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Abstract. Following [14], we compute the motivic cohomology ring
of the Nisnevich classifying space of the unitary group associated to
the standard split hermitian form of a quadratic extension. This pro-
vides us with subtle characteristic classes which take value in the mo-
tivic cohomology of the Čech simplicial scheme associated to a hermi-
tian form. Comparing these new classes with subtle Stiefel-Whitney
classes arising in the orthogonal case, we obtain relations among the
latter ones holding in the motivic cohomology of the Čech simplicial
scheme associated to a quadratic form divisible by a 1-fold Pfister
form. Moreover, we present a description of the motive of the torsor
corresponding to a hermitian form in terms of its subtle characteristic
classes.
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1 Introduction

The study of homotopy theory in the algebro-geometric world, which was ini-
tiated by Morel and Voevodsky in [9], has led to very deep results such as the
affirmation of Milnor Conjecture ([17]). As a result, much attention has been
devoted in the last years to transferring topological techniques into algebraic
geometry.
For example, the study of classifying spaces BG and their respective charac-
teristic classes in different cohomology theories have been extremely useful in
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topology to approach the classification of principal G-bundles. In the same way,
it is possible to study G-torsors in algebraic geometry by focusing on classifying
spaces and characteristic classes in the motivic homotopic environment. We
notice that here there are two different, but highly related, classifying spaces,
namely the Nisnevich and the étale. For non special algebraic groups they have
in general different cohomology rings and, consequently, they produce different
characteristic classes. Although G-torsors are classified by the étale classifying
space, it is undoubted that the Nisnevich version provides its own advantages.

Good evidence of this is provided by [14], where torsors, Nisnevich classifying
spaces and a general homotopic framework to deal with them have been deeply
studied by the authors. In particular, they focus on BOn, the Nisnevich classi-
fying space of the orthogonal group associated to the standard split quadratic
form, which allows to study On-torsors over the point that are in one-to-one
correspondence with quadratic forms. They prove that the motivic cohomol-
ogy ring with Z /2-coefficients of BOn is a polynomial algebra over the motivic
cohomology of the base field generated by some elements that they call subtle
Stiefel-Whitney classes. These classes are very informative, for example they
are able to see if a quadratic form is in a power of the fundamental ideal of
the Witt ring or not. Moreover, they are related to the J-invariant of quadrics
introduced in [15].

In this work we will focus instead on the unitary group Un(E/k) associated to
the standard split hermitian form of a quadratic extension E/k. In particular,
we will compute the motivic cohomology with Z /2-coefficients of its Nisnevich
classifying space. As in the orthogonal case, this will provide us with subtle
characteristic classes which allow to approach the classification of Un(E/k)-
torsors over the point that are nothing else but n-dimensional hermitian forms
of E/k, which in turn are in one-to-one correspondence with 2n-dimensional
quadratic forms over k divisible by the norm form of the quadratic extension
considered. In [14], the computation of the motivic cohomology of BOn is
conducted inductively by using fibrations with motivically Tate fibers. In our
situation, new features will appear. In particular, the fibrations in the unitary
case, similar to those considered in the orthogonal one, will have reduced fibers
which (depending on parity) are not motivically Tate but, anyway, invertible,
which will still allow the computation. These invertible motives are, not sur-
prisingly, closely related to the Rost motive of our quadratic extension. As a
consequence, we obtain that, unlike the orthogonal case, the classifying space
of the unitary group is not cellular, but it becomes one once tensored with the
Čech simplicial scheme of the Pfister form of the quadratic extension. Related
to this, we observe an interesting interaction between invertible objects and
idempotents in Voevodsky category. It is manifested, in particular, by the fact
that the cohomology of the tensor product of BUn(E/k) with the Čech simpli-
cial scheme above mentioned happens to be a direct limit of the cohomology
of BUn(E/k) tensored with powers of an invertible motive. We also note that,
although studying hermitian forms is the same as studying quadratic forms di-
visible by a Pfister form, the understanding of the unitary case allows to trace
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back information from the hermitian world to the quadratic one. In parti-
cular, from the computation of the motivic cohomology of BUn(E/k) we get
relations among subtle Stiefel-Whitney classes in the cohomology of the Čech
simplicial scheme of the respective quadratic form divisible by a binary Pfister
form. In this sense, for this special class of quadratic forms, the cohomology of
BUn(E/k) is much closer to that of the Čech simplicial scheme of the torsor
than the cohomology of BO2n.
We will now summarise the content of the sections of this text. First of all,
in section 2 we present a few notations which will be followed throughout
the paper. Section 3 is devoted to recalling some preliminary definitions and
results about the category of motives over a simplicial base studied in [16].
Moreover, following [14], we will prove some statements regarding fibrations
with motivically invertible reduced fibers. In section 4 we will deal with
Nisnevich classifying spaces and some of their main features. A study of the
Čech simplicial scheme, the Rost motive of a quadratic extension and, espe-
cially, of some closely related invertible motives is presented in section 5. The
main result of the paper, namely the computation of the motivic cohomology
ring of BUn(E/k) is object of section 6. In section 7, we will compare the
classifying space of the unitary group of the split hermitian form with that of
the orthogonal group of the corresponding quadratic form. As a consequence,
we will present the cohomology of the first as a quotient of the second. In
particular, we will relate our subtle classes to subtle Stiefel-Whitney classes
arising in the orthogonal case. Finally, in section 8, in the same fashion of
[14], we find some applications to hermitian forms. For example, we deduce
relations among subtle classes in the motivic cohomology of the respective
Čech simplicial scheme, see that these subtle classes distinguish the triviality
of the torsor and find an expression of the motive of the torsor associated to a
hermitian form.

Acknowledgements. I wish to express my sincere gratitude to my PhD
supervisor Alexander Vishik for his precious help and constant encouragement
throughout the preparation of this work. Moreover, I would like to thank the
referee for very useful comments which helped to correct some mistakes and to
improve the exposition.

2 Notation

Throughout this paper we will work over a field k of characteristic different
from 2.
The main categories we will consider are the category of motivic spaces
Spc(k) = ∆opShvNis(Sm/k), the simplicial homotopy category Hs(k) con-
structed by Morel and Voevodsky in [9] and the triangulated category of effec-
tive motives DM−

eff (k) constructed by Voevodsky in [18].
All motivic cohomology will be with Z /2-coefficients. Moreover, we will denote
by H the motivic cohomology of Spec(k). From a result by Voevodsky ([17]),
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we know that H = KM (k)/2[τ ], where τ is the generator of H0,1 = Z /2.

Given a quadratic extension E = k(
√
α) and an n-dimensional E-vector

space V , an n-dimensional hermitian form is a map h : V × V → E which
is E-linear in the first factor and such that h(v, w) = σ(h(w, v)) (where σ is
the generator of Gal(E/k)). It follows immediately from the definition that
the diagonal part of a hermitian form takes values in k and is a quadratic
form. We will denote by h̃ this 2n-dimensional quadratic form over k defined
by h̃(v) = h(v, v) for any v ∈ V considered as a 2n-dimensional k-vector space.

Moreover, notice that the quadratic form h̃ just defined is divisible by 〈〈α〉〉, the
1-fold Pfister form associated to α. Indeed, more is true, namely any quadratic
form over k divisible by 〈〈α〉〉 is associated to some hermitian form, and the
correspondence is bijective. In fact, given two n-dimensional hermitian forms
h and h′, we have that h ∼= h′ if and only if h̃ ∼= h̃′ ([6, Corollary 9.2]).

We will express by qn the standard split quadratic form ⊥n
i=1 〈(−1)i−1〉 and

by H the hyperbolic form 〈1,−1〉. Similarly, we will denote by hn the standard

split hermitian form ⊥n
i=1 〈(−1)i−1〉. Notice, in particular, that h̃n = 〈〈α〉〉⊗qn.

By Un(E/k) we will mean the unitary group of invertible n×n-matrices over E
that preserve the standard split hermitian form hn. Notice that this is a linear
algebraic group over k.

3 Motives over a simplicial base

We start this section by recalling a few definitions and some results about the
category of motives over a simplicial base studied by Voevodsky in [16].

Let Y• be a smooth simplicial scheme over k and R a commutative ring with
unity. As in [16], let Sm/Y• be the category whose objects are pairs (U, j),
where j is a non-negative integer and U is a smooth scheme over Yj , and whose
morphisms from (U, j) to (V, i) are pairs (f, θ), where θ : [i]→ [j] is a simplicial
map, such that the following diagram

U
f //

��

V

��
Yj

Yθ

// Yi

commutes.

Then, we will denote by Spc(Y•) = ∆opShvNis(Sm/Y•) the category of motivic
spaces over Y•, obtained by considering simplicial Nisnevich sheaves on Sm/Y•.

In [16] the category of motives over Y• with R coefficients was constructed. We
will denote this category by DM−

eff (Y•, R).

This category comes endowed with a sequence of functors

r∗i : DM−
eff (Y•, R)→ DM−

eff (Yi, R)
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For simplicity we will write Ni for r∗i (N). We recall that, for any morphism
p : Y• → Y ′

• of smooth simplicial schemes, there is an adjoint pair

DM−
eff (Y•, R)

Lp∗ ↑ ↓ Rp∗
DM−

eff (Y
′
• , R)

If moreover p is smooth, then we also have the adjoint pair

DM−
eff (Y•, R)

Lp# ↓ ↑ p∗

DM−
eff (Y

′
• , R)

Besides, we will denote by CC(Y•) the simplicial set obtained by applying to
Y• the functor CC which commutes with coproducts and sends any connected
scheme to the point.
For any smooth simplicial scheme Y• over k we can consider the projection to
the base Y• → Spec(k). This morphism induces the triangulated functor

c∗ : DM−
eff (k,R)→ DM−

eff (Y•, R)

We will denote by MY•
the motive c∗(M) for any M ∈ DM−

eff (k,R).
We report below two results about the category of motives over a simplicial base
which will be essential throughout this paper in order to deal with fibrations
with motivically invertible reduced fibers. First of all, in [14] it is proven the
following proposition.

Proposition 3.1 [14, Proposition 3.1.5] Suppose that H1(CC(Y•), R
×) = 0.

Let T be the unit in DM−
eff (k,R) and N ∈ DM−

eff (Y•, R) be such a motive

that its graded components Ni ∈ DM−
eff (Yi, R) are isomorphic to TYi and all

the structure maps Nθ : LY ∗
θ (Ni) → Nj are isomorphisms for any simplicial

map θ : [i]→ [j]. Then N is isomorphic to TY•
.

From the previous proposition we immediately deduce the following corollary
which is a generalisation for all invertible motives.

Corollary 3.2 Suppose that H1(CC(Y•), R
×) = 0. Let M be an invertible

motive in DM−
eff (k,R) and N ∈ DM−

eff (Y•, R) be such a motive that its graded

components Ni ∈ DM−
eff (Yi, R) are isomorphic to MYi and all the structure

maps Nθ : LY ∗
θ (Ni) → Nj are isomorphisms for any simplicial map θ : [i] →

[j]. Then N is isomorphic to MY•
.

Proof. Consider the motive N ⊗M−1
Y•

in DM−
eff (Y•, R). We notice that

(N ⊗M−1
Y•

)i ∼= Ni ⊗M−1
Yi

∼=MYi ⊗M−1
Yi

∼= TYi
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and, for any simplicial map θ : [i]→ [j], the morphisms

LY ∗
θ ((N ⊗M−1

Y•
)i)→ (N ⊗M−1

Y•
)j

are nothing else but the isomorphisms (LY ∗
θ (Ni) → Nj) ⊗ M−1

Yj
. Then, it

follows from Proposition 3.1 that N ⊗M−1
Y•

∼= TY•
, which completes the proof.

�

Notice that the condition H1(CC(Y•), R
×) = 0 is automatically satisfied if

R = Z /2, which is the case we will be interested in.
Before proceeding with the next results, we recall some definitions about coher-
ence. A smooth morphism π : X• → Y• of smooth simplicial schemes is called
smooth coherent if for any simplicial map θ : [i]→ [j] the following diagram

Xj

πj //

Xθ

��

Yj

Yθ

��
Xi πi

// Yi

is cartesian and all the πj are smooth. An object N in DM−
eff (Y•, R) is called

coherent if, for any simplicial map θ : [i] → [j], the structural map Nθ :
LY ∗

θ (Ni)→ Nj is an isomorphism. LetDM−
coh(Y•, R) be the full subcategory of

DM−
eff (Y•, R) consisting of coherent objects. We notice that DM−

coh(Y•, R) is
closed under taking cones and arbitrary direct sums, since LY ∗

θ is a triangulated
functor. It immediately follows from these definitions that, if π is smooth
coherent, then Lπ# maps coherent objects to coherent ones and, in particular,

M(X•
π−→ Y•) belongs to DM−

coh(Y•, R), where M(X•
π−→ Y•) is nothing else

but the image Lπ#(TX•
) of the trivial Tate motive.

We present now the main technique taken from [14] we will use in our compu-
tation. This result allows to generate long exact sequences (of the same nature
of Gysin sequences for sphere bundles in topology) in motivic cohomology as-
sociated to fibrations with reduced fibers which are motivically invertible.

Proposition 3.3 Let π : X• → Y• be a smooth coherent morphism of smooth
simplicial schemes over k and A a smooth k-scheme such that:
1) over the 0 simplicial component π is isomorphic to the map Y0 ×A→ Y0;
2) H1(CC(Y•), R

×) = 0;

3) M̃(A) is an invertible motive in DM−
eff (k,R), where by M̃(A) we mean

Cone(M(A)→ T )[−1].
Then, Cone(π) ∼= M̃(A)Y•

[1] ∈ DM−
eff (Y•, R).

Proof. In the motivic category DM−
eff (Y•, R) we have a distinguished triangle

M(X•
π−→ Y•)→ TY•

→ Cone(π)→M(X•
π−→ Y•)[1]
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By condition 1 and from the fact that our morphism is smooth coherent it
follows that it is the projection over any simplicial component. So, we obtain
that the morphism πi : Yi × A ∼= Xi → Yi induces in DM−

eff (Yi, R) the map

M(A)Yi → TYi for any i. Thus, Cone(π)i ∼= M̃(A)Yi [1] is an invertible motive

in DM−
eff (Yi, R). Since M(X•

π−→ Y•) and TY•
belong to DM−

coh(Y•, R), we

have that Cone(π) is in DM−
coh(Y•, R) and, by Corollary 3.2, we get that

Cone(π) ∼= M̃(A)Y•
[1] in DM−

eff (Y•, R), as we aimed to show. �

Later, we will also need the following result about functoriality of the isomor-
phism found in the previous proposition.

Proposition 3.4 Let π : X• → Y• and π′ : X ′
• → Y ′

• be smooth coherent
morphisms of smooth simplicial schemes over k and A a smooth k-scheme that
satisfies all conditions from the previous proposition with respect to π′ and such
that the following diagram is cartesian with all morphisms smooth

X•
π //

pX

��

Y•

pY

��
X ′

•
π′

// Y ′
•

Then, the induced square of motives in the category DM−
eff (Y

′
• , R) extends

uniquely to a morphism of triangles where LpY#Cone(π)→ Cone(π′) is given
by M(pY )⊗ idM̃(A)Y ′

•
[1]
.

Proof. First of all, we notice that in DM−
eff (Y

′
• , R) there is the following

morphism of distinguished triangles

LpY #M(X•
π
−→ Y•) //

M(pX )

��

LpY #TY•
//

M(pY )

��

LpY #Cone(π) ∼= LpY #M̃(A)Y•
[1] //

M(p)

��

LpY #M(X•
π
−→ Y•)[1]

M(pX )[1]

��
M(X′

•
π′
−−→ Y ′

•) // T
Y ′
•

// Cone(π′) ∼= M̃(A)
Y ′
•
[1] // M(X′

•
π′
−−→ Y ′

•)[1]

where the isomorphisms in the diagram are due to Proposition 3.3. Once
restricted to the 0 simplicial component the previous diagram becomes in
DM−

eff (Y
′
0 , R)

LpY0#M(A)Y0
//

M(pY0
)⊗idM(A)

Y ′
0

��

LpY0#TY0
//

M(pY0
)

��

LpY0#M̃(A)Y0
[1] //

M(p0)

��

LpY0#M(A)Y0
[1]

M(pY0
)⊗idM(A)

Y ′
0

[1]

��
M(A)

Y ′
0

// T
Y ′
0

// M̃(A)
Y ′
0
[1] // M(A)

Y ′
0
[1]
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Note that

HomDM−
eff (Y

′
0 ,R)(LpY0#M̃(A)Y0 [1], TY ′

0
) ∼=

HomDM−
eff (Y0,R)(M̃(A)Y0 [1], p

∗
Y0
TY ′

0
) ∼=

HomDM−
eff (Y0,R)(M̃(A)Y0 [1], TY0)

∼=

HomDM−
eff (k,R)(M̃(Y0 ×A)[1], T ) ∼= 0

since Y0×A is a smooth scheme over k and, so, has no cohomology in bidegree
(0)[−1]. From this we deduce that M(p0) must be M(pY0)⊗ idM̃(A)Y ′

0
[1].

At this point we notice that both M(p) and M(pY )⊗ idM̃(A)Y ′
•
[1]

belong to

HomDM−
eff (Y

′
• ,R)(LpY#M̃(A)Y•

[1], M̃(A)Y ′
•
[1]) ∼=

HomDM−
eff (Y•,R)(M̃(A)Y•

, p∗Y M̃(A)Y ′
•
) ∼=

HomDM−
eff (Y•,R)(M̃(A)Y•

, M̃(A)Y•
) ∼= H0,0(Y•, R)

since M̃(A)Y•
is an invertible motive. Similarly M(p0) =M(pY0)⊗ idM̃(A)Y ′

0
[1]

belongs to

HomDM−
eff (Y

′
0 ,R)(LpY0#M̃(A)Y0 [1], M̃(A)Y ′

0
[1]) ∼=

HomDM−
eff

(Y0,R)(M̃(A)Y0 , p
∗
Y0
M̃(A)Y ′

0
) ∼=

HomDM−
eff (Y0,R)(M̃(A)Y0 , M̃(A)Y0 )

∼= H0,0(Y0, R)

Now, since the complex R(0) is quasi isomorphic to the constant sheaf R
concentrated in degree 0, we have that H0,0(Y•, R) is just the sheaf coho-
mology group H0(Y•, R). From [3, sections 5.1 and 5.2], one knows how
to compute the sheaf cohomology of a simplicial scheme in terms of the
sheaf cohomology of its simplicial components. In particular, the group of
global sections Γ(Y•,R) = H0(Y•, R) is given by the kernel of the morphism
Γ(Y0, R)→ Γ(Y1, R) induced by the simplicial data. This means that

H0,0(Y•, R) = Ker(H0,0(Y0, R)→ H0,0(Y1, R))

In other words, H0,0(Y•, R) is the free R-module with rank equal to the number
of connected components of Y•, where the set of connected components of Y•
is obtained from the set of connected components of Y0 by identifying all the
couples of components of Y0 linked by a connected component of Y1 via the face
maps. On the other hand, H0,0(Y0, R) is the free R-module with rank equal to
the number of connected components of Y0. It follows that the restriction

r∗0 : H0,0(Y•, R)→ H0,0(Y0, R)
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is injective, hence M(p) = M(pY ) ⊗ idM̃(A)Y ′
•
[1]
, which is what we aimed to

prove. �

4 The Nisnevich classifying space

Let us recall at this point some facts about Nisnevich and étale classifying
spaces of a linear algebraic group G over Spec(k).
Denote by EG the simplicial scheme defined by (EG)n = Gn+1 with face and
degeneracy maps given by partial projections and partial diagonals respectively.
There is an obvious action of G on EG induced by the operation in G, then
the Nisnevich classifying space BG is the simplicial scheme defined by BG =
EG/G. In other words, BG is the simplicial Nisnevich sheaf with simplicial
component (BG)n given by the Nisnevich sheaf U 7→ HomSm/k(U,G

n) for any
n ≥ 0 and standard face and degeneracy maps of the bar construction.
Now, consider the morphism of sites π : (Sm/k)et → (Sm/k)Nis. This induces
a pair of adjoint functors

Hs((Sm/k)et)

π∗ ↑ ↓ Rπ∗
Hs((Sm/k)Nis)

where π∗ is the restriction to Nisnevich topology and π∗ is étale sheafification.
Then, the étale classifying space is defined by BetG = Rπ∗π

∗BG. Furthermore,
we recall that in [9] it is constructed, starting from a faithful representation
ρ : G →֒ GL(V ), a geometric model BGgm for the A1-homotopy type of BetG,
obtained from an infinite-dimensional affine space ⊕∞

i=1V by removing a closed
subscheme in order to let the diagonal action of G be free and then taking the
quotient.
In this paper we will be mainly interested in Nisnevich classifying spaces. We
finish this section by showing some of their features.
Let G be a linear algebraic group over k and H an algebraic subgroup of G.
Denote by B̃H the bisimplicial scheme (EH×EG)/H , where H acts on EH×
EG diagonally, i.e. (h1, . . . , hm, g1, . . . , gn)h = (h1h, . . . , hmh, g1h, . . . , gnh)

for any h1, . . . , hm, h in H and g1, . . . , gn in G, and by B̂H the simplicial
scheme EG/H . We observe that the natural fibration π : B̂H → BG is trivial
over simplicial components and has fiber G/H . There are two natural maps

φ : B̃H → BH and ψ : B̃H → B̂H . We notice that φ is an isomorphism
in Hs(k) since over each simplicial component it is a trivial fibration with
contractible fiber EG. On the other hand, ψ is not in general an isomorphism
in Hs(k). However, we have the following statement.

Proposition 4.1 If the map

HomHs(k)(Spec(R), BetH)→ HomHs(k)(Spec(R), BetG)
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is injective for any Henselian local ring R over k, then ψ is an isomorphism in
Hs(k). In particular, BH ∼= B̂H in Hs(k).

Proof. We start by noticing that the restriction of ψ over any simplicial com-
ponent is given by the morphism (EH × Gn+1)/H → Gn+1/H . The simpli-
cial scheme (EH × Gn+1)/H is nothing else but the Čech simplicial scheme
Č(Gn+1 → Gn+1/H) associated to the H-torsor Gn+1 → Gn+1/H which be-
comes split once extended to G. In order to check that

Č(Gn+1 → Gn+1/H)→ Gn+1/H

is a simplicial weak equivalence it is enough, by [9, Lemma 1.11], to evaluate
on henselian local rings. Therefore, we only need to prove that the H-torsor
Gn+1 → Gn+1/H is Nisnevich locally split. Now, the fiber of Gn+1 → Gn+1/H
over any Spec(R) of Gn+1/H , where R is henselian local, is given by a H-
torsor P → Spec(R) whose extension to G is split, so split itself by hypothesis.
Hence, Gn+1 → Gn+1/H is Nisnevich locally split. This implies that ψ is an
isomorphism in Hs(k). �

In practice, in the unitary group case (as in many other cases), it will be enough
to check the hypothesis of the previous proposition only for field extensions of
k. The reason resides in the fact that rationally trivial hermitian forms are
locally trivial (see [10, Theorem 9.2]).

There are obvious morphisms j : BH → B̂H and g : BH → BG induced by
the embedding H →֒ G.

Proposition 4.2 Under the hypothesis of Proposition 4.1, j is an isomor-
phism in Hs(k).

Proof. Under the hypothesis of Proposition 4.1 both φ and ψ are morphisms of
bisimplicial schemes which are weak equivalences over simplicial components,
hence the induced morphisms on the associated diagonal simplicial schemes
φ : ∆(B̃H)→ BH and ψ : ∆(B̃H)→ B̂H are weak equivalences. In order to
complete the proof we only need to notice that the morphisms jφ and ψ are

simplicial homotopic. A simplicial homotopy between them F
(n)
i : (Hn+1 ×

Gn+1)/H → Gn+2/H is defined for any n and any 0 ≤ i ≤ n by

F
(n)
i (h0, . . ., hn, g0, . . ., gn) = (h0, . . ., hi, gi, . . ., gn)

�

It immediately follows from the previous proposition and by noticing that g =
πj that the morphism j∗ : H(B̂H) → H(BH) is an isomorphism of H(BG)-
modules.
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Propositions 4.1 and 4.2 apply in particular to the case when G and H are
respectively On and On−1. We recall that

Aqn
∼= On/On−1

where Aqn is the affine quadric defined by the equation qn = 1. Moreover, we
know that

M(Aqn) = Z⊕Z([n/2])[n− 1] ∈ DM−
eff (k)

by [14, Proposition 3.1.3]. Therefore, Proposition 3.3 applies to the fibration

B̂On−1 → BOn.
By previous considerations and by an induction argument, in [14] it is proven
the following theorem.

Theorem 4.3 [14, Theorem 3.1.1] There is a unique set u1, . . ., un of classes in
the motivic Z /2-cohomology of BOn such that deg(ui) = ([i/2])[i], ui vanishes
when restricted to H(BOi−1) for any 2 ≤ i ≤ n and

H(BOn) = H [u1, . . ., un]

These new cohomology classes ui are called subtle Stiefel-Whitney classes.

5 Čech simplicial scheme and Rost motive of a quadratic exten-

sion

Let E = k(
√
α) be a quadratic extension of k. Then, the motive of Spec(E) in

DM−
eff (k,Z /2) is the Rost motive Mα of the Pfister form 〈〈α〉〉. It is proven

in [12] that this motive comes endowed with two morphisms Mα → T and
T → Mα such that the composition T → Mα → T is the 0 morphism and
becomes a split distinguished triangle in DM−

eff (E,Z /2).
Moreover, in [17, Theorem 4.4] it is shown that Mα can be presented as
an extension of two motives of Čech simplicial schemes. More precisely, in
DM−

eff (k,Z /2) there is the following distinguished triangle

Mα → Xα → Xα[1]→Mα[1] (∗)

where Xα is the motive of the Čech simplicial scheme of the Pfister quadric
associated to the Pfister form 〈〈α〉〉.
Let N> be Cone(T → Mα) and N< be Cone(Mα → T )[−1]. Since
Hom(T, T [j]) = 0 for j 6= 0 and we are working with Z /2-coefficients, the
morphism T →Mα is uniquely liftable to N< while the morphism Mα → T is
uniquely extendable to N>. It immediately follows from the octahedron axiom
that Cone(N> → T )[−1] ∼= Cone(T → N<). We will denote this motive by

M̂α.
In this section, we will study the above mentioned motives and their motivic
cohomology. We start by establishing relations among them.
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Proposition 5.1 The following isomorphisms hold in DM−
eff (k,Z /2):

1) Mα ⊗ Xα
∼=Mα via Mα ⊗ (Xα → T );

2) N>⊗Xα
∼= Xα via (N> → T )⊗ Xα;

3) Mα ⊗N>
∼=Mα via Mα ⊗ (N> → T );

4) N<⊗N>
∼= T ;

5) M̂α⊗N>
∼= M̂α[1] via M̂α⊗(N> → T [1]).

Proof. 1) Since Xα is a projector in DM−
eff (k,Z /2) we have that Xα⊗Xα

∼= Xα.
Hence, by tensoring with Xα the distinguished triangle

Mα → Xα → Xα[1]→Mα[1]

we obtain that Mα ⊗ Xα
∼=Mα.

2) Therefore, by tensoring with Xα the distinguished triangle

T →Mα → N> → T [1]

and by recalling that Xα → Mα from (∗) factors through T we get that
N>⊗Xα

∼= Xα.
3) It follows formally from 1) and 2).
4) On the other hand, by tensoring with N> the distinguished triangle

N< →Mα → T → N<[1]

and by noticing that (Mα → T )⊗N> coincides with Mα → N> we obtain that
N<⊗N>

∼= T .
5) Finally, by tensoring with N> the distinguished triangle

T → N< → M̂α → T [1]

and by noticing that (T → N<) ⊗ N> coincides with N> → T we have that

M̂α⊗N>
∼= M̂α[1]. �

From the previous proposition we immediately deduce the following lemma.

Lemma 5.2 In DM−
eff (k,Z /2) for any n ∈ N there are the following distin-

guished triangles:
1) N⊗n-1

> →Mα → N⊗n

> → N⊗n-1
> [1];

2) M̂α[n− 1]→ N⊗n

> → N⊗n-1
> → M̂α[n].

Here, Mα → N⊗n

> and N⊗n

> → N⊗n-1
> are the unique non-zero morphisms

between the respective objects.

Proof. 1) It follows immediately from 3) of Proposition 5.1 by tensoring the
distinguished triangle

T →Mα → N> → T [1]

with the appropriate power of N>.
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2) It follows immediately from 5) of Proposition 5.1 by tensoring the distin-
guished triangle

M̂α → N> → T → M̂α[1]

with the appropriate power of N>. �

At this point, we present the motivic cohomology of M̂α, which will be used in
the main result of this section, namely the computation of the motivic coho-
mology of tensor powers of N>.

Lemma 5.3 There exists a cohomology class µ of bidegree (0)[1] such that the

motivic cohomology of M̂α is given by

H(M̂α) =
KM (k)/2

Ann({α}) · µ

So, the motivic cohomology of M̂α is concentrated on a single diagonal.

Proof. After applying the octahedron axiom twice to the distinguished triangle

Mα → Xα → Xα[1]→Mα[1]

we get the distinguished triangle

M̂α[−1]→ X̃α[1]→ X̃α → M̂α

where X̃α is Cone(Xα → T )[−1].
The motivic cohomology of X̃α has been computed in the original version of
[11] and [19]. It is described by

H(X̃α) = Z /2[µ] · µ⊗ KM (k)/2

Ann({α})

Therefore, by the long exact sequence in motivic cohomology induced by the

previous distinguished triangle and by recalling that H∗,∗′

(X̃α)→ H∗−1,∗′

(X̃α)

sends µj to µj−1 we get the description of H(M̂α). �

We are now ready to compute the motivic cohomology of any tensor power of
N>. This result will be essential in the next section for the proof of the main
result.

Proposition 5.4 For any n ∈ N there exist cohomology classes µi of bidegree
(0)[i] for 1 ≤ i ≤ n such that the motivic cohomology of the nth tensor power
of N> as an H-module is given by

H(N⊗n

> ) = H ⊕
n⊕

i=1

KM (k)/2

Ann({α}) · µi
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where the H-module structure is described by the relations τµi = {α}µi−1 (µ0 =
1 by convention).

Proof. We will proceed by induction on n. For n = 1 the distinguished triangle

M̂α → N> → T → M̂α[1]

induces the following long exact sequence in motivic cohomology

. . .→ H∗−1,∗′

(M̂α)→ H∗,∗′ → H∗,∗′

(N>)→ H∗,∗′

(M̂α)→ . . .

From Lemma 5.3 it follows that

H∗,∗′

(N>) =

{
H∗,∗′

(M̂α), ∗ > ∗′
H∗,∗′

, ∗ ≤ ∗′

which implies that

H(N>) = H ⊕ KM (k)/2

Ann({α}) · µ

On the other hand, after tensoring with Xα the distinguished triangle

T →Mα → N> → T [1]

we get a morphism of long exact sequences in motivic cohomology

. . . // H∗−1,∗′

(Mα) //

��

H∗−1,∗′ //

��

H∗,∗′

(N>) //

��

H∗,∗′

(Mα) //

��

. . .

. . . // H∗−1,∗′

(Mα) // H∗−1,∗′

(Xα) // H∗,∗′

(Xα) // H∗,∗′

(Mα) // . . .

By a four lemma argument we deduce that H(N>) → H(Xα) is injective.
Therefore, τµ = {α} in H(N>), since the same relation holds in H(Xα). That
completes the induction basis.
Now, suppose the statement holds for n − 1. Then, by 2) of Lemma 5.2 we
have the following long exact sequence in motivic cohomology

. . .→ H∗−n,∗′

(M̂α)→ H∗,∗′

(N⊗n-1
> )→ H∗,∗′

(N⊗n

> )→ H∗−n+1,∗′

(M̂α)→ . . .

From Lemma 5.3 and by induction hypothesis we have

H∗,∗′

(N⊗n

> ) =

{
H∗−n+1,∗′

(M̂α), ∗ > ∗′ + n− 1

H∗,∗′

(N⊗n-1
> ), ∗ ≤ ∗′ + n− 1

which implies that there exists µn in bidegree (0)[n] such that

H(N⊗n

> ) = H(N⊗n-1
> )⊕ KM (k)/2

Ann({α}) · µn = H ⊕
n⊕

i=1

KM (k)/2

Ann({α}) · µi
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From 1) of Lemma 5.2 we have the following long exact sequence in motivic
cohomology

. . .→ H∗−1,∗′

(N⊗n-1
> )→ H∗,∗′

(N⊗n

> )→ H∗,∗′

(Mα)→ H∗,∗′

(N⊗n-1
> )→ . . .

that maps µi−1 ∈ Hi−1,0(N⊗n-1
> ) to µi ∈ Hi,0(N⊗n

> ) since Hi,0(Mα) = 0 for
i > 0. Hence, by induction hypothesis, τµi = {α}µi−1 in H(N⊗n

> ) and the
proof is complete. �

By 2) of Lemma 5.1 there is a chain of morphisms

Xα → . . .→ N⊗n

> → N⊗n-1
> → . . .→ N> → T

that induces in cohomology the chain of homomorphisms

H → H(N>)→ . . .→ H(N⊗n-1
> )→ H(N⊗n

> )→ . . .→ H(Xα)

which sends µ ∈ H(N>) to µ ∈ H(Xα).

We now highlight an interesting relation between the invertible motive N> and
the projector Xα.

Proposition 5.5 The homomorphisms H(N⊗n

> ) → H(Xα) are injective for
all n ∈ N. Moreover, H(Xα) = lim−→H(N⊗n

> ).

Proof. We have already noticed that H(N>) → H(Xα) is injective and maps
µ = µ1 to µ. Now, suppose by induction that the homomorphism H(N⊗n-1

> )→
H(Xα) is injective. Notice that there is a commutative diagram

H(N⊗n-1
> )⊗H(N>) //

��

H(N⊗n

> )

��
H(Xα)⊗H(Xα)

⌣ // H(Xα)

where the bottom horizontal map is the usual cup product in H(Xα). It follows
that the right vertical map sends µi to µ

i for any i ≤ n. This completes the
proof. �

Later on we will need also the following description of the motivic cohomology
of N<.

Lemma 5.6 The motivic cohomology of N< is given by

H(N<) = Ann({α})⊕H · τ
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Proof. After applying the octahedron axiom to the distinguished triangle

Mα → Xα → Xα[1]→Mα[1]

we obtain

Xα → N< → X̃α → Xα[1]

which induces in motivic cohomology the following long exact sequence

. . .→ H∗−1,∗′

(Xα)→ H∗,∗′

(X̃α)→ H∗,∗′

(N<)→ H∗,∗′

(Xα)→ . . .

Hence, the result follows by noticing that H∗,∗′

(X̃α) is the ∗ > ∗′ part of
H∗,∗′

(Xα), while H∗,∗′

is the ∗ ≤ ∗′ part of it, and that H∗−1,∗′

(Xα) →
H∗,∗′

(X̃α) sends µ
i−1 to µi. �

6 The motivic cohomology ring of BUn(E/k)

Our goal in this section is to compute by using the techniques presented in
section 3 and 4 the motivic cohomology of the Nisnevich classifying space of
Un(E/k), the unitary group associated to the standard split hermitian form hn
of the extension E/k.

At first, let us show some preliminary results which will be useful in the proof
of the main theorem.

Proposition 6.1 The homogeneous variety Un(E/k)/Un−1(E/k) is isomor-

phic to the affine quadric Ahn defined by the equation h̃n = 1.

Proof. Let V be an n-dimensional E-vector space and let Ahn be the subset
of V defined by the equation hn = 1. Then, V can be considered as a 2n-
dimensional k-vector space in which Ahn is the affine quadric defined by the

equation h̃n = 1. The action of Un(E/k) on Ahn is transitive since for any two
vectors of Ahn there exists the product of at most two reflections which sends
one to the other (see the proof of [13, Theorem 9.5]). Moreover, the isotropy
group of the vector (1, 0, . . . , 0) is isomorphic to Un−1(E/k). This implies the
desired result. �

At this point, in order to apply Proposition 3.3 to the unitary case, we need to
study the motive of the affine quadric Ahn .

Proposition 6.2 The motive in DM−
eff (k,Z /2) of the affine quadric Ahn is

given by

M(Ahn) =

{
T ⊕N>(n)[2n− 1], n odd

T ⊕ T (n)[2n− 1], n even
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Proof. We start by noticing that the quadratic form

h̃n =

{
〈〈α〉〉 ⊥ (n− 1)H, n odd

nH, n even

For a quadratic form q let us denote by Q the projective quadric defined by
q = 0, by Q′ the projective quadric defined by q = z2 and by A the affine
quadric defined by q = 1. Then, we have in DM−

eff (k,Z /2) the following
Gysin triangle

M(A)→M(Q′)→M(Q)(1)[2]→M(A)[1]

In the case q = nH the previous triangle becomes

M(A)→
2n−1⊕

i=0

T (i)[2i]→
2n−1⊕

i=1

T (i)[2i]⊕ T (n)[2n]→M(A)[1]

which implies that, for n even, M(Ahn) =M(A) = T ⊕ T (n)[2n− 1].
In the case q = 〈〈α〉〉 we have

M(A)→ T ⊕ T (1)[2]→Mα(1)[2]→M(A)[1]

from which it follows that M(Ah1) =M(A) = T ⊕N>(1)[1].
The general case n odd follows from [1, Lemma 34] . Namely, we have

M̃(Ahn) = M̃(Ah1)(n− 1)[2n− 2] = N>(n)[2n− 1]

that implies M(Ahn) = T ⊕N>(n)[2n− 1]. �

Before going ahead with the main theorem of this section, we notice that
Un(E/k)-torsors over Spec(k) are in one-to-one correspondence with hermitian
forms associated to the quadratic extension E/k or, which is the same, with
quadratic forms over k divisible by 〈〈α〉〉. The map from the set of Un−1(E/k)-
torsors to the set of Un(E/k)-torsors sends a hermitian form h to h ⊥ 〈(−1)n−1〉
or, analogously, a quadratic form q divisible by 〈〈α〉〉 to q ⊥ (−1)n−1〈〈α〉〉.
Since Witt cancellation holds for quadratic forms, the previous remark assures
that Un−1(E/k)-torsors inject in Un(E/k)-torsors over any field extension of
k, which allows us to use Propositions 4.1 and 4.2 in the unitary case.

Theorem 6.3 For any m,n ∈ Z≥0 there exist cohomology classes ci of bidegree
(i)[2i] for 1 ≤ i ≤ n such that the motivic cohomology of Xα ⊗BUn(E/k) and
N⊗m

> ⊗BUn(E/k) is described respectively by

H(Xα ⊗BUn(E/k)) = H(Xα)[c1, . . ., cn]

and

H(N⊗m

> ⊗BUn(E/k)) =
⊕

i1,...,in∈Z≥0

H(N
⊗m+

∑
l odd

il

> ) · ci11 · · ·cinn
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where the obvious homomorphisms of H(BUn(E/k))-modules

H(N⊗m

> ⊗BUn(E/k))→ H(Xα ⊗ BUn(E/k))

are injective. Moreover, H(Xα ⊗BUn(E/k)) = lim−→H(N⊗m

> ⊗BUn(E/k)).

Proof. We will proceed by induction on n. The induction basis follows imme-
diately from noticing that BU0(E/k) ∼= Spec(k) and by Proposition 5.5.

Now, suppose the result holds for n − 1. Then, since N>⊗Xα
∼= Xα by 2) of

Proposition 5.1 and applying Propositions 3.3, 4.1, 4.2 and 6.2 to the coherent
morphism Xα⊗ B̂Un−1(E/k)→ Xα⊗BUn(E/k), we obtain the following long
exact sequence in motivic cohomology

. . .→ H∗−1,∗′

(Xα ⊗BUn−1(E/k))
h∗

−→ H∗−2n,∗′−n(Xα ⊗BUn(E/k))
f∗

−→

H∗,∗′

(Xα ⊗BUn(E/k))
g∗

−→ H∗,∗′

(Xα ⊗BUn−1(E/k))→ . . .

Note that, even after having replaced H(Xα ⊗ B̂Un−1(E/k)) with H(Xα ⊗
BUn−1(E/k)), this stays a sequence of H(Xα ⊗ BUn(E/k))-modules by
the remark just after Proposition 4.2. By induction hypothesis, H(Xα ⊗
BUn−1(E/k)) is freely generated as an H(Xα)-algebra by c1, . . . , cn−1 which
are all uniquely liftable to H(Xα ⊗ BUn(E/k)), since Xα ⊗ BUn(E/k) is the
motive of a smooth simplicial scheme and, so, has no cohomology in negative
round degrees. Hence, g∗ is an epimorphism as it is a ring homomorphism, h∗

is trivial and f∗ is a monomorphism. Denoting by cn the element f∗(1) we
obtain the result

H(Xα ⊗BUn(E/k)) = H(Xα)[c1, . . ., cn]

For the rest of the induction step we will consider separately two cases.

1) n even: for any m ∈ N we have the following long exact sequence in motivic
cohomology of H(BUn(E/k))-modules

. . .→ H∗−1,∗′

(N⊗m

> ⊗BUn−1(E/k))
h∗

−→ H∗−2n,∗′−n(N⊗m

> ⊗BUn(E/k))
f∗

−→

H∗,∗′

(N⊗m

> ⊗BUn(E/k))
g∗

−→ H∗,∗′

(N⊗m

> ⊗BUn−1(E/k))→ . . .

For m = 0, by induction hypothesis, H(BUn−1(E/k)) is generated as an
H-algebra by c1, . . ., cn−1 and µcl for any odd l < n. By degree reasons
these cohomology classes are all uniquely liftable to H(BUn(E/k)). There-
fore, g∗ is an epimorphism since it is a ring homomorphism. This assures that,
for any m, H(N⊗m

> ⊗BUn−1(E/k)) is generated as an H(BUn(E/k))-module
by µi for all i ≤ m. By degree reasons the µi are all uniquely liftable to
H(N⊗m

> ⊗BUn(E/k)). Now g∗ happens to be surjective since it is a homomor-
phism of H(BUn(E/k))-modules. Hence, h∗ is the 0 homomorphism and f∗ is
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a monomorphism. Then, denoting by cn the cohomology class f∗(1) we have,
for any m, the following morphism of short exact sequences of H(BUn(E/k))-
modules

0 // H∗−2n,∗′−n(N
⊗m

> ⊗BUn(E/k))
·cn //

��

H∗,∗′ (N
⊗m

> ⊗BUn(E/k)) //

��

H∗,∗′ (N
⊗m

> ⊗BUn−1(E/k)) //
� _

��

0

0 // H∗−2n,∗′−n(Xα ⊗ BUn(E/k))
·cn // H∗,∗′ (Xα ⊗ BUn(E/k)) // H∗,∗′ (Xα ⊗ BUn−1(E/k)) // 0

By induction on square degree and by a standard four lemma argument, the
central vertical morphism is injective. Moreover, by an induction argument on
square degree and looking at the previous upper short exact sequence we get
that

H(N⊗m

> ⊗BUn(E/k)) =
⊕

i∈Z≥0

H(N⊗m

> ⊗BUn−1(E/k)) · cin

=
⊕

i1,...,in∈Z≥0

H(N
⊗m+

∑
l odd

il

> ) · ci11 · · ·cinn

as an H(BUn(E/k))-submodule of H(Xα ⊗BUn(E/k)).

2) n odd : as before for any m we have the following long exact sequence in
motivic cohomology of H(BUn(E/k))-modules

...→ H∗−1,∗′

(N⊗m

> ⊗BUn−1(E/k))
h∗

−→ H∗−2n,∗′−n(N⊗m+1

> ⊗BUn(E/k))
f∗

−→

H∗,∗′

(N⊗m

> ⊗BUn(E/k))
g∗

−→ H∗,∗′

(N⊗m

> ⊗BUn−1(E/k))→ ...

As in the previous case, for m = 0 the induction hypothesis implies that
H(BUn−1(E/k)) is generated as an H-algebra by c1, . . ., cn−1 and µcl for
any odd l < n. By the same degree reasons they are all uniquely liftable
to H(BUn(E/k)). Thus, g∗ is an epimorphism since it is a ring homomor-
phism. This is enough to show that, for any m, H(N⊗m

> ⊗BUn−1(E/k)) is
generated as an H(BUn(E/k))-module by µi for all i ≤ m. Again the µi

are uniquely liftable to H(N⊗m

> ⊗BUn(E/k)). It follows that g∗ is surjective,
h∗ is trivial and f∗ is injective. Then, denoting by cn the cohomology class
f∗(1) we have, for any m, the following morphism of short exact sequences of
H(BUn(E/k))-modules

0 // H∗−2n,∗′−n(N
⊗m+1

> ⊗BUn(E/k))
·cn //

��

H∗,∗′ (N
⊗m

> ⊗BUn(E/k)) //

��

H∗,∗′ (N
⊗m

> ⊗BUn−1(E/k)) //
� _

��

0

0 // H∗−2n,∗′−n(Xα ⊗ BUn(E/k))
·cn // H∗,∗′ (Xα ⊗ BUn(E/k)) // H∗,∗′ (Xα ⊗ BUn−1(E/k)) // 0

By the very same arguments of the previous case, the central vertical morphism
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is injective and

H(N⊗m

> ⊗BUn(E/k)) =
⊕

i∈Z≥0

H(N⊗m+i

> ⊗BUn−1(E/k)) · cin

=
⊕

i1,...,in∈Z≥0

H(N
⊗m+

∑
l odd

il

> ) · ci11 · · ·cinn

as an H(BUn(E/k))-submodule of H(Xα ⊗ BUn(E/k)), which completes the
proof. �

As a corollary of the previous theorem we obtain the description of the motivic
cohomology ring of BUn(E/k) as an H-algebra.

Theorem 6.4 For any n ∈ Z≥0 there exist cohomology classes ci of bidegree
(i)[2i] for 1 ≤ i ≤ n and dj of bidegree (j)[2j + 1] for 1 ≤ j odd ≤ n such that
the motivic cohomology ring of BUn(E/k) is given by

H(BUn(E/k)) =
H [ci, dj ]1≤i≤n,1≤j odd≤n

R

where R is the ideal generated by τdj + {α}cj, Ann({α}) · dj and cj′dj + cjdj′

for any 1 ≤ j, j′ odd ≤ n.

Proof. By Theorem 6.3 we have a monomorphism of rings

H(BUn(E/k)) =
⊕

i1,...,in∈Z≥0

H(N
⊗

∑
l odd

il

> ) · ci11 · · ·cinn → H(Xα)[c1, . . ., cn]

from which we deduce that H(BUn(E/k)) is generated as an H-algebra by the
ci and the µcj for j odd. Let us denote by dj these elements. Then, the relations
among ci and dj that generate R follow immediately by Proposition 5.4 and
by noticing that µcj · cj′ = cj · µcj′ for any 1 ≤ j, j′ odd ≤ n. This amounts to
say that there is an epimorphism

p :
H [ci, dj ]1≤i≤n,1≤j odd≤n

R
→ H(BUn(E/k))

We can check its injectivity by looking separately at each restriction

p : p−1(H(N
⊗

∑
l odd

il

> ) · ci11 · · ·cinn )→ H(N
⊗

∑
l odd

il

> ) · ci11 · · ·cinn

Notice that H(N
⊗

∑
l odd

il

> ) · ci11 · · ·cinn is generated as a KM (k)/2-module by

µmci11 · · ·cinn for any 0 < m ≤∑
l odd il and τ

m′

ci11 · · ·cinn for any m′ ≥ 0. More-

over, the elements in p−1(H(N
⊗

∑
l odd

il

> )·ci11 · · ·cinn ) that map to these generators
through p are unique. Then, injectivity follows by looking at the restriction

of p on each diagonal of p−1(H(N
⊗

∑
l odd

il

> ) · ci11 · · ·cinn ) which is an isomorphism

to KM (k)/2
Ann({α}) on positive diagonals and to KM (k)/2 on the others. �
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7 Comparison between BUn(E/k) and BO(h̃n)

Since there exists an obvious homomorphism of groups Un(E/k) → O(h̃n), it

is reasonable to compare the classifying spaces BUn(E/k) and BO(h̃n) and, in
particular, the characteristic classes arising from both.
Before proceeding, we highlight that, given a quadratic form q, there is the
following isomorphism

O(q ⊥ 〈b〉)/O(q) ∼= Aq⊥〈b〉=b

where by Aq⊥〈b〉=b we mean the affine quadric defined by the equation q ⊥
〈b〉 = b.
For sake of simplicity, we will express by pn the quadratic form 〈〈α〉〉 ⊥ (n−1)H
and by pn− 1

2
the quadratic form 〈−α〉 ⊥ (n− 1)H.

In the following theorem we compute the motivic cohomology ring of BO(pn).

Theorem 7.1 For any n ∈ Z≥0 there exist cohomology classes ui of bidegree
([i/2])[i] for 1 ≤ i ≤ 2n and a class v2n+1 of bidegree (n)[2n+ 1] such that the
motivic cohomology ring of BO(pn) is given by

H(BO(pn)) =
H [u1, . . ., u2n, v2n+1]

(τv2n+1 + {α}u2n, Ann({α}) · v2n+1)

Proof. We start by noticing that

O(pn)/O(pn− 1
2
) ∼= Apn=1

From the fact that O(pn− 1
2
) ∼= O2n−1 we obtain by Theorem 4.3 that

H(BO(pn− 1
2
)) = H [u1, . . . , u2n−1]

Then, from [14, Proposition 3.2.4] it follows that

H(N⊗m

> ⊗BO(pn− 1
2
)) = H(N⊗m

> )⊗H H [u1, . . . , u2n−1]

and

H(Xα ⊗BO(pn− 1
2
)) = H(Xα)[u1, . . . , u2n−1]

Now, by recalling that M(Apn=1) = T ⊕N>(n)[2n− 1] and N>⊗Xα
∼= Xα and

using Propositions 3.3, 4.1 and 4.2, we obtain a long exact sequence in motivic
cohomology

. . .→ H∗−1,∗′

(Xα ⊗BO(pn− 1
2
))

h∗

−→ H∗−2n,∗′−n(Xα ⊗BO(pn))
f∗

−→

H∗,∗′

(Xα ⊗BO(pn))
g∗

−→ H∗,∗′

(Xα ⊗BO(pn− 1
2
))→ . . .
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Hence, by the same arguments of Theorem 6.3 and denoting by u2n the class
f∗(1) we get that

H(Xα ⊗BO(pn)) = H(Xα)[u1, . . . , u2n]

As in the odd case of Theorem 6.3, for any m we get a long exact sequence of
H(BO(pn))-modules

. . .→ H∗−1,∗′

(N⊗m

> ⊗BO(pn− 1
2
))

h∗

−→ H∗−2n,∗′−n(N⊗m+1

> ⊗BO(pn))
f∗

−→

H∗,∗′

(N⊗m

> ⊗BO(pn))
g∗

−→ H∗,∗′

(N⊗m

> ⊗BO(pn− 1
2
))→ . . .

Hence, by exactly the same arguments of Theorem 6.3 and denoting by u2n
the class f∗(1) we obtain, for any m, a morphism of short exact sequences of
H(BO(pn))-modules

0 // H∗−2n,∗′−n(N
⊗m+1

> ⊗BO(pn))
·u2n //

��

H∗,∗′ (N
⊗m

> ⊗BO(pn)) //

��

H∗,∗′ (N
⊗m

> ⊗BO(p
n− 1

2
)) //

� _

��

0

0 // H∗−2n,∗′−n(Xα ⊗ BO(pn))
·u2n // H∗,∗′(Xα ⊗ BO(pn)) // H∗,∗′ (Xα ⊗ BO(p

n− 1
2

)) // 0

From this it follows that

H(N⊗m

> ⊗BO(pn)) =
⊕

i∈Z≥0

H(N⊗m+i

> ⊗BO(pn− 1
2
)) · ui2n

=
⊕

i1,...,i2n∈Z≥0

H(N⊗m+i2n
> ) · ui11 · · ·ui2n2n

and, setting m = 0, we obtain

H(BO(pn)) =
⊕

i1,...,i2n∈Z≥0

H(N⊗i2n
> ) · ui11 · · ·ui2n2n

Moreover, we have a monomorphism of H-algebras

H(BO(pn))→ H(Xα ⊗BO(pn))

from which we deduce, as in Theorem 6.4, that

H(BO(pn)) =
H [u1, . . ., u2n, v2n+1]

(τv2n+1 + {α}u2n, Ann({α}) · v2n+1)

where v2n+1 is nothing else but the element that maps to µu2n under the
monomorphism H(BO(pn))→ H(Xα ⊗BO(pn)). �

At this point, we recall that Xα ⊗ BO(pn) ∼= BO2n ⊗ Xα by [14, Proposition
2.6.1]. Moreover, note that this isomorphism is functorial just by the way it is
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constructed in the proof of [14, Proposition 2.6.1]. In few words, for any torsor
triple (G,X,H) the isomorphism is obtained by considering the bisimplicial
scheme EG×X×EH , then taking the quotient with respect to the left action
of G and the righ action of H in different orders. The claimed isomorphism in
Hs(k) is

Č(X)×BH ∼= (G\(EG×X×EH))/H = G\((EG×X×EH)/H) ∼= BG×Č(X)

where Č(X) is the Čech simplicial scheme of X . So, a morphism of torsor
triples (G,X,H)→ (G′, X ′, H ′) induces a commutative diagram in Hs(k)

Č(X)×BH oo //

��

BG× Č(X)

��
Č(X ′)×BH ′ oo // BG′ × Č(X ′)

where the horizontal maps are isomorphisms.

Proposition 7.2 The isomorphism in motivic cohomology

H(Xα ⊗BO(pn))←→ H(BO2n ⊗ Xα)

induced by the isomorphism Xα ⊗ BO(pn) ∼= BO2n ⊗ Xα maps u2i to u2i and
u2i−1 to u2i−1 + µu2i−2 for any 1 ≤ i ≤ n.

Proof. We proceed by induction on n. For n = 1, by applying the argument just
before this proposition to the morphism of torsor triples (O(〈−1〉), Iso(〈−1〉 ↔
〈−α〉), O(〈−α〉)) → (O2, Iso(q2 ↔ 〈〈α〉〉), O(〈〈α〉〉)), we have the following com-
mutative diagram

H(Xα ⊗BO(〈〈α〉〉)) oo //

��

H(BO2 ⊗ Xα)

��
H(Xα ⊗BO(〈−α〉)) oo // H(BO(〈−1〉)⊗ Xα)

where the bottom horizontal isomorphism maps u1 to u1+µ by [14, Proposition
2.6.1 and Lemma 3.2.6]. Then, the result follows from the fact that u1 and u2
are uniquely determined both inH(Xα⊗BO(〈〈α〉〉)) and in H(BO2⊗Xα) by the
fact that u1 restricts to u1 and u2 vanishes respectively in H(Xα⊗BO(〈−α〉))
and in H(BO(〈−1〉)⊗ Xα).

Now, suppose the statement is true for n − 1. Then, the chain of
morphisms of torsor triples (O2n−2, Iso(q2n−2 ↔ pn−1), O(pn−1)) →
(O(−q2n−1), Iso(−q2n−1 ↔ pn− 1

2
), O(pn− 1

2
)) → (O2n, Iso(q2n ↔ pn), O(pn))
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induces the following commutative diagram

H(Xα ⊗BO(pn)) oo //

��

H(BO2n ⊗ Xα)

��
H(Xα ⊗BO(pn− 1

2
)) oo //

��

H(BO(−q2n−1)⊗ Xα)

��
H(Xα ⊗BO(pn−1)) oo // H(BO2n−2 ⊗ Xα)

In this case we need to understand first the homomorphism

H(BO(pn− 1
2
))→ H(BO(pn−1))

In order to do so, we notice that

O(pn− 1
2
)/O(pn−1) ∼= Ap

n− 1
2
=−1
∼= A〈α〉⊥(n−1)H=1

From M̃(Aαx2=1) = N< we deduce that

M̃(A〈α〉⊥(n−1)H=1) = N<(n− 1)[2n− 2]

Therefore, by Proposition 3.3 we have a long exact sequence in motivic coho-
mology

. . .→ H∗−1,∗′

(BO(pn−1))
h∗

−→ H∗−2n+1,∗′−n+1(N<⊗BO(pn− 1
2
))

f∗

−→

H∗,∗′

(BO(pn− 1
2
))

g∗

−→ H∗,∗′

(BO(pn−1))→ . . .

At this point, notice that H(N<⊗BO(pn− 1
2
)) = H(N<) ⊗H H [u1, . . . , u2n−1]

which implies that ui and v2n−1 are all uniquely liftable toH(BO(pn− 1
2
)) by de-

gree reasons, since H∗,∗′

(N<⊗BO(pn− 1
2
)) is 0 for ∗′ < 0 and for (∗′)[∗] = (0)[0]

and (0)[1], and by Lemma 5.6. Hence, g∗ is an epimorphism since it is a ring ho-
momorphism. Moreover, g∗(ui) = ui for i ≤ 2n−2 since the natural restriction
H(BO(pn− 1

2
))→ H(BO(pn− 3

2
)) factors through H(BO(pn−1)) and the classes

ui are uniquely determined, both in H(BO(pn− 1
2
)) and in H(BO(pn−1)), by

the fact that they restrict to the respective ui or vanish for i = 2n − 2 in
H(BO(pn− 3

2
)). For the same reason, since v2n−1 vanishes in H(BO(pn− 3

2
)),

the element that covers v2n−1 through g∗ has the shape u2n−1 + ǫu1u2n−2,
where ǫ is 0 or 1. Suppose ǫ = 1, then by [14, Proposition 3.1.12] we have
that Sq1(u2n−1 + u1u2n−2) = Sq1Sq1u2n−2 = 0, so Sq1v2n−1 = 0 as well.
But, Sq1v2n−1 maps to Sq1(µu2n−2) in H(Xα ⊗ BO(pn−1)), which again
maps to Sq1(µu2n−2) = µ2u2n−2 + µu1u2n−2 6= 0 in H(BO2n−2 ⊗ Xα) =
H(Xα)[u1, . . . , u2n−2], and we get a contradiction. Hence, ǫ must be 0 and
g∗(u2n−1) = v2n−1.
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Therefore, we have that the isomorphism H(Xα ⊗ BO(pn− 1
2
)) ↔

H(BO(−q2n−1)⊗Xα) maps u2i to u2i and u2i−1 to u2i−1+µu2i−2 for any 1 ≤
i ≤ 2n− 2. Moreover, since H(Xα ⊗ BO(pn− 1

2
))→ H(Xα ⊗BO(pn−1)) maps

u2n−1+µu2n−2 to 0, we have thatH(Xα⊗BO(pn− 1
2
))↔ H(BO(−q2n−1)⊗Xα)

maps u2n−1 to u2n−1 + µu2n−2.
Now, the result follows from the fact that the ui are uniquely determined both
in H(Xα ⊗BO(pn)) and in H(BO2n ⊗Xα) by the fact that they restrict to ui
for i ≤ 2n− 1 and vanishes for i = 2n respectively in H(Xα ⊗BO(pn− 1

2
)) and

in H(BO(−q2n−1)⊗ Xα). �

From Theorem 7.1 we get immediately the following result which provides the
motivic cohomology ring of BO(h̃n).

Theorem 7.3 For any n ∈ Z≥0 there exist cohomology classes ui of bidegree
([i/2])[i] for 1 ≤ i ≤ 2n and a class v2n+1 of bidegree (n)[2n+1] only for n odd

such that the motivic cohomology ring of BO(h̃n) is given by

H(BO(h̃n)) =

{
H[u1,...,u2n,v2n+1]

(τv2n+1+{α}u2n,Ann({α})·v2n+1)
, n odd

H [u1, . . ., u2n], n even

Proof. It follows from the fact that h̃n is split for n even and is isomorphic to
pn for n odd. �

Once we know both the motivic cohomology of BO(h̃n) and BUn(E/k), we can
relate the subtle classes arising from the orthogonal group and those arising
from the unitary group. In particular, we have the following result.

Proposition 7.4 For any n ∈ Z≥0 the natural embedding Un(E/k) →֒ O(h̃n)
induces an epimorphism

H(BO(h̃n))→ H(BUn(E/k))

sending u2i to ci for any 1 ≤ i ≤ n, u2l+1 to 0 for any 0 ≤ l even < n, u2j+1

to dj for any 1 ≤ j odd < n and v2n+1 to dn only for n odd.

Proof. We will proceed by induction. Notice that the induction basis is provided
by the isomorphism U0

∼= O0
∼= Spec(k).

For n odd we have the following commutative diagrams

Un−1(E/k) //

��

Un(E/k)

��

O2n−2

��
O(h̃n− 1

2
) // O(h̃n)

H(BUn−1(E/k)) H(BUn(E/k))oo

H(BO2n−2)

OO

H(BO(h̃n− 1
2
))

OO

H(BO(h̃n))oo

OO
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where by h̃n− 1
2
here we mean the quadratic form 〈−α〉 ⊥ (n− 1)H.

By induction hypothesis we have that u2i goes to ci for any 1 ≤ i ≤ n − 1,
u2l+1 to 0 for any 0 ≤ l even < n− 1 and u2j+1 to dj for any 1 ≤ j odd < n− 1.

The class u2n−1 goes to 0 via the map H(BO(h̃n)) → H(BUn−1(E/k)) since
this factors through H(BO2n−2). Hence, u2n−1 maps to 0 in H(BUn(E/k))
since the morphism H(BUn(E/k))→ H(BUn−1(E/k)) is injective in bidegree
(n− 1)[2n− 1]. Moreover, noticing that

Un(E/k)/Un−1(E/k) ∼= O(h̃n)/O(h̃n− 1
2
)

and by Proposition 3.4, we obtain that u2n goes to cn and v2n+1 goes to dn.

For n even we have similar commutative diagrams

Un−1(E/k) //

��

Un(E/k)

��

O(h̃n−1)

��
O2n−1

// O2n

H(BUn−1(E/k)) H(BUn(E/k))oo

H(BO(h̃n−1))

OO

H(BO2n−1)

OO

H(BO2n)oo

OO

In this case we need to study the homomorphism

H(BO2n−1)→ H(BO(h̃n−1))

In order to do so, we notice that

O2n−1/O(h̃n−1) ∼= Ah̃n−1⊥〈α〉=α
∼= Aα−1h̃n−1⊥〈1〉=1

From M̃(Ax2=α) = N< and since α−1h̃n−1 ⊥ 〈1〉 is isomorphic to 〈α−1〉 ⊥
(n− 1)H, we deduce that

M̃(Aα−1h̃n−1⊥〈1〉=1) = N<(n− 1)[2n− 2]

Hence, by Proposition 3.3 we have a long exact sequence in motivic cohomology

. . .→ H∗−1,∗′

(BO(h̃n−1))
h∗

−→ H∗−2n+1,∗′−n+1(N<⊗BO2n−1)
f∗

−→

H∗,∗′

(BO2n−1)
g∗

−→ H∗,∗′

(BO(h̃n−1))→ . . .

Then, by repeating exactly the same arguments that appear in Proposition 7.2
we get that g∗(ui) = ui for i ≤ 2n− 2 and g∗(u2n−1) = v2n−1.
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Therefore, by induction hypothesis we have that u2i goes to ci for any 1 ≤
i ≤ n − 1, u2l+1 to 0 for any 0 ≤ l even ≤ n − 1 and u2j+1 to dj for any
1 ≤ j odd ≤ n− 1. Moreover, recalling that

Un(E/k)/Un−1(E/k) ∼= O2n/O2n−1

and by Proposition 3.4, we obtain that u2n goes to cn, as we aimed to show. �

As a corollary of the previous proposition and of Theorem 6.4 we get a descrip-
tion of H(BUn(E/k)) as a quotient of H(BO(h̃n)).

Corollary 7.5 For any n ∈ Z≥0 there is an isomorphism

H(BUn(E/k)) ∼=
H(BO(h̃n))

R

where R is the ideal generated by u4j+1, u4i+3u4j+2 + u4j+3u4i+2, τu4j+3 +
{α}u4j+2 and Ann({α}) · u4j+3 for any 0 ≤ i, j ≤ [n−1

2 ], where u2n+1 is
substituted by v2n+1 for n odd.

8 Applications to Hermitian forms

Throughout this section we exploit previous results to study subtle Stiefel-
Whitney classes of quadratic forms divisible by 〈〈α〉〉. The general idea is that
H(BUn(E/k)) is closer to the cohomology of the Čech simplicial scheme of a
quadratic form associated to a hermitian form than H(BO2n).

From [14], we know that for every hermitian form h of the quadratic extension
E/k there exists a commutative diagram

Č(Xh) //

��

BUn(E/k) //

��

BO(h̃n)

��
Spec(k)

h // BetUn(E/k) // BetO(h̃n)

where Č(Xh) is the Čech simplicial scheme of the torsor Xh = Iso(h ↔ hn).
Hence, the computation of the motivic cohomology of BUn(E/k) provides us
with subtle characteristic classes for hermitian forms and relations among them.
More precisely, we have the following proposition.

Proposition 8.1 For any n-dimensional hermitian form h, in H(Č(Xh)) the
following relations hold for any 1 ≤ j, j′ odd ≤ n:
1) cj′ (h)dj(h) + cj(h)dj′ (h) = 0;
2) τdj(h) + {α}cj(h) = 0;
3) Ann({α}) · dj(h) = 0.
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Proof. It follows immediately from Theorem 6.4. �

We now move to consider quadratic forms associated to hermitian ones and
their subtle Stiefel-Whitney classes.
Recall that two hermitian forms are isomorphic if and only if the corresponding
quadratic forms over k are isomorphic. In particular, for even dimensional
hermitian forms we have that they split if and only if the respective quadratic
forms split. It follows that Č(Xh) ∼= Č(Xh̃), for even dimensional hermitian
forms.

Proposition 8.2 For n even, in H(Č(Xh̃)) the following relations hold for
any 0 ≤ i, j ≤ n

2 − 1:

1) u4j+1(h̃) = 0;

2) u4i+3(h̃)u4j+2(h̃) = u4j+3(h̃)u4i+2(h̃);

3) τu4j+3(h̃) = {α}u4j+2(h̃);

4) Ann({α}) · u4j+3(h̃) = 0.

Proof. It follows immediately from Corollary 7.5. �

On the other hand, if q is an odd dimensional quadratic form, then 〈〈α〉〉 ⊗ q is
split over a field extension of k if and only if 〈〈α〉〉 is split over the same field
extension. It follows from this remark that, for odd dimensional hermitian
forms, Č(Xh̃)

∼= Č(Xα), where Č(Xα) stands for the Čech simplicial scheme
associated to the Pfister form 〈〈α〉〉.

Proposition 8.3 For n odd, in H(Č(Xh̃)) = H(Č(Xα)) the following rela-
tions hold for any 0 ≤ j ≤ n−1

2 :

1) u4j+1(h̃) = µu4j(h̃);

2) u4j−1(h̃) = 0.

Proof. Together with the commutative diagram at the beginning of this section,
we have the following one

Č(Xα) //

��

BO2n

��
Spec(k)

h̃ // BetO2n

By [14, Proposition 2.6.1], we know that after tensoring both with Č(Xα) they
coincide. Therefore, our restriction morphism H(BO2n)→ H(Č(Xα)) factors
as

H(BO2n)→ H(BO2n × Č(Xα))↔ H(Č(Xα)×BO(h̃n))→
H(Č(Xα)×BUn(E/k))→ H(Č(Xα))
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which implies the result by Theorem 6.3, Proposition 7.2 and Proposition 7.4.
�

We now show that the subtle classes arising in the unitary case see the triviality
of the torsor of a hermitian form in the same way subtle Stiefel-Whitney classes
do for quadratic forms ([14, Corollary 3.2.32]).

Proposition 8.4 h ∼= hn if and only if c2r (h) = 0 for any r.

Proof. Let us start from the case n even. Then, we have already noticed that h
splits if and only if h̃ splits. This is equivalent to say that u2r+1(h̃) vanishes in
H(Č(Xh̃)) for any r, which is the same of vanishing of c2r (h) in H(Č(Xh)),

since in this case Č(Xh) ∼= Č(Xh̃) and by Proposition 7.4.

For n odd, we have that h splits if and only if h ⊥ 〈−1〉 (which is even dimen-
sional) splits. This amounts to say that c2r (h ⊥ 〈−1〉) = 0 in H(Č(Xh⊥〈−1〉))

for any r, which is equivalent to say that c2r(h) = 0 in H(Č(Xh)) for any r. �

We conclude by presenting an expression of the motive of the torsor associated
to a hermitian form. Indeed, by the very same arguments of [14, Propositions
3.1.11 and 3.2.2] one obtains the description of the motive of the torsor Xh in
terms of motives of Čech simplicial schemes and subtle characteristic classes,
where h is any hermitian form.
Before stating the results, let us denote by c̃j a morphism T → N>(j)[2j]
in DM−

eff (BUn(E/k)) which composed with the only non-zero morphism
N>(j)[2j] → T (j)[2j] gives cj for any j odd. It is actually the unique coho-
mology class in H(N<⊗BUn(E/k)) that maps to cj under the homomorphism
induced by the only non-zero morphism T → N<. Then, we have the following
two propositions.

Proposition 8.5 In DM−
eff (BUn(E/k)) we have

M(EUn(E/k)→ BUn(E/k)) =
⊗

1≤i even≤n

Cone[−1](T ci−→ T (i)[2i])⊗

⊗

1≤j odd≤n

Cone[−1](T c̃j−→ N>(j)[2j])

Proposition 8.6 In DM−
eff (k) we have

M(Xh) =
⊗

1≤i even≤n

Cone[−1](Xh
ci(h)−−−→ Xh(i)[2i])⊗

⊗

1≤j odd≤n

Cone[−1](Xh
c̃j(h)−−−→ N>⊗Xh(j)[2j]).
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