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1 INTRODUCTION AND MAIN RESULTS

Semigroups of operators are at the core of mathematical analysis. They de-
scribe evolutionary phenomena, resolve parabolic differential equations and
have many connections to spectral theory and integro-differential calculus. In
this paper we focus on Markovian semigroups — that is, probability kernels
satisfying the Chapman-Kolmogorov equation. We construct the semigroups
from the integral kernel v(z, A), called the Lévy kernel and interpreted as the
intensity of occurrence of dislocations of mass, or jumps, from the position
r € R? to the set x + A C R

The construction of the semigroup from the Lévy kernel is intrinsically difficult
when v is rough, just like the construction of a flow from a non-Lipschitz
direction field or a diffusion from a second order elliptic operator with merely
bounded or degenerate coefficients. Below under appropriate assumptions on
v we obtain the semigroup and estimate its integral kernel p;(z,y), called the
heat kernel or the fundamental solution or the transition probability density,
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and we prove regularity and uniqueness of the kernel. Our results are analogues
to the construction and estimates of the heat kernel for the second order elliptic
operators with rough or degenerate coefficients.

A unique feature of our methodology is that we can deal with highly anisotropic
Lévy kernels, meaning that v(z, A) may vanish in certain jump directions. In
fact v may be concentrated on a set of directions of Lebesgue measure zero. We
should note that despite recent rapid accumulation of estimates of heat kernels
of nonlocal integro-differential Lévy-type generators with kernels v(z, A), so
far there were virtually none on generators with highly anisotropic kernels. A
notable exception are the papers by Sztonyk et al. [7, 34, 33, 51] but they only
concern translation invariant generators and convolution semigroups, for which
the existence and many properties follow by Fourier methods. We also mention
the estimates of anisotropic non-convolution heat kernels p:(z, y) given in [50]
and [32], however these are obtained under the assumption that the heat kernel
exists, without constructing it.

We consider jump kernels v(z,dz) comparable to the Lévy measure vg(dz)
of a symmetric anisotropic a-stable Lévy process in R¢. Here and below we
always assume that 0 < @ < 2 and d = 1,2,.... For important technical
reasons we also require Holder continuity in « of the Radon-Nikodym deriva-
tive v(z,dz)/vo(dz). Recall that the Lévy measure vy of the a-stable Lévy
process has the form of a product measure in polar coordinates: vo(drdf) =
r~1=%drpg(df). The anisotropy mentioned above means that the spherical
marginal pg may even be singular with respect to the surface measure on the
unit sphere. In fact we assume that 1y and v have Hausdorff-type regularity
outside of the origin. The order ~ of this regularity is a fundamental factor in
our development: we require o + v > d; the assumption is essentially optimal
as we explain below.

To construct the heat kernel p from the Lévy kernel v we use the parametrix
method. It is a general approach which starts from an implicit equation and
some first approximation p° for p. Iterating the equation produces an explicit
(parametrix) series. The series formally solves the equation but the proof
requires delicate analysis of the convergence, which critically depends on the
choice of the first approximation p°. The method was proposed by E. Levi [45]
to solve an elliptic Cauchy problem. It was then extended by Dressel [13]
to parabolic systems and by Feller [20] to parabolic operators perturbed by
bounded non-local operator. Further developments were given in papers of
Drin’ [14], Eidelman and Drin’ [16], Kochubei [39] and Kolokoltsov [41]. We also
refer to the monograph by Eidelman, Ivasyshin and Kochubel [17] and to the
classical monograph of Friedman [22] on the second-order parabolic differential
operators. The parametrix method has a version called the perturbation (or
Duhamel) formula. This version is appropriate for adding a “lower order” term
to the generator of a given semigroup and the role of the first approximation is
played by the “unperturbed” semigroup. This is, however, not the case in the
present paper, because v(z,dz) — vo(dz) is not of “lower order” in comparison
with vy (dz).
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For recent developments in the parametrix and perturbation methods for non-
local operators we refer the interested reader to Bogdan and Jakubowski [6],
Knopova and Kulik [36], [37], Ganychenko, Knopova and Kulik [24], Kulik [43],
Chen and Zhang [11], Kim, Song and Vondracek [35] and Kiihn [42]. We should
note again that the listed papers assume that v(z,dz)/dz is locally compara-
ble with a radial function. This is what we call the isotropic setting. The
anisotropic setting has different methods and very few results. Here we show
how to handle space-dependent anisotropic generators using suitable majoriza-
tion and recent precise estimates for stable convolution semigroups.

A different Hilbert-space approach was developed in Jacob [29, 31], Hoh [27]
and Bottcher [8, 9] and relies on the symbolic calculus, see also Tsutsumi [52, 28]
and Kumano-go [44].

After verifying that the parametrix series representing p:(x,y) is convergent,
one is challenged to prove that p is indeed the fundamental solution, in partic-
ular that it is Markovian and the generator of the semigroup coincides with the
integro-diferential operator defined by v for sufficiently large class of functions.
This is a complicated task. The method described by Friedman [22] consists in
(1) proving that p;(x,y) gives solutions to the respective Cauchy problem for
the operator and (2) using the maximum principle for the operator. This ap-
proach is extended to rather isotropic nonlocal operators by Kochubel [39] and
further developed in the isotropic setting by Chen and Zhang [11] and by Kim,
Song and Vondracek [35]. In our work we indeed profited a lot by following the
outline of Kochubei [39]. Another method, based on suitable approximations
of the fundamental solutions was developed by Knopova and Kulik [37, 36]. A
more probabilistic approach, based on the notion of the martingale problem,
is given by Kulik [43]. We should note that the construction of semigroups
generated by nonlocal integro-differential operators is related to the existence
and uniqueness of solutions to stochastic differential equations with jumps. For
an overview of the results and references in this direction, including the pro-
babilistic interpretation of the parametrix method we refer the reader to [36].
The reader interested in probabilistic methods may consult further results and
references in [12, 36, 37, 40, 43, 46].

Our development is purely analytic. We treat operators not manageable by
the currently existing methods and give precise estimates for the heat kernels;
our upper bounds of p:(z,y) are essentially optimal (see below). We thus give
a framework for further investigations of the inhomogeneous Cauchy problem
and of the regularity of solutions to nonlocal equations. The approach also
gives guidelines for further developments of the parametrix method. In parti-
cular, extensions to anisotropic jump kernels v(z, dz) with different radial decay
profiles, cf. [33], should be possible along the same lines. Such extensions call
for estimates and regularity of suitable convolution semigroup majorants, and
they are certainly non-trivial.

Here are the main actors of our presentation. Let d € {1,2,...} and let
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v(z,du) > 0 be an integral kernel on R? satisfying

sup / (1A [u) v(z,du) < co. (1)
zeRd JR4\ {0}

Let v be symmetric in the second argument, meaning that for all z € R? and
A C RY,

v(z,A) =v(z,—A). (2)
We note that this is a different symmetry than the one used in the theory of

Dirichlet forms [23]. If f : R? — R? is a continuous functions vanishing at
infinity, then we write f € Co(R%) and for x,z € R? and § > 0, we let

20 (g :1 T+ u T —u)— ) |v(z,du
)= [ [+ f w20 @) ),

and
L* f(w) := lim L*° f(x), (3)

provided that this limit exits and is finite. We note L* and L*° satisfy the max-
imum principle: if f(zo) = sup,cga f(x), then L*° f(xg) < 0 and L* f(z0) < 0.
If, say, v(xo, du) has unbounded support, then we even have L f(xy) < 0 pro-
vided f(x0) = sup,ega f(z) > 0, because f(zo+u)+ f(xo —u) is close to zero
on a set of positive measure v(xg, du). We let

Lf(x)=L""f(x),  Lf(x):=L"f(x),
and define the domain of L:
D(L) = {f € Co(R?) : finite Lf(x) exists for all z € R9}. (4)

We often write L,p:(x,y), etc., meaning that L acts on the first spatial variable
x of pi(z,y). By the Taylor expansion and (1), D(L) contains C2(R%). Here,
as usual, f € CZ(RY) means that f and all its derivatives of order up to 2 are
continuous and converge to zero at infinity. We have

Li@) = [ 51+ @ =) = 2f(@)] o) o)

= /}R [f(z+u) = f(z) —u- V@)l <]v(z,du), feC5R?). (6)

We now fully specify the properties of v used in this paper. Let o € (0,2). Let
to be a finite measure concentrated on the unit sphere S := {x € R?: |z = 1}.
Define

Vo(A) = /S /0 T A0y drpo(df), A C R, (7)

where 1 4 is the indicator function of A. This is the standard form of the Lévy
measure of a-stable distribution [48, Theorem 14.3]. We further assume that pg
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is symmetric and non-degenerate, that is not concentrated on a proper linear
subspace of R%. In particular, 0 < po(R?) < 0o, v is infinite at the origin, and

/ (LA lyP) voldy) < o (8)
R4\ {0}

DEFINITION 1.1. We say that vy is a y-measure at S if v > 0 and
vo(B(x,r)) <mor?, x€S, 0<r<1/2. 9)

This is a Hausdorff-type condition on vy outside of the origin. Since v (drdf) =
r=1=%drug(df), vy is at least a 1-measure and at most a d-measure at S. In
fact, the spherical measure pg is a (7 — 1)-measure at S if and only if the Lévy
measure 1 is a y-measure at S. For the rest of the paper we fix v € [1,d] and
make the following assumptions.

Al. vy is given by (7) with non-degenerate finite symmetric spherical measure
Lo, Vo is a y-measure at S, and o + v > d.

A2. There exist constants My > 0, € (0, 1] such that

My 'v(A) < v(z, A) < Movp(4), ze€ R AcRY, (10)

and
[v(z1, A)—v (22, A)| < Mo (|21 — 22| A1) wo(A), 21,22 € RY, Ac R4
(11)

By Al, a4+ v —d € (0,a). By the Radon-Nikodym theorem, A2 is equivalent
to having v(z,du) = h(z,u)vg(du), where My ' < h(z,u) < My and h(z,u) is
n-Holder continuous with respect to z. Note that (10) and (8) imply (1).
We now indicate how to define the heat kernel p:(z,y) corresponding to v
(details and justification are given in Section 3). Let p}(y —x) be the transition
probability density corresponding to the Lévy measure v(z,-), with z € RY
fixed, see (36). For t > 0, 2,y € R% we define the “zero-order” approximation
of pe(x,y):

pi(a,y) =pily—=2), t>0, wyeR". (12)
Note that it is the “target point” y that determines the Lévy measure v(y,-)
used to define p?(z,y). This is important for regularity of x — p¥(z,y). We let

(I)t(x’y) = (Lz - at)p(t)(‘ray)’ (13)

and -
\Ilt('rvy> = Z(p?k(zay)v (14>

k=1

where we use the k-fold convolution (26). Then we let

pt(zay) :p?(zay)+ (pO&\II)t(:C7y> (15)

The following three theorems reflect the main steps in our development.
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THEOREM 1.1. We have
(8t - Lx)pt(za y) = 05 t> 07 T,y € Rda (16)

and for all f € Co(RY), uniformly in v € R?

tin [ f@ply) dy = (o) (17)
Rd

t—0

To describe the growth and regularity of pi(z,y), for § > 0 define

B) (Y _ -8 By _ L T d
¢ (@) = (lal v, G @) = GO (W) t>0, z e R (18)
Of course, if B > d, then
/ G (x)dx :/ GO (z)dx < 00, t>0. (19)
R2 R4

THEOREM 1.2. There exist constants C, ¢y, ca,to > 0 such that for all x,y € RY,
|8fpt(:c,y)| < C’tikecltGga-M) (y—=x), k=0,1, t>0, (20)

and
pt(‘ray) ~ t_d/aa |y - ‘T| < cQtl/aa te (Oato]a (21)

and for all t > 0, z1,x2,y € RY,

T — 4 . @ @
pe(z1,y) — prlz2,y)| < C(%) et (G§ Ny —21) + G (y — m)),
(22)

for some 0 € (0,0 A (a+ v —d)). Furthermore, pi(xz,y) is continuous in y.
The correspondence of p and L is detailed as follows.
THEOREM 1.3. For f € Co(R?), t > 0 and x € R? define

RS = [ nle) )iy (23)

R

Then (P;) is a strongly continuous Markovian semigroup on Co(R?) and the
function u(t,x) = P, f(x) defines the unique solution to the Cauchy problem

O — L)u(t,z) =0, t>0, zeR?

u(0,z) = f(x), z¢€RY,
such that e Mu(t,r) € Cp(]0,00) x RE) for some A € R.
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Before we go to the proofs we discuss typical applications, the sharpness and
further questions related to our results.

There exist many measures vy and v satisfying the conditions A1 and A2.
Recall that vy is a y-measure at S if and only if ug is a (y — 1)-measure at S.
We also see that 1 is a d-measure if and only if it is absolutely continuous with
respect to the Lebesgue measure and has a density function locally bounded
on R?\ {0}. In this case the condition A1 holds trivially and Theorem 1.2
recovers well-known upper estimates of convolution semigroups — for detailed
discussion of this case we refer the reader to [15] and [26]. One of possible
ways of constructing more general vy is the following. For every v € [1, d] there
exists a set F' C S with positive finite Hausdorff measure of order (y — 1) [2]
and a set £ C F such that the Hausdorff measure restricted to E, say ug, is a
nonzero (y—1)-measure [19, Prop. 4.11]. Then vy defined by (7) is a y-measure
at S, and A1 holds provided that @ > d — 7. For instance, if d = 2 and F is
the usual ternary Cantor set on S and v — 1 =log2/log3, then A1l is satisfies
provided that a > 1 — log2/log3 ~ 0.3791.

In the simplest case of Theorem 1.2, when the (symmetric non-degenerate)
measure fg is a finite sum of Dirac measures, then v = 1 and (20) with k =0
cannot be improved. Indeed, it is optimal for a-stable convolution semigroups,
when v(z,dz) = vy(dz), because in the directions of the support of 1y, the
corresponding convolution semigroup has a matching lower bound [53, Theo-
rem 1.1].

In fact, our upper bound (20) with k& = 0 is also optimal for general v, as
follows by inspecting the translation invariant case [53, Theorem 1.1]; see also
[34, Theorem 2] for estimates of convolution semigroups related to a wider class
of Lévy processes.

It is safe to bet that one cannot expect simple and precise upper bounds for
pi(z,y) in the anisotropic a-stable setting of Theorem 1.2. The difficulties
with anisotropy are also seen in the more general setting of [37] — although [37]
allows to handle anisotropic Lévy kernels, it is yet to be seen how to obtain
precise upper bounds for p;(z,y) from the series representation given there. In
the forthcoming paper [38] some examples are given for the a-stable-like case
which specifically show that even finite pointwise upper bounds are not always
possible.

In view toward further developments our results and [7, 47, 21] suggest further
questions about more precise estimates of the semigroup in large time, regu-
larity of the resolvent, Harnack inequality for harmonic functions, estimates of
the Green function and Poisson kernel, etc. We also hope that our emphasis
on the usage of the so-called sub-convolution property and auxiliary majorants
based on kernels of convolution semigroups, see e.g. [5] for examples, will bring
further progress and more synthetic approach to the Levi method.

The structure of the paper is as follows. In Section 2 we give the notation,
definitions and preliminary results. The main results of this section are Lem-
mas 2.2 and 2.11. In Section 3 we prove the convergence of the series (14) and
prove Theorem 1.1. In Section 4 we estimate the time derivative of p:(x,y) and
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prove Theorem 1.2. In Section 5 we prove Theorem 1.3. We also show that
the generator £ of (P;) coincides with the operator L on CZ(R¢) and that the
kernel p;(z,y) with the above properties is unique.

2  AUXILIARY CONVOLUTION SEMIGROUPS

2.1 NOTATION AND PRELIMINARIES

Let N = {1,2,...}, Np = {0,1,2,...} and N¢ = (Ng)?. For (multiindex)
B=(B,...,B4) € N& we denote |3| = B1 + ...+ B4. For & = (z1,...,24), y =
(Y1,--,y4) € RYand r > 0 we let 7 -y = Zlesciyi and |z| = vz -z. We
denote by B(z,7) C R? the ball of radius r centered at € R¢, so S = 9B(0, 1)
is the unit sphere. All sets, functions and measures considered in this paper
are assumed Borel. For measure A we let |A| denote the total variation of .
Constants mean positive real numbers and we denote them by ¢, C, ¢;, etc. For
nonnegative functions f,g we write f &~ g to indicate that for some constant
c>0,clf <g<cf. Wewrite ¢ = ¢(p,q,...,r) if the constant ¢ can be
obtained as a function of p,q,...,r only.

The convolution of measures is, as usual, A\ x A\p(A) = [pa A1(A — 2)A2(dz),
where A C RY. We also consider the following compositions of functions on
space and space-time, respectively:

(@1 x2)(w9) = [ 2oz (25)

(f1 X f2)(t, z,y) ::/O » filt = 1,2, 2) fa(, 2, y)dzdT. (26)

Here z,y € R?, t € [0,00) and the integrands are assumed to be nonnegative
or absolutely integrable.

We consider the Lévy measure vy and the Lévy kernel v introduced in Section 1.
For clarity, it is always assumed that A +— v(x, A) is a Borel measure on R? for
every z € R? and = + v(z, A) is Borel measurable for every Borel A C R?. By
construction, vy is symmetric, non-degenerate and homogeneous of order —a:

vo(rd) = r=%vp(A), 0<r<oo, ACRY

The correspondence of vy and pp is a bijection [48, Remark 14.4]. We call pg
the spherical measure of vy. Since g is non-degenerate,

int €01 no(d0) >0, (27)
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The respective characteristic (Lévy-Khintchine) exponent g, is defined by

qMQ::/ (1— ¢ 4 i6 - uluiery) vo(du) (28)
RI\{0}

/ (1= cos(€ - u)) vo(du)
R\{0}

™

I S AP )
- 2sin%r(1+a>/s|§ 01 po(d), €€ R?. (29)

By scaling and (27),
c1l€l® < @ (€) < c2lé]®, €€ R (30)

By the Lévy-Khintchine formula and (30) there is a convolution semigroup of
probability density functions whose Fourier transform is exp(—tgq,,(£)), see,
e.g., [1, 48]. If ¢, (§) = ||, then the corresponding convolution semigroup
g(t, x) satisfies

t

z|dTe = G§d+a)(z>a t>0, z€R?. (31)

g(t, x) ~ t= A

The comparison was proved by Blumenthal and Getoor [3] (see [5, (29)] for
explicit constants). In the next section we prove a version of the upper bound
in (31) for the semigroups corresponding to v. To this end we first learn how to
bound integro-differential operators with kernel v. In what follows, we denote,
as usual,

diam(A) = sup{|z —y| : x,y € A}.

We also denote
0(A) = dist(A,0) := inf{|z| : x € A}.

The lemma below is an easy consequence of (7) and (9).
LEMMA 2.1. Let my = max{mq, 2" |uo|/a}. For every A C RY we have
vo(A) < my1d(A)~* 7 diam(A)". (32)

Proof. If §(A) = 0, then (32) is trivial, so we assume 6(A) > 0. By the
homogeneity of v, for every zg € A,

v(A) < wvo(B(xg,diam(A)) N B(0,0(A))°)
_ wo (B ((Fo diam(A4) IAN
= 1o (5 (G5 22 (0957) ).
If diam(A)/|zo| < &, then from (9) we get

diam(A)
|2o]
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and if diam(A)/|zo| > 1, then

a S(A)\° a S(A)\
Vo(A) S |.’L'0| 1%} (B (0, ( )) ) = |(E0| M ( ( ))
|0 a \ |zof
y
= ol s gy—o < Pl gy giam(ay.
a a
Thus, in either case we get (32). O

Let CZ(R?) be the class of all the functions bounded together with their deriva-
tives up to order 2. For ¢t > 0, z € R? and f € CZ(R?) we denote

A= [ 1) = 1) T @ gz | ()

The lemma below is the main result of this subsection.

LEMMA 2.2. Let f: (0,00) x R? — R be such that fi(-) := f(t,-) € CZ(R?) for
every t > 0 and there are constants K,{ > 0,k € [0,a+ v — d) such that

0 fo(x)] < Kt~ CHIBD/ (1 g g=Veg)y=r=atr e RY ¢ >0, (33)

for every multiindez B € N& with |8| = 0 or 2. Then there exists cq > 0 such
that

HE Fle) < et 4 o) e e RY 1> 0.
Proof. We have .Aféft (x) = I + I, where
I = /|u§t1/“ |fe(z +u) = fi(@) —u- Vo fi(@) L <p/ay| vo(du),
I, = /|u>t1/“ |fi(z +u) = fi(x) —u- Vafi(@) L, <p/ey| voldu).

From the Taylor expansion and (33) we get

L :/ i+ ) — ful@) — u- Vo @) voldu)
Jul <t/

IN

Kd22a+'yfnfl/ |u|2t7(c+2)/a(1+t71/a|x|)7'yfa+n Vo(du)
uf<tt/e

- Kd22a+7*ﬂ*1t*<<+2>/“(1+t*1/“|x|)*7*“+“—2|”0| 12-a)/a
—

= Koyt 771t gl)Trmots,
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We split I5 in the following way,

o= [ e - ) )

IN

/ 1/ | fe(z — w)|vo(du) + | fe(z) vo(du)

|u|>tt/«

(/ + [ )mu—unmwm
|u|>tt/ o |z —u|>t1/e |u|>tt/ o |z —u|<tl/e

|M0| |H0|
= =T s + =
+m®”at m+22|ﬁ@nm

Using (32) and (33) we obtain

I, < K =% vy (du)
[u|>t1/ e |z —u|<tl/e
= Kt~y (l?(x,tl/a) rwza(o,tl/a)C)
e
< Kmgt=¢/e@t/oy (max{|z| - tl/“,tl/o‘})
e
< Kegt™ 176/ (1 + t*l/a|z|)

In order to estimate Is; we define

J1 | fe(x — u)| vo(du),

/u|>t1/", max{|z|/4,tV/*}>|z—u|>t1/>

2 = |[fe(w = u)| vo(du),

/(4>tu&,114>nmx{z/4¢u&}

and observe that Io; = J1 4+ Ja. Using (33) we get

Jo

IN

j( o, lo—ul2| V4}(fﬂya(1‘Ft_lﬂﬂx‘*14)_7_“+”l@(dU)
u|>tt/ e |z—u|>|z

< (Klpol/a)t™ /(1 4 ¢/ g| J4) ot
< Kegt 71 g7V g)Trmetn,

If |z| < 4t1/®, then J; = 0. If |z| > 4t} then L := |log,(t~*/*|z|/4)] > 0,
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and
o< / K5/ (1 4 4=1/9g — )70 ()
|u|>tt/ @ || /4> |z —u|>t1/
L
< / Kt~ 4 7Yz — ul) 777 vy (du)
n—0 2"+1t1/"2|m7u‘>2"t1/“
L
< thg“/a Z 27n(0‘+’77“)y0 (B(QE, 2n+1t1/a))
n=0
L
< thg“/a Z 27n(a+’yfn)m12a+'y|x|f’yfa(2n+2t1/a)’y
n=0

< Kegttmem/e|g =7 < Kegt ™18/ (1 4 ¢~V z]) 777,

where in the fourth inequality we use (32) and the fact that 27+1t1/e < |z|/2
for n < L. We obtain

Iy = Iy + I + |ft($)|% < Kegt =8/ (1 g7V eg ) mrmots

and the lemma follows. O

2.2 ESTIMATES OF pj(z)

In this section we estimate the convolution semigroup corresponding to the
Lévy measure v(z,-) with fixed but arbitrary z € RY. We are interested in
majorants which are integrable in space, like (19). We note that the results
[7] cannot be directly used here because we also need Holder continuity of
z — p, which is crucial for the proof of Theorem 1.1. Recall that each v(z,-)
is symmetric and comparable to vy, i.e. it satisfies (10). Therefore,

4= ) = / (1= € 4 ig - ull <)) vz, du)
R4\{0}

(34)
:/ (1 —cos€ - u)v(z,du),
RI\{0}
is real-valued and there exist constants ¢, C' > 0 such that
clé|* < a(z,8) < Clg*, €2 eRY (35)
By (35),
pi(x) := (27r)7d/ emw Ttz ge >0,z € RY, (36)
]Rd

is infinitely smooth in ¢ and z. Note that for each z, (pf)t>o is a convolution
semigroup of probability densities. The operator L* equals to the generator of
the semigroup on CZ(R%), see, e.g., [4]. Therefore,

Opi(x) = LPpi(x), t>0, z¢€ RY, (37)
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and so
owi(0) = [ o+~ pi(e) — u- Vapi (@) uen) vz, du).
R

We recall the definition (18) and give approximation for convolutions of GEB ),

LEMMA 2.3. For every € (d,d + 2),
/ G (x—2)GP (2)dz ~GP(x), z€R% 0<s<t.  (38)
R4

Proof. Denote § = 3 — d. Let g(t,z) be the density function of the isotropic
rotation invariant §-stable Lévy process. We have Ggﬁ)(x) ~ g(t¥,x), see,
e.g., [3]

/ Gglj)s(:n —2)GP(2)dz =~ / g((t — )%z — 2)g(s% %, 2) d=
Rd Rd
= g((t—s)*+5" ).
Since an easy calculation gives
(1 A 21—6/a)t5/a < (t _ 8)6/04 + Sé/a < (1 vV 21—6/04)1:5/&’

from (31) we get

and (38) follows. O
LEMMA 2.4. For every 8 € N there is ¢ = c(1g, 3, My) > 0 such that
0pi ()] < et” VoG (@), £> 0,72 € R

The proof of Lemma 2.4 relies on the auxiliary results which we give first.
Fix an arbitrary z € R%. Let 9(-) = v(z,-). For ¢ > 0 let J. = Lp(e)e?,
1§5 = II-B(O,&)r&v and

0.0 = [ (=) a0, (€)= [ (=it guien) Dl

and
Bi(w) = (7 exp(—tag, () (@), ¢ >0,z €RY,

where F~! is the inverse Fourier transform. By (30) we see that 5 (z) is smooth.
The probability measure with the characteristic function exp(—tg;_(&)) is

. 5. o 102" (d
Pf(dy) = e tel Z # . t>0. (39)
n!

n=0
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We have -
pi =Py * By . (40)

The first step in the proof of Lemma 2.4 is to estimate the terms in the se-
ries (39). The following Lemma is a version of [7, Lemma 1] and [34, Cor. 10].

PROPOSITION 2.5. There exists ms > 0 such that fore >0 andn > 1,
DBz, 7)) <mye~ Do g|mo=7p7 e RY\ {0}, 7 < |x]/2.

Consequently,
Pf (B(z,7)) < Eaem3€7at|x|7o‘7'yr'y.

Proof. The result follows from [34, Lemma 9]. Indeed, one can check that the
conditions (23) from [34, Lemma 9] hold true with f(s) = s~*~7, which gives

D" (A) < €y, (1/2)" 71 f (6(A)/2) diam(A)7, (41)

where gy, (1) = sup¢|<, @y (§), 7 > 0. Since gy, (1) ~ r®, we get the required
estimates. O

We denote P, = Pttl/ Dr = ﬁ’;l/a and 0 = V170

LEMMA 2.6. For every n € Ny and 3 € N¢ there is ¢ > 0 such that
085, (z)| < et~ 1PVeG™ (z), t>0,2eR™ (42)

Proof. Let g;(z) = t¥/*p,(t*/*z), t > 0, z € R%. For each t, g;(x) is the density
function of an infinitely divisible distribution. We denote by ¢¢(£) and n:(du)
the corresponding characteristic exponent and the Lévy measure, respectively.
To prove (42) will apply [49, Prop. 2.1], for which it suffices to check that

[ Jekemee©@dg <o [ ) < (13)
R R

for every k > 2 with constant ¢ independent of ¢. Indeed, a direct calculation
gives 1;(A) = td,1/a (t'/*A). Then by (10) we get

/Iylkm(dy) < Mot/ I7RY vo(dy) = 2olkol
T Jgeaa NtV F—a

Further,

Redy(€) = / (1 - cos (€ - 9)) me(dy)

> Molt/l| ) (1 — cos (§~ tl%)) vo(dy)
Yy <t1 @
= M) M [ (o (657 ol
Yy 7t1 @
> My gy, (6/t1) = My Mg (B(0,£79)°) > c1[é]* — ca.
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Therefore,

/ e Ren©) gt de < e / ee € ]* de < c5 < oo
Thus, (43) holds true and applying the result from [49, Prop.2.1] we get
10%g:(x)| <eca M+ 1z))™", n>0,t>0,zeR™:
Coming back to p; we get the desired estimate. O
Proof of Lemma 2.4. We have

02pi ()] = | @m) (=) / 8o Eeta0(®) ge|

(2m)~¢ / |€|1Ble=terlel® gg = cp(—d=18D/o 4 5 0, 2 € RY.

IN

Using Proposition 2.5 and Lemma 2.6 with n > a+, for |z| > 2t/ we obtain
02 v+ P) @) =| [ 08inte P < [ |02t — )] P
R

< est” “/ (1+ =90 — )" By(dy)

_ (At~ z—y|)~"
= = w/ / ds Py(dy)
Rd

—d—|8| _
St / / Lati-1/ajz—y))-nss Pi(dy)ds
0 JRd

1
- da‘ﬂ‘/ P (Bl /(s ~ 1)) ds,
0

thus

‘85 (ﬁt * pt) (x)‘
1

S c4tid;‘m (/ t|$|—o¢—’y (tl/a(s—
(a+ |z y—n

otl/
(14 ‘l/a) n
+/ ds)
0
7d7m 14~/ a— ! /n | | -
<yt (t V|7 [ 8T ds+(1—|— ) )
0

2t1/0‘
:C5t7d 18] (t1+’y/a| | a— 'er(lJr 2|:f/|a)_ )

]\~
(1+ tl—/) : -
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16 K. BOGDAN, P. SzTONYK, V. KNOPOVA

For the regularity in time we have another estimate. Here the spatial bound is
satisfactory, cf. (19), and the temporal growth at ¢ = 0 will later be tempered
by making use of cancellations.

LEMMA 2.7. For every B € Ng there exists a constant ¢ > 0 such that
10,02 p? (z)] < ct_l_lﬂ‘/o‘Ggw_V) (x), z,zeR%Lt>0. (44)

Proof. Tt follows from (36) and (10) that

0:0%p7 () = 020,p3 () = (2m) /

q(z, &) (= 1)IPIH1ghe—ime—ta(=8) ge
R4

Recall that
owi(@) = [ o+ ) =i (o) — ue Vapi (@ uicny) w(edu),
cf. (37). Differentiating with respect to x and using A2 we get
|0007pi ()] = |07 0upf ()]
= | [ (@i + w) ~ 02 (2) — 0Fu - Vi @)1 ) vz du)
<C [ 10203+ u) - 02pi0) — u- V.02 ()L i<y | ol
Using Proposition 2.4 and Lemma 2.2 we obtain (44). O

The Holder continuity of z +— p7, will be proved in Lemma 2.11 after some
auxiliary lemmas. In the first one we prove the symmetry of the operators LY.

LEMMA 2.8. For every w € R? the operator L™ is symmetric, i.e.,

/ (@) L¥ () dir = / LP(a) /() dz (45)
R4

R4
for all o, f € C3(RY) N LY (RY).

Proof. For every 6 > 0 we have
J [ 1 e du)ds < vt BO, 5ol < o
u|>

Hence, by Fubini’s theorem, change of variables and symmetry of v(w,-) we

get
/}Rd o(z) /|u>6f(ac+u)u(w,du) de = /]Rd fy) /u|>§ oy + u) v(w, du) dy.
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By subtracting [p. flu\>5 f(x)p(x)v(w, du)dz, we obtain
| e@resp@ds = [ 1700 (@) do.
Rd Rd

Let 6 — 0. By dominated convergence we get (45), since for g € CZ(R%),
6 €(0,1),

[L"0g(z)] = /| ) (9(x +u) — g(x) = L1y (W) Vg(x) - u) v(w,du)
u|>
< gl [ JuPriw,dw +2gle [ viwdu) <o
Jul<1 Ju|>1
Here, as usual, |||z = sup{|0°g(x)| : = € R%, B € N&, || < 2}. O

COROLLARY 2.9. For every f € CZ(RY) N L*(RY) and w € R? such that
L*f € LY(RY) we have
LY f(x)dx = 0.
R4
Proof. Let ¢, € C°(R%) be such that 0 < ¢, (x) <1 and ¢, (z) = 1 for every
x € B(0,n) and ||¢,||2 < ¢o for every n € N. Note that

IL20(@)] < o1 /

lu|<1

lu|? v(w, du) + 2/ v(w,du) < oo,

jul>1

and for n > |z| we have

|LY o, (z)] = ‘/ . (pn(z+u) —1) v(w,du)| < 2v(w, B(—z,n)°),

which yields lim,, oo LY@, (z) = 0 for every z € R%. By the symmetry of LY,

[ en@rrs@e = [ 1%, (0)f(@)da.
R R
and the corollary follows by the dominated convergence theorem. o
LEMMA 2.10. Lett > 0, x,w,ws € R and
piltsxps () if s €(0,1),
o(s) = pi(x) if  s=0,
pi*(x) if  s=t

Then ¢ is continuous on [0,t], Os¢(s) exists on (0,t) and
Dsp(s) = /Rd (P s(2 — @) L2p2 (2) — p2 ()L pi (2 — @)) d.

DOCUMENTA MATHEMATICA 25 (2020) 1-54
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Proof. We have

[¢(s) —¢(0)] =

/ pi2s(@ — 2)p*(2) dz — pi* ()
R4

IN

/ P (& — 2)pi2 (2) dz — p ()
Rd

+ [ e =) =t - 2l ) ds
= N(s) + I2(s),

and lim,_,o [1(s) = 0, since the semigroup P f(z) = [pa f(x — 2)p¥(2) dz is
strongly continuous and p;"* (z —-) € Cp(R?). For s € (0,¢/2) from Lemma 2.7,

PPz —2) = pt(w—2)| <5 sup |9t (z — )|
u€(t—s,t)

-1 —1-d |z — 2| -
<c¢s sup {u Gt (2 — z)} < cst /e T V1 .
ue(t—s,t) tl/a

From the strong continuity of s — P2 we have

, lz—2 N\, _ (=l -
21_{% Rd( /o V1 P2 (z)dz = m\/l ,

therefore limg_,o I2(s) = 0. This yields the continuity of ¢ at s = 0. The proof
of the continuity at s = ¢ is analogous.
For every z € R? and s € (0,t) from (37) we obtain

Os (P s(x — 2)ps” (2)) = P (2 — @) L*2p» (2) — pi* (2) L pi (2 — ).

From Lemmas 2.4 and 2.2 we get

10 (P12, (x — 2)p2 (2)) | < GV ()G (2 —2) (s 4 (t—5)7Y).

Hence for every 6 € (0,t/2) and s € (4,t — J) we obtain

w ws —sd/al 17 =Y /|y —x —a—y
|05 (ptjs(:zz — z)ps (z)) | <2c67! 2d/ (A—/L\/l) (' e |\/1) , (46)

and since f(tlit V)T ( ‘ff/f‘ V1)~*7dz < oo, this yields

0.0 = [ (B8 =)L () = )L =) de s € ().

O

LEMMA 2.11. For any 8 € N& and 6 € (0,n A (a + 7 — d)) there exists ¢ > 0
such that for all z,wy,ws € R4, t >0,

|08p () — 02pi2 ()] < e(lwr — wa|" A IV eGETTD (@) (47)
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Proof. Let us prove first the statement with g = 0. Since for a,b > 0 we have
le=® — e~ < |a — ble=(@"?) | by Holder continuity of ¢(z, &) and ¢(z, &) =~ |¢]*,

b1 (@) = pi* (2)] = (2m)~| /Rd e e e
< crffwr —wal" A 1)‘ /Rd t|§|a€_0t‘§‘ad€’
< eojwy —wa|" ATV >0, wy, wo, z € R
Since for |z < 1/ we have G\*™ ™% () = t=%/* we get (47) for such t and z.
Suppose now that |z| > t'/%. We note that p; € CZ(R%) N L*(R?) for every

t >0 and z € R% By Lemma 2.10, (46) (which yields integrability of d,¢(s)
on [4,t— 4] for every § € (0,t/2)), Lemma 2.8 and the symmetry of p¥’(z) in z,

pi2(2) / / P (@ — 2)p¥s () deds
]Rd

/ / P (2 = ) L (2) = () L (= — )] s
R4
/ / YL — L | py (2 — ) dzds
R4
/ / w2 (x)) [LV? — L] pty(z — @) dzds
R4
/ / YL — L p (2 — @) dzds = 11 + .
RA
From Lemma 2.2 and Corollary 2.9 we derive
/ [Lw2 - Lwl}pf’js(z —x)dz =0,
R4
hence, I, = 0. Next we observe that for all w,z,y € R?, ¢t > 0,

) -] < e (Sl ) (6@ G W)

tl/«a

which follows from the Taylor expansion of p¥(x). Indeed, if |z — y| > t¥/e,
then (48) is straightforward: we just estimate the difference of functions by their
sum and use Lemma 2.4. If |z — y| < '/, then using the Taylor expansion
and Lemma 2.4 with |3] = 1 we get

Ipy’ (x) —p’ (W) < |z —y|- sup |Vaupi'(z + ((y — 2))]
¢€lo,1]
< ele -yt sup GO (@4 ((y - )
¢€[0,1]

< CQ| t1/ay| (G(OH-V)( )+ G§a+’y) (y)) 7
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since for |z| < 2t1/* and every ¢ € (0,1) we have

a _d/af 1T+ —x —a—y —d/a
Gl (@4 ¢y —a)) =t~ (7| fl(/ya )|v1) <t/

< 9o+ G§a+7) (.T),

and for |x| > 2t1/% we have |z + ((y — )| > |=| — |y — x| > |x|/2, which yields

G @+ C(y — 2)) = 7z 4 ((y — )0
< 2a+'yt17(d7'y)/a|x|fo¢7'y _ 2a+'yG§a+7)(x).

Further, using (48), A2, Lemma 2.4 and Lemma 2.2 with { = d we get

t
|z — 2|
< — el (a47) (a47)
nl<alu—wlan) [ (SZE A1) (e @) + 60 0)
(t— s)fngc_Yiv) (x — z) dzds
t
< ea(Jwy —we|T A 1)/ s/t — g)T1H0/
0
: / G — 2) (G @) + G (2) ) dads,
Rd

where in the second inequality above we use the fact that

(7o) = (597 (Fien)s wmemti>e>0.060

By Lemma 2.3 we obtain
t
|11 < es(Jwy —wa2|T A1) / s/t — g)T1H0/ (GgaJ”) () + GEO‘+770)($)) ds.
0
Note that for |z|® >t > s we have G (z) = s(@+7=d/a /|z|a+7_ Therefore,

t
/ P (S (Gg”‘Jr'Y)(:E) + G§a+770)($)) ds
0

tlaty—d)/a o
) G ()

2ot sin(rf/a)

< (G (@) + GEO@)) < 2060 (a),

a e

- B (2a+’yfd70 0

Thus we have (47) also for |z| > t!/«.

To prove the statement for |3| > 1, denote by h:(x) the convolution semi-
group corresponding to the Lévy measure (2M)~'vo(du), and denote by h? ()
the convolution semigroup with the Lévy measure v#(z,du) = v(z,du) —
(2Mo)~'vo(du). We note that p?(z) = hy * hi(z) and v# satisfies A2 with
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constant 2My instead of My and therefore (47) holds also for hZ(z) with § =0
(and perhaps a different constant ¢). Hence, using Lemma 2.4 for h; and
Lemma 2.3, we get for 8 € Ng

025" ) ~ 02 ()| = 02 | hulw — ) (" () ~ i ) dy
Rd
= | [ othla =) (i ) = i ) ]

<arlfur —wal ADEI [ G @ - )Gl ) dy
R

< ea(fwy — wo| A L)EIAVEGETT (),
This finishes the proof. O
Below we establish a similar continuity property.

LEMMA 2.12. For allt > 0 and y € R% we have

lim sup |pj(z — ) —p;(y —=)| = 0. (49)
Z7Y rcRd

Proof. From Lemma 2.11 and (48), we get

Ipi (z — x)—p{(y — x)| < |pj (2 — =) = p{(z — x)| + [p{(z — ) — p{ (y — )]

<er(lz —y" ADGETTO (2 — )

e (lz ol 1) (¢ —2)+ Gy —a))

tl/a

< etz =y A L) + 2¢4 ('Ztl_/am A 1) t=d/e,

and (49) follows. O

Lemma 2.11 also yields Lemma 2.13 and 2.14 below. We have the following
result on strong continuity of pY(z,y) = p!(y — ).

LEMMA 2.13. For f € Co(R?), lims_,q sup,, Jgap!(y—2)f(y)dy — f(z)| =0.

Proof. We have
’/de%(y—x)f(y) dy—f(:z:)‘
: ‘/def(y_x)f(y)dy_f(x)‘ +/Rd P! (y — ) — i (y — )| f ()| dy
<

< / F@) — F@)pty — z)dy + /
Rd R4
=1N(t) + Lx(t).

Ipi (y — ) — pi (v — 2)||f (v)| dy
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Let § > 0. Using Lemma 2.4 for every t € (0,6%) we obtain
O < e [ 17— @G ) dy
= - @l
ly—al<ti/e
v | £0) = F@)ie =y — a0 dy
tl/ac|y—z|<5

tar / 1F) — F@)[= @D/l — g)=o= ay
ly—zx|>d

< e s 17(5) = J@)] + el ot 5T
y—z|<d

Taking § > 0 such that |f(y) — f(z)] < e/(2¢2) for |y —z| < 4, and ¢ such that
sl flloot' "V g < o /2 for t € (0, 1),

we get sup,ega I1(t, ) < ¢, hence sup,ega I1(t, ) — 0, as t — 0. To estimate
Ir(t,z) we take € € (#ﬂ, 1). By Lemma 2.11 for 6 € (0,9 A (a4 v —d)) we get

h(r) = (/ +f )Ipi’(y—w)—pf(y—:v)llf(y)ldy (50)
ly—z|<te/o ly—a|>te/
<t @ ) o [ Gy — ) dy
|ly—zx|>te/«
= ca|| flloot /0T 4 C4||f||°°/ (lz| v )77 =0 dz.
|z|>t(e=1)/e
By our choice of €, both terms tend to 0 as ¢t — 0. O

We now point out the impact of cancellations, cf. Lemma 2.7.

LEMMA 2.14. For every 6 € (0,77 A %ﬁd) we have
}/ Oep} (y — :c)dy} < e g eRY > 0. (51)
Rd
Proof. Using the fact that 0:p7(z) = L*pj(z) we get

/ opi(z —x)dz = / L*pi(z —x)dz = L? (pf(z —x)—pf(z — :E)) dz
R4 R4 R4

+ / (L* = L")pf(z —z)dz  + / Lpi(z — x)dz.
R4 Rd
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Lemma 2.9 yields f]Rd L*p?(z — x) dz = 0. Further, by Lemma 2.11 and 2.2,
[ i = ) = pite )iz
R4
< / (|le = 2" A 1)t_1G§a+779)(z —x)dz
]Rd
=t (AT () dy
Rd

< CQtflJr(n/\(aJr'nyfd))/a < 02t71+0/a.

Similarly, by A2, Lemma 2.4 and Lemma 2.2 we obtain
/ ’(LZ — L*)pi(z — x)‘ dz < cltflfd/a/ (lz = z|" A I)GEO"M)(Z —z)dz
R4 R?
< CQt—1+(77A(a+’Y—d))/a < Cgt_1+9/a,

which finishes the proof of the lemma. O

3 PARAMETRIX

3.1 PROOF OF CONVERGENCE

In this section we prove that p; given by (15) is well defined. To this end let

‘I’f&(%y) = Z |(I)|?k(x’y)a (52)
k=1
and
pi (z,y) = pl(z,y) + (1" R O#), (2, ). (53)

Our first result shows that the series (52) and the function pf (z,y) are finite
and possess nice estimates. Then p;(z,y) is well defined, with the same upper
bounds.

PROPOSITION 3.1. The series (52) converges, the integral p° X U# exists, and
Pl (z,y) < CeCtGEaJW)(y —xz), t>0,z,ycR%. (54)

The result depends on the auxiliary estimates of |®;(z, y)| and its convolutions,
which we now give. The proof of Proposition 3.1 will be given in the end of
the next subsection.

LEMMA 3.2. Under condition A2 there exists Co > 0 such that
’q)t(za y)‘ S Cd>t71(1 A |y - :C|77)G§a+7) (y - SC), €,y S Rda t> 07 (55)
the function 0;®¢(z,y) exists for all t > 0, x,y € R?, is continuous in t, and

|0:®¢(x,y)| < Cot>(1 A |y — x|”)G§a+7)(y —z), xyecRL >0 (56)
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Proof. By the symmetry of v(z,-) for every z € R? and A2,
|©4(z,y)|
= ’/ (p? (@ +u,y) = P (@, y) —u- Vapd (@, 9) L (uj<ir/ey)
- (v(z, du) — v(y, du))|
<O (ly—a|" A1) AT P (2, ).

By Lemma 2.4 and Lemma 2.2 with { = d and x = 0 we get (55). The estimate
(56) follows from Lemma 2.2 and the fact that

atq)t(%w
:/& (Pf (2 + uy) = pi (2, y) — u- Vop (2, 9) Ly <1) (v(z, du) — v(y, du)) .

We can change the order of differentiation and integration, because by
Lemma 2.7 for every t > 0 and € € (—t/2,¢/2) we have

000, (2 + u,y) — Oepl (2, ) — u - Vol (@, y) L {ju<1y]
< et +o TP Ly + et + 6T Y gy
< eat T IR Ly et Y sy
= gi(u), weRYz,yeRY
and [ga 9¢(u) v(w, du) < oo for every w € R?. This yields (56) and the conti-
nuity of ¢ — 0;®¢(z,y). O
To estimate ®¥* we will use the following sub-convolution property.

DEFINITION 3.1. A non-negative kernel Hy(x),t > 0,x € R?, has the sub-
convolution property if there is a constant Cy > 0 such that

(Hi_ox Hy)(z) < CyHy(x), 0<s<t, xcR% (57)

It follows from Lemma 2.3 that GEB )(x) has the sub-convolution property. On

the other hand, the kernel t=(1 A |2|")G{*™™)(z) from Lemma 3.2 does not
have it; take for instance = 0 in (57) or see [36] in the case when d = 7. To
circumvent this problem, for ¢ > 0 and « € (d — «, d] we define

n _(a X ¢ a+kK
H"O () = <t </ A(tL—/L“) )GE ) (a). (58)

PROPOSITION 3.3. Assume that
a+k—d>C. (59)

Then the kernels Ht(n’o (x) satisfy the sub-convolution property with some con-
stant Cg > 0 and there exists a positive constant C' > 0 such that

H" ) (2)de < C, t>0. (60)
Rd
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Proof. We follow the proof of [36, Proposition 3.3]. We have
H"(2) < (/> AD)GET* (@), zeR%t >0, (61)

and
O (@) = (/A1) G (@), el <1vietees00 0 (62)

Clearly, (61) implies that
Ht(K’C)(:E)d:E <C. (63)
We notice that
((t =)~ A1) (s7/AT1) <294 A1), 0<s<t.
By this, Lemma 2.3, (61) and (62),

(Ht(f’f) * HS("'”’C))(:E) < CH"(z), |z| <1ViVet>o.

To complete the proof we assume that |z| > 1V /. We have

(Ht(ff) * HS(“’C))(:E) < (/ +/ ) H,gf;?)(z)Hgﬁ’C)(x — 2)dz.
|z1=]2|/2 |o—z|>|z|/2

By the structure of Hf”’o(x), for |z| > |z|/2 we obtain Ht(f’f)(z) < cHt(f’f) (x).
We have H™%)(z) = ¢1=(¢+d=r)/a|z|=r=a and by (59),

H{" () = (t — o) (CHimm/efg| e
< tl—((+d—n)/a|$|—n—a — Ht(mC)(ZE)

Using (63) we get

[ O i< @) [ s
|z> ] /2 |z1> 2] /2

<cH" (@) [ H"(2)dz < CH™ (2).
R4
Similarly,
/ Ht(ff) (2)H") (2 — 2)dz < CHt(F"’O(:I:). O
lz—2|>|=|/2

Let us rewrite the upper estimate in (55). Since

0 0
LA Jz|” =772 (t—"/a A (t%) ) <0/ (t—"/a A ((t%) v 1)) :
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we get
0 (WA [2))G T (@) < B (a), (64)

which implies for 8 < n
| (2,y)| < Cot T HOHT D (y —2), 2y e R > 0. (65)

Using the sub-convolution property of Ht(%e)(x), we can estimate ®XF(x, y).
Let

0<O<nA(a+vy—d). (66)
LEMMA 3.4. For every k > 2 and 0 satisfying (66) we have

Nk 0105 —14k0/a 77(7,0) d
P < —=—t “H; " — R t>0. 67
| |t (:an) — F(k@/a) t (y (E), :L'ay € ) > ( )

Proof. Let C; = Cy' , Co = CoCyT(0/a), where Cg is from (65) and Cy
is from Proposition 3.3. We use induction. For k = 1 we already have (65).

Suppose that (67) holds for k. By the sub-convolution property of Ht(vﬂ)’

|07 (2, )]

C,C3Ck /t —1+k0/c .—1+6/ / (7,9)

< e - o o [ HY (@ —2)H (2 -

< Fiagay |, -9 [ ) @ - HON (e ) duds
C1CoCuCE  (1.0) /t “14k6B/a —146/

< -—— - H" — t — o “d

_ C1CaCuCE 1y (kinyosa fyv0) (y— z)r(ke)/mr(o/a)
T'(k6/a) k L((k+1)8/a)
CLO5 !

_ kD)0 a gy () oy O
T((k + 1)0/a) ey )

COROLLARY 3.5. For z,y € R% and k =1,2,..., t — ®¥*(x, 1) is continuous.

Proof. For every h € (0,t/2) we have

X(k+1 X(k+1
’q)t-‘fh-i_ )(SC,y) - (I)t (ot )(Z',y)

t—h
<[] neaon) - @) 85 ey dads
0 R4
t
+ / / (@, 2) — B (i, 2)| (2, ) dzds
t—h JR4

t+h
+ / / Bons(z, )85 (2, y) dads = I (h) + Lo(h) + I(h).
t R4

DOCUMENTA MATHEMATICA 25 (2020) 1-54



HeEAT KERNEL OF ANISOTROPIC NONLOCAL OPERATORS 27

Using Lemma 3.2, Lemma 3.4 and (64) we obtain

Ii(
t—h
<Clh/ / (t=5) (LA |2 =) G2 (2 — )95 (2, y) deds
Rd
t—h
<en [ [ (@ 00 ) deds
Rd
t—h
< Ctht(’y’G)(yfz)/ (t*S)_2+9/a5_1+k9/a ds
0
< c4Ht(7*9)(y . x)t—l-l-ke/ahe/a’

and so limy,_ o+ I1(h) = 0. Furthermore,

t
< /t_h /]Rd(l Alz—z|®)(t+h— ngfg’Ys(zz — )% (2, y) dzds
t
+ 02/ / (AN |z -zt - s)_ngiﬂ)(zz — 2)®% (2, y) dzds
t—h JR?
t
< @,Hflh)( — ) / sTIHkO o L g) IO/ g
t—h
t
+ C4Ht(7’9)(y — :I:)/ s_1+k9/a(t — s)_1+9/a ds
t—h
< o5 (H(y—a)+ B (y — ) -1 HM00ep0/e,
Similarly we obtain
I5(h)
t+h (ot -
Sq/t /Rd(l/\|z—x|9)(t+h— IGHh’YS( — 2)®%*(2,y) dzds
t+h
< / /]Rd sTIHRO a4 — s)_1+9/o‘Ht(r,fzs(z —2)H O (y — 2) dzds
< CgHt(l}?)( $)t71+k6/ah6/a,

so limy, o+ I2(h) = limy,_,o+ I3(h) = 0 (and analogously for negative h). O

Proof of Proposition 3.1. By Lemma 3.4, the series
&k
7 (a,y) Z @ (@, y)
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converges uniformly on compact subsets of (0,00) x R x R?. By the sub-
convolution property of Ht(%e)(x), (65), (67), and the estimate

> Chick ,
Z O T 1% < et (>0,t>0, (68)
k=

for which see, e.g., [25], we get
(2, y)| < OF (z,y) < est™ e HI D (y—2), 2y e R, > 0. (69)

For every t > 0 we have

1
(at) IR = O N ) d
G, (x) < t—G/a/\lHS (x), x€R%se(0,t. (70)
Then, for z,y € R%, ¢t > 0,
|(P° R W), (z,y)| < (p° R E#),(z,y) (71)

t
=// pi_o(@,2) V¥ (2, y) dzds
0 Rd

t
0

71+0/a (X 9)
<c / H(% —2)HO O (y — 2) dzds
0 t 9/O¢ A\ 1 R4
< cste/aecﬁHt(%G)(y —xz) < C5ec2tGEa+V)(y —x), (72)
which follows from (61). This proves (54). O
From (72) we see in particular that p;(x,y) is well defined.

LEMMA 3.6. The following perturbation formula holds for allt > 0, x,y € RY,

t
pi(z,y) =pi(2,y) +/ /Rd Ps(,2)0¢—s(2,y) dzds. (73)

0
Proof. The identity follows from (15), (14) and Proposition 3.1. O

3.2 REGULARITY OF U (x,y) AND p.(z,y)

The statement of Proposition 3.1 implies the existence of the function p:(z,y).
In this section we establish the Holder continuity in x of the function ¥ and a
few auxiliary results for the proof of Theorem 1.1.

LEMMA 3.7. For all € € (0,0), where 0 satisfies (66), and T > 0 there exists
C = O(T) > 0 such that for all t € (0,T], z1,72,y € R4,

|\Pt(z1,y) *\Pt($27y>|
< C(lay — 2P A 1)t71+€/°‘ (Ht(’y’e)(y —x1) + Ht('y’e)(y - .’I]g))
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Proof. We begin with the proof of the following inequality for ¢ € (0,7,
x1, 20,y € R%:

|®s(21,y) — Pi(x2,)|

<Ol — z2P €A 1)1571“/0‘ (Ht(v’e)(y —x1)+ Ht(%e)(y — 1'2))

For |1 — x2| > 1 the estimate simply follows from (65). Suppose now that
t1/* < |xy — 9| < 1. Then,

|@4(21,y) — Pi(x2,y)| < er(|Pe(a1,9)| + |Pi(2,)|)
< et A H D (y — 1) + BV (y — 20))
< calwr — wo| "L (HT ) (y — 1) + HYO(y — w9)).

Let |1 — a2| < tt/e A1 and
9(x,y,u) = pf(x 4+ u,y) — (2, y) — u- Vaopd (2, 9) L <p/oy-
We have
Bu(o1.9) = Pifa) = [ g, du) = vlas.du)
+ /]Rd (g(ml,y, u) — g(z2,y, u))[u(:ng, du) — v(y,du)] = I + Is.
For I by A2, Lemma 2.4 and Lemma 2.2 with { = d, k = 0, we get
L] < erlar = ool” ADAF P (1) < ealer — 22l A DG (g — ).

To estimate Iy let

fe(@) = pi(z + 22 — 21) — p ().
Using the Taylor expansion, Lemma 2.4 and the fact that |zo — 1| < £/, we
get

Ife(@)| = |(x2 —21) - Vop{ (2 + ((22 — 21))|
< alwy — o [TVOGEY (v 4 (22 — 1))
< colwg — m[tTYOGYT (), xeRY, t>0,

where we used some ¢ € [0,1]. Similarly, if 8 € Nd, |3| = 2, then
107 fo(@)] < elza — |t/ *GF ().
By A2 and Lemma 2.2 (applied with { =d+ 1, Kk = 0) we get

L] < Mo(|z2 — y|° ALAF fily — 22)

N (74)
< eallza —yl? AD)|as — i [tV OGE T (y — ).
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Then for |z — x| < tY/* A1, t € (0,T), using the inequality
G (@) < (1 v ) H D (@), (75)
we derive
| < 1 (T )|y — o)t~/ 2T D (y — 2y).
Furthermore, using (64) we obtain

L] < ale: —yl® ALz — 2|t YGE0 T (y — 1)

< 01|$2 _ $1|t7171/a+9/aHt(%9)(y _ $2)
= clve — 21|22 — £E1|1_9+€t_1_1/a+9/aHt(%0)(?J — 1)
< clre — z1|97€t71+6/”‘Ht(%9)(y — g).

We now prove the inequality in the statement of the lemma. For |21 — 25| > 1
the estimate follows from the bound (69) on W:(x,y), so we let |x; — za| < 1.
Since

\Pt(xvy) = (I)t(l', y) + (q) X \P)t(zﬂ y),

by Proposition 3.3 for ¢ € (0,7T] we get

‘\I/t(iﬁl,y) —‘I’t(iﬁz,y)‘

< cp|my — ao|f et IH (Ht('y’e)(y —x1) + Ht(w’e)(y - .Tg))

t
+ oy — $2|9—€/ / (t— S)—H—e/a
0 JR4
' (H(%e)(z —x1) + H(W’e)(z - 962)) - sTIHC O (y — 2) dads

t—s t—s

< 03|SC1 - z2|076t*1+€/a (Ht(’yﬂ)(y o 1.1) + Ht(me)(y _ SCQ)) O

We can finally apply the operator L to p;(x,y).
LEMMA 3.8. For all y € RY and t > 0 we have py(-,y) € D(L), and

t
La(e.) = Lot + [ [ Lapt (o, 2)0.(eoy) deds. (70)
0 JR

Proof. Since p)(-,y) € C% (R?), the term L,pY(z,y) is well defined. Using the
representation of L%, Lemma 2.4 and Lemma 2.2, for every § > 0 we get

1L3pY (2, y)]

< /| . ’p?(:ﬁ +u,y) — pd(x,y) —u- Vep)(z, y)]l{|u‘gt1/a}‘ v(x,du)
u|>

< Afp(e,y) < 7' GET (Y — @),
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Let us show that the function

t
= [ ey deds (77)
0 JR4
belongs to D(L) and

Lo f (x / / Lop?  (z,2)W,(2,y) dzds.
R4

We use the definition (3) of L,. By (71) for every § > 0 we get

t
/ / / |(pgfs(x +u,2) —p?_(, z)) U,(z, y)‘ dzdsv(z, du)
lu|>5 JO JR2
<o [ (G2 0)+ Gy - ) vl du)
|u|>é
< Cgt_d/allo(B(O, (S)C)

By Fubini’s theorem and the symmetry of v we get

L‘sft / / pt (2, 2)U(2,y) dzds
/ /}Rd opY_ (z,2 [\I/s(z,y) —\Ifs(:n,y)} dzds

/ / Sp0 (x,2)W,(z,y) dzds
RA

/ /]Rd szt Sz, z [\I/s(z,y) — \Ils(:c,y)} dzds
/ / Lz‘; — i )z —x)Vs(x,y) dzds
Rd
/ /]Rd L% (2 — x)W,(x,y) dzds = I, (6) + I2(6) + I3(9).

Let us estimate the functions under the integrals I1(d) and I2(d). Using
Lemma 3.7 and (64) for 7> 0 and 0 < s <t <T we get

|LopY— (2, 2) [Us(2,y) — Ws(z,9)]|
<e(t— s)fngfiV)(zz —z)(|z — 2|97 A 1)371“/”‘
(HO Oy = 2)+ HO O (y — )]
< o5 Tt — )OI () [HP Oy — 2) + HOO y — )
= ggac y)( y2),
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with ¢1,co > 0 depending on T'. Using Proposition 3.3 and the inequality

H(’Y’Gfe)(z —z) < (T*v 1)Ht(1’80)(z —z), 0<s<t<T,

t—s

we obtain

t t
//gt(l’y)(s,z)dzdsgcl/ 571+6/°‘(t75)71+(976)/°‘
0 JRd 0
[H (g = @) + HO Oy — 2)] ds < et BT (y — ) (78)

' ly — 2\
n 03/ sl oy _ =100/ (1 vl ) is.
0

We need to estimate carefully the integral. We split

|z—y|“At t
(/ +/ )S—l—i-(e—d)/a(t_S)—l—i—(G—e)/a
0 |

T—y|*At

B —y—a+0
-<1\/|3;1/5|> ds = Jy + Ja.

For J; after changing variables we get

lz=yl® \q
_qiata—d o t
Jy=t"1"s |x—y|0‘7+9/ T

S it
Treating two cases |z —y| < (t/2)Y/® and |z — y| > (t/2)"/* separately, we get

yta—d

Ji <Ct 1t a |:C—y|7°‘77+0

e—d—0+a+~y

|z —yl|* &
. ((f) Lja—yi<irey + ﬂ{\w—ybtl/“})

_ Ct’”i ta 1 e 1
- “ (|x — y|d—c {la—y|<ti/ey + |z — y|otr=0 {\z*y\>t1/“})

=: C’tilJF%Kt(l)(:c,y).

For J; we have

t
/ s~ a(y _ g =1+0-0/a g
\

z—y|*At

e—d 6—e

1
= ¢+ S (1) e dr

\wfty\ Al
e—d —1—1—97e
S COly =2l ™o L jamyi<errey

<ot e KM (2,y).

DOCUMENTA MATHEMATICA 25 (2020) 1-54



HeEAT KERNEL OF ANISOTROPIC NONLOCAL OPERATORS 33

Thus,
L(0) < Ct Ty — 2) + KV (2, )]

For later convenience note that
/ HD(y—a2)+ KV, y)dy < C, zeR% te(0,T).
Rd
To estimate the integrand in I5(d) we use Lemma 2.11, 2.2, (69) and (64):

L 6( pt s)( .’L')|\I/5(.’L',y)| S‘Aﬁs(ptz—s _ptz—s)(z_x) \I/é(‘r)y)
<er(jz—z" ALt — )T GTY T (2 — a)sT O HO) (y — 1)
< eps T — )T OO (o — ) HO O (y — @) = b (s, 2),

Using Proposition 3.3 and the same argument as for estimating (78),
for 0 < (o +7v —d)/2 we get

t t
/ / h{"Y(s, 2) dzds < ¢ / sTIHOa(p — g) TR0/ g0 (y — 1) ds
0 R4 0

t —y—a+0
< / S_H_(G_d)/a(f - s)_1+‘9/0‘ ( |y ;f') ds
0

< gt O K (1),

where

yta—d

1 s
o= a0 Hlemsi<e/ey T g Liayi> ey

}((Q)QE y)
Observe that
/ K (x,y)dy < Ct7/%, z e R, te€(0,1].
Rd

We get
I, (0) < Ct‘HG/O‘KIEQ)(:E,y), z,y € R t € (0,T).

Furthermore, we have

/ / |pfﬁs(z —z+4u)—p; (2 — :I:)| v(x,du)dz
Re J|u|>6
/ / G(Q-M) —z+u)+ G(a+7)( )) dzv(x, du)
|u|>6 JRE
< evp(B(0,0)¢
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hence by Fubini’s theorem we get for every § > 0,

-/ t /M [0t =gt 0) o] o d G

_ /Ot /u|>5(1 — 1) ula, du) Uz, ) ds = 0.

Thus, by the dominated convergence theorem,

lim Léft ()

6—0+

= hm (11(6) + L(8) + I3(8))
/ / Zpt Sz, z [\I/S(z,y) — \Ils(:c,y)} dzds
Rd

+ / /]RdLI(ptZsptzs)(Zx)dz\lls(z,y)d&
/ / Lop)_o(z,2)V,(2,y) — Lpi_y(z — 2) Uy (,y)] dzds.

By Corollary 2.9 we also have [p, L*p}_ (z — x)dz = 0, and (76) follows for
every t € (0,T); since T is arbitrary it holds for every ¢ > 0. O

COROLLARY 3.9. We have
Lipi(e,y)| < O (GE (y = @) + 0 Ki(a,)), (79)

or all t € (0,7, z,y € s > 0, € (0,——=— A n) and some kerne
for all 0,7 RY, § > 0, § € (0,22~4 d kernel
Ki(z,y) > 0 such that

/Kt(x,y)dygc, te (0,T], z € RY.
Rd

Furthermore,

/ Lipt(:c,y)dy’ <ot~ e e (0,T), z€RY, 6> 0. (80)
]Rd

Proof. Let K = KM + K®) 4 H™.9  where the terms on the right-hand side
are as in the proof of Lemma 3.8. This gives (79). To prove (80), consider

‘/ Lop)(z,y dy’ < ‘/ L‘i[p?(y*z)*p?(y*wﬂdy’
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The last integral is 0. To estimate the first integral we use the Holder continuity
of p2(y — z) in 2z, i.e. (47) with 8 =0 and |8] = 2:

x - « o —0
|08 p¥ (y — ) — 08 pF (w)] < c(|w]? A 1) 182G ()
< et Gl 1)
< Ct(G*\ﬂl)/anga-i-v—%)(w).

Applying Lemma 2.2 with kK =20, ( =d — 0, we get

T — « a+vy—260
/ |L3[pi (y — 2) = pi(y — w)]|dy < Ot~ / G2y — w)dy
Rd Rd
< Ct71+9/a.
The proof is complete. O
Next we show how to differentiate (p° X W);(x,y) in t.

LEMMA 3.10. Forz,y € R4, 0<s<t,0<t<T, we have

8,5/ pg_s(z,z)\lls(z,y)dz:/ 8tp?_s(z,z)\lls(z,y)dz, (81)
R4

/ / Ol (, 2) W, (2,y) d
[

Proof. In order to prove (81) it suffices to show that for all fixed ¢ > s > 0 and
z,y € R? there is g > 0 and a function g(z) > 0 such that Jra9(2)dz < oo,
and

dr < oo, (82)

dsdr < oo. (83)

/ 3Tpr Sz, 2)U(2,y)dz
Rd

‘atp?+e—s(zﬂ Z)\I/S(Z7y)| S g(Z), z € Rd7€ S (750750)'
Using Lemma 2.7 and (69), for every e <t — s we get

’atpto—i-a—s(xa Z)\I] (Z y)‘
Sei(tte—s) T G (E —a)sT M e HOO (2 —y)
<c(t—eg— s)_l d/as_l"'e/aecsts(%e)(z —y) = g(2),

and the finiteness of f]Rd g(z) dz follows from Proposition 3.3.
The integral in (83) is not bigger than

/ot /OT /]Rd Orp)_ (2, 2)(Vs(2,y) — Vy(2,y)) dz| dsdr
I
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Consider now I;. By Lemma 2.7, Lemma 3.7, (64) and Proposition 3.3 we
derive that for every e € (0,0) and 6 € (0,7 A (v —d + @),

Rd
.[H(%G)( _ )+H(V9)(y—x)} dzdsdr

= Rd
H(’Y 9) ( 2)+ HO 9)( x)| dzdsdr

]:Rd
H(%G)( —z2)+ H™ 9)( z)| dzdsdr.

Further,
Il S Cg/ / —1+(0—€)/a 714’6/04

[HOD(y — z) + HO O (y — x)] dsdr

_ Cg/ / —14(6— e)/a —1+e/a

H('Y 9)( x) + H‘S(,'Y’G)(y - z)] drds

// —1+(6—¢)/a —1+€/04H(V 9)( —x)drds

+/ (t— )(0 E)/D‘sflJre/”‘Hs('y’e)(y —x) ds] )
0

By the estimate H{"" (2) < ¢|z|~0 7041+ (0—0-d)/a we obtain

—y—a+6
I <ey / / —14(0—€)/a 71+5/D‘ —d/a <|y 17 |) drds
r (e}
—y—a+6
_ g)(0-a)/ag—1+(e=d)/a ly — x|
+/0 (t—s) (—Sl/a ds}

t
< esly — a T O/ / (1 5)@ag1re/a g
0

t
Jr/ (t — 5)6=9/aglr—b+e=d)/a ds} = coly — a| AT IHOH—D /o
0

We note that the constants ¢; in this proof may depend on T. From
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Lemma 2.14, (69) and (64) with 6 € (0,7 A O‘—+27;d) we get similarly

I, < cl/ / §) T (2, y)| dsdr

<02// —146/a —1+9/aH(%9)( — x) dsdr

—02/ / —146/a 71+0/0‘H(7 9)( —x)drds

< csly — a7 7+9/( ,S)G/as(v—d)/ads
0

_ C4|y . z|7a7'y+0t1+(0+'yfd)/a

3

because we assumed v — d + o > 0. This yields (82) and (83). O

3.3 PROOF OF THEOREM 1.1

From (15), Lemma 2.4, (72), Lemma 2.13 and (63) we obtain (17). Next we
verify (16). Using Lemmas 3.10, 3.7 and 2.13 we get

/St [& /]Rd P (z,2)Us(z,y) dz} dr = /]Rd ) (2, 2)V,(2,y)dz — Uy(z,y).

Integrating the above equation from 0 to ¢ and using Lemma 3.10 and Fubini’s
theorem we obtain

t t
| [ et deds - [0t as
0 JRre 0
t T
z///angfs(:E,z)\Ifs(z,y)dzdsdr.
o Jo Jmre

By Corollary 3.5 and the locally uniform convergence of the series defining ¥y
the function t — ¥y (z,y) is continuous, implying

t
atpt(‘ra y) = atp?(xa y) + \I]t(xa y) + / 4 atpto—s(xa Z)\IIS('Z’ y) dzds. (84)
0o JR

Subtracting L. p:(x,y) from both sides and using Lemma 3.8 we get

(0r — La)pe(2,y) = —Po(z,y) + Wi(z,y)

// Dy_s(x,2)Vs(z,y) dzds = 0.
RA

The proof of Theorem 1.1 is complete. O
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4  FURTHER REGULARITY

4.1 TIME DERIVATIVES OF U, (z,y)

We begin with an auxiliary estimate of the time derivative of W(z, y).

LEMMA 4.1. The function U(x,y) is differentiable in t and 9;V;(x,y) is con-
tinuous on (0,00). There are C,c >0 and 0 € (0,0 A (a4 —d)) such that

|0 (2, y)| < Cectt= 20/ gy _ 2y 2 ye R ¢ > 0. (85)
Proof. Tt follows from Lemma 3.2 and (64) that 0;®,(x,y) is continuous and
|0:®(z,y)| < Cq>t*2+9/°‘Ht(7’9)(y —xz), z,y <€ R t>0. (86)

We show by induction for all k > 1 that 9,®5* = 9,(®¥*) exists and

C5CF o onsa
‘8t¢?k(z,y)‘<ﬁt 24006/ a gDy 2y, 2y eREL >0, (87

where
O3 = (1V (D(0/a) HC1, Cy=8(1V(2—20/a)~*)Cs,  (88)

and C1, Cy come from (67). The case of k = 1 is verified by (86).
Note that

t/2
g(lﬁ_l) (z,9) / / @‘Xk D (z,y) dzds
Rd

t/2
—|—/ / 9k (1, 2)D,_ (2, ) dzds,
0 Jmd

for k € N. Accordingly, we claim that for k € N,

t/2
0B () = / OB (2,2), (2. ) deds
0 R

t/2
+/ /(I);Ek(x,z)atq)t_s(z,y)dzds +/ @?}’;(x,z)@t/g(z,y)dz.
0 R4 RE
(89)

t+h
k > 1, continuous 9;®X* (x, y) exists for all t > 0, 2,y € R?, and (87) holds for
every t > 0, then for h € (—t/4,t/4) we have

3t‘1)t+h s(T, Z)q)s(zvy)’

Sei(t+h—s) 2RO gOD (- ) HOO (y - 2)

< ¢y (t . S)_2+k9/a5_1+9/aHt(Zf)(z _ :C)HS(V’G) (y _ Z)
g,gx’y)(s, z), s€(0,t/2),x,y,2 € R

Indeed, we consider (<I> (kH)( ) — @?(kﬂ)(x,y)) /h as h — 0. If for some
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It follows from Proposition 3.3 that ft/2 Jra g(x y)(

similarly |<I)§k (2,2)0tPyn—s(2,y } by the continuity of t — ®%*(z, z) we get
(89). Denote by Iy, Iz, I3 the integrals in (89), respectively. Using induction,
Lemma 3.2 and Proposition 3.3 we get for the first term

L] < 2C+CsCft~ // —14+k0/a =146 /a
k@/O{ Rd

HYD (2 — ) HOO (y — 2) dzds

_ 20sCeCuCh
- T(k0/)
C3

_ (2 kY =24k 1)0/a gr(n0) oy
Nt /ey 202C) Jy )

The same estimate holds for I, so let us estimate I5. By (67),

—24(k+1)0/«
|Is] < ClCCDCQ (— / H(%G) (z fx)H(V 9)( —z)dz

s,z)dzds < co. Estimating

(k0/a, 0/ )t >+ D0 0y — )

— (k@/a) t/2 t/2
Cl C<1> CHCQ 2+(k+1)9/0‘ (V 9)

< — 2= ’ — ).

= TT(k6/a) (5) By — o)

Using the inequality u < e*, valid for all u € R, we get for ( = 0/a,

Dk +1)0) = [ et It du < (1 ¢ R (ke)
0
Therefore,
010¢CHC§22_(k+1)9/a

S =0/ ((k + 1)0/a)

Cs Cy k41 ot (D)8 ()
= 4 t "
- I((k+1)0/a) ((2—29/04)9/04) t (

_ JR——"
|[3| 12+ (k+1)0/ Ht(’Y )(

y—x)

y—(E),

because Cy = CoCyT'(6/a). Observe that for Cy given in (88) we have

CQ k+1
40,00 paf —— =2 < Okl
@Q+(@—%MW%) =t
and thus
C3CII:+1 -2 0
Iyt a < — 3%k =24kt 1)0/apr(v0)
1+ 1+ 35S Tk + 1)0/a) (Y — ),
proving (87). By (68) and (87) we get (85). 0
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4.2 PROOF OF THEOREM 1.2

The proof of (20) for k = 0 easily follows from Proposition 3.1. Let us show
(20) for k = 1. Our starting point is (15). Lemma 2.7 estimates 9;p?(x,y).
We then use the estimate for 9;U;(z,y) given in Lemma 4.1. The estimate of
O (po X \Il)t(z, y) can be obtained similarly as the estimates for 9;®;(x,y) in
Lemma 4.1. Indeed, as in the proof of (89), using (70) for every h € (—t/4,t/4)
we get

Oy o(@,2) W (2,y)| < et — 8) LGOI (2 — w)s~ O e g0 (y — 2)

t—s) ! _
<l O @y H 00 )

= " (s,2), se€(0,t/2),

and it follows from Proposition 3.3 that the majorant satisfies
t/2
/ / gt(m’y)(s, z)dsdz < ctilJre/”‘eCSth(%e)(y — 1) < 0.
0 R4

Similarly we estimate [p?(x, 2)(9:¥)¢+n—s(2,y)|. These bounds and the conti-
nuity of t — p?(z,y) and t — ¥,(z,y) allow us to write

t/2
Oy (po X \If)t(:n, y) = /0 /]Rd (0:°)t—s (2, 2) Vo (2,y) dzds

t/2
+ / / P02, 2)(000)s—a (2. ) dads + / P, 2) Wy a2, ) d.
0 R4 R4

‘We obtain
\at (pO X \If)t(:n, y)‘ < Ct_leCtGEaJr'Y)(y —x).

This finishes the proof of (20). To verify (21), we observe that
p(t)(xay)%t_d/aa |y—.’L'| SCtl/aat>Oa
where the upper bound follows from (35) and (36) and the lower one from
Lemma 7 in [34]. The second term in (15), which we denote by R:(z,y), can
be estimated (cf. (71) and (72)) as follows:
|Bi(w,y)| < CHemde, y —af <et'/?, t € (0,1].

Combining these estimates we get (21) for ¢ € (0, to], if ¢o > 0 is small enough.
We finally prove (22). We observe that by (48),

|1 — 23]

‘pto(:cl,y) —pto(:cg,y)’ < C(W/\l) (G§a+7)(y o)+ G§a+7)(y _ xg)) _
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Suppose first that ¢ € (0,1]. Using (69) for ¥, (70) and the sub-convolution
property of H""?) () we obtain

t
/ / D0 (21, 2) — D)y (22, 2) W42, y)| dzds

< erlas — z]f / / (G )+ G (2 - )
Rd
s (y — 2) dzds

< colwg — 11|’ (Ht(%e)(y —z1)+ Ht(%e)(y — xz))

|xe — x1|\? o o
<o B (G- + 6 - a))

where in the last line we used that t/°H " (z) < G{*™)(2) for t € (0,1].
Next we assume that ¢ > 1. Using the estimate for ¥ and (70) twice we get

t
/ / D0 (@1, 2) — 00y (22, 2) [V, (2, y)| dzds
0 R4
t
< erlz -z e / (t - )~/ / (G~ )+ Gz 2)
0 R4

sTIHO g (y — 2) dzds
<ecylzg — .T1|9€Ct /Ot(l V(t— s)_e/a)
. /]Rd (Ht(Z’:))(z —x1)+ Ht(Z’:))(z - .Tg)) s/ g0 (y — 2) dzds
< el — "0/ (Ht(w’e)(y — @)+ B (y - iﬂz))

< co|my — m1|%e” (Ggaﬂ)(y —a) + G (y - $2))

T2 — T eCs [} [e7
<c2 (';Tﬂ) t(G( Jﬂ( )+G JW)( —m))_

This finishes the proof of (22) for t > 0.

According to our choice of the first approximation p?(x,y), the regularity of
y — pt(z,y) is less obvious than that of 2 — pi(x,y). The next result gives a
preparation for such regularity and may be confronted with Lemma 3.7.

LEMMA 4.2. For allt > 0 and y € R we have

lim sup |®:(z,z) — Oi(z,y)| = 0. (90)
Z*}erRd
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Proof. Since 0w} (x) = L*pi(x) we get
10:(pi (2 — @) = p/(y — 2))| = |L7pi (2 — x) — L¥p(y — )|
< L7pi (2 — x) = LYpi (2 — @) + [L¥pf (2 — x) — LYpi/(z — 2)]
+ [L¥p{ (2 — ) — L¥pi/(y — )]
— L 41+ 1

From A2 and Lemma 2.2 we have

L o< /}R [P (= — 2+ u) = i (2 — @) — - Vi (2 — 2Ly </ ()]
Jv(z, du) — vy, du)|

Mo(|z — y|" A1)AF P} (2 — )

ci(lz —y" ADEIGT (2 — @) < et V(|2 — y[T A,

IN

IN

From Lemma 2.11 and Lemma 2.2 we obtain

\LY(p; — pY) (2 — x)| < AF(p; —pY)(2 — )
< ez =y ARG (2 — 2) < etV (2 =y A D).

I

Finally, let |y — z| < t}/® and g;(w) = p{(w — (y — 2)) — p}(w). Using Taylor
expansion and Lemma 2.4, for every 8 € Nd such that |3] < 2 we get

0ge(w)| < eslz = ylt TG ).
This and Lemma 2.2 yield

Iy = | Wiy — )| < Af gy — o) < calz —ylt ™' /G (y — )
< egtm 1T OFD a5y
Therefore,
lim sup [0:(pf (2 — @) — p{(y — 2))| = 0.
27Y peRd
Similarly,
|L7p; (2 — x) — L*p(y — @)
<|L*(pf —pi)(z — )| + [L7p) (2 — x) — L*p{(y — )]
<AF (0F —p))(z —2) + A gu(y — @)
<est™ Yz —y[T A L) + ot AFD Xy

lim,_,, sup,cga |L*pi(z — ) — L¥p{(y — x)| = 0, and (90) follows. O
LEMMA 4.3. For all t >0 and z € RY the function y v pi(x,y) is continuous.
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Proof. For the proof we rely on (73). It is straightforward to see that
HOO (y+ h) < cHO(y),

where y € R%, s > 0, h € R% and |h| < s'/®. Let T € (0,00) and t € (0,T]. By
Theorem 1.2, (70), (65) and Proposition 3.3 for every € € (0,t) and |h| < £/,

t—e
/ / |ps(x, 2)®Pr—s(z,y + h)| dzds
Rd

crect B . 0
- e/a/\l/ ]Rdee)(Z*x)( s) 1+6/ Ht(zs)(erhfz)dzds
t—e
< Cg/ / 1+‘9/CVH(%9)( x)Ht(zf)(y — 2) dzds
]Rd

< e / (=) T H Oy — 2y ds < e HO O (y - a),
0

with 3, ¢4, c5 depending on T'. By the dominated convergence and Lemma 4.2,

t—e t—e
lim / / ps(x, 2)Pi_s(2,y + h) dzds = / / ps(x, 2)Pi_s(z,y) dzds.
h=0Jo R4 0 R4

Furthermore, for every |h| < t!/«,

t
/ / ps(x, 2)Pi—s(2z,y + h) dzds
t—e JR4

¢
< ¢ / HOYD(z —z)(t —s)~ 1JrG/O‘H(W’G)(y + h— z)dzds
t—e JR?

¢
< 07/ (t— s)flJre/o‘Ht(%e)(y +h—1x)ds < 0850/0‘1-[,5(7’9)(34 — 1) < 0.
t—e

This and Lemma 2.12 yield the continuity of y — p:(z, y). O
The proof of Theorem 1.2 is complete. O

REMARK 4.1. The lower bound in (21) extends to t € (0,T] for every finite

T > 0. The interested reader may use Lemma 5.4 below for a proof. By (20),
the upper bound in (21) holds for all x,y € R% and t € (0,T), if T < oc.

5 THE MAXIMUM PRINCIPLE

In this part of our development we follow Kochubei’s argument from [39, Sec-
tion 6] with some modifications — we temper by e~** rather than restrict time.
For A € R we let ps(z,y) = e Mpy(z,y), where t > 0, z,y € R By The-
orem 1.2, py(z,y) < Ce”A=NGIH(y — x). We can give a solution to the
Cauchy problem for L — A.
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LEMMA 5.1. If f € Co(R?), u(t,x) = fRdﬁt(z,y)f(y)dy for t > 0 and

u(0,7) = f(x), * € RY, then u is a continuous function on [0,00) x R?, and
(0 — Lo + Nu(t,z) =0, t>0, z€R% (91)
If X > ¢, where c is from Theorem 1.2, then u € Cp([0,00) x RY).

Proof. Let (to,x0) € (0,00) x R%. We have

to.a0) = u(t. o) < [ g(e0.s) = 5l )] dy

IN

e [ g la0,) = pro )W)l dy

Rd

[ Ben) = e )W) dy >0,
R4

as (t,x) — (to,xo). This follows from the dominated convergence, since Theo-

rem 1.2 yields for |x — x| < té/a

Do (20, y) = pro(z,y)|

6
o — & « a
< o <| jl/a |> ecto (GEOJr'Y)(y_:CO)+G§0+7)(y_$))
0

0
xTo—
< o | Ol/a | ectoGgoﬂer’Y)(y — 20),
to
and for |t — tg| < to/2 and some s € (t Atg,tV ty) we have

|]§t0 (Zl',y) *ﬁt(:c,y)| = ‘(eiAsasps(z;y) - /\ei)\sps(xvy)) (tO - t)‘
< es(sTH NV GEEN (y — )t — 1]
< ea(2/to + N)elmIVIBR/D GO (g — ).

If (t,2) — (0,20) for some x¢o € R?, then by Theorem 1.1 and continuity of f,

|f(zo) —u(t,z)] < |f(zo) — f(@)] + |f(2) — ult,z)] =0,

This gives the continuity of u on [0, 00) x RY.
Let § > 0. Using the notation from Section 1, by Fubini’s theorem we get

L‘Su(t,x) = / (u(t,z +u) —u(t,x)) v(z,du) = /L‘;ﬁt(x, y) f(y)dy.
|u|>8
By (79) and the dominated convergence theorem we get
Lu(t.) = [ Lobi(e.)f () dy (92)
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In order to show that dyu(t,z) = [Opi(z,y)f(y)dy, it suffices to estimate
|Owpe(z, y)| for every to > 0 and all ¢ € (t9/2,3tp/2) by an integrable function
depending only on tg and x, y. We obtain the estimate by using Theorem 1.2,
which yields

0ipe(z, )| < Ae Mpe(z,y)| + e M|Ope(2,y))|
< aeltGET Y — (A1)
< ACQe[(c—A)vO](3t0/2)G§0a+7)(y —2)(A + (t0/2)_1)-

By the dominated convergence theorem,
Ovu(t.) = [ Oudu(o. )1 w) dy. (93)

We note here that (92) and (93) hold in fact for every bounded function f.
Now it easily follows from Theorem 1.1 that

(O — La)pi(w,y) = e M Opi(w,y) — Ae M py(,y) — e N Lapi(z,y)
= 7)\]§t(za y)v
which, together with (93) and (92), yields (91). If A > ¢, then we have

[ et as] < ceo-or [ cr - ol ay

R4 R4
= et [ Gy + )y
< fl [ G Wy < el f

In fact, e~ (A= f(t1/%y + x)| — 0 as |(t,x)| — co. By the dominated conver-
gence theorem, lim; z)| o0 u(t, ) = 0. O

LEMMA 5.2. If u(t,z) € Co([0,00) x R?), A > 0 and (9; — Ly + Nu(t,z) =0
on (0,00) x R?, then

sup  Ju(t,x)] = sup [u(0,2)].
(t,z)€[0,00) x R4 z€R?

Proof. Let m = inf(; 4)e(0,00)xre (¢ 7) and M = sup(y ,)c(o,00)xre U(t, ). We
have —co < m < 0 < M < oco. If M > 0 and u(ty,x0) = M for some
to > 0 and xg € R?, then dyu(to, o) = 0 and L,u(to, o) < 0 by the maximum
principle from Section 1. Hence (0 — L, + M)u(to, zp) > 0. This contradicts
the assumptions of the lemma, hence M = 0 or the supremum of u is attained
at some boundary point (0, zg). Similarly, if m < 0 and u(tg, xg) = m for some
to > 0 and zg € R?, then dyu(t, z0) = 0, Lyu(ty, o) > 0, hence (9; — Ly +
Mu(to, o) < 0. Again, we conclude that m = 0 or the infimum of v is attained
at some point (0, zg). O
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COROLLARY 5.3. Let A > 0. There is at most one solution u € Cy([0,00) x R%)
to the Cauchy problem for L — \.

Proof. By Lemma 5.2, the difference of two solutions is zero on [0, 00) x R%. O
LEMMA 5.4. p is nonnegative and satisfies the Chapman-Kolmogorov equation.

Proof. Let, as usual, p;(z,y) = e Mp(z,y) and pick A > ¢, the constant in
Theorem 1.2. Let f € Co(R?). By Lemma 5.1, u(t,z) = [pi(x,y)f(y)dy
extends to a function of the class Cp([0, 00) x R?). Recall that p is continuous
(see Lemma 4.3), hence p is continuous. Taking into account that all the
nonnegative functions f € Co(R?) are allowed here, by the proof of Lemma 5.2
we get that p > 0 and thus p > 0.

Next we consider s > 0 and u(s, ) defined above. For t > 0, z € R%, let w(t, z)
be the solution to the Cauchy problem for L — A with the initial condition
w(0,2) = u(s,z), x € R% By Lemma 5.1 and Corollary 5.3,

| bt @y = usrt.a) = wita) = [

R

) [ ey

Since f € Cp(R?) is arbitrary, using Fubini’s theorem we see that p satisfies
the Chapman-Kolmogorov equation and so does p. O

For f € Co(R%), t > 0 and = € R?, we let
Puf@) = [ e )iy

We conclude that { P;} and {P,} are strongly continuous semigroups on Co(R%).

LEMMA 5.5. If A\ > ¢, the constant from Theorem 1.2, then {P,} is sub-
Markovian.

Proof. By Lemma 5.4, Pif >0if f € Co(R%) and f > 0. By Lemma 5.1 and
Lemma 5.2, [|P:flco < ||f|loo, as needed. O

In particular, if A\ > ¢;, then for allt > 0 and € R we have Jra Pe(z,y)dy < 1.
We next verify that p;(x,y) is in fact a transition probability density. The
result requires preparation. Let £ be the generator of {P;}. Then £ — X is
the generator of {Pt}, with the same domain, say D(L), a dense subset of
Co(RY). We will make a connection between L and £. Let ¢ € Cp(R9),
0<T<oand f = fOT Py¢ds. By the general semigroup theory, f € D(£) and
0P, f = LP,f € Cy(R?) for every t > 0. By Lemma 5.1, 9; P f(x) = LP.f(x)
for all t > 0 and = € R?, hence LP,f = LP,f for all such ¢t and f. Therefore
L = £ on a dense subset of Co(R%).

The following more explicit result is rather delicate.

THEOREM 5.6. Lf = Lf for f € C2(R?).
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Proof. We first prove that for Holder continuous function g € Co(R%) we have

t ¢
L/ Pyg(z)ds = / LP.g(x)ds, z¢€R% (94)
0 0
Indeed, for § > 0 the operator L’ is bounded and linear on Cy(IR?), hence

t t
L/ g(x)ds = lim Lo Psg )ds = lim L°Pyg(x)ds
0 0

:Hm// mps x,y)g(y)dyds = I + 1I,

d—0
where

I= lim/ / Sps(z,y)g(y) — g(x)]dyds,

§—0

II=g(x ;lg(l)// Lips(x,y)dyds

are finite, as we will shortly see. For II, by Corollary 3.9 and Lemma 3.8,

lim [ Lips(z,y)dy = /

lim Lips(:c,y)dy :/ Laps(z,y)dy.
6—0 JRa Re 6—0 d

R

Therefore by (80) and the dominated convergence theorem,

t t
U=g($)/ (}im/ Lops(z,y)dyds =g($)/ (/ mes(:ﬂ,y)dy)d&
0 970 JRa 0 R4

It is important to notice that the last (outer) integral fo .)ds converges ab-
solutely. We now turn to I. Let € > 0 be such that a +~v — € > d. Let g be
Holder continuous of order e. Then for z,y € R? and s € (0,t), by (79) we get

|Lops(z,9)[g9(y) — 9(2)]| < e|lLops(z,m) (LA |z — yl°)
< cs_l(Gg'w(y —x)+ se/aKs(x,y )(1 Az —yl)
< s H/AGETTTI (y — ) + s K (2, y).

The above expression is integrable in dyds. Of course, lims_ Lops(x,y) =
L.ps(z,y). By the dominated convergence theorem,

I= / Laops(z,y)lg(y) — g(x)]dyds,
(0,t)xR4

which is finite. Adding I and II we obtain

L/Ot Pyg(z)ds = /Ot (/Rd szs(fc,y)g(y)dy)ds-
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By (79) and the boundedness of L we have that

/ Laps(z,y)g(y)dy = / lim Lops(z,y)g(y)dy = lim | Lips(z,y)g(y)dy
R4 R4 6—0 §—0 R4

—lim 2 [ pue.0)(u)dy = lim L*Pog(a).
—0 R4 6—0

Therefore, [ Laps(z,y)g(y)dy = LPsg(x), which gives (94).
We claim that for f € C2(R%), 0 <t < oo and x € R,

Pf(z) - f(z) = /O P.Lf(x)ds. (95)

To prove (95) we let A > ¢ > 0, with ¢ from Theorem 1.2, and we define

u(t,z) = e M [Ptf(fﬂ) — f(x) - /Ot PSLf(:c)ds]

We also let u(0,z) = 0. By Lemma 5.1, u € Co([0,00) x R?). We can directly
verify that Lf is Holder continuous on R, and then by (94) with g = Lf,

(8, — L)u(t,z) = —du(t,x) + e~ [Lf(:c) — PLf(z) + /0 LP;Lf (z)ds]

From the discussion of (94) the last integral is absolutely convergent, implying
that 0sPsLf(x) = LP,Lf(x) is also absolutely integrable, cf. Lemma 5.1.
Therefore,

(0r — L)u(t,z) = —du(t,z) + e M [—/OtasPst(:c)ds + /OtLPst(x)ds}

= —du(t, ).

We now prove that v = 0. Recall that u € Cy([0,00) x R?). If u attains a
strictly positive maximum at some point (tg,zo) € (0,00) x R%, then (9; —
L)u(to, zo) = —Au(to,xo) < 0, but the maximum principle for L contradicts
this: (0¢ — L)u(to, zo) = —Lu(to,xz0) > 0. Therefore we must have u < 0.
Analogously we prove that u > 0 and so u = 0 everywhere. Finally, we divide
both sides of (95) by t and let ¢ — 0. We obtain £ f(x) = Lf(x). The proof is
complete: the operator L and the generator £ coincide on C2(R%). o

5.1 PROOF OF THEOREM 1.3

We only need to prove that for all ¢ > 0 and = € R? we have f]R'i pi(x,y)dy = 1.
We know that the operators P; f(z) = [z pe(x,y)f(y) dy, t > 0, form a strongly
continuous semigroup on Co(R?) with the generator £. We fix ¢ > 0. If f is in
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the domain of £, then from the general theory of semigroups (see [18, Ch. 2,
Lemma 1.3] or [30, Lemma 4.1.14]),

t
Puf(@) - (@) = [ Pfa)ds
0
In particular, let f € C2(R%) be such that |f(z)] < 1 for all z € R? and
f(z) =1 for |z| < 1. Let f,(z) = f(x/n), n > 1. We have lim,_, fn(z) =

1 and limy, oo Prfn(z) = f]Rd pt(x,y) dy, which easily follows from bounded
convergence. Furthermore,

Pyfa() = fulz) = / PoLf, () ds. (96)

If x € R? is fixed and n > 2|/, then

Lh@] = 5| [ Uale )+ fulo =) = 26u(a) )
1
= 3 /|u>n/2 (f((@+u)/n)+ f((z —u)/n) = 2) v(z,du)
< v(x,B(0,n/2)°) < Move(B(0,n/2)¢) < eyn™ .
This yields
/t P,Lf,(x)ds| < /t |PsLfn(2)|ds < catn™® — 0,
0 0

as n — co. By (96) and the above discussion we get [..pi(z,y)dy = 1. The
proof of Theorem 1.3 is complete. O
We end the paper by pointing out in which sense p;(z,y) is unique. Plainly, if
pi(x,y) has the properties listed in Theorem 1.1 and 1.2, then p;(x,y) = pi(z,y)
for all t > 0, z,y € R Indeed, let s > 0 and z € R% By the proof of
Lemma 5.1, u(t,z) := e [, pe(x,9)ps(y, 2)dy and u(t,z) := e pyys(z, 2)
give solutions to the same Cauchy problem for L—\, and they are in Cy([0, c0) X
RY) for large A > 0. By Corollary 5.3,

/d pe(z,y)ps (Y, 2)dy = prys(x,2), s,t>0, 1,y € R
R
We claim that for all f € Cp(R?), uniformly in 2 € R? we have

tim [ feme.s)ds = o). (o7)

t—0

For clarity, this is different from (17). To prove (97) we note that

[de?(w,y)dw=4dpy(y—w)dw= 1, t>0, yeRY,
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we recall (15), (72), (63), Lemma 2.4 with 8 = 0, the scaling of G{*™ and
the dominated convergence. By (97) we get ps(x,z) = ps(z,2) for all s > 0,
z,z € R%.
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