦ α′

r. Then we have

(

ASφr
·
(

ASφ′
r

)−1
)♯

=
(

Rφr
·R−1

φ′
r

)♯

(6.4)

= NrdQ[G]((φ
′
r)

−1φr)

= NrdQ[G]((α
′
r)

−1αr).

Letting ψ′
r := (φ1−r, α

′
r) we likewise compute

Ωψr,S − Ωψ′
r ,S = ∂p

(

NrdQ[G](α
′
rα

−1
r )
)

= −∂p
(

NrdQ[G]((α
′
r)

−1αr)
)

.

Finally, a similar computation shows that the conjecture does not depend on
the choice of φ1−r .
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It is therefore convenient to put

TΩ(L/K, r)p := −
(

∂p(A
S
φr
)♯ +Ωψr ,S

)

∈ K0(Zp[G],Qp).

Then Conjecture 6.1 (iii) simply asserts that TΩ(L/K, r)p vanishes. The rea-
son for the minus sign will become apparent in the next subsection (see Theo-
rem 6.5).
Now choose an isomorphism j : C ≃ Cp. By functoriality, this induces a map

j∗ : K0(Z[G],R) → K0(Zp[G],Cp).

We define a trivialization t(r, S, j) of the complex CL,S(r) as in §6.1, but we
tensor with Cp and replace the isomorphisms αr and φ1−r by ιr ⊗j Cp and
ρ−1
r ⊗j Cp (see (2.6) and (5.4)). Thus we obtain an object

Ωjr,S := χZp[G],Cp
(CL,S(r), t(r, S, j)) ∈ K0(Zp[G],Cp).

Then the argument in the proof of Proposition 6.3 shows the following result.

Proposition 6.4. Let j : C ≃ Cp be an isomorphism. Suppose that part (i)
and (ii) of Conjecture 6.1 both hold. Then we have an equality

TΩ(L/K, r)p = j∗

(

∂̂(L∗
S(r))

)

− Ωjr,S

in K0(Zp[G],Cp).

6.3 The relation to the equivariant Tamagawa number conjec-

ture

We now compare our invariant TΩ(L/K, r)p to the equivariant Tamagawa num-
ber conjecture (ETNC) as formulated by Burns and Flach [BF01].
For an arbitrary integer r we set Q(r)L := h0(Spec(L))(r) which we regard as
a motive defined over K and with coefficients in the semisimple algebra Q[G].
The ETNC [BF01, Conjecture 4(iv)] for the pair (Q(r)L,Z[G]) asserts that a
certain canonical element TΩ(Q(r)L,Z[G]) in K0(Z[G],R) vanishes. Note that
in this case the element TΩ(Q(r)L,Z[G]) is indeed well-defined as observed
in [BF03, §1]. If TΩ(Q(r)L,Z[G]) is rational, i.e. belongs to K0(Z[G],Q),
then by means of (4.4) we obtain elements TΩ(Q(r)L,Z[G])p in K0(Zp[G],Qp).
We say that the ‘p-part’ of the ETNC for the pair (Q(r)L,Z[G]) holds if
TΩ(Q(r)L,Z[G])p vanishes.

Theorem 6.5. Let L/K be a finite Galois extension of number fields with
Galois group G and let r > 1 be an integer. Then the following holds.

(i) Conjecture 6.1 (ii) holds if and only if TΩ(Q(r)L,Z[G]) belongs to
K0(Z[G],Q).
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(ii) Suppose that part (i) and (ii) of Conjecture 6.1 both hold. Then

TΩ(Q(r)L,Z[G])p = TΩ(L/K, r)p.

In particular, Conjecture 6.1 (iii) and the p-part of the ETNC for the
pair (Q(r)L,Z[G]) are equivalent.

Proof. Conjecture 6.1(ii) is equivalent to Gross’ conjecture 5.1 by Proposition
5.5. The latter conjecture is equivalent to the rationality of TΩ(Q(1−r)L,Z[G])
by [Bur10, Lemma 6.1.1 and Lemma 11.1.2]. Finally, TΩ(Q(1 − r)L,Z[G]) is
rational if and only if TΩ(Q(r)L,Z[G]) is rational by [BF01, Theorem 5.2].
This proves (i).

For (ii) we briefly recall some basic facts on virtual objects. If Λ is a noetherian
ring, we write V (Λ) for the Picard category of virtual objects associated to the
category PMod(Λ). We fix a unit object 1Λ and write ⊠ for the bifunctor
in V (Λ). For each object M there is an object M−1, unique up to unique
isomorphism, with an isomorphism τM :M ⊠M−1 ∼→ 1Λ. If N is an object in
PMod(Λ), we write [N ] for the associated object in V (Λ). More generally, if C•

belongs to Dperf(Λ), we write [C•] ∈ V (Λ) for the associated object (see [BF01,
Proposition 2.1]). We let V (Zp[G],Cp) be the Picard category associated to
the ring homomorphism Zp[G] →֒ Cp[G] as defined in [BB05, §5]. We recall
that objects in V (Zp[G],Cp) are pairs (M, t), whereM is an object in V (Zp[G])
and t is an isomorphism Cp ⊗Zp

M ≃ 1Cp[G] in V (Cp[G]). By [BB05, Lemma
5.1] one has an isomorphism

π0(V (Zp[G],Cp)) ≃ K0(Zp[G],Cp), (6.5)

where π0(P) denotes the group of isomorphism classes of objects of a Picard
category P .

For any motive M which is defined over K and admits an action of a finite
dimensionalQ-algebraA, Burns and Flach [BF01, (29)] define an element Ξ(M)
of V (A). In the case M = Q(r)L and A = Q[G] one has

Ξ(Q(r)L) = [K2r−1(OL)⊗Q]−1
⊠ [H+

−r(L)⊗Q]−1
⊠ [L] ∈ V (Q[G]).

The regulator map (2.6) and (5.4) then induce an isomorphism in V (R[G]):

ϑ∞ : R⊗Q Ξ(Q(r)L) ≃ 1R[G].

Moreover, Burns and Flach construct for each prime p an isomorphism

ϑp : Qp ⊗Q Ξ(Q(r)L) ≃ [RΓc(OL,S ,Qp(r))]

in V (Qp[G]) (see [BF01, p. 526]). These data determine an element

RΩ(Q(r)L,Z[G]) in K0(Z[G],R) and one has TΩ(Q(r)L,Z[G]) = ∂̂(L∗
S∞

(r)) +
RΩ(Q(r)L,Z[G]) by definition.
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Now suppose that part (i) and (ii) of Conjecture 6.1 both hold. Recall the
definition of CL,S(r). The isomorphisms τ[N ], where N = H1

c (OL,S,Zp(r)) and

N = H+
1−r(L)⊗ Zp, yield an isomorphism

[CL,S(r)] ≃ [RΓc(OL,S,Zp(r))] (6.6)

in V (Zp[G]). Now let j : C ≃ Cp be an isomorphism. Then the trivialization
t(r, S, j) induces an isomorphism

ϑp,j : [Cp ⊗L
Zp
CL,S(r)] ≃ 1Cp[G]

in V (Cp[G]). After extending scalars to Cp, the isomorphisms (6.6), ϑ−1
p and

ϑ∞ likewise induce an isomorphism

ϑ′p,j : [Cp ⊗L
Zp
CL,S(r)] ≃ 1Cp[G]

in V (Cp[G]). Taking [BF01, Remark 4] into account, we see that the class

of the pair ([CL,S(r)], ϑp,j) in π0(V (Zp[G],Cp)) maps to −Ωjr,S under the iso-
morphism (6.5), whereas ([CL,S(r)], ϑ

′
p,j) corresponds to j∗(RΩ(Q(r)L,Z[G])).

Unwinding the definitions of ϑp,j and ϑ′p,j one sees that both isomorphisms
almost coincide. The only difference rests on the following.
Let Λ be a noetherian ring and let φ : P → P be an automorphism of a finitely

generated projective Λ-module P . Consider the complex C : P
φ→ P , where P

is placed in degree 0 and 1. Then there a two isomorphisms [C] ≃ 1Λ induced
by τ[P ] and the acyclicity of C, respectively. Now for every finite place v ∈ S,
there appears such an acyclic complex of Qp[Gw ]-modules in the construction
of RΩ(Q(r)L,Z[G]). Namely, if v ∤ p this is the complex RΓf(Lw,Qp(r)) which
is canonically quasi-isomorphic to

Qp[Gw]
1−φwN(v)−r

// Qp[Gw]

with terms in degree 0 and 1 (see [BF01, (19)]). If v divides p, this complex
appears as the rightmost complex in [BF01, (22)] and is given by

DLw

cris(Qp(r))
1−φcris

// DLw

cris(Qp(r)),

where DLw

cris(Qp(r)) := H0(Lw, Bcris ⊗Qp
Qp(r)) naturally identifies with the

maximal unramified subextension of Lw and φcris denotes the Frobenius on the
crystalline period ringBcris. Burns and Flach choose the isomorphisms induced
by the corresponding τ ’s, whereas we have implicitly used the acyclicity of these
complexes. For each such v this gives rise to an Euler factor ǫv(r) (for more
details we refer the reader to [BF98, §2]; though the authors consider a slightly
different situation, the arguments naturally carry over to the case at hand).
This discussion gives an equality

j∗ (RΩ(Q(r)L,Z[G])) = −Ωjr,S + j∗

(

∂̂

(

∏

v∈S

εv(r)

))

.
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Thus TΩ(Q(r)L,Z[G])p and TΩ(L/K, r)p have the same image under the in-
jective map K0(Zp[G],Qp) → K0(Zp[G],Cp).

7 Annihilating wild kernels

7.1 Generalised adjoint matrices

Let G be a finite group and let p be a prime. Let Mp(G) be a maximal
Zp-order such that Zp[G] ⊆ Mp(G) ⊆ Qp[G]. Let e1, . . . , et be the central
primitive idempotents of Qp[G]. Then each Wedderburn component Qp[G]ei
is isomorphic to an algebra of mi ×mi matrices over a skewfield Di and Fi :=
ζ(Di) is a finite field extension of Qp. We denote the Schur index of Di by si
so that [Di : Fi] = s2i and put ni := mi · si. We let Oi be the ring of intgers
in Fi.
Choose n ∈ N and let H ∈Mn×n(Mp[G]). Then we may decompose H into

H =
t
∑

i=1

Hi ∈Mn×n(Mp(G)) =
t
⊕

i=1

Mn×n(Mp(G)ei),

where Hi := Hei. The reduced characteristic polynomial fi(X) =
∑nin

j=0 αijX
j

of Hi has coefficients in Oi. Moreover, the constant term αi0 is equal to
NrdQp[G](Hi) · (−1)nin. We put

H∗
i := (−1)nin+1 ·

nin
∑

j=1

αijH
j−1
i , H∗ :=

t
∑

i=1

H∗
i .

Note that this definition of H∗ differs slightly from the definition in [Nic10,
§4], but follows the conventions in [JN13]. Let 1n×n denote the n× n identity
matrix.

Lemma 7.1. We have that H∗ ∈ Mn×n(Mp(G)) and H∗H = HH∗ =
NrdQp[G](H) · 1n×n.

Proof. The first assertion is clear by the above considerations. Since fi(Hi) = 0,
we find that

H∗
i ·Hi = Hi ·H∗

i = (−1)nin+1(−αi0) = NrdQp[G](Hi),

as desired (see also [JN13, Lemma 3.4]).

7.2 Denominator ideals

We define

Hp(G) := {x ∈ ζ(Zp[G]) |
xH∗ ∈Mn×n(Zp[G])∀H ∈Mn×n(Zp[G])∀n ∈ N},

Ip(G) := 〈NrdQp[G](H) | H ∈Mn×n(Zp[G]), n ∈ N〉ζ(Zp[G]).
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Since x · NrdQp[G](H) = xH∗H ∈ ζ(Zp[G]) by Lemma 7.1, in particular we
have

Hp(G) · Ip(G) = Hp(G) ⊆ ζ(Zp[G]). (7.1)

Hence Hp(G) is an ideal in the commutative Zp-order Ip(G). We will refer
to Hp(G) as the denominator ideal of the group ring Zp[G]. The following
result determines the primes p for which the denominator ideal Hp(G) is best
possible.

Proposition 7.2. We have Hp(G) = ζ(Zp[G]) if and only if p does not divide
the order of the commutator subgroup G′ of G. Furthermore, when this is the
case we have that Ip(G) = ζ(Zp[G]).

Proof. The first assertion is a special case of [JN13, Proposition 4.8]. The
second assertion follows from (7.1).

7.3 A canonical fractional Galois ideal

Let L/K be a finite Galois extension of number fields with Galois group G and
let r > 1 be an integer. Let p 6= 2 be a prime and let S be a finite set of places
of K containing Sram ∪ S∞ ∪ Sp. Recall the notation of §6.1. As p is odd, the
Zp[G]-module

Yr :=
(

H+
1−r(L)⊕H+

−r(L)
)

⊗ Zp

is projective. We also observe that P 1(OL,S ,Zp(r))tf does not depend on S by
Lemma 3.1 and the fact that K2r−1(Ow;Zp) is finite for each w 6∈ Sp(L). We
let

E(αr) := {γ ∈ EndQp[G](Yr ⊗Zp
Qp) |

expBKr α−1
r γ(Yr) ⊆ P 1(OL,S ,Zp(r))tf},

E(αr) := 〈NrdQp[G](γ) | γ ∈ E(αr)〉ζ(Zp[G]) ⊆ ζ(Qp[G]).

Now suppose that Schneider’s conjecture 3.4 holds. Then we have the short
exact sequence (6.2) and we may choose a Qp[G]-equivariant splitting σr of this
sequence:

σr : P
1(OL,S ,Qp(r))

≃−→ H1
ét(OL,S,Qp(r)) ⊕H2

c (OL,S ,Qp(r)).

We let
σ1
r : P 1(OL,S,Qp(r)) −→ H1

ét(OL,S ,Qp(r))

be the composite map of σr and the projection onto the first component. We
put

F (φ1−r , σr) := {δ ∈ EndQp[G](H
+
1−r(L)⊗Qp) |

δφ−1
1−r(ch

(p)
r,1)

−1σ1
r

(

P 1(OL,S ,Zp(r))tf
)

⊆ H+
1−r(L)⊗ Zp},

F(φ1−r) := 〈NrdQp[G](δ) | δ ∈ F (φ1−r, σr) for some σr〉ζ(Zp[G]).

Recall that φr = (φ1−r ⊕ idH+
−r(L)

) ◦ αr.
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Proposition 7.3. Let L/K be a finite Galois extension of number fields with
Galois group G and let r > 1 be an integer. Let p 6= 2 be a prime and let S be
a finite set of places of K containing Sram∪S∞ ∪Sp. Suppose that Schneider’s
Conjecture 3.4 and Gross’ Conjecture (Conjecture 5.4) both hold. Then with
the notation above

J S
r = J S

r (L/K, p) := E(αr)F(φ1−r) ·
(

(ASφr
)−1
)♯ ⊆ ζ(Qp[G])

only depends upon L/K, p, r and S. We call J S
r the canonical fractional

Galois ideal.

Proof. Suppose that α′
r is a second choice of Q[G]-isomorphism as in (6.1). Let

φ′r := (φ1−r ⊕ idH+
−r(L)

) ◦ α′
r. Then we have a bijection

E(αr) −→ E(α′
r)

γ 7→ α′
rα

−1
r γ

which implies E(αr) = NrdQp[G](αr(α
′
r)

−1)E(α′
r). Now (6.4) implies that J S

r

does not depend on the choice of αr. The argument for φ1−r is similar.

Example 7.4. Suppose that L/K is an extension of totally real fields and that
r is even. Then the conjectures of Schneider and Gross both hold by Theorem
3.9 and Theorem 5.2, respectively. We have that H+

1−r(L) vanishes by (2.5) and

thus F(φ1−r) = ζ(Zp[G]). Moreover, we have Yr = H+
−r(L)⊗ Zp and αr = φr.

We conclude that we have

J S
r = E(φr) ·

(

(ASφr
)−1
)♯ ⊆ ζ(Qp[G])

unconditionally. We also have

(

(ASφr
)−1
)♯

= L∗
S(r) ·NrdC[G](ιrφ

−1
r ).

Put d := [K : Q] and fix an isomorphism j : C ≃ Cp. We observe that
ιr = (2πi)−rµr ◦ ι0 and that µr(H0(L)⊗ Zp) = Yr. We let

E′ := {γ′ ∈ EndQp[G](H0(L)⊗Qp) |
expBKr ι−1

0 γ′(H0(L)⊗ Zp) ⊆ P 1(OL,S,Zp(r))tf}

and obtain (substitute γ′ by µ−1
r ιrφ

−1
r γµr)

J S
r = NrdCp[G](j(2πi)

−r)d · 〈NrdQp[G](γ
′) | γ′ ∈ E′〉ζ(Zp[G]) · j(L∗

S(r)).

Now suppose in addition that L/K is abelian. The inverse of the Bloch–Kato
exponential map and ι0 ⊗j Cp induce a map

P 1(OL,S ,Qp(r)) −→ H0(L)⊗ Cp
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which in turn induces a regulator map

s
(j)
S,r :

d
∧

Zp[G]

P 1(OL,S ,Zp(r)) −→
d
∧

Cp[G]

(H0(L)⊗ Cp) ≃ Cp[G].

It is then not hard to show that

J S
r = j(2πi)−rd · Im(s

(j)
S,r) · j(L∗

S(r))

= j

(

i

π

)rd

· Im(s
(j)
S,r) · j(L∗

S(r)),

where the second equality holds, since p is odd and r is even. This shows
that in this case the canonical fractional Galois ideal J S

r coincides with the
‘Higher Solomon ideal’ of Barrett [Bar09, Definition 5.3.1]. When L/K is a
CM-extension and r is odd, similar observations hold on minus parts.

Example 7.5. Let L/K be a Galois extension of totally real fields, but now we
assume that r is odd. Then (2.5) implies that H+

−r(L) vanishes and that we
have Yr = H+

1−r(L)⊗Zp. We assume that Schneider’s conjecture holds so that
the natural localization maps induce an isomorphism of Qp[G]-modules

H1
ét(OL,S,Qp(r))

≃−→ P 1(OL,S ,Qp(r))

by Propositions 3.8 and 3.12(v). We let σr = σ1
r be the inverse of this

isomorphism. We set τr := (ch
(p)
r,1)

−1σ1
r exp

BK
r , which is an isomorphism

L⊗Q Qp ≃ K2r−1(OL,S)⊗Qp, and define

G(φ1−r , αr) := {γ ∈ EndQp[G](Yr ⊗Zp
Qp) | φ−1

1−rτrα
−1
r γ (Yr) ⊆ Yr},

G(φ1−r , αr) := 〈NrdQp[G](γ) | γ ∈ G(φ1−r, αr)〉ζ(Zp[G])

= E(αr) · F(φ1−r),

where the last equality follows easily from the definitions. Clearly, the set
G(φ1−r , αr) contains γr := αrτ

−1
r φ1−r and hence NrdQp[G](γr) ∈ G(φ1−r , αr).

Conversely, for every γ ∈ G(φ1−r , αr) we have that NrdQp[G](γ
−1
r γ) ∈ Ip(G).

In other words, we have an equality

G(φ1−r , αr) · Ip(G) = NrdQp[G](γr) · Ip(G).

Define a Cp[G]-automorphism of H+
1−r(L) ⊗ Cp by ϑ

(j)
r := ρrτrι

−1
r , where we

extend scalars via the isomorphism j : C ≃ Cp on the right hand side. Noting
that Hp(G) is an ideal in Ip(G), we compute

Hp(G) · J S
r = Hp(G) ·NrdQp[G](γr) ·

(

(ASφr
)−1
)♯

= Hp(G) ·NrdCp[G](ϑ
(j)
r ) · j(L∗

S(r)).

If L/K is a CM-extension and r is even, similar observations again hold on
minus parts.

Documenta Mathematica 24 (2019) 2381–2422



2412 Andreas Nickel

7.4 The annihilation conjecture

Let L/K be a finite Galois extension of number fields with Galois group G and
let r > 1 be an integer. Let p 6= 2 be a prime and let S be a finite set of places
of K containing Sram ∪ S∞ ∪ Sp. Suppose that Schneider’s Conjecture 3.4 and
Gross’ Conjecture (Conjecture 5.4) both hold.

Conjecture 7.6. For every x ∈ AnnZp[G](Zp(r − 1)GL
) we have that

NrdQp[G](x) · Hp(G) · J S
r ⊆ AnnZp[G](K

w
2r−2(OL,S)p).

Remark 7.7. The Zp[G]-annihilator of Zp(r − 1)GL
≃ (Qp/Zp(1 − r)GL)∨ is

generated by the elements 1 − φwN(v)1−r , where v runs through the finite
places of K with v 6∈ Sram ∪ Sp (cf. [Coa77]). Moreover, if L/K is totally real
and r is even, then Zp(r − 1)GL

vanishes.

Remark 7.8. If p does not divide the order of the commutator subgroup of G,
then we have Hp(G) = ζ(Zp[G]) by Proposition 7.2. In particular, if G is
abelian, then Conjecture 7.6 simplifies to the assertion

AnnZp[G](Zp(r − 1)GL
) · J S

r ⊆ AnnZp[G](K
w
2r−2(OL,S)p).

Taking Example 7.4 and Remark 7.7 into account, we see that our conjecture
is compatible with [Bar09, Conjecture 5.3.4].

Remark 7.9. The author also expects that for every x ∈ AnnZp[G](Zp(r−1)GL
)

we have that
NrdQp[G](x) · J S

r ⊆ Ip(G). (7.2)

Then (7.1) implies that the left hand side in Conjecture 7.6 belongs to ζ(Zp[G]).

Lemma 7.10. Let S′ be a second finite set of places of K such that S ⊆ S′.

(i) If Conjecture 7.6 holds for S, then it holds for S′ as well.

(ii) If (7.2) holds for S, then it holds for S′ as well.

Proof. Recall from Remark 2.7 that the p-adic wild kernel does not depend
on S. Thus (i) follows once we have shown that

Hp(G) · J S′

r ⊆ Hp(G) · J S
r . (7.3)

By definition we have

J S′

r = J S
r ·





∏

v∈S′\S

ǫv(r)
−1





♯

.

However, each ǫv(r)
−1 = NrdQp[G](1−φwN(v)−r) belongs to Ip(G) as for v 6∈ S

we have v ∤ p and thus N(v) ∈ Z×
p . This implies (ii) and also (7.3) by (7.1).
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7.5 Noncommutative Fitting invariants

We briefly recall the definition and some basic properties of noncommutative
Fitting invariants introduced in [Nic10] and further developed in [JN13].
Let G be a finite group and let p be a prime. Let N and M be two ζ(Zp[G])-
submodules of a Zp-torsion-free ζ(Zp[G])-module. Then N and M are called
Nrd-equivalent if there exists an integer n and a matrix U ∈ GLn(Zp[G]) such
that N = NrdQp[G](U) ·M . We denote the corresponding equivalence class by
[N ]. We say that N is Nrd-contained in M (and write [N ] ⊆ [M ]) if for all
N ′ ∈ [N ] there exists M ′ ∈ [M ] such that N ′ ⊆ M ′. Note that it suffices to
check this property for one N0 ∈ [N ]. We will say that x is contained in [N ]
(and write x ∈ [N ]) if there is N0 ∈ [N ] such that x ∈ N0.
Now let M be a finitely presented Zp[G]-module and let

Zp[G]
a h−→ Zp[G]

b −→M −→ 0 (7.4)

be a finite presentation of M . We identify the homomorphism h with the
corresponding matrix in Ma×b(Zp[G]) and define S(h) = Sb(h) to be the set of
all b × b submatrices of h if a ≥ b. In the case a = b we call (7.4) a quadratic
presentation. The Fitting invariant of h over Zp[G] is defined to be

FittZp[G](h) =

{

[0] if a < b
[

〈NrdQp[G](H)|H ∈ S(h)〉ζ(Zp[G])

]

if a ≥ b.

We call FittZp[G](h) a (noncommutative) Fitting invariant of M over Zp[G].
One defines Fittmax

Zp[G](M) to be the unique Fitting invariant of M over Zp[G]
which is maximal among all Fitting invariants of M with respect to the
partial order “⊆”. If M admits a quadratic presentation h, one also puts
FittZp[G](M) := FittZp[G](h) which is independent of the chosen quadratic pre-
sentation. The following result is [Nic10, Theorem 4.2].

Theorem 7.11. If M is a finitely presented Zp[G]-module, then

Hp(G) · Fittmax
Zp[G](M) ⊆ AnnZp[G](M).

Lemma 7.12. Let C• ∈ Dperf(Zp[G]) be a perfect complex such that Hi(C•) is
finite for all i ∈ Z and vanishes if i 6= 2, 3. Choose L ∈ ζ(Qp[G])

× such that
∂p(L) = χZp[G],Qp

(C•, 0). Then we have an equality

Fittmax
Zp[G]((H

2(C•))∨)♯ = Fittmax
Zp[G](H

3(C•)) · L.

Proof. This is an obvious reformulation of [Nic11a, Lemma 4.4] (with a shift
by 2).

7.6 The relation to the leading term conjecture

The aim of this subsection is to prove the following theorem which describes
the relation of Conjecture 7.6 to the leading term conjecture at s = r and thus
also to the ETNC for the pair (Q(r)L,Z[G]) by Theorem 6.5.
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Theorem 7.13. Let L/K be a finite Galois extension of number fields with
Galois group G. Let r > 1 be an integer and let p be an odd prime. Suppose
that the leading term conjecture at s = r (Conjecture 6.1) holds for L/K at p.
Then Conjecture 7.6 is also true.

Corollary 7.14. Fix an odd prime p and suppose that L is abelian over Q.
Then the leading term conjecture at s = r and Conjecture 7.6 both hold for
almost all r > 1 (and all even r if L is totally real).

Proof. As L/Q is abelian, the ETNC for the pair (Q(r)L,Z[G]) holds for all
r ∈ Z by work of Burns and Flach [BF06]. Now fix an odd prime p. Then
Schneider’s conjecture holds for almost all r by Remark 3.6 and for all even
r > 1 if L is totally real by Theorem 3.9. Thus the result follows from Theorem
6.5 and Theorem 7.13.

Proof of Theorem 7.13. Recall the notation from §7.3. Let γ ∈ E(αr), δ ∈
F (φ1−r , σr) and x ∈ AnnZp[G](Zp(r − 1)GL

). We have to show that

Hp(G) ·Nrd(x) ·Nrd(γ) ·Nrd(δ) ·
(

(ASφr
)−1
)♯ ⊆ AnnZp[G](K

w
2r−2(OL,S)p), (7.5)

where we denote NrdQp[G] by Nrd in this proof for simplicity. As the reduced
norm is continuous for the p-adic topology, we may and do assume that γ and
δ are Qp[G]-automorphisms (and not just endomorphisms). By the definition
of E(αr) we therefore get an injection

expBKr α−1
r γ : Yr −→ P 1(OL,S ,Zp(r))tf (7.6)

which we may lift to an injection

ηr : Yr −→ P 1(OL,S,Zp(r)),

since Yr is a projective Zp[G]-module. Likewise, by the definition of F (φ1−r, σr)
we obtain a map

δφ−1
1−r(ch

(p)
r,1)

−1σ1
r : P 1(OL,S ,Zp(r))tf −→ H+

1−r(L)⊗ Zp. (7.7)

We may therefore define a Zp[G]-homomorphism

ξr : Yr −→ (H+
1−r(L)⊗ Zp)⊕H2

c (OL,S,Zp(r))

such that the projection onto H2
c (OL,S ,Zp(r)) is the composition of ηr and the

natural map P 1(OL,S ,Zp(r)) → H2
c (OL,S ,Zp(r)), whereas the projection onto

H+
1−r(L)⊗Zp is given by the composite map of (7.6) and (7.7). We then have

an equality
ξr ⊗Zp

Qp = (δ ⊕ idH2
c (OL,S,Qp(r)))t(ψr, σr, S)γ (7.8)

which implies that ξr is injective.
The perfect complex CL,S(r) is isomorphic in D(Zp[G]) to a complex A → B
of Zp[G]-modules of finite projective dimension, where A is placed in degree 2.
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Choose n ∈ N such that pnγ(Yr) ⊆ Yr. As Yr is projective, we may con-
struct the following commutative diagram of Zp[G]-modules with exact rows
and columns.

Yr� _

ξr

��

Yr� _

��

0
// Yr� _

��

Yr� _

pnγ

��

(H+
1−r(L) ⊗ Zp) ⊕H2

c (OL,S ,Zp(r))
� � //

��
��

A //

��
��

B // //

��
��

H3
c (OL,S,Zp(r))⊕ Yr

��
��

cok(ξr)
� � // A′ // B′ // // H3

c (OL,S,Zp(r))⊕ cok(pnγ)

The arrow A′ → B′ defines a complex C′ in Dperf(Zp[G]) (where we place A′

in degree 2; note that C′ depends on a lot of choices which we suppress in the
notation). The cohomology groups of this complex are finite and vanish outside
degrees 2 and 3. Thus the zero map is the unique trivialization of this complex.

Likewise the arrow Yr
0→ Yr defines the complex Yr{2, 3} in Dperf(Zp[G]) and

we choose tδ,n := pn(δ−1 ⊕ idH+
−r(L)⊗Qp

) as a trivialization. Using equation

(7.8) we compute

−∂p(ASφr
)♯ = χZp[G],Qp

(CL,S(r), t(ψr , σr, S))

= χZp[G],Qp
(C′, 0) + χZp[G],Qp

(Yr{2, 3}, tδ,n)
= χZp[G],Qp

(C′, 0) + ∂p(Nrd(tδ,n)),

where the first equality is Conjecture 6.1. Now Lemma 7.12 implies the first
equality in the following computation.

Fittmax
Zp[G](cok(ξr)

∨)♯ = Fittmax
Zp[G](H

3
c (OL,S ,Zp(r)) ⊕ cok(pnγ)) ·

(

(ASφr
)♯Nrd(tδ,n)

)−1

⊇ Fittmax
Zp[G]

(

H3
c (OL,S ,Zp(r))

)

· FittZp[G](cok(p
nγ)) ·

(

(ASφr
)♯Nrd(tδ,n)

)−1

= Fittmax
Zp[G]

(

H3
c (OL,S ,Zp(r))

)

·Nrd(pnγ) ·
(

(ASφr
)♯Nrd(tδ,n)

)−1

= Fittmax
Zp[G]

(

H3
c (OL,S ,Zp(r))

)

·

Nrd(γ) · Nrd(δ) ·
(

(ASφr
)♯
)−1

∋ Nrd(x) · Nrd(γ) · Nrd(δ) ·
(

(ASφr
)♯
)−1

.

The inclusion follows from [Nic10, Proposition 3.5]. The second equality holds,
since pnγ : Yr → Yr is a quadratic presentation of cok(pnγ). The definition of
tδ,n gives the third equality. Finally, the Zp[G]-moduleH3

c (OL,S ,Zp(r)) is cyclic
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by Proposition 3.12 (ii) and thus Nrd(x) belongs to its maximal Fitting invari-
ant by [JN13, Theorem 3.1(i) and Theorem 5.1(i)]. As AnnZp[G](cok(ξr)

∨)♯

equals AnnZp[G](cok(ξr)), Theorem 7.11 implies that

Hp(G) ·Nrd(x) ·Nrd(γ) ·Nrd(δ) ·
(

(ASφr
)−1
)♯ ⊆ AnnZp[G](cok(ξr)). (7.9)

However, the composition of ξr and the projection ontoH2
c (OL,S ,Zp(r)) factors

through P 1(OL,S ,Zp(r)) via ηr and thus there is a surjection of cok(ξr) onto

cok
(

P 1(OL,S ,Zp(r)) → H2
c (OL,S ,Zp(r))

)

≃ X
2(OL,S ,Zp(r))

≃ Kw
2r−2(OL,S)p,

where the last isomorphism is Proposition 3.12 (iv). This and (7.9) now imply
(7.5).

Remark 7.15. The proof also shows that Conjecture 6.1 implies the containment
(7.2).

7.7 The relation to a conjecture of Burns, Kurihara and Sano

Let L/K be an abelian extension of number fields with Galois group G and
let r be an integer. In [BKS] the authors define a certain ideal in terms of
‘generalized Stark elements of weight −2r’ (in particular, this involves the
equivariant L-value L∗

S(r)) and conjecture that this ideal coincides with the
initial Fitting ideal of H2

ét(OL,S,Zp(1 − r)). In this final subsection, we will
explain the relation of their conjecture to our Conjecture 7.6 if r > 1.
So let us henceforth assume that r > 1. Fix a second finite set T of places of K,
which is disjoint from S. Following [BKS, §3.2] we define RΓT (OL,S,Zp(1−r))
to be a complex that lies in an exact triangle in the derived category D(Zp[G])
of the form

RΓT (OL,S,Zp(1− r)) → RΓ(OL,S,Zp(1− r)) →
⊕

w∈T (L)

RΓ(L(w),Zp(1 − r)),

(7.10)
where the second arrow is induced by the natural morphism. For each i ∈ Z
we abbreviate HiRΓT (OL,S ,Zp(1 − r)) by Hi

T (OL,S ,Zp(1− r)).

The conjecture of Burns, Kurihara and Sano [BKS, Conjecture 3.5] concerns the
initial Fitting ideal and thus also the annihilator ideal of the finite cohomology
group H2

T (OL,S,Zp(1− r)). In order to relate their conjecture to ours, we have
to determine the relation between this cohomolgy group and the wild kernel
Kw

2r−2(OL,S)p. Artin-Verdier duality and the triangle (7.10) give an exact
triangle in D(Zp[G]) of the form

⊕

w∈T (L)

RΓ(L(w),Zp(1 − r)) → C•
S,T (r) → D•

S(r) (7.11)
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(see [BF03, (6)] or [BKS, §4.1]), where we have set

C•
S,T (r) := RΓT (OL,S ,Zp(1− r))[1]⊕ (H+

r (L)⊗ Zp)[−1];

D•
S(r) := RHomZp

(RΓc(OL,S,Zp(r)),Zp)[−2].

For any Zp-module M we write M∗ for its Zp-linear dual. We henceforth
assume that Schneider’s conjecture holds. Then Proposition 3.12 implies that
H1
c (OL,S ,Zp(r)) ≃ H+

−r(L)⊗ Zp is Zp[G]-projective. Thus the complex D•
S(r)

is acyclic outside degrees 0 and 1 and we have canonical isomorphisms of Zp[G]-
modules

H0(D•
S(r))tor ≃ H3

c (OL,S ,Zp(r))
∨,

H0(D•
S(r))tf ≃ H2

c (OL,S ,Zp(r))
∗,

H1(D•
S(r)) ≃ (H2

c (OL,S,Zp(r))tor)
∨ ⊕ (H+

r (L)⊗ Zp).

In particular, the triangle (7.11) yields a right exact sequence of Zp[G]-modules

⊕

w∈T (L)

Zp(r − 1)Gw
→ H2

T (OL,S ,Zp(1 − r)) → (H2
c (OL,S ,Zp(r))tor)

∨ → 0.

Moreover, we have a surjection

H2
c (OL,S ,Zp(r)) ։ Kw

2r−2(OL,S)p

by Proposition 3.12(iv). Thus [BKS, Conjecture 3.5] and our conjecture predict
annihilators of the torsion subgroup and a finite quotient of H2

c (OL,S ,Zp(r)),
respectively. In order to compare the two conjectures we will hence assume
that H2

c (OL,S ,Zp(r)) is finite so that we have an inclusion

AnnZp[G](H
2
T (OL,S,Zp(1− r)))♯ ⊆ AnnZp[G](K

w
2r−2(OL,S)p). (7.12)

By Proposition 3.12(v) and (2.5) this implies that L is totally real and that r
is odd. Since H+

−r(L) vanishes in this case, the wedge product which occurs in
[BKS, Conjecture 3.5] is empty (see [BKS, Hypothesis 2.2]) so that this conjec-
ture predicts that the initial Fitting ideal of H2

T (OL,S ,Zp(1 − r)) is generated
by an element ηL/K,S,T (r) as defined in [BKS, §2.2]. By its very definition (and
taking [BKS, Remark 2.5] into account) this element is given by

ηL/K,S,T (r)
♯ =

(

∏

v∈T

(1− φwN(v)1−r)

)

·NrdCp[G](ϑ
(j)
r ) · j(L∗

S(r)).

Now the inclusion (7.12), Remark 7.7 and Example 7.5 imply the following
result.

Proposition 7.16. Let L/K be an abelian extension of totally real fields and
let r > 1 be an odd integer. Assume that Schneider’s Conjecture 3.4 and
Gross’ Conjecture 5.1 both hold. Then [BKS, Conjecture 3.5] for all T implies
Conjecture 7.6.
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Remark 7.17. The conjecture of Burns, Kurihara and Sano indeed involves the
choice of a certain idempotent ε of Zp[G]. Under the hypotheses of Proposition
7.16 it suffices to consider their conjecture for ε = 1 (which implies their con-
jecture for all admissible idempotents). However, we point out that in general
1 is not an admissible idempotent. For instance, this happens if L/K is a CM-
extension. If we further assume that r is even, then e− := (1−c)/2 is admissible,
where c ∈ G denotes complex conjugation. In this case e−H2

c (OL,S ,Zp(r)) is
finite and one can formulate an analogue of Proposition 7.16 on minus parts.
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