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ABSTRACT. This paper extends the notion of B-group to a relative
context. For a finite group K and a field F of characteristic 0, the
lattice of ideals of the Green biset functor FBg obtained by shifting
the Burnside functor FB by K is described in terms of By -groups.
It is shown that any finite group (L,¢) over K admits a largest
quotient By -group Bi(L,p). The simple subquotients of FBy are
parametrized by Bg-groups, and their evaluations can be precisely
determined. Finally, when p is a prime, the restriction FB%’) of FBg
to finite p-groups is considered, and the structure of the lattice of
ideals of the Green functor IFBgf) is described in full detail. In par-
ticular, it is shown that this lattice is always finite.
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1 INTRODUCTION

In the study of the lattice of biset-subfunctors of the Burnside functor FB
over a field F of characteristic 0 (cf. Section 7.2 of [1], or Chapter 5 of [2]), a
special class of finite groups, called B-groups, plays an important role: indeed,
the simple subquotients of the biset functor FB are exactly the functors Su F,
where H is such a B-group. It was shown moreover that each finite group G
has a largest quotient B-group 8(G).

Let K be a fixed finite group. This paper proposes a generalization of the above
methods and notions, in order to study the lattice of ideals of the shifted Burn-
side functor FBg. We start by introducing a category grpy jc of groups over K,
similar to the comma category of finite groups over K, in which morphisms are
obtained by allowing diagrams to commute up to inner automorphisms of K.
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To each such group (L, ), where ¢ : L — K, is attached a specific ideal er, .,
of FBg, and it is shown that every ideal of FBy is equal to the sum of the
ideals er, it contains. A special class of groups over K is introduced, called
Bg-groups, and it is shown that for each group (L, ) over K, there exists a
largest Bx-group Bx (L, ¢) quotient of (L, ). Moreover er , = eg, (L) 1t
follows that the lattice of ideals of FBg can be described in terms of closed
families of Bi-groups.

Moreover, each ideal ey, ., associated to a Bg-group (L, ) has a unique maxi-
mal proper subideal e%#). The quotient Sp , = eL,g,/e%’(p is a simple FBg-
module. The evaluations of this simple module can be precisely described, as
well as its minimal groups, and this yields a new example of a simple module
over a Green biset functor with several isomorphism classes of minimal groups.

Finally, when p is a prime number, we consider the restriction IFB%)) of FBx to
finite p-groups, and we describe completely the lattice of ideals of this Green
biset functor. We show in particular that this lattice is always finite. As a
byproduct, we get some examples of Green p-biset functors without non zero
proper ideals.

2 REVIEW OF SHIFTED GREEN BISET FUNCTORS

We quickly recall some definitions and basic notions on biset functors for finite
groups, and refer to [2] for details. Let F be a field of characteristic 0. The
biset category FC of finite groups has all finite groups as objects. If G and H
are finite groups, then Hompe(G, H) = F ®z B(H,G), where B(H,G) is the
Grothendieck group of finite (H, G)-bisets. Composition in FC is induced by
the product (V,U) — VxyU = (V xU)/H, where V is a (K, H)-biset and U a
(H,G)-biset, and H acts on (V x U) by (v,u)-h = (vh,h~ u). A biset functor
over F is an F-linear functor from FC to the category of F-vector spaces.

Any biset is a disjoint union of transitive ones, and any transitive (H, G)-biset
is of the form (H x G)/L, where L is a subgroup of (H x G). Denoting by
p1: HXxG — H and py : H x G — G the first and second projections, we
set k1 (L) = p1(L NKerps) and ka(L) = pa(L N Kerpy). The biset (H x G)/L
factors as the composition

(H x G)/L=Ind [ oInf?*(])  oTso(a) o Def?2(7) | oResS, 1)

of elementary bisets called induction, inflation, isomorphism, deflation, and
restriction, where « : pa(L)/ka(L) — p1(L)/k1(L) is the canonical isomorphism
sending bka(L) to aki(L) for (a,b) € L. These elementary morphisms generate
all morphisms in the category FC.

A Green biset functor A over F (cf. Section 8.5 of [2]) is a biset functor
with additional bilinear products A(G) x A(H) — A(G x H), denoted by
(a, B) — ax (B, which are associative and bifunctorial. There is also an identity
element €4 € A(1).
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A left A-module M is then defined similarly as a biset functor with products
A(G) x M(H) — M(G x H) which are associative, bifunctorial, and unital.
Left A-modules form an abelian category denoted by A-Mod. A left ideal of A
is an A-submodule of the left A-module A.
When A is a Green functor, each evaluation A(G) is an F-algebra for the
product

a,B € A(G) = a- = A(Tso(8) o Res§ %) (a x B) ,

where A is the diagonal subgroup of G x G, and § : A — G the canonical
isomorphism. The identity element of this algebra is A(Inf$)(e). If M is an
A-module, each evaluation M(G) is endowed with an A(G)-module structure
defined similarly. By Proposition 2.16 of [7], a biset subfunctor I of A is an
ideal if and only if I(G) is an ideal of the algebra A(G), for any finite group G.
A Green biset functor A is called commutative (cf. [3] for details) if the algebra
A(G) is commutative, for any G.

A fundamental example of Green biset functor is the Burnside functor sending
a finite group G to FB(G) = FB(G,1), where B(G) is the Burnside group
of G. The products maps FB(G) x FB(H) — FB(G x H) are induced by the
cartesian product sending a G-set X and an H-set Y to the (G x H)-set X x Y.
An FB-module is precisely a biset functor over F.

Let K be a finite group. A Green biset functor A over F can be shifted by K.
This gives a new Green biset functor Ax defined for a finite group G by

Ag(G)=A(G x K) .
For finite groups G and H and a finite (H, G)-biset U, the map

is the map A(U x K), where U x K is viewed as a (H x K, G x K)-biset in the
obvious way, letting K act on both sides on U x K by multiplication on the
second component. For an arbitrary element « € FB(H, G), that is an F-linear
combination of (H, G)-bisets, the map A («) : Ax(G) — A (H) is defined by
F-linearity.

This endows A with a biset functor structure. Moreover, for finite groups G
and H, the product

XAr AK(G) X AK(H) — AK(G X H)

is defined as follows: if &« € Ax(G) = A(G x K) and g € Ax(H) = A(H x K),
then a x 8 € A(G x K x H x K). We set

a x4, B=A(Is0(6) o Res* K (o x B)
where A = {(g,k,h,k) | g € G,h € H,k € K}, and § is the isomorphism

A — G x H x K sending (g, k, h, k) to (g, h, k). The identity element €4, is
A(Inf) (ex).
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For a finite group G, the algebra structure on Ag(G) is simply the algebra
structure on A(G x K) defined for the Green functor A.

All these notion can be extended to functors from an admissible subcategory D
of the biset category (cf. Chapter 4 of [2]), which is moreover closed under
taking direct products of finite groups. We have then the notions of D-biset
functors and D-Green biset functors, as well as modules over them.

In this paper, we will consider the shifted Burnside functor FBg, and its re-
striction FB;? to finite p-groups, for a prime p. A fundamental classical result
is that for any finite group G, the algebra FBg(G) is a split semisimple com-
mutative algebra, with primitive idempotents e?XK indexed by subgroups L of
G x K, up to conjugation. The explicit formula for efXK, due to Gluck ([4])
and Yoshida ([8]) is

GxK __ ;
N = el 2, XIH DG 11X

where X runs through all subgroups of L, where p is the Mdbius function of
the poset of subgroups of G x K, and [(G x K)/X] is the isomorphism class of
the transitive (G x K)-set (G x K)/X.

NOTATION 2.1. When N is a normal subgroup of a finite group L, let
1
MLN = 7T > XX, L) .
X<L
XN=L

LEMMA 2.2. Let G be a finite group, and L be a subgroup of G x K. If N is a
normal subgroup of G, then
FBK (Defg/N)(egXK) = )\mL,Lﬂ(le) G(EG/N)XK y

where L is the image of L by the projection G x K — (G/N) x K, and A =
IN(G/nyx i (L):L]
[Nox i (D) L]

Proof. Indeed
FBxk (Defg/N) (efXK) = FB(Def(GGXxI;)/(le)) (efXK) .

The result now follows from Assertion 4 of Theorem 5.2.4 of [2]. O

3 IDEALS GENERATED BY IDEMPOTENTS

We now introduce a category grp k-, similar to the comma category over K: its
objects are the same, but morphisms are slightly different.
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DEFINITION 3.1. e For a finite group K, let grp;; denote the following
category:

— The objects are finite groups over K, i.e. pairs (L, @), where L is a
finite group and ¢ : L — K is a group homomorphism.

— A morphism [ : (L,¢) = (L', ¢’) of groups over K in the category
grpy is a group homomorphism f : L — L’ such that there exists
some inner automorphism i of K with iop = ¢’ o f.

— The composition of morphisms in grp  is the composition of group
homomorphisms, and the identity morphism of (L, ) is the identity
automorphism of L.

e If (L,y) and (L', ¢') are groups over K, we say that (L', ') is a quotient
of (L, ), and we note (L,p) — (L', ¢’), if there exists a morphism f €
Homgep, ((L,(p), (L’,(p’)) with f : L — L' surjective. In this case, we
will say that f is a surjective morphism from (L, ) to (L', ¢").

REMARKS 3.2. 1. Using the well known fact that the epimorphisms in
the category of (finite) groups are the surjective group homomor-
phisms (cf. [5] 1.5 Exercise 5), one can show that a morphism f €
Homgyp, ((L,cp), (L’,gp’)) is an epimorphism in grp if and only if
f L — L' is surjective, that is, if f is a surjective morphism. We
will not use this fact here, except as a motivation to the use of the word
“quotient” in Definition 3.1.

2. A morphism f: (L,¢) = (L', ¢') in grpy  is an isomorphism if and only
if f: L — L’ is an isomorphism of groups.

3. If (L', ¢") is a quotient of (L, ¢), and if (L, ) is a quotient of (L', ¢’),
then (L, ) and (L', ") are isomorphic in grpy . Indeed any surjective
morphism from (L, ¢) to (L', ¢’) is an isomorphism, for L and L’ have
the same order.

4. Clearly, the relation “being quotient of” on the class of groups over K
is transitive. In particular, any group over K isomorphic in grp;x to a
quotient of (L, ¢) is itself a quotient of (L, ¢), and also a quotient of any
group over K isomorphic to (L, ) in 8Pyk-

NOTATION 3.3. When (L, ¢) is a group over K, we denote by L, the subgroup
of L x K defined by

Lo={(Lo) [1€ L} .

THEOREM 3.4. Let I be an ideal of the Green biset functor FBg. If G is a finite
group and L is a subgroup of G X K, the following conditions are equivalent:

1. The idempotent ™% belongs to I(G).

2. The idempotent eéXK belongs to I(L), where pa : L — K s the restriction

P2

to L of the second projection homomorphism G x K — K.
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Proof. Let L = L, C L x G, where p; : L — G is the restriction to L
of the first projection homomorphism G x K — G. Thus

pi(L) = L, ki(L) = 1 x ka(L), pa(L) = p1(L), k2(L) =1 .
It follows that the (L, G)-biset U = (L x G)/L factors as
U = Inff/N olso(f™1) o Resg(m )

where N =1 X ko(L)< L and 6 : L/N — p1(L) is the canonical isomorphism
induced by the first projection p; : L — G.

Now if ¢ belongs to I(G), its restriction FBK(Respl(L))( *KY) belongs to
I(G). But
FBi (Resg, (1)) (e **) = FB(Res (15 1) (77 ")
_ p1(L)x K
er )

L’

where L’ runs through a set of representatives of (p1 (L)x K )—conjugacy classes
of subgroups of p; (L) x K which are conjugate to L in G x K (cf. [2], Theorem
5.2.4, Assertion 1). In particular, the group L is one of them, and

eyt F By (Resg, 1)) (e55) = e K e I(py(L))

It follows that FB (Iso(@’l))(eil(L)XK) € I(L/N).

But FBg (Iso(071)) = FB(Iso(0")), where 0x = 6 x Idg is the isomorphism
from (L/N) x K to p1(L) x K deduced from 6. It follows that e(L/N)XK €
I(L/N), where L = 0.' (L) = {(IN,p2(1)) |l € L}. Now

(L/N)XK)

L/N)Yx K
FBc(Inff ) (/™ 5) = FB(Inf (R ) (e

—Z@LXKGI ,

where X runs through a set of representatives of (L x K)-conjugacy classes
of subgroups of L x K which map to a conjugate of L through the surjection
Lx K — (L/N)x K (cf. [2], Theorem 5.2.4, Assertion 3).

The group L,, is one of these subgroups, hence

el F B (Inff ) (e ) = ep XK e I(L)

P2
as was to be shown.

We now consider the opposite (G, L)-biset U°P = (G x L)/L, where
L= {(p1(1),1) | L € L}, which factors as

U 2= Indf 1) o Iso(0) o Def] -
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LxK op LxK
Ifep ™ € I(L), then w = FBg (UP)(ey ) belongs to I(G). By Lemma 2.2

IFBK(DefL/z\r)(LXK) Amp, Lpzﬁ(le)e(L—éN)XK

P2 ’

where L,, is the image of L, by the projection L x K — (L/N) x K, and A
is some non zero rational number. Now the intersection

Ly, 0 (N x 1) = {(a,),0) | (a,b) € L} ((1 x k(L)) % 1)

is trivial. It follows that my, Lp,n(Nx1) = 1, and

u=AFBg (Indg(m o Iso(f)) (e(LG—/N)XK))

_ GxK (G/N)xK)
_AFB(Indme)XKoIso(eK))(eE <Ky

Now for (a,b) € L, the image by 0x = 0 xIdk of ((a,b),b)(N x 1) € L, is the
element (pl(a,b),b) = (a,b) of p1(L) x K. Hence 9K(L_) identifies with L,
viewed as a subgroup of p1(L) x K, and

w= AFB(Indf ([, ) (e 1 F) = e~

)

for some non zero rational number A (cf. [2], Theorem 5.2.4, Assertion 2).
Since u € I(G) and AN # 0, it follows that e$*¥ € I(Q), as was to be
shown. (|

COROLLARY 3.5. Let G be a finite group, and L be a subgroup of G X K. Then

the ideal of FBg generated by e?XK is equal to the ideal of FBg generated by
LxK

€
Ly,

Proof. Indeed, denoting by I the ideal generated by eGXK and by J the ideal
generated by eLXK we have

ep“el@=epfelll)=JCT,
epfed(l)= e el@)=1CT,

sol=J. O

NOTATION 3.6. Let (L, ) be a group over K. We denote by e, the ideal of
FBy generated by eLXK € FBk(L).

LEMMA 3.7. Let (L, ) and (M,v) be groups over K.
1. If (M,’l/)) —» (L, gﬁ), then eMﬂp g eLW.

2. In particular, if (M,1)) is isomorphic to (L, ), then ey = €r,.
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Proof. 1. Let s : M — L be a surjective group homomorphism, and ¢ be an
inner automorphism of K such that 109 = pos. Let U denote the set L,
viewed as an (M, L)-biset for the action given by m - -1 = s(m)ul, for m € M
and u,l € L. There is an isomorphism of (M, L)-bisets

U= Imf%/KerS olso(a™') ,

where o : M = M/Kers — L is the group isomorphism induced by s.
Let u = FBg (U)(ef ™) € e o(M). Then

u= IFB(Inf%ig oIso(ag!)) (eE:K) :

where ax = a xIdx : M x K — L x K. Then
ozl_(l(Lw) = {(ofl(l),ga(l)) |[le L} = {(mKers,cpos(m)) |me M} .

It follows that FB (Iso(a}l))(ein) :_eg:K, where 6 : M — K is defined by
O(mKer s) = ¢ o s(m). In particular e%:K €ero(M). Now

MxK MxK MxK
u=FB(Inf7 o) (e ™) =) ex”
X

where X runs through a set of representatives of conjugacy classes of subgroups
of M x K such that the projection of X in M x K is conjugate to My. The

. MxK :
subgroup M., is one of these subgroups, so e Moo, W is amon zero scalar

multiple of e%:f lying in e, ,(M). Hence e%:f: €epo(M). Now pos = iot,

where 7 is an inner automorphism of K. This implies readily that the subgroups
Moy and My of M x K are conjugate. It follows that

MxK _ MxK _ MxK
€My T CMicy — Mo €er (M) ,
that is eprs C er,,, proving Assertion 1.

Now if f : (L,p) — (M,) is an isomorphism in grpy x, the group homomor-
phism f: M — L is an isomorphism. Then (M, ) and (L, ) are quotient of
one another, so epr,y = er,,, proving Assertion 2. O

NOTATION 3.8. We fiz a set Sk of representatives of isomorphism classes of
objects in the category grpyy -

PRrROPOSITION 3.9. Let I be an ideal of FBg. Then I is equal to the sum of the
ideals er, , it contains. More precisely, if

Ar={(L,p) € Sk |er,, €I} ,

we have I = )" er,. It follows that the ideals of FBi form a set.
(L,p)EAr
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Proof. Let J = > er,. Then obviously J C I. Moreover, if (M,)

(L,p)ESK
ekang

is a group over K such that epsy C I, then epry C J: indeed, there is some
(L, ¢) € Sk isomorphic to (M, ), and epr, = er,,, by Lemma 3.7. Conversely,
let G be a finite group, and u € I(G). Then w is a linear combination

U= Z)\LefXK
L

with coefficients Az, in F, of idempotents efXK , where L runs through a set .S

of representatives of conjugacy classes of subgroups of G x K. Then for any
L € S, we have e .y = A\ € I(G), hence e$*K € I(G) if A\, # 0. So
in this case, the ideal of FBg generated by efXK is contained in I. This ideal
is equal to er, p,, by Corollary 3.5, thus ez ,, € J by the above observation.
Hence e§*K € ep, ,,(G) C J(G). Tt follows that

u = g )\LegXK

Les
AL#0

also belongs to J(G). Hence I(G) C J(G), so I(G) = J(G) since J C I. As G
was arbitrary, it follows that I = J.

Now an ideal I of FBg is determined by the subset A; of Sk, so the class
of ideals of FB is in one to one correspondence with a set of subsets of Sk.
Hence this class is a set. O

LEMMA 3.10. Let A be a set of ideals of FBg, and (M, ) be a group over K.
The following are equivalent:

1. eM g Z 1.
IcA

2. There exists I € A such that epry C 1.
Proof. Clearly 2 implies 1. Now 1 is equivalent to saying that
e e 1M .
IcA

If this holds, there exists I € A and u € I(M) such that e%;K ~u # 0. Now
e%jK -y € I(M), and moreover there is a scalar A € F such that e%ZK cu =

)\e%w”( # 0. Hence A # 0, and e%IK € I(M). In other words epr,yy C I, 50 1
implies 2. O

4  Bg-GROUPS

In view of Proposition 3.9, every ideal of FBg is a sum of ideals er, ,,, where
(L, %) runs in some subset of Sk. In view of Lemma 3.10, to describe the
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inclusions between such sum of ideals er ,, it suffices to describe elementary
inclusions of the form eas 4 C e, where (L, ) and (M, ¢) are groups over K.
Lemma 3.7 shows that it is the case if (M, 1) — (L, p). Moreover:

THEOREM 4.1. Let s : (M,v) — (L,p) be a surjective morphism in grpy . If
MM Kers 75 0, then M,y = eL,g,.

Proof. We already know from Lemma 3.7 that ey C er ,, so it suffices to
prove the reverse inclusion. We first observe that since there exists an inner
automorphism ¢ of K such that iot) = pos, we have Ker s < Ker (iot)) = Ker 1.
So there is a group homomorphism ¢ : M = M /Ker s — K such that ¢ = o,
where 7 : M — M is the projection map.

Now let V' be the set L, viewed as an (L, M)-biset for the action defined by
l-v-m =lvs(m), for [,v € V and m € M (in other words V = U, where
U is the (M, L)-biset introduced in the proof of Lemma 3.7). Then there is an
isomorphism of (L, M )-bisets

V= ISO(CY) ] Def]I\\g/Kers )

where o : M — L is the group isomorphism induced by s, i.e. such that
s=aoT.
Let v = FBg(V)(ey; ) € enmy(L). By Lemma 2.2

M MxK\ _ MxK
FBg (DefM/Kers)(em ) = AMar, My(Kersx1) e,

where Z\Tw is the image of My by the projection M x K — M x K, and \ is
some non zero rational number. Then

v=AFBg (Iso(a)) (eg_:K) = )\FB(ISO(CVK))@]I\?T:K) )

where ag = a xIdx : M x K — L x K. The image of ]\712 under ag is the
subgroup

ax(7T5) = {(alm), 3(m)) | m € 3T} = {1, Foa"'()) | L L} .

Moreover, we have a diagram

M——>1

P
P @
K—"sK

where the two triangles and the outer “square” commute. It follows that

(poaoTr:(pos:ioz/J:ioqEOﬂ' ,
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hence ¢ o @ = i 0 since 7 is surjective. Hence ¥ o a™! = i~ o ¢, and

QK(MJ) = Li—low.

It follows that v = )\efﬂf , and moreover ef”f = ef*® since L;-1,, and
i top i top »

L, are conjugate in L x K. Finally v = )\ef:K, S0 eE:K € enm,y(L), since

v E ewjﬁw(L> and A\ 7é 0. In other words €L,y - eM ) and finally €L.p = €M,y
as was to be shown. O

NOTATION 4.2. When (M, 1)) is a group over K, and Q is a normal subgroup of
M with Q < Ker, let 1/Q : M/Q — K be the group homomorphism defined
by v = (¥/Q) o w, where 7 is the projection M — M/Q.

Thus for any group (M, ) over K, if @ is a normal subgroup of M contained
in Ker, we get a surjective morphism 7 : (M,v) — (M/Q,v/Q) in grpy g,
with Kerm = Q. If moreover my;,g # 0, we have epr = en/Q.p/qQ- Lhis
motivates the following;:

DEFINITION 4.3. Let (L, ) be a group over K. We say that (L, ) is a Bg-
group, or a B-group relative to K, if mp y = 0 for every non-trivial normal
subgroup IV of L contained in Ker .

EXAMPLES 4.4. 1. If ¢ : L — K is injective, then (L, p) is a Bx-group.

2. On the other hand, if K = 1, then a group over K is a pair (L, ¢), where
L is a finite group and ¢ : L — 1 is the unique morphism. Moreover the
category grpyy clearly identifies with the usual category of finite groups.
With this identification, a By-group is just a B-group (cf. Section 7.2 of
[1], or Chapter 5 of [2]).

LEMMA 4.5. Let (L, ¢) be a Bx-group. If (M, ) is a group over K, and (M, )
is isomorphic to (L, @) in grpy, then (M,v) is a B -group.

Proof. Since (M, 1)) is isomorphic to (L, ) in grpy ., there exists a group iso-
morphism f : L — M and an inner automorphism ¢ of K such that ¥o f = i0p.
If P is a normal subgroup of M contained in Ker, then f~1(P) is a normal
subgroup of L contained in Ker ¢, because

iop(fH(P) =¢of(f7H(P) =¢(P)=1
and ¢ is an automorphism. Moreover my, y-1(py = mas,p. If P is non trivial,
then f~!(P) is non trivial, so mpg, g-1(py = mar,p = 0, as was to be shown. [
THEOREM 4.6. Let (L, ) be a group over K.

1. If Q is a normal subgroup of L, contained in Ker v, and mazximal such
that mp.g # 0, then (L/Q,»/Q) is a Bi-group, quotient of (L, ).

2. If (P,v) is a B -group which is quotient of (L, ), and if N is a normal
subgroup of L contained in Ker ¢ and such that mp n # 0, then (P, 1) is
a quotient of (L/N,p/N).
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3. In particular, if P and @ are normal subgroups of L, contained in
Ker ¢, and mazimal such that mr p # 0 # mg g, then (L/P,¢/P) and

(L/Q,9/Q) are isomorphic in grpy .

Proof. 1. Let P/@Q be a normal subgroup of L/Q contained in Ker (p/Q) =
Ker ¢/Q. Then P is a normal subgroup of L, and Q < P < Kerp. If P/Q # 1,
i.e. if Q@ < P, then by maximality of @ and Proposition 5.3.1 of [2]

mpp=0=mromr/Q,pr/q -

Since mp, g # 0, it follows that mr,q p/g = 0, so (L/Q,»/Q) is a Br-group,
quotient of (L, p).

2. Since (P, 1) is a quotient of (L, ¢), there exists a surjective group homomor-
phism s : L — P and an inner automorphism ¢ of K such that ¢os = to¢. It fol-
lows that M = Ker s is a normal subgroup of L contained in Ker (iop) = Ker ¢.

We have a diagram

L S
L/M——>p
)
©/M P

where the two triangles and the outer “square” commute, and 5 is an isomor-
phism, the map mp; : L — L/M being the projection. As in the proof of
Theorem 4.1, we have

YoFompy =thos=iop=1io0(p/M)omy ,

so o3 =io (p/M) since mps is surjective. It follows that § is an isomor-
phism from (L/M,¢/M) to (P,v) in grpy g, so (L/M, /M) is a B-group by
Lemma 4.5.

Now by Proposition 5.3.3 of [2]

1
mp,.N = m Z |Y|,U(YaL)mL/]M,(YﬁN)M/M .
YN=YM=L

In particular, if mp ny # 0, there exists ¥ < L such that YN = YM = L
and mp/n (vanym/m 7 0. But since N C Ker ¢, the group (Y N N)M/M
is a normal subgroup of L/M contained in Ker (/M) = Kery/M. Then
since mp, /v, (vanym/m 7 0 and since (L/M, /M) is a Bg-group, we have
(Y AN)M/M =1,ie. YANCYNM.
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Consider now the following diagram:

where

e j:Y — L is the inclusion map,

pn Y = Y/(YNN)and pp: Y — Y/(Y N M) are the projection maps,

u:Y/YNM)— L/M and v : Y/(Y N N) — L/N are the canonical
isomorphisms Y/ (Y NM) 2 YM/M =L/M and Y/(YNN) =2 YN/N =
L/N, respectively,

c:Y/(YNN)—Y/(YNM) is the projection map (as Y NN C Y NM),
e 0:L/N — L/M is defined as § = uocoov~!. In particular 6 is surjective.
We have 7y o j = v o pp, since for any y € Y
v oj(y) =mn(y) =yN =v(y(Y NN)) =vopn(y) .
Similarly 7wp; 0 5 = u o pps. We also have o o py = ppr. Then
Qomryoj=0ovopNy =UOCTOpPN =UOCPy =Ty 0] .
Hence
(p/M)obomyoj=(p/M)ompoj=wpoj=(p/N)omyoj .
Since 7y 0j =vopn : Y — L/N is surjective, it follows that
(/M) o0 = (4/N) .

Hence ¢ is a surjective morphism from (L/N,p/N) to (L/M,@/M) in grp .
As the latter is isomorphic to (P, ) in grp i, it follows that (P, ) is a quotient
of (L/N,p/N), as was to be shown.

3. If P and @ are normal subgroups of L, contained in Ker ¢, and maximal
such that mr p # 0 # my, g, then (L/P,¢/P) and (L/Q, ¢/Q) are both Bg-
groups by Assertion 1, and they are quotient of one another by Assertion 2.
Hence they are isomorphic in grpy k- O
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NOTATION 4.7. Let (L, ) be a group over K. If @ is a normal subgroup of L,
contained in Ker ¢, and mazimal such that mr g # 0, we denote by Bx (L, )

the quotient (L/Q,¢/Q) of (L,p).

REMARK 4.8. As observed in Example 4.4, when K is trivial, a Bg-group is
simply a B-group. Moreover, for any finite group L, if u: L — 1 is the unique
group homomorphism, then B1(L,u) = B(L).

The following corollary shows that Sk (L, ) is the largest Bx-group quotient
of (L, ¢):

COROLLARY 4.9. Let (L, ) be a group over K.
1. Br (L, ) is well defined up to isomorphism in grpy .
2. Br(L,p) is a Bx-group, quotient of (L, ).

3. If (P,y) is a By-group, quotient of (L,p), then (P 1)) is a quotient of

4 Lo = €84 (Lyp)-
Proof. 1. This follows from Assertion 3 of Theorem 4.6.
2. This follows from Assertion 1 of Theorem 4.6.
3. This follows from Assertion 2 of Theorem 4.6.

4. This follows from Theorem 4.1, by definition of S (L, ¢) o

COROLLARY 4.10. Let s : (M,v) — (L,¢) be a surjective morphism in grpy .
Then Br (M, ) = Br (L, @) if and only if makers # 0.

Proof. Indeed Bk (L, ) is a quotient of (M, 1)), as it is a quotient of (L, ¢) and
s is surjective. Hence Bk (L, ) is a quotient of Sk (M, ). Set N = Kers, so
that (L,¢) = (M/N,/N).

If mar,n # 0, then since Bx (M, ) is a Bg-group quotient of (M, 1)), Asser-
tion 2 of Theorem 4.6 implies that Sx (M, ) is a quotient of (M/N,¢/N) =
(L, @), hence of Sx(L,p). Tt follows that Sx(M,v) = Bx(L, ), as they are
quotient of one another.

Conversely, suppose that Sk (M,v¢) = Br(L,¢), and let P/N be a normal
subgroup of M/N contained in Ker(¥/N) = Kery/N and maximal such
that man p/ny # 0. Then the quotient ((M/N)/(P/N),(¥/N)/(P/N)) =
(M/ P,/ P) is isomorphic to Sx (M/N, P/N) = 8k (L, ¢), hence to Bk (M, ).
Now if @ is a normal subgroup of M contained in Ker and maximal such
that mar,g # 0, then the quotient (M/Q,/Q) is isomorphic to Bx (M, ) =
(M/P,%/P). In particular M/Q = M/P, and then mus,p = ma,q by Propo-
sition 5.3.4 of [2], S0 M, p 7& 0. But mmy,p = mMmeM/N,p/N, SO Mz, N 7& 0,
as was to be shown. O

~—
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5 THE IDEALS OF FBg

NOTATION AND DEFINITION 5.1. 1. We let Bx-gr denote the subset of Sk
consisting of Bk -groups.

2. A subset P of By -gr is said to be closed if
V(L,p) € P, V(M,¢) € Bx-gr, (M,) > (L,p) = (M,¢)€P .

PROPOSITION 5.2. Let I be an ideal of FBy, and
Pr={(L,p) € Bx-gr|er, CI} .

Then Pr is a closed subset of Bx-gr, and I = > ep,
(L,p)EPr

Proof. The subset P of Bg-gr is closed by Lemma 3.7. The second assertion
follows from Proposition 3.9 and Assertion 4 of Corollary 4.9. O

THEOREM 5.3. Let (L, ) be a Bx-group. Then for any finite group G
eLW(G) = ZFegXK s
X

where X runs through all subgroups of G x K such that (X, p2) — (L, p).

Proof. If X < G x K and (X,p2) — (L, ¢), then ex p, C ey, by Lemma 3.7.
Equivalently eﬁpsz € er o(X), which is equivalent to e§** € ey ,(G), by
Theorem 3.4. This proves that for each finite group G, the sum E(G) =

N Fe§* K, where X < G x K and (X,p2) — (L, @), is a subset of er, ,(G).
X

Moreover the map (I,¢(l)) € L, + [ € L is clearly an isomorphism
(Lg,p2) — (L,p) in grpyr. In particular (Ly,p2) — (L, ), and then by
definition eE:K € E(L). If we can prove that G — E(G) defines an ideal F
of FBp, then we are done, because E C er, , since E(G) C er, ,(G) for any G,
and e, C F because the generator eE:K of ez, belongs to E(L).

Since E(G) is obviously an ideal of the algebra FBg(G), for any G, all we have
to do is to show that F is a biset subfunctor of FBf, in other words that it is
preserved by the elementary biset operations of induction, restriction, inflation,
deflation, and transport by group isomorphism. For this, in what follows, we
refer to Theorem 5.2.4 of [2].

Let X < G x K be such that (X,p2) — (L, ), and suppose first that G is a
subgroup of a group H. Then

FBy (Indg ) (e$*") = FB(Indg 5 ) (e57F) = Nelr ™

for some scalar A\, where X’ is the group X, viewed as a subgroup of H x K.
Clearly (X', p2) = (X, pa), so (X',p2) — (L, ) and 5 € E(H). Hence F
is preserved by induction.
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Assume now that H is a subgroup of G. Then

FBie (Resf]) (e ") = FB(Res ) (6577 = Do e
Y

where Y runs through a set of representatives of (H x K)-conjugacy classes
of subgroups of H x K which are conjugate to X in G x K. If Y is such a
subgroup, there exists (g,k) € G x K such that Y = X (@5)  Then we have a
commutative diagram

|l

K—)K

%

where « is (left-)conjugation by (g, k) and S is (left-)conjugation by k. Since
is an inner automorphism of K, and since « is a group isomorphism, it follows
that o : (Y, p2) — (X, p2) is an isomorphism in grpy ;. Hence (Y, p2) — (L, p),
and el *® € E(H). Tt follows that E is preserved by restriction.

Assume next that G is a quotient of a group H by a normal subgroup N. Then

FBx (Inf8) (%) = FB(InfZ X K ) (e5X) ZeHXK,

where Y runs through a set of (H x K) conjugacy classes of subgroup of H x K
which map to a conjugate of X under the projection 7 xIdg : HXx K — Gx K,
where w : H — G is the projection. Replacing Y by a conjugate, which does
not change eHXK, we can assume that Y is mapped to X by 7 x Idg. This
gives a commutative diagram

7T><IdK

\/

showing that (Y, ps) — (X, p2). Hence (Y,p2) — (L, ), so eil*® € E(H), and
FE is preserved by inflation.

As for deflation, we assume now that H = G/N, where N JG. Let 7 : G — H
be the projection map. Then by Lemma 2.2

FBg (Defg)(egﬂ() = AmMx xn(Nx1) egﬂ( ,

where X is the image of X under the projection 7 x Idg : G x K — H x K,
and A is some non zero scalar. As above, we get a commutative diagram

X—sX

N /o
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where s is the restriction of m x Idx to X. Then s : (X,p2) — (X, p2) is a
surjective morphism in grpy . Setting P = Kers = X N (N x 1), we get an
isomorphism (X, p2) = (X/P,p2/P) in grpyrc- Moreover (L, p) is a Bx-group
quotient of (X, pa) by assumption. Then there are two cases: either mx p =0,
and then FBg (Defg)(ef(XK) =0€ E(H). Ormx p # 0, and then (L, p) is a
quotient of (X/P,pa/P) = (X, pz), by Assertion 2 of Theorem 4.6. It follows
that e?_(XK € E(H), so FBg (Def) (e$*X) € E(H) as well. This shows that
FE is preserved by deflation.

Finally, it is clear that E is preserved by group isomorphisms. This completes
the proof of Theorem 5.3. O

REMARK 5.4. Theorem 5.3 implies that the set of idempotents eg’;XK, where X

runs through a set of representatives of conjugacy classes of subgroups of G x K
such that (X,p2) — (L, ), is an F-basis of er ,(G).

COROLLARY 5.5. Let (L,p) be a Bg-group, and (M,v) be a group over K.
Then ey C e, if and only if (M,v) — (L, ).

Proof. Indeed ey C er,, if and only if e%IK € er, (M), i.e. if and only if

(My,p2) = (L, ). But we have already noticed at the beginning of the proof
of Theorem 5.3 that the map (m,v(m)) € My — m € M is an isomorphism
from (My,p2) to (M,) in grpy k- O

REMARK 5.6. It was shown in Section 5.2.2 of [3] that the category F By -Mod
splits as a product

FBk-Mod = || = effFBx-Mod ,
H

of categories of modules over smaller Green biset functors eSFBy, where H
runs through a set of representatives of conjugacy classes of subgroups of K.
The functor eSFB is the direct summand of FBx obtained from the idem-
potent e& of FBk(1) = FB(K). Its value at a group G is the set of F-linear
combinations of idempotents e?XK associated to subgroups L for which pa(L) is
conjugate to H in K. This condition is equivalent to the existence of a surjective
morphism (L,p2) — (H,ju), where jy : H — K is the inclusion morphism.
Since (H,jm) is a B -group by Ezample 4.4, it follows that eSFBx = ep j, .

THEOREM 5.7. Let Iy, be the lattice of ideals of FBg, ordered by inclusion of
ideals, and Clp, -ox be the lattice of closed subsets of By -gr, ordered by inclusion
of subsets. Then the map

I € Igp, = Pr ={(L,p) € Bx-gr | e, C I}

is an isomorphism of lattices from Irp, to Clg,-gr. The inverse isomorphism
is the map

PEClpe-grIp= > eLy, .
(L,p)EP

In particular Irpp, is completely distributive.
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Proof. By Proposition 5.2, if I is an ideal of FBg, then P; is a closed subset
of Bg-gr, so the map o : I — Py from Irp, to Clgy-gr is well defined. It is
moreover clearly order preserving. The map 3 : P — P from Clg,.-g is also
well defined and order preserving. By Proposition 5.2 again, the composition
B o a is the identity map of Zrp, . Conversely, if P € Clg,-gr, then

aof={(M) € Bx-gr|emy C Z eret -

(L,p)EP

Then clearly P C «a o f(P). Conversely, if epry € >, er,, then by
(L,p)EP

Lemma 3.10 there exists (L,¢) € P such that exry C er,,. Then (L,¢p)
is a Bg-group, and by Corollary 5.5, this implies (M,1) — (L,¢). Hence
(M, ) € P, since P is closed. Thus ao B(P) C P, proving that ao g is the
identity map of Clg-¢r. The last assertion follows from the fact that Cig g is
clearly completely distributive, since its join and meet operation are union and
intersection of closed subsets, respectively, and since arbitrary unions (resp.
intersections) distribute over arbitrary intersections (resp. unions). O

6 SOME SIMPLE FBg-MODULES

THEOREM 6.1. 1. Let (L,p) be a Byi-group. Then er , admits a unique
mazimal proper subideal e%yw defined by

0 — E
eLW = M,y -

(M,p)EBr -gr
(M,3p)—(L,p)
(M, )2 (L)

2. The quotient St , = eL,g,/eOLW 18 a simple F By -module.

8. For any finite group G, let Ag be a set of representatives of conjugacy
classes of subgroups X of G x K such that B (X,p2) = (L, ). Then the
set {575 | X € Ag} maps to an F-basis of Sy, ,(G) under the projection
map er,(G) = S1,,(G).

4. If I' C I are ideals of FBk such that I/1' is a simple FBg-module, then
there exists a By -group (L, p) such that I/1' = Sy, .

Proof. 1. Without loss of generality, we can assume that (L,y) € Bg-gr.
Using Theorem 5.7, saying that ey, , admits a unique maximal proper subideal
is equivalent to saying that the closed subset Pe, , contains a unique maximal
proper closed subset. But

PeL,so = {(Ma¢) € BK—gr | (Mﬂ/J) - (L,CP)} y

so P* =Pe, . —{(L,p)} is the unique maximal proper closed subset of P, _.
It follows that Ipo = e%W is the unique maximal proper subideal of e, .
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2. This is clear, from 1.

3. We know from Remark 5.4 that ey, ,(G) has a basis consisting of the idempo-
tents e XXK for X in a set of representatives of conjugacy classes of subgroups
of G x K such that (X,p2) — (L, ), or equivalently, by Corollary 4.9, such

that B (X,p2) — (L,p). Now saying that e§*¥ ¢ e%yw(G) amounts to say-

ing that eXXK € e%,tp( ), by Theorem 3.4, i.e. that ex p, C epry for some

(M,y) € BK—gr such that (M,v) — (L,¢), but (M,v¢) 2 (L,¢). This in
turn is equivalent to saying that Sk (X,p2) = (L, ), but Bx(X,p2) Z (L, ¥).
Hence Sr,,(G) has a basis consisting of the idempotents ¢§**, for X in a

set of representatives of conjugacy classes of subgroups of G x K such that
Br (X,p2) = (L, ). Assertion 2 follows.

4. Let I' C I be ideals of FBg such that S = I/I' is a simple FBg-module,
or equivalently, such that I’ is a maximal subideal of I. Then there exists
(L,¢) € Bg-gr such that e, C I but ey, ¢ I'. Hence e, + I’ = I, and
S=1I/I*= eL w/(er,,NI"). Then er, NI is a proper subideal of e, so
er,NI Ceb 0 and then S maps surjectively onto er, /€% = = SL,,. Since
S and St both are simple FBg-modules, the surjection S - Sr,o is an
isomorphism. o

REMARK 6.2. By Corollary 4.10, the condition Br(X,p2) = (L,p) in Asser-
tion 3 is equivalent to the existence of a surjective morphism s from (X, pa) to
(L, @) such that mx kers # 0. By Theorem 5.4.11 of [2], or by Corollary 4.10
applied to the case K = 1, this is equivalent to the condition B(X) = B(L).

COROLLARY 6.3. Let (L, ) and (M, ) be Bi-groups. Then the simple FB -
modules St,, and Sy .y are isomorphic if and only if (L,p) and (M,1) are
isomorphic in grpy .

Proof. Clearly if (L,p) = (M,v) in grpyg, then S, = Sary. Conversely,
if 0 : Sp., = Swm,y is an isomorphism of FBg-modules, then for any finite
group G, we get an isomorphism 6¢ : St ,(G) = Sar,y(G) of FBi (G)-modules.
Choose G such that St ,(G) # 0 (e.g. G = L), and a subgroup X of G x K such
that Bx (X, p2) = (L, ). Then the image u of a = e§** € FBy(G) in S,,(G)
is non zero, and moreover a-u = u. It follows that Hg(a u) = a-fg(u) = 0g(u) is
also non zero in Sy (G). So there sa subgroup Y < G x K with g (Y, p2) =
(M, 1)), such that the image v of e in Sy, (G) satisfies a-v # 0. This forces
X and Y to be conjugate in GX K, so (L, ¢) = Bx (X, p2) = B (Y,p2) = (M, )
in grpy ., as was to be shown. o

Recall that a minimal group for a (non zero) biset functor F is a finite group G
of minimal order such that F(G) # {0}.

LEMMA 6.4. Let (L,p) be a group over K.

1. If N<L, and NNKery =1, then er, ,(L/N) # {0}.
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2. If moreover (L, @) is a Bi-group, then St ,(L/N) # {0}.

Proof. Indeed the map
9:1€L— (IN,¢(l)) € (L/N) x K

is injective. Let L < (L/N) x K denote the image of . Then we have a
commutative diagram

L/N K—sK

where t : L — L is the inverse of the isomorphism L — L induced by 6, and i

is the identity map of K. Hence (L,p2) = (L, ) in grp ., and er , = ef o

In particular e(EL/N)XK € er,»(L/N) by Theorem 3.4, hence ey, ,(L/N) # {0}.
P2

This proves 1. 3

If moreover (L, p) is a Bg-group, then Bx(L,p2) = (L,¢). It follows from

Theorem 6.1 that e(ZL/N)XK € er,o(L/N) maps to an element of a basis of
Sr,o(L/N), so St,,(L/N) # {0}, proving 2. O

THEOREM 6.5. Let (L, ) be a Bx-group, and G be a finite group. The follow-
g are equivalent:

1. The group G is a minimal group for Sr, .

2. The group G is isomorphic to L/N, where N is a normal subgroup of L
of maximal order such that N NKery = 1.

Moreover in this case, the images in Si,,(G) of the idempotents eiXK, where
X runs through a set of representatives of conjugacy classes of subgroups of
G x K such that (X,p2) = (L, @), form an F-basis of S1,.,(G).

Proof. By Theorem 6.1, saying that Sr, ,(G) # {0} for a finite group G amounts
to saying that there exists a subgroup X of G x K such that Sx (X, p2) = (L, ¢)
in grpy ;- Equivalently, there is a commutative diagram

X5
Sk
G K—> K

)
where
e s is surjective and m x Ker s£0,

e i is an inner automorphism of K,
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e the map (p1,p2) : X — (G x K) is injective.

Now we proceed with the proof of Theorem 6.5.

If G is minimal for Sy, ,, then S, ,(G) # {0}, so we have a diagram (1).
Let H = p1(G). Replacing G by H in this diagram gives a diagram for the group
H with the same properties, so Si, ,(H) # 0. Hence H = G by minimality
of G. In other words p; is surjective, so G = X/Kerp;. Let N = s(Kerpy). If
u € NNKer g, then u = s(z) for some z € X, and then pos(z) =iopy(z) =1,
so pa(z) = 1. Thus z = 1 since Kerp; N Kerps = 1. Moreover N is normal
in L, since s is surjective. Lemma 6.4 shows that Sr ,(L/N) # {0}, and by
minimality of G, the surjection 5 : G = X/Kerp; — L/N induced by s must
be an isomorphism. Lemma 6.4 also implies that N is a normal subgroup of
maximal order of L such that N N Ker . Hence 2 holds.

Observe that it also follows that Kers < Kerpp, so Kers = 1 since Kers <
Ker ps as pos = iops, and Ker p; NKerps = 1. So s is an isomorphism X — L.
This proves the last assertion of the theorem.

Suppose that 2 holds. Then St ,(G) # 0, by the above claim. By the
first part of the proof, if H is a minimal group for St ,, then H = L/M, where
M is a normal subgroup of maximal order such that M N Kery = 1. Then
|M|=|N|, so |G| = |H|, and St,,(G") = {0} for any group G’ of order smaller
than |G| = |H|. Hence G is minimal for S, ,, and 1 holds. O

COROLLARY 6.6. Let (L, p) be a group over K. The following conditions are
equivalent:

1. ¢p: L — K 1is injective.
2. (L,y) is a Bi-group and Sr,,(1) # {0}.

Proof. If ¢ is injective, then (L, ) is a Bg-group (cf. Example 4.4).
Moreover LN Keryp =1, s0 St ,(L/L) = Sr,,(1) # {0}.

If (L, ) is a Bg-group and S, ,(1) # {0}, then 1 is a minimal group
for Sr,,. So there is a normal subgroup N of L of maximal order such that
N NnKery = 1, such that moreover L/N = 1. Hence N = L, and Kergp =
NNKerp=1. O

EXAMPLE 6.7. Let L = Cy x (C5 x Cy) be a direct product of a group of order
2, generated by the element a, and a semidirect product of a group of order 3,
generated by b, and a cyclic group of order 4, generated by ¢ (so chc™! =b~1).
Let P be the subgroup of L generated by a and b. Then P is cyclic of order
6, and the factor group K = L/P is cyclic of order 4, generated by the class
cP. Let ¢ : L — K be the projection map. One can check that (L, ) is a
By -group, i.e. that mr g = 0 when Q is any of the non trivial subgroups of P
(these subgroups are all normal in L, as P is cyclic).

Then the subgroups M = {(ac?) and N = (c*) both are normal (central, in fact)
subgroups of L of maximal order (equal to 2) intersecting trivially P = Ker .
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So the groups G = L/M and H = L/N are both minimal groups' for the
simple FBg-module Sr. ., but they are not isomorphic, as G = C3 x Cy but
H = (5 x S3, where S3 is the symmetric group of degree 3.

This gives yet another counterexample to a conjecture I made in 2010, saying
that the minimal groups for a Green biset functor should form a single isomor-
phism class of groups. The first counterexample to this conjecture was found
by Nadia Romero in 2013 (cf. [6]). Another counterexample was found recently
by Ibrahima Tounkara (cf. [7]).

7 RESTRICTION TO p-GROUPS

In this section, we fix a prime number p, and restrict the functor FBg to finite
p-groups. We obtain a Green p-biset functor IFBg). We do not assume that K
is itself a p-group.

In order to study the ideals of FB%’), it is natural to try to determine those
groups (L, ¢) over K for which the restriction of er, , to p-groups does not
vanish. This motivates the following definition:

DEFINITION 7.1. Let K be a finite group. Then a group (L, ¢) over K is called
p-persistent if there is a finite p-group P such that ey ,(P) # {0}.
We denote by grpip 1)( the full subcategory of grp i consisting of p-persistent

groups over K.

REMARKS 7.2. 1. If X is a subgroup of P x K, where P is a p-group, then

X, py) is p-persistent: indeed ef*® € ex ,,(P) by Corollary 3.5.
X P2

2. Any quotient of a p-persistent group over K is p-persistent: indeed is
s: (M) — (L, ) is a surjective morphism in grpy s, then erry Cer o
by Lemma 3.7. It follows that ey ,(P) # {0} if P is a p-group such that
e, (P) # {0}. In particular, if (L, ¢) is p-persistent, then Sx (L, ¢) is a
p-persistent Bi-group.

NOTATION 7.3. When L is a finite group, we denote by OP (L) the subgroup of
L generated by p'-elements, and by LIP) the quotient L/OP(L).

Recall that OP (L) is the smallest normal subgroup N of L such that L/N is a p-
group. Also recall that if s : M — L is a surjective group homomorphism, then
s(OP(M)) = OP(L). Indeed N = s(OP(M)) 4L, and s induces a surjection
M®P — L/N. So L/N is a p-group, thus N > OP(L). But N is generated by
p’-elements, as OP (M) is, so N < OP(L).

PROPOSITION 7.4. Let (L, ) be a group over K. The following are equivalent:
1. (L, ) is p-persistent.
2. e, (LIP) # {0}.

LOne can show moreover that S, ,,(G) and Sr, ,(H) are both one dimensional.
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3. Mp,or(L)NKer ¢ 7& 0.

Proof. Indeed if 3 holds, then setting N = OP(L) N Kery, we have er , =
er/N,p/N by Theorem 4.1. Moreover OP(L/N) = OP(L)/N, and Ker (¢/N) =
Kerp/N. Thus OP(L/N) N Ker(p/N) =1, so eL/NW/N((L/N)/OP(L/N)) is
non zero by Lemma 6.4. But

er/No/N((L/N)JOP(L/N)) 2 e no/n (L/OP(L)) = er, ,(LP)) |

so 2 holds. Clearly 2 implies 1, as LI is a p-group. Now if 1 holds, let P
be a p-group such that er ,(P) # {0}. Let N be a normal subgroup of L
contained in Ker ¢, and maximal such that my, y # 0. Then setting L = L/N
and @ = ¢/N, we have Sk (L,¢) = (L,p), and er, , = er.; by Theorem 4.1.
Moreover as (L, ) is a Bg-group, by Theorem 5.3, there exists a subgroup X
of P x K, and a commutative diagram

X1
A
b2 7]

P K—sK,

where s is surjective and 4 is an inner automorphism of K. Then N = s(Ker p;)
is a normal subgroup of L, as s is surjective. Moreover if [ € N N Ker @, then
I = s(x) for some © € Kerpy, so p1(z) = 1 and i o pa(x) = p o s(x) = 1, so
p2(x) = 1. Hence z = 1, and Il = 1, so NNKerg = 1. Now s induces a
surjection X/Kerp; = p;(X) - L/N, so L/N is a p-group, thus N > OP(L).
It follows that OP(L) NKer@ = 1. Now if 7 : L — L = L/N is the projection
map, we have gom = ¢, S0

F(OP(L) ﬂKergo) <OP(L)NKerg=1 ,

that is OP(L) NKergo < N = Kern. Then if M = OP(L) N Ker ¢, we have
MLN =ML MML/MN/M # 0, hence my pr # 0, so 3 holds. O

COROLLARY 7.5. Let (L, ) be a p-persistent By -group. Then
OP(L)NKerp=1 .
Proof. Indeed mp, or(r)nKery 7 0, and (L, p) is a By-group. O

NOTATION 7.6. When (L, ) is a p-persistent group over K, we denote by Lfop)
the subgroup of LIP) x K defined by

LW = {(107(L), (1)) | 1€ L} .

The following theorem is analogous to Theorem 3.4:
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THEOREM 7.7. Let I be an ideal of the Green biset functor IFB%)). If G is
a finite p-group and L is a subgroup of G x K, the following conditions are
equivalent:

1. The idempotent e§** belongs to I(G).
2. The idempotent eig)XK belongs to I(LP).

Proof. The proof is similar to the proof of Theorem 3.4, so we only sketch it.
If L < G x K, denote by L the image of L in the group L[ x G by the
map [ — (ZOP( ),p1(1)). Recall that Kerp; > OP(L), since G is a p-group.

Furthermore p; (Z) = L], kl(i) = Kerp;/OP(L), pg(i) =p1(L), and kQ(E) =
p1(OP(L)) = 1. The (L), G)-biset U = (LIP! x G)/L factors as

U = Inf))

-1 G
L0 /ka (D) olso(07") o Resy, (1)

where 6 : LIPl /ky (L) — py(G) is the isomorphism induced by the map [OP (L) —
p1(1) from LI to G.
If &K belongs to I(G), then FBY )(U)(eGXK) belongs to I(LP!). As in the

proof of Theorem 3.4, one can check that the product e (p] xK IFB(p)( GXK)

non zero. As it is a scalar multiple of eL(p) *K we get that eL(p)XK € I(LIP),
thus 1 implies 2. ’
Conversely, assume that e (F)XK € I(LPl). Then, as in the proof of Theorem 3.4
again, the opposite biset UOP factors as
op ~v G L7
U = 1Indy) (1 o Iso(f) o Def 1 12y
and the element FBg)(UOP)( Lim %) belongs to I(G). One can can check

moreover that there is a non zero scalar A such that

o LlP] G
FBY (U ") (e p;XK) =AMpw [0 (v e ",
where N = ki (L) = Kerp; /OP(L) < LIP),
But if (I07(L), pa(1)) € LE N (N x 1), then [ € Kerps NKerp; = 1. Tt follows
that m, o) [Pkt = M@ = 1, and efXK € I(G), as A # 0. Hence 2
implies 1. O

COROLLARY 7.8. Let G be a finite p-group, and L be a subgroup of Gx K. Then

the ideal of IFBgf) generated by eGXK is equal to the ideal of IFBgf) generated

[p]
b L(p))( K
LP2
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Proof. The proof is the same as the proof of Corollary 3.5. O

NOTATION 7.9. Let (L, @) be a p-persistent group over K. We denote by e(p)
the ideal of IFBg) generated by e (Z])XK € FBg)(L[p]).

THEOREM 7.10. Let s : (M,v) — (L, ) be a surjective morphism in grpy
and assume that (M, 1)) is p-persistent. Then:

1. (L, p) is p-persistent, and ega)w C e(p)

2. If mpr kers # 0, then egz)w = e(Lpzo

Proof. 1. We already observed in Remarks 7.2 that any quotient of a p-
persistent group over K is itself p-persistent, hence (L, ) is p-persistent. Let
i be an inner automorphism of K such that i o9 = ¢ os. The surjection
s: M — L induces a surjection s : Ml — LIPl hence a surjection

sPlx T1dye : MV x K — LI x K.

Let u = (mOP(M),1(m)) be the image of m € M in ngjp). Then

(1P x Tdg)(u) = (s(m)OP (L), b(m)) = (s(m)Op(L),i_l o (p(s(m))) :

which shows that s!”! x Id g maps Mip) to a conjugate of Lfop) in LIPl x K. Then

. (] . .
the idempotent eﬁ (Z)XK appears in the decomposition of
P

FBY (Inf32) xeer st © Iso(a™)) (507 X)

Lgop)
where o : MP)/KerslPl — LIP! is the canonical isomorphism. It follows that
MZ])XK € e(p) (M[p]) hence e'? )w C e(Lp,)(p
2. Consider now v = IFB%)) (Iso(@) o Def p]/KerSp])( %Z])XK) eg\?w(L[p]).
By Lemma 2.2, there is a non zero scalar A\ such that
L[P]
v=Am MP MP A (Ker 5Pl x1) L<p> : (2)

Now the projection m € M + (mOP(M),(m)) € ng}p) induces an isomor-
phism M = M/(OP(M) N Kert)). As Kersl?l = KersOP(L)/OP(L), the

subgroup Ml(pp) N(Ker sl x 1) maps to (Ker s OP(M)NKer 1)/ (OP(M)NKer )
under this isomorphism.

Moreover KersOP(M) N Kertyp = Kers(OP(M) N Keryp) as Kers < Ker.
Setting N = OP(M) NKer v, it follows that

mMé)p),Méjp)ﬂ(Kers[P]xl) = MM/N,Kers-N/N -
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Multiplying by mas, n, which is non zero by Proposition 7.4, since (M,) is
p-persistent, this gives
mm,N me),Mf)m(Kers[pJ x1) — "M Kers N
= MM Kers MM /Ker s,Ker s-N/Ker s

= MM, Kers [ 0r(L)NKerp

as the canonical isomorphism M /Ker s — L maps the subgroup Ker s- N/Ker s
to OP(L) N Kery. Since mp, or(r)nkerp 7 0 as (L, @) is p-persistent, and since
M Kers 7 0 by assumption, it follows that mebp)WIi(ppm(Kers[p]Xl) = 0, hence

ei Z])XK is a non zero scalar multiple of v, by 2. It follows that ei Z])XK belongs
) )
eg\?w(L[?’]) S0 e(p) - egﬁ)w, and e(Lp)w = egﬁ)w, as was to be shown. O

COROLLARY 7.11. Let (L, ) be a p-persistent group over K. Then the restric-
tion of er , to finite p-groups is equal to e(Lp)(P.

(p) — @ by
Br (L,p)
Theorem 7.10, we may assume that (L, ) is a Bg-group. By Corollary 7.5,

Proof. Since er, , = eg,(1,,) by Corollary 4.9, and since e},

we have OP (L) NKer ¢ = 1. Thus the projection L — L(p) is an isomorphism,

and it induces an isomorphism (L, ¢) = (prp),pg) Hence eLEp) € ep o (LIP),
and e(p) is contained in the restriction of ey, , to p-groups.

Conversely, if G is a p-group and ef(XK € er,(G), then (X,p2) — (L,¢) by
Theorem 5.3. Then eg??pz - e(ﬁ)(p, hence e$* % € e(L)(p by Corollary 7.8. Hence
(p)

the restriction of ey, ,, is contained in e »» Which completes the proof. O

COROLLARY 7.12. Let (L, ) be a p-persistent By -group, and (M,) be a p-

persistent group over K. Then egw),w C e(LpL if and only if (M, ) — (L, ).

Proof. Indeed if (M,)) — (L, ), then e%w C e(Lp,)(p by Theorem 7.10. Con-
versely, if e(p)w C e(p)@ showing that (M,¥) — (L, ¢) amounts to showing that
Br(M,1p) — (L,p), because (L, ) is a Br-group. Now enry = €g,(M,u);
hence egz)w = egj)(M ») by Corollary 7.11, and we can assume that (M,1)) is
also a Bg-group.

If eg\?w C e%”) then e% K ¢ e(p) (M), and e(Lp’)w(M[p]) = er,o(MP) by

Corollary 7.11. Hence (Mff),pg) — (L, ¢) by Theorem 5.3. But the projection
M — Mé)p) is a group isomorphism, since (M, ) is a Bg-group. It is in fact

an isomorphism from (M,v) to (Mé)p),pg) in grpy . It follows that (M, ) —
(L, ). O

The following is analogous to Lemma 3.10, and the proof is the same:
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LEMMA 7.13. Let A be a set of ideals of FB%)), and (M,) be a p-persistent
group over K. The following are equivalent:

(p)
1. ey, C IEZAI.

2. There exists I € A such that eg\?w ClI.

Proof. Clearly 2 implies 1. Now 1 is equivalent to saying that

[p]
Moy ey riy
ke IeA

If this holds, there exists I € A and u € I(MP!) such that egz])XK ~u # 0.
&
Now eﬁz])XK -u € I(MP), and moreover there is a scalar A € F such that

»
[p] [p] [p]
MUK Ly = NeM XK £ 0. Hence X # 0, and M >*K ¢ 1(MP)). In other
M M M

words eg\Z)w C I, so 1 implies 2. O

NoTATION 7.14. Let Bg)—gr denote the subset of Bg-gr consisting of p-
persistent By -groups.

As before, a subset P of Bﬁf)—gr is called closed if

Y(L,¢) € P, V(M, ) € BP-gr, (M, ) - (L,¢) = (M, )P .

THEOREM 7.15. Let I, ) be the lattice of ideals ofFB%’), ordered by inclusion
K
of ideals, and CZB@)_gr be the lattice of closed subsets of B&f)—gr, ordered by
K

inclusion of subsets. Then the map
Ie IIFB%,) — Pr={(L,9) € Bg)-gr | e(LpL cI}

is an isomorphism of lattices from L o) to Cl The inverse isomorphism
K

Bg)—gr'
is the map

P e ClBﬁf)—gr — Ip = Z e(LpL .
(L,p)EP

In particular L, 5 is completely distributive.
K

Proof. First the map I € Z ;i) — Pr € CZB@)_gr is well defined: indeed P; €
K K
Cl

. by Theorem 7.10. This map is obviously order preserving. Similarly,

B -g
the map P € Clgw_, — Ip = > e(Lp)w is also well defined and order
Ke (Lp)eP
preserving.
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Hence all we need to show is that if I is an ideal of IFB&?), then

I= Y &P, (3)

(L,p)EPr

and that if P is a closed subset of Bg)—gr, and (M,v) € Bg)—gr, then

egﬁ)wC Z e(Lp)w & (My)eP . (4)
(L,p)eP
For (3), let J = > %9) . Then J C I by definition of P;. Conversely,
(L,p)EPr
let G be a finite p-group, and u = > /\Xegﬂ( be an element of I(G), where
X€E

Ax € F, and FE is a set of representatives of conjugacy classes of subgroups of
G x K. Then % - u = M\xe*F € I(Q), for any X € E. So if Ax # 0,

then e € I(G). Equivalently, by Theorem 7.7, e (p)XK € I(XP)) that is

egg)p C I. Let (L, p) be the element of Bg) gr 1somorphlc to Br (X, p2). Then
eg?)pz = e%o)w by Theorem 7.10, and (L, ) € P;.

Moreover eXEP) ce (p) (X[p}), or equivalently e§** € e(Lp)W(G) C J(G). As

this holds for any X € F such that Ax # 0, we have also u € J(G), s
J(G) = I(G), as u was arbitrary in I(G), and J = I, as G was an arbltrary
finite p-group. This completes the proof of 3.

As for (4), clearly if (M,+) € P, then egz),w C " X;GPe(L’TL. Conversely if
©
eg\Z)w c ¥ (p) , then by Lemma 7.13, there exists (L, ) € P such that
(L,p)EP
eg\?w C e(LZT)(P. Hence (M, ) — (L, ), by Corollary 7.12. Since (L, ) € P and
P is closed, we get that (M,) € P, as was to be shown. O

THEOREM 7.16. Let (L, ) be a p-persistent By -group. Let [sk] be a set of
representatives of conjugacy classes of subgroups of K. Let H be the unique
element of [sk] conjugate to (L), and jy : H < K be the inclusion map.
Then one and one only of the following holds:

1. Kero =1, and (L,¢) = (H,ju) in grpy -

2. Kerp = C,, the group HP! is cyclic and non trivial, and (L, ) = (C, x
H,jugomm) in grpyx, where mg : Cp x H — K is the projection onto H.

3. Kerp = C), x Cy, the group HW! s trivial - in other words H is a p-perfect
subgroup of K - and (L,p) = (C, x Cp, x H,jg o 7g) in grpy, where
ma : Cp x Cp x H = K is the projection onto H.
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Proof. Since OP(L)NKer ¢ = 1 by Corollary 7.5, the group Ker ¢ embeds into
LIPl 50 it is a p-group. Let F' denote the Frattini subgroup of Ker ¢. Then F is
a normal subgroup of L. Moreover if X is a subgroup of L such that XF = L,
then FF < Kerp < XF, so Kerp = (Kerp N X)F, hence Kerp N X = Ker ¢,
and then XF = X = L since F < Kerp < X. It follows that m r = 1, thus
F =1as (L,y) is a Bx-group. This shows that Ker ¢ is elementary abelian.

Let now N = PﬁM P, where M is the set of normal subgroups of L which are
€

contained in Ker ¢, and maximal for these conditions (in other words the factor
group Ker /P is a simple F,L-module). If X is a subgroup of L such that
XN =1L, then N <Kerp < XN, s0Kerp=(KerpNX)N. But KerpnN X is
normalized by X and Ker ¢, so it is normal in L. If Ker p N X < Ker ¢, then
there is P € M such that Kero N X < P. Then N < P also, and Keryp =
(Kero N X)N < P, contradicting P < Ker . It follows that Ker p < X, and
XN = L implies X = L. Thus my vy =1and N = 1.

But then the product of the projection maps Ker o — [] Ker /P is injective,
PeM
and the latter is a semisimple F, L-module. Hence Ker ¢ is also a semisimple

F,L-module. Now since OP(L) and Ker ¢ are normal subgroups of L with trivial
intersection, they centralize each other. In other words Ker ¢ is a module for
the factor group LIPl = L/OP(L). Then Ker ¢ is a semisimple F,LIPl-module.
As LI is a p-group, the action of L[P! on Ker ¢ has to be trivial. Hence Ker ¢
is central in L.

Let Z be any subgroup of order p of Kerp. Then 0 = mp z =1 — kLTSZ), by
Proposition 5.6.4 of [2], where kz,(Z) denotes the number of complements of Z
in L. Tt follows that k1 (Z) = p, so in particular there is a subgroup H of L such
that L = Z x H. Then the complements of Z in L are the groups of the form
{(f(h), h) | h € H}, where f: H — Z is any group homomorphism. It follows
that there are exactly p homomorphisms from H to Z = C),. Equivalently,
there are exactly p homomorphisms from the p-group H! to Cp, so H T
cyclic and non trivial. Since Ker ¢ embeds in LP! = Z x HIP!| the rank of
Ker ¢ is at most 2.

We now observe that if (M,v) — (L,p) is a surjective morphism of groups
over K - in particular if it is an isomorphism -, then ¥(M) and (L) are
conjugate in K. Then there are three disjoint cases:

1. Keryp = 1. In this case, denoting by 7wy the inclusion map H — K and
by ¢° : L — H the isomorphism induced by ¢, we have i 0 ¢ = 7 o ¢°
for some inner automorphism i of K which conjugates ¢(L) to H. So ¢°
is an isomorphism from (L, ¢) to (H, 7 ) in grpy x, and we are in Case 1
of Theorem 7.16.

2. Kerp = Z = (). Then we have seen that L = Z x H;, where H; is

a subgroup of L such that H{p I is cyclic and non trivial. In this case

¢ induces an isomorphism ©° : H; — H = ¢(L), and Idz x ¢° is an
isomorphism from (L, ¢) to (Z X H, jg omy), where 7y : Z x H — K is
the projection onto H. Hence we are in Case 2 of Theorem 7.16.
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3. Kerp =2 C), x Cp,. Then let Z be a subgroup of order p of Ker¢. Then
we have seen that L = Z x H;, where H; is a subgroup of L such that
H{p] is cyclic and non trivial. In this case Z; = Kerp N H; has order
p, and my, z, = 0 since (L,¢) is a Bg-group. It follows that Z; must
have also exactly p complements in L. In particular, there is a subgroup
J of L such that L = Z; x J. But then Z; < H; < Z;J implies that
Hy = Zy x Hy, where H, = HiNJ. Hence L = Z x Z; x Hs, and
moreover HQ[p] = 1 since H{p] = 7 % Hép] is cyclic. Then ¢ induces an
isomorphism ¢° : Hy — H = ¢(L), and Idzxz, x ¢° is an isomorphism
from (L, ) to (Z x Z1 x H,jgomy), where my : Z X Z1 x H — K is the
projection onto H. Hence we are in Case 3 of Theorem 7.16.

This completes the proof of Theorem 7.16. O

COROLLARY 7.17. Let 1 ={0,1} and 2 = {0, 1,2} be totally ordered lattices of
cardinality 2 and 3, respectively. Let ci (resp. nck ) be the number of conjugacy
classes of subgroups H of K such that H'! is cyclic (resp. non cyclic). Then

the lattice Ly, ) of ideals of FB%)) is isomorphic to the direct product of cx
K

copies of 2 and nck copies of 1. In particular it is a finite distributive lattice.

Proof. By Theorem 7.15, the lattice Z, ) is distributive, isomorphic to the
K

lattice ClB(p)_
K ~8r
elements of IFB(p) are the ideals ey, for (L) € IIF
K

of closed subsets of Bg)—gr. Moreover, the join-irreducible

g - By Theorem 7.16,
K

the set Bg)—gr is finite, and contains three types of elements:
1. the elements (H, jpr) of the first type, for H € [sk].

2. the elements (C}, x H, jy oy ) of the second type, for H € [sk] such that
H! is cyclic and non-trivial.

3. the elements (C), x Cp, X H, jg o mp) of the third type, for H € [sk] such
that HP! is trivial.

The only possible surjective morphisms between elements of Bg)—gr are of the
following form:

e (Cp x H,jgorg) — (H,ju), where H € [sk] is such that H"! is cyclic
and non trivial.

e (Cp,xCpx H,jgory) — (H,ju), where H € [sk] is such that HIPl = 1.

It follows that the poset Bg)-gr has as many connected components as con-
jugacy classes of subgroups of K. The connected components corresponding
to subgroups H for which H”! is cyclic - trivial or not - are isomorphic to a
totally ordered poset of size 2, and the other ones are posets with one element.
Hence Bg)—gr is a disjoint union of cx-components which are totally ordered
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of size 2, and nck isolated points. The lattice of closed subsets of a totally
ordered poset of size n is a totally ordered lattice of size n+ 1, and the lattice of
closed subsets of a disjoint union of posets is the direct product of the lattices
of closed subsets of the pieces. This completes the proof. o

REMARK 7.18. As in Remark 5.6, it follows from Section 5.2.2 of [3] that the
category FB%)) -Mod splits as a product

FBY Mod = [ el FBY Mod |
H

of categories of modules over smaller Green biset functors egFB%)), where
H € [sk]. The above connected components correspond to this decomposition.
In particular, when H is a subgroup of K such that H! is non cyclic, then the

(commutative) Green functor egFBgf) has no non zero proper ideals. It might
therefore be called a Green field.
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