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Abstract. This paper extends the notion of B-group to a relative
context. For a finite group K and a field F of characteristic 0, the
lattice of ideals of the Green biset functor FBK obtained by shifting
the Burnside functor FB by K is described in terms of BK-groups.
It is shown that any finite group (L,ϕ) over K admits a largest
quotient BK-group βK(L,ϕ). The simple subquotients of FBK are
parametrized by BK-groups, and their evaluations can be precisely

determined. Finally, when p is a prime, the restriction FB(p)
K of FBK

to finite p-groups is considered, and the structure of the lattice of

ideals of the Green functor FB(p)
K is described in full detail. In par-

ticular, it is shown that this lattice is always finite.
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1 Introduction

In the study of the lattice of biset-subfunctors of the Burnside functor FB
over a field F of characteristic 0 (cf. Section 7.2 of [1], or Chapter 5 of [2]), a
special class of finite groups, called B-groups, plays an important role: indeed,
the simple subquotients of the biset functor FB are exactly the functors SH,F,
where H is such a B-group. It was shown moreover that each finite group G
has a largest quotient B-group β(G).
LetK be a fixed finite group. This paper proposes a generalization of the above
methods and notions, in order to study the lattice of ideals of the shifted Burn-
side functor FBK . We start by introducing a category grp⇓K of groups over K,
similar to the comma category of finite groups over K, in which morphisms are
obtained by allowing diagrams to commute up to inner automorphisms of K.
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To each such group (L,ϕ), where ϕ : L → K, is attached a specific ideal eL,ϕ
of FBK , and it is shown that every ideal of FBK is equal to the sum of the
ideals eL,ϕ it contains. A special class of groups over K is introduced, called
BK-groups, and it is shown that for each group (L,ϕ) over K, there exists a
largest BK-group βK(L,ϕ) quotient of (L,ϕ). Moreover eL,ϕ = eβK(L,ϕ). It
follows that the lattice of ideals of FBK can be described in terms of closed
families of BK-groups.

Moreover, each ideal eL,ϕ associated to a BK-group (L,ϕ) has a unique maxi-
mal proper subideal e0L,ϕ. The quotient SL,ϕ = eL,ϕ/e

0
L,ϕ is a simple FBK-

module. The evaluations of this simple module can be precisely described, as
well as its minimal groups, and this yields a new example of a simple module
over a Green biset functor with several isomorphism classes of minimal groups.

Finally, when p is a prime number, we consider the restriction FB(p)
K of FBK to

finite p-groups, and we describe completely the lattice of ideals of this Green
biset functor. We show in particular that this lattice is always finite. As a
byproduct, we get some examples of Green p-biset functors without non zero
proper ideals.

2 Review of shifted Green biset functors

We quickly recall some definitions and basic notions on biset functors for finite
groups, and refer to [2] for details. Let F be a field of characteristic 0. The
biset category FC of finite groups has all finite groups as objects. If G and H
are finite groups, then HomFC(G,H) = F ⊗Z B(H,G), where B(H,G) is the
Grothendieck group of finite (H,G)-bisets. Composition in FC is induced by
the product (V, U) 7→ V ×HU = (V ×U)/H , where V is a (K,H)-biset and U a
(H,G)-biset, and H acts on (V ×U) by (v, u) ·h = (vh, h−1u). A biset functor
over F is an F-linear functor from FC to the category of F-vector spaces.
Any biset is a disjoint union of transitive ones, and any transitive (H,G)-biset
is of the form (H × G)/L, where L is a subgroup of (H × G). Denoting by
p1 : H × G → H and p2 : H × G → G the first and second projections, we
set k1(L) = p1(L ∩ Ker p2) and k2(L) = p2(L ∩ Ker p1). The biset (H ×G)/L
factors as the composition

(H ×G)/L ∼= IndHp1(L) ◦ Inf
p1(L)
p1(L)/k1(L)

◦ Iso(α) ◦Def
p2(L)
p2(L)/k2(L)

◦ResGp2(L)

of elementary bisets called induction, inflation, isomorphism, deflation, and
restriction, where α : p2(L)/k2(L) → p1(L)/k1(L) is the canonical isomorphism
sending bk2(L) to ak1(L) for (a, b) ∈ L. These elementary morphisms generate
all morphisms in the category FC.
A Green biset functor A over F (cf. Section 8.5 of [2]) is a biset functor
with additional bilinear products A(G) × A(H) → A(G × H), denoted by
(α, β) 7→ α×β, which are associative and bifunctorial. There is also an identity
element εA ∈ A(1).
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A left A-module M is then defined similarly as a biset functor with products
A(G) ×M(H) → M(G × H) which are associative, bifunctorial, and unital.
Left A-modules form an abelian category denoted by A-Mod. A left ideal of A
is an A-submodule of the left A-module A.
When A is a Green functor, each evaluation A(G) is an F-algebra for the
product

α, β ∈ A(G) 7→ α · β = A
(
Iso(δ) ◦ ResG×G

∆

)
(α× β) ,

where ∆ is the diagonal subgroup of G × G, and δ : ∆ → G the canonical
isomorphism. The identity element of this algebra is A(InfG

1
)(εA). If M is an

A-module, each evaluation M(G) is endowed with an A(G)-module structure
defined similarly. By Proposition 2.16 of [7], a biset subfunctor I of A is an
ideal if and only if I(G) is an ideal of the algebra A(G), for any finite group G.
A Green biset functor A is called commutative (cf. [3] for details) if the algebra
A(G) is commutative, for any G.
A fundamental example of Green biset functor is the Burnside functor sending
a finite group G to FB(G) = FB(G, 1), where B(G) is the Burnside group
of G. The products maps FB(G) × FB(H) → FB(G ×H) are induced by the
cartesian product sending a G-set X and an H-set Y to the (G×H)-set X×Y .
An FB-module is precisely a biset functor over F.
Let K be a finite group. A Green biset functor A over F can be shifted by K.
This gives a new Green biset functor AK defined for a finite group G by

AK(G) = A(G ×K) .

For finite groups G and H and a finite (H,G)-biset U , the map

AK(U) : AK(G) → AK(H)

is the map A(U ×K), where U ×K is viewed as a (H ×K,G×K)-biset in the
obvious way, letting K act on both sides on U × K by multiplication on the
second component. For an arbitrary element α ∈ FB(H,G), that is an F-linear
combination of (H,G)-bisets, the map AK(α) : AK(G) → AK(H) is defined by
F-linearity.
This endows AK with a biset functor structure. Moreover, for finite groups G
and H , the product

×AK : AK(G) ×AK(H) → AK(G×H)

is defined as follows: if α ∈ AK(G) = A(G×K) and β ∈ AK(H) = A(H ×K),
then α× β ∈ A(G×K ×H ×K). We set

α×AK β = A
(
Iso(δ) ◦ ResG×K×H×K

∆

)
(α × β) ,

where ∆ = {(g, k, h, k) | g ∈ G, h ∈ H, k ∈ K}, and δ is the isomorphism
∆ → G ×H ×K sending (g, k, h, k) to (g, h, k). The identity element εAK is
A(InfK

1
)(εK).
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For a finite group G, the algebra structure on AK(G) is simply the algebra
structure on A(G×K) defined for the Green functor A.

All these notion can be extended to functors from an admissible subcategory D
of the biset category (cf. Chapter 4 of [2]), which is moreover closed under
taking direct products of finite groups. We have then the notions of D-biset
functors and D-Green biset functors, as well as modules over them.

In this paper, we will consider the shifted Burnside functor FBK , and its re-

striction FB(p)
K to finite p-groups, for a prime p. A fundamental classical result

is that for any finite group G, the algebra FBK(G) is a split semisimple com-
mutative algebra, with primitive idempotents eG×K

L indexed by subgroups L of
G ×K, up to conjugation. The explicit formula for eG×K

L , due to Gluck ([4])
and Yoshida ([8]) is

eG×K
L =

1

|NG×K(L)|

∑

X≤L

|X |µ(X,L) [(G×K)/X ] ,

where X runs through all subgroups of L, where µ is the Möbius function of
the poset of subgroups of G×K, and [(G×K)/X ] is the isomorphism class of
the transitive (G×K)-set (G×K)/X .

Notation 2.1. When N is a normal subgroup of a finite group L, let

mL,N =
1

|L|

∑

X≤L
XN=L

|X |µ(X,L) .

Lemma 2.2. Let G be a finite group, and L be a subgroup of G×K. If N is a
normal subgroup of G, then

FBK
(
DefGG/N

)
(eG×K
L ) = λmL,L∩(N×1) e

(G/N)×K

L
,

where L is the image of L by the projection G × K → (G/N) × K, and λ =
|N(G/N)×K(L):L|

|NG×K(L):L| .

Proof. Indeed

FBK
(
DefGG/N

)
(eG×K
L ) = FB

(
DefG×K

(G×K)/(N×1)

)
(eG×K
L ) .

The result now follows from Assertion 4 of Theorem 5.2.4 of [2].

3 Ideals generated by idempotents

We now introduce a category grp⇓K , similar to the comma category over K: its
objects are the same, but morphisms are slightly different.
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Definition 3.1. • For a finite group K, let grp⇓K denote the following
category:

– The objects are finite groups over K, i.e. pairs (L,ϕ), where L is a
finite group and ϕ : L→ K is a group homomorphism.

– A morphism f : (L,ϕ) → (L′, ϕ′) of groups over K in the category
grp⇓K is a group homomorphism f : L → L′ such that there exists
some inner automorphism i of K with i ◦ ϕ = ϕ′ ◦ f .

– The composition of morphisms in grp⇓K is the composition of group
homomorphisms, and the identity morphism of (L,ϕ) is the identity
automorphism of L.

• If (L,ϕ) and (L′, φ′) are groups over K, we say that (L′, ϕ′) is a quotient
of (L,ϕ), and we note (L,ϕ) ։ (L′, ϕ′), if there exists a morphism f ∈
Homgrp⇓K

(
(L,ϕ), (L′, ϕ′)

)
with f : L → L′ surjective. In this case, we

will say that f is a surjective morphism from (L,ϕ) to (L′, ϕ′).

Remarks 3.2. 1. Using the well known fact that the epimorphisms in
the category of (finite) groups are the surjective group homomor-
phisms (cf. [5] I.5 Exercise 5), one can show that a morphism f ∈
Homgrp⇓K

(
(L,ϕ), (L′, ϕ′)

)
is an epimorphism in grp⇓K if and only if

f : L → L′ is surjective, that is, if f is a surjective morphism. We
will not use this fact here, except as a motivation to the use of the word
“quotient” in Definition 3.1.

2. A morphism f : (L,ϕ) → (L′, ϕ′) in grp⇓K is an isomorphism if and only
if f : L→ L′ is an isomorphism of groups.

3. If (L′, ϕ′) is a quotient of (L,ϕ), and if (L,ϕ) is a quotient of (L′, ϕ′),
then (L,ϕ) and (L′, ϕ′) are isomorphic in grp⇓K . Indeed any surjective
morphism from (L,ϕ) to (L′, ϕ′) is an isomorphism, for L and L′ have
the same order.

4. Clearly, the relation “being quotient of” on the class of groups over K
is transitive. In particular, any group over K isomorphic in grp⇓K to a
quotient of (L,ϕ) is itself a quotient of (L,ϕ), and also a quotient of any
group over K isomorphic to (L,ϕ) in grp⇓K .

Notation 3.3. When (L,ϕ) is a group over K, we denote by Lϕ the subgroup
of L×K defined by

Lϕ = {
(
l, ϕ(l)

)
| l ∈ L} .

Theorem 3.4. Let I be an ideal of the Green biset functor FBK. If G is a finite
group and L is a subgroup of G×K, the following conditions are equivalent:

1. The idempotent eG×K
L belongs to I(G).

2. The idempotent eL×KLp2
belongs to I(L), where p2 : L→ K is the restriction

to L of the second projection homomorphism G×K → K.
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Proof. 1 ⇒ 2 Let L̂ = Lp1 ⊆ L×G, where p1 : L→ G is the restriction to L
of the first projection homomorphism G×K → G. Thus

p1(L̂) = L, k1(L̂) = 1× k2(L), p2(L̂) = p1(L), k2(L̂) = 1 .

It follows that the (L,G)-biset U = (L×G)/L̂ factors as

U ∼= InfLL/N ◦ Iso(θ−1) ◦ ResGp1(L) ,

where N = 1× k2(L)EL and θ : L/N → p1(L) is the canonical isomorphism
induced by the first projection p1 : L→ G.
Now if eG×K

L belongs to I(G), its restriction FBK(ResGp1(L))(e
G×K
L ) belongs to

I(G). But

FBK(ResGp1(L))(e
G×K
L ) = FB

(
ResG×K

p1(L)×K

)
(eG×K
L )

=
∑

L′

e
p1(L)×K
L′ ,

where L′ runs through a set of representatives of
(
p1(L)×K

)
-conjugacy classes

of subgroups of p1(L)×K which are conjugate to L in G×K (cf. [2], Theorem
5.2.4, Assertion 1). In particular, the group L is one of them, and

e
p1(L)×K
L · FBK(ResGp1(L))(e

G×K
L ) = e

p1(L)×K
L ∈ I

(
p1(L)

)
.

It follows that FBK
(
Iso(θ−1)

)
(e
p1(L)×K
L ) ∈ I(L/N).

But FBK
(
Iso(θ−1)

)
= FB

(
Iso(θ−1

K )
)
, where θK = θ × IdK is the isomorphism

from (L/N) × K to p1(L) × K deduced from θ. It follows that e
(L/N)×K

L
∈

I(L/N), where L = θ−1
K (L) = {

(
lN, p2(l)

)
| l ∈ L}. Now

FBK(InfLL/N )(e
(L/N)×K

L
) = FB

(
InfL×K(L/N)×K

)
(e

(L/N)×K

L
)

=
∑

X

eL×KX ∈ I(L) ,

where X runs through a set of representatives of (L × K)-conjugacy classes
of subgroups of L ×K which map to a conjugate of L through the surjection
L×K → (L/N)×K (cf. [2], Theorem 5.2.4, Assertion 3).
The group Lp2 is one of these subgroups, hence

eL×KLp2
· FBK(InfLL/N )(e

(L/N)×K

L
) = eL×KLp2

∈ I(L) ,

as was to be shown.

2 ⇒ 1 We now consider the opposite (G,L)-biset Uop ∼= (G × L)/L̃, where

L̃ = {
(
p1(l), l

)
| l ∈ L}, which factors as

Uop ∼= IndGp1(L) ◦ Iso(θ) ◦DefLL/N .
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If eL×KLp2
∈ I(L), then u = FBK(Uop)(eL×KLp2

) belongs to I(G). By Lemma 2.2

FBK
(
DefLL/N

)
(eL×KLp2

) = λmLp2 ,Lp2∩(N×1) e
(L/N)×K

Lp2
,

where Lp2 is the image of Lp2 by the projection L ×K → (L/N)×K, and λ
is some non zero rational number. Now the intersection

Lp2 ∩ (N × 1) = {
(
a, b), b

)
| (a, b) ∈ L} ∩

((
1× k2(L)

)
× 1

)

is trivial. It follows that mLp2 ,Lp2∩(N×1) = 1, and

u = λFBK
(
IndGp1(L) ◦ Iso(θ)

)
(e

(G/N)×K)

Lp2
)

= λFB
(
IndG×K

p1(L)×K
◦ Iso(θK)

)
(e

(G/N)×K)

Lp2
) .

Now for (a, b) ∈ L, the image by θK = θ× IdK of
(
(a, b), b

)
(N ×1) ∈ Lp2 is the

element
(
p1(a, b), b

)
= (a, b) of p1(L) × K. Hence θK(Lp2) identifies with L,

viewed as a subgroup of p1(L)×K, and

u = λFB
(
IndG×K

p1(L)×K
)(e

p1(L)×K
L ) = λλ′eG×K

L ,

for some non zero rational number λ′ (cf. [2], Theorem 5.2.4, Assertion 2).
Since u ∈ I(G) and λλ′ 6= 0, it follows that eG×K

L ∈ I(G), as was to be
shown.

Corollary 3.5. Let G be a finite group, and L be a subgroup of G×K. Then
the ideal of FBK generated by eG×K

L is equal to the ideal of FBK generated by
eL×KLp2

Proof. Indeed, denoting by I the ideal generated by eG×K
L , and by J the ideal

generated by eL×KLp2
, we have

eK×G
L ∈ I(G) ⇒ eL×KLp2

∈ I(L) ⇒ J ⊆ I ,

eL×KLp2
∈ J(L) ⇒ eG×K

L ∈ J(G) ⇒ I ⊆ J ,

so I = J .

Notation 3.6. Let (L,ϕ) be a group over K. We denote by eL,ϕ the ideal of
FBK generated by eL×KLϕ

∈ FBK(L).

Lemma 3.7. Let (L,ϕ) and (M,ψ) be groups over K.

1. If (M,ψ) ։ (L,ϕ), then eM,ψ ⊆ eL,ϕ.

2. In particular, if (M,ψ) is isomorphic to (L,ϕ), then eM,ψ = eL,ϕ.

Documenta Mathematica 24 (2019) 2431–2462



2438 Serge Bouc

Proof. 1. Let s : M → L be a surjective group homomorphism, and i be an
inner automorphism of K such that i ◦ ψ = ϕ ◦ s. Let U denote the set L,
viewed as an (M,L)-biset for the action given by m ·u · l = s(m)ul, for m ∈M
and u, l ∈ L. There is an isomorphism of (M,L)-bisets

U ∼= InfMM/Ker s ◦ Iso(α
−1) ,

where α :M =M/Ker s→ L is the group isomorphism induced by s.
Let u = FBK(U)(eL×KLϕ

) ∈ eL,ϕ(M). Then

u = FB
(
InfM×K

M×K
◦ Iso(α−1

K )
)
(eL×KLϕ

) ,

where αK = α× IdK :M ×K → L×K. Then

α−1
K (Lϕ) = {

(
α−1(l), ϕ(l)

)
| l ∈ L} = {

(
mKer s, ϕ ◦ s(m)

)
| m ∈M} .

It follows that FB
(
Iso(α−1

K )
)
(eL×KLϕ

) = eM×K

Mθ
, where θ : M → K is defined by

θ(mKer s) = ϕ ◦ s(m). In particular eM×K

Mθ
∈ eL,ϕ(M). Now

u = FB
(
InfM×K

M×K

)
(eM×K

Mθ
) =

∑

X

eM×K
X ,

where X runs through a set of representatives of conjugacy classes of subgroups
of M ×K such that the projection of X in M ×K is conjugate to Mθ. The
subgroup Mϕ◦s is one of these subgroups, so eM×K

Mϕ◦s
· u is a non zero scalar

multiple of eM×K
Mϕ◦s

lying in eL,ϕ(M). Hence eM×K
Mϕ◦s

∈ eL,ϕ(M). Now ϕ◦s = i◦ψ,
where i is an inner automorphism ofK. This implies readily that the subgroups
Mi◦ψ and Mψ of M ×K are conjugate. It follows that

eM×K
Mψ

= eM×K
Mi◦ψ

= eM×K
Mϕ◦s

∈ eL,ϕ(M) ,

that is eM,ψ ⊆ eL,ϕ, proving Assertion 1.

Now if f : (L,ϕ) → (M,ψ) is an isomorphism in grp⇓K , the group homomor-
phism f : M → L is an isomorphism. Then (M,ψ) and (L,ϕ) are quotient of
one another, so eM,ψ = eL,ϕ, proving Assertion 2.

Notation 3.8. We fix a set SK of representatives of isomorphism classes of
objects in the category grp⇓K .

Proposition 3.9. Let I be an ideal of FBK . Then I is equal to the sum of the
ideals eL,ϕ it contains. More precisely, if

AI = {(L,ϕ) ∈ SK | eL,ϕ ⊆ I} ,

we have I =
∑

(L,ϕ)∈AI

eL,ϕ. It follows that the ideals of FBK form a set.
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Proof. Let J =
∑

(L,ϕ)∈SK
eL,ϕ⊆I

eL,ϕ. Then obviously J ⊆ I. Moreover, if (M,ψ)

is a group over K such that eM,ψ ⊆ I, then eM,ψ ⊆ J : indeed, there is some
(L,ϕ) ∈ SK isomorphic to (M,ψ), and eM,ψ = eL,ϕ by Lemma 3.7. Conversely,
let G be a finite group, and u ∈ I(G). Then u is a linear combination

u =
∑

L

λLe
G×K
L

with coefficients λL in F, of idempotents eG×K
L , where L runs through a set S

of representatives of conjugacy classes of subgroups of G × K. Then for any
L ∈ S, we have eG×K

L · u = λLe
G×K
L ∈ I(G), hence eG×K

L ∈ I(G) if λL 6= 0. So
in this case, the ideal of FBK generated by eG×K

L is contained in I. This ideal
is equal to eL,p2 , by Corollary 3.5, thus eL,p2 ⊆ J by the above observation.
Hence eG×K

L ∈ eL,p2(G) ⊆ J(G). It follows that

u =
∑

L∈S
λL 6=0

λLe
G×K
L

also belongs to J(G). Hence I(G) ⊆ J(G), so I(G) = J(G) since J ⊆ I. As G
was arbitrary, it follows that I = J .
Now an ideal I of FBK is determined by the subset AI of SK , so the class
of ideals of FBK is in one to one correspondence with a set of subsets of SK .
Hence this class is a set.

Lemma 3.10. Let A be a set of ideals of FBK , and (M,ψ) be a group over K.
The following are equivalent:

1. eM,ψ ⊆
∑
I∈A

I.

2. There exists I ∈ A such that eM,ψ ⊆ I.

Proof. Clearly 2 implies 1. Now 1 is equivalent to saying that

eM×K
Mψ

∈
∑

I∈A

I(M) .

If this holds, there exists I ∈ A and u ∈ I(M) such that eM×K
Mψ

· u 6= 0. Now

eM×K
Mψ

· u ∈ I(M), and moreover there is a scalar λ ∈ F such that eM×K
Mψ

· u =

λeM×K
Mψ

6= 0. Hence λ 6= 0, and eM×K
Mψ

∈ I(M). In other words eM,ψ ⊆ I, so 1
implies 2.

4 BK-groups

In view of Proposition 3.9, every ideal of FBK is a sum of ideals eL,ϕ, where
(L,ϕ) runs in some subset of SK . In view of Lemma 3.10, to describe the
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inclusions between such sum of ideals eL,ϕ, it suffices to describe elementary
inclusions of the form eM,ψ ⊆ eL,ϕ, where (L,ϕ) and (M,ψ) are groups overK.
Lemma 3.7 shows that it is the case if (M,ψ) ։ (L,ϕ). Moreover:

Theorem 4.1. Let s : (M,ψ) → (L,ϕ) be a surjective morphism in grp⇓K . If
mM,Ker s 6= 0, then eM,ψ = eL,ϕ.

Proof. We already know from Lemma 3.7 that eM,ψ ⊆ eL,ϕ, so it suffices to
prove the reverse inclusion. We first observe that since there exists an inner
automorphism i ofK such that i◦ψ = ϕ◦s, we have Ker s ≤ Ker (i◦ψ) = Kerψ.
So there is a group homomorphism ψ :M =M/Ker s→ K such that ψ = ψ◦π,
where π :M →M is the projection map.
Now let V be the set L, viewed as an (L,M)-biset for the action defined by
l · v ·m = lvs(m), for l, v ∈ V and m ∈ M (in other words V = Uop, where
U is the (M,L)-biset introduced in the proof of Lemma 3.7). Then there is an
isomorphism of (L,M)-bisets

V ∼= Iso(α) ◦DefMM/Ker s ,

where α : M → L is the group isomorphism induced by s, i.e. such that
s = α ◦ π.
Let v = FBK(V )(eM×K

Mψ
) ∈ eM,ψ(L). By Lemma 2.2

FBK
(
DefMM/Ker s

)
(eM×K
Mψ

) = λmMψ,Mψ∩(Ker s×1) e
M×K

Mψ
,

where Mψ is the image of Mψ by the projection M ×K → M ×K, and λ is
some non zero rational number. Then

v = λFBK
(
Iso(α)

)
(eM×K

Mψ
) = λFB

(
Iso(αK))(eM×K

Mψ
) ,

where αK = α × IdK : M ×K → L ×K. The image of Mψ under αK is the
subgroup

αK(Mψ) =
{(
α(m), ψ(m)

)
| m ∈M

}
=

{(
l, ψ ◦ α−1(l)

)
| l ∈ L

}
.

Moreover, we have a diagram

M

ψ

��

π

!!❇
❇❇

❇❇ s

%%
M α

//

ψ

��

L

ϕ

��
K

i // K

where the two triangles and the outer “square” commute. It follows that

ϕ ◦ α ◦ π = ϕ ◦ s = i ◦ ψ = i ◦ ψ ◦ π ,
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hence ϕ ◦ α = i ◦ ψ since π is surjective. Hence ψ ◦ α−1 = i−1 ◦ ϕ, and
αK(Mψ) = Li−1◦ϕ.

It follows that v = λ eL×KLi−1◦ϕ
, and moreover eL×KLi−1◦ϕ

= eL×KLϕ
since Li−1◦ϕ and

Lϕ are conjugate in L × K. Finally v = λ eL×KLϕ
, so eL×KLϕ

∈ eM,ψ(L), since

v ∈ eM,ψ(L) and λ 6= 0. In other words eL,ϕ ⊆ eM,ψ, and finally eL,ϕ = eM,ψ,
as was to be shown.

Notation 4.2. When (M,ψ) is a group over K, and Q is a normal subgroup of
M with Q ≤ Kerψ, let ψ/Q : M/Q → K be the group homomorphism defined
by ψ = (ψ/Q) ◦ π, where π is the projection M →M/Q.

Thus for any group (M,ψ) over K, if Q is a normal subgroup of M contained
in Kerψ, we get a surjective morphism π : (M,ψ) → (M/Q,ψ/Q) in grp⇓K ,
with Kerπ = Q. If moreover mM,Q 6= 0, we have eM,ψ = eM/Q,ψ/Q. This
motivates the following:

Definition 4.3. Let (L,ϕ) be a group over K. We say that (L,ϕ) is a BK-
group, or a B-group relative to K, if mL,N = 0 for every non-trivial normal
subgroup N of L contained in Kerϕ.

Examples 4.4. 1. If ϕ : L→ K is injective, then (L,ϕ) is a BK-group.

2. On the other hand, if K = 1, then a group over K is a pair (L,ϕ), where
L is a finite group and ϕ : L→ 1 is the unique morphism. Moreover the
category grp⇓1 clearly identifies with the usual category of finite groups.
With this identification, a B1-group is just a B-group (cf. Section 7.2 of
[1], or Chapter 5 of [2]).

Lemma 4.5. Let (L,ϕ) be a BK-group. If (M,ψ) is a group over K, and (M,ψ)
is isomorphic to (L,ϕ) in grp⇓K , then (M,ψ) is a BK-group.

Proof. Since (M,ψ) is isomorphic to (L,ϕ) in grp⇓K , there exists a group iso-
morphism f : L→M and an inner automorphism i of K such that ψ◦f = i◦ϕ.
If P is a normal subgroup of M contained in Kerψ, then f−1(P ) is a normal
subgroup of L contained in Kerϕ, because

i ◦ ϕ
(
f−1(P )

)
= ψ ◦ f

(
f−1(P )

)
= ψ(P ) = 1

and i is an automorphism. Moreover mL,f−1(P ) = mM,P . If P is non trivial,
then f−1(P ) is non trivial, so mL,f−1(P ) = mM,P = 0, as was to be shown.

Theorem 4.6. Let (L,ϕ) be a group over K.

1. If Q is a normal subgroup of L, contained in Kerϕ, and maximal such
that mL,Q 6= 0, then (L/Q,ϕ/Q) is a BK-group, quotient of (L,ϕ).

2. If (P, ψ) is a BK-group which is quotient of (L,ϕ), and if N is a normal
subgroup of L contained in Kerϕ and such that mL,N 6= 0, then (P, ψ) is
a quotient of (L/N,ϕ/N).
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3. In particular, if P and Q are normal subgroups of L, contained in
Kerϕ, and maximal such that mL,P 6= 0 6= mL,Q, then (L/P, ϕ/P ) and
(L/Q,ϕ/Q) are isomorphic in grp⇓K .

Proof. 1. Let P/Q be a normal subgroup of L/Q contained in Ker (ϕ/Q) =
Kerϕ/Q. Then P is a normal subgroup of L, and Q ≤ P ≤ Kerϕ. If P/Q 6= 1,
i.e. if Q < P , then by maximality of Q and Proposition 5.3.1 of [2]

mL,P = 0 = mL,QmL/Q,P/Q .

Since mL,Q 6= 0, it follows that mL/Q,P/Q = 0, so (L/Q,ϕ/Q) is a BK-group,
quotient of (L,ϕ).

2. Since (P, ψ) is a quotient of (L,ϕ), there exists a surjective group homomor-
phism s : L→ P and an inner automorphism i ofK such that ψ◦s = i◦ϕ. It fol-
lows thatM = Ker s is a normal subgroup of L contained in Ker (i◦ϕ) = Kerϕ.

We have a diagram

L

ϕ

��

πM

""❊
❊❊

❊❊ s

&&
L/M

s
//

ϕ/M

��

P

ψ

��
K

i // K

where the two triangles and the outer “square” commute, and s is an isomor-
phism, the map πM : L → L/M being the projection. As in the proof of
Theorem 4.1, we have

ψ ◦ s ◦ πM = ψ ◦ s = i ◦ ϕ = i ◦ (ϕ/M) ◦ πM ,

so ψ ◦ s = i ◦ (ϕ/M) since πM is surjective. It follows that s is an isomor-
phism from (L/M,ϕ/M) to (P, ψ) in grp⇓K , so (L/M,ϕ/M) is a BK-group by
Lemma 4.5.

Now by Proposition 5.3.3 of [2]

mL,N =
1

|L|

∑

Y N=YM=L

|Y |µ(Y, L)mL/M,(Y ∩N)M/M .

In particular, if mL,N 6= 0, there exists Y ≤ L such that Y N = YM = L
and mL/M,(Y ∩N)M/M 6= 0. But since N ⊆ Kerϕ, the group (Y ∩ N)M/M
is a normal subgroup of L/M contained in Ker (ϕ/M) = Kerϕ/M . Then
since mL/M,(Y ∩N)M/M 6= 0 and since (L/M,ϕ/M) is a BK-group, we have
(Y ∩N)M/M = 1, i.e. Y ∩N ⊆ Y ∩M .
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Consider now the following diagram:

K

L

ϕ
11

πN // L/N

ϕ/N

99tttttttttt
θ //❴❴❴❴❴❴❴❴❴❴ L/M

ϕ/M

ee❏❏❏❏❏❏❏❏❏❏

L
πMoo

ϕ
mm

Y/(Y ∩N)

v

OO

σ // Y/(Y ∩M)

u

OO

Y

j

WW

ρN

ee❏❏❏❏❏❏❏❏❏❏ ρM

99tttttttttt
j

GG

where

• j : Y → L is the inclusion map,

• ρN : Y → Y/(Y ∩N) and ρM : Y → Y/(Y ∩M) are the projection maps,

• u : Y/(Y ∩M) → L/M and v : Y/(Y ∩ N) → L/N are the canonical
isomorphisms Y/(Y ∩M) ∼= YM/M = L/M and Y/(Y ∩N) ∼= Y N/N =
L/N , respectively,

• σ : Y/(Y ∩N) → Y/(Y ∩M) is the projection map (as Y ∩N ⊆ Y ∩M),

• θ : L/N → L/M is defined as θ = u◦σ ◦v−1. In particular θ is surjective.

We have πN ◦ j = v ◦ ρN , since for any y ∈ Y

πN ◦ j(y) = πN (y) = yN = v
(
y(Y ∩N)

)
= v ◦ ρN (y) .

Similarly πM ◦ j = u ◦ ρM . We also have σ ◦ ρN = ρM . Then

θ ◦ πN ◦ j = θ ◦ v ◦ ρN = u ◦ σ ◦ ρN = u ◦ ρM = πM ◦ j .

Hence

(ϕ/M) ◦ θ ◦ πN ◦ j = (ϕ/M) ◦ πM ◦ j = ϕ ◦ j = (ϕ/N) ◦ πN ◦ j .

Since πN ◦ j = v ◦ ρN : Y → L/N is surjective, it follows that

(ϕ/M) ◦ θ = (ϕ/N) .

Hence θ is a surjective morphism from (L/N,ϕ/N) to (L/M,ϕ/M) in grp⇓K .
As the latter is isomorphic to (P, ψ) in grp⇓K , it follows that (P, ψ) is a quotient
of (L/N,ϕ/N), as was to be shown.

3. If P and Q are normal subgroups of L, contained in Kerϕ, and maximal
such that mL,P 6= 0 6= mL,Q, then (L/P, ϕ/P ) and (L/Q,ϕ/Q) are both BK-
groups by Assertion 1, and they are quotient of one another by Assertion 2.
Hence they are isomorphic in grp⇓K .
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Notation 4.7. Let (L,ϕ) be a group over K. If Q is a normal subgroup of L,
contained in Kerϕ, and maximal such that mL,Q 6= 0, we denote by βK(L,ϕ)
the quotient (L/Q,ϕ/Q) of (L,ϕ).

Remark 4.8. As observed in Example 4.4, when K is trivial, a BK-group is
simply a B-group. Moreover, for any finite group L, if u : L→ 1 is the unique
group homomorphism, then β1(L, u) = β(L).

The following corollary shows that βK(L,ϕ) is the largest BK-group quotient
of (L,ϕ):

Corollary 4.9. Let (L,ϕ) be a group over K.

1. βK(L,ϕ) is well defined up to isomorphism in grp⇓K .

2. βK(L,ϕ) is a BK-group, quotient of (L,ϕ).

3. If (P, ψ) is a BK-group, quotient of (L,ϕ), then (P, ψ) is a quotient of
βK(L,ϕ).

4. eL,ϕ = eβK(L,ϕ).

Proof. 1. This follows from Assertion 3 of Theorem 4.6.

2. This follows from Assertion 1 of Theorem 4.6.

3. This follows from Assertion 2 of Theorem 4.6.

4. This follows from Theorem 4.1, by definition of βK(L,ϕ)

Corollary 4.10. Let s : (M,ψ) ։ (L,ϕ) be a surjective morphism in grp⇓K .
Then βK(M,ψ) ∼= βK(L,ϕ) if and only if mM,Ker s 6= 0.

Proof. Indeed βK(L,ϕ) is a quotient of (M,ψ), as it is a quotient of (L,ϕ) and
s is surjective. Hence βK(L,ϕ) is a quotient of βK(M,ψ). Set N = Ker s, so
that (L,ϕ) ∼= (M/N,ψ/N).
If mM,N 6= 0, then since βK(M,ψ) is a BK-group quotient of (M,ψ), Asser-
tion 2 of Theorem 4.6 implies that βK(M,ψ) is a quotient of (M/N,ψ/N) ∼=
(L,ϕ), hence of βK(L,ϕ). It follows that βK(M,ψ) ∼= βK(L,ϕ), as they are
quotient of one another.
Conversely, suppose that βK(M,ψ) ∼= βK(L,ϕ), and let P/N be a normal
subgroup of M/N contained in Ker (ψ/N) = Kerψ/N and maximal such
that mM/N,P/N 6= 0. Then the quotient

(
(M/N)

/
(P/N), (ψ/N)

/
(P/N)

)
∼=

(M/P,ψ/P ) is isomorphic to βK(M/N,P/N) ∼= βK(L,ϕ), hence to βK(M,ψ).
Now if Q is a normal subgroup of M contained in Kerψ and maximal such
that mM,Q 6= 0, then the quotient (M/Q,ψ/Q) is isomorphic to βK(M,ψ) ∼=
(M/P,ψ/P ). In particular M/Q ∼= M/P , and then mM,P = mM,Q by Propo-
sition 5.3.4 of [2], so mM,P 6= 0. But mM,P = mM,NmM/N,P/N , so mM,N 6= 0,
as was to be shown.
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5 The ideals of FBK

Notation and Definition 5.1. 1. We let BK-gr denote the subset of SK
consisting of BK-groups.

2. A subset P of BK-gr is said to be closed if

∀(L,ϕ) ∈ P , ∀(M,ψ) ∈ BK-gr, (M,ψ) ։ (L,ϕ) =⇒ (M,ψ) ∈ P .

Proposition 5.2. Let I be an ideal of FBK, and

PI = {(L,ϕ) ∈ BK-gr | eL,ϕ ⊆ I} .

Then PI is a closed subset of BK-gr, and I =
∑

(L,ϕ)∈PI

eL,ϕ

Proof. The subset PI of BK-gr is closed by Lemma 3.7. The second assertion
follows from Proposition 3.9 and Assertion 4 of Corollary 4.9.

Theorem 5.3. Let (L,ϕ) be a BK-group. Then for any finite group G

eL,ϕ(G) =
∑

X

FeG×K
X ,

where X runs through all subgroups of G×K such that (X, p2) ։ (L,ϕ).

Proof. If X ≤ G×K and (X, p2) ։ (L,ϕ), then eX,p2 ⊆ eL,ϕ by Lemma 3.7.
Equivalently eX×K

Xp2
∈ eL,ϕ(X), which is equivalent to eG×K

X ∈ eL,ϕ(G), by

Theorem 3.4. This proves that for each finite group G, the sum E(G) =∑
X

FeG×K
X , where X ≤ G×K and (X, p2) ։ (L,ϕ), is a subset of eL,ϕ(G).

Moreover the map
(
l, ϕ(l)

)
∈ Lϕ 7→ l ∈ L is clearly an isomorphism

(Lϕ, p2) → (L,ϕ) in grp⇓K . In particular (Lϕ, p2) ։ (L,ϕ), and then by

definition eL×KLϕ
∈ E(L). If we can prove that G 7→ E(G) defines an ideal E

of FBK , then we are done, because E ⊆ eL,ϕ since E(G) ⊆ eL,ϕ(G) for any G,
and eL,ϕ ⊆ E because the generator eL×KLϕ

of eL,ϕ belongs to E(L).

Since E(G) is obviously an ideal of the algebra FBK(G), for any G, all we have
to do is to show that E is a biset subfunctor of FBK , in other words that it is
preserved by the elementary biset operations of induction, restriction, inflation,
deflation, and transport by group isomorphism. For this, in what follows, we
refer to Theorem 5.2.4 of [2].
Let X ≤ G ×K be such that (X, p2) ։ (L,ϕ), and suppose first that G is a
subgroup of a group H . Then

FBK
(
IndHG

)
(eG×K
X ) = FB

(
IndH×K

G×K

)
(eG×K
X ) = λ eH×K

X′

for some scalar λ, where X ′ is the group X , viewed as a subgroup of H ×K.
Clearly (X ′, p2) = (X, p2), so (X ′, p2) ։ (L,ϕ) and eH×K

X′ ∈ E(H). Hence E
is preserved by induction.
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Assume now that H is a subgroup of G. Then

FBK
(
ResGH

)
(eG×K
X ) = FB

(
ResG×K

H×K

)
(eG×K
X ) =

∑

Y

eH×K
Y ,

where Y runs through a set of representatives of (H × K)-conjugacy classes
of subgroups of H × K which are conjugate to X in G × K. If Y is such a
subgroup, there exists (g, k) ∈ G ×K such that Y = X(g,k). Then we have a
commutative diagram

Y

p2

��

α // X

p2

��
K

β // K

where α is (left-)conjugation by (g, k) and β is (left-)conjugation by k. Since β
is an inner automorphism of K, and since α is a group isomorphism, it follows
that α : (Y, p2) → (X, p2) is an isomorphism in grp⇓K . Hence (Y, p2) ։ (L,ϕ),

and eH×K
Y ∈ E(H). It follows that E is preserved by restriction.

Assume next that G is a quotient of a group H by a normal subgroup N . Then

FBK
(
InfHG

)
(eG×K
X ) = FB

(
InfH×K

G×K

)
(eG×K
X ) =

∑

Y

eH×K
Y ,

where Y runs through a set of (H×K) conjugacy classes of subgroup of H×K
which map to a conjugate of X under the projection π×IdK : H×K → G×K,
where π : H → G is the projection. Replacing Y by a conjugate, which does
not change eH×K

Y , we can assume that Y is mapped to X by π × IdK . This
gives a commutative diagram

Y
π×IdK // //

p2
��✸

✸✸
✸✸

✸ X

p2
��✡✡
✡✡
✡✡

K

showing that (Y, p2) ։ (X, p2). Hence (Y, p2) ։ (L,ϕ), so eH×K
Y ∈ E(H), and

E is preserved by inflation.
As for deflation, we assume now that H = G/N , where N EG. Let π : G→ H
be the projection map. Then by Lemma 2.2

FBK
(
DefGH

)
(eG×K
X ) = λmX,X∩(N×1) e

H×K

X
,

where X is the image of X under the projection π × IdK : G ×K → H ×K,
and λ is some non zero scalar. As above, we get a commutative diagram

X
s // //

p2
��✸

✸✸
✸✸

✸ X

p2
��☛☛
☛☛
☛☛

K
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where s is the restriction of π × IdK to X . Then s : (X, p2) → (X, p2) is a
surjective morphism in grp⇓K . Setting P = Ker s = X ∩ (N × 1), we get an

isomorphism (X, p2) ∼= (X/P, p2/P ) in grp⇓K . Moreover (L,ϕ) is a BK-group
quotient of (X, p2) by assumption. Then there are two cases: either mX,P = 0,

and then FBK
(
DefGH

)
(eG×K
X ) = 0 ∈ E(H). Or mX,P 6= 0, and then (L,ϕ) is a

quotient of (X/P, p2/P ) ∼= (X, p2), by Assertion 2 of Theorem 4.6. It follows
that eH×K

X
∈ E(H), so FBK

(
DefGH

)
(eG×K
X ) ∈ E(H) as well. This shows that

E is preserved by deflation.
Finally, it is clear that E is preserved by group isomorphisms. This completes
the proof of Theorem 5.3.

Remark 5.4. Theorem 5.3 implies that the set of idempotents eG×K
X , where X

runs through a set of representatives of conjugacy classes of subgroups of G×K
such that (X, p2) ։ (L,ϕ), is an F-basis of eL,ϕ(G).

Corollary 5.5. Let (L,ϕ) be a BK-group, and (M,ψ) be a group over K.
Then eM,ψ ⊆ eL,ϕ if and only if (M,ψ) ։ (L,ϕ).

Proof. Indeed eM,ψ ⊆ eL,ϕ if and only if eM×K
Mψ

∈ eL,ϕ(M), i.e. if and only if

(Mψ, p2) ։ (L,ϕ). But we have already noticed at the beginning of the proof
of Theorem 5.3 that the map

(
m,ψ(m)

)
∈ Mψ 7→ m ∈ M is an isomorphism

from (Mψ, p2) to (M,ψ) in grp⇓K .

Remark 5.6. It was shown in Section 5.2.2 of [3] that the category FBK-Mod
splits as a product

FBK-Mod ∼=
∏

H

= eKHFBK-Mod ,

of categories of modules over smaller Green biset functors eKHFBK , where H
runs through a set of representatives of conjugacy classes of subgroups of K.
The functor eKHFBK is the direct summand of FBK obtained from the idem-
potent eKH of FBK(1) ∼= FB(K). Its value at a group G is the set of F-linear
combinations of idempotents eG×K

L associated to subgroups L for which p2(L) is
conjugate to H in K. This condition is equivalent to the existence of a surjective
morphism (L, p2) ։ (H, jH), where jH : H →֒ K is the inclusion morphism.
Since (H, jH) is a BK-group by Example 4.4, it follows that eKHFBK = eH,jH .

Theorem 5.7. Let IFBK be the lattice of ideals of FBK , ordered by inclusion of
ideals, and ClBK-gr be the lattice of closed subsets of BK-gr, ordered by inclusion
of subsets. Then the map

I ∈ IFBK 7→ PI = {(L,ϕ) ∈ BK-gr | eL,ϕ ⊆ I}

is an isomorphism of lattices from IFBK to ClBK-gr. The inverse isomorphism
is the map

P ∈ ClBK-gr 7→ IP =
∑

(L,ϕ)∈P

eL,ϕ .

In particular IFBK is completely distributive.
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Proof. By Proposition 5.2, if I is an ideal of FBK , then PI is a closed subset
of BK-gr, so the map α : I 7→ PI from IFBK to ClBK-gr is well defined. It is
moreover clearly order preserving. The map β : P 7→ PI from ClBK-gr is also
well defined and order preserving. By Proposition 5.2 again, the composition
β ◦ α is the identity map of IFBK . Conversely, if P ∈ ClBK-gr, then

α ◦ β =
{
(M,ψ) ∈ BK-gr | eM,ψ ⊆

∑

(L,ϕ)∈P

eL,ϕ

}
.

Then clearly P ⊆ α ◦ β(P). Conversely, if eM,ψ ⊆
∑

(L,ϕ)∈P

eL,ϕ, then by

Lemma 3.10 there exists (L,ϕ) ∈ P such that eM,ψ ⊆ eL,ϕ. Then (L,ϕ)
is a BK-group, and by Corollary 5.5, this implies (M,ψ) ։ (L,ϕ). Hence
(M,ψ) ∈ P , since P is closed. Thus α ◦ β(P) ⊆ P , proving that α ◦ β is the
identity map of ClBK-gr. The last assertion follows from the fact that ClBK-gr is
clearly completely distributive, since its join and meet operation are union and
intersection of closed subsets, respectively, and since arbitrary unions (resp.
intersections) distribute over arbitrary intersections (resp. unions).

6 Some simple FBK-modules

Theorem 6.1. 1. Let (L,ϕ) be a BK-group. Then eL,ϕ admits a unique
maximal proper subideal e0L,ϕ, defined by

e
0
L,ϕ =

∑

(M,ψ)∈BK-gr
(M,ψ)։(L,ϕ)

(M,ψ)≇(L,ϕ)

eM,ψ .

2. The quotient SL,ϕ = eL,ϕ/e
0
L,ϕ is a simple FBK-module.

3. For any finite group G, let AG be a set of representatives of conjugacy
classes of subgroups X of G×K such that βK(X, p2) ∼= (L,ϕ). Then the
set {eG×K

X | X ∈ AG} maps to an F-basis of SL,ϕ(G) under the projection
map eL,ϕ(G) → SL,ϕ(G).

4. If I ′ ⊂ I are ideals of FBK such that I/I ′ is a simple FBK-module, then
there exists a BK-group (L,ϕ) such that I/I ′ ∼= SL,ϕ.

Proof. 1. Without loss of generality, we can assume that (L,ϕ) ∈ BK-gr.
Using Theorem 5.7, saying that eL,ϕ admits a unique maximal proper subideal
is equivalent to saying that the closed subset PeL,ϕ contains a unique maximal
proper closed subset. But

PeL,ϕ = {(M,ψ) ∈ BK-gr | (M,ψ) ։ (L,ϕ)} ,

so P0 = PeL,ϕ − {(L,ϕ)} is the unique maximal proper closed subset of PeL,ϕ .
It follows that IP0 = e

0
L,ϕ is the unique maximal proper subideal of eL,ϕ.
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2. This is clear, from 1.

3. We know from Remark 5.4 that eL,ϕ(G) has a basis consisting of the idempo-
tents eG×K

X , for X in a set of representatives of conjugacy classes of subgroups
of G × K such that (X, p2) ։ (L,ϕ), or equivalently, by Corollary 4.9, such
that βK(X, p2) ։ (L,ϕ). Now saying that eG×K

X ∈ e
0
L,ϕ(G) amounts to say-

ing that eX×K
Xp2

∈ e
0
L,ϕ(X), by Theorem 3.4, i.e. that eX,p2 ⊆ eM,ψ for some

(M,ψ) ∈ BK-gr such that (M,ψ) ։ (L,ϕ), but (M,ψ) ≇ (L,ϕ). This in
turn is equivalent to saying that βK(X, p2) ։ (L,ϕ), but βK(X, p2) ≇ (L,ϕ).

Hence SL,ϕ(G) has a basis consisting of the idempotents eG×K
X , for X in a

set of representatives of conjugacy classes of subgroups of G × K such that
βK(X, p2) ∼= (L,ϕ). Assertion 2 follows.

4. Let I ′ ⊂ I be ideals of FBK such that S = I/I ′ is a simple FBK-module,
or equivalently, such that I ′ is a maximal subideal of I. Then there exists
(L,ϕ) ∈ BK-gr such that eL,ϕ ⊆ I but eL,ϕ * I ′. Hence eL,ϕ + I ′ = I, and
S = I/I ′ ∼= eL,ϕ/(eL,ϕ ∩ I ′). Then eL,ϕ ∩ I ′ is a proper subideal of eL,ϕ, so
eL,ϕ ∩ I ′ ⊆ e

0
L,ϕ, and then S maps surjectively onto eL,ϕ/e

0
L,ϕ = SL,ϕ. Since

S and SL,ϕ both are simple FBK-modules, the surjection S → SL,ϕ is an
isomorphism.

Remark 6.2. By Corollary 4.10, the condition βK(X, p2) ∼= (L,ϕ) in Asser-
tion 3 is equivalent to the existence of a surjective morphism s from (X, p2) to
(L,ϕ) such that mX,Ker s 6= 0. By Theorem 5.4.11 of [2], or by Corollary 4.10
applied to the case K = 1, this is equivalent to the condition β(X) ∼= β(L).

Corollary 6.3. Let (L,ϕ) and (M,ψ) be BK-groups. Then the simple FBK-
modules SL,ϕ and SM,ψ are isomorphic if and only if (L,ϕ) and (M,ψ) are
isomorphic in grp⇓K .

Proof. Clearly if (L,ϕ) ∼= (M,ψ) in grp⇓K , then SL,ϕ ∼= SM,ψ. Conversely,
if θ : SL,ϕ → SM,ψ is an isomorphism of FBK-modules, then for any finite
groupG, we get an isomorphism θG : SL,ϕ(G) → SM,ψ(G) of FBK(G)-modules.
Choose G such that SL,ϕ(G) 6= 0 (e.g. G = L), and a subgroupX of G×K such
that βK(X, p2) ∼= (L,ϕ). Then the image u of a = eG×K

X ∈ FBK(G) in SL,ϕ(G)
is non zero, and moreover a·u = u. It follows that θG(a·u) = a·θG(u) = θG(u) is
also non zero in SM,ψ(G). So there is a subgroup Y ≤ G×K with βK(Y, p2) ∼=
(M,ψ), such that the image v of eG×K

Y in SM,ψ(G) satisfies a·v 6= 0. This forces
X and Y to be conjugate in G×K, so (L,ϕ) ∼= βK(X, p2) ∼= βK(Y, p2) ∼= (M,ψ)
in grp⇓K , as was to be shown.

Recall that a minimal group for a (non zero) biset functor F is a finite group G
of minimal order such that F (G) 6= {0}.

Lemma 6.4. Let (L,ϕ) be a group over K.

1. If N EL, and N ∩Kerϕ = 1, then eL,ϕ(L/N) 6= {0}.
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2. If moreover (L,ϕ) is a BK-group, then SL,ϕ(L/N) 6= {0}.

Proof. Indeed the map

θ : l ∈ L 7→
(
lN, ϕ(l)

)
∈ (L/N)×K

is injective. Let L ≤ (L/N) × K denote the image of θ. Then we have a
commutative diagram

L
p1

}}④④
④④
④④
④④

p2

��

t // // L

ϕ

��
L/N K

i // K ,

where t : L → L is the inverse of the isomorphism L → L induced by θ, and i
is the identity map of K. Hence (L, p2) ∼= (L,ϕ) in grp⇓K , and eL,ϕ = eL,p2 .

In particular e
(L/N)×K

Lp2
∈ eL,ϕ(L/N) by Theorem 3.4, hence eL,ϕ(L/N) 6= {0}.

This proves 1.
If moreover (L,ϕ) is a BK-group, then βK(L, p2) ∼= (L,ϕ). It follows from

Theorem 6.1 that e
(L/N)×K

L
∈ eL,ϕ(L/N) maps to an element of a basis of

SL,ϕ(L/N), so SL,ϕ(L/N) 6= {0}, proving 2.

Theorem 6.5. Let (L,ϕ) be a BK-group, and G be a finite group. The follow-
ing are equivalent:

1. The group G is a minimal group for SL,ϕ.

2. The group G is isomorphic to L/N , where N is a normal subgroup of L
of maximal order such that N ∩Kerϕ = 1.

Moreover in this case, the images in SL,ϕ(G) of the idempotents eG×K
X , where

X runs through a set of representatives of conjugacy classes of subgroups of
G×K such that (X, p2) ∼= (L,ϕ), form an F-basis of SL,ϕ(G).

Proof. By Theorem 6.1, saying that SL,ϕ(G) 6= {0} for a finite groupG amounts
to saying that there exists a subgroupX of G×K such that βK(X, p2) ∼= (L,ϕ)
in grp⇓K . Equivalently, there is a commutative diagram

X
p1

��⑦⑦
⑦⑦
⑦⑦
⑦⑦

p2

��

s // // L

ϕ

��
G K

i // K ,

(1)

where

• s is surjective and mX,Ker s6=0,

• i is an inner automorphism of K,
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• the map (p1, p2) : X → (G×K) is injective.

Now we proceed with the proof of Theorem 6.5.
1 ⇒ 2 If G is minimal for SL,ϕ, then SL,ϕ(G) 6= {0}, so we have a diagram (1).
LetH = p1(G). ReplacingG byH in this diagram gives a diagram for the group
H with the same properties, so SL,ϕ(H) 6= 0. Hence H = G by minimality
of G. In other words p1 is surjective, so G ∼= X/Ker p1. Let N = s(Ker p1). If
u ∈ N ∩Kerϕ, then u = s(x) for some x ∈ X , and then ϕ◦s(x) = i◦p2(x) = 1,
so p2(x) = 1. Thus x = 1 since Ker p1 ∩ Ker p2 = 1. Moreover N is normal
in L, since s is surjective. Lemma 6.4 shows that SL,ϕ(L/N) 6= {0}, and by
minimality of G, the surjection s : G ∼= X/Kerp1 ։ L/N induced by s must
be an isomorphism. Lemma 6.4 also implies that N is a normal subgroup of
maximal order of L such that N ∩Kerϕ. Hence 2 holds.
Observe that it also follows that Ker s ≤ Ker p1, so Ker s = 1 since Ker s ≤
Ker p2 as ϕ◦s = i◦p2, and Ker p1∩Ker p2 = 1. So s is an isomorphism X → L.
This proves the last assertion of the theorem.

2 ⇒ 1 Suppose that 2 holds. Then SL,ϕ(G) 6= 0, by the above claim. By the
first part of the proof, if H is a minimal group for SL,ϕ, then H ∼= L/M , where
M is a normal subgroup of maximal order such that M ∩ Kerϕ = 1. Then
|M | = |N |, so |G| = |H |, and SL,ϕ(G

′) = {0} for any group G′ of order smaller
than |G| = |H |. Hence G is minimal for SL,ϕ, and 1 holds.

Corollary 6.6. Let (L,ϕ) be a group over K. The following conditions are
equivalent:

1. ϕ : L→ K is injective.

2. (L,ϕ) is a BK-group and SL,ϕ(1) 6= {0}.

Proof. 1 ⇒ 2 If ϕ is injective, then (L,ϕ) is a BK-group (cf. Example 4.4).
Moreover L ∩Kerϕ = 1, so SL,ϕ(L/L) = SL,ϕ(1) 6= {0}.

2 ⇒ 1 If (L,ϕ) is a BK-group and SL,ϕ(1) 6= {0}, then 1 is a minimal group
for SL,ϕ. So there is a normal subgroup N of L of maximal order such that
N ∩ Kerϕ = 1, such that moreover L/N ∼= 1. Hence N = L, and Kerϕ =
N ∩Kerϕ = 1.

Example 6.7. Let L = C2 × (C3 ⋊C4) be a direct product of a group of order
2, generated by the element a, and a semidirect product of a group of order 3,
generated by b, and a cyclic group of order 4, generated by c (so cbc−1 = b−1).
Let P be the subgroup of L generated by a and b. Then P is cyclic of order
6, and the factor group K = L/P is cyclic of order 4, generated by the class
cP . Let ϕ : L → K be the projection map. One can check that (L,ϕ) is a
BK-group, i.e. that mL,Q = 0 when Q is any of the non trivial subgroups of P
(these subgroups are all normal in L, as P is cyclic).
Then the subgroups M = 〈ac2〉 and N = 〈c2〉 both are normal (central, in fact)
subgroups of L of maximal order (equal to 2) intersecting trivially P = Kerϕ.
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So the groups G = L/M and H = L/N are both minimal groups1 for the
simple FBK-module SL,ϕ, but they are not isomorphic, as G ∼= C3 ⋊ C4 but
H ∼= C2 × S3, where S3 is the symmetric group of degree 3.
This gives yet another counterexample to a conjecture I made in 2010, saying
that the minimal groups for a Green biset functor should form a single isomor-
phism class of groups. The first counterexample to this conjecture was found
by Nadia Romero in 2013 (cf. [6]). Another counterexample was found recently
by Ibrahima Tounkara (cf. [7]).

7 Restriction to p-groups

In this section, we fix a prime number p, and restrict the functor FBK to finite

p-groups. We obtain a Green p-biset functor FB(p)
K . We do not assume that K

is itself a p-group.

In order to study the ideals of FB(p)
K , it is natural to try to determine those

groups (L,ϕ) over K for which the restriction of eL,ϕ to p-groups does not
vanish. This motivates the following definition:

Definition 7.1. Let K be a finite group. Then a group (L,ϕ) over K is called
p-persistent if there is a finite p-group P such that eL,ϕ(P ) 6= {0}.

We denote by grp
(p)
⇓K the full subcategory of grp⇓K consisting of p-persistent

groups over K.

Remarks 7.2. 1. If X is a subgroup of P ×K, where P is a p-group, then
(X, p2) is p-persistent: indeed e

P×K
X ∈ eX,p2(P ) by Corollary 3.5.

2. Any quotient of a p-persistent group over K is p-persistent: indeed is
s : (M,ψ) ։ (L,ϕ) is a surjective morphism in grp⇓K , then eM,ψ ⊆ eL,ϕ

by Lemma 3.7. It follows that eL,ϕ(P ) 6= {0} if P is a p-group such that
eM,ψ(P ) 6= {0}. In particular, if (L,ϕ) is p-persistent, then βK(L,ϕ) is a
p-persistent BK-group.

Notation 7.3. When L is a finite group, we denote by Op(L) the subgroup of
L generated by p′-elements, and by L[p] the quotient L/Op(L).

Recall that Op(L) is the smallest normal subgroupN of L such that L/N is a p-
group. Also recall that if s :M → L is a surjective group homomorphism, then
s
(
Op(M)

)
= Op(L). Indeed N = s

(
Op(M)

)
EL, and s induces a surjection

M [p] → L/N . So L/N is a p-group, thus N ≥ Op(L). But N is generated by
p′-elements, as Op(M) is, so N ≤ Op(L).

Proposition 7.4. Let (L,ϕ) be a group over K. The following are equivalent:

1. (L,ϕ) is p-persistent.

2. eL,ϕ

(
L[p]

)
6= {0}.

1One can show moreover that SL,ϕ(G) and SL,ϕ(H) are both one dimensional.
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3. mL,Op(L)∩Kerϕ 6= 0.

Proof. Indeed if 3 holds, then setting N = Op(L) ∩ Kerϕ, we have eL,ϕ =
eL/N,ϕ/N by Theorem 4.1. Moreover Op(L/N) = Op(L)/N , and Ker (ϕ/N) =

Kerϕ/N . Thus Op(L/N) ∩ Ker(ϕ/N) = 1, so eL/N,ϕ/N

(
(L/N)/Op(L/N)

)
is

non zero by Lemma 6.4. But

eL/N,ϕ/N

(
(L/N)/Op(L/N)

)
∼= eL/N,ϕ/N

(
L/Op(L)

)
= eL,ϕ(L

[p]) ,

so 2 holds. Clearly 2 implies 1, as L[p] is a p-group. Now if 1 holds, let P
be a p-group such that eL,ϕ(P ) 6= {0}. Let N be a normal subgroup of L
contained in Kerϕ, and maximal such that mL,N 6= 0. Then setting L = L/N
and ϕ = ϕ/N , we have βK(L,ϕ) ∼= (L,ϕ), and eL,ϕ = eL,ϕ by Theorem 4.1.

Moreover as (L,ϕ) is a BK-group, by Theorem 5.3, there exists a subgroup X
of P ×K, and a commutative diagram

X
p1

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

p2

��

s // // L

ϕ

��
P K

i // K ,

where s is surjective and i is an inner automorphism ofK. Then N = s(Ker p1)
is a normal subgroup of L, as s is surjective. Moreover if l ∈ N ∩ Kerϕ, then
l = s(x) for some x ∈ Ker p1, so p1(x) = 1 and i ◦ p2(x) = ϕ ◦ s(x) = 1, so
p2(x) = 1. Hence x = 1, and l = 1, so N ∩ Kerϕ = 1. Now s induces a
surjection X/Kerp1 ∼= p1(X) ։ L/N , so L/N is a p-group, thus N ≥ Op(L).
It follows that Op(L) ∩Kerϕ = 1. Now if π : L → L = L/N is the projection
map, we have ϕ ◦ π = ϕ, so

π
(
Op(L) ∩Kerϕ

)
≤ Op(L) ∩Kerϕ = 1 ,

that is Op(L) ∩ Kerϕ ≤ N = Kerπ. Then if M = Op(L) ∩ Kerϕ, we have
mL,N = mL,MmL/M,N/M 6= 0, hence mL,M 6= 0, so 3 holds.

Corollary 7.5. Let (L,ϕ) be a p-persistent BK-group. Then

Op(L) ∩Kerϕ = 1 .

Proof. Indeed mL,Op(L)∩Kerϕ 6= 0, and (L,ϕ) is a BK-group.

Notation 7.6. When (L,ϕ) is a p-persistent group over K, we denote by L
(p)
ϕ

the subgroup of L[p] ×K defined by

L(p)
ϕ =

{(
lOp(L), ϕ(l)

)
| l ∈ L

}
.

The following theorem is analogous to Theorem 3.4:
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Theorem 7.7. Let I be an ideal of the Green biset functor FB(p)
K . If G is

a finite p-group and L is a subgroup of G × K, the following conditions are
equivalent:

1. The idempotent eG×K
L belongs to I(G).

2. The idempotent eL
[p]×K

L
(p)
p2

belongs to I(L[p]).

Proof. The proof is similar to the proof of Theorem 3.4, so we only sketch it.
If L ≤ G × K, denote by L̂ the image of L in the group L[p] × G by the
map l 7→

(
lOp(L), p1(l)

)
. Recall that Ker p1 ≥ Op(L), since G is a p-group.

Furthermore p1(L̂) = L[p], k1(L̂) = Ker p1/O
p(L), p2(L̂) = p1(L), and k2(L̂) =

p1
(
Op(L)

)
= 1. The (L[p], G)-biset U = (L[p] ×G)/L̂ factors as

U ∼= InfL
[p]

L[p]/k1(L̂)
◦ Iso(θ−1) ◦ ResGp1(L) ,

where θ : L[p]/k1(L̂) → p1(G) is the isomorphism induced by the map lOp(L) 7→
p1(l) from L[p] to G.

If eG×K
L belongs to I(G), then FB(p)

K (U)(eG×K
L ) belongs to I(L[p]). As in the

proof of Theorem 3.4, one can check that the product eL
[p]×K

L
(p)
p2

·FB(p)
K (eG×K

L ) is

non zero. As it is a scalar multiple of eL
[p]×K

L
(p)
p2

, we get that eL
[p]×K

L
(p)
p2

∈ I(L[p]),

thus 1 implies 2.

Conversely, assume that eL
[p]×K

L
(p)
p2

∈ I(L[p]). Then, as in the proof of Theorem 3.4

again, the opposite biset Uop factors as

Uop ∼= IndGp1(L) ◦ Iso(θ) ◦DefL
[p]

L[p]/k1(L̂)
,

and the element FB(p)
K (Uop)

(
eL

[p]×K

L
(p)
p2

)
belongs to I(G). One can can check

moreover that there is a non zero scalar λ such that

FB(p)
K (Uop)

(
eL

[p]×K

L
(p)
p2

)
= λm

L
(p)
p2
,L

(p)
p2

∩(N×1)
eG×K
L ,

where N = k1(L̂) = Ker p1/O
p(L) ≤ L[p].

But if
(
lOp(L), p2(l)

)
∈ L

(p)
p2 ∩ (N × 1), then l ∈ Ker p2 ∩Ker p1 = 1. It follows

that m
L

(p)
p2
,L

(p)
p2

∩(N×1)
= m

L
(p)
p2
,1

= 1, and eG×K
L ∈ I(G), as λ 6= 0. Hence 2

implies 1.

Corollary 7.8. Let G be a finite p-group, and L be a subgroup of G×K. Then

the ideal of FB(p)
K generated by eG×K

L is equal to the ideal of FB(p)
K generated

by eL
[p]×K

L
(p)
p2
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Proof. The proof is the same as the proof of Corollary 3.5.

Notation 7.9. Let (L,ϕ) be a p-persistent group over K. We denote by e
(p)
L,ϕ

the ideal of FB(p)
K generated by eL

[p]×K

L
(p)
ϕ

∈ FB(p)
K (L[p]).

Theorem 7.10. Let s : (M,ψ) ։ (L,ϕ) be a surjective morphism in grp⇓K ,
and assume that (M,ψ) is p-persistent. Then:

1. (L,ϕ) is p-persistent, and e
(p)
M,ψ ⊆ e

(p)
L,ϕ.

2. If mM,Ker s 6= 0, then e
(p)
M,ψ = e

(p)
L,ϕ.

Proof. 1. We already observed in Remarks 7.2 that any quotient of a p-
persistent group over K is itself p-persistent, hence (L,ϕ) is p-persistent. Let
i be an inner automorphism of K such that i ◦ ψ = ϕ ◦ s. The surjection
s :M → L induces a surjection s[p] :M [p] → L[p], hence a surjection

s[p] × IdK :M [p] ×K → L[p] ×K .

Let u =
(
mOp(M), ψ(m)

)
be the image of m ∈M in M

(p)
ψ . Then

(s[p] × IdK)(u) =
(
s(m)Op(L), ψ(m)

)
=

(
s(m)Op(L), i−1 ◦ ϕ

(
s(m)

))
,

which shows that s[p]×IdK mapsM
(p)
ψ to a conjugate of L

(p)
ϕ in L[p]×K. Then

the idempotent eM
[p]×K

M
(p)
ψ

appears in the decomposition of

FB(p)
K

(
InfM

[p]

M [p]/Ker s[p] ◦ Iso(α
−1)

)
(eL

[p]×K

L
(p)
ϕ

) ,

where α : M [p]/Ker s[p] → L[p] is the canonical isomorphism. It follows that

eM
[p]×K

M
(p)
ψ

∈ e
(p)
L,ϕ(M

[p]), hence e
(p)
M,ψ ⊆ e

(p)
L,ϕ.

2. Consider now v = FB(p)
K

(
Iso(α) ◦ DefM

[p]

M [p]/Ker s[p]

)
(eM

[p]×K

M
(p)
ψ

) ∈ e
(p)
M,ψ(L

[p]).

By Lemma 2.2, there is a non zero scalar λ such that

v = λm
M

(p)
ψ ,M

(p)
ψ ∩(Ker s[p]×1)

eL
[p]×K

L
(p)
ϕ

. (2)

Now the projection m ∈ M 7→
(
mOp(M), ψ(m)

)
∈ M

(p)
ψ induces an isomor-

phism M
(p)
ψ

∼= M/
(
Op(M) ∩ Kerψ

)
. As Ker s[p] = Ker sOp(L)/Op(L), the

subgroupM
(p)
ψ ∩(Ker s[p]×1) maps to (Ker sOp(M)∩Kerψ)/

(
Op(M)∩Kerψ

)

under this isomorphism.
Moreover Ker sOp(M) ∩ Kerψ = Ker s

(
Op(M) ∩ Kerψ

)
as Ker s ≤ Kerψ.

Setting N = Op(M) ∩Kerψ, it follows that

m
M

(p)
ψ ,M

(p)
ψ ∩(Ker s[p]×1)

= mM/N,Ker s·N/N .
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Multiplying by mM,N , which is non zero by Proposition 7.4, since (M,ψ) is
p-persistent, this gives

mM,N mM
(p)
ψ ,M

(p)
ψ ∩(Ker s[p]×1)

= mM,Ker s·N

= mM,Ker smM/Ker s,Ker s·N/Ker s

= mM,Ker smL,Op(L)∩Kerϕ ,

as the canonical isomorphismM/Ker s→ L maps the subgroup Ker s ·N/Ker s
to Op(L) ∩Kerϕ. Since mL,Op(L)∩Kerϕ 6= 0 as (L,ϕ) is p-persistent, and since
mM,Ker s 6= 0 by assumption, it follows that m

M
(p)
ψ ,M

(p)
ψ ∩(Ker s[p]×1)

6= 0, hence

eL
[p]×K

L
(p)
ϕ

is a non zero scalar multiple of v, by 2. It follows that eL
[p]×K

L
(p)
ϕ

belongs

to e
(p)
M,ψ(L

[p]), so e
(p)
L,ϕ ⊆ e

(p)
M,ψ, and e

(p)
L,ϕ = e

(p)
M,ψ, as was to be shown.

Corollary 7.11. Let (L,ϕ) be a p-persistent group over K. Then the restric-

tion of eL,ϕ to finite p-groups is equal to e
(p)
L,ϕ.

Proof. Since eL,ϕ = eβK(L,ϕ) by Corollary 4.9, and since e
(p)
L,ϕ = e

(p)
βK(L,ϕ) by

Theorem 7.10, we may assume that (L,ϕ) is a BK-group. By Corollary 7.5,

we have Op(L) ∩Kerϕ = 1. Thus the projection L→ L
(p)
ϕ is an isomorphism,

and it induces an isomorphism (L,ϕ) ∼= (L
(p)
ϕ , p2). Hence e

L(p]×K

L
(p)
ϕ

∈ eL,ϕ(L
[p]),

and e
(p)
L,ϕ is contained in the restriction of eL,ϕ to p-groups.

Conversely, if G is a p-group and eG×K
X ∈ eL,ϕ(G), then (X, p2) ։ (L,ϕ) by

Theorem 5.3. Then e
(p)
X,p2

⊆ e
(p)
L,ϕ, hence e

G×K
X ∈ e

(p)
L,ϕ by Corollary 7.8. Hence

the restriction of eL,ϕ is contained in e
(p)
L,ϕ, which completes the proof.

Corollary 7.12. Let (L,ϕ) be a p-persistent BK-group, and (M,ψ) be a p-

persistent group over K. Then e
(p)
M,ψ ⊆ e

(p)
L,ϕ if and only if (M,ψ) ։ (L,ϕ).

Proof. Indeed if (M,ψ) ։ (L,ϕ), then e
(p)
M,ψ ⊆ e

(p)
L,ϕ by Theorem 7.10. Con-

versely, if e
(p)
M,ψ ⊆ e

(p)
L,ϕ, showing that (M,ψ) ։ (L,ϕ) amounts to showing that

βK(M,ψ) ։ (L,ϕ), because (L,ϕ) is a BK-group. Now eM,ψ = eβK(M,ψ),

hence e
(p)
M,ψ = e

(p)
βK(M,ψ) by Corollary 7.11, and we can assume that (M,ψ) is

also a BK-group.

If e
(p)
M,ψ ⊆ e

(p)
L,ϕ, then eM

[p]×K

M
(p)
ψ

∈ e
(p)
L,ϕ(M

[p]), and e
(p)
L,ϕ(M

[p]) = eL,ϕ(M
[p]) by

Corollary 7.11. Hence (M
(p)
ψ , p2) ։ (L,ϕ) by Theorem 5.3. But the projection

M → M
(p)
ψ is a group isomorphism, since (M,ψ) is a BK-group. It is in fact

an isomorphism from (M,ψ) to (M
(p)
ψ , p2) in grp⇓K . It follows that (M,ψ) ։

(L,ϕ).

The following is analogous to Lemma 3.10, and the proof is the same:
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Lemma 7.13. Let A be a set of ideals of FB(p)
K , and (M,ψ) be a p-persistent

group over K. The following are equivalent:

1. e
(p)
M,ψ ⊆

∑
I∈A

I.

2. There exists I ∈ A such that e
(p)
M,ψ ⊆ I.

Proof. Clearly 2 implies 1. Now 1 is equivalent to saying that

eM
[p]×K

M
(p)
ψ

∈
∑

I∈A

I(M [p]) .

If this holds, there exists I ∈ A and u ∈ I(M [p]) such that eM
[p]×K

M
(p)
ψ

· u 6= 0.

Now eM
[p]×K

M
(p)
ψ

· u ∈ I(M [p]), and moreover there is a scalar λ ∈ F such that

eM
[p]×K

M
(p)
ψ

· u = λeM
[p]×K

M
(p)
ψ

6= 0. Hence λ 6= 0, and eM
[p]×K

M
(p)
ψ

∈ I(M [p]). In other

words e
(p)
M,ψ ⊆ I, so 1 implies 2.

Notation 7.14. Let B
(p)
K -gr denote the subset of BK-gr consisting of p-

persistent BK-groups.

As before, a subset P of B
(p)
K -gr is called closed if

∀(L,ϕ) ∈ P , ∀(M,ψ) ∈ B
(p)
K -gr, (M,ψ) ։ (L,ϕ) =⇒ (M,ψ) ∈ P .

Theorem 7.15. Let I
FB

(p)
K

be the lattice of ideals of FB(p)
K , ordered by inclusion

of ideals, and Cl
B

(p)
K -gr be the lattice of closed subsets of B

(p)
K -gr, ordered by

inclusion of subsets. Then the map

I ∈ I
FB

(p)
K

7→ PI = {(L,ϕ) ∈ B
(p)
K -gr | e

(p)
L,ϕ ⊆ I}

is an isomorphism of lattices from I
FB

(p)
K

to Cl
B

(p)
K -gr. The inverse isomorphism

is the map

P ∈ Cl
B

(p)
K -gr 7→ IP =

∑

(L,ϕ)∈P

e
(p)
L,ϕ .

In particular I
FB

(p)
K

is completely distributive.

Proof. First the map I ∈ I
FB

(p)
K

7→ PI ∈ Cl
B

(p)
K -gr is well defined: indeed PI ∈

Cl
B

(p)
K -gr by Theorem 7.10. This map is obviously order preserving. Similarly,

the map P ∈ Cl
B

(p)
K -gr 7→ IP =

∑
(L,ϕ)∈P

e
(p)
L,ϕ is also well defined and order

preserving.
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Hence all we need to show is that if I is an ideal of FB(p)
K , then

I =
∑

(L,ϕ)∈PI

e
(p)
L,ϕ , (3)

and that if P is a closed subset of B
(p)
K -gr, and (M,ψ) ∈ B

(p)
K -gr, then

e
(p)
M,ψ ⊆

∑

(L,ϕ)∈P

e
(p)
L,ϕ ⇔ (M,ψ) ∈ P . (4)

For (3), let J =
∑

(L,ϕ)∈PI

e
(p)
L,ϕ. Then J ⊆ I by definition of PI . Conversely,

let G be a finite p-group, and u =
∑
X∈E

λXe
G×K
X be an element of I(G), where

λX ∈ F, and E is a set of representatives of conjugacy classes of subgroups of
G × K. Then eG×K

X · u = λXe
G×K
X ∈ I(G), for any X ∈ E. So if λX 6= 0,

then eG×K
X ∈ I(G). Equivalently, by Theorem 7.7, eX

[p]×K

X
(p)
p2

∈ I(X [p]), that is

e
(p)
X,p2

⊆ I. Let (L,ϕ) be the element of B
(p)
K -gr isomorphic to βK(X, p2). Then

e
(p)
X,p2

= e
(p)
L,ϕ by Theorem 7.10, and (L,ϕ) ∈ PI .

Moreover eX
[p]×K

X
(p)
p2

∈ e
(p)
L,ϕ(X

[p]), or equivalently eG×K
X ∈ e

(p)
L,ϕ(G) ⊆ J(G). As

this holds for any X ∈ E such that λX 6= 0, we have also u ∈ J(G), so
J(G) = I(G), as u was arbitrary in I(G), and J = I, as G was an arbitrary
finite p-group. This completes the proof of 3.

As for (4), clearly if (M,ψ) ∈ P , then e
(p)
M,ψ ⊆

∑
(L,ϕ)∈P

e
(p)
L,ϕ. Conversely if

e
(p)
M,ψ ⊆

∑
(L,ϕ)∈P

e
(p)
L,ϕ, then by Lemma 7.13, there exists (L,ϕ) ∈ P such that

e
(p)
M,ψ ⊆ e

(p)
L,ϕ. Hence (M,ψ) ։ (L,ϕ), by Corollary 7.12. Since (L,ϕ) ∈ P and

P is closed, we get that (M,ψ) ∈ P , as was to be shown.

Theorem 7.16. Let (L,ϕ) be a p-persistent BK-group. Let [sK ] be a set of
representatives of conjugacy classes of subgroups of K. Let H be the unique
element of [sK ] conjugate to ϕ(L), and jH : H →֒ K be the inclusion map.
Then one and one only of the following holds:

1. Kerϕ = 1, and (L,ϕ) ∼= (H, jH) in grp⇓K .

2. Kerϕ ∼= Cp, the group H [p] is cyclic and non trivial, and (L,ϕ) ∼= (Cp ×
H, jH ◦ πH) in grp⇓K , where πH : Cp×H → K is the projection onto H.

3. Kerϕ ∼= Cp×Cp, the group H [p] is trivial - in other words H is a p-perfect
subgroup of K - and (L,ϕ) ∼= (Cp × Cp × H, jH ◦ πH) in grp⇓K , where
πH : Cp × Cp ×H → K is the projection onto H.
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Proof. Since Op(L)∩Kerϕ = 1 by Corollary 7.5, the group Kerϕ embeds into
L[p], so it is a p-group. Let F denote the Frattini subgroup of Kerϕ. Then F is
a normal subgroup of L. Moreover if X is a subgroup of L such that XF = L,
then F ≤ Kerϕ ≤ XF , so Kerϕ = (Kerϕ ∩X)F , hence Kerϕ ∩ X = Kerϕ,
and then XF = X = L since F ≤ Kerϕ ≤ X . It follows that mL,F = 1, thus
F = 1 as (L,ϕ) is a BK-group. This shows that Kerϕ is elementary abelian.
Let now N = ∩

P∈M
P , where M is the set of normal subgroups of L which are

contained in Kerϕ, and maximal for these conditions (in other words the factor
group Kerϕ/P is a simple FpL-module). If X is a subgroup of L such that
XN = L, then N ≤ Kerϕ ≤ XN , so Kerϕ = (Kerϕ∩X)N . But Kerϕ∩X is
normalized by X and Kerϕ, so it is normal in L. If Kerϕ ∩X < Kerϕ, then
there is P ∈ M such that Kerϕ ∩ X ≤ P . Then N ≤ P also, and Kerϕ =
(Kerϕ ∩X)N ≤ P , contradicting P < Kerϕ. It follows that Kerϕ ≤ X , and
XN = L implies X = L. Thus mL,N = 1 and N = 1.
But then the product of the projection maps Kerϕ→

∏
P∈M

Kerϕ/P is injective,

and the latter is a semisimple FpL-module. Hence Kerϕ is also a semisimple
FpL-module. Now sinceOp(L) and Kerϕ are normal subgroups of L with trivial
intersection, they centralize each other. In other words Kerϕ is a module for
the factor group L[p] = L/Op(L). Then Kerϕ is a semisimple FpL[p]-module.
As L[p] is a p-group, the action of L[p] on Kerϕ has to be trivial. Hence Kerϕ
is central in L.
Let Z be any subgroup of order p of Kerϕ. Then 0 = mL,Z = 1 − kL(Z)

p , by

Proposition 5.6.4 of [2], where kL(Z) denotes the number of complements of Z
in L. It follows that kL(Z) = p, so in particular there is a subgroup H of L such
that L = Z ×H . Then the complements of Z in L are the groups of the form
{
(
f(h), h

)
| h ∈ H}, where f : H → Z is any group homomorphism. It follows

that there are exactly p homomorphisms from H to Z ∼= Cp. Equivalently,
there are exactly p homomorphisms from the p-group H [p] to Cp, so H

[p] is
cyclic and non trivial. Since Kerϕ embeds in L[p] ∼= Z × H [p], the rank of
Kerϕ is at most 2.
We now observe that if (M,ψ) ։ (L,ϕ) is a surjective morphism of groups
over K - in particular if it is an isomorphism -, then ψ(M) and ϕ(L) are
conjugate in K. Then there are three disjoint cases:

1. Kerϕ = 1. In this case, denoting by πH the inclusion map H →֒ K and
by ϕ0 : L → H the isomorphism induced by ϕ, we have i ◦ ϕ = πH ◦ ϕ0

for some inner automorphism i of K which conjugates ϕ(L) to H . So ϕ0

is an isomorphism from (L,ϕ) to (H, πH) in grp⇓K , and we are in Case 1
of Theorem 7.16.

2. Kerϕ = Z ∼= Cp. Then we have seen that L = Z × H1, where H1 is

a subgroup of L such that H
[p]
1 is cyclic and non trivial. In this case

ϕ induces an isomorphism ϕ0 : H1 → H = ϕ(L), and IdZ × ϕ0 is an
isomorphism from (L,ϕ) to (Z ×H, jH ◦ πH), where πH : Z ×H → K is
the projection onto H . Hence we are in Case 2 of Theorem 7.16.
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3. Kerϕ ∼= Cp × Cp. Then let Z be a subgroup of order p of Kerϕ. Then
we have seen that L = Z × H1, where H1 is a subgroup of L such that

H
[p]
1 is cyclic and non trivial. In this case Z1 = Kerϕ ∩ H1 has order

p, and mL,Z1 = 0 since (L,ϕ) is a BK-group. It follows that Z1 must
have also exactly p complements in L. In particular, there is a subgroup
J of L such that L = Z1 × J . But then Z1 ≤ H1 ≤ Z1J implies that
H1 = Z1 × H2, where H2 = H1 ∩ J . Hence L = Z × Z1 × H2, and

moreover H
[p]
2 = 1 since H

[p]
1

∼= Z1 ×H
[p]
2 is cyclic. Then ϕ induces an

isomorphism ϕ0 : H2 → H = ϕ(L), and IdZ×Z1 × ϕ0 is an isomorphism
from (L,ϕ) to (Z ×Z1×H, jH ◦ πH), where πH : Z ×Z1×H → K is the
projection onto H . Hence we are in Case 3 of Theorem 7.16.

This completes the proof of Theorem 7.16.

Corollary 7.17. Let 1 = {0, 1} and 2 = {0, 1, 2} be totally ordered lattices of
cardinality 2 and 3, respectively. Let cK (resp. ncK) be the number of conjugacy
classes of subgroups H of K such that H [p] is cyclic (resp. non cyclic). Then

the lattice I
FB

(p)
K

of ideals of FB(p)
K is isomorphic to the direct product of cK

copies of 2 and ncK copies of 1. In particular it is a finite distributive lattice.

Proof. By Theorem 7.15, the lattice I
FB

(p)
K

is distributive, isomorphic to the

lattice Cl
B

(p)
K -gr of closed subsets of B

(p)
K -gr. Moreover, the join-irreducible

elements of I
FB

(p)
K

are the ideals eL,ϕ, for (L,ϕ) ∈ I
FB

(p)
K

. By Theorem 7.16,

the set B
(p)
K -gr is finite, and contains three types of elements:

1. the elements (H, jH) of the first type, for H ∈ [sK ].

2. the elements (Cp×H, jH ◦πH) of the second type, for H ∈ [sK ] such that
H [p] is cyclic and non-trivial.

3. the elements (Cp ×Cp ×H, jH ◦ πH) of the third type, for H ∈ [sK ] such
that H [p] is trivial.

The only possible surjective morphisms between elements of B
(p)
K -gr are of the

following form:

• (Cp ×H, jH ◦ πH) ։ (H, jH), where H ∈ [sK ] is such that H [p] is cyclic
and non trivial.

• (Cp×Cp×H, jH ◦πH) ։ (H, jH), where H ∈ [sK ] is such that H [p] = 1.

It follows that the poset B
(p)
K -gr has as many connected components as con-

jugacy classes of subgroups of K. The connected components corresponding
to subgroups H for which H [p] is cyclic - trivial or not - are isomorphic to a
totally ordered poset of size 2, and the other ones are posets with one element.

Hence B
(p)
K -gr is a disjoint union of cK-components which are totally ordered
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of size 2, and ncK isolated points. The lattice of closed subsets of a totally
ordered poset of size n is a totally ordered lattice of size n+1, and the lattice of
closed subsets of a disjoint union of posets is the direct product of the lattices
of closed subsets of the pieces. This completes the proof.

Remark 7.18. As in Remark 5.6, it follows from Section 5.2.2 of [3] that the

category FB(p)
K -Mod splits as a product

FB(p)
K -Mod ∼=

∏

H

eKHFB(p)
K -Mod ,

of categories of modules over smaller Green biset functors eKHFB(p)
K , where

H ∈ [sK ]. The above connected components correspond to this decomposition.
In particular, when H is a subgroup of K such that H [p] is non cyclic, then the

(commutative) Green functor eKHFB(p)
K has no non zero proper ideals. It might

therefore be called a Green field.
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