
Documenta Math. 2525

Tensor Products of Affine and

Formal Abelian Groups

Tilman Bauer and Magnus Carlson

Received: September 18, 2018

Revised: September 17, 2019

Communicated by Mike Hill

Abstract. In this paper we study tensor products of affine abelian
group schemes over a perfect field k. We first prove that the tensor
product G1⊗G2 of two affine abelian group schemesG1, G2 over a per-
fect field k exists. We then describe the multiplicative and unipotent
part of the group schemeG1⊗G2. The multiplicative part is described
in terms of Galois modules over the absolute Galois group of k. We
describe the unipotent part of G1 ⊗ G2 explicitly, using Dieudonné
theory in positive characteristic. We relate these constructions to
previously studied tensor products of formal group schemes.
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1 Introduction

Let C be a category with finite products. The category Ab(C) of abelian group
objects in C consists of objects A ∈ C together with a lift of the Yoneda functor
HomC(−, A) : C

op → Set to the category Ab of abelian groups. Alternatively,
Ab(C) consists of objects A ∈ C with an abelian group structure µ : A×A→ A
with unit η : I → A, where I is the terminal object in C, and morphisms
compatible with this abelian group structure.
On this additive category Ab(C), it makes sense to talk about bilinear maps:

Definition 1.1. Let C be as above, and A, A′, B ∈ Ab(C). Then a morphism
b ∈ HomC(A×A′, B) is called bilinear if the induced map

HomC(−, A)×HomC(−, A
′) → HomC(−, B)
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is a bilinear natural transformation of abelian groups. Denote by Bil(A,A′;B)
the set of such bilinear morphisms.
A (necessarily unique) object A⊗A′ together with a bilinear morphism a : A×
A′ → A⊗A′ in C is called a tensor product if the natural transformation

HomAb(C)(A⊗A′,−) → Bil(A,A′;−); f 7→ f ◦ a,

is a natural isomorphism.

Goerss showed:

Theorem 1.2 ([Goe99, Proposition 5.5]). Suppose C has finite products, Ab(C)
has coequalizers and the forgetful functor Ab(C) → C has a left adjoint. Then
tensor products exist in Ab(C).

In this paper, we study tensor products in the category AbSchk of abelian group
objects in affine schemes over a field k, that is, abelian affine group schemes,
or, in short, affine groups. The category of affine groups is anti-equivalent to
the category Hopfk of abelian (i. e. bicommutative) Hopf algebras over k.

Convention. Throughout this paper, all groups and all Hopf algebras are
abelian.

Most of our results are known for finite affine groups, that is, groups X =
SpecH where H is a finite-dimensional Hopf algebra over k [DG70, Fon77].
The group schemes considered here are expressly not finite.

We first show that Thm. 1.2 is applicable in the cases of interest:

Theorem 1.3. Tensor products exist in Hopfk. If k is perfect, then tensor
products also exist in AbSchk.

We will now briefly recall the classification of affine groups, formal groups, and
finite group schemes. An affine formal scheme in the sense of Fontaine [Fon77] is
an ind-representable functor X : algk → Set from finite-dimensional k-algebras
to sets. The category Fgpsk of (affine, commutative) formal groups over k
consists of the abelian group objects in the category FSchk of formal schemes,
i. e. functors G : algk → Ab whose underlying functor to sets is a formal
scheme. The category Fgpsk of formal groups is anti-equivalent to the category
FHopfk of formal Hopf algebras, i. e. complete pro-(finite dimensional) k-
algebras H with a comultiplication H → H⊗̂kH and an antipode.

There is an anti-equivalence of categories

Homk(−, k) : Hopfk ⇆ FHopfk :Homc
k(−, k),

where Homc
k(H, k) denotes the continuous k-linear dual. By passing to the

functors represented by these objects, we obtain an anti-equivalence between
the category AbSchk of affine groups and the category Fgpsk of formal groups,
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called Cartier duality [Fon77, §I.5] and denoted by G 7→ G∗. Thus we have the
following diagram of anti-equivalences:

AbSchk Fgpsk

Hopfk FHopfk

O

(−)∗

O

(−)∗

Spec

Homk(−,k)
Spf

Homc
k(−,k)

(1.4)

The category of finite group schemes is, in a certain sense, the intersection of
AbSchk and Fgpsk, and thus Cartier duality gives an anti-auto-equivalence
G 7→ G∗ of finite affine groups, which can be thought of as the inter-
nal homomorphism object G∗ = Hom(G,Gm) into the multiplicative group
Gm = Spec k[Z]. In general, if G and H are affine groups, the group functor
Hom(G,Gm) : Algk → Ab fails to be representable by an affine group scheme
(or even by a group scheme). If however G is finite and H = Gm, then this
functor is representable by a finite group scheme [Mil17, §11.c].
The reason for restricting attention to perfect fields in Thm. 1.3 is that the
category of affine groups over them is a product of the full subcategories of
multiplicative and of unipotent groups [Fon77, §I.7].
An affine groupG is called multiplicative if OG⊗kk̄ is isomorphic to a group ring
k̄[A] for some abelian group A; it is not required that OG itself is a group ring,
but it has to be after base change to a separable (and hence algebraic) closure
k̄ of k. It is unipotent if it has no multiplicative subgroups, which is equivalent
to its Hopf algebra H being conilpotent : for every element x ∈ H , there is an
n ≥ 0 such that the nth iterated reduced comultiplication ψ(n−1) : H̃ → (H̃)⊗n

on the augmentation coideal H̃ = H/k is zero. The corresponding splitting on
the formal group side is into étale formal groups and connected formal groups.
A formal groupG is étale if OG is a (possibly infinite) product of finite separable
field extensions of k, and it is called connected if OG is local, or, equivalently,
if G(k′) = 0 for all finite field extensions k′ of k. The anti-equivalences of (1.4)
thus respect these splittings into full subcategories:

AbSchk AbSchmk ×AbSchuk Fgpsek ×Fgpsck Fgpsk

Hopfk Hopfmk ×Hopfuk FHopfek ×FHopfck FHopfk .

∼=

O

(−)∗

O
(−)∗

∼=

∼=

Spec
Homk(−,k)

Spf

Homc
k(−,k)

∼=

(1.5)
Finite group schemes, which are both affine and formal, thus split into
four types: multiplicative-étale, multiplicative-connected, unipotent-étale, and
unipotent-connected, but such a fine splitting does not generalize to infinite
groups.
Theorem 1.3 does not give us an explicit way to compute tensor products. The
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main part of this paper deals with this. In order to do this, we use alternative
descriptions of the above categories:

Theorem 1.6 ([Fon77, §I.7]). Let k be a field and Γ its (profinite) absolute
Galois group. Then the category Fgpsek is equivalent to the category ModΓ of
abelian groups with a discrete Γ-action. Concretely, the equivalence is given by

Fgpsek ModΓ,

G 7→colimk⊆k′⊆k̄ G(k′)

Spf mapΓ(M,k̄)←[M

where k′ runs through all finite field extensions of k. Similarily, the category
of multiplicative Hopf algebras is equivalent to ModΓ by

Hopfmk ModΓ,
Gr: H 7→Gr(H⊗k k̄)

k̄[M ]Γ←[M

where Gr denotes the functor of grouplike elements of a Hopf algebra.

In characteristic 0, any unipotent Hopf algebra H is generated by its primitives
PH and isomorphic to Sym(PH) by [MM65]; in particular, the functor P is an
equivalence of categories with the category Vectk of vector spaces. We prove:

Theorem 1.7. Let k be a field of characteristic 0 with absolute Galois group
Γ. Then under the equivalence of categories (Gr, P ) : Hopfk

∼
−→ ModΓ ×Vectk,

the tensor product is given by

(M1, V1)⊗ (M2, V2) = (M1⊗M2, (M1⊗ k̄)
Γ⊗k V2⊕ (M2⊗ k̄)

Γ⊗k V1⊕V1⊗k V2)

with unit (Z, 0) with the trivial Γ-action on Z.

Theorem 1.8. Let k be a field of characteristic 0 with absolute Galois
group Γ. Then under the contravariant equivalence of categories AbSchk ≃
ModΓ ×Vectk, the tensor product is given by

(M1, V1)⊗ (M2, V2) = (TorZ(M1,M2), V1 ⊗ V2).

Note that this tensor product does not have a unit since (Z, 0) × (M,V ) = 0
for all (M,V ) (the pair (Z, 0) corresponds to the multiplicative group Gm).
If k is a perfect field of characteristic p > 0, Dieudonné theory gives an equi-
valence of the category of affine groups over k with modules over the ring

R =W (k)〈F, V 〉/(FV − p, V F − p, φ(a)F − Fa, aV − V φ(a)) (a ∈W (k)),

where W (k) is the ring of p-typical Witt vectors of k, 〈F, V 〉 denotes the free
noncommutative algebra generated by two indeterminates F and V (called
Frobenius and Verschiebung), and φ : W (k) →W (k) is the Witt vector Frobe-
nius, a lift toW (k) of the pth power map on k. We denote the subring generated
by W (k) and F by F , and the subring generated by W (k) and V by V .
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Although not intrinsically necessary, it will be convenient for the formulation
of our results to restrict attention to p-adic affine groups over k, that is, affine
groups G that are isomorphic to limnG/p

n.
The following Theorem is essentially due to [DG70]:

Theorem 1.9. Let Dmodp
k denote the full subcategory of left R-modules con-

sisting of those M such that every x ∈ M is contained in a V-submodule of
finite length. Then there is an anti-equivalence of categories

D : {p-adic affine groups over k} → Dmodp
k .

Under this equivalence, multiplicative groups correspond to R-modules where
V acts as an isomorphism, while unipotent groups correspond to those modules
where V acts nilpotently.

Definition 1.10. Let K, L ∈ Dmodk, and write K ∗ L for the F -module

Tor
W (k)
1 (K,L) with the diagonal F -action.

Define a symmetric monoidal structure � on Dmodk by

K � L ⊆ HomF(R,K ∗ L);

K � L =

{
f : R → K ∗ L

∣∣∣∣∣
(1 ∗ F )f(V r) = (V ∗ 1)f(r)
(F ∗ 1)f(V r) = (1 ∗ V )f(r)

}
.

We let K�
uL ⊂ K�L be the maximal unipotent submodule of K�L, i.e. the

submodule consisting of those x ∈ K � L such that V nx = 0 for some n > 0.
It is clear that �

u also defines a symmetric monoidal structure on Dmodk .

We will not state the full formula for the tensor product of two affine group
schemes in all its intricate glory in this introduction (Cor. 13.3 for the impatient
reader). We will content ourselves with giving some special cases of the formula
for G1 ⊗G2.
Recall that if G is a finite type group scheme, then π0(G) is the group scheme
such that Oπ0(G) is the maximal étale subalgebra of OG. When G is not of finite
type, it is still the filtered limit of its finite type quotient groups G′, and we
define π̂0(G) = limπ0(G

′) to be the corresponding pro-étale group (cf. Def. 4.2).

Proposition 1.11. Let k be perfect of arbitrary characteristic, and let G1, G2

be two affine groups over k with G2 of multiplicative type, i. e. G2
∼= Spec k̄[M ]Γ

for some M ∈ ModΓ. Then G1 ⊗G2 is multiplicative, and

OG1 � OG2
∼= k̄[Homc(π̂0(G1)(k̄),M)]Γ

where Homc denotes continuous homomorphisms of abelian groups into the
discrete module M , and Γ acts by conjugation on Homc(π̂0(G1)(k̄),M).

The formula for G1⊗G2 when both G1 and G2 are unipotent is quite involved.
The tensor product of two unipotent group schemes does not need to be unipo-
tent. The following Theorem gives a formula for the unipotent part of G1⊗G2

(for the full formula, we again refer to Cor. 13.3).
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Theorem 1.12. Let G1, G2 be unipotent groups over a perfect field k of positive
characteristic. Then the unipotent part of D(G1 ⊗G2) is isomorphic to

D(G1) �
u D(G2).

In [Hed14], Hedayatzadeh studies tensor products of finite p-torsion group
schemes over a perfect field k of characteristic p > 0. He shows that the tensor
product G1 ⊗ G2 of two finite p-torsion group schemes G1, G2 exists and is
a group scheme that is an inverse limit of finite p-torsion group schemes.
A monoidal structure ⊠ is then defined on the category of Dieudonné modules,
which is the same as the monoidal structure defined by Goerss in [Goe99].
Let D∗ be the covariant Dieudonné functor, which takes a finite p-torsion group
scheme G to D(G∗), where G∗ is the Cartier dual. Hedayatzadeh then shows
that if G1 and G2 are two finite p-torsion group schemes, then D∗(G1 ⊗G2) is
naturally isomorphic to D∗(G1)⊠D

∗(G2), that is, D∗ is monoidal. Our results
generalize his results on tensor products of finite p-torsion group schemes
to all affine group schemes over a perfect field k. The methods we use are
different from the ones of Hedayatzadeh’s, we work more in the spirit of [Goe99].

The tensor product of (non-formal) Hopf algebras is not studied in this paper.
The tensor product of graded Hopf algebras over a perfect field k has been stu-
died in detail by Goerss [Goe99]. His methods were later used by Buchstaber–
Lazarev [BL07] to work out the tensor product of non-graded Hopf algebras.
The tensor product in the ungraded situation has also been studied by Hopkins
and Lurie in [HL13]. The main focus of this paper is the study of the tensor
product of formal Hopf algebras and the tensor product of affine group schemes
(over a perfect field). One problem which arises out of this paper is whether
the tensor product of two affine group schemes G1 and G2 over a complete
discrete valuation ring R with a perfect residue field (such as Zp) exists. If
the tensor product does exist, one would then like to characterize G1 ⊗ G2 in
terms of data coming from G1 and G2. For finite group schemes, this has been
carried out to some extent by [Hed14], but for general affine group schemes,
the problem is open.

We would like to thank the anonymous referee for many helpful comments and
suggestions.

2 Tensor and cotensor products

In this section, we will show that tensor products (in the sense of Def. 1.1) exist
in the category of affine groups and in the category of abelian Hopf algebras
over perfect fields k.

We can apply Theorem 1.2 to show the first part of Theorem 1.3:

Theorem 2.1. Let k be a field. Then tensor products exist in the categories
Hopfk of abelian Hopf algebras and Fgpsk of formal groups.
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Proof. The category Hopfk has all colimits, in particular coequalizers, and the
forgetful functor Hopfk → Coalgk from abelian Hopf algebras to coalgebras
has a left adjoint, the free abelian Hopf algebra functor. By Theorem 1.2, the
tensor product exists. For the sake of concreteness, we give an explicit formula
for the tensor product H1 ⊠H2 [Goe99, Lemma 5.4].

Notation. We follow Sweedler [Swe69, §1.2] to denote the comultiplication ∆
in a Hopf algebra (or coalgebra) H by

∆(a) =
∑

(a)

a(1) ⊗ a(2).

The coaugmentation is denoted by ǫ : H → k.

Now, for H1, H2 ∈ Hopfk, the tensor product H1 ⊠H2 is the quotient of the
symmetric algebra S(H1 ⊗H2) modulo the ideal generated by the elements





h1h
′
1 ⊗ h2 −

∑
(h2)

(h1 ⊗ h
(1)
2 )(h′1 ⊗ h

(2)
2 )

h1 ⊗ (h2h
′
2)−

∑
(h1)

(h
(1)
1 ⊗ h2)(h

(2)
1 ⊗ h′2)

1⊗ h2 − ǫ(h2)1

h1 ⊗ 1− ǫ(h1)1.

(2.2)

The comultiplication on H1 ⊠H2 is given by

∆(h1 ⊗ h2) =
∑

(h1)

∑

(h2)

(h
(1)
1 ⊗ h

(1)
2 )⊗ (h

(2)
1 ⊗ h

(2)
2 ),

and the counit by
ǫ(h1 ⊗ h2) = ǫ(h1)ǫ(h2).

The category FSchk of affine formal schemes is equivalent with the category
Coalgk of cocommutative k-coalgebras by the fundamental theorem on coalge-
bras over a field [Swe69, §2.2]: any coalgebraC is the union of the directed set of
its finite-dimensional sub-coalgebras Ci, and the functor C 7→ Spf Hom(Ci, k)i
gives the desired equivalence. Since abelian group objects in FSchk are precisely
formal groups, tensor products also exist in Fgpsk.

Remark 2.3. The unit object in Hopfk is the free Hopf algebra on the coal-
gebra k, which is the group ring k[Z]. Hence in formal groups, the unit is the
constant formal group Z = Spf kZ.

Dealing with the case of affine groups is not quite as straightforward. Although
the abelian group objects in Schk and in Coalgk are in both cases the abelian
Hopf algebras, the tensor products are not the same; rather, they are dual to
each other. The tensor product of affine groups can be thought of as classifying
cobilinear maps of Hopf algebras.
To construct tensor products, we need to show that for a perfect field k, there
exists a free affine group functor, i.e a left adjoint to the forgetful functor
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AbSchk → Schk to the category of affine schemes. To construct this functor,
recall (e.g. from [GW10, Theorem 14.83]):

Proposition 2.4. For any field k with absolute Galois group Γ, extension
of scalars from the category Algk to the category Algk̄,Γ of k̄-algebras with a
continuous semilinear Γ-action, is an equivalence. The inverse is given by Γ-
fixed points.

We can now show the existence of tensor products of affine groups:

Proof of Thm. 1.3. The categoryAbSchk of affine groups has coequalizers since
the category Hopfk has equalizers, and the existence of tensor products of affine
groups follows from Theorem 1.2 if we can show that there is a cofree abelian
Hopf algebra functor on commutative k-algebras. By (1.5), it is enough to
construct a cofree multiplicative Hopf algebra functor and a cofree unipotent
Hopf algebra functor separately.
For the cofree multiplicative Hopf algebra, first suppose that k is algebraically
closed. We claim that k[A×] is the cofree multiplicative Hopf algebra on the
k-algebra A, where A× denotes the group of units of A. Indeed, let H = k[M ]
be another multiplicative Hopf algebra. Then

HomHopfk(H, k[A
×]) ∼= Hom(M,A×) ∼= HomAlgk

(k[M ], A),

proving that k[A×] is cofree in this case.
For an arbitrary perfect field k, the absolute Galois group Γ acts on the group
ring HA =def k̄[(A ⊗ k̄)×], and the cofree multiplicative Hopf algebra on A is
given by the fixed points HΓ

A of this action. Indeed, let H be a multiplicative
Hopf algebra. By Thm. 1.6, H ⊗k k̄ ∼= k̄[M ] for some Γ-module M . Then

HomHopfk(H,H
Γ
A)

∼= HomHopfk̄,Γ
(k̄[M ], HA) ∼=

Thm. 1.6
HomΓ(M, (A⊗ k̄)×)

where Hopf k̄,Γ is the category of Hopf algebras over k̄ with a continuous semi-
linear Γ-action. On the other hand, by Prop. 2.4,

HomAlgk
(H,A) ∼= HomAlgk̄,Γ

(k̄[M ], A⊗ k̄) ∼= HomModΓ(M, (A⊗ k̄)×),

proving that HΓ
A is cofree.

The cofree unipotent Hopf algebra on a k-algebra A was first constructed by
Takeuchi [Tak74, Prop. 1.5.7]. This is the maximal cocommutative sub-Hopf
algebra of the cofree non-cocommutative unipotent Hopf algebra, which was
later constructed in [NR79]. The latter is, as a vector space, the tensor algebra
C(A) =

⊕
n≥0A

⊗kn, which obtains a comultiplication by splitting up tensors in
all possible ways, and the multiplication map is the unique algebra map giving
C(A) the structure of a Hopf algebra such that the projection map C(A) → A
is an algebra map. The cofree cocommutative unipotent Hopf algebra, then,
is the sub-Hopf algebra of symmetric tensors

⊕
n≥0(A

⊗kn)Σn . To see that
this indeed is the cofree cocommutative unipotent Hopf algebra, note that a
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map f : H → C(A) where H is cocommutative has image contained in the
sub-Hopf algebra of symmetric tensors. Thus, the cofree property follows from
[NR79, Prop. 1.3]

Example 2.5. The cofree cocommutative Hopf algebra on the algebra k is given
as follows. Its multiplicative part is k̄[k̄∗]Γ. In characteristic 0, its unipotent
part is the primitively generated Hopf algebra k[x], while in characteristic p, it
is the unique Hopf algebras structure on k[b(0), b(1), . . . ]/(b

p

(i) − b(i)) with b(0)
primitive and the Verschiebung acting by V (b(i+1)) = b(i) for i ≥ 0. Thus,
as opposed to the case of formal schemes (Rem. 2.3), this basic free object is
neither connected nor étale.

3 Hopf algebras and formal groups in characteristic zero

Throughout this section, let k be a field of characteristic 0 with algebraic closure
k̄ and absolute Galois group Γ. The aim of this section is to describe the tensor
products of (formal) group schemes over k explicitly and constructively and
prove Thm. 1.7.
By (1.5), any Hopf algebra over k splits as a product Hm ⊗ Hu of a Hopf
algebra of multiplicative type and a unipotent Hopf algebra. The functor of
primitives P : Hopfuk → Vectk is an equivalence with inverse the symmetric
algebra functor Sym. It follows immediately that the tensor product H1 ⊠H2

of unipotent Hopf algebras is isomorphic to Sym(PH1 ⊗ PH2).
The situation for Hopf algebras of multiplicative type is a bit muddier. Let
us first assume that k is algebraically closed. Then by Thm. 1.6, every Hopf
algebra H of multiplicative type is the group ring of its grouplike elements:
H = k[Gr(H)]. Thus the tensor product of multiplicative Hopf algebras is
given by H1 ⊠H2

∼= k[Gr(H1)⊗Gr(H2)].
If H1

∼= k[A] is of multiplicative type and H2 = Sym(V ) is unipotent then
there is an isomorphism of Hopf algebras

k[A]⊠ Sym(V ) → Sym(A⊗ V ); [a]⊗ v 7→ a⊗ v for a ∈ A, v ∈ V.

Here, following (2.2), [a] ∈ A is grouplike, v ∈ V is primitive,

∆([a]⊗ v) = ([a]⊗ v)⊗ ([a]⊗ 1) + ([a]⊗ 1)⊗ ([a]⊗ v)

∼ ([a]⊗ v)⊗ 1 + 1⊗ ([a]⊗ v)) ∈ (k[A]⊠ Sym(V ))⊗ (k[A]⊠ Sym(V )),

and a⊗ v ∈ Sym(A⊗ V ) is primitive. This proves Thm. 1.7 when k = k̄. For
a general k, the equivalence

Gr×P : Hopf k̄ → Ab×Vectk̄

is Γ-equivariant and thus gives an equivalence

Hopf k̄,Γ → ModΓ ×Vectk̄,Γ ≃Prop. 2.4 ModΓ ×Vectk

and Thm. 1.7 follows.
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Example 3.1. Let H1 = Q[x] be the unipotent Hopf algebra primitively
generated by a variable x. Denote by Q〈x〉 the one-dimensional Q-vector
space generated by the element x, so that H1 = Sym(Q〈x〉). Let H2 =
Q[x, y]/(x2 + y2 − 1) be the Hopf algebra with comultiplication given by
x 7→ x ⊗ x − y ⊗ y and y 7→ y ⊗ x − x ⊗ y. Then H2 is multiplicative; in
fact, the map

H2 → Q[i][t, t−1], x 7→
1

2
(t+ t−1), y 7→

1

2
(it− it−1)

is an isomorphism of Hopf algebras between H2 and Q[i][t±1]C2 = Q̄[t±1]ΓQ ,

where C2 acts by sending a Laurent polynomial p(t) to p(t−1). This shows
that the Galois module corresponding to H2 is Z〈i〉, the infinite cyclic group
generated by i, where ΓQ acts nontrivially through its quotient C2.
The above results imply:

• H1 ⊠H1
∼= Sym(Q〈x〉)⊠ Sym(Q〈x〉) = Sym(Q〈x⊗ x〉) ∼= H1;

• H2 ⊠ H2 corresponds to the Galois module Z〈i〉 ⊗ Z〈i〉 ∼= Z and thus
H2 ⊠H2

∼= k[Z];

• H1 ⊠H2 is the unipotent Hopf algebra associated with the vector space

(Z〈i〉 ⊗ Q̄)ΓQ ⊗Q〈x〉 ∼= (Z〈i〉 ⊗Q[i])C2 ⊗Q〈x〉 = Q〈i〉 ⊗Q〈x〉 ∼= Q

since C2 acts by negated complex conjugation. Thus H1 ⊠H2
∼= H1.

By the equivalence of the categories of coalgebras and formal schemes, we can
rephrase Theorem 1.7 as follows:

Corollary 3.2. There is an equivalence of symmetric monoidal categories

Fgpsk → ModΓ ×Vectk

given by G 7→
(
HomFgpsk(Z, Gk̄),HomFgpsk(Ĝa, G)

)
, with the monoidal struc-

ture on the target category as in Thm 1.7.

4 Tensor products of multiplicative affine groups

In this section, we will give an explicit description of the tensor product of
affine groups in any characteristic where at least one factor is of multiplicative
type.

Definition 4.1. Given two affine groups G1, G2 over a field k, denote by �

the operation on k-Hopf algebras which satisfies

OG1⊗G2
∼= OG1 � OG2 .
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Let π0(G) be the étale group of components of an algebraic group G [Mil17,
§5.i], i. e. the initial étale group under G.

Definition 4.2. Let G be an affine group over any perfect field k. The pro-
étale group of connected components is defined as

π̂0(G) = lim{π0(G
′) | G′ finite-type quotient of G}.

Note that π̂0(G)(k̄) = limi∈I π0(Gi)(k̄) is a profinite Γ-module, which is finite
if G is of finite type.

Proposition 4.3. Let k be perfect of any characteristic, and let G1, G2 be two
affine groups over k with G2 of multiplicative type, i. e. G2

∼= Spec k̄[M ]Γ for
some M ∈ ModΓ. Then G1 ⊗G2 is multiplicative, and

OG1 � OG2
∼= k̄[Homc(π̂0(G1)(k̄),M)]Γ

where Homc denotes continuous homomorphisms of abelian groups into the
discrete module M , and Γ acts by conjugation on Homc(π̂0(G1)(k̄),M).

Proof. We first show that G1 ⊗G2 has no unipotent part and hence is multi-
plicative. By [DG70, IV §1 no 2, Théorème 2.2], it suffices to show that

HomAbSchk
(G1 ⊗G2,Ga) = Hom(G1,Hom(G2,Ga)) = 0,

where the outer Hom is of group-valued functors. But by [GP11, Exposé XII,
Lemme 4.4.1] any group homomorphism from a multiplicative group over
SpecA into Ga,A must be trivial, for any k-algebra A. Thus Hom(G2,Ga) = 0.
To determine the multiplicative part, let K be a multiplicative group, without
loss of generality of finite type. Then by [GP11, Exposé VIII, Corollaire 1.5],
the group-valued functor Hom(G2,K) is isomorphic to the constant group as-
sociated to the abelian group

HomAb(Gr(OK),Gr(OG2)) = HomAb(Gr(OK),M)

after base change to k̄. In particular, it is representable. Since Hom(G2,K)
is an fpqc sheaf, [DG70, IV, §1, n.o 3, Lemme 3.1] implies by descent that
Hom(G2,K) is an étale scheme over k. Thus,

HomAbSchk
(G1 ⊗G2,K) ∼=HomAbSchk

(G1,Hom(G2,K))
∼=Homc

AbSchk
(π̂0(G1),Hom(G2,K)) (4.4)

since the identity component of G1 must be in the kernel of any morphism to an
étale group. Furthermore, the category of pro-étale groups over k is equivalent
to the category of profinite Γ-modules by the functor taking an étale group to
its k̄-rational points. Thus, (4.4) is isomorphic to

Homc
ModΓ

(π̂0(G1)(k̄),HomAb(Gr(OK),M)),
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where the inner Hom carries the discrete topology. By adjunction, this is in
turn isomorphic to

HomModΓ
(Gr(OK),Homc

Ab(π̂0(G1)(k̄),M)).

By Thm. 1.6, this is just

HomAbSchk
(Spec k̄[Homc

Ab(π̂0(G1)(k̄),M)]Γ,K),

concluding the proof.

Example 4.5. Let µn be the affine group taking a k-algebra to its nth roots
of unity, and assume for simplicity that k is algebraically closed. Then

µn ⊗ µn
∼= Spec k[Homc(π̂0(µn)(k),Z/nZ)].

If the characteristic of k does not divide n, then µn
∼= Z/nZ, so that

π̂0(µn)(k) ∼= Z/nZ, which gives µn⊗µn
∼= Z/nZ. However, if the characteristic

of k does divide n, this is not true. For example, if n = char(k), then

µn ⊗ µn = 0.

Example 4.6. For the group Gm over a perfect field k, we have that
π̂0(Gm)(k̄) = 0, since Gm is of finite type and connected after base change to k̄,
which gives the equality π̂0(Gm) = π0(Gm) = 0, so, a fortiori, π̂0(Gm)(k̄) = 0.
Hence

Gm ⊗G ∼= Spec k̄[Homc
Ab(π̂0(Gm)(k̄),Gr(OG))]

Γ = 0

for all affine groups G. This shows that the tensor product of affine groups
cannot have a unit.

Example 4.7. Let k be an algebraically closed field of characteristic p > 0.
The constant group Z/pZ is unipotent, and Prop. 4.3 gives that

Z/pZ⊗ µp
∼= Spec k[HomAb(Z/pZ,Z/pZ)] ∼= µp.

Thus the tensor product of a unipotent group and a multiplicative group does
not need to be trivial.

Lemma 4.8. Let k be perfect of any characteristic and G = k̄[M ]Γ the multi-
plicative group corresponding to a Γ-module M . Then

π̂0(G) ∼= lim
M ′⊂M

Spec k̄[M ′]Γ,

where M ′ < M runs through the finitely generated submodules of torsion prime
to p if char(k) = p and through all finitely generated torsion submodules if
char(k) = 0.
In particular,

π̂0(G)(k̄) ∼= limHom(M ′, k̄×).
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Proof. By its definition, π̂0(G) = limM ′⊂M Spec k̄[M ′]Γ, whenM ′ runs through
all finitely generated submodules of M . Thus it suffices to show that

π0(G) ∼= k̄[M ′]Γ,

when G is of finite type (i.e. M is finitely generated) and M ′ is its torsion
submodule (torsion prime to p if char(k) = p > 0.) The inclusion M ′ →֒ M
induces a Γ-equivariant map k̄[M ′] → k̄[M ]. It is enough to prove the theorem
when k = k̄. By the structure of finitely generated abelian groups, it suffices
to show that π0(Spec k[M ]) = 0 for M = Z (and M = Z/nZ where n =
pk if char(k) = p > 0) and that π0(Spec k[Z/nZ]) = Spec k[Z/nZ] if p ∤ n.
Indeed, since Spec k[Z] ∼= Gm, we have that π0(Spec k[Z]) ∼= π0(Gm) = 0 and
analogously, since Spec k[Z/pnZ] ∼= µpn we have that π0(Spec k[Z/p

nZ]) = 0
if 0 6= char(k). If p ∤ n, then Spec k[Z/nZ] ∼= Z/nZ, and clearly π0(Z/nZ) ∼=
Z/nZ.
The second part follows by noting, that if G ∼= Spec k̄[M ]Γ for M an abelian
group, then

G(k̄) ∼= HomAlgk̄
(k̄[M ], k̄) ∼= Hom(M, k̄×).

For Γ-modules M1, M2, denote by M1 ∗M2 the Γ-module TorZ1 (M1,M2) with
the “diagonal” Γ-action defined as follows: if the Γ-actions on Mi are given
by pro-maps Γ → End(Mi), where End(Mi) = {Hom(M ′,Mi)}M ′<Mi f.g., then
the diagonal map

Γ → End(M1)× End(M2)
∗
−→ End(M1 ∗M2)

induces a continuous action.

Corollary 4.9. Let k be perfect of any characteristic, and let Gi =
Spec k̄[Mi]

Γ be multiplicative groups associated to Γ-modules Mi (i = 1, 2).
Then

G1 ⊗G2
∼=

{
Spec k̄[M1 ∗M2]

Γ; char(k) = 0

Spec k̄[Z[1/p]⊗ (M1 ∗M2)]
Γ; char(k) = p > 0.

Proof. By Proposition 4.3 and Lemma 4.8, the first component is given by

Gr(OG1 � OG2)
∼= Homc(π̂0(Spec k̄[M1]

Γ)(k̄),M2)

= colim
M ′

Hom(Hom(M ′, k̄×),M2),

whereM ′ runs through the finitely generated torsion submodules ofM1 (torsion
prime to p if char(k) = p). In characteristic 0, the largest torsion submodule
of k̄× is isomorphic to Q/Z, since Q ⊂ k and any torsion point of k̄× must be
a root of unity. Hence the above equals colimM ′ Hom(Hom(M ′,Q/Z),M2) ∼=
M1 ∗M2.
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In characteristic p, F̄p ⊂ k̄, and we see that any homomorphismM ′ → k̄× must
factor through F̄×p . This latter group is isomorphic to the prime-to-p torsion in
Q/Z. Thus

colim
M ′

Hom(Hom(M ′, k̄×),M2) ∼= colim
M ′

Hom(Hom(M ′,Q/Z),M2)

∼= colim
M ′

M ′ ∗M2.

The statement now follows since Z[1/p]⊗ (M1 ∗M2) ∼= colimM ′(M ′ ∗M2).

Proof of Thm. 1.8. In characteristic 0, any unipotent étale group is trivial, and
hence π̂0(G) ∼= π̂0(G

m), where Gm is the multiplicative part of an arbitrary
affine group G. Furthermore, every unipotent Hopf algebra H is isomorphic to
Sym(P (H)). In particular, for H = Cof(A) the cofree unipotent Hopf algebra
on an algebra A,

PH ∼= HomHopfk(OGa
,Cof(A)) ∼= HomAlgk

(k[x], A) ∼= A

and hence Cof(A) ∼= Sym(A). This shows that for unipotent groups G1, G2,

OG1 � OG2
∼= Sym(P (OG1)⊗ P (OG2)). (4.10)

The theorem now follows from Cor. 4.9 .

5 Smooth formal groups over a perfect field of positive cha-

racteristic

From now on, let k be a perfect field of characteristic p > 0 with algebraic
closure k̄ and absolute Galois group Γ. Although we are mainly interested in
affine and formal groups over the field k, certain universal objects are actually
mod-p reductions of smooth formal groups defined over W (k), the ring of (p-
typical) Witt vectors of k. Our arguments require considering a class of such
deformations of groups over k to W (k) (formal groups with a lift of the Ver-
schiebung) in analogy with the arguments employed in [Goe99]. This technical
section is concerned with setting up terminology and proving a classification
result (Thm. 5.5) for this class of deformations.

5.1 Pseudocompact rings and formal schemes over them

We give a brief overview of the notion of pseudocompact rings and modules
in the commutative setting. The reader may want to consult [GP11, Exposé
VIIB] or [Fon77, Ch.1, §3] for more details.

Definition 5.1. A (unital, commutative) linearly topologized ring A is called
pseudocompact if its topology is complete Hausdorff and has a basis of neigh-
borhoods of 0 consisting of ideals I such that A/I has finite length as an
A-module.
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Similarly, if A is a pseudocompact ring, then a pseudocompact A-module M is
a complete Hausdorff topological A-module which admits a basis of neighbor-
hoods of 0 consisting of submodules M ′ ⊂M such that M/M ′ has finite length
as an A-module.
Morphisms of pseudocompact rings and modules are continuous ring and mod-
ule homomorphisms, respectively.
We will denote by PCA the category of pseudocompact modules over a pseu-
docompact ring A.

Note that any Artinian ring is trivially pseudocompact, as is any complete local
Noetherian ring, such as W (k).
Given M , N ∈ PCA, we can form the completed tensor product M⊗̂AN ∈
PCA, which is the inverse limit of the tensor products M/M ′ ⊗A N/N

′ where
M ′ ⊂ M and N ′ ⊂ N range through the open submodules of M and N ,
respectively. A pseudocompact module M ∈ PCA is topologically flat (or
equivalently, projective) if −⊗̂AM is an exact functor. If it is a fortiori isomor-
phic to a direct product of copies of A, we call it topologically free. Then M
is projective if and only if it is locally topologically free, in the sense that the
base change M⊗̂AAm is topologically free for every maximal open ideal m ⊳A.

Definition 5.2. If A is a pseudocompact ring, we say that a commutative A-
algebraB is a profinite A-algebra if the underlying A-module is pseudocompact.
Denoting the category of finite length A-algebras by FAlgA.

A profinite A-algebra B represents a functor Spf B : FAlgA → Set,

Spf B(R) = Homc
A(B,R) (continuous homomorphisms).

A functor FAlgA → Set is a formal scheme if it is representable in this way.
A formal scheme Spf B is said to be connected if B is a local A-algebra. The
category of formal schemes has all limits. A formal group G over A is an
abelian group object in the category of formal schemes. We call G smooth
if for any finite A-algebra B and any square-zero ideal I ⊂ B, the canonical
map G(B) → G(B/I) is surjective. Any étale formal group is smooth, and
a connected formal group is smooth if and only if its representing profinite
A-algebra is a power series algebra [Fon77, §I.9.6].

5.2 Smooth formal groups with a Verschiebung lift and their

indecomposables

Now let A =W (k) be the ring of p-typical Witt vectors over k and let V and F
be the Verschiebung and Frobenius operators on W (k). Let G be a formal
group overW (k) with representing formal Hopf algebra OG. An endomorphism
VG : G → G is called a lift of the Verschiebung if its base change to k is the
Verschiebung on Gk. Note that unless k = Fp, the map VG is not one of formal
groups over W (k). Instead, denoting by FW (k) the Frobenius on W (k), we

have that VG(ax) = F−1
W (k)(a)VG(x) for a ∈ W (k), x ∈ OG. We say that VG is

F−1
W (k)-linear.
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Definition 5.3. The category FgpsVW (k) is the category whose objects are pairs
(G, VG) where G is a connected, smooth formal group over W (k) and VG is a
lift of the Verschiebung. A morphism (G1, VG1) → (G2, VG2) in FgpsVW (k) is
given by a morphism of formal groups f : G1 → G2 such that fVG1 = VG2f.
Denote by HV the full subcategory of complete W (k)-Hopf algebras represent-
ing objects in FgpsVW (k).

Definition 5.4. The category MV is the category whose objects are topolog-
ically free pseudocompact W (k)-modules M (Def. 5.1) together with a contin-
uous F−1

W (k)-linear endomorphism VM . A morphism

(M1, VM1 ) → (M2, VM2)

in MV is a morphism f : M1 → M2 of pseudocompact modules such that
fVM1 = VM2f.

Denoting by IG the augmentation ideal of OG ∈ HV , the (contravariant) func-
tor of indecomposables is defined by

Q : FgpsVW (k) → MV , G 7→ IG/IG
2
,

where IG
2

is the closure of I2G in OG.
The following theorem is the main theorem of this section.

Theorem 5.5. The contravariant functor

Q : FgpsVW (k) → MV

is an anti-equivalence of categories.

Two objects in FgpsVW (k) will figure in the proof, namely, the co-Witt vector
and the finitely supported Witt vector functors, which will be introduced in
Subsection 5.3. Furthermore, the proof requires dualization of the category
FgpsVW (k), and the dual category will be described explicitly in Subsection 5.4.

5.3 Witt vectors and co-Witt vectors

While our main interest is in the Witt vector and co-Witt vector constructions
for k-algebras, we will need them briefly also for W (k)-algebras. Thus we
give a brief review of these constructions for a general (commutative) ring
in this subsection. For a more detailed discussion, see [Fon77, Ch.2, §1] and
[Dem86, Ch. 3].
For a ring A, the ring of (p-typical) Witt vectorsW (A) has two operators F and
V , where V (a0, a1, . . . ) = (0, a0, a1, a2, . . . ) is the Verschiebung (shift) opera-
tor, and F is the Frobenius. If char(A) = p then F (a0, a1, . . . ) = (ap0, a

p
1, . . . )

and V F = FV = p, but in the general case only the identity FV = p holds.
The Frobenius F is a ring map, while the Verschiebung V satisfies Frobenius
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reciprocity: aV (b) = V (F (a)b. For k = A = Fp, the Verschiebung is multipli-
cation by p on W (Fp), while the Frobenius is the identity.
The truncated, or finite-length, Witt vectors Wn(A) are defined similarily as
sequences of length n + 1, and the Verschiebung naturally lives as a map
V : Wn(A) →Wn+1(A)
Modelled by the short exact sequence 0 → Zp → Qp → Qp/Zp → 0 for the
case A = Fp, we define for any ring A a natural short exact sequence of abelian
groups

0 →W (A) → QWu(A) → CWu(A) → 0, (5.6)

where

QWu(A) = colim(W (A)
V
−→W (A)

V
−→ · · · ) = {(ai) ∈ AZ | ai = 0 for i≪ 0}

is the group of unipotent bi-Witt vectors, and

CWu(A) = QW (A)/W (A) = colim(W0(A)
V
−→W1(A)

V
−→ · · · ).

is the group of unipotent co-Witt vectors. In [Fon77], a non-“unipotent” version
CW (A) of CWu(A) is constructed with

CW (A) = {(ai) ∈ AZ≤0 | ai nilpotent for i≪ 0},

and in a similar way, the group-valued functorQW (A) of non-unipotent bi-Witt
vectors exists as an extension of QWu(A).
Note that it is generally not true that QWu(A) or QW (A) are rings or W (A)-
modules since V is not a ring homomorphism. However, we see that if A′ is a
perfect subalgebra (for instance A′ = k) then the Frobenius homomorphism on
W (A′) is an isomorphism, and

W (A′)⊗Wn(A) →Wn(A); x⊗ a 7→ (F−n(x)a)

is a W (A′)-module structure on Wn(A) compatible with the V -colimits in the
definition of QWu(A) and CWu(A), and (5.6) is a short exact sequence of
W (A′)-modules.
Similarily, QW (A) and CW (A) become W (A′)-modules, and we have a natural
short exact sequence of W (A′)-modules

0 →W (A) → QW (A) → CW (A) → 0, (5.7)

and QWu(A) = QW (A)×CW (A) CW
u(A).

For A = k, we have that QW (k) ∼= QWu(k) ∼= Frac(W (k)) is the field of frac-
tions of W (k), and correspondingly CW (k) ∼= CWu(k) ∼= Frac(W (k))/W (k) is
the injective hull of k in the category of W (k)-modules.
The subfunctors CW c ⊂ CW and QW c ⊂ QW defined by

CW c(A) = {(. . . , a−1, a0) | ai nilpotent},
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and similarily for QW , are called the groups of connected co-Witt vectors
and bi-Witt vectors, respectively. We denote by CWu,c = CW c ∩ CWu, the
intersection taken in CW .
If A is a finite k-algebra or, more generally, a pseudocompact W (k)-algebra
(Def. 5.1), then the co- and bi-Witt groups CW (A) and QW (A) and their
connected relatives carry a natural, linear topology, in which they are complete
Hausdorff. An open neighborhood basis of 0 in CW (A) is given by

Un,I = {(ai) ∈ CW (I) | ai = 0 for i > −n}

where n ≥ 0, I ⊳ A with A/I finite length.
We need a finitary version of Witt vectors that is covariant in the length:

Definition 5.8. Let A be a ring and nil(A) its nilradical. Write nil(k)(A) for

nil(A)p
k

, with nil(k) A = nil(A) for k < 0. For n ∈ Z, define the subgroup

Wn(A) = {(a0, a1, . . . ) ∈ W (A) | ai ∈ nil(i−n)(A)} ⊆W (A).

One verifies easily from the definition of the Witt vectors that this is a subgroup.
There are induced maps

i : Wn(A) →Wn+1(A) (inclusion),

F : Wn(A) →Wn−1(A) (Frobenius, cf. [DK14, Lemma 1.4]), and

V : Wn(A) →Wn+1(A) (Verschiebung).

Let W fin(A) denote the union
⋃

nW
n(A). We call this functor from rings to

abelian groups the functor of finitary Witt vectors. The reason for this name
is that if A is a finite ring then W fin(A) consists of finitely supported Witt
vectors.

The functors W fin, CW , CWu, CWu,c, CW c, QW , and QW c restrict to the
category of finite W (k)-algebras (that is, algebras whose underlying modules
are of finite length), and thus restricted are ind-representable (for the case of
CW and its relatives, see e.g. [Fon77, Ch.2, §4]) and thus formal groups.
We will sometimes for clarity use a subscript to denote which base ring they are
defined over. So, for example, CWk denotes the functor CW restricted to finite
k-algebras, while CWW (k) is the restriction to finite W (k)-algebras. Obviously,
by further restriction CWW (k) agrees with CWk on finite k-algebras.

The formal schemes over W (k) underlying CW , CW c, CWu, W fin are repre-
sented by pseudo-compact W (k)-algebras OCW ,OCW c ,OCWu ,OW fin . These
rings are described in [Fon77, Ch.2, §3], and we recall their description here. Let
R =W (k)[x0, x−1, x−2, . . .] be the polynomial ring in infinitely many variables
and for r ≥ 0, let Jr = (x−r, x−r−1, . . . ). Then

OCW = limr,s≥0(R/J
s
r )̂

OCW c = lims≥0(R/J
s
0)̂

OCWu = limr≥0(R/Jr )̂,
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where (−)̂ denotes W (k)-profinite completion. Similarly, the pseudo-compact
W (k)-algebra of OW fin is the completion of the infinite polynomial ring
W (k)[x0, x1, . . .] with respect to the ideals Js

0 + Jr, r, s ≥ 0, where Jr =
(xr , xr+1, xr+2, . . .).
By base change to k, we obtain the defining pro-algebras for OCWk

, OCW c
k
,

OCWu
k
, and OW fin

k
.

5.4 Algebras over OW (k) with a lift of the Frobenius

The opposite category of topologically flat W (k)-modules (and -coalgebras)
can be described as in [GP11, Exposé VIIB] as a subcategory of the category
of OW (k)-modules (resp. -algebras). We now recall these definitions.
Let OW (k) : FAlgW (k) → FAlgW (k) be the identity functor.

Definition 5.9. An OW (k)-module (OW (k)-algebra) M is a functor which to
any A ∈ FAlgW (k) associates an A-module (A-algebra) M(A) and which to any
morphism ϕ : A→ B gives a morphism

M(ϕ) : B ⊗A M(A) →M(B)

of B-modules (B-algebras), satisfying the obvious identity and composition
axioms. We follow the regrettable choice of [GP11] to call M admissible if
M(ϕ) is an isomorphism for all ϕ : A→ B. We will furthermore call M flat if
it is admissible and if for any A ∈ FAlgW (k), M(A) is a flat A-module.

Given an OW (k)-algebra C, we will call a morphism a : OW (k) → C of OW (k)-
modules an element of C and will write a ∈ C. When C is admissible, giving
an element a ∈ C is the same as giving an element of limn C(Wn(k)). Given
an element a ∈ C and a finite W (k)-algebra A, we denote by a|A ∈ C(A) the
evaluation of a(A) at 1 ∈ A.

Theorem 5.10 ([GP11, Proposition 1.2.3.E.]). The functor I : ModW (k) →
ModOW (k)

defined for N ∈ ModW (k) and A ∈ FAlgW (k) by

I(N)(A) = Homc
ModW (k)

(N,A) ∼= Homc
ModA

(A⊗̂W (k)N,A)

restricts to a strongly monoidal anti-equivalence between the category of topo-
logically flat W (k)-modules with the completed tensor product ⊗̂W (k) and that
of flat OW (k)-modules with the objectwise tensor product.

In particular, this anti-equivalence extends to one between flat OW (k)-
coalgebras (respectively flat OW (k)-algebras) and topologically flat W (k)-
algebras (topologically flat W (k)-coalgebras).

Definition 5.11. An OW (k)-algebras with a lift of the Frobenius is a pair
(C,F ), where C is a flat OW (k)-algebra (Def. 5.9) and F is an algebra en-
domorphism of C such that F (k) : C(k) → C(k) is the pth power map on
C(k). We denote by AlgF

W (k)
the category consisting of these, with the obvious

morphisms.
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Using Theorem 5.10, it is easy to see that this category is dual to the category
of topologically flat W (k)-coalgebras with a lift of the Verschiebung.

Let OW (k)[x] = OW (k)[x0, x1, . . . ] denote the flat OW (k)-algebra which to any
A ∈ FAlgW (k) assigns the polynomial ring A[x]. For each n ≥ 0, the element
wn ∈ OW (k)[x] is defined on A by the nth ghost polynomial

wn|A = xp
n

0 + pxp
n−1

1 + · · · pnxn.

Clearly, whenever we have a sequence of elements a = (a0, a1, . . . an) of a flat
OW (k)-algebra C, we can evaluate wn at these elements to get an element

wn(a) ∈ C.

Lemma 5.12 (Dwork’s lemma for flat OW (k)-algebras). Let (C,F ) ∈ AlgF
W (k)

.

Let g = (g
0
, g

1
, . . .) be a sequence of elements in C such that for all n ≥ 1,

g
n+1

|Wn(k) = FWn(k)(gn|Wn(k)) ∈ C(Wn(k)).

Then there are unique elements q such that wn(q) = g
n

for all n.

Proof. Define the algebra

C(W (k)) = lim
n
C(Wn(k)),

where the limit is taken over the canonical projection maps

pn : C(Wn(k)) → C(Wn−1(k)).

Since C is admissible, we have that

C(Wn−1(k)) ∼= C(Wn(k))⊗Wn(k) Wn−1(k)

so that the maps pn are surjective. Furthermore, since each C(Wn(k)) is flat
as a Wn(k)-module, C(W (k)) is torsion free over W (k). The endomorphism
F yields an endomorphism C(W (k)) → C(W (k)), and the elements g

n
yield

honest elements gn ∈ C(W (k)). We now claim that

C(W (k))⊗W (k) Wn(k) ∼= C(Wn(k)).

Indeed, let

0 → C(W (k)) →

∞∏

i=1

C(Wi(k)) →

∞∏

i=1

C(Wi(k)) → 0

be the exact sequence defining the limit, where lim1 vanishes because the system
is Mittag-Leffler. Note that since Wn(k) is a finitely presented W (k)-module,
tensoring with Wn(k) commutes with infinite products. Since

C(Wi(k))⊗W (k) Wn(k) ∼= C(Wn(k))
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for i ≥ n, the limit of the system {C(Wi(k))⊗W (k)Wn(k)}i is C(Wn(k)). Thus
to show that C(W (k)) ⊗W (k) Wn(k) coincides with this limit, it is enough to
show that the induced map

Tor1W (k)

( ∞∏

i=1

C(Wi(k)),Wn(k)
)
→ Tor1W (k)

( ∞∏

i=1

C(Wi(k)),Wn(k)
)

is surjective. But this follows since the inverse system {C(Wi(k))[p
n]}i is

Mittag-Leffler. Indeed, by flatness we have that

C(Wi(k))[p
n] = pi−nC(Wi(k)),

where it is understood that pi−n = 1 if i ≤ n. But given j, this implies that
the map

C(Wj+n(k))[p
n] = pjC(Wj+n(k)) → pj−nC(Wj(k)) = C(Wj(k))[p

n]

is zero, since pj = 0 in the latter algebra. In conclusion, C(W (k)) is a torsion-
freeW (k)-algebra with a lift of the Frobenius. The usual Dwork lemma, applied
to C(W (k)), gives a sequence q ∈ C(W (k)) such that wn(q) = gn. This se-
quence gives elements q satisfying the requirements of the lemma. Conversely,
we see that any sequence of elements q arises in this manner.

Let Wt be the OW (k)-Hopf algebra which to any A ∈ FAlgW (k) associates
the Hopf algebra A[x0, x1, x2, . . .] representing the functor taking a A-algebra
to its ring of p-typical Witt vectors. It comes with a Frobenius lift FWt. We

denote by HopfF
W (k)

the category of pairs (H,FH), where H is an OW (k)-Hopf

algebra and FH is a lift of the Frobenius, with the obvious morphisms. Given
an OW (k)-Hopf algebra H, we say that an element x ∈ H is primitive if x|A
is a primitive element of H(A) for each A ∈ FAlgW (k) . We denote by PH the
primitives of an OW (k)-Hopf algebra.

Lemma 5.13. Let H ∈ HopfF
W (k)

. Then there is a natural isomorphism

e : HomHopfF
W (k)

(Wt, H)
∼=
−→ PH

given by e(f) = f(x0).

Proof. This proof is the same as the proof of [Goe99, Proposition 1.9]; we
include a sketch for the reader’s convenience. The map e is injective by
Lemma 5.12 and the fact that Fn

H(f(x0)) = f(wn). For the surjectivity, one
notes that given a primitive y ∈ PH, all the elements Fn

H(y) are primitive
as well. Using Dwork’s lemma again, we get a map f : Wt → H such that
f(wn) = Fn

H(y). It remains to show that f is a morphism of OW (k)-Hopf al-
gebras and that f commutes with the Frobenius. Both of these are direct
applications of the uniqueness of Lemma 5.12.
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5.5 Proof of Theorem 5.5

There are two objects in the category FgpsVW (k) (Def. 5.3) which will play a key
role in the proof of 5.5, introduced to the reader in 5.3. The first is the functor

CW c
W (k) : FAlgW (k) → Ab,

the functor of connected co-Witt vectors, with the Verschiebung lift VCW c
W (k)

,

where
VCW c

W (k)
(. . . , a−2, a−1, a0) = (. . . , a−2, a−1).

The other object is the functor W fin
W (k) with the Verschiebung lift VW fin

W (k)
. For

A ∈ FAlgW (k), the Verschiebung acts on an element (a0, a1, a2, . . .) ofW fin
W (k)(A)

by shifting to the right. We have that

Q(W fin
W (k))

∼=

∞∏

i=0

W (k)

where

V (x0, x1, x2, . . .) = (F−1
W (k)(x1), F

−1
W (k)(x2), . . . ) ∈

∞∏

i=0

W (k).

On the other hand, Q(CW c
W (k))

∼=
⊕̂∞

i=0W (k), where
⊕̂

denotes the profinite
completion of the direct sum. In this situation, V acts by shifting to the right
and taking F−1

W (k) of the components.

Lemma 5.14. For M ∈ MV (Def. 5.4), there are natural isomorphisms

HomMV
(M,Q(W fin

W (k)))
∼= Homc

W (k)(M,W (k)) ∼=M∗

and
HomMV

(Q(CW c
W (k)),M) ∼= Homc

W (k)(W (k),M) ∼=M.

Proof. Let f : M → Q(W fin
W (k))

∼=
∏∞

i=0W (k) be a map in MV . Writing

f(a) = (f0(a), f1(a), . . .),

we see that
f(V ia) = (F−i

W (k)(fi(a)), F
−i
W (k)(fi+1(a)), . . .),

that is, f0 ◦ V
i = F−i

W (k) ◦ fi. Thus f 7→ f0 gives the first natural isomorphism.

For the second claim, let f : Q(CW c
W (k)) → M be a map in MV . Since

Q(CW c
W (k))

∼=
⊕̂∞

i=0W (k) is free in the sense that any (not necessarily continu-

ous) homomorphism
⊕∞

i=0W (k) → M extends to a continuous homomorphism
fromQ(CW c

W (k)), giving a V -linear homomorphism f :
⊕∞

i=0W (k) →M is the

same as giving a map W (k) →M .
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Lemma 5.15. For G,H ∈ FgpsVW (k), the natural map

HomFgpsV
W (k)

(G,H) → HomMV
(Q(H), Q(G))

is an injection.

Proof. Arguing as in [Goe99, Proposition 2.10], we denote by FgpscQW (k) the
category of connected formal groups over the fraction field QW (k) of W (k)
and by MQW (k) the category of topologically free vector spaces over QW (k).
For a formal group G over W (k), we let GQW (k) be the base change to QW (k)
and will use the same notation for the base change of an element of MV to
MQW (k). We then have a diagram

HomFgpsV
W (k)

(G,H) HomMV
(Q(H), Q(G))

HomFgpsc
QW (k)

(GQW (k), HQW (k)) HomMQW (k)
(Q(H)QW (k), Q(G)QW (k)).

The left hand vertical map is an injection since G and H are smooth, and so
is the right hand vertical map since OG and OH are power series rings. The
lower horizontal map is a bijection by [Fon77, Chapitre II, Proposition 10.6],
thus the upper horizontal map is injective.

Lemma 5.16. If G ∈ FgpsVW (k), then

Q : HomFgpsV
W (k)

(W fin
W (k), G) → HomMV

(QG,Q(W fin
W (k)))

∼= Q(G)∗

is a bijection.

Proof. By Lemma 5.15, this map is an injection. To prove surjectivity, we first
note that the functor I of Thm. 5.10 extends to an anti-equivalence between
the category FgpsVW (k) and the category of OW (k)-Hopf algebras with a lift of

the Frobenius [GP11, Exposé VIIB, 2.2.1]. Under this duality, W fin
W (k) with its

Verschiebung lift corresponds to the OW (k)-Hopf algebraWt of Lemma 5.13. To
see this, note that for any finite W (k)-algebra A, the Artin-Hasse exponential
gives a map

Wt(A) → I(W fin
W (k))(A).

By [DG70, V, §4, n.o 4, Cor. 4.6], this map is an isomorphism modulo p. Thus,
the original map Wt(A) → I(W fin

W (k))(A) is an isomorphism by two applications
of Nakayama’s lemma, the first application showing that it is surjective, and
then using the projectivity of I(W fin

W (k))(A) to show that it is injective. By
duality, an element

x ∈ Q(G)∗ = Homc
W (k)(Q(G),W (k))

gives a coherent family of primitives in I(G). By Lemma 5.13, this coherent
family of primitives gives a map I(G) → Wt ∼= I(W fin

W (k)), and upon dualization

we get a map f : W fin
W (k) → G of formal groups such that Qf = x.

Documenta Mathematica 24 (2019) 2525–2582



2548 Tilman Bauer and Magnus Carlson

In preparation of the next proposition, note that the forgetful functor
MV → M to the category of topologically free modules over W (k) has a
right adjoint J, taking M ∈ M to JM =

∏∞
i=0M with V acting by

V (m0,m1,m2, . . .) = (F−1
W (k)(m1), F

−1
W (k)(m2), . . .),

where by abuse of notation, we write FW (k) for the automorphism of M that
corresponds to the Frobenius on each component under the isomorphism M ∼=∏

iW (k).
Recall (Def. 5.1) that PCW (k) denotes the category of pseudocompact modules
over W (k). We have a forgetful functor MV → PCW (k) (Def. 5.4).

Proposition 5.17. The functor Q :
(
FgpsVW (k)

)op

→ MV has a left adjoint

Fr. For M ∈ MV , the counit map QFr(M) →M is an isomorphism.

Proof. We start by defining the functor Fr. Given M ∈ MV , we have a func-
torial resolution

0 →M
η
−→ JM

d
−→ JM → 0 (5.18)

where

η(m) = (m,FW (k)(V m), F 2
W (k)(V

2m), . . .),

d(m0,m1,m2, . . .) = (m1 − FW (k)(V m0),m2 − FW (k)(V m1), . . .).

Choosing an isomorphism of M ∼=
∏

αW (k), we get an isomorphism JM ∼=∏
αQ(W fin

W (k)). By Lemma 5.16, there is a map

f :
⊕

α

W fin
W (k) →

⊕

α

W fin
W (k) (5.19)

such that Qf = d. We define Fr(M) to be the pushout

⊕
αW

fin
W (k)

⊕
αW

fin
W (k)

SpfW (k) Fr(M)

f

g

in the category FgpsVW (k). An argument is required to see that this pushout
exists. The resolution (5.18) stays exact after applying the forgetful functor
MV → PCW (k). This implies that the map (5.19) is injective in the category
of (not necessarily topologically flat) formal groups over W (k), since the kernel
ker f is a connected group satisfying Q(ker f) = 0. By [GP11, 2.4, Théorème]
the pushout Fr(M) exists, is topologically flat, and the map g is faithfully
flat, which implies that Fr(M) is smooth. Extending this construction in the
obvious way to morphisms between objects in MV , we thus get a functor
Fr : MV → FgpsVW (k) .
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Let us now show that Fr is adjoint to Q and that the counit M → QFr(M) is
an isomorphism. We start by showing that Q(g) : QFr(M) → Q(

⊕
αW

fin
W (k))

is an injection. Consider the base change of the exact sequence

0 →
⊕

α

W fin
W (k)

f
−→

⊕

α

W fin
W (k) → Fr(M) → 0

in the category of formal groups over W (k) to k. We obtain an exact sequence
of formal groups over k,

0 →
⊕

α

W fin
k

fk
−→

⊕

α

W fin
k → Fr(M)k → 0.

Since all the groups involved are smooth, Q is exact, and we get that

Q(Fr(M)k) ∼= Q(Fr(M))⊗̂k → Q(
⊕

α

W fin
k ) ∼= Q(

⊕

α

W fin
W (k))⊗̂k

is injective. Since Q(
⊕

αW
fin
W (k)) is topologically flat, the map g : Q(Fr(M)) →

Q(
⊕

αW
fin
W (k)) is such that ker g⊗̂k → Q(Fr(M))⊗̂k is injective and hence

ker(g)⊗̂k = 0.
By Nakayama’s lemma we then have that ker g = 0. Note that this implies
that Q(Fr(M)) ∼=M, since both are kernels of the map Qf = d. For an object
G ∈ FgpsVW (k) we get a diagram

0 0

HomFgpsV
W (k)

(Fr(M), G) HomMV
(Q(G), Q(Fr(M)))

HomFgpsV
W (k)

(
⊕

αW
fin
W (k), G) HomMV

(Q(G), Q(
⊕

αW
fin
W (k)))

HomFgpsV
W (k)

(
⊕

αW
fin
W (k), G) HomMV

(Q(G), Q(
⊕

αW
fin
W (k)))

where the middle two horizontal maps are isomorphisms. This yields that

HomFgpsV
W (k)

(Fr(M), G) ∼= HomMV
(Q(G), Q(Fr(M))).

But as previously noted, M ∼= QFr(M), so we have our adjunction.

Proof of Thm. 5.5. From Prop. 5.17, the counit map QFr(M) → M is an
isomorphism. To show that the unit map

G→ Fr(Q(G))
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is an isomorphism, we note that the map

QFr(Q(G)) → Q(G)

is an isomorphism. But this implies that G → Fr(Q(G)) is an isomorphism,
since both groups are smooth and connected.

6 Dieudonné theory

Let k be a perfect field of characteristic p > 0. In this section, we will recall
the Dieudonné theory needed for our purposes (cf. [Fon77,DG70,Dem86]). Let
φ : W (k) →W (k) denote the Witt vector Frobenius map, which is a lift of the
pth power map on k to W (k). By the perfectness of k, this is an isomorphism.
A similar isomorphism exists on CW (k) and all other related versions of Witt
vectors.

Definition 6.1. Let R be the noncommutative ring generated over W (k) by
two indeterminates F , V modulo the relations

FV = V F = p, Fa = φ(a)F, aV = V φ(a) for a ∈ W (k).

The category of Dieudonné modules Dmodk is the category of left R-modules.
Denote by F (resp. V) the subrings of R generated by W (k) and F (resp.
W (k) and V )

Given a Dieudonné module M we define the dual I(M) to be
HomW (k)(M,CW (k)). This becomes a Dieudonné module by

F (α)(m) = φ(α(V m)) and V (α)(m) = φ−1(α(Fm))

for α ∈ HomW (k)(M,CW (k)) and m ∈M .
For a module M ∈ Dmodk, let M [V n] be the kernel of multiplication by V n.

Let DmodV,nil
k be the full subcategory of Dmodk consisting of those M such

that M ∼= colimnM [V n]. We call such a Dieudonné module unipotent.

Theorem 6.2. [DG70, V.1.4, Théorème 4.3] There is an anti-equivalence of
categories

D : {unipotent groups over k} → DmodV,nil
k

given by taking the unipotent group G to

D(G) = colim
n

HomAbSchk
(G,Wn).

Furthermore, D(G) is finitely generated if and only if G is of finite type, and
D(G) is of finite length as a W (k)-module if and only if G is a finite affine
group.
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Since the category of affine groups over a perfect field splits into the product of
the full subcategories of unipotent groups and of multiplicative groups, Theo-
rems 1.6 and 6.2 give an anti-equivalence between the category of affine groups
and the product of the categories DmodV,nilk and ModΓ.
Let us call an affine group p-adic if G is the inverse limit of the affine groups

coker(G
pn

−→ G). We note that any unipotent group is p-adic since V F = p.
Let Dmodpk denote the full subcategory of locally V -finite modules in ModR,
that is, those M such that every x ∈M is contained in a V-submodule of finite
length.

Theorem 6.3. There is an anti-equivalence of categories

D : {p-adic affine groups over k} → Dmodpk

given by

G→ D(G) = colim
n

HomAbSchk
(G,Wn)× I(colim

n′
HomAbSchk

((Gm)∗,Wn′))

where (Gm)∗ is the Cartier dual of the multiplicative part of G, and I is the
dual Dieudonné module.

Proof. This theorem is essentially proved in [Dem86, Chapter III, 6], but only
for unipotent groups and for finite multiplicative groups of p-power order. We
claim that a p-adic affine group G of multiplicative type is an inverse limit of
finite multiplicative groups of p-power order, from which the theorem in the
stated form follows. Indeed, since G is the inverse limit of finitely generated
multiplicative groups, we may assume that G is finitely generated multipliative.
We also assume that k is algebraically closed and thus that G ∼= k[N ] for some
finitely generated abelian group N with pnN = 0 for some n ≥ 0. Thus N is
finite and G is a finite affine group.

Thm. 6.3 is also proved in [HL13], using slightly different methods from the
ones in [Dem86].

We will now briefly discuss the dual picture of formal groups.

Definition 6.4. A module M ∈ ModR is called F-profinite if M is profinite
as a W (k)-module and has a fundamental system of neighborhoods consisting
of F -modules. We call M connected if F is topologically nilpotent on M , and
étale if F is bijective on M . We denote the category of F -profinite R-modules
by DmodFk and the full subcategories of connected (resp. étale) R-modules by

DmodF,c
k (resp. DmodF,et

k ).

Essentially by a Fitting decomposition, any F -profinite module M splits as
a direct sum M et ⊕M c where the first summand is étale and the second is
connected. Indeed, any F -module of finite length splits as a direct sum of two
modules where F acts bijectively on one component and nilpotently on the
other. Taking the limit, we get the claimed decomposition.
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A formal p-group is a commutative formal group G such that the canonical
map colimnG[p

n] → G is an isomorphism, where G[pn] denotes the kernel of
multiplication by pn. Note that any connected formal group is a formal p-group
since FV = V F = p. We let Fgpspk be the category of formal p-groups over k.
A dual version of Thm. 6.3 is proved in [Fon77, Chapter III]:

Theorem 6.5. There is an anti-equivalence of categories

Df : Fgpspk → DmodFk

where

Df(G) = HomFgpsk(G,CWk).

Under this equivalence, the full subcategories of connected formal groups and
étale formal p-groups corresponds to the full subcategories of connected and
étale R-modules, respectively.

We will show later (Thm. 8.1) in which sense the equivalences of Thms. 6.3
and 6.5 are dual to each other.

7 The Dieudonné module of a smooth connected formal group

with a lift of the Verschiebung

The goal of this section is to describe the Dieudonné module of those formal
groups over k that are mod-p reductions of smooth connected formal groups
over W (k) with a Verschiebung lift, i. e. objects of FgpsVW (k) (Def. 5.3). These
constructions are very similar to the ones of [Goe99].
For G ∈ FgpsVW (k), we define a map

Q(G) → Df(Gk)

as follows. By Thm. 5.5 and Lemma 5.16 we have an isomorphism

Q(G) ∼= HomFgpsV
W (k)

(G,CW c
W (k)).

Composing this isomorphism with the mod-p reduction

HomFgpsV
W (k)

(G,CW c
W (k)) → HomFgpsk(Gk, CW

c
k ) = Df(Gk),

we get a V-linear map η : Q(G) → Df(Gk) in MV (Def. 5.4). By extension of
scalars, we get a homomorphism

ǫG : R⊗V Q(G) → Df(Gk) (cf. Def. 6.1).

Let

α : F ⊗W (k) Q(G) → R⊗V Q(G)
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be the natural map. We let R⊗̂
F

VQ(G) be the completion of R⊗V Q(G) with
respect to the image under α of the F -submodules

〈Fn〉 ⊗W (k) Q(G) + F ⊗W (k) M ⊂ F ⊗W (k) Q(G)

where M ⊂ Q(G) ranges over a basis of neighborhoods of the topologically

free W (k)-module Q(G). Note that ǫG is continuous and that R⊗̂
F

VQ(G) is an
F -profinite Dieudonné module (Def. 6.4).

Theorem 7.1. Let G ∈ FgpsVW (k) . Then the map

ǫG : R⊗̂
F

VQ(G) → Df(Gk)

is an isomorphism.

Proof of Thm. 7.1. Denote the source of the map ǫG by E(G). We note that
both E(G) = limnE(G)/FnE(G) and Df(Gk) = limn Df(Gk)/F

nDf(Gk). It is
clear that the map ǫG becomes an isomorphism modulo F. We claim that this
implies that ǫG is an isomorphism. That coker ǫG = 0 follows from observing
that

coker ǫG = F i coker ǫG, i ≥ 0

so that
coker ǫG = lim

n
coker ǫG/F

n coker ǫG = 0,

as claimed. We thus have an exact sequence

0 → ker ǫG → E(G) → Df(Gk) → 0,

and, noting that F acts injectively on Df(Gk), this sequence is exact after
reducing mod F, since the derived functor of taking the quotient modulo F is
the functor taking a module M to the elements of M annihilated by F. This
implies that ker ǫG = 0 so that ǫG is an isomorphism.

Example 7.2. Let W fin
k be the connected formal group over k taking a finite k-

algebraR to the finitely supported Witt vectors. Denote by FW (k) the canonical
Frobenius lift on the ring of Witt vectors. Using the above theorem,

Df(W fin
k ) ∼=

∞∏

i=0

Wi(k).

The Dieudonné module structure on the right hand side is given by

V (a0, a1, . . . ) = (F−1(a1), F
−1(a2), . . .)

and

F (a0, a1, . . . ) = (0, pF (a0), pF (a1), . . .).
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Here, F−1 : Wi(k) → Wi−1(k) denotes the inverse of the Frobenius on Wi(k)
followed by projection to Wi−1(k) and pF (ai) : Wi(k) → Wi+1(k) denotes the
Frobenius on Wi(k) followed by multiplication by p from Wi(k) to Wi+1(k).
This follows from the isomorphism of V-modules

Q(W fin
W (k))

∼=

∞∏

i=0

W (k),

by inducing up.

8 Cartier and Matlis duality

As studied in Section 6, Dieudonné theory gives us two functors

Df : {formal p-groups} → DmodFk

and

D : {p-adic affine groups over k} → Dmodpk .

Since the category of formal p-groups is dual to the category of p-adic affine
groups, one might ask how these two functors are related. For finite affine
groups, this is treated in [Fon77]. To state more precisely what we will inves-
tigate in this section, let M ∈ DmodFk . Then one can endow

Homc
W (k)(M,CW (k))

with an action of R such that Homc
W (k)(M,CW (k)) is an object of Dmodpk .

This yields a contravariant functor

Ic : DmodFk → Dmodp
k .

Conversely, if N ∈ Dmodp
k, then there is a natural topology on

HomW (k)(N,CW (k)), and there is an action of R on it that makes

HomW (k)(N,CW (k)) into an object of DmodFk . We obtain in this man-
ner a functor

I : Dmodpk → DmodFk ,

and using Matlis duality (Thm. 8.3), one shows that the functors I, Ic give
a duality between Dmodpk and DmodF

k . On the other hand, taking a p-adic
affine group G to its Cartier dual G∗ we get a formal p-group, and conversely,
if H is a formal p-group, the Cartier dual H∗ is a p-adic affine group. We will
denote the functor taking a formal p-group to its Cartier dual by (−)∗, and
the same notation will be used for the functor taking a p-adic affine group to
its Cartier dual. It is well-known (see for example [Fon77, I,§5]) that Cartier
duality gives a duality between the category of formal p-groups and p-adic
affine groups. A natural question to ask is how Cartier duality relates to the
duality between Dmodp

k and DmodFk we just gave. The answer is given by the
following theorem, whose proof will occupy the rest of this section.
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Theorem 8.1. The following diagram is 2-commutative

{p-adic affine groups over k} Dmodpk

{formal p-groups over k} DmodFk .

D

(−)∗ I

D
f

Equivalently, Cartier duality commutes with Matlis duality, in the sense that
if G is a p-adic affine group, then ID(G) is naturally isomorphic to Df(G∗).
Conversely, if G is a formal p-group, then Ic(Df(G)) is naturally isomorphic
to D(G∗).

8.1 Matlis duality and monoidal structures on torsion modules

This subsection recalls the classical theory of Matlis duality and we introduce
a monoidal structure on the category of torsion W (k)-modules which will help
us describe the Dieudonné module of the tensor product of two p-adic affine
groups. For a classical treatment of Matlis duality, we refer to [BH93]. Recall
that CW denotes the functor taking an algebra to its co-Witt vectors.

Proposition 8.2. For any perfect finite k-algebra A, there are natural mor-
phisms

CW (k) → CW (A) and TorW (k)(CW (A), CW (A)) → CW (A)

making CW (A) a monoid in the category of artinian W (k)-modules with
monoidal structure TorW (k) and unit CW (k).

Proof. For ease of notation, we will denote TorW (k)(M,N) by M ∗ N . Ten-
soring the short exact sequence (5.7) with CW (A), we obtain a connecting
homomorphism

CW (A) ∗ CW (A) →W (A)⊗ CW (A),

which composes with the W (A)-module structure on CW (A) to the desired
multiplication.

Theorem 8.3 (Matlis duality). The functor I = HomW (k)(−, CW (k)) is an
anti-equivalence between the category of torsion W (k)-modules and the category
PCW (k) of pseudocompact W (k)-modules (Def. 5.1).

Proof. Classical Matlis duality establishes this functor as a duality between
Noetherian and Artinian modules. The ring W (k) is a discrete valuation ring,
hence a PID, and hence a module over it is Noetherian if and only if it is
finitely generated, and modules which are both Noetherian and Artinian are
precisely those of finite length. Since every torsion module is the colimit of
its finite length submodules, the result follows by passing to ind- resp. pro-
categories.
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The inverse functor Ic from pseudocompact W (k)-modules to torsion W (k)-
modules is given by

Ic(K) = Homc
W (k)(K,CW (k)) = colim

j
HomW (k)(Kj , CW (k))

if K is represented by an inverse system K : J → ModW (k).

In our setting, Matlis duality is monoidal with respect to the derived tensor
product. More explicitly, we have the following two symmetric monoidal struc-
tures:

• On PCW (k): the (completed) tensor product ⊗ with unit the pseudo-
compact module W (k).

• On the category of torsion W (k)-modules: the torsion product M ∗N =
Tor1W (k)(M,N) with unit CW (k). Indeed, note that if M is torsion then
M⊗QW (k) = 0 =M ∗QW (k) and hence the connecting homomorphism
M ∗ CW (k) → M ⊗W (k) W (k) ∼=M is an isomorphism.

By construction, the tensor product on PCW (k) commutes with cofiltered limits
and is right exact, and ∗ on torsion W (k)-modules commutes with filtered
colimits and is left exact. We have:

Proposition 8.4. Let M , N be torsion W (k)-modules and K, L pseudocom-
pact W (k)-modules. Then there are the following natural isomorphisms:

1. I(M)⊗ I(N) ∼= I(M ∗N),

2. Ic(K) ∗ Ic(L) ∼= Ic(K ⊗ L),

3. K ⊗ I(M) ∼= Ext(M,K),

4. M ∗ Ic(K) ∼= Homc(K,M).

Proof. First note that in (1)–(4), everything commutes with filtered colimits
in M and N and with cofiltered limits in K and L. Thus we can without loss
of generality assume that M , N , K, and L are finite length W (k)-modules. In
this case, Ic = I is an anti-equivalence.

The universal coefficient theorem gives a natural morphism

(M ∗ Ic(K))⊗K → M ∗ (Ic(K)⊗K),

which can be composed with the evaluation DcK ⊗ K → CW (k) to give a
natural map

(M ∗ Ic(K)) →M ∗ CW (k) ∼=M.

By adjunction, we obtain a map φM : M ∗ Ic(K) → Hom(K,M). Since M is
finitely generated, it injects into an injective J0 ∼= CW (k)N for some N ≥ 0,
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the quotient J1 = J0/M being of the same form. We get a four-term exact
ladder

0 M ∗ Ic(K) J0 ∗ I
c(K) J1 ∗ I

c(K) M ⊗ IcK 0

0 Hom(K,M) Hom(K, J0) Hom(K, J1) Ext(K,M) 0

The map φCW (k) is trivially an isomorphism, hence so are φJ0 and φJ1 since
J0 and J1 are finite sums of CW (k) and both ∗ and Hom(K,−) commute with
finite sums. By exactness, (3) and (4) follow.
For (1), we compute

I(M ∗N) =W (k)⊗ I(M ∗N) ∼=
(3)

Ext(M ∗N,W (k))

∼= Ext(M,Ext(N,W (k))) ∼=
(3)

Ext(M, I(N)⊗W (k))

∼=
(3)
I(M)⊗ I(N)⊗W (k) ∼= I(M)⊗ I(N).

Lastly, (2) follow from (1) by dualization.

A Dieudonné module M ∈ Dmodp
k is in particular a torsion W (k)-module:

M ∼= Md ⊕M c where on the connected part M c, V is nilpotent and thus so
is p = FV ; and Md ∼= (W (k̄) ⊗Z L)

k̄ for a torsion p-module L. Thus I(M) is
defined as a pseudocompact W (k)-module, and it inherits the structure of an
R-module by defining, for φ : M → CW (k) ∈ I(M),

F (φ) = FCW (k)(φ ◦ V ) and V (φ) = F−1
CW (k)(φ ◦ F )

where FCW (k) is the Frobenius on CW (k). Thus I(M) is an object of Dmodk,
and this shows that I is an anti-equivalence of categories I : Dmodk → Dmodk
with inverse Ic : Dmodk → Dmodk .

8.2 Cartier duality on the level of Dieudonné modules

We now move onto proving the main theorem of this section. We start by
considering unipotent groups.

Proposition 8.5. Let G be a unipotent group and let G∗ be its Cartier dual.
Then there is a natural isomorphism

Df(G∗) ∼= I(D(G))

and conversely, if H is a connected group and H∗ its Cartier dual, then

D(H∗) ∼= Ic(Df(H)).
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If M ∈ DmodFk , we let IcFn(M) be the Dieudonné submodule of

Homc
W (k)(M,CW (k))

consisting of those f : M → CW (k) such that f(Fn) = 0. Let us consider the
connected formal group W fin

k as in Example 7.2. Denote by W fin
k,p the k-scheme

we get after base change along the Frobenius map Fk : Spec k → Spec k. Then
the relative Frobenius gives us a map W fin

k → W fin
k,p of formal groups over k.

However, since
W fin

k
∼=W fin

Fp
×Fp

Spec k,

we see that W fin
k,p

∼=W fin
k as formal group over k. Composing the Frobenius with

this isomorphism, we get an endomorphism FW fin
k

: W fin
k → W fin

k . For i ≥ 0,

write W fin[F i] for the kernel of the ith iterate of this Frobenius map. Note that
for i ≥ 0, composition with FW fin

k
gives a map FW fin

k
: W fin[F i+1] →W fin[F i].

Lemma 8.6. Let W fin
k [Fn] = ker(Fn : W fin

k →W fin
k ) where Fn, n ≥ 1 is the nth

iterate of the Frobenius endomorphism, and let Df(W fin
k [Fn]) be its Dieudonné

module. Then for M ∈ DmodFk , there is a W (k)-linear isomorphism

πn : HomDmodF
k
(M,Df(W fin

k [Fn])) → IcFn(M).

Further, this isomorphism is compatible with the Frobenius in the sense that if

f ∈ HomDmodF
k
(M,Df(W fin

k [Fn]))

and
Df(FW fin

k
) : Df(W fin

k [Fn]) → Df(W fin
k [Fn+1]),

then
πn+1(D

f(FW fin
k

) ◦ f) = πn(f).

Proof. By Example 7.2, we see that a morphism

f : M → Df(W fin
k [Fn]) ∼= Df(W fin

k )/Fn(Df(W fin
k ))

can be written as
(f0, f1, f2, . . .)

where fi is a continuous homomorphism of W (k)-modules from M to

Wmin{n−1,i}(k).

The requirement that f is a morphism of Dieudonné modules gives that f is in
fact, determined by fn−1. Indeed, the requirement that

f(V m) = V f(m)

gives that
fn−1(V

im) = F−i
W (k)(fn−1+i(m)), i ≥ 0
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and f(Fm) = Ff(m) shows that

fn−1(F
im) = piF i

W (k)(fn−1−i(m)), i ≥ 0.

We see that a morphism

f :M → Df(W fin
k [Fn])

gives rise to a map

fn−1 :M →Wn−1(k) ⊂ CW (k)

such that fn−1(F
n) = 0. We define πn(f) = F−n+1

W (k) ◦ fn−1. Note that the

action of W (k) on Wn−1(k) is, when we view Wn−1(k) as a submodule of
CW (k), given by for x ∈W (k) and a ∈ Wn−1(k) by F−n+1(x)a, thus πn(f) is
W (k)-linear. Conversely, given a W (k)-linear map

h :M →Wn−1(k) ⊂ CW (k)

such that h(Fn) = 0, one easily defines a map h̃ : M → Df(W fin
k [Fn]) of

Dieudonné modules. Lastly, to see that

πn+1(D
f(FW fin

k
) ◦ f) = πn(f),

is a straightforward computation.

Proof of Prop. 8.5. Let G be as in the proposition. We can without loss of
generality assume that V m

G = 0. Consider

D(G) ∼= colim
n

Hom(G,Wn) ∼= colim
n

Hom(W fin
k [Fn], G∗),

where the latter isomorphism is induced by Cartier duality. Note that the
transition maps Hom(W fin

k [Fn], G∗) → Hom(W fin
k [Fn+1], G∗) come from pre-

composition with the Frobenius on W fin
k . By classical Dieudonné theory,

HomFgpsc
k
(W fin

k [Fn], G∗) ∼= HomDmodF
k
(Df(G∗),Df(W fin

k [Fn])).

By Lemma 8.6, HomDmodF
k
(Df(G∗),Df(W fin

k [Fn])) is isomorphic to

IcFn(Df(G∗)). Taking the limit over all n, using Lemma 8.6 to see that
the diagram

Hom(Df(G∗),Df(W fin
k [Fn])) Hom(Df(G∗),Df(W fin

k [Fn+1]))

IcFn(M) Ic
Fn+1(M)

F
Df (W fin

k
)

πn πn+1

in

commutes, one gets that
D(G) ∼= Ic(Df(G∗))
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as W (k)-modules. A verification, keeping track of the interchange between the
Frobenius and Verschiebung when we dualize, shows that the isomorphism

D(G) ∼= Ic(Df(G∗))

actually is an isomorphism of Dieudonné modules.

Proof of Thm. 8.1. We have already proved this for unipotent groups by
Prop. 8.5, so what remains is the proof for p-adic multiplicative groups. If
G is a p-adic multiplicative group, then G is an inverse limit of finite groups of
p-power order. We can thus assume that G is a finite multiplicative group of
order pn. But then this duality is classical, see for example [Fon77, III,§5].

9 Tensor products of formal Hopf algebras in positive charac-

teristic

The aim of this and the following sections is to use Dieudonné theory to de-
scribe the tensor product of formal Hopf algebras over k, where the standing
assumption is that k is perfect and of characteristic p.
Let FHopfk be the category of formal Hopf over k, and denote by FCoalgk
the category of formal coalgebras over k. By (1.4), FHopfk is equivalent to the
category of affine groups, which has a tensor product by Thm. 1.3. Denote
the induced tensor product on FHopfk by ⊠. Thus there is a bijective corre-
spondence between maps H1 ⊠H2 → K of formal Hopf algebras and bilinear
morphisms H1⊗̂kH2 → K of formal coalgebras.

Remark 9.1. For an explicit description, let H1, H2 ∈ FHopfk and
Ŝ∗(H1⊗̂kH2) be the completed symmetric algebra (see [GP11, Exposé VII,
1.2.5]) on H1⊗̂kH2. Let j : H1⊗̂kH2 → Ŝ∗(H1⊗̂kH2) be the inclusion. Then
H1 ⊠H2 is the quotient of Ŝ∗(H1⊗̂kH2) by the closure of the ideal generated
by the elements given in (2.2). The comultiplication on H1 ⊠ H2 is the one
making the map j : H1⊗̂kH2 → H1 ⊠ H2 a morphism of formal coalgebras.
The connected part of H1 ⊠H2, is a formal power series ring in JHc

1⊗̂kJH
c
2 ,

where JHc
i is the augmentation ideal of the connected part, modulo the closure

of the ideal generated by the elements above.

With respect to the splitting (1.5), Prop. 4.3 implies that the tensor product
behaves as follows:

Lemma 9.2. The tensor product of an étale formal Hopf algebra with any formal
Hopf algebra is étale. The tensor product of two connected formal Hopf algebras
H1, H2 splits naturally into a connected and an étale part,

H1 ⊠H2
∼= H1 ⊠

c H2 ⊗̂ H1 ⊠
e H2,

both of which are nontrivial in general.
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Example 9.3. To illustrate that the tensor product of two connected formal
Hopf algebras need not be connected, let H1 = H2 be the primitively gener-
ated (finite, hence formal) Hopf algebra k[x]/(xp) representing αp, the formal
group taking a finite k-algebra A to its kernel of the pth power map. We
then claim that H1 ⊠

e H2 is nontrivial, i.e that there is a non-zero morphism
Z → Spf (H1 ⊠H2) from the constant formal group Z.
By Cartier duality (αp is self-dual), this is equivalent to having a non-trivial
map αp ⊗ αp → Gm, or by adjunction, a non-trivial map

αp → Hom(αp,Gm) ∼= αp (Cartier duality).

The identity is such a map. The connected and étale parts of the tensor product
in this example will be computed in Examples 11.11 and 12.10, respectively.

We will now describe the functors ⊠
c and ⊠

e more explicitly. By abuse of
notation, we will denote the connected covariant Dieudonné functor FHopfck →
DmodFk ,

H 7→ Df(SpfH) = HomFHopfc
k
(OCW c

k
, H), (cf. Thm. 6.5)

by Df as well.

Theorem 9.4. Let H1 and H2 be connected formal Hopf algebras over k. Then
the étale part of Spf (H1 ⊠H2) is the étale formal group associated with the
Γ-module

colim
m,n

HomDmodk
(Df(H1/V

m
H1

)⊠ Df(H2/V
n
H2

), CW (k̄)).

This describes the étale part succinctly. The connected part needs a little more
setup.

Definition 9.5. Let M1,M2 ∈ DmodFk be F -profinite modules over the
Dieudonné ring R (Def. 6.4). Let α : F ⊗W (k) (M1⊗̂W (k)M2) → R ⊗V

(M1⊗̂W (k)M2) be the natural map. Denote by R⊗̂
D

V(M1⊗̂W (k)M2) the com-
pletion of

R⊗V (M1⊗̂W (k)M2) (cf. Def. 6.1)

along the F -submodules generated by

α(I ⊗W (k) (M1⊗̂W (k)M2) + F ⊗W (k) N) ⊂ F ⊗W (k) (M1⊗̂W (k)M2) (9.6)

where N ⊂M1⊗̂W (k)M2 ranges over a basis of neighborhoods of 0 defining the

topology on M1⊗̂W (k)M2, and I ⊂ F ranges over all F -ideals such that F/I
has finite length as a W (k)-module.
Then we define

M1 ⊠M2 = R⊗̂
D

V(M1⊗̂W (k)M2)/K̄,
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where K̄ is the closure of the Dieudonné submodule K generated by

F ⊗ x⊗ V y − 1⊗ Fx⊗ y, F ⊗ V x⊗ y − 1⊗ x⊗ Fy, x ∈M1, y ∈M2.

We define M1 ⊠
c M2 to be the connected part of M1 ⊠M2. Recall that the

connected part is the largest Dieudonné submodule where F acts topologically
nilpotently.

Remark 9.7. If we restrict I in (9.6) to the ideals (Fn) for n ≥ 0 and denote

the resulting R-module by R⊗̂
F

V (M1⊗̂W (k)M2), then

M1 ⊠
c M2

∼= R⊗̂
F

V (M1⊗̂W (k)M2)/K̄

for the same K, with closure taken inside the new enclosure.

Proposition 9.8. Let H1, H2 ∈ FHopfck . Then there is an isomorphism

Df(H1)⊠
c Df(H2) ∼= Df(H1 ⊠

c H2).

The following three sections are devoted to proving the results stated above.
Section 10 is preparatory for Section 11, where Prop. 9.8 is proved. Both of
these sections are heavily inspired by [Goe99]. Thm. 9.4 is proved in Section 12.

10 Tensor products of formal Hopf algebras with a lift of the

Verschiebung

In this section, following the strategy from [Goe99], we first consider the very
special class of formal Hopf algebras that are mod-p reductions of objects of
HV , the category of complete W (k)-Hopf algebras with a Verschiebung lift
(Def. 5.3). The purpose of this section is to first show that there is a tensor
product ⊠ in HV , and then give a formula for the tensor product of two objects.

Definition. Let CV be the category of topologically free coalgebras C over
W (k) together with a lift V : C → C of the Verschiebung on C ⊗W (k) k.

Clearly, there is a forgetful functor U : HV → CV , and in fact HV
∼= Ab(CV ).

Proposition 10.1. The category HV has a tensor product ⊠c.

Proof. We apply Theorem 1.2 to CV and HV . The categorical product of C1

and C2 ∈ CV is given by the tensor product C1⊗̂W (k)C2 with the diagonal V -
action. To show that HV has coequalizers, one notes that if f, g : H1 → H2 are a
pair of maps in HV , then coeq(f, g) is defined as the minimal smooth quotient
(minimal in the sense that any other smooth quotient factors through it) of
H2/I, where I is the closure of the ideal (f(h)− g(h); h ∈ H1).
Finally, the forgetful functor HV → CV has a left adjoint

S∗ : CV → HV , C 7→W (k)[[J(C)]],
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where JC is the augmentation ideal, W (k)[[J(C)]] is the power series ring in
J(C), and the coalgebra structure is induced from C. The Verschiebung action
on W (k)[[J(C)]] is induced from the Verschiebung action on J(C). To see that
S∗(C) has an antipode, consider the algebra EndMV

(S∗(C)) of linear maps
commuting with V , where multiplication is given by (fg) =

∑
(x) f(x

′)g(x′′).
The unity in this ring is 1 = η ◦ ǫ, and an antipode is an inverse for the identity
map in this algebra. As in [Swe69, Lemma 9.2.3], the antipode is given by

id−1 =
1

1− (1− id)
=

∑

i≥0

(1 − id)i,

a pointwise (even uniformly) convergent power series in EndMV
(S∗(C)).

By Thm. 5.5, any H ∈ HV is isomorphic to the representing object of some
formal group Fr(M) with a Verschiebung lift for some M ∈ MV (Def. 5.4). We
will then write H = S∗(M) for the formal Hopf algebra underlying Fr(M).

Lemma 10.2 ([Goe99, Proposition 6.1]). The functor S∗ : (MV , ⊗̂W (k)) →
(HV ,⊠

c) is strongly monoidal.

Proof. This proof is identical to the proof by Goerss, but we include it for the
the reader’s convenience. If J : CV → MV denotes the coaugmentation ideal
functor, we have a pair of adjoint diagrams of functors

HV CV

MV .
Q

S∗

J left adjoint to

HV CV

MV

U

S∗

Since the right hand diagram commutes, the right adjoint of J is US∗. We will
suppress the forgetful functor U from notation in what follows.
Now let φ : S∗(M1)⊗S∗(M2) → S∗(K) be a bilinear map in CV ; explicitly and
in Sweedler notation (Notation 2, cf. (2.2)),

φ(xy, z) =
∑

(z)

φ(x, z(1))φ(y, z(2))

φ(x, zw) =
∑

(x)

φ(x(1), z)φ(x(2), w).

It has a left adjoint in MV ,

J(S∗(M1)⊗ S∗(M2)) → K

which factors as

J(S∗(M1)⊗ S∗(M2)) → J(S∗(M1))⊗ J(S∗(M2)) →M1 ⊗M2
Qφ
−−→ K.
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Let η : S∗(M1)⊗S
∗(M2) → S∗(M1⊗M2) be the adjoint of the composite of the

first two maps. If η is bilinear, then S∗(M1 ⊗M2) has the required universal
property, and the theorem is proven.
To show this, take C ∈ CV and consider the bilinear map

HomMV
(JC,M1)×HomMV

(JC,M2) → HomMV
(JC ⊗ JC,M1 ⊗M2)

→ HomMV
(J(C ⊗ C),M1 ⊗M2)

∆∗
C−−→ HomMV

(JC,M1 ⊗M2).

By naturality and adjunction, we get a bilinear pairing

HomHV
(−, S∗(M1))×HomHV

(−, S∗(M2)) → HomHV
(−, S∗(M1 ⊗M2))

and thus by Yoneda a bilinear map

S∗(M1)⊗ S∗(M2) → S∗(M1 ⊗M2).

This map agrees with η since they both are adjoint to

J(S∗(M1)⊗ S∗(M2)) → JS∗(M1)⊗ JS∗(M2) →M ⊗N.

This implies that η is bilinear.

Corollary 10.3 ([Goe99, Cor. 6.2]). Let Hi = S∗(Mi) ∈ HV (i = 1, 2). Then
the universal bilinear map η : H1⊗H2 → H1 ⊠

cH2 induces an isomorphism in
MV ,

Qη :M1 ⊗M2 → Q(H1 ⊠
c H2).

Proof. By bilinearity of η, applying Q gives the map Qη :M1⊗M2 → Q(H1⊠
c

H2) ∼= Q(S∗(M1 ⊗M2)). We have that both the counit map Q(H1 ⊠
c H2) ∼=

Q(S∗(M1 ⊗M2)) →M1 ⊗M2 and the composition

M1 ⊗M2
Qη
−−→ Q(H1 ⊠

c H2) →M1 ⊗M2

are isomorphisms, thus Qη is an isomorphism as well.

Example 10.4. Let H = OCW
u,c

W (k)
∈ HV corepresent the functor CWu,c

W (k)

from Section 5. Then H ⊠
c H corepresents the functor

∞⊕

i=−∞

CWu,c

W (k)

with the obvious lift of the Verschiebung. Indeed, the formal Hopf algebra
H ⊠

c H has indecomposables

QH⊗̂W (k)QH ∼=
( ∞∏

i=0

W (k)
)
⊗̂W (k)

( ∞∏

i=0

W (k)
)
∼=

∞∏

i,j=0

W (k),

where (V x)i,j = F−1
W (k)(xi+1,j+1). The claim follows by Lemma 10.2 and

Thm. 5.5.
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11 The connected part of ⊠ for two connected formal Hopf al-

gebras

We start by describing Df(H1 ⊠
c H2) for H1, H2 ∈ FHopfck in the situation

where both H1 and H2 are reductions mod p of formal Hopf algebras with a
Verschiebung lift over W (k).

Lemma 11.1 ([Goe99, Lemma 7.1]). For H1, H2 ∈ HV , the canonical map

(k ⊗H1)⊠
c (k ⊗H2) → k ⊗ (H1 ⊠

c H2)

is an isomorphism.

Proof. Both the source and the target of the map represent connected formal
groups. Since the target is a smooth formal group, it suffices that it induces an
isomorphism on indecomposables. By the explicit construction of H1 ⊠

cH2 as
detailed in Remark 9.1, we see that if {xi}i∈I ∈ Q(H1) and {yj}j∈J ∈ Q(H2)
are topological bases, then {xi⊠yj}i∈I,j∈J topologically generatesQ((k⊗H1)⊠

c

(k⊗H2)). By Cor. 10.3, the elements {xi ⊠ yj}i∈I,j∈J constitute a topological
basis of Q(k ⊗ (H1 ⊠

c H2)).

Corollary 11.2. Let H1, H2 ∈ HV . Then

Df((k ⊗H1)⊠
c (k ⊗H2)) ∼= R⊗̂

F

V (QH1⊗̂W (k)QH2).

Proof. This follows directly from Thm. 7.1 and Lemma 11.1.

We now proceed towards proving Theorem 9.8. We will construct the isomor-
phism

γ : Df(H1)⊠
c Df(H2) → Df(H1 ⊠

c H2)

in two steps. First, we will prove that any bilinear map H1 ⊗ H2 → K, in
FHopfck induces a function Df(H1)×Df(H2) → Df(K) satisfying certain proper-
ties which makes it into a Dieudonné pairing (see Definition 11.3). For the
second step, we will construct an object Df(H1)⊠

c Df(H2) which corepresents
the functor taking a connected Dieudonné module K to its set of Dieudonné
pairings Df(H1) × Df(H2) → K. Since we have the universal bilinear pairing
H1 ⊗ H2 → H1 ⊠

c H2, by putting the first and second step together, we get
the map

γ : Df(H1)⊠
c Df(H2) → Df(H1 ⊠

c H2)

which we then will prove is an isomorphism.

Definition 11.3. Let M1,M2, N ∈ DmodFk . We say that a function ϕ :M1 ×
M2 → N is a Dieudonné pairing if ϕ is W (k)-bilinear, continuous, and satisfies

1. ϕ(V x, V y) = V ϕ(x, y)

2. ϕ(Fx, y) = Fϕ(x, V y)
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3. ϕ(x, Fy) = Fϕ(V x, y) for all x ∈M1, y ∈M2.

We denote by DieuP(M1,M2;N) the group of Dieudonné pairings M1×M2 →
N.

Let CW c
k be the connected co-Witt vector functor of Section 5.3 and Ck =

OCW c
k

its corepresenting formal Hopf algebra. Then Ck
∼= k ⊗ CW (k) for

CW (k) = OCW c
W (k)

∈ HV . Recall that CW (k) is a suitable completion of

the polynomial ring W (k)[x0, x−1, . . . ] in countable many indeterminates. Let
η ∈ Q(Ck) be the equivalence class of x0 ∈ Ck and ι : Ck → Ck ⊠

c Ck be the
map corresponding to the element

1⊗ η ⊗ η ∈ R⊗̂
F

V (QCk⊗̂W (k)QCk) ∼=
Cor. 11.2

Df(Ck ⊠
c Ck).

Any bilinear map f : H1 ⊗H2 → K of formal connected Hopf algebras induces
a homomorphism f̃ : H1 ⊠

c H2 → K. We define the function µf : Df(H1) ×
Df(H2) → Df(K) as the composite

µf : D
f(H1)× Df(H2) = HomFHopfc

k
(Ck, H1)× HomFHopfc

k
(Ck, H2) (11.4)

⊠
c

−−→ HomFHopfc
k
(Ck ⊠

c Ck, H1 ⊠
c H2)

ι∗

−→ HomFHopfc
k
(Ck, H1 ⊠

c H2)

f̃∗
−→ HomFHopfc

k
(Ck,K) = Df(K).

We now want to prove that µf is a Dieudonné pairing.
If H is a formal connected Hopf algebra, Df(H) is a subspace of CW c

k (H)
and thus inherits a natural topology. For any finite k-algebra A, we now want
to equip (Spf Ck ⊠

c Ck)(A) = Homc
Algk

(Ck ⊠
c Ck, A) with a natural topology.

For a k-module M , denote by M∞,MN,M (∞) its infinite direct sum, infinite
product, and the profinite completion of its infinite direct sum, respectively.
Note that M∞ ⊂MN, while M (∞) naturally surjects onto MN.
By Lemma 11.1, we know that

Ck ⊠
c Ck

∼= k[[k(∞)⊗̂kk
(∞)]].

Thus Q(Ck ⊠
c Ck) ∼= k(∞)⊗̂kk

(∞). This is not isomorphic to the profinite
completion of k∞⊗ k∞, but to the completion of the latter with respect to the
submodules M ⊗ k∞ + k∞ ⊗N , where M, N ⊂ k∞ are submodules such that
the quotients k∞/M and k∞/N are finite length k-modules.
For a finite k-algebra A, we have an inclusion

Homc
Algk

(Ck ⊠
c Ck, A) ⊂ Nil(A)N×N.

We use this inclusion to topologize Homc
Algk

(Ck ⊠
c Ck, A) as a subspace

of Nil(A)N×N. This definition extends to a natural topology on both
Homc

Algk
(Ck ⊠

c Ck, A) for any profinite k-algebra A, and HomFHopfc
k
(Ck ⊠

c

Ck, H) for any connected formal Hopf algebra H.
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Lemma 11.5. For any pseudocompact (Def. 5.1) k-algebra A, the morphism

ι∗ : Spf OCW c
k
⊠

c OCW c
k
(A) → CW c

k (A)

is continuous.

To prove this lemma, we need another definition of ι. The category of (cocom-
mutative) torsion-free Hopf algebras over W (k) with a Verschiebung lift has a
tensor product, studied in the graded case by Goerss [Goe99]. We denote this
tensor product by ⊠a in order not to confuse it with our tensor product. If we
let OWn

= OWn,W (k)
be the Hopf algebra representing the functor taking an al-

gebra over W (k) to its length n Witt vectors, then OWn
∼=W (k)[x0, . . . , xn−1],

where the coaddition is given by the addition for Witt vectors. Give this ring
the standard grading with |xi| = pi. We have an isomorphism of bigraded Hopf
algebras with a Verschiebung lift,

OWn
⊠a OWn

∼=W (k)[(xi,j)0≤i,j≤n],

where V acts diagonally and xi,j = xi ⊠ xj in bidegree (pi, pj).

Proposition 11.6 ([HL13, Corollary 1.2.21]). There exists a unique W (k)-
Hopf algebra map

ιn : OWn
→ OWn

⊠a OWn

which takes the wn, the nth ghost polynomial, to
wn ⊠ wn

pn
. Furthermore, for

each n, this map is compatible with the Verschiebung maps in the obvious sense.

The map ιn maps elements of degree pi to elements of bidegree (pi, pi). For
each n, we get a homogeneous polynomial

Pn((xi,j)0≤i,j≤n−1) := ιn(xn−1) ∈W (k)[(xi,j)0≤i,j≤n]

of bidegree (pn−1, pn−1). We think of Pn as a polynomial in the entries of an
(n+ 1)× (n+ 1) square matrix, with x0,0 in the top left entry and xn,0 in the
bottom left entry.
From the formula from Prop. 11.6,

Pn((xi,j)0≤i,j≤n−1) = xn−1,n−1 +R((xi,j)0≤i,j≤n−2) (11.7)

for some bihomogeneous polynomial R of bidegree (pn−1, pn−1). The proof of
the following lemma is almost verbatim the proof of [Fon77, Lemme II.1.3].

Lemma 11.8. In the ring W (k)[(x−i,−j)i,j∈N], define the ideal

Jr,s = (x−i,−j | i ≥ r, j ≥ s) (r, s ≥ 0).

Then

Pn+1((xi,j)−n≤i,j≤0) = Pn((xi,j)−n+1≤i,j≤0) (mod Js
1,r + Js

r,1)

for each integer

n ≥

{
r if s < p

r + (s− p)/(p− 1) if s ≥ p.
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Proof. From the fact that the ιn commute with the Verschiebung, we see that
in OWn

⊠a OWn
,

Pn+1((xi−1,j−1)0≤i,j≤n) = Pn((xi,j)0≤i,j≤n−1)

with the understanding that xi,j = 0 if i < 0 or j < 0. This, together with the
homogeneity of the polynomials and (11.7), implies that

Pn+1((xi,j)−n≤i,j≤0)− Pn((xi,j)−n+1≤i,j≤0)

is equal to a linear combination of terms of the form

n∏

i,j=1

(x−i,−j)
ui,j ,

for some exponents ui,j ≥ 0. Writing vi =
∑n

j=1 ui,j and wj =
∑n

i=1 ui,j ,

bihomogeneity implies that
∑

i p
n−ivi = pn =

∑
k p

n−jwj . Either vn 6= 0 or
wn 6= 0. Suppose that vn 6= 0. We have

vn + pvn−1 + · · ·+ pn−1v1 = pn.

We see that for each 0 ≤ t < n, vn+pvn−1+ · · ·+pn−tvn−t is divisible by pt+1.
By [Fon77, Lemme 1.2] this implies that vn + vn−1 + · · ·+ vn−t ≥ t(p− 1) + p,

and then the term lies in J
t(p−1)+p
n−t,1 . Similarily, if wn 6= 0 we see that the term

lies in J
t(p−1)+p
1,n−t , so

Pn+1 − Pn ∈ J
t(p−1)+p
1,n−t + J

t(p−1)+p
n−t,1 .

If t = 0, the difference lies in Jp
n,1 + Jp

1,n, which gives the lemma if s < p. If

s ≥ p, and if n ≥ r+(s−p)/(p−1), by letting t = n−r, J
t(p−1)+p
r,1 +J

t(p−1)+p
1,r ⊂

Js
r,1 + Js

1,r since t(p− 1) + p ≥ s.

We thus get a sequence of polynomials

Pn+1((xi,j)−n≤i,j≤0) ∈ OCW c
W (k)

⊠OCW c
W (k)

which by Lemma 11.8 converges to a power series P ((xi,j)i,j≤0)). We now define
the map

ι′ : CW (k) → CW (k) ⊠ CW (k)

by letting ι′(xn) = P ((xi,j)i,j≤n) for n ≤ 0 and extending by continuity. Taking
into consideration how the coadditions on CW (k) and CW (k)⊠CW (k) are defined,
one sees that this is a map of formal Hopf algebras over W (k) which commutes
with the Verschiebung. Since Rι′(x0) = x0 ⊠ x0, Thm. 5.5 shows that the base
change ι′k of ι′ to k coincides with ι.
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Proof of Lemma 11.5. We may assume that A is a finite k-algebra. Then the
map

ι : Ck → Ck ⊠ Ck

takes xn (where n ≤ 0) to the limit of the polynomials Pn((xn+i,n+j)i,j≤0).
Lemma 11.8 implies that ι induces a continuous homomorphism on functors of
points. Indeed, there is a basis of neighborhoods of zero in OCW c

k
(A) ∼= Nil(A)N

given by
Uk = {(ai)i≤0 ∈ AN | ai = 0 for a ≥ −k}.

Since Nil(A)m = 0 for some m > 0, Lemma 11.8 shows that one can find an
open neighborhood of Nil(A)N×N such that

Nil(A)N×N ∩ Homc
Algk

(Ck ⊠ Ck, A)

maps into Uk under ι∗.

Corollary 11.9. Let f : H1⊗̂kH2 → K be a bilinear map in FHopfck . Then
the map

µf : Df(H1)× Df(H2) → Df(K)

is continuous.

Proof. We topologize Df(Hi) as a closed subset of CW c(Hi) for i = 1, 2 and
similarily, we topologize HomFHopfc

k
(Ck ⊠

c Ck, H1 ⊠
c H2) as a closed subset of

HomAlgk
(Ck ⊠

c Ck, H1 ⊠
cH2). We will show that µf is continuous by showing

that all three maps in (11.4) are continuous. It is obvious that

Df(H1)× Df(H2) → HomFHopfc
k
(Ck ⊠

c Ck, H1 ⊠
c H2)

is continuous and the continuity of

f∗ : D
f(H1 ⊠

c H2) → Df(K)

is immediate, while the continuity of the map

ι∗ : HomFHopfc
k
(Ck ⊠

c Ck, H1 ⊠
c H2) → Df(H1 ⊠

c H2)

follows from Lemma 11.5.

Lemma 11.10. Given H1, H2,K ∈ FHopfck and a bilinear map H1 ⊗H2 → K,
the continuous map µf : Df(H1) × Df(H2) → Df(K) is a Dieudonné pairing
(Def. 11.3).

Proof. This proof uses ideas from [HL13] and [Goe99]. We start by verifying
that µf is W (k)-bilinear. Additivity in either variable of µf can be shown by
direct calculation or by mimicking the proof of [Goe99, Lemma 7.4]. Let

x ∈ Df(H1) = HomFHopfc
k
(Ck, H1) and y ∈ Df(H2) = HomFHopfc

k
(Ck, H2).
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Given a ∈ W (k), we now prove that µf (ax, y) = aµf(x, y); linearity in the other
variable follows by symmetry. The claim translates to the following diagram
being commutative:

Ck Ck ⊠
c Ck Ck ⊠

c Ck H1 ⊠
c H2

Ck Ck ⊠
c Ck H1 ⊠

c H2 K

a

ι a⊠1

a⊠1

x⊠y

x⊠y f

ι x⊠y f

Since the middle and rightmost squares commute for trivial reasons, we are
reduced to showing that (a⊠ 1)ι = ι ◦ a, but this follows from the relation

a(1⊗ η ⊗ η) = 1⊗ aη ⊗ η

in Df(Ck ⊠
c Ck). In the same way, to show that µf (V x, V y) = V µf (x, y) one

reduces to the universal case and sees that one needs to show that

Ck Ck ⊠
c Ck

Ck Ck ⊠
c Ck

V

ι

V⊠V

ι

commutes. But this is immediate from the fact that V ⊠V is the Verschiebung
on Ck ⊠

c Ck and ι is a morphism of formal Hopf algebras. To see that the
Verschiebung on Ck ⊠

c Ck is V ⊠V, one argues either as in [HL13, Proposition
1.3.27] or notes that it is a consequence of Lemma 10.2 and Lemma 11.1.
We now move on to proving that

µf (Fx, y) = Fµf (x, V y) and µf (x, Fy) = Fµf (V x, y).

By symmetry, it is enough to prove the first identity. Reducing to the universal
case and denoting by FCk⊠

cCk
the Frobenius on Ck ⊠

cCk, it is enough to show
that

Ck Ck ⊠
c Ck Ck ⊠

c Ck

Ck Ck ⊠
c Ck Ck ⊠

c Ck

ι

F

F⊠1

FCk⊠cCk

ι 1⊠V

commutes. The first square commutes because ι is a homomorphism of Hopf
algebras, and the second commutes by Remark 9.1. Indeed, with the notation
of Remark 9.1, the image of the coalgebra map j : Ck ⊗ Ck → Ck ⊠

c Ck

topologically generates Ck ⊠
c Ck as an algebra, and we then claim that

j(Fx, y) = Fj(x, V y). This equality holds since Example 10.4 tells us that the
Verschiebung of Ck ⊠

cCk is an injective endomorphism (the associated map of
formal groups is surjective), which implies that is enough to check this equality
after applying V. Since any coalgebra map commutes with the Verschiebung,
this gives us

V j(Fx, y) = j(px, V y) = pj(x, V y) = V Fj(x, V y),

so the claimed equality follows.
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In particular, Lemma 11.10 gives a pairing

Df(H1)× Df(H2) → Df(H1 ⊠
c H2)

from the universal bilinear map H1 ×H2 → H1 ⊠
c H2.

Proof of Prop. 9.8. Given F -profinite R-modules M1, M2, the product M1 ⊠

M2 from Def. 9.5 corepresents the functor taking K ∈ Dmodk to the set of
Dieudonné pairings M1 ×M2 → K (Def. 11.3), and it is clear that M1 ⊠

c M2

corepresents its restriction to connected Dieudonné modules (Def. 6.4). Given
two formal connected Hopf algebras H1, H2, we thus have a a natural map

γ : Df(H1)⊠
c Df(H2) → Df(H1 ⊠

c H2) in Dmodk

induced from the Dieudonné pairing

Df(H1)× Df(H2) → Df(H1 ⊠
c H2)

constructed in Lemma 11.10. We will now show that γ is an isomorphism.
Note that Ck generates the category of connected formal Hopf algebras, since
the formal group scheme CW c

k is a cogenerator of the category of connected
formal groups (this is used in the proof of Thm. 6.5). Thus H1 has a presenta-
tion

Cα
k → Cβ

k → H1 → 0,

where Cα
k denotes the α-fold sum in FHopfck, which is the completed tensor

product ⊗̂k, for a possibly infinite cardinal α. Since ⊠
c is right exact and

distributes over ⊗̂, we have an exact sequence

(Ck ⊠
c H2)

α → (Ck ⊠
c H2)

β → H1 ⊠
c H2 → 0.

One then easily sees that it is enough to prove that γ is an isomorphism whenH1

is the base change to k of a formal connected Hopf algebra with a Verschiebung
lift, such as Ck. By symmetry, we can make the same assumption about H2.
By Thm. 7.1,

Df(H1 ⊠
c H2) ∼= R⊗̂

F

V (Q(H1)⊗̂W (k)Q(H2)).

With notation as in Remark 9.7, we further see that Df(H1) ⊠
c Df(H2) is

isomorphic to

R⊗̂
F

V (R⊗̂
F

VQ(H1))⊗̂W (k)(R⊗̂
F

VQ(H2))/K̄.

This Dieudonné module is isomorphic to

R⊗̂
F

V (Q(H1)⊗̂W (k)Q(H2)),

by the map taking F i ⊗ (F j ⊗ h1)⊗ (F k ⊗ h2) to

F i+j+k ⊗ V k(h1)⊗ V j(h2).

A quick computation shows that this is precisely the map γ.
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Example 11.11. Let αp be as in Ex. 9.3. Then Oαp
⊠

c Oαp
∼= OGc

a
, where Gc

a

is the formal group defined by

Gc
a(A) = (Nil(A),+).

To prove this isomorphism, we use Prop. 9.8 to calculate Df(Oαp
)⊠Df(Oαp

). As
is well-known and easy to show, Df(Oαp

) = k, where F = 0 = V . Furthermore,
we see that

Df(Oαp
)⊠c Df(Oαp

) ∼= k[[F ]].

Since
Df(OGc

a
) = lim

n
Df(Oαpn

) = k[[F ]],

the fact that the Dieudonné correspondence is an equivalence of categories gives
that

Oαp
⊠

c Oαp
∼= OGc

a
,

as claimed. Let us identify Oαpn
⊗Oαpn

with k[x, y]/(xp, yp), where x and y are
primitive elements and similarily identify OGc

a
with k[[t]]. Then the universal

bilinear map
Oαpn

⊗Oαpn
→ OGc

a

is the unique bilinear map taking x⊗ y to t. Note that this example shows that
in general, the tensor product of two finite formal Hopf algebras need not be
finite.

We end this section by noting that by Matlis duality, Dmodk gets a monoidal
structure which we denote by �. For K, L ∈ Dmodk, define

K � L = Ic(I(K)⊠ I(L)).

This equips the category Dmodk with a symmetric monoidal structure with
unit CW (k). We denote by K �

u L the maximal unipotent (see the paragraph
after Definition 6.1 for a definition) Dieudonné submodule of K�L. Note that
K �

u L = Ic(I(K) ⊠c I(L)). In the following lemma, recall that if K,L ∈
Dmodk, then we write K ∗ L for Tor1W (k)(K,L).

Lemma 11.12. The monoidal structure � agrees with the one from Def. 1.10.

Proof. This follows from Proposition 8.4 and the definition of ⊠ by straight-
forward dualization.

Note that there is a canonical projection π : K�L→ K ∗L given by evaluation
at 1 ∈ R. If F acts as an isomorphism on K then π is in fact an isomorphism
since by the second condition, f(V i) = (F−i ∗ V i)f(1) has to hold, showing
uniqueness, and

(V ∗ 1)f(r) = (pF−1 ∗ 1)f(r) = (F−1 ∗ 1)f(pr) = (1 ∗ F )f(V r),

shows that the first condition holds if this is taken as a definition for f .
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12 The étale part of ⊠ for two connected formal Hopf algebras

Let H1, H2 be connected formal Hopf algebras. To describe the étale part of
SpfH1 ⊠H2 is the same as to describe the Galois module structure of

Spf (H1 ⊠H2)(k̄) = colim
k′

Homc
Algk

(H1 ⊠H2, k
′)

where k′ ranges over the finite extensions of k. The goal of this section is
to find a description of Spf (H1 ⊠H2)(k̄) as a Galois module in terms of the
Dieudonné modules of H1 and H2. The following definition is the profinite
version of [BL07, Def. 4.5].

Definition 12.1. Let H1, H2 be formal connected Hopf algebras and A be a
finite length k-algebra. A k-linear map ϕ : H1⊗̂kH2 → A is a bilinear pairing
if the following holds for any a, a1, a2 ∈ H1, b, b1, b2 ∈ H2 (using Sweedler
notation 2):

• ϕ(a, b1b2) =
∑

(a) ϕ(a
(1), b1)ϕ(a

(2), b2);

• ϕ(a1a2, b) =
∑

(b) ϕ(a1, b
(1))ϕ(a2, b

(2));

• ϕ(1, b) = ǫH2(b);

• ϕ(a, 1) = ǫH1(a).

Denote by Bil(H1, H2;A) the abelian group of bilinear pairings H1⊗̂kH2 → A
and set

Bil(H1, H2; k̄) = colim
k′

Bil(H1, H2; k
′)

where k′ ranges through the finite extensions of k. Note that Bil(H1, H2; k̄) is
a Γ-module in a natural way.

Lemma 12.2. Let H1, H2 be formal Hopf algebras. Then for any finite length
k-algebra A, there is an isomorphism

Bil(H1, H2;A) ∼= Spf (H1 ⊠H2)(A).

Proof. This follows readily from Remark 9.1, since H1 ⊠ H2 is the profinite
completion of the symmetric algebra on H1⊗̂kH2 modulo the closure of the
relations given in Definition 12.1.

Note that Lemma 12.2 implies that Bil(H1, H2; k̄) ∼= Spf (H1 ⊠H2)(k̄).

Lemma 12.3. Let k′ be a finite extension of k, H1 and H2 connected formal
Hopf algebras with Verschiebung V1, V2, respectively. Then any bilinear pairing
ϕ : H1⊗̂kH2 → k′ factors through H1/V

n
1 ⊗̂kH2/V

m
2 for some m,n ≥ 0, where

we are taking the quotient in the category of Hopf algebras.
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Proof. By [Fon77, §I.9, Théorème 1], for i = 1, 2, Hi
∼= k[[Wi]]/Ii for some

k-vector spaces Wi and closed ideals Ii contained in the augmentation ideals
(Wi).
By continuity, kerϕ must contain an open ideal of H1⊗̂kH2. Any ideal of
H1⊗̂kH2 contains a subideal of the form (W1)

pn

⊗ H2 + H1 ⊗ (W2)
pm

for
some n,m ≥ 0.
By the definition of bilinear pairings,

ϕ(x, V n
2 (y))p

n

= ϕ(xp
n

, y).

Thus if x ∈ (W1) then ϕ(x, V n
2 (y))p

n

= 0 and hence, since k′ is reduced,
ϕ(x, V n

2 (y)) = 0. If on the other hand x ∈ k then ϕ(x, V n
2 (y)) = xǫH2(V

n
2 (y)) =

0 if y ∈ (W2). Thus ϕ vanishes on H1⊗̂kV
n
2 (W2). Symmetrically, ϕ vanishes

on V m
1 (W1)⊗̂kH2, concluding the proof.

Corollary 12.4. Let H1, H2 be connected formal Hopf algebras. Then

Spf (H1 ⊠H2)(k̄) = colim
m,n

Spf (H1/V
m
1 ⊠H2/V

n
2 )(k̄).

Proof. This follows immediately by combining Lemmas 12.2 and 12.3.

Using the above, we will now work toward giving a formula for
Spf (H1 ⊠H2)(k̄).
In the category Hopfk of (bicommutative) Hopf algebras, the tensor product
⊠a exists by Thm. 1.3 and was studied in [Goe99] and [BL07]. Given any Hopf

algebra H, profinite completion Ĥ yields an object of FHopfk . We denote
by OWn

= OWn,k
the Hopf algebra corepresenting the functor taking a k-

algebra A to its length-n Witt vectors. We let OW c
n

be the formal Hopf algebra
corepresenting W c

n := colimm ker(Fm
Wn

: Wn →Wn).

Lemma 12.5. Let m,n ≥ 0. Then there is an isomorphsim of formal Hopf
algebras

(OWn
⊠a OWm

)̂ ∼= OW c
n
⊠OW c

m
.

Proof. Both sides of the claimed isomorphism represent formal groups. We will
show that the functors of points of the corresponding formal groups agree, and
thus, that the underlying formal Hopf algebras are isomorphic. We will write
OWn

∼= k[x0, . . . , xn−1], and OWm
∼= k[y0, . . . , ym−1]. Let A be a finite k-algebra

and ϕ ∈ HomAlgk
(OWn

⊠a OWm
, A) be a morphism. Then ϕ is represented by

a bilinear pairing

ϕ : OWn
⊗k OWm

→ A.

For this to induce an element of HomAlgk
(OW c

n
⊠ OW c

m
, A), the map ϕ must

factor through a quotient by an ideal of the form

(x0, . . . , xn−1)
ps

⊗OWm
+OWn

⊗ (y0, . . . , ym−1)
pt

for some s, t ≥ 0.
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Indeed, writing

OW c
n

∼= k[[x0, . . . , xn−1]],

a fundamental open system of neighborhoods is given by (x0, . . . , xn−1)
ps

for
s ≥ 0, and similarly for OW c

m
. Using the relations

ϕ(x, VWm
y)p = ϕ(xp, y)

ϕ(VWn
x, y)p = ϕ(x, yp),

and the observation that V n
Wn

= 0 = V m
Wm

, we see that for large enough N > 0,
every monomial generator

xI = xi00 x
i1
1 · · ·x

in−1

n−1 ∈ (x0, . . . , xn−1)
pN

has some ik > pm. Then the bilinearity relations imply that ϕ(−, y) vanishes

on (x0, . . . , xn−1)
pN

for y ∈ OWm
. Indeed, let xI be as above and assume

without loss of generality that i0 > pm. Then

ϕ(xI , y) =
∑

(y)

ϕ(xp
m

0 , y(1))ϕ(xi0−p
m

0 xi11 · · ·x
in−1

n−1 , y
(2)) (cf. Notation 2).

Since ϕ(xp
m

0 , y(1)) = ϕ(x0, V
m(y(1)))p

m

= 0, the sum vanishes. By doing the
same argument for the other variable, we see that kerϕ factors as claimed.
Thus, every morphism ϕ ∈ HomAlgk(OWn

⊠
a OWm

, A) induces an element of

Homc
Algk

(OW c
n
⊠OW c

m
, A),

and it is easy to see that this gives an isomorphism.

We let ιn : OWn
→ OWn

⊠a OWn
be the mod-p reduction of the map from

Prop. 11.6. After completion, using Lemma 12.5, we obtain a map of formal
Hopf algebras

ιn : ÔWn
→ OW c

n
⊠OW c

n
.

Given two formal connected Hopf algebras H1, H2, we now define a map

Spf (H1 ⊠H2)(k̄) → colim
m,n

HomDmodF
k
(Df (H1/V

m
H1

)⊠ Df (H2/V
n
H2

), CW (k̄))

which will turn out to be an isomorphism of Γ-modules. By Cor. 12.4, any map
f ∈ Spf (H1 ⊠H2)(k̄) factors as

f : H1/V
n
H1

⊠H2/V
n
H2

→ k′
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for some n ≥ 0 and k′ a finite extension of k. As in (11.4), we define

µf : D
f (H1/V

n)× Df (H2/V
n)

=HomFHopfk(OW c
n
, H1/V

n)×HomFHopfk(OW c
n
, H2/V

n)

⊠
−→HomFHopfk(OW c

n
⊠OW c

n
, H1/V

n
⊠H2/V

n)

ι∗n−→HomFHopfk(ÔWn
, H1/V

n
⊠H2/V

n)

f∗
−→HomFAlgk

(ÔWn
, k′)

=Wn(k
′) ⊂Wn(k̄) ⊂ colim

n
Wn(k̄) = CWu(k̄) ⊂ CW (k̄).

The following lemma is proved just as Lemma 11.10.

Lemma 12.6. The map µf defines a Dieudonné pairing

µf : Df(H1/V
n
H1

)× Df(H2/V
n
H2

) → HomFAlgk
(ÔWn

, k′) =Wn(k
′) ⊂ CW (k̄)

and thus gives a map

µf : Df(H1/V
n
H1

)⊠ Df(H2/V
n
H2

) → CW (k̄)

of Dieudonné modules.

One easily shows that this map is independent of the choices of n and k′.
Given f ∈ HomAlgk

(H1 ⊠ H2, k̄), we associate a map µf : Df(H1/V
n
H1

) ⊠

Df(H2/V
n
H2

) → CW (k̄). To simplify notation and save space, let

Homc
D(−, CW (k̄)) = colim

k′⊂k̄
Homc

Dmodk
(−, CW (k′))

where Homc
D denotes continuous morphisms of Dieudonné modules and k′

ranges over the finite extensions of k. With this notation, the above then
defines a morphism

t : HomAlgk
(H1 ⊠H2, k̄) → colim

m,n
Homc

D(Df(H1/V
n
H1

)⊠ Df(H2/V
m
H2

), CW (k̄))

of Γ-modules.

Proposition 12.7. The map

t : HomAlgk
(H1 ⊠H2, k̄) → colim

m,n
Homc

D(Df(H1/V
n
H1

)⊠ Df(H2/V
m
H2

), CW (k̄))

is an isomorphism of Γ-modules.

We first show a special case:

Lemma 12.8. Prop. 12.7 holds when H1, H2 are connected smooth formal Hopf
algebras with V1 = 0 and V2 = 0.
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Proof of Lemma 12.8. Let us write

H1
∼= Spf k[[(Xi)i∈S ]]

and
H2

∼= Spf k[[(Yj)j∈T ]]

for some index sets S and T such that each Xi and each Yj is primitive. It is
clear that a bilinear pairing

ϕ : H1⊗̂kH2 → k′

for k′ a finite extension of k, is determined by what it does on elements of the
form Xi ⊗ Yj , for m,n ≥ 0, i ∈ S and j ∈ T. It is then clear that giving a pair-
ing ϕ as above is equivalent to giving a continuous map Q(H1)⊗̂kQ(H2) → k′.
On the other hand, to give a Dieudonné pairing

ψ : Df(H1)⊗ Df(H2) → k′,

we must have that ψ(F (x), y) = ψ(x, V (y))p = 0, for x ∈ Df(H1), y ∈ Df(H2).
Doing this for the other variable, we see that this means that ψ factors through

Df(H1)

FDf(H1)
⊗̂W (k)

Df(H2)

FDf(H2)
∼= Q(H1)⊗̂kQ(H2),

that is, giving a Dieudonné pairing Df(H1) × Df(H2) → k′ is equivalent to
giving a continuous map

Q(G1)⊗̂kQ(G2) → k′.

What remains is to show that the map

t : H1 ⊠H2(k̄) → Homc
Dmodk

(Df(H1)⊠ Df(H2), k̄),

is an isomorphism. This follows because the map ι1 : OW1 → OW c
1
⊠OW c

1
takes

x ∈ OW1 to x⊠ x.

Proof of Prop. 12.7. We will prove this by induction on m and n, following the
lines of [HL13, Prop. 1.3.28]. We assume that V n

H1
= 0 and that V m

H2
= 0 for

some m,n ≥ 0. As in the proof of Prop. 9.8, one can assume that SpfH1 =∏
i∈I W

c
n and SpfH2 =

∏
j∈J W

c
m for some index sets I and J . Note that

H1 =
⊗̂

i∈I
OW c

n
, H2 =

⊗̂
j∈J

OW c
m

in the category of formal Hopf algebras over k. We abbreviate

An,m = Spf
(⊗̂

i∈I
OW c

n
⊠

⊗̂
j∈J

OW c
m

)
(k̄).
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By considering the exact sequence of formal groups over k,

0 →
∏

j∈J

W c
m−1

∏
V

−−−→
∏

j∈J

W c
m →

∏

j∈J

W c
1 → 0,

where the first map is the product of the Verschiebung maps V : W c
m−1 →W c

m,
we get an exact sequence

0 An,m−1 An,m An,1.
1⊠

∏
V

(12.9)

To show this sequence is also exact at the right, note that the subcoalgebra

H ′1(n)⊗k H
′
2(m) =def

(⊗

i∈I

OWn

)
⊗k

(⊗

j∈J

OWm

)
⊆

(̂⊗

i∈I

OW c
n

)
⊗̂k

(̂⊗

j∈J

OW c
m

)

is dense. By [Goe99, Lemma 7.1]1,

H ′1(n)⊠a H
′
2(m) ∼= Sym


(

⊕

i∈I

Q(OWn
))⊗k (

⊕

j∈J

Q(OWm
))


 .

Thus to give a bilinear pairing H ′1(n) ⊗k H ′2(m) → k′ is equivalent to
specifying where to send the indecomposables. It follows that every bi-
linear pairing ϕ : H ′1(n) ⊗ H ′2(1) → k′ can be lifted to a bilinear pairing
ϕ : H ′1(n) ⊗H ′2(m) → k′. Using an argument as in the proof of Lemma 12.5,
all of these bilinear pairings are continuous. Thus the sequence (12.9) is right
exact.
With the notation

Bn,m = Homc
Dmodk

(Df(H1)⊠ Df(H2), CW (k̄)),

we then have an exact sequence

0 Bn,m−1 Bn,m Bn,1.
1⊠ΠV

Together with (12.9), this gives rise to a commutative diagram of exact se-
quences

0 An,m−1 An,m An,1 0

0 Bn,m−1 Bn,m Bn,1,

1⊠ΠV

1⊠ΠV

and by induction and the snake lemma, we are reduced to the case m = 1. By
another induction, it is enough to show that A1,1 → B1,1 is an isomorphism.
But in this case, the statement follows from Lemma 12.8.

1Goerss works with graded Hopf algebras, but his methods of proof go through in the
ungraded case, as explained in [BL07].
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This proves Thm. 9.4.

Example 12.10. Let αp be as in Ex. 9.3. As we saw there, αp ⊠ αp is not
connected. To compute its étale part, we must compute the Dieudonné pairings

Df(αp)⊠ Df(αp) → CW (k̄).

We know that Df(αp) = k, so a Dieudonné pairing, being bilinear, is determined
by where it sends

(1, 1) ∈ k × k ∼= Df(αp)× Df(αp).

We see that to be a Dieudonné pairing, (1, 1) must be mapped into a submodule
of CW (k̄) where V = 0, i.e into k̄. This argument shows that the Γ-module of
Dieudonné pairings Df(αp)⊠Df(αp) → CW (k̄) is isomorphic to k̄, as expected.

Remark 12.11. A natural hope would be for the functor Df : FHopfck →
DmodFk to be monoidal, i.e. that for H1, H2 two formal connected Hopf alge-
bras, we would have Df(H1 ⊠ H2) ∼= Df(H1) ⊠ Df(H2). Unfortunately, this is
not true, we only have Df(H1⊠

cH2) ∼= Df(H1)⊠
cDf(H2). To see this, suppose

that Df was monoidal with respect to ⊠, let H1 = H2 = OCW c = OCW c
k

and
assume for simplicity that k is algebraically closed. Then

HomFgpsk(Z/pZ, Spf OCW c ⊠OCW c) ∼= HomDmodF
k
(Df(OCW c)⊠Df(OCW c), k)

where V (x) = 0 and F (x) = xp on k. By the universal property
of ⊠, coupled with Thm. 7.1, this is the same as V -equivariant maps
Q(CW c

W (k))⊗̂W (k)Q(CW c
W (k)) → k. An elementary calculation shows then

that

HomDmodF
k
(Df(OCW c

k
)⊠ Df(OCW c

k
), k) ∼=

∞∏

i=−∞

k.

However, note that

HomFgpsk(Z/pZ, Spf (OCW c ⊠OCW c))

is isomorphic to the p-torsion of Spf (OCW c ⊠OCW c)(k). Using Thm. 9.4, one
shows that this is isomorphic to

⊕∞
i=−∞ k, which is not isomorphic to

∏∞
i=−∞ k.

13 Tensor products of affine abelian groups schemes in positive

characteristic

Let k be a perfect field of characteristic p > 0. By Thm. 1.3, the tensor product
of any two affine groups exists. In this section we first use the results from
Section 9 to give a formula for the Dieudonné module of the tensor product of
two unipotent affine groups. We then use this result to competely describe the
tensor product of two affine groups. Note that by Thm. 6.3, the category of
unipotent groups over k is equivalent to DmodV,nil

k , those Dieudonné modules
that are filtered colimits of its Verschiebung kernels. By Cartier duality, the
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category of unipotent groups is anti-equivalent to the category of connected
formal groups. Suppose that we have a bilinear map f : G1×G2 → G3 of affine
groups. By Cartier duality, we get a cobilinear map G∗3 → G∗1 × G∗2 of formal
groups, and by looking at the representing objects, we get a bilinear map of
formal Hopf algebras

OG∗
1
⊗̂kOG∗

2
→ OG∗

3
.

Conversely, given a cobilinear map H3 → H1 × H2 of formal groups, corre-
sponding to a bilinear map OH1⊗̂OH2 → OH3 of formal Hopf algebras, Cartier
duality produces a bilinear map

H∗1 ×H∗2 → H∗3

of affine groups. This shows that there is a bijective correspondence between
bilinear maps of formal Hopf algebras and bilinear maps of affine groups. We
thus have:

Theorem 13.1. Let G1, G2 be unipotent groups over a perfect field k of positive
characteristic. Then the connected part of (G1 ⊗ G2)

∗ is isomorphic to the
formal connected group scheme associated to

Df(G∗1)⊠
c Df(G∗2),

while the étale part is isomorphic to the étale formal group scheme associated
to

colim
m,n

HomDmodF
k
(Df(G∗1[V

n])⊠ Df(G∗2[V
m]), CW (k̄))

Proof. From our discussion above, the functor taking an affine group G to the
formal Hopf algebra OG∗ corepresenting its Cartier dual is monoidal. Thus,
O(G1⊗G2)∗

∼= OG∗
1
⊠ OG∗

2
, where ∗ denotes the Cartier dual. From Prop. 9.8,

we get that the Dieudonné module of the connected part of OG∗
1⊠G∗

2
is given

by
Df(OG∗

1
)⊠c D(OG∗

2
) ∼= Df(G∗1)⊠

c Df(G∗2),

and the statement about the connected part follows. The étale part follows
from Thm. 9.4.

We now give the description of the unipotent part of the Dieudonné module of
G1 ⊗G2, without first dualizing.

Theorem 13.2. Let G1, G2 be unipotent groups over a perfect field k of positive
characteristic. Then the unipotent part of D(G1 ⊗ G2) is isomorphic to the
module D(G1) �

u D(G2), where �
u is defined in Def. 1.10.

Proof. By Thm. 13.1 and Prop. 8.5, the connected part of Df((G1 ⊗ G2)
∗) is

isomorphic to

Df(G∗1)⊠
c Df(G∗2)

∼= I(D(G1))⊠
c I(D(G2)).

Since D(G1) �
u D(G2) = Ic(I(D(G1)) ⊠

c I(D(G2))), another application of
Prop. 8.5 together with the monoidality of I and Ic gives the claimed result.
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Together with Prop. 4.3, we conclude:

Corollary 13.3. Let G1, G2 be affine groups over a perfect field of character-
istic p > 0 and split Gi = Gu

i × Gm
i , i = 1, 2 into sums of a unipotent group

and a multiplicative group. Denote by Mi = Gr(Gm
i,k̄

) the Γ-module associated

with Gm
i . Then G1 ⊗G2 is the group whose unipotent part is characterized by

D(Gu
1 ⊗ Gu

2 )
∼= D(Gu

1 ) � D(Gu
2 ) (Def. 1.10) and whose multiplicative part is

the multiplicative group scheme associated to the Γ-module

Z[1/p]⊗M1 ∗M2

⊕Homc
Ab(π̂0(G

u
1 )(k̄),Gr(G2,k̄))⊕Homc

ModAb
(π̂0(G

u
2 )(k̄),Gr(G1,k̄))

⊕ colim
m,n

Homc
Dmodk

(Df((Gu
1 )
∗[V n])⊠ Df((Gu

2 )
∗[V m]), CW (k̄)),

where Γ acts on each Hom by conjugation, [V m] denotes the kernel of the
mth Verschiebung, and π̂0 denotes the pro-étale group of connected components
(Def. 4.2).
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