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Abstract. We prove that the localizations of the categories of dg categories,
of cohomologically unital and strictly unital A∞ categories with respect to
the corresponding classes of quasi-equivalences are all equivalent. Moreover
we show that the last two localizations are equivalent to the corresponding
quotients by the relation of being isomorphic in the cohomology of the A∞

category of A∞ functors. As an application we give a complete proof of a claim
by Kontsevich stating that the category of internal Homs for two dg categories
can be described as the category of strictly unital A∞ functors between them.
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Introduction

The category dgCat of differential graded (dg from now on) categories de-
fined over a field k is widely studied. Roughly speaking, a dg category is a
category whose space of morphism is actually a complex. Due to the work
of Tabuada [22], dgCat has a model structure which allows to give a very
nice description of the localization Ho(dgCat) of such a category by the class
of quasi-equivalences. Actually, the category Ho(dgCat) provides the correct
framework to look for dg enhancements of triangulated categories and dg lifts
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of exact functors between triangulated categories (see [3] for an overview on
the subject).

Let us look closely at triangulated categories of algebro-geometric nature: the
unbounded derived category of quasi-coherent sheaves, the bounded derived
category of coherent sheaves and the category of perfect complexes on an al-
gebraic stack. They all possess natural dg enhancements. But other geometric
categories arising from symplectic geometry come with a slightly more general
kind of enhancements: the A∞ ones. This is the case of the Fukaya category
which is related to lagrangian submanifolds of a smooth symplectic manifold.
The interplay between triangulated categories of algebro-geometric or symplec-
tic type is highly non-trivial and at the very forefront of modern geometry, as
predicted by the celebrated homological version of the Mirror Symmetry Con-
jecture due to Kontsevich [13].

This pushes the attention to A∞ categories and functors which, in this paper,
will always be meant to be defined over a field. Strictly speaking an A∞

category is not a category as the composition is associative only up to higher
multiplication maps, contrary to the case of dg categories.

In addition to this, A∞ categories have various possible incarnations. Indeed,
one can talk about strictly unital or cohomologically unital A∞ categories.
While the former have identity morphisms and are thus closer to being cate-
gories, only the cohomology categories of the latter have identities and are thus
categories in a proper sense. To fix the notation, we denote by A∞Cat (resp.
A∞Catc) the category of strictly (resp. cohomologically) unital A∞ categories,
whose morphisms are strictly (resp. cohomologically) unital A∞ functors.

It is important to keep in mind that we need to distinguish between these dif-
ferent types of categories not for pure abstraction but due to geometry. Indeed,
while the dg categories enhancing algebro-geometric categories are strictly uni-
tal, the Fukaya category is by no means strictly unital in a natural way but it
is cohomologically unital.

Thus, one can either take the localization Ho(A∞Cat) of A∞Cat with re-
spect to strictly unital quasi-equivalences or the localization Ho(A∞Catc) of
A∞Catc with respect to quasi-equivalences. We can go further and consider
the quotients of A∞Catc and A∞Cat by another crucial equivalence relation.
Indeed, if A1 and A2 are cohomologically or strictly unital A∞ categories one
can form the A∞ category FunA∞Catc(A1,A2) which will be carefully defined
in Section 1.4. Roughly, its objects are the cohomologically unital A∞ functors
between A1 and A2. We say that two cohomologically unital or strictly unital
A∞ functors F1,F2 : A1 → A2 are equivalent F1 ≈ F2 if they are isomorphic in
the 0-th cohomology of FunA∞Catc(A1,A2). Thus we can take the quotients
A∞Cat/ ≈ and A∞Catc/ ≈ of A∞Cat and A∞Catc with respect to this
relation.

Our first main result is then the following.
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Theorem A. The faithful but not full natural inclusions dgCat →֒ A∞Cat →֒
A∞Catc induce equivalences

Ho(dgCat) ∼= Ho(A∞Cat) ∼= Ho(A∞Catc).

Moreover, these categories are equivalent to A∞Catc/ ≈ and A∞Cat/ ≈.

This result is certainly expected by experts but we could not find a proof
in the existing literature which may work in the generality mentioned above.
Actually, Theorem A has various interesting applications. The first easy one
is that a triangulated category has a unique dg enhancement if and only if
it has unique strictly or cohomologically unital A∞ ones. The uniqueness of
dg enhancements for the algebro-geometric categories mentioned above was
conjectured by Bondal, Larsen and Lunts [2] for smooth projective varieties.
Such a conjecture was proved in a much more general setting by Lunts and
Orlov [16]. In [5], these results were further extended and Theorem A implies
that the same results hold for A∞ enhancements.

Let us now move to a much more elaborate application. It is well-known and
not difficult to prove that dgCat is a closed symmetric monoidal category with
respect to the tensor product of dg categories. The important feature is that
the tensorization has a right adjoint given by the dg category of dg functors
between the two dg categories which we are given.
It is a much deeper and recent result that Ho(dgCat) is a closed symmetric
monoidal category, again with respect to the tensor product of dg categories
and with right adjoint to the tensorization given by the dg category of internal
Homs between the corresponding dg categories. More precisely, let A1, A2

and A3 be three dg categories. Then the category RHom(A2,A3) of internal
Homs between A2 and A3, is the unique (up to isomorphism in Ho(dgCat))
dg category yielding a natural bijection

Ho(dgCat)(A1 ⊗A2,A3) oo
1:1 // Ho(dgCat)(A1,RHom(A2,A3)). (IH)

This result was first proven by Toën [23] and later reproven in [4] in a much
simpler way.
The point is that, a while before [23], Kontsevich had a very bright vision of
how to prove the existence of the category of internal Homs and of its explicit
description. This can be summarized as follows:

Claim (Kontsevich). If A1 and A2 are dg categories, then the dg category
FunA∞Cat(A1,A2), whose objects are strictly unital A∞ functors, is the cat-
egory of internal Homs between A1 and A2.

There are several pointers in the literature to the above claim (see [6, 12,
23]). But, quite surprisingly, no correct and complete proof of this very nice
statement seems to be available. We will discuss this problem a bit later.
Our second main result fills this gap, by using Theorem A in a crucial way.
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Theorem B. Let A1, A2 and A3 be three dg categories. Then there exists a
natural bijection

Ho(dgCat)(A1 ⊗A2,A3) oo
1:1 // Ho(dgCat)(A1,FunA∞Cat(A2,A3))

proving that the symmetric monoidal category Ho(dgCat) is closed.

As a consequence, RHom(A2,A3) is isomorphic to FunA∞Cat(A2,A3) in
Ho(dgCat). The advantage of using this description of the category
RHom(A2,A3) is that morphisms in Ho(dgCat) can now be described as
equivalence classes of strictly unital A∞ functors and not as roofs of dg func-
tors. We hope that this may be used in some future work to give a simpler
proof of the fact that an exact functor between the bounded derived categories
of coherent sheaves on smooth projective schemes over a field can be lifted to a
morphism in Ho(dgCat) if and only if it is of Fourier–Mukai type (see [17, 23]).

Related work

A version of Theorem A was proved by Lefèvre-Hasegawa in [14] for (non-
unital) A∞ algebras. Actually his result extends to the category of (non-unital)
A∞ categories with the same set of objects, but this is clearly not sufficiently
general for our purposes.
Lefèvre-Hasegawa’s proof is based on the observation that, even though the
category of A∞ algebras does not have a model structure, it can be endowed
with a ‘degenerate’ model structure without arbitrary limits and colimits. This
is related to a true model structure on the category of dg coalgebras which was
obtained in [14] in analogy with a result of Hinich [9] for dg algebras.
When we pass to A∞Cat and A∞Catc, the situation is very similar. Indeed,
both categories do not have a model structure with arbitrary limits and colimits
(see Section 1.5). Clearly, one could follow the same strategy as in [14] to prove
Theorem A. The issue is that Lefèvre-Hasegawa’s result mentioned above is
not at hand for dg cocategories. Actually, it seems a non-trivial problem in
itself to show that the category of dg cocategories admits an interesting model
structure. To avoid these delicate problems, we proceed by constructing explicit
equivalences between the given categories. This has the advantage of providing
a very handy control on the various localizations.
As for Theorem B, to the best of our knowledge, the only other paper dealing
with Kontsevich’s claim is [7], where it appears as Theorem 1.2. Such a re-
sult is used in the same paper to prove some interesting properties concerning
the mapping spaces of dg categories and the Hochschild cohomology of A∞

categories (see Theorems 1.3 and Theorem 1.4 in [7]). Unfortunately, after a
careful analysis, the proof in [7] turned out to be a bit too rough and incorrect
at some steps, probably due to a wrong use of the notion of augmentation and
reduction. More precisely, Definitions A.14 and A.16 in [7] look inaccurate to
us and, as a consequence, Lemmas A.20 and A.21 of the same paper are clearly
wrong. These lemmas are used in Remark A.26 of [7] where it is erroneously
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claimed that a certain functor γD is a quasi-equivalence. All these results are
correct in the augmented but not in the strictly unital case. In the latter
setting, the appropriate statement is our Proposition 2.1. Even if we replace
Remark A.26 with it, the rest of the proof of Kontsevich’s claim in Section 2
of [7] is quite hard to follow. The reason being that the author refers (in a
slightly vague way) to [14] without making the necessary upgrade of the results
in [14] from the augmented to the strictly unital setting. We are aware that
Faonte is currently working on a revision of [7] after we sent him a preliminary
version of this paper.

It should also be noted that our proof and the approach by Faonte are different
in spirit. Indeed, Faonte proceeds by showing that, given two dg categories
A1 and A2, the dg category RHom(A2,A2) described by Toën (see [23, 4])
is quasi-equivalent to FunA∞Cat(A1,A2). Our proof consists in showing the
existence of the category of internal Homs from scratch by directly proving that
FunA∞Cat(A1,A2) satisfies the defining property (IH) of the dg category of
internal Homs. In other words, we provide yet another proof of the main result
in [23] for the special case when the dg categories are defined over a field.

Plan of the paper

Section 1 is a rather short introduction to A∞ categories and A∞ functors
providing precise definitions for all the notions mentioned above. We compare
the approaches in [1] and [21] and introduce the notion of A∞ multifunctor (see
Section 1.4). We recall the bar and cobar constructions in Section 1.2 as these
notions will be fundamental all along the paper. The last argument treated
in this part of the paper is the lack of limits (whence of a model structure)
for the categories of strictly and cohomologically unital A∞ categories (see
Section 1.5).

Section 2 is completely devoted to the proof of Theorem A. In particular, the
latter result is the combination of Theorem 2.2, Theorem 2.8, Proposition 2.9
and Theorem 2.11. Finally, the proof of Theorem B is contained in Section 3,
where the use of A∞ multifunctors is crucial.

Notation and conventions

We assume that a universe containing an infinite set is fixed. Throughout the
paper, we will simply call sets the members of this universe. In general the
collection of objects of a category need not be a set: we will always specify if
we are requiring this extra condition.

We work over a field k. We will always assume that the collection of objects
in a k-linear category is a set. The category (whose collection of objects is
not a set) of k-linear categories and k-linear functors will be denoted by Cat.
We will also use the more general notions of non-unital k-linear categories and
functors, which form a category Catn.
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The shift by an integer n of a graded or dg object M will be denoted by M [n].
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1 Preliminaries on A∞ categories and functors

In this section we recall some basic facts about A∞ categories and
(multi)functors. The key results for us are those pointing to the adjunc-
tion between the bar and cobar constructions. They form the bulk of this
section.

1.1 A∞ categories and A∞ functors

Let us start with the basic definition of A∞ categories and its variants de-
pending on the presence of units, at different levels. We will not follow the
sign convention in [21] but the equivalent one in [14]. This is motivated by
the fact that the latter is automatically compatible with the bar and cobar
constructions that we will discuss later in this section.

Definition 1.1. A non-unital A∞ category A consists of a set of objects
Ob(A) and, for any A1, A2 ∈ Ob(A), a Z-graded k-vector space A(A1, A2)
and, for all i ≥ 1, k-linear maps

mi
A : A(Ai−1, Ai)⊗ · · · ⊗A(A0, A1) → A(A0, Ai)

of degree 2− i. The maps must satisfy the A∞ associativity relations

∑

0≤j<n
1≤k≤n−j

(−1)jk+n−j−kmn−k+1
A (id⊗jmk

A ⊗ id⊗n−j−k) = 0, (1.1)

for every n ≥ 1.

The above relation when n = 1 implies that the pair (A(A1, A2),m
1
A) is a

complex, for every A1, A2 ∈ Ob(A). On the other hand, for n = 2 we have
that m1

A satisfies the (graded) Leibniz rule with respect to the composition
defined by m2

A. Moreover, for n = 3 we have that m2
A is associative up to a

homotopy defined by m3
A.
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In particular, we can then take cohomologies of A(A1, A2) and define the
(graded, non-unital) cohomology category H(A) of A such that Ob(H(A)) =
Ob(A) and

H(A)(A1, A2) =
⊕

i

Hi(A(A1, A2)).

The latter graded vector spaces come with the natural induced associative
composition

[f2] ◦ [f1] := [m2
A(f2, f1)].

Even though we call H(A) a category, it may not be a category in a strict
sense, as H(A) may lack identities. For this reason, we introduce the following
special classes of A∞ categories.

Definition 1.2. A cohomologically unital A∞ category is a non-unital A∞

category A such that H(A) is a category (i.e. H(A) is unital).

The above definition can be made stricter.

Definition 1.3. A strictly unital A∞ category is a non-unital A∞ category A

such that, for all A ∈ Ob(A), there exists a degree 0 morphisms idA ∈ A(A,A)
such that

m1
A(idA) = 0,

m2
A(f, idA) = m2

A(idA, f) = f,

mi
A(fi−1, . . . , fk, idA, fk−1, . . . , f1) = 0,

for all morphisms f, f1, . . . , fi−1 and for all i > 2 and 1 ≤ k ≤ i.

Clearly, a strictly unital A∞ category is cohomologically unital. A non-unital
A∞ category A such that mi

A = 0, for all i > 2, is called a non-unital dg
category. In complete analogy, we get cohomologically unital dg categories and
strictly unital dg categories. In accordance to the existing literature, strictly
unital dg categories will be simply referred to as dg categories.
When the corresponding (dg or A∞) categories have only one object, then, for
obvious reasons, we will talk about (dg or A∞) algebras.

Example 1.4. For every set O we will denote by EO the dg category whose
set of objects is O and whose morphisms are given by

EO(A1, A2) =

{
k idA1 if A1 = A2

0 otherwise,

with zero differential and obvious composition.

Example 1.5. Given two (non-unital, cohomologically unital or strictly unital)
dg categories A1 and A2 we can define a (non-unital, cohomologically unital
or strictly unital) dg category A1 ⊗ A2 which is the tensor product of A1
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and A2. Its objects are the pairs (A1, A2) with Ai ∈ Ob(Ai) while A1 ⊗
A2((A1, A2), (B1, B2)) = A1(A1, B1) ⊗ A2(A2, B3). If A1 and A2 are A∞

categories, then there is no well behaved and simple notion of tensor product
as in the dg case. It would be very useful to fill such a lack.

Definition 1.6. A non-unital A∞ functor F : A1 → A2 between two non-
unital A∞ categories A1 and A2 is a collection F = {Fi}i≥0 such that
F0 : Ob(A1) → Ob(A2) is a map of sets and

F
i : A1(Ai−1, Ai)⊗ · · · ⊗A1(A0, A1) → A2(F

0(A0),F
0(Ai))

are degree 1 − i maps of graded vectors spaces, for all A0, . . . , Ai ∈ Ob(A1),
satisfying the following relations

∑

0≤j<n
1≤k≤n−j

(−1)jk+n−j−kFn−k+1(id⊗j ⊗mk
A1

⊗ id⊗n−j−k)

=
∑

1≤r≤n
s1+···+sr=n

(−1)
∑

2≤u≤r((1−su)
∑

1≤v≤u
sv)mr

A2
(Fsr ⊗ . . .⊗ Fs1), (1.2)

for every n ≥ 1. A non-unital A∞ functor F is strict if Fi = 0 for every i > 1.

The above relation when n = 1 implies that F1 commutes with the differentials
m1

Ai
. On the other hand, for n = 2 we see that F1 preserves the compositions

m2
Ai

, up to a homotopy defined by F2. It follows that F1 induces a non-unital
graded functor

H(F) : H(A1) → H(A2).

A non-unital A∞ functor F is a quasi-isomorphism if H(F) is an isomorphism.

Definition 1.7. If A1 and A2 are cohomologically unital A∞ categories, a
non-unital A∞ functor F : A1 → A2 is cohomologically unital if H(F) is unital.

A cohomologically unital A∞ functor F is a quasi-equivalence if H(F) is an
equivalence.

Definition 1.8. If A1 and A2 are strictly unital A∞ categories, a non-
unital A∞ functor F : A1 → A2 is strictly unital if F1(idA) = idF0(A)

and Fi(fi−1, . . . , idA, . . . , f1) = 0, for all A ∈ Ob(A1) and all morphisms
f1, . . . , fi−1.

Non-unital, cohomologically unital and strictly unital A∞ functors can be com-
posed in an explicit way that will be made clear later (see Remark 1.20) produc-
ing the same type of A∞ functors. We denote by A∞Catn the category whose
objects are non-unital A∞ categories and whose morphisms are non-unital A∞

functors. Analogously, we get the categories A∞Catc and A∞Cat whose
objects and morphisms are, respectively, cohomologically unital and strictly
unital A∞ categories and functors. Similarly, we denote by dgCatn, dgCatc

Documenta Mathematica 24 (2019) 2463–2492



Localizations of the Category of A∞ Categories 2471

and dgCat the categories whose objects are non-unital, cohomologically uni-
tal and strictly unital dg categories with the corresponding strict A∞ functors
(called dg functors).

Example 1.9. A map of sets f : O → O′ defines a unique dg functor Ef : EO →
EO′ which coincides with f on objects.

Definition 1.10. A strictly unital A∞ categoryA is augmented if it is endowed
with a strict and strictly unital A∞ functor ǫA : A → EOb(A) which is the
identity on objects.

If A is an augmented A∞ category, its reduction is the non-unital A∞ cat-
egory A such that Ob(A) = Ob(A) and A(A1, A2) = ker(ǫA : A(A1, A2) →
EOb(A)(A1, A2)) (for every A1, A2 ∈ A), with mi

A
induced from mi

A by restric-
tion.
Given a non-unital A∞ category A, its augmentation is the augmented A∞

category A+ such that Ob(A+) = Ob(A) and

A+(A1, A2) =

{
A(A1, A2) if A1 6= A2

A(A1, A1)⊕ k 1A1 otherwise,

with mi
A+ the unique extension of mi

A such that the additional morphisms 1A
is the unit of A in A+, for every A ∈ A. Let us stress that, if A is strictly
unital, the unit in A is denoted by idA while the one on A+ is 1A, for every
A ∈ A.
Augmented A∞ categories form a category A∞Cata with

A∞Cata(A1,A2) := {F ∈ A∞Cat(A1,A2) : ǫA2 ◦ F = EF0 ◦ ǫA1}.

It is easy to see that the maps A 7→ A and A 7→ A+ extend to functors
A∞Cata → A∞Catn and A∞Catn → A∞Cata, which are quasi-inverse
equivalences of categories. Denoting by dgCata the subcategory of A∞Cata

whose objects are (augmented) dg categories and whose morphisms are (com-
patible) dg functors, these equivalences clearly restrict to quasi-inverse equiv-
alences between dgCata and dgCatn.

1.2 Bar construction and A∞ multifunctors

First we need to recall basic facts about (dg) quivers and (dg) cocategories.
We refer to [1, 11] for extensive presentations.

Definition 1.11. A (k-linear) quiver V consists of a set of objects Ob(V)
and, for every X,Y ∈ V, of a k-vector space V(X,Y ). A morphism of quivers
F : V → V′ is given by maps F : Ob(V) → Ob(V′) and (for every X,Y ∈ V)
F = FX,Y : V(X,Y ) → V′(F(X),F(Y )).

Example 1.12. For every set O we will denote by IO the quiver defined as EO

in Example 1.4 (forgetting differential and composition).
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Quivers and morphisms of quivers (with the obvious composition) clearly form
a category Qu.

Definition 1.13. A quiverV is augmented if it is endowed with two (structure)
morphisms of quivers IOb(V) → V → IOb(V) which are the identities on objects
and whose composition is the identity. A morphism of augmented quivers is a
morphism of quivers which is compatible with the structure morphisms.

Again, augmented quivers and augmented morphisms form a category Qua.
Similarly as before, there are natural reduction and augmentation functors
which give quasi-inverse equivalences between Qua and Qu.
Replacing (in the above definitions) vector spaces with graded (respectively,
dg) vector spaces, one gets the notions of (augmented) graded (respectively
dg) quivers. The corresponding categories will be denoted by gQu and gQua

(respectively, dgQu and dgQua).

Definition 1.14. A (k-linear) non-unital cocategory is a quiver C endowed
with k-linear maps

∆C : C(X,Y ) →
⊕

Z∈C

C(Z, Y )⊗C(X,Z)

(for every X,Y ∈ C) satisfying the natural coassociativity condition.
A non-unital cocategory C is cocomplete if each morphism of C is in the kernel
of a sufficiently high iterate of ∆C.

Example 1.15. For a quiver V the (reduced) tensor cocategory T
c
(V) has

Ob(T
c
(V)) := Ob(V), the hom set T

c
(V)(X,Y ) is given by

V(X,Y )
⊕

n>0

⊕

Z1,...,Zn∈V

V(Zn, Y )⊗V(Zn−1, Zn)⊗ · · · ⊗V(Z1, Z2)⊗V(X,Z1)

(for every X,Y ∈ V) and

∆T
c
(V)(fn, . . . , f1) :=

n−1∑

i=1

(fn, . . . , fi+1)⊗ (fi, . . . , f1)

(for every morphism (fn, . . . , f1) of T
c
(V)). It is easy to see that T

c
(V) is

a cocomplete non-unital cocategory. Dually, we denote by T(V) the usual
(reduced) tensor category over V.

Definition 1.16. A non-unital cofunctor F : C1 → C2 between two non-unital
cocategories C1 and C2 is a morphism of quivers such that ∆C2 ◦F = (F⊗F) ◦
∆C1 .

We will denote by coCatn the category whose objects are non-unital cocom-
plete cocategories and whose morphisms are non-unital cofunctors. It is not
difficult to prove the following result (see [11, Lemma 5.2] for the augmented
version of the first part or [14, Lemma 1.1.2.2] for the case of (co)algebras).
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Proposition 1.17. The forgetful functor coCatn → Qu has right adjoint
defined on objects by V 7→ T

c
(V). Dually, the forgetful functor Catn → Qu

has left adjoint defined on objects by V 7→ T(V).

Definition 1.18. Let F1,F2 ∈ coCatn(C1,C2). A (F1,F2)-coderivation is
a collection of k-linear maps D : C1(C1, C2) → C2(F1(C1),F2(C2)), for every
pair of objects C1, C2 ∈ C1, such that the relation

∆C2 ◦D = (F2 ⊗D +D ⊗ F1) ◦∆C1

holds true.

We will denote by coDer(F1,F2) the k-module of (F1,F2)-coderivations. Dually,
if F1,F2 ∈ Catn(A1,A2), there is well known notion of (F1,F2)-derivation and
we will denote by Der(F1,F2) the k-module of (F1,F2)-derivations.
We will need the following result, which is not difficult to prove and well known
to experts (see Lemma 1.1.2.1 and 1.1.2.2 in [14] for the case of (co)algebras).

Proposition 1.19. Given V ∈ Qu and F1,F2 ∈ coCatn(C,T
c
(V)), there is

a natural isomorphism between coDer(F1,F2) and the k-module consisting of
collections of k-linear maps

C(C1, C2) → V(F′
1(C1),F

′
2(C2))

(for every C1, C2 ∈ C), where F′
i ∈ Qu(C,V) corresponds to Fi under

the adjunction of Proposition 1.17. Dually, given V ∈ Qu and F1,F2 ∈
Catn(T(V),A), there is a natural isomorphism between Der(F1,F2) and the
k-module consisting of collections of k-linear maps

V(V1, V2) → A(F′
1(V1),F

′
2(V2))

(for every V1, V2 ∈ V), where F′
i ∈ Qu(V,A) corresponds to Fi under the

adjunction of Proposition 1.17.

There are also natural notions of unital and augmented cocategories; the cor-
responding categories will be denoted by coCat and coCata. As usual, there
are reduction and augmentation functors which give quasi-inverse equivalences
between coCata and coCatn. Dually, in the case of categories one can define
the category Cata of (k-linear) augmented categories, which is equivalent to
Catn. We also define, for every V ∈ Qu, the tensor cocategory Tc(V) as
T

c
(V)+ ∈ coCata and the tensor category T(V) as T(V)+ ∈ Cata.

Replacing (in the above definitions) vector spaces with graded (respectively,
dg) vector spaces, one gets the various notions of graded (respectively dg) co-
categories. The corresponding categories will be denoted by gcoCatn, gcoCat

and gcoCata (respectively, dgcoCatn, dgcoCat and dgcoCata). Moreover,
in the graded (respectively, dg) setting, both coDer(F1,F2) and Der(F1,F2) are
graded (respectively, dg) k-modules in a natural way. Recall that the differ-
ential of D ∈ coDer(F1,F2) of degree n is defined as dC2 ◦D − (−1)nD ◦ dC1 ,
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and similarly for derivations. In the following we will freely use the fact that
Proposition 1.17 and Proposition 1.19 admit obvious extensions to the graded
setting.

Given A ∈ A∞Catn, the bar construction B∞(A) ∈ dgcoCatn associated
to A is simply defined to be T

c
(A[1]) as a graded non unital cocategory.

The differential dB∞(A) is the degree 1 (idTc
(A[1]), idT

c
(A[1]))-coderivation cor-

responding to the maps mi
A under the isomorphism of Proposition 1.19. As

in the case of algebras (see [14, Section 1.2.1]) it is easy to verify that the
condition d2B∞(A) = 0 corresponds precisely to the relations (1.1).

We also set B+
∞(A) := B∞(A)+ ∈ dgcoCata for A ∈ A∞Cata. Notice that,

as a graded augmented cocategory, this is just Tc(A[1]). When A is a dg
category, we will simply write B(A) and B+(A) to simplify the notation.
If F : A1 → A2 is a non-unital A∞ functor, then we can define a dg cofunctor
B∞(F) : B∞(A1) → B∞(A2) which is the unique morphism in gcoCatn corre-
sponding, under Proposition 1.17, to the morphism B∞(A1) → A2[1] in gQu

naturally defined in terms of the components Fi of F. As in the case of alge-
bras (see [14, Section 1.2.1]) it is easy to verify that the condition that B∞(F)
commutes with the differentials dB∞(Ai) corresponds precisely to the relations
(1.2).

Remark 1.20. Note that the composition in A∞Catn is then defined in such
a way that

B∞ : A∞Catn → dgcoCatn

defines a fully faithful functor. It is important to observe that the composition
in A∞Catn extends the natural one in dgCatn.

More generally, if we consider A1, . . . ,An,A ∈ A∞Catn, we can take mor-
phisms

F : B∞(A1)+ ⊗ · · · ⊗ B∞(An)+ → A[1]

in gQu satisfying the natural generalization of (1.2). More precisely, this means
that the natural extension

B∞(A1)+ ⊗ · · · ⊗ B∞(An)+ → B∞(A)

of F in gcoCatn given by Proposition 1.17 commutes with the differentials.
Such an extension will be denoted by B∞(F) and F will be called an A∞ multi-
functor from A1, . . . ,An to A. The set of A∞ multifunctors from A1, . . . ,An

to A will be denoted A∞Catn(A1, . . . ,An,A). Hence A∞Catn has the struc-
ture of a multicategory (see [1, Chapter 3] for an extensive discussion about
multicategories). In particular, the construction is compatible with compo-
sitions, in the sense that, for every F ∈ A∞Catn(A1, . . . ,An,A) and every
G ∈ A∞Catn(A,A′), one has B∞(G ◦ F) = B∞(G) ◦ B∞(F).
Given F ∈ A∞Catn(A1, . . . ,An,A) and Ai ∈ Ai (for i = 1, . . . , n), one can
consider the restrictions F|(A1,...,Ai−1,Ai,Ai+1,...,An) : B∞(Ai) → A[1], which
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are ordinary A∞ functors. When A1, . . . ,An,A are cohomologically unital
A∞ categories, we say that F is a cohomologically unitaly A∞ multifunc-
tor if all its restrictions are cohomologically unital.3 Clearly we denote by
A∞Catc(A1, . . . ,An,A) the set of cohomologically unital A∞ multifunctors
from A1, . . . ,An to A.

1.3 Cobar construction and adjunctions

Given a C ∈ dgcoCatn, one gets a non-unital dg category which, as a non-
unital graded category, is simply defined as

Ω(C) := T(C[−1]).

In other words, the objects of Ω(C) are the same as those in C while

Ω(C)(C1, C2) :=
⊕

C(Dn, C2)[−1]⊗C(Dn−1, Dn)[−1]⊗· · ·⊗C(C1, D1)[−1],

where the sum is over all integers n ≥ 0 and all possible n-uples of objects
D1, . . . , Dn ∈ Ob(C) (if n = 0, in the sum we only get C(C1, C2)[−1]). We
set m1

Ω(C) to be the derivation corresponding, under the identification given in
Proposition 1.19, to dC and ∆C. The fact that C is a dg cocategory implies
that m1

Ω(C) ◦m
1
Ω(C) = 0.

Given F : C1 → C2 in dgcoCatn, one can define Ω(F) : Ω(C1) →
Ω(C2) in dgCatn as the unique morphism in gCatn corresponding, under
Proposition 1.17, to the morphism C1[−1] → Ω(C2) in gQu naturally defined
in terms of F. It turns out that the fact that F is a dg cofunctor implies that
Ω(F) commutes with m1

Ω(Ci)
. By putting altogether, we get a faithful (but

non-full) functor
Ω: dgcoCatn → dgCatn.

We can now investigate the relation between the bar and cobar construc-
tions which is based on the notion of twisting cochain, used in the proof of
Proposition 1.21 below. Recall that, if C ∈ dgcoCatn and A ∈ dgCatn, a
twisting cochain τ : C → A is a degree 1 morphism of graded quivers such that

m1
A ◦ τ + τ ◦ dC +m2

A ◦ (τ ⊗ τ) ◦∆C = 0.

When C ∈ dgcoCata and A ∈ dgCata, a twisting cochain C → A is admis-
sible if it is of the form C ։ C → A →֒ A, for some map C → A (which is
then necessarily a twisting cochain).
The following result is proved in [14, Lemma 1.2.2.5] in the case of algebras
and is crucial for the rest of the paper.

Proposition 1.21. The bar and cobar constructions define adjoint functors

Ω: dgcoCatn ⇄ dgCatn :B.
3Note that the definition of cohomologically unital A∞ multifunctor in [1] is different from

the one above. Nevertheless, by [1, Proposition 9.13], the two definitions are equivalent.
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Proof. Given C ∈ dgcoCatn and A ∈ dgCatn, in view of Proposition 1.17
there are natural isomorphisms

gcoCatn(C,B(A)) = gcoCatn(C,T
c
(A[1])) ∼= gQu(C,A[1])

∼= gQu(C[−1],A) ∼= gCatn(T(C[−1]),A) = gCatn(Ω(C),A).

It is easy to check that morphisms commuting with the differentials in the first
and in the last terms correspond precisely to twisting cochains in the middle
terms. �

We will denote by α : Ω◦B → iddgCatn the counit and by β : iddgcoCatn → B◦Ω
the unit of the adjunction of Proposition 1.21. Notice that, by Remark 1.20 and
the discussion following it, for every A1, . . . ,An ∈ A∞Catn, the dg cofunctor

β
B∞(A1)+⊗···⊗B∞(An)+

: B∞(A1)+ ⊗ · · · ⊗ B∞(An)+

→ B(Ω(B∞(A1)+ ⊗ · · · ⊗ B∞(An)+))

is of the form β
B∞(A1)+⊗···⊗B∞(An)+

= B∞(γA1,...,An
) for a unique A∞ multi-

functor

γA1,...,An
∈ A∞Catn(A1, . . . ,An,Ω(B∞(A1)+ ⊗ · · · ⊗ B∞(An)+)).

Denoting by In : dgCatn → A∞Catn the inclusion functor and setting

U
n := Ω ◦ B∞ : A∞Catn → dgCatn,

it is clear that the A∞ functors γA : A → Ω(B∞(A)) = Un(A) (for A ∈
A∞Catn) define a natural transformation γ : idA∞Catn → In ◦ Un.

Proposition 1.22. There is an adjunction

Un : A∞Catn ⇄ dgCatn : In,

whose unit is γ : idA∞Catn → In ◦ Un and whose counit is α : Un ◦ In = Ω ◦
B → iddgCatn. Moreover, γA (for every A ∈ A∞Catn) and αB (for every
B ∈ dgCatn) are quasi-isomorphisms.

Proof. The first part is a very easy consequence of Proposition 1.21 (again,
taking into account that B∞ is fully faithful). The last statement is proved in
[14, Lemma 1.3.3.6 & Lemma 1.3.2.3]. �

1.4 A∞ categories of A∞ multifunctors

We now want to introduce the A∞ category of A∞ multifunctors from
A1, . . . ,An to A. For this, we start with the following.
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Definition 1.23. Given two non-unital A∞ multifunctors F1,F2 ∈
A∞Catn(A1, . . . ,An,A), a prenatural transformation θ of degree d
between F1 and F2 is the datum, for any pair of objects C1, C2 ∈
B∞(A1)+ ⊗ · · · ⊗ B∞(An)+, of a morphism of graded k-vector spaces

θC1,C2 : B∞(A1)
+ ⊗ · · · ⊗ B∞(An)

+(C1, C2) → A(F1(C1),F2(C2))

of degree d.

Given A1, . . . ,An,A ∈ A∞Catn, it is explained in [1, Proposition 8.15] that
one has a non-unital A∞ category denoted by FunA∞Catn(A1, . . . ,An,A)
whose objects are non-unital A∞ multifunctors between A1, . . . ,An and A

and morphisms are prenatural trasformations of all degrees. IfA1, . . . ,An,A ∈
A∞Catc, we denote by FunA∞Catc(A1, . . . ,An,A) the full A∞ subcategory
of FunA∞Catn(A1, . . . ,An,A) whose objects are cohomologically unital A∞

multifunctors.

Remark 1.24. If A1 and A2 are strictly unital A∞ categories one has the full
A∞ subcategoryFunA∞Cat(A1,A2) of FunA∞Catn(A1,A2) whose objects are
strictly unital A∞ functors.
On the other hand, if F1,F2 : A1 → A2 are strictly unital A∞ functors, one
can consider strictly unital prenatural transformations θ between them. Recall
that θ is strictly unital if θ(fi, . . . , idA, . . . , f1) = 0, for all i ≥ 1, all A ∈ A1 and
all morphisms f1, . . . , fi. One could then define Funu

A∞Cat(A1,A2) as the A∞

subcategory of FunA∞Cat(A1,A2) with the same objects and morphisms the
strictly unital prenatural transformations. By [14, Lemma 8.2.1.3], the natural
inclusion Funu

A∞Cat(A1,A2) →֒ FunA∞Cat(A1,A2) is a quasi-isomorphism.
Thus we will only work with the latter.

Remark 1.25. Given F1,F2 ∈ A∞Catn(A1, . . . ,An,A), the graded k-vector
space Nat(F1,F2) consisting of prenatural transformations between F1 and F2

is isomorphic to coDer(B∞(F1),B∞(F2)) by Proposition 1.19. It follows from
the discussion in [1, Section 8.16] (see also the beginning of [19, Section 3.3]
for the case n = 1) that this is actually an isomorphism of dg k-vector spaces
if we endow Nat(F1,F2) with the differential given by m1

FunA∞Catn (A1,...,An,A).

Given F ∈ A∞Catn(A1, . . . ,An,A) and A′ ∈ A∞Catn, there is an induced
non-unital A∞ functor

RF : FunA∞Catn(A,A′) → FunA∞Catn(A1, . . . ,An,A
′)

defined on objects by G 7→ G ◦ F. Moreover, if A1, . . . ,An,A,A′ and F are
cohomologically unital, then RF restricts to a non-unital A∞ functor

RF : FunA∞Catc(A,A′) → FunA∞Catc(A1, . . . ,An,A
′).

It is observed for example in [1] that, if A is a cohomologically unital (resp.
strictly unital) A∞ category, then FunA∞Catn(A1, . . . ,An,A) is a cohomo-
logically unital (resp. strictly unital) A∞ category. Similarly, if A is a dg
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category, then FunA∞Catn(A1, . . . ,An,A) is a dg category as well. Moreover,
if A1, . . . ,An are in A∞Catc and A is in A∞Catc (resp. in A∞Cat or in
dgCat), then FunA∞Catc(A1, . . . ,An,A) is in A∞Catc (resp. in A∞Cat or
in dgCat). Finally, if A1, . . . ,An are in A∞Cat and A is in A∞Cat (resp.
in dgCat), then FunA∞Cat(A1, . . . ,An,A) is in A∞Cat (resp. in dgCat).
We also need to recall the following notions.

Definition 1.26. Let F1,F2 ∈ A∞Catn(A1, . . . ,An,A).
(i) When A is cohomologically unital, F1 and F2 are weakly equivalent (denoted
by F1 ≈ F2) if they are isomorphic in H0(FunA∞Catn(A1, . . . ,An,A)).
(ii) When n = 1 and F0

1 = F0
2, F1 and F2 are homotopic (denoted by F1 ∼ F2)

if there is a prenatural transformation θ of degree 0 such that θ(idA) = 0, for
every A ∈ A1, and F2 = F1 +m1

FunA∞Catn (A1,A2)
(θ).

Note that, if F1 ∼ F2 and A is cohomologically unital, then F1 ≈ F2 by [21,
Lemma 2.5].
Since ≈ is compatible with compositions, from the (multi)category A∞Catc

one can obtain a quotient (multi)category A∞Catc/ ≈ with the same objects
and whose morphisms are given by

A∞Catc/ ≈ (A1, . . . ,An,A) := A∞Catc(A1, . . . ,An,A)/ ≈ .

Similarly one can construct A∞Cat/ ≈ from A∞Cat.
Although we will not need it in the rest of the paper, it is interesting to point
out the following consequence of Proposition 1.22.

Corollary 1.27. For every C ∈ dgcoCatn, every A ∈ dgCatn and every
F ∈ A∞Catn(Ω(C),A), there exists F′ ∈ dgCatn(Ω(C),A) such that F ∼ F′.

Proof. We define F′ as the composition

F′ : Ω(C)
Ω(βC)
−−−−→ Ω(B(Ω(C))) = Un(Ω(C))

U
n(F)

−−−→ Un(A)
αA−−→ A.

Notice that F′ is a (non-unital) dg functor by construction. Since αA◦γA = idA
(this is due to the fact that the composition

I
n(A)

γIn(A)
−−−−→ I

n(Un(In(A)))
I
n(αA)
−−−−→ I

n(A)

is the identity), we have

F = αA ◦ γA ◦ F = αA ◦ Un(F) ◦ γΩ(C).

Thus, to conclude that F ∼ F′ = αA ◦ Un(F) ◦ Ω(βC), it is enough to prove
that γΩ(C) ∼ Ω(βC). To see this, just observe that αΩ(C) : Ω(B(Ω(C))) =
Un(Ω(C)) → Ω(C) satisfies both αΩ(C) ◦ γΩ(C) = idΩ(C) (similarly as above)
and αΩ(C) ◦ Ω(βC) = idΩ(C) (thanks to the adjunction between Ω and B).
Since αΩ(C) is a quasi-isomorphism and quasi-isomorphisms are invertible up
to homotopy (by [14, Corollary 1.3.1.3]), this clearly implies that γΩ(C) ∼
Ω(βC). �
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1.5 No model structure

We conclude this section with a side remark that shows that there is no model
structure for the category of A∞ categories.
It was proven in [22] that dgCat has a (complete and cocomplete) model
structure (the reader can have a look at [10] for a thorough exposition about
model categories). On the other hand, it was stated in [14] that the category
of A∞ algebras does not carry a model structure, according to the modern
terminology, in the sense that the category of A∞ algebras is not closed under
limits and colimits.
As no explicit example supporting the latter statement is provided in [14] or,
to our knowledge, in the existing literature, we sketch here a simple example
in the more general setting of A∞ categories that may be very well known to
experts.
Consider the following (unital) graded k-algebras:

A := k[ε1, ε2] A′ := k[ε],

where ε21 = ε22 = ε1ε2 = ε2ε1 = ε2 = 0, deg(ε1) = deg(ε2) = 0 and deg(ε) =
−1. Being dg algebras (with zero differential), we can regard A and A′ as
strictly unital A∞ categories. Similarly, we will consider the dg morphism
F1 : A → A′ defined by

F1(ε1) = F1(ε2) = 0

as a strict and strictly unital A∞ morphism. On the other hand, it is easy to
check that one can define another strictly unital A∞ morphism F2 : A → A′

by setting F1
2 = F1

1,

F2
2(εi, εj) =

{
ε if i = 1, j = 2

0 otherwise

and Fi
2 = 0 for i > 2.

Lemma 1.28. Let A, A′, F1 and F2 be as above. Then F1 and F2 do not admit
an equalizer in A∞Cat. Moreover, they do not admit an equalizer in A∞Catc,
either.

Proof. Assume, for a contradiction, that G : B → A is an equalizer of F1 and
F2 in A∞Cat (respectively, in A∞Catc).
Let us first observe that for every B ∈ Ob(B), there is a strictly (respectively,
cohomologically) unital A∞ functor FB : k → B sending the unique object of
k to B. Indeed, this is trivial if B is strictly unital. Otherwise, we can use the
fact that, by [21, Lemma 2.1], there is a quasi-isomorphism I ∈ A∞Catc(B′,B)
with I0 the identity, for some B′ ∈ A∞Cat. Then we can take as FB the
composition I ◦ F′

B , where F′
B : k → B′ is a strictly unital A∞ functor sending

the unique object of k to B.
Next we prove that also B has only one object. To see this, given B1, B2 ∈
Ob(B), let FB1 and FB2 be the A∞ functors introduced above. Since k and A
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sit in degree 0, the A∞ functor G ◦ FBi
: k → A must be strict and H(G ◦ FBi

)
can be identified with (G ◦ FBi

)1, for i = 1, 2. As G ◦ FBi
is cohomologically

unital, this implies that in any case it is also strictly unital. Since the source
category is k and the target A has only one object, we immediately deduce
that G ◦ FB1 = G ◦ FB2 . As G is a monomorphism in A∞Cat (respectively, in
A∞Catc), this implies FB1 = FB2 , hence B1 = B2, as wanted.
Thus B is an A∞ algebra and G is a morphism of A∞ algebras, which is an
equalizer of F1 and F2 also in the category of strictly (respectively, cohomolog-
ically) unital A∞ algebras. We are going to see that this last statement gives
a contradiction.
To this purpose, consider the (unital) k-algebra A0 := k[ε0], where ε20 = 0
and deg(ε0) = 0. For i = 1, 2, we denote by Ji : A0 → A the morphism
of k-algebras (which we regard, as usual, as a strict and strictly unital A∞

morphism) defined by Ji(ε0) = εi. It is clear that F1 ◦ Ji = F2 ◦ Ji. Hence, by
the universal property of the equalizer G, we have that Ji factors through G.
Since the images of J1 and J2 together span A as a k-vector space, we obtain
that G1 is surjective. From this it easy to see that (F1 ◦G)

2 6= (F2 ◦G)
2, which

is impossible because F1 ◦ G = F2 ◦ G. �

The following is then straightforward.

Proposition 1.29. The categories A∞Cat and A∞Catc do not admit a model
structure.

The approach in [14] consists then in taking a reduced model structure on the
category of A∞ algebras which does not require the existence of arbitrary limits
and colimits. It would be interesting but maybe more difficult to exploit the
same idea for A∞ categories. As this is not needed for the results in this paper,
we leave it for future work.

2 Equivalences of localizations

This section deals with the proof of Theorem A concerning the localizations of
the categories of A∞ categories and their comparison with the localization of
the category of dg categories.

2.1 Equivalence between Ho(dgCat) and Ho(A∞Cat)

We will need the following unital version of Proposition 1.22.

Proposition 2.1. There is an adjunction

U : A∞Cat ⇄ dgCat : I,

where I is the inclusion functor. Moreover, the unit ρ : idA∞Cat → I ◦ U and
the counit σ : U ◦ I → iddgCat are such that ρA (for every A ∈ A∞Cat) and
σB (for every B ∈ dgCat) are quasi-isomorphisms.
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Proof. Keeping the notation of Section 1.3, for every A ∈ A∞Cat let JA be
the smallest dg ideal in Un(A)+ such that the A∞ functor

A
γA

−−→ U
n(A) →֒ U

n(A)+ ։ U
n(A)+/JA

is strictly unital. We then define U(A) := Un(A)+/JA and denote the above
composition by ρA : A → U(A) = I(U(A)). We claim that ρA is a universal
arrow from A to I, namely that, for every B ∈ dgCat, the map

dgCat(U(A),B) → A∞Cat(A,B)

G 7→ G ◦ ρA
(2.1)

is bijective. Indeed, given F ∈ A∞Cat(A,B), we can regard F as an el-
ement of A∞Catn(A,B). By Proposition 1.22, there exists unique F′ ∈
dgCatn(Un(A),B) such that F = F′ ◦ γA, and F′ extends uniquely to F′′ ∈
dgCat(Un(A)+,B). It follows easily from the definition of JA that JA ⊆
ker(F′′); hence F′′ factors uniquely through a dg functor G : Un(A)+/JA → B.
It is then clear that G ∈ dgCat(U(A),B) is unique such that F = G◦ρA. Thus,
by [18, Theorem 2, p. 83], the map on objects A 7→ U(A) extends uniquely
to a functor U : A∞Cat → dgCat, which is left adjoint to I and such that
ρ : idA∞Cat → I ◦ U is the unit of the adjunction.
To conclude, it is enough to show that ρA is a quasi-isomorphism for every
A ∈ A∞Cat. Indeed, assuming this, ρB = ρI(B) is a quasi-isomorphism for
every B ∈ dgCat. Since the composition

I(B)
ρI(B)
−−−→ I(U(I(B)))

I(σB)
−−−→ I(B)

is the identity, it follows that I(σB) (whence σB) is a quasi-isomorphism, too.
The argument to show that ρA is a quasi-isomorphism seems to be well known
to experts and it was pointed out to us by Michel Van den Bergh. We outline
it here for the convenience of the reader.
Given A1, A2 ∈ A, we first give a filtration on the graded vector space
A(A1, A2):

FnA(A1, A2) =






kidA1 if n = 0 and A1 = A2

0 if n = 0 and A1 6= A2

A(A1, A2) otherwise.

Similarly, we define a filtration on U(A)(A1, A2) given by

F 0U(A)(A1, A2) =

{
kidA1 if A1 = A2

0 if A1 6= A2

while, for n > 0, we set FnU(A)(A1, A2) to be the vector space freely generated
by the elements of the form

(f1| · · · |fi1)⊗ (fi1+1| · · · |fi2)⊗ · · · ⊗ (fim−1+1| · · · |fk),
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for all k ≤ n and all morphisms f1, . . . , fi1 , fi1+1, . . . , fi2 , . . . , fim−1+1, . . . , fk
in A. Here we denote by | the tensor product in the cocategory while ⊗ stays
for the tensor product in the category.
It is easy to check that these filtrations are compatible with the differential and
with ρA. This clearly implies that ρA is a quasi-isomorphism if the induced
morphism (of dg quivers) gr(ρA) : gr(A) → gr(U(A)) is a quasi-isomorphism.
Since the differential on gr(U(A)) (which is induced by the one on U(A)) de-
pends only on m1

A, we can assume that A is augmented with mi
A
= 0 for i > 1.

Under this assumption gr(U(A)) can be identified with Un(A)+ and gr(ρA)
with γ+

A
. Since γA : A → Un(A) is a quasi-isomorphism by Proposition 1.22,

we conclude that gr(ρA) is a quasi-isomorphism, as well. �

From Proposition 2.1 it is easy to deduce the following result.

Theorem 2.2. The functors I and U induce the functors

Ho(I) : Ho(dgCat) → Ho(A∞Cat), Ho(U) : Ho(A∞Cat) → Ho(dgCat),

which are quasi-inverse equivalences of categories.

Proof. Obviously I : dgCat → A∞Cat preserves quasi-equivalences, and the
same is true for U : A∞Cat → dgCat. Indeed, for every F : A → A′ inA∞Cat

we have U(F) ◦ ρA = ρA′ ◦ F. Since ρA and ρA′ are quasi-isomorphisms, this
immediately implies that U(F) is a quasi-equivalence if F is such. Thus, by the
universal property of localization, I and U induce the required functors Ho(I)
and Ho(U). Moreover, ρ and σ induce natural transformations

Ho(ρ) : Ho(idA∞Cat) = idHo(A∞Cat) → Ho(I ◦ U) = Ho(I) ◦Ho(U),

Ho(σ) : Ho(U ◦ I) = Ho(U) ◦Ho(I) → Ho(iddgCat) = idHo(dgCat)

such that Ho(ρ)A (for every A ∈ A∞Cat) and Ho(σ)B (for every B ∈ dgCat)
are just the images in the localizations of ρA and σB. As ρA and σB are
quasi-isomorphisms, this proves that Ho(ρ) and Ho(σ) are isomorphisms of
functors. �

Remark 2.3. Defining A∞Catdg to be the full subcategory of A∞Cat with
objects the dg categories, the above argument can be adapted in an obvious
way to prove that there is an equivalence of categories between Ho(dgCat)
and Ho(A∞Catdg) (the latter category denoting, of course, the localization
of A∞Catdg with respect to quasi-equivalences). Hence Ho(A∞Cat) and
Ho(A∞Catdg) are equivalent, as well.

2.2 Equivalence between Ho(A∞Cat) and Ho(A∞Catc)

We start discussing some preliminary results that show how to replace a coho-
mologically unital A∞ category or functor with a strictly unital one.

Documenta Mathematica 24 (2019) 2463–2492



Localizations of the Category of A∞ Categories 2483

Proposition 2.4. Given A ∈ A∞Catc, there exists A′ ∈ A∞Cat such that
A ∼= A′ in A∞Catc.

Proof. See [21, Lemma 2.1]. �

The proof of the above result, which is crucial for the rest of the paper, secretly
uses a reduction to minimal models for A∞ categories. Such models do not
exist in general for A∞ categories defined over commutative rings which are
not fields.
We now want to state a result similar to the above one but for cohomologically
unital A∞ functors, which is probably well known to experts. To this purpose,
we will denote by A∞Catcu the full subcategory of A∞Catc with the same
objects asA∞Cat, and, as usual, by Ho(A∞Catcu) its localization with respect
to quasi-equivalences.

Proposition 2.5. Given F ∈ A∞Catcu(A1,A2), there exists F′ ∈
A∞Cat(A1,A2) such that F ∼ F′.

Proof. This is mentioned in [21, Remark 2.2] without a proof, since one could
give an explicit one which is very similar, in spirit, to that of [21, Lemma
2.1]. Alternatively, the result follows from [14, Theorem 3.2.2.1] in the case of
minimal A∞ algebras. The passage to arbitrary A∞ algebras follows from [14,
Proposition 3.2.4.3]. This also covers the case of A∞ categories as explained in
[14, Section 5.1]. For all the details of the proof, see also [20, Section 3.2]. �

The following consequence will be used later.

Corollary 2.6. For every A1,A2 ∈ A∞Cat there is an isomorphism in
Ho(A∞Cat)

FunA∞Cat(A1,A2) ∼= FunA∞Catc(A1,A2).

Proof. The fully faithful inclusion functor FunA∞Cat(A1,A2) →֒
FunA∞Catc(A1,A2) is actually a quasi-equivalence by Proposition 2.5. �

We also need the following preliminary result.

Lemma 2.7. If F,F′ ∈ A∞Catcu(A1,A2) are such that F ∼ F′, then F and F′

have the same image in Ho(A∞Catcu). If moreover F and F′ are strictly unital,
then F and F′ have the same image also in Ho(A∞Cat).

Proof. One can use the argument of [21, Remark 1.11]. Namely, there exists an
A∞ functor G : A1 → I⊗A2 such that F = (f0⊗idA2)◦G and F′ = (f1⊗idA2)◦G.
Here I is a suitably defined dg algebra and fi : I → k (for i = 0, 1) is a quasi-
isomorphism in dgAlg such that fi◦ηI = idk (where ηI : k → I is the structure
morphism). Moreover, everything is in A∞Catcu, and even in A∞Cat if F
and F′ are strictly unital (as in this case we can assume that also the homotopy
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is strictly unital, by [14, Proposition 3.2.4.3]). Writing [H] for the image of H
in the localization, in both cases it follows that

[F] = [f0 ⊗ idA2 ] ◦ [G] = [ηI ⊗ idA2 ]
−1 ◦ [G] = [f1 ⊗ idA2 ] ◦ [G] = [F′].

This concludes the proof. �

We can now prove another part of Theorem A.

Theorem 2.8. The inclusion functor A∞Cat → A∞Catc induces an equiva-
lence of categories Ho(A∞Cat) → Ho(A∞Catc).

Proof. By Proposition 2.4 the inclusion functor A∞Catcu → A∞Catc is an
equivalence, and it follows easily that the same is true for the induced functor
Ho(A∞Catcu) → Ho(A∞Catc). Therefore, it is enough to prove that the
inclusion functor J : A∞Cat → A∞Catcu induces an equivalence (actually even
an isomorphism of categories) Ho(J) : Ho(A∞Cat) → Ho(A∞Catcu). To this
purpose, we can define a functor K : A∞Catcu → Ho(A∞Cat) as follows. Of
course, K is the identity on objects, whereas for every morphism F in A∞Catcu
we define K(F) to be the image in Ho(A∞Cat) of a morphism F′ in A∞Cat

whose existence is ensured by Proposition 2.5. Notice that K(F) is well defined
by (the second part of) Lemma 2.7. It is straightforward to check that K

is really a functor and that it send quasi-equivalences to isomorphisms, thus
inducing a functor K′ : Ho(A∞Catcu) → Ho(A∞Cat). It is clear that K′ ◦
Ho(J) = idHo(A∞Cat), and it follows from (the first part of) Lemma 2.7 that
Ho(J) ◦ K′ = idHo(A∞Catc

u
). �

2.3 Equivalence between Ho(A∞Cat) and A∞Cat/ ≈

We conclude this section with the last comparisons in Theorem A.

Proposition 2.9. The inclusion functor A∞Cat → A∞Catc induces an
equivalence of categories A∞Cat/ ≈→ A∞Catc/ ≈.

Proof. Clearly the inclusion functor A∞Cat → A∞Catc induces a faithful
functor A∞Cat/ ≈→ A∞Catc/ ≈. This functor is full by Proposition 2.5
and it is essentially surjective by Proposition 2.4. �

Lemma 2.10. If F,F′ ∈ A∞Catdg(A1,A2) are such that F ≈ F′, then F and F′

have the same image in Ho(A∞Catdg).

Proof. By [8, Lemma 4.8] the existence of a natural transformation F → F′

(which we can assume to be strictly unital, as it is explained in Remark 1.24)
implies the existence of G ∈ A∞Catdg(A1,Mor(A2)) such that F = S ◦ G and
F′ = T ◦ G. Moreover, the fact that F ≈ F′ actually implies that the image of
G is contained in the full dg subcategory P (A2) of Mor(A2) whose objects are
homotopy equivalences (see also [4, Section 2.2]). To conclude it is enough to
note that S,T : P (A2) → A2 are quasi-equivalences with the same images in
Ho(A∞Catdg) (they both coincide with the inverse of the image of the natural
dg functor A2 → P (A2)). �

Documenta Mathematica 24 (2019) 2463–2492



Localizations of the Category of A∞ Categories 2485

The following result concludes the proof of Theorem A.

Theorem 2.11. The categories Ho(A∞Cat) and A∞Cat/ ≈ are equivalent.

Proof. By Remark 2.3 Ho(A∞Cat) is equivalent to Ho(A∞Catdg). Simi-
larly, A∞Cat/ ≈ is equivalent to A∞Catdg/ ≈. To see this, just observe
that for every A ∈ A∞Cat there exists a quasi-equivalence A → A′ with
A′ ∈ A∞Catdg (thanks to Proposition 2.1) and that the image of a quasi-
equivalence of A∞Cat is an isomorphism in A∞Cat/ ≈ (by [14, Théorème
9.2.0.4]). Thus it is enough to show that Ho(A∞Catdg) and A∞Catdg/ ≈ are
equivalent. Now, we have just noted that the quotient functor A∞Catdg →
A∞Catdg/ ≈ sends quasi-equivalences to isomorphisms, hence it induces a
functor Ho(A∞Catdg) → A∞Catdg/ ≈. On the other hand, it follows from
Lemma 2.10 that the localization functor A∞Catdg → Ho(A∞Catdg) factors
through a functor A∞Catdg/ ≈→ Ho(A∞Catdg). It is then clear that in this
way we obtain two functors which are quasi-inverse equivalences of categories
between Ho(A∞Catdg) and A∞Catdg/ ≈. �

3 Internal Homs via A∞ functors

This section is devoted to the proof of Theorem B. Our approach requires the
use of multifunctors and a slightly delicate analysis of the behaviour of the bar
construction under tensor product.

3.1 Multifunctors and a useful quasi-equivalence

We now prove some preliminary results which play an important role in our
proof.

Lemma 3.1. Given M ∈ A∞Catn(A1, . . . ,An,A) with A1, . . . ,An ∈
A∞Catn and A ∈ dgCatn, there exists unique

M̃ ∈ dgCatn(Ω(B∞(A1)+ ⊗ · · · ⊗ B∞(An)+),A)

such that M = M̃ ◦ γA1,...,An
. Moreover, Ω(B∞(M)) is a quasi-isomorphism if

and only if M̃ is a quasi-isomorphism.

Proof. Setting C := B∞(A1)+ ⊗ · · · ⊗ B∞(An)+, by definition B∞(M) ∈
dgcoCatn(C,B(A)). By Proposition 1.21 there exists unique M̃ ∈
dgCatn(Ω(C),A) such that B∞(M) = B(M̃) ◦ βC. As B∞ is bijective
and

B(M̃) ◦ βC = B∞(M̃) ◦ B∞(γA1,...,An
) = B∞(M̃ ◦ γA1,...,An

),

this proves the first statement. As for the last one, observe that in any case
Ω(B∞(γA1,...,An

)) = Ω(βC) is a quasi-isomorphism (since αΩ(C) ◦ Ω(βC) =
idΩ(C) and αΩ(C) is a quasi-isomorphism, by Proposition 1.22). Therefore,

Ω(B∞(M)) = Ω(B∞(M̃)) ◦ Ω(B∞(γA1,...,An
)) is a quasi-isomorphism if and
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only if Ω(B∞(M̃)) = Un(M̃) is a quasi-isomorphism. Finally, Proposition 1.22
easily implies that Un(M̃) is a quasi-isomorphism if and only if M̃ is a quasi-
isomorphism. �

Remark 3.2. For A1, . . . ,An ∈ A∞Catn, A ∈ dgCatn and F1,F2 ∈
A∞Catn(A1, . . . ,An,A), it is easy to see that there is a natural isomorphism
of dg k-modules

coDer(B∞(F1),B∞(F2)) ∼= Der(F̃1, F̃2).

Lemma 3.3. Given A1,A2 ∈ dgCatn, there exists

G : B(A1)+ ⊗ B(A2)+ → B(A+
1 ⊗A+

2 )

in dgcoCatn which is the identity on objects and such that Ω(G) is a quasi-
isomorphism.

Proof. Equivalently, we have to prove that there exists G+ : B+(A+
1 ) ⊗

B+(A+
2 ) → B+(A+

1 ⊗A+
2 ) in dgcoCata which is the identity on objects and

such that Ω+(G+) is a quasi-isomorphism.
We start by recalling that, as it is proved in [14, Section 2.2.1], for every
A ∈ dgCata, the natural map

τA : B+(A) = Tc(A[1]) ։ A[1]
∼
−→ A →֒ A

(where A[1]
∼
−→ A is the obvious degree 1 isomorphism) is an admissible twist-

ing cochain (see Section 1.2 for the definition of admissible twisting cochain).
Moreover, τA is universal among admissible twisting cochains with target A,
meaning that for every admissible twisting cochain τ : C → A (for some
C ∈ dgcoCata) there exists a unique morphism Gτ : C → B+(A) in dgcoCata

such that τ = τA ◦ Gτ .
By the argument in [14, Section 2.5.2], there exists an admissible twisting
cochain

τ ′ : B+(A+
1 )⊗ B+(A+

2 ) → A′ := Un(A1)
+ ⊗ Un(A2)

+

which is acyclic. By [14, Proposition 2.2.4.1] this means that Ω+(Gτ ′) is a
quasi-isomorphism in dgCata. Setting also A := A+

1 ⊗ A+
2 and F := α+

A1
⊗

α+
A1

: A′ → A in dgCata, the composition τ := F◦τ ′ : B+(A+
1 )⊗B+(A+

2 ) → A

is again an admissible twisting cochain. Taking into account that F ◦ τA′ =
τA ◦ B+(F), we obtain

τA ◦ Gτ = τ = F ◦ τ ′ = F ◦ τA′ ◦ Gτ ′ = τA ◦ B+(F) ◦ Gτ ′ ,

which implies that Gτ = B+(F)◦Gτ ′ : B+(A+
1 )⊗B+(A+

2 ) → B+(A). We claim
that we can take G+ = Gτ . Indeed, it is clear by construction that Gτ is the
identity on objects. Moreover, Ω+(Gτ ) = Ω+(B+(F)) ◦ Ω+(Gτ ′) is a quasi-
isomorphism because both Ω+(Gτ ′) and Ω+(B+(F)) are quasi-isomorphisms.
To see this last fact, notice that F is a quasi-isomorphism by Proposition 1.22,
hence the same is true for Ω+(B+(F)). �
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By definition the dg cofunctor G : B(A1)+ ⊗ B(A2)+ → B(A+
1 ⊗A+

2 ) of
Lemma 3.3 is of the form G = B∞(N) for a unique A∞ bifunctor

N ∈ A∞Catn(A1,A2,A
+
1 ⊗A+

2 ). (3.1)

Proposition 3.4. Given A1,A2 ∈ dgCatn and A ∈ dgCatc, the A∞ functor

RN : FunA∞Catn(A
+
1 ⊗A+

2 ,A) → FunA∞Catn(A1,A2,A)

is a quasi-equivalence.

Proof. In order to prove that H(RN) is essentially surjective we need
to show that, for every M ∈ A∞Catn(A1,A2,A), there exists F ∈

A∞Catn(A+
1 ⊗A+

2 ,A) such that M ≈ F◦N. Setting C := B(A1)+ ⊗ B(A2)+,
by Lemma 3.1 there exist unique M̃ ∈ dgCatn(Ω(C),A) and Ñ ∈

dgCatn(Ω(C),A+
1 ⊗A+

2 ) such that M = M̃ ◦ γA1,A2 and N = Ñ ◦ γA1,A2 ;

moreover, Ñ is a quasi-isomorphism because Ω(B∞(N)) = Ω(G) is a quasi-

isomorphism by Lemma 3.3. Then there exists H ∈ A∞Catn(A+
1 ⊗A+

2 ,Ω(C))
such that H ◦ Ñ ∼ idΩ(C), and we can take F := M̃ ◦ H. Indeed, we have

F ◦ Ñ = M̃ ◦ H ◦ Ñ ∼ M̃, whence F ◦ Ñ ≈ M̃. It follows that

F ◦ N = F ◦ Ñ ◦ γA1,A2 ≈ M̃ ◦ γA1,A2 = M,

as required.
As for fully faithfulness of H(RN), in view of Remark 1.25 we have to prove
that

G∗ : coDer(B∞(F),B∞(F′)) → coDer(B∞(F) ◦ G,B∞(F′) ◦ G)

is a quasi-isomorphism, for every F,F′ ∈ A∞Catn(A+
1 ⊗A+

2 ,A). By
Remark 3.2 it is equivalent to show that

Ω(G)∗ : Der(F̃, F̃′) → Der(F̃ ◦ Ω(G), F̃′ ◦ Ω(G))

is a quasi-isomorphism. This last fact follows from Lemma 3.5 below, taking
into account that we can easily reduce to the case of algebras, and that Ω(C)
is cofibrant in dgAlgn, for every C ∈ dgcoAlgn. �

Lemma 3.5. Let f : A′ → A be a quasi-isomorphism in dgAlgn with A′, A
cofibrant. Then f∗ : Der(A,M) → Der(A′,M) is a quasi-isomorphism, for
every dg A-bimodule M .

Proof. We will use some results proved in [9, Section 7] in a more general op-
eradic context.4 First, for every A ∈ dgAlgn, there exists a dg A-bimodule ωA

4Notice that, in the case of algebras over an associative operad, the notion of module must
be interpreted as bimodule in the classical sense (see [15, Proposition 12.3.1]). This explains
why, throughout [9, Section 7], modules (and not bimodules) are used.
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representing the functor Der(A,−) (by [9, 7.2.2])5 Moreover, every morphism
f : A′ → A in dgAlgn induces a morphism of dg A-bimodules ωf : ωA′⊗A′A →
ωA (by [9, 7.2.3]), and it is easy to see that f∗ : Der(A,M) → Der(A′,M) can
be identified with

A-dgMod(ωf ,M) : A-dgMod(ωA,M)

→ A′-dgMod(ωA′ ,M) ∼= A-dgMod(ωA′ ⊗A′ A,M),

for every dg A bimodule M . By [9, 7.3.3], the fact that A′, A are cofibrant
in dgAlgn implies that ωA′ is cofibrant in A′-dgMod (whence ωA′ ⊗A′ A
is cofibrant in A-dgMod) and ωA is cofibrant in A-dgMod. Finally, by [9,
7.3.6], ωf is a quasi-isomorphism when f is a quasi-isomorphism and A′, A are
cofibrant. Thus, with our assumptions, ωf is a quasi-isomorphism between
cofibrant dg A-bimodules, hence it is a homotopy equivalence. It follows that
also A-dgMod(ωf ,M) is a homotopy equivalence, and in particular a quasi-
isomorphism. �

3.2 Proof of Theorem B

Let A1, A2 and A3 be dg categories. Consider the following diagram of natural
bijections of sets:

Ho(dgCat)(A1 ⊗A2,A3)OO

1:1(♣)

��

Ho(dgCat)(A1,FunA∞Cat(A2,A3))OO

1:1 (♠)

��
A∞Catc/ ≈ (A1 ⊗A2,A3)OO

1:1(♥)

��

Ho(dgCat)(A1,FunA∞Catc(A2,A3))OO

1:1 (�)

��
A∞Catc/ ≈ (A1,A2,A3) oo

1:1

(⋆)
// A∞Catc/ ≈ (A1,FunA∞Catc(A2,A3)),

(3.2)
where the existence of the bijections (♣) and (�) follow from Theorem A, while
the bijections (♠) and (⋆) are easy consequences of Corollary 2.6 and of the
following result, respectively.

Proposition 3.6. For every A1,A2,A ∈ A∞Catc there is an isomorphism
in A∞Catc

FunA∞Catc(A1,A2,A) ∼= FunA∞Catc(A1,FunA∞Catc(A2,A)).

Proof. It follows from [1, Proposition 9.5] together with [1, Proposition 4.12].
�

The rest of the section is devoted to proving that there is a natural bijection
(♥), since this would yield a natural bijection

Ho(dgCat)(A1 ⊗A2,A3) oo
1:1 // Ho(dgCat)(A1,FunA∞Cat(A2,A3)),

5In order to avoid confusion with cobar, we do not adopt the standard notation ΩA.
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as claimed in Theorem B.

We start by defining two natural morphisms

I : A1 ⊗A2 → A+
1 ⊗A+

2 , Q : A+
1 ⊗A+

2 → A1 ⊗A2

in dgCatn. While I is simply the natural inclusion, Q is the restriction to

A+
1 ⊗A+

2 of Q1⊗Q2, where Qi : A
+
i → Ai (for i = 1, 2) is the unique extension

of idAi
to a (unital) dg functor. It is obvious that Q ◦ I = idA1⊗A2 . Although

I is really non-unital, we have the following easy result.

Lemma 3.7. With the above notation, Q is a (unital) dg functor and the A∞

multifunctor Q◦N ∈ A∞Catn(A1,A2,A1⊗A2) (where N is the A∞ bifunctor
defined in (3.1)) is cohomologically unital.

Proof. A direct computation shows that idA1 ⊗1A2 − idA1 ⊗ idA2 +1A1 ⊗ idA2 is

the identity of (A1, A2) in A+
1 ⊗A+

2 (for every A1 ∈ A1 and every A2 ∈ A2),

hence A+
1 ⊗A+

2 ∈ dgCat. Moreover, the fact that Q maps each of idA1 ⊗ 1A2 ,
idA1 ⊗ idA2 and 1A1 ⊗ idA2 to idA1 ⊗ idA2 , which is the identity of (A1, A2) in
A1 ⊗A2, clearly implies that Q is unital.
On the other hand, by definition Q ◦ N is cohomologically unital if and only if
its restrictions (Q◦N)|(A1,A2) (for every A2 ∈ A2) and (Q◦N)|(A1,A2) (for every
A1 ∈ A1) are cohomologically unital. Now, from the definition of N it is easy

to see that N|(A1,A2) is the non-unital dg functor A1 → A+
1 ⊗A+

2 defined on
objects by A1 7→ (A1, A2) and on morphisms by f 7→ f ⊗ 1A2 . It follows that
(Q◦N)|(A1,A2) = Q◦N|(A1,A2) is the (unital) dg functor A1 → A1⊗A2 defined
on objects by A1 7→ (A1, A2) and on morphisms by f 7→ f ⊗ idA2 . Similarly
for the restrictions (Q ◦ N)|(A1,A2). �

As a consequence, we obtain an A∞ functor

RQ◦N : FunA∞Catc(A1 ⊗A2,A3) → FunA∞Catc(A1,A2,A3).

Then H0(RQ◦N) induces a natural map of sets

Ψ: A∞Catc/ ≈ (A1 ⊗A2,A3) → A∞Catc/ ≈ (A1,A2,A3),

sending the equivalence class of F ∈ A∞Catc(A1 ⊗A2,A3) to the equivalence
class of F ◦ Q ◦ N ∈ A∞Catc(A1,A2,A3). In order to conclude the proof of
Theorem B, it is therefore enough to prove the following result.

Proposition 3.8. The map Ψ is bijective.

Proof. Given F1,F2 ∈ A∞Catc(A1⊗A2,A3) such that F1 ◦Q◦N ≈ F2 ◦Q◦N,
it follows from Proposition 3.4 that F1 ◦Q ≈ F2 ◦Q. Since Q ◦ I = idA1⊗A2 , we
obtain F1 = F1 ◦ Q ◦ I ≈ F2 ◦ Q ◦ I = F2, which proves that Ψ is injective.
In order to prove that Ψ is surjective we need to show that, for every M ∈
A∞Catc(A1,A2,A3), there exists F ∈ A∞Catc(A1 ⊗A2,A3) such that M ≈

Documenta Mathematica 24 (2019) 2463–2492



2490 A. Canonaco, M. Ornaghi, P. Stellari

F ◦Q ◦N. Again by Proposition 3.4, there exists F′ ∈ A∞Catn(A+
1 ⊗A+

2 ,A3)
such that M ≈ F′ ◦ N, and we claim that F′ is actually cohomologically unital.
To see this, notice that, since F′ ◦N is cohomologically unital, the same is true
for its restrictions. Remembering the explicit description of the restrictions of
N given in the proof of Lemma 3.7, this implies that

H(F′)(idA1 ⊗ 1A2) = H(F′)(1A1 ⊗ idA2) = idF′(A1,A2) (3.3)

for every A1 ∈ A1 and every A2 ∈ A2. As idA1 ⊗ idA2 = (idA1 ⊗ 1A2) ◦ (1A1 ⊗
idA2), we also have

H(F′)(idA1 ⊗ idA2) = idF′(A1,A2). (3.4)

From (3.3) and (3.4) we immediately deduce that H(F′) is unital.
To conclude, it is then enough to prove that F′ ≈ F′ ◦ I ◦ Q. Indeed, assuming
this, F := F′ ◦ I ∈ A∞Catn(A1 ⊗A2,A3) clearly satisfies

F ◦ Q ◦ N = F
′ ◦ I ◦Q ◦ N ≈ F

′ ◦N ≈ M.

Moreover, F is cohomologically unital because both Q (by Lemma 3.7) and
F ◦ Q ≈ F′ are cohomologically unital and Q is surjective on objects.
Now let us prove that F′ ≈ F′ ◦ I ◦ Q. It is straightforward to check that
there is a (closed, degree 0) dg natural transformation T between the dg
functors id

A+
1 ⊗A+

2

and I ◦ Q defined by T(A1,A2) := idA1 ⊗ idA2 for every

(A1, A2) ∈ A+
1 ⊗A+

2 . By [21, Section 1e], this yields a (closed, degree 0)

A∞ natural trasformation T̃ := F′ ◦ T between F′ and F′ ◦ I ◦ Q. In view
of (3.4), H(T̃ )(A1,A2) = idF′(A1,A2) is an isomorphism in H(A3) for every

(A1, A2) ∈ A+
1 ⊗A+

2 . It is then easy to deduce from [21, Lemma 1.6] that

T̃ yields an isomorphism in H(FunA∞Catc(A
+
1 ⊗A+

2 ,A3)), thus proving that
F′ ≈ F′ ◦ I ◦ Q. �
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