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1 Introduction and main results

Semigroups of operators are at the core of mathematical analysis. They de-
scribe evolutionary phenomena, resolve parabolic differential equations and
have many connections to spectral theory and integro-differential calculus. In
this paper we focus on Markovian semigroups – that is, probability kernels
satisfying the Chapman-Kolmogorov equation. We construct the semigroups
from the integral kernel ν(x,A), called the Lévy kernel and interpreted as the
intensity of occurrence of dislocations of mass, or jumps, from the position
x ∈ R

d to the set x + A ⊂ R
d.

The construction of the semigroup from the Lévy kernel is intrinsically difficult
when ν is rough, just like the construction of a flow from a non-Lipschitz
direction field or a diffusion from a second order elliptic operator with merely
bounded or degenerate coefficients. Below under appropriate assumptions on
ν we obtain the semigroup and estimate its integral kernel pt(x, y), called the
heat kernel or the fundamental solution or the transition probability density,

Documenta Mathematica 25 (2020) 1–54



2 K. Bogdan, P. Sztonyk, V. Knopova

and we prove regularity and uniqueness of the kernel. Our results are analogues
to the construction and estimates of the heat kernel for the second order elliptic
operators with rough or degenerate coefficients.

A unique feature of our methodology is that we can deal with highly anisotropic
Lévy kernels, meaning that ν(x,A) may vanish in certain jump directions. In
fact ν may be concentrated on a set of directions of Lebesgue measure zero. We
should note that despite recent rapid accumulation of estimates of heat kernels
of nonlocal integro-differential Lévy-type generators with kernels ν(x,A), so
far there were virtually none on generators with highly anisotropic kernels. A
notable exception are the papers by Sztonyk et al. [7, 34, 33, 51] but they only
concern translation invariant generators and convolution semigroups, for which
the existence and many properties follow by Fourier methods. We also mention
the estimates of anisotropic non-convolution heat kernels pt(x, y) given in [50]
and [32], however these are obtained under the assumption that the heat kernel
exists, without constructing it.

We consider jump kernels ν(x, dz) comparable to the Lévy measure ν0(dz)
of a symmetric anisotropic α-stable Lévy process in R

d. Here and below we
always assume that 0 < α < 2 and d = 1, 2, . . .. For important technical
reasons we also require Hölder continuity in x of the Radon-Nikodym deriva-
tive ν(x, dz)/ν0(dz). Recall that the Lévy measure ν0 of the α-stable Lévy
process has the form of a product measure in polar coordinates: ν0(drdθ) =
r−1−αdrµ0(dθ). The anisotropy mentioned above means that the spherical
marginal µ0 may even be singular with respect to the surface measure on the
unit sphere. In fact we assume that ν0 and ν have Hausdorff-type regularity
outside of the origin. The order γ of this regularity is a fundamental factor in
our development: we require α + γ > d; the assumption is essentially optimal
as we explain below.

To construct the heat kernel p from the Lévy kernel ν we use the parametrix
method. It is a general approach which starts from an implicit equation and
some first approximation p0 for p. Iterating the equation produces an explicit
(parametrix) series. The series formally solves the equation but the proof
requires delicate analysis of the convergence, which critically depends on the
choice of the first approximation p0. The method was proposed by E. Levi [45]
to solve an elliptic Cauchy problem. It was then extended by Dressel [13]
to parabolic systems and by Feller [20] to parabolic operators perturbed by
bounded non-local operator. Further developments were given in papers of
Drin’ [14], Eidelman and Drin’ [16], Kochubĕı [39] and Kolokoltsov [41]. We also
refer to the monograph by Eidelman, Ivasyshin and Kochubĕı [17] and to the
classical monograph of Friedman [22] on the second-order parabolic differential
operators. The parametrix method has a version called the perturbation (or
Duhamel) formula. This version is appropriate for adding a “lower order” term
to the generator of a given semigroup and the role of the first approximation is
played by the “unperturbed” semigroup. This is, however, not the case in the
present paper, because ν(x, dz) − ν0(dz) is not of “lower order” in comparison
with ν0(dz).
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For recent developments in the parametrix and perturbation methods for non-
local operators we refer the interested reader to Bogdan and Jakubowski [6],
Knopova and Kulik [36], [37], Ganychenko, Knopova and Kulik [24], Kulik [43],
Chen and Zhang [11], Kim, Song and Vondracek [35] and Kühn [42]. We should
note again that the listed papers assume that ν(x, dz)/dz is locally compara-
ble with a radial function. This is what we call the isotropic setting. The
anisotropic setting has different methods and very few results. Here we show
how to handle space-dependent anisotropic generators using suitable majoriza-
tion and recent precise estimates for stable convolution semigroups.

A different Hilbert-space approach was developed in Jacob [29, 31], Hoh [27]
and Böttcher [8, 9] and relies on the symbolic calculus, see also Tsutsumi [52, 28]
and Kumano-go [44].

After verifying that the parametrix series representing pt(x, y) is convergent,
one is challenged to prove that p is indeed the fundamental solution, in partic-
ular that it is Markovian and the generator of the semigroup coincides with the
integro-diferential operator defined by ν for sufficiently large class of functions.
This is a complicated task. The method described by Friedman [22] consists in
(1) proving that pt(x, y) gives solutions to the respective Cauchy problem for
the operator and (2) using the maximum principle for the operator. This ap-
proach is extended to rather isotropic nonlocal operators by Kochubĕı [39] and
further developed in the isotropic setting by Chen and Zhang [11] and by Kim,
Song and Vondracek [35]. In our work we indeed profited a lot by following the
outline of Kochubĕı [39]. Another method, based on suitable approximations
of the fundamental solutions was developed by Knopova and Kulik [37, 36]. A
more probabilistic approach, based on the notion of the martingale problem,
is given by Kulik [43]. We should note that the construction of semigroups
generated by nonlocal integro-differential operators is related to the existence
and uniqueness of solutions to stochastic differential equations with jumps. For
an overview of the results and references in this direction, including the pro-
babilistic interpretation of the parametrix method we refer the reader to [36].
The reader interested in probabilistic methods may consult further results and
references in [12, 36, 37, 40, 43, 46].

Our development is purely analytic. We treat operators not manageable by
the currently existing methods and give precise estimates for the heat kernels;
our upper bounds of pt(x, y) are essentially optimal (see below). We thus give
a framework for further investigations of the inhomogeneous Cauchy problem
and of the regularity of solutions to nonlocal equations. The approach also
gives guidelines for further developments of the parametrix method. In parti-
cular, extensions to anisotropic jump kernels ν(x, dz) with different radial decay
profiles, cf. [33], should be possible along the same lines. Such extensions call
for estimates and regularity of suitable convolution semigroup majorants, and
they are certainly non-trivial.

Here are the main actors of our presentation. Let d ∈ {1, 2, . . .} and let
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ν(z, du) ≥ 0 be an integral kernel on R
d satisfying

sup
z∈Rd

∫

Rd\{0}

(1 ∧ |u|2) ν(z, du) < ∞. (1)

Let ν be symmetric in the second argument, meaning that for all z ∈ R
d and

A ⊂ R
d,

ν(z, A) = ν(z,−A). (2)

We note that this is a different symmetry than the one used in the theory of
Dirichlet forms [23]. If f : R

d → R
d is a continuous functions vanishing at

infinity, then we write f ∈ C0(Rd) and for x, z ∈ R
d and δ > 0, we let

Lz,δf(x) :=
1

2

∫

|u|>δ

[

f(x + u) + f(x− u) − 2f(x)
]

ν(z, du),

and
Lzf(x) := lim

δ→0
Lz,δf(x), (3)

provided that this limit exits and is finite. We note Lz and Lz,δ satisfy the max-
imum principle: if f(x0) = supx∈Rd f(x), then Lz,δf(x0) ≤ 0 and Lzf(x0) ≤ 0.
If, say, ν(x0, du) has unbounded support, then we even have Lzf(x0) < 0 pro-
vided f(x0) = supx∈Rd f(x) > 0, because f(x0 + u) + f(x0 − u) is close to zero
on a set of positive measure ν(x0, du). We let

Lδf(x) := Lx,δf(x), Lf(x) := Lxf(x),

and define the domain of L:

D(L) = {f ∈ C0(Rd) : finite Lf(x) exists for all x ∈ R
d}. (4)

We often write Lxpt(x, y), etc., meaning that L acts on the first spatial variable
x of pt(x, y). By the Taylor expansion and (1), D(L) contains C2

0 (Rd). Here,
as usual, f ∈ C2

0 (Rd) means that f and all its derivatives of order up to 2 are
continuous and converge to zero at infinity. We have

Lf(x) =

∫

Rd

1

2

[

f(x + u) + f(x− u) − 2f(x)
]

ν(x, du) (5)

=

∫

Rd

[

f(x + u) − f(x) − u · ∇f(x)1|u|≤1

]

ν(x, du), f ∈ C2
0 (Rd). (6)

We now fully specify the properties of ν used in this paper. Let α ∈ (0, 2). Let
µ0 be a finite measure concentrated on the unit sphere S := {x ∈ R

d : |x| = 1}.
Define

ν0(A) =

∫

S

∫ ∞

0

1A(rθ)r−1−α drµ0(dθ) , A ⊂ R
d , (7)

where 1A is the indicator function of A. This is the standard form of the Lévy
measure of α-stable distribution [48, Theorem 14.3]. We further assume that µ0
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is symmetric and non-degenerate, that is not concentrated on a proper linear
subspace of Rd. In particular, 0 < µ0(Rd) < ∞, ν0 is infinite at the origin, and

∫

Rd\{0}

(1 ∧ |y|2) ν0(dy) < ∞. (8)

Definition 1.1. We say that ν0 is a γ-measure at S if γ ≥ 0 and

ν0(B(x, r)) ≤ m0r
γ , x ∈ S, 0 < r < 1/2 . (9)

This is a Hausdorff-type condition on ν0 outside of the origin. Since ν0(drdθ) =
r−1−αdrµ0(dθ), ν0 is at least a 1-measure and at most a d-measure at S. In
fact, the spherical measure µ0 is a (γ − 1)-measure at S if and only if the Lévy
measure ν0 is a γ-measure at S. For the rest of the paper we fix γ ∈ [1, d] and
make the following assumptions.

A1. ν0 is given by (7) with non-degenerate finite symmetric spherical measure
µ0, ν0 is a γ-measure at S, and α + γ > d.

A2. There exist constants M0 > 0, η ∈ (0, 1] such that

M−1
0 ν0(A) ≤ ν(z, A) ≤ M0ν0(A), z ∈ R

d, A ⊂ R
d, (10)

and

|ν(z1, A)−ν(z2, A)| ≤ M0 (|z1 − z2|η ∧ 1) ν0(A), z1, z2 ∈ R
d, A ⊂ R

d.
(11)

By A1, α + γ − d ∈ (0, α). By the Radon-Nikodym theorem, A2 is equivalent
to having ν(z, du) = h(z, u)ν0(du), where M−1

0 ≤ h(z, u) ≤ M0 and h(z, u) is
η-Hölder continuous with respect to z. Note that (10) and (8) imply (1).
We now indicate how to define the heat kernel pt(x, y) corresponding to ν
(details and justification are given in Section 3). Let pzt (y−x) be the transition
probability density corresponding to the Lévy measure ν(z, ·), with z ∈ R

d

fixed, see (36). For t > 0, x, y ∈ R
d we define the “zero-order” approximation

of pt(x, y):
p0t (x, y) = pyt (y − x), t > 0, x, y ∈ R

d. (12)

Note that it is the “target point” y that determines the Lévy measure ν(y, ·)
used to define p0t (x, y). This is important for regularity of x 7→ p0t (x, y). We let

Φt(x, y) =
(

Lx − ∂t

)

p0t (x, y), (13)

and

Ψt(x, y) =

∞
∑

k=1

Φ⊠k
t (x, y), (14)

where we use the k-fold convolution (26). Then we let

pt(x, y) = p0t (x, y) +
(

p0 ⊠ Ψ
)

t
(x, y). (15)

The following three theorems reflect the main steps in our development.
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Theorem 1.1. We have

(∂t − Lx)pt(x, y) = 0, t > 0, x, y ∈ R
d, (16)

and for all f ∈ C0(Rd), uniformly in x ∈ R
d

lim
t→0

∫

Rd

f(y)pt(x, y) dy = f(x). (17)

To describe the growth and regularity of pt(x, y), for β > 0 define

G(β)(x) = (|x| ∨ 1)−β, G
(β)
t (x) =

1

td/α
G(β)

( x

t1/α

)

, t > 0, x ∈ R
d. (18)

Of course, if β > d, then

∫

Rd

G
(β)
t (x)dx =

∫

Rd

G(β)(x)dx < ∞, t > 0. (19)

Theorem 1.2. There exist constants C, c1, c2, t0 > 0 such that for all x, y ∈ R
d,

∣

∣∂k
t pt(x, y)

∣

∣ ≤ Ct−kec1tG
(α+γ)
t (y − x), k = 0, 1, t > 0, (20)

and

pt(x, y) ≈ t−d/α, |y − x| ≤ c2t
1/α, t ∈ (0, t0], (21)

and for all t > 0, x1, x2, y ∈ R
d,

∣

∣pt(x1, y)− pt(x2, y)
∣

∣ ≤ C
( |x1 − x2|

t1/α

)θ

ec1t
(

G
(α+γ)
t (y− x1) +G

(α+γ)
t (y− x2)

)

,

(22)
for some θ ∈ (0, η ∧ (α + γ − d)). Furthermore, pt(x, y) is continuous in y.

The correspondence of p and L is detailed as follows.

Theorem 1.3. For f ∈ C0(Rd), t > 0 and x ∈ R
d define

Ptf(x) =

∫

Rd

pt(x, y)f(y)dy. (23)

Then (Pt) is a strongly continuous Markovian semigroup on C0(Rd) and the
function u(t, x) = Ptf(x) defines the unique solution to the Cauchy problem

{
(

∂t − Lx

)

u(t, x) = 0, t > 0, x ∈ R
d,

u(0, x) = f(x), x ∈ R
d,

(24)

such that e−λtu(t, x) ∈ C0([0,∞) ×R
d) for some λ ∈ R.
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Before we go to the proofs we discuss typical applications, the sharpness and
further questions related to our results.
There exist many measures ν0 and ν satisfying the conditions A1 and A2.
Recall that ν0 is a γ-measure at S if and only if µ0 is a (γ − 1)-measure at S.
We also see that ν0 is a d-measure if and only if it is absolutely continuous with
respect to the Lebesgue measure and has a density function locally bounded
on R

d \ {0}. In this case the condition A1 holds trivially and Theorem 1.2
recovers well-known upper estimates of convolution semigroups – for detailed
discussion of this case we refer the reader to [15] and [26]. One of possible
ways of constructing more general ν0 is the following. For every γ ∈ [1, d] there
exists a set F ⊂ S with positive finite Hausdorff measure of order (γ − 1) [2]
and a set E ⊂ F such that the Hausdorff measure restricted to E, say µ0, is a
nonzero (γ−1)-measure [19, Prop. 4.11]. Then ν0 defined by (7) is a γ-measure
at S, and A1 holds provided that α > d − γ. For instance, if d = 2 and E is
the usual ternary Cantor set on S and γ − 1 = log 2/ log 3, then A1 is satisfies
provided that α > 1 − log 2/ log 3 ≈ 0.3791.
In the simplest case of Theorem 1.2, when the (symmetric non-degenerate)
measure µ0 is a finite sum of Dirac measures, then γ = 1 and (20) with k = 0
cannot be improved. Indeed, it is optimal for α-stable convolution semigroups,
when ν(x, dz) = ν0(dz), because in the directions of the support of ν0, the
corresponding convolution semigroup has a matching lower bound [53, Theo-
rem 1.1].

In fact, our upper bound (20) with k = 0 is also optimal for general γ, as
follows by inspecting the translation invariant case [53, Theorem 1.1]; see also
[34, Theorem 2] for estimates of convolution semigroups related to a wider class
of Lévy processes.
It is safe to bet that one cannot expect simple and precise upper bounds for
pt(x, y) in the anisotropic α-stable setting of Theorem 1.2. The difficulties
with anisotropy are also seen in the more general setting of [37] – although [37]
allows to handle anisotropic Lévy kernels, it is yet to be seen how to obtain
precise upper bounds for pt(x, y) from the series representation given there. In
the forthcoming paper [38] some examples are given for the α-stable-like case
which specifically show that even finite pointwise upper bounds are not always
possible.
In view toward further developments our results and [7, 47, 21] suggest further
questions about more precise estimates of the semigroup in large time, regu-
larity of the resolvent, Harnack inequality for harmonic functions, estimates of
the Green function and Poisson kernel, etc. We also hope that our emphasis
on the usage of the so-called sub-convolution property and auxiliary majorants
based on kernels of convolution semigroups, see e.g. [5] for examples, will bring
further progress and more synthetic approach to the Levi method.
The structure of the paper is as follows. In Section 2 we give the notation,
definitions and preliminary results. The main results of this section are Lem-
mas 2.2 and 2.11. In Section 3 we prove the convergence of the series (14) and
prove Theorem 1.1. In Section 4 we estimate the time derivative of pt(x, y) and
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prove Theorem 1.2. In Section 5 we prove Theorem 1.3. We also show that
the generator L of (Pt) coincides with the operator L on C2

0 (Rd) and that the
kernel pt(x, y) with the above properties is unique.

2 Auxiliary convolution semigroups

2.1 Notation and preliminaries

Let N = {1, 2, . . .}, N0 = {0, 1, 2, . . .} and Nd
0 = (N0)d. For (multiindex)

β = (β1, . . . , βd) ∈ Nd
0 we denote |β| = β1 + . . . + βd. For x = (x1, . . . , xd), y =

(y1, . . . , yd) ∈ R
d and r > 0 we let x · y =

∑d
i=1 xiyi and |x| =

√
x · x. We

denote by B(x, r) ⊂ R
d the ball of radius r centered at x ∈ R

d, so S = ∂B(0, 1)
is the unit sphere. All sets, functions and measures considered in this paper
are assumed Borel. For measure λ we let |λ| denote the total variation of λ.
Constants mean positive real numbers and we denote them by c, C, ci, etc. For
nonnegative functions f, g we write f ≈ g to indicate that for some constant
c > 0, c−1f ≤ g ≤ cf . We write c = c(p, q, . . . , r) if the constant c can be
obtained as a function of p, q, . . . , r only.

The convolution of measures is, as usual, λ1 ∗ λ2(A) =
∫

Rd λ1(A − z)λ2(dz),

where A ⊂ R
d. We also consider the following compositions of functions on

space and space-time, respectively:

(φ1 ⋆ φ2)(x, y) :=

∫

Rd

φ1(x, z)φ2(z, y)dz, (25)

(f1 ⊠ f2)(t, x, y) :=

∫ t

0

∫

Rd

f1(t− τ, x, z)f2(τ, z, y)dzdτ. (26)

Here x, y ∈ R
d, t ∈ [0,∞) and the integrands are assumed to be nonnegative

or absolutely integrable.

We consider the Lévy measure ν0 and the Lévy kernel ν introduced in Section 1.
For clarity, it is always assumed that A 7→ ν(x,A) is a Borel measure on R

d for
every x ∈ R

d and x 7→ ν(x,A) is Borel measurable for every Borel A ⊂ R
d. By

construction, ν0 is symmetric, non-degenerate and homogeneous of order −α:

ν0(rA) = r−αν0(A), 0 < r < ∞, A ⊂ R
d.

The correspondence of ν0 and µ0 is a bijection [48, Remark 14.4]. We call µ0

the spherical measure of ν0. Since µ0 is non-degenerate,

inf
ξ∈S

∫

S

|ξ · θ|αµ0(dθ) > 0. (27)
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The respective characteristic (Lévy-Khintchine) exponent qν0 is defined by

qν0(ξ) =

∫

Rd\{0}

(

1 − eiξ·u + iξ · u1{|u|≤1}

)

ν0(du) (28)

=

∫

Rd\{0}

(

1 − cos(ξ · u)
)

ν0(du)

=
π

2 sin πα
2 Γ(1 + α)

∫

S

|ξ · θ|α µ0(dθ), ξ ∈ R
d . (29)

By scaling and (27),

c1|ξ|α ≤ qν0(ξ) ≤ c2|ξ|α, ξ ∈ R
d. (30)

By the Lévy-Khintchine formula and (30) there is a convolution semigroup of
probability density functions whose Fourier transform is exp(−tqν0(ξ)), see,
e.g., [1, 48]. If qν0(ξ) = |ξ|α, then the corresponding convolution semigroup
g(t, x) satisfies

g(t, x) ≈ t−d/α ∧ t

|x|d+α
= G

(d+α)
t (x), t > 0, x ∈ R

d . (31)

The comparison was proved by Blumenthal and Getoor [3] (see [5, (29)] for
explicit constants). In the next section we prove a version of the upper bound
in (31) for the semigroups corresponding to ν. To this end we first learn how to
bound integro-differential operators with kernel ν. In what follows, we denote,
as usual,

diam(A) = sup{|x− y| : x, y ∈ A}.
We also denote

δ(A) = dist(A, 0) := inf{|x| : x ∈ A}.
The lemma below is an easy consequence of (7) and (9).

Lemma 2.1. Let m1 = max{m0, 2
γ |µ0|/α}. For every A ⊂ R

d we have

ν0(A) ≤ m1δ(A)−α−γ diam(A)γ . (32)

Proof. If δ(A) = 0, then (32) is trivial, so we assume δ(A) > 0. By the
homogeneity of ν0, for every x0 ∈ A,

ν0(A) ≤ ν0(B(x0, diam(A)) ∩B(0, δ(A))c)

= |x0|−αν0

(

B

(

x0

|x0|
,

diam(A)

|x0|

)

∩B

(

0,
δ(A)

|x0|

)c )

.

If diam(A)/|x0| ≤ 1
2 , then from (9) we get

ν0(A) ≤ |x0|−αm0

(

diam(A)

|x0|

)γ

≤ m0 δ(A)−α−γ diam(A)γ ,
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and if diam(A)/|x0| ≥ 1
2 , then

ν0(A) ≤ |x0|−αν0

(

B

(

0,
δ(A)

|x0|

)c)

= |x0|−α |µ0|
α

(

δ(A)

|x0|

)−α

=
|µ0|
α

δ(A)−α ≤ 2γ |µ0|
α

δ(A)−α−γ diam(A)γ .

Thus, in either case we get (32).

Let C2
b (Rd) be the class of all the functions bounded together with their deriva-

tives up to order 2. For t > 0, x ∈ R
d and f ∈ C2

b (Rd) we denote

A
#
t f(x) :=

∫

Rd\{0}

∣

∣f(x + u) − f(x) − u · ∇xf(x)1{|u|≤t1/α}

∣

∣ ν0(du).

The lemma below is the main result of this subsection.

Lemma 2.2. Let f : (0,∞)×R
d → R be such that ft(·) := f(t, ·) ∈ C2

b (Rd) for
every t > 0 and there are constants K, ζ > 0, κ ∈ [0, α + γ − d) such that

|∂β
x ft(x)| ≤ Kt−(ζ+|β|)/α(1 + t−1/α|x|)−γ−α+κ, x ∈ R

d, t > 0, (33)

for every multiindex β ∈ Nd
0 with |β| = 0 or 2. Then there exists cA > 0 such

that

A
#
t ft(x) ≤ cAKt−1−ζ/α(1 + t−1/α|x|)−γ−α+κ, x ∈ R

d, t > 0.

Proof. We have A
#
t ft(x) = I1 + I2, where

I1 =

∫

|u|≤t1/α

∣

∣ft(x + u) − ft(x) − u · ∇xft(x)1{|u|≤t1/α}

∣

∣ ν0(du),

I2 =

∫

|u|>t1/α

∣

∣ft(x + u) − ft(x) − u · ∇xft(x)1{|u|≤t1/α}

∣

∣ ν0(du).

From the Taylor expansion and (33) we get

I1 =

∫

|u|≤t1/α
|ft(x + u) − ft(x) − u · ∇xft(x)| ν0(du)

≤ Kd22α+γ−κ−1

∫

|u|≤t1/α
|u|2t−(ζ+2)/α(1 + t−1/α|x|)−γ−α+κ ν0(du)

= Kd22α+γ−κ−1t−(ζ+2)/α(1 + t−1/α|x|)−γ−α+κ |µ0|
2 − α

t(2−α)/α

= Kc1t
−1−ζ/α(1 + t−1/α|x|)−γ−α+κ.
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We split I2 in the following way,

I2 =

∫

|u|>t1/α
|ft(x − u) − ft(x)| ν0(du)

≤
∫

|u|>t1/α
|ft(x − u)| ν0(du) + |ft(x)|

∫

|u|>t1/α
ν0(du)

=

(

∫

|u|>t1/α, |x−u|>t1/α
+

∫

|u|>t1/α, |x−u|≤t1/α

)

|ft(x− u)| ν0(du)

+ |ft(x)| |µ0|
αt

=: I21 + I22 + |ft(x)| |µ0|
αt

.

Using (32) and (33) we obtain

I22 ≤ K

∫

|u|>t1/α, |x−u|≤t1/α
t−ζ/α ν0(du)

= Kt−ζ/αν0

(

B(x, t1/α) ∩B(0, t1/α)c
)

≤ Km1t
−ζ/α(2t1/α)γ

(

max{|x| − t1/α, t1/α}
)−γ−α

≤ Kc2t
−1−ζ/α

(

1 + t−1/α|x|
)−γ−α

.

In order to estimate I21 we define

J1 =

∫

|u|>t1/α,max{|x|/4,t1/α}>|x−u|>t1/α
|ft(x− u)| ν0(du),

J2 =

∫

|u|>t1/α, |x−u|≥max{|x|/4,t1/α}

|ft(x− u)| ν0(du),

and observe that I21 = J1 + J2. Using (33) we get

J2 ≤
∫

|u|>t1/α, |x−u|≥|x|/4

Kt−ζ/α(1 + t−1/α|x− u|)−γ−α+κ ν0(du)

≤ (K|µ0|/α)t−1−ζ/α(1 + t−1/α|x|/4)−γ−α+κ

≤ Kc3t
−1−ζ/α(1 + t−1/α|x|)−γ−α+κ.

If |x| < 4t1/α, then J1 = 0. If |x| ≥ 4t1/α, then L := ⌊log2(t−1/α|x|/4)⌋ ≥ 0,
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and

J1 ≤
∫

|u|>t1/α, |x|/4>|x−u|>t1/α
Kt−ζ/α(1 + t−1/α|x− u|)−γ−α+κ ν0(du)

≤
L
∑

n=0

∫

2n+1t1/α≥|x−u|>2nt1/α
Kt−ζ/α(1 + t−1/α|x− u|)−γ−α+κ ν0(du)

≤ Kt−ζ/α
L
∑

n=0

2−n(α+γ−κ)ν0

(

B(x, 2n+1t1/α)
)

≤ Kt−ζ/α
L
∑

n=0

2−n(α+γ−κ)m12α+γ |x|−γ−α(2n+2t1/α)γ

≤ Kc4t
(−ζ+γ)/α|x|−γ−α ≤ Kc5t

−1−ζ/α(1 + t−1/α|x|)−γ−α,

where in the fourth inequality we use (32) and the fact that 2n+1t1/α ≤ |x|/2
for n ≤ L. We obtain

I2 = I21 + I22 + |ft(x)| |µ0|
αt

≤ Kc6t
−1−ζ/α(1 + t−1/α|x|)−γ−α+κ,

and the lemma follows.

2.2 Estimates of pzt (x)

In this section we estimate the convolution semigroup corresponding to the
Lévy measure ν(z, ·) with fixed but arbitrary z ∈ R

d. We are interested in
majorants which are integrable in space, like (19). We note that the results
[7] cannot be directly used here because we also need Hölder continuity of
z 7→ pzt , which is crucial for the proof of Theorem 1.1. Recall that each ν(z, ·)
is symmetric and comparable to ν0, i.e. it satisfies (10). Therefore,

q(z, ξ) :=

∫

Rd\{0}

(1 − eiξ·u + iξ · u1{|u|≤1}) ν(z, du)

=

∫

Rd\{0}

(1 − cos ξ · u) ν(z, du),

(34)

is real-valued and there exist constants c, C > 0 such that

c|ξ|α ≤ q(z, ξ) ≤ C|ξ|α, ξ, z ∈ R
d. (35)

By (35),

pzt (x) := (2π)−d

∫

Rd

e−ix·ξ−tq(z,ξ) dξ, t > 0, x ∈ R
d, (36)

is infinitely smooth in t and x. Note that for each z, (pzt )t>0 is a convolution
semigroup of probability densities. The operator Lz equals to the generator of
the semigroup on C2

0 (Rd), see, e.g., [4]. Therefore,

∂tp
z
t (x) = Lzpzt (x), t > 0, x ∈ R

d, (37)
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and so

∂tp
z
t (x) =

∫

Rd

(

pzt (x + u) − pzt (x) − u · ∇xp
z
t (x)1{|u|≤1}

)

ν(z, du).

We recall the definition (18) and give approximation for convolutions of G
(β)
t .

Lemma 2.3. For every β ∈ (d, d + 2),
∫

Rd

G
(β)
t−s(x− z)G(β)

s (z) dz ≈ G
(β)
t (x), x ∈ R

d, 0 < s < t. (38)

Proof. Denote δ = β − d. Let g(t, x) be the density function of the isotropic

rotation invariant δ-stable Lévy process. We have G
(β)
t (x) ≈ g(tδ/α, x), see,

e.g., [3].
∫

Rd

G
(β)
t−s(x− z)G(β)

s (z) dz ≈
∫

Rd

g((t− s)δ/α, x− z)g(sδ/α, z) dz

= g((t− s)δ/α + sδ/α, x).

Since an easy calculation gives

(1 ∧ 21−δ/α)tδ/α ≤ (t− s)δ/α + sδ/α ≤ (1 ∨ 21−δ/α)tδ/α,

from (31) we get

g((t− s)δ/α + sδ/α, x) ≈ t−d/α

(

1 ∨ |x|
t1/α

)−β

= G
(β)
t (x),

and (38) follows.

Lemma 2.4. For every β ∈ Nd
0 there is c = c(ν0, β,M0) > 0 such that

|∂β
xp

z
t (x)| ≤ ct−|β|/αG

(α+γ)
t (x), t > 0, x, z ∈ R

d.

The proof of Lemma 2.4 relies on the auxiliary results which we give first.
Fix an arbitrary z ∈ R

d. Let ϑ(·) = ν(z, ·). For ε > 0 let ϑ̄ε = 1B(0,ε)cϑ,

ϑ̃ε = 1B(0,ε)ϑ, and

qϑ̄ε
(ξ) =

∫

Rd

(

1−eiξ·u
)

ϑ̄ε(du), qϑ̃ε
(ξ) =

∫

Rd

(

1−eiξ·u+iξ ·u1{|u|≤1}

)

ϑ̃ε(du),

and
p̃εt (x) =

(

F
−1 exp(−tqϑ̃ε

(·))
)

(x), t > 0, x ∈ R
d,

where F−1 is the inverse Fourier transform. By (30) we see that p̃εt (x) is smooth.
The probability measure with the characteristic function exp(−tqϑ̄ε

(ξ)) is

P̄ ε
t (dy) = e−t|ϑ̄ε|

∞
∑

n=0

tnϑ̄∗n
ε (dy)

n!
, t > 0. (39)
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14 K. Bogdan, P. Sztonyk, V. Knopova

We have
pzt = p̃εt ∗ P̄ ε

t . (40)

The first step in the proof of Lemma 2.4 is to estimate the terms in the se-
ries (39). The following Lemma is a version of [7, Lemma 1] and [34, Cor. 10].

Proposition 2.5. There exists m3 > 0 such that for ε > 0 and n ≥ 1,

ϑ̄∗n
ε (B(x, r)) ≤ mn

3 ε
−(n−1)α|x|−α−γrγ , x ∈ R

d \ {0}, r < |x|/2.

Consequently,

P̄ ε
t (B(x, r)) ≤ εαem3ε

−αt|x|−α−γrγ .

Proof. The result follows from [34, Lemma 9]. Indeed, one can check that the
conditions (23) from [34, Lemma 9] hold true with f(s) = s−α−γ , which gives

ϑ̄∗n
ε (A) ≤ cnqν0(1/ε)n−1f (δ(A)/2) diam(A)γ , (41)

where qν0(r) = sup|ξ|≤r qν0(ξ), r > 0. Since qν0(r) ≈ rα, we get the required
estimates.

We denote P̄t = P̄ t1/α

t , p̃t = p̃t
1/α

t and ϑ̃ = ϑ̃t1/α .

Lemma 2.6. For every n ∈ N0 and β ∈ N
d
0 there is c > 0 such that

|∂β
x p̃t(x)| ≤ ct−|β|/αG

(n)
t (x), t > 0, x ∈ R

d. (42)

Proof. Let gt(x) = td/αp̃t(t
1/αx), t > 0, x ∈ R

d. For each t, gt(x) is the density
function of an infinitely divisible distribution. We denote by φt(ξ) and ηt(du)
the corresponding characteristic exponent and the Lévy measure, respectively.
To prove (42) will apply [49, Prop. 2.1], for which it suffices to check that

∫

Rd

|ξ|ke−Reφt(ξ)dξ < c,

∫

Rd

|u|kηt(du) < c (43)

for every k ≥ 2 with constant c independent of t. Indeed, a direct calculation
gives ηt(A) = tϑ̃t1/α(t1/αA). Then by (10) we get

∫

|y|k ηt(dy) ≤ M0t

∫

|y|<t1/α

( |y|
t1/α

)k

ν0(dy) =
M0|µ0|
k − α

.

Further,

Reφt(ξ) =

∫

(1 − cos (ξ · y)) ηt(dy)

≥ M−1
0 t

∫

|y|<t1/α

(

1 − cos
(

ξ · y

t1/α

))

ν0(dy)

= M−1
0 tqν0(ξ/t1/α) −M−1

0 t

∫

|y|≥t1/α

(

1 − cos
(

ξ · y

t1/α

))

ν0(dy)

≥ M−1
0 tqν0(ξ/t1/α) −M−1

0 tν0(B(0, t1/α)c) ≥ c1|ξ|α − c2.
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Therefore,

∫

e−Reφt(ξ)|ξ|k dξ ≤ ec2
∫

e−c1|ξ|
α |ξ|k dξ ≤ c3 < ∞.

Thus, (43) holds true and applying the result from [49, Prop.2.1] we get

|∂β
x gt(x)| ≤ c4 (1 + |x|)−n

, n ≥ 0, t > 0, x ∈ R
d.

Coming back to p̃t we get the desired estimate.

Proof of Lemma 2.4. We have

|∂β
xp

z
t (x)| = | (2π)

−d
(−i)|β|

∫

ξβe−ix·ξe−tqϑ(ξ) dξ|

≤ (2π)−d
∫

|ξ||β|e−tc1|ξ|
α

dξ = c2t
(−d−|β|)/α, t > 0, x ∈ R

d.

Using Proposition 2.5 and Lemma 2.6 with n ≥ α+γ, for |x| > 2t1/α we obtain

∣

∣∂β
x

(

p̃t ∗ P̄t

)

(x)
∣

∣ =

∣

∣

∣

∣

∫

Rd

∂β
x p̃t(x− y)P̄t(dy)

∣

∣

∣

∣

≤
∫

Rd

∣

∣∂β
x p̃t(x− y)

∣

∣ P̄t(dy)

≤ c3t
−d−|β|

α

∫

Rd

(1 + t−1/α|x− y|)−nP̄t(dy)

= c3t
−d−|β|

α

∫

Rd

∫ (1+t−1/α|x−y|)−n

0

ds P̄t(dy)

= c3t
−d−|β|

α

∫ 1

0

∫

Rd

1(1+t−1/α|x−y|)−n>s P̄t(dy)ds

= c3t
−d−|β|

α

∫ 1

0

P̄t

(

B(x, t1/α(s−
1
n − 1))

)

ds,

thus

∣

∣∂β
x

(

p̃t ∗ P̄t

)

(x)
∣

∣

≤ c4t
−d−|β|

α

(

∫ 1

(1+
|x|

2t1/α
)−n

t|x|−α−γ
(

t1/α(s−
1
n − 1)

)γ

ds

+

∫ (1+ |x|

2t1/α
)−n

0

ds
)

≤ c4t
−d−|β|

α

(

t1+γ/α|x|−α−γ

∫ 1

0

s−γ/n ds +
(

1 +
|x|

2t1/α

)−n)

= c5t
−d−|β|

α

(

t1+γ/α|x|−α−γ +
(

1 +
|x|

2t1/α

)−n)

≤ c6t
−d−|β|

α

(

1 +
|x|
t1/α

)−α−γ

.
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16 K. Bogdan, P. Sztonyk, V. Knopova

For the regularity in time we have another estimate. Here the spatial bound is
satisfactory, cf. (19), and the temporal growth at t = 0 will later be tempered
by making use of cancellations.

Lemma 2.7. For every β ∈ Nd
0 there exists a constant c > 0 such that

|∂t∂β
xp

z
t (x)| ≤ ct−1−|β|/αG

(α+γ)
t (x), x, z ∈ R

d, t > 0. (44)

Proof. It follows from (36) and (10) that

∂t∂
β
xp

z
t (x) = ∂β

x∂tp
z
t (x) = (2π)−d

∫

Rd

q(z, ξ)(−1)|β|+1ξβe−ix·ξ−tq(z,ξ) dξ.

Recall that

∂tp
z
t (x) =

∫

Rd

(

pzt (x + u) − pzt (x) − u · ∇xp
z
t (x)1{|u|≤1}

)

ν(z, du),

cf. (37). Differentiating with respect to x and using A2 we get

∣

∣∂t∂
β
xp

z
t (x)

∣

∣ =
∣

∣∂β
x∂tp

z
t (x)

∣

∣

=
∣

∣

∣

∫

(

∂β
xp

z
t (x + u) − ∂β

xp
z
t (x) − ∂β

xu · ∇xp
z
t (x)1{|u|≤1}

)

ν(z, du)
∣

∣

∣

≤ C

∫

∣

∣∂β
xp

z
t (x + u) − ∂β

xp
z
t (x) − u · ∇x∂

β
xp

z
t (x)1{|u|≤t1/α}

∣

∣ ν0(du).

Using Proposition 2.4 and Lemma 2.2 we obtain (44).

The Hölder continuity of z 7→ pzt , will be proved in Lemma 2.11 after some
auxiliary lemmas. In the first one we prove the symmetry of the operators Lw.

Lemma 2.8. For every w ∈ R
d the operator Lw is symmetric, i.e.,

∫

Rd

ϕ(x)Lwf(x) dx =

∫

Rd

Lwϕ(x)f(x) dx (45)

for all ϕ, f ∈ C2
b (Rd) ∩ L1(Rd).

Proof. For every δ > 0 we have

∫ ∫

|u|>δ

|f(x + u)ϕ(x)|ν(w, du)dx ≤ ‖f‖∞ν(w,B(0, δ)c)‖ϕ‖1 < ∞.

Hence, by Fubini’s theorem, change of variables and symmetry of ν(w, ·) we
get

∫

Rd

ϕ(x)

∫

|u|>δ

f(x + u)ν(w, du) dx =

∫

Rd

f(y)

∫

|u|>δ

ϕ(y + u) ν(w, du) dy.
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By subtracting
∫

Rd

∫

|u|>δ
f(x)ϕ(x)ν(w, du)dx, we obtain

∫

Rd

ϕ(x)Lw,δf(x) dx =

∫

Rd

Lw,δϕ(x)f(x) dx.

Let δ → 0. By dominated convergence we get (45), since for g ∈ C2
b (Rd),

δ ∈ (0, 1),

|Lw,δg(x)| =

∣

∣

∣

∣

∣

∫

|u|>δ

(

g(x + u) − g(x) − 1B(0,1)(u)∇g(x) · u
)

ν(w, du)

∣

∣

∣

∣

∣

≤ 1
2d

2‖g‖2
∫

|u|<1

|u|2 ν(w, du) + 2‖g‖∞
∫

|u|>1

ν(w, du) < ∞.

Here, as usual, ‖g‖2 = sup{|∂βg(x)| : x ∈ R
d, β ∈ Nd

0, |β| ≤ 2}.

Corollary 2.9. For every f ∈ C2
b (Rd) ∩ L1(Rd) and w ∈ R

d such that
Lwf ∈ L1(Rd) we have

∫

Rd

Lwf(x) dx = 0.

Proof. Let ϕn ∈ C∞
c (Rd) be such that 0 ≤ ϕn(x) ≤ 1 and ϕn(x) = 1 for every

x ∈ B(0, n) and ‖ϕn‖2 ≤ c0 for every n ∈ N. Note that

|Lwϕn(x)| ≤ c1

∫

|u|<1

|u|2 ν(w, du) + 2

∫

|u|≥1

ν(w, du) < ∞,

and for n > |x| we have

|Lwϕn(x)| =

∣

∣

∣

∣

∣

∫

|x+u|>n

(ϕn(x + u) − 1) ν(w, du)

∣

∣

∣

∣

∣

≤ 2ν(w,B(−x, n)c),

which yields limn→∞ Lwϕn(x) = 0 for every x ∈ R
d. By the symmetry of Lw,

∫

Rd

ϕn(x)Lwf(x) dx =

∫

Rd

Lwϕn(x)f(x) dx,

and the corollary follows by the dominated convergence theorem.

Lemma 2.10. Let t > 0, x,w1, w2 ∈ R
d and

φ(s) =







pw1
t−s ∗ pw2

s (x) if s ∈ (0, t),
pw1
t (x) if s = 0,

pw2
t (x) if s = t.

Then φ is continuous on [0, t], ∂sφ(s) exists on (0, t) and

∂sφ(s) =

∫

Rd

(

pw1
t−s(z − x)Lw2pw2

s (z) − pw2
s (z)Lw1pw1

t−s(z − x)
)

dz.
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Proof. We have

|φ(s) − φ(0)| =

∣

∣

∣

∣

∫

Rd

pw1
t−s(x − z)pw2

s (z) dz − pw1
t (x)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

Rd

pw1
t (x− z)pw2

s (z) dz − pw1
t (x)

∣

∣

∣

∣

+

∫

Rd

|pw1
t−s(x− z) − pw1

t (x− z)|pw2
s (z) dz

= I1(s) + I2(s),

and lims→0 I1(s) = 0, since the semigroup Pw2
s f(x) =

∫

Rd f(x− z)pw2
s (z) dz is

strongly continuous and pw1
t (x−·) ∈ C0(Rd). For s ∈ (0, t/2) from Lemma 2.7,

|pw1
t−s(x− z) − pw1

t (x − z)| ≤ s sup
u∈(t−s,t)

|∂upw1
u (x− z)|

≤ cs sup
u∈(t−s,t)

{

u−1G(α+γ)
u (x− z)

}

≤ cst−1−d/α

( |x− z|
t1/α

∨ 1

)−α−γ

.

From the strong continuity of s 7→ Pw2
s we have

lim
s→0

∫

Rd

( |x− z|
t1/α

∨ 1

)−α−γ

pw2
s (z) dz =

( |x|
t1/α

∨ 1

)−α−γ

,

therefore lims→0 I2(s) = 0. This yields the continuity of φ at s = 0. The proof
of the continuity at s = t is analogous.
For every z ∈ R

d and s ∈ (0, t) from (37) we obtain

∂s
(

pw1
t−s(x− z)pw2

s (z)
)

= pw1
t−s(z − x)Lw2pw2

s (z) − pw2
s (z)Lw1pw1

t−s(z − x).

From Lemmas 2.4 and 2.2 we get

|∂s
(

pw1
t−s(x− z)pw2

s (z)
)

| ≤ cG(α+γ)
s (z)G

(α+γ)
t−s (z − x)

(

s−1 + (t− s)−1
)

.

Hence for every δ ∈ (0, t/2) and s ∈ (δ, t− δ) we obtain

|∂s
(

pw1
t−s(x − z)pw2

s (z)
)

| ≤ 2cδ−1−2d/α
( |z|
t1/α

∨1
)−α−γ( |z − x|

t1/α
∨1
)−α−γ

, (46)

and since
∫

( |z|

t1/α
∨ 1)−α−γ( |z−x|

t1/α
∨ 1)−α−γ dz < ∞, this yields

∂sφ(s) =

∫

Rd

(

pw1
t−s(z − x)Lw2pw2

s (z) − pw2
s (z)Lw1pw1

t−s(z − x)
)

dz, s ∈ (0, t).

Lemma 2.11. For any β ∈ Nd
0 and θ ∈ (0, η ∧ (α + γ − d)) there exists c > 0

such that for all x,w1, w2 ∈ R
d, t > 0,

∣

∣∂β
xp

w1
t (x) − ∂β

xp
w2
t (x)

∣

∣ ≤ c(|w1 − w2|η ∧ 1)t−|β|/αG
(α+γ−θ)
t (x). (47)
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Proof. Let us prove first the statement with β = 0. Since for a, b > 0 we have
|e−a − e−b| ≤ |a− b|e−(a∧b), by Hölder continuity of q(z, ξ) and q(z, ξ) ≈ |ξ|α,

∣

∣pw1
t (x) − pw2

t (x)
∣

∣ = (2π)−d
∣

∣

∣

∫

Rd

e−iξx
(

e−tq(w1,ξ) − e−tq(w2,ξ)
)

dξ
∣

∣

∣

≤ c1(|w1 − w2|η ∧ 1)
∣

∣

∣

∫

Rd

t|ξ|αe−ct|ξ|αdξ
∣

∣

∣

≤ c2(|w1 − w2|η ∧ 1)t−d/α, t > 0, w1, w2, x ∈ R
d.

Since for |x| ≤ t1/α we have G
(α+γ−θ)
t (x) = t−d/α, we get (47) for such t and x.

Suppose now that |x| ≥ t1/α. We note that pzt ∈ C2
b (Rd) ∩ L1(Rd) for every

t > 0 and z ∈ R
d. By Lemma 2.10, (46) (which yields integrability of ∂sφ(s)

on [δ, t− δ] for every δ ∈ (0, t/2)), Lemma 2.8 and the symmetry of pwt (x) in x,

pw2
t (x) − pw1

t (x) =

∫ t

0

∂s

∫

Rd

pw1
t−s(x− z)pw2

s (z) dzds

=

∫ t

0

∫

Rd

[

pw1
t−s(z − x)Lw2pw2

s (z) − pw2
s (z)Lw1pw1

t−s(z − x)
]

dzds

=

∫ t

0

∫

Rd

pw2
s (z)

[

Lw2 − Lw1
]

pw1
t−s(z − x) dzds

=

∫ t

0

∫

Rd

(

pw2
s (z) − pw2

s (x)
)[

Lw2 − Lw1
]

pw1
t−s(z − x) dzds

+

∫ t

0

∫

Rd

pw2
s (x)

[

Lw2 − Lw1
]

pw1
t−s(z − x) dzds = I1 + I2.

From Lemma 2.2 and Corollary 2.9 we derive
∫

Rd

[

Lw2 − Lw1
]

pw1
t−s(z − x)dz = 0,

hence, I2 = 0. Next we observe that for all w, x, y ∈ R
d, t > 0,

∣

∣pwt (x) − pwt (y)
∣

∣ ≤ c

( |x− y|
t1/α

∧ 1

)

(

G
(α+γ)
t (x) + G

(α+γ)
t (y)

)

, (48)

which follows from the Taylor expansion of pwt (x). Indeed, if |x − y| ≥ t1/α,
then (48) is straightforward: we just estimate the difference of functions by their
sum and use Lemma 2.4. If |x − y| ≤ t1/α, then using the Taylor expansion
and Lemma 2.4 with |β| = 1 we get

|pwt (x) − pwt (y)| ≤ |x− y| · sup
ζ∈[0,1]

|∇xp
w
t (x + ζ(y − x))|

≤ c1|x− y|t−1/α sup
ζ∈[0,1]

G
(α+γ)
t (x + ζ(y − x))

≤ c2
|x− y|
t1/α

(

G
(α+γ)
t (x) + G

(α+γ)
t (y)

)

,
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since for |x| ≤ 2t1/α and every ζ ∈ (0, 1) we have

G
(α+γ)
t (x + ζ(y − x)) = t−d/α

( |x + ζ(y − x)|
t1/α

∨ 1
)−α−γ

≤ t−d/α

≤ 2α+γG
(α+γ)
t (x),

and for |x| > 2t1/α we have |x + ζ(y − x)| ≥ |x| − |y − x| ≥ |x|/2, which yields

G
(α+γ)
t (x + ζ(y − x)) = t1−(d−γ)/α|x + ζ(y − x)|−α−γ

≤ 2α+γt1−(d−γ)/α|x|−α−γ = 2α+γG
(α+γ)
t (x).

Further, using (48), A2, Lemma 2.4 and Lemma 2.2 with ζ = d we get

|I1| ≤ c1(|w1 − w2|η ∧ 1)

∫ t

0

∫

Rd

( |x− z|
s1/α

∧ 1
)(

G(α+γ)
s (x) + G(α+γ)

s (z)
)

· (t− s)−1G
(α+γ)
t−s (x− z) dzds

≤ c2(|w1 − w2|η ∧ 1)

∫ t

0

s−θ/α(t− s)−1+θ/α

·
∫

Rd

G
(α+γ−θ)
t−s (x− z)

(

G(α+γ)
s (x) + G(α+γ)

s (z)
)

dzds,

where in the second inequality above we use the fact that

( |x− z|
s1/α

∧1
)

≤
( t− s

s

)θ/α( |x− z|
(t− s)1/α

∨1
)θ

, x, z ∈ R
d, t > s > 0, θ ∈ (0, 1].

By Lemma 2.3 we obtain

|I1| ≤ c3(|w1 −w2|η ∧ 1)

∫ t

0

s−θ/α(t− s)−1+θ/α
(

G(α+γ)
s (x) + G

(α+γ−θ)
t (x)

)

ds.

Note that for |x|α ≥ t ≥ s we have G
(α+γ)
s (x) = s(α+γ−d)/α/|x|α+γ . Therefore,

∫ t

0

s−θ/α(t− s)−1+θ/α
(

G(α+γ)
s (x) + G

(α+γ−θ)
t (x)

)

ds

= B
(

2α+γ−d−θ
α , θ

α

) t(α+γ−d)/α

|x|α+γ
+

π

sin(πθ/α)
G

(α+γ−θ)
t (x)

≤ c
(

G
(α+γ)
t (x) + G

(α+γ−θ)
t (x)

)

≤ 2cG
(α+γ−θ)
t (x).

Thus we have (47) also for |x| ≥ t1/α.
To prove the statement for |β| ≥ 1, denote by ht(x) the convolution semi-
group corresponding to the Lévy measure (2M0)−1ν0(du), and denote by h̃z

t (x)
the convolution semigroup with the Lévy measure ν#(z, du) = ν(z, du) −
(2M0)−1ν0(du). We note that pzt (x) = ht ∗ h̃z

t (x) and ν# satisfies A2 with
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constant 2M0 instead of M0 and therefore (47) holds also for h̃z
t (x) with β = 0

(and perhaps a different constant c). Hence, using Lemma 2.4 for ht and
Lemma 2.3, we get for β ∈ Nd

0

∣

∣∂β
xp

w1
t (x) − ∂β

xp
w2
t (x)

∣

∣ =
∣

∣∂β
x

∫

Rd

ht(x− y)
(

h̃w1
t (y) − h̃w2

t (y)
)

dy
∣

∣

=
∣

∣

∫

Rd

∂β
xht(x− y)

(

h̃w1
t (y) − h̃w2

t (y)
)

dy
∣

∣

≤ c1(|w1 − w2|η ∧ 1)t−|β|/α

∫

Rd

G
(α+γ)
t (x− y)G

(α+γ−θ)
t (y) dy

≤ c2(|w1 − w2|η ∧ 1)t−|β|/αG
(α+γ−θ)
t (x).

This finishes the proof.

Below we establish a similar continuity property.

Lemma 2.12. For all t > 0 and y ∈ R
d we have

lim
z→y

sup
x∈Rd

|pzt (z − x) − pyt (y − x)| = 0. (49)

Proof. From Lemma 2.11 and (48), we get

|pzt (z − x)−pyt (y − x)| ≤ |pzt (z − x) − pyt (z − x)| + |pyt (z − x) − pyt (y − x)|
≤ c1(|z − y|η ∧ 1)G

(α+γ−θ)
t (z − x)

+ c2

( |z − y|
t1/α

∧ 1

)

(

G
(α+γ)
t (z − x) + G

(α+γ)
t (y − x)

)

≤ c1t
−d/α(|z − y|η ∧ 1) + 2c2

( |z − y|
t1/α

∧ 1

)

t−d/α,

and (49) follows.

Lemma 2.11 also yields Lemma 2.13 and 2.14 below. We have the following
result on strong continuity of p0t (x, y) = pyt (y − x).

Lemma 2.13. For f ∈ C0(Rd), limt→0 supx

∣

∣

∣

∫

Rd p
y
t (y − x)f(y) dy − f(x)

∣

∣

∣
= 0.

Proof. We have

∣

∣

∣

∫

Rd

pyt (y − x)f(y) dy − f(x)
∣

∣

∣

≤
∣

∣

∣

∫

Rd

pxt (y − x)f(y) dy − f(x)
∣

∣

∣
+

∫

Rd

|pyt (y − x) − pxt (y − x)||f(y)| dy

≤
∫

Rd

|f(y) − f(x)|pxt (y − x) dy +

∫

Rd

|pyt (y − x) − pxt (y − x)||f(y)| dy

= I1(t) + I2(t).
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Let δ > 0. Using Lemma 2.4 for every t ∈ (0, δα) we obtain

I1(t) ≤ c1

∫

Rd

|f(y) − f(x)|G(α+γ)
t (y − x) dy

= c1

∫

|y−x|≤t1/α
|f(y) − f(x)|t−d/α dy

+c1

∫

t1/α<|y−x|≤δ

|f(y) − f(x)|t1−(d−γ)/α|y − x|−α−γ dy

+c1

∫

|y−x|>δ

|f(y) − f(x)|t1−(d−γ)/α|y − x|−α−γ dy

≤ c2 sup
|y−x|≤δ

|f(y) − f(x)| + c3‖f‖∞t1−(d−γ)/αδ−α−γ+d.

Taking δ > 0 such that |f(y)− f(x)| ≤ ε/(2c2) for |y−x| ≤ δ, and t0 such that

c3‖f‖∞t1−(d−γ)/αδ−α−γ+d ≤ ε/2 for t ∈ (0, t0),

we get supx∈Rd I1(t, x) ≤ ε, hence supx∈Rd I1(t, x) → 0, as t → 0. To estimate
I2(t, x) we take ǫ ∈ ( d

d+η , 1). By Lemma 2.11 for θ ∈ (0, η∧ (α+ γ− d)) we get

I2(t) =

(

∫

|y−x|≤tǫ/α
+

∫

|y−x|>tǫ/α

)

|pyt (y − x) − pxt (y − x)||f(y)| dy (50)

≤ c4‖f‖∞tǫ(d+η)/α−d/α + c4‖f‖∞
∫

|y−x|>tǫ/α
G

(α+γ−θ)
t (y − x) dy

= c4‖f‖∞tǫ(d+η)/α−d/α + c4‖f‖∞
∫

|z|>t(ǫ−1)/α

(|z| ∨ 1)−γ−α+θ dz.

By our choice of ǫ, both terms tend to 0 as t → 0.

We now point out the impact of cancellations, cf. Lemma 2.7.

Lemma 2.14. For every θ ∈
(

0, η ∧ α+γ−d
2

)

we have

∣

∣

∣

∫

Rd

∂tp
y
t (y − x)dy

∣

∣

∣
≤ ct−1+θ/α, x ∈ R

d, t > 0. (51)

Proof. Using the fact that ∂tp
z
t (x) = Lzpzt (x) we get

∫

Rd

∂tp
z
t (z − x)dz =

∫

Rd

Lzpzt (z − x) dz =

∫

Rd

Lz
(

pzt (z − x) − pxt (z − x)
)

dz

+

∫

Rd

(

Lz − Lx
)

pxt (z − x) dz +

∫

Rd

Lxpxt (z − x) dz.
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Lemma 2.9 yields
∫

Rd L
xpxt (z − x) dz = 0. Further, by Lemma 2.11 and 2.2,

∫

Rd

∣

∣Lz(pzt (z − x) − pxt (z − x))
∣

∣dz

≤ c1

∫

Rd

(|x− z|η ∧ 1)t−1G
(α+γ−θ)
t (z − x) dz

= c1t
−1−d/α

∫

Rd

(|y|η ∧ 1)(1 ∨ (t−1/α|y|))−γ−α+θ dy

≤ c2t
−1+(η∧(α+γ−θ−d))/α ≤ c2t

−1+θ/α.

Similarly, by A2, Lemma 2.4 and Lemma 2.2 we obtain
∫

Rd

∣

∣

(

Lz − Lx
)

pxt (z − x)
∣

∣ dz ≤ c1t
−1−d/α

∫

Rd

(|z − x|η ∧ 1)G
(α+γ)
t (z − x) dz

≤ c2t
−1+(η∧(α+γ−d))/α ≤ c2t

−1+θ/α,

which finishes the proof of the lemma.

3 Parametrix

3.1 Proof of convergence

In this section we prove that pt given by (15) is well defined. To this end let

Ψ#
t (x, y) :=

∞
∑

k=1

|Φ|⊠k
t (x, y), (52)

and
p#t (x, y) = p0t (x, y) +

(

p0 ⊠ Ψ#
)

t
(x, y). (53)

Our first result shows that the series (52) and the function p#t (x, y) are finite
and possess nice estimates. Then pt(x, y) is well defined, with the same upper
bounds.

Proposition 3.1. The series (52) converges, the integral p0 ⊠ Ψ# exists, and

p#t (x, y) ≤ CectG
(α+γ)
t (y − x), t > 0, x, y ∈ R

d. (54)

The result depends on the auxiliary estimates of |Φt(x, y)| and its convolutions,
which we now give. The proof of Proposition 3.1 will be given in the end of
the next subsection.

Lemma 3.2. Under condition A2 there exists CΦ > 0 such that
∣

∣Φt(x, y)
∣

∣ ≤ CΦt
−1(1 ∧ |y − x|η)G

(α+γ)
t (y − x), x, y ∈ R

d, t > 0, (55)

the function ∂tΦt(x, y) exists for all t > 0, x, y ∈ R
d, is continuous in t, and

∣

∣∂tΦt(x, y)
∣

∣ ≤ CΦt
−2(1 ∧ |y − x|η)G

(α+γ)
t (y − x), x, y ∈ R

d, t > 0. (56)
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Proof. By the symmetry of ν(x, ·) for every x ∈ R
d and A2,

∣

∣Φt(x, y)
∣

∣

=

∣

∣

∣

∣

∫

(

p0t (x + u, y) − p0t (x, y) − u · ∇xp
0
t (x, y)1{|u|≤t1/α}

)

· (ν(x, du) − ν(y, du))|
≤ C (|y − x|η ∧ 1)A#

t p
0
t (x, y).

By Lemma 2.4 and Lemma 2.2 with ζ = d and κ = 0 we get (55). The estimate
(56) follows from Lemma 2.2 and the fact that

∂tΦt(x, y)

=

∫

∂t
(

p0t (x + u, y) − p0t (x, y) − u · ∇xp
0
t (x, y)1|u|≤1

)

(ν(x, du) − ν(y, du)) .

We can change the order of differentiation and integration, because by
Lemma 2.7 for every t > 0 and ǫ ∈ (−t/2, t/2) we have

∣

∣∂tp
0
t+ǫ(x + u, y) − ∂tp

0
t+ǫ(x, y) − u · ∇x∂tp

0
t+ǫ(x, y)1{|u|≤1}

∣

∣

≤ c1(t + ǫ)−1−(d+2)/α|u|2 1{|u|≤1} + c2(t + ǫ)−1−d/α
1{|u|>1}

≤ c3t
−1−(d+2)/α|u|2 1{|u|≤1} + c4t

−1−d/α
1{|u|>1}

=: gt(u), u ∈ R
d, x, y ∈ R

d,

and
∫

Rd gt(u) ν(w, du) < ∞ for every w ∈ R
d. This yields (56) and the conti-

nuity of t 7→ ∂tΦt(x, y).

To estimate Φ⊠k we will use the following sub-convolution property.

Definition 3.1. A non-negative kernel Ht(x), t > 0, x ∈ R
d, has the sub-

convolution property if there is a constant CH > 0 such that

(Ht−s ∗Hs)(x) ≤ CHHt(x), 0 < s < t, x ∈ R
d. (57)

It follows from Lemma 2.3 that G
(β)
t (x) has the sub-convolution property. On

the other hand, the kernel t−1(1 ∧ |x|η)G
(α+γ)
t (x) from Lemma 3.2 does not

have it; take for instance x = 0 in (57) or see [36] in the case when d = γ. To
circumvent this problem, for ζ > 0 and κ ∈ (d− α, d] we define

H
(κ,ζ)
t (x) =

(

t−ζ/α ∧
( |x|
t1/α

∨ 1
)ζ
)

G
(α+κ)
t (x). (58)

Proposition 3.3. Assume that

α + κ− d > ζ. (59)

Then the kernels H
(κ,ζ)
t (x) satisfy the sub-convolution property with some con-

stant CH > 0 and there exists a positive constant C > 0 such that
∫

Rd

H
(κ,ζ)
t (x)dx ≤ C, t > 0. (60)
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Proof. We follow the proof of [36, Proposition 3.3]. We have

H
(κ,ζ)
t (x) ≤ (t−ζ/α ∧ 1)G

(κ+α−ζ)
t (x), x ∈ R

d, t > 0, (61)

and
H

(κ,ζ)
t (x) = (t−ζ/α ∧ 1)G

(κ+α−ζ)
t (x), |x| ≤ 1 ∨ t1/α, t > 0. (62)

Clearly, (61) implies that

∫

Rd

H
(κ,ζ)
t (x)dx ≤ C. (63)

We notice that

((t− s)−ζ/α ∧ 1)(s−ζ/α ∧ 1) ≤ 2ζ/α(t−ζ/α ∧ 1), 0 < s < t.

By this, Lemma 2.3, (61) and (62),

(

H
(κ,ζ)
t−s ∗H(κ,ζ)

s

)

(x) ≤ CH
(κ,ζ)
t (x), |x| ≤ 1 ∨ t1/α, t > 0.

To complete the proof we assume that |x| ≥ 1 ∨ t1/α. We have

(

H
(κ,ζ)
t−s ∗H(κ,ζ)

s

)

(x) ≤
(

∫

|z|≥|x|/2

+

∫

|x−z|≥|x|/2

)

H
(κ,ζ)
t−s (z)H(κ,ζ)

s (x− z)dz.

By the structure of H
(κ,ζ)
t (x), for |z| ≥ |x|/2 we obtain H

(κ,ζ)
t−s (z) ≤ cH

(κ,ζ)
t−s (x).

We have H
(κ,ζ)
t (x) = t1−(ζ+d−κ)/α|x|−κ−α, and by (59),

H
(κ,ζ)
t−s (x) = (t− s)1−(ζ+d−κ)/α|x|−κ−α

≤ t1−(ζ+d−κ)/α|x|−κ−α = H
(κ,ζ)
t (x).

Using (63) we get

∫

|z|≥|x|/2

H
(κ,ζ)
t−s (z)H(κ,ζ)

s (x− z) dz ≤ cH
(κ,ζ)
t (x)

∫

|z|≥|x|/2

H
(κ,ζ)
t (x− z) dz

≤ cH
(κ,ζ)
t (x)

∫

Rd

H
(κ,ζ)
t (z) dz ≤ CH

(κ,ζ)
t (x).

Similarly,
∫

|x−z|≥|x|/2

H
(κ,ζ)
t−s (z)H(κ,ζ)

s (x− z)dz ≤ CH
(κ,ζ)
t (x).

Let us rewrite the upper estimate in (55). Since

1 ∧ |x|θ = tθ/α

(

t−θ/α ∧
( |x|
t1/α

)θ
)

≤ tθ/α

(

t−θ/α ∧
(

( |x|
t1/α

)θ

∨ 1

))

,
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we get

t−θ/α(1 ∧ |x|θ)G
(α+γ)
t (x) ≤ H

(γ,θ)
t (x), (64)

which implies for θ ≤ η

∣

∣Φt(x, y)
∣

∣ ≤ CΦt
−1+θ/αH

(γ,θ)
t (y − x), x, y ∈ R

d, t > 0. (65)

Using the sub-convolution property of H
(γ,θ)
t (x), we can estimate Φ⊠k

t (x, y).
Let

0 < θ < η ∧ (α + γ − d). (66)

Lemma 3.4. For every k ≥ 2 and θ satisfying (66) we have

|Φ|⊠k
t (x, y) ≤ C1C

k
2

Γ(kθ/α)
t−1+kθ/αH

(γ,θ)
t (y − x), x, y ∈ R

d, t > 0. (67)

Proof. Let C1 = C−1
H , C2 = CΦCHΓ(θ/α), where CΦ is from (65) and CH

is from Proposition 3.3. We use induction. For k = 1 we already have (65).

Suppose that (67) holds for k. By the sub-convolution property of H
(γ,θ)
t ,

∣

∣Φ
⊠(k+1)
t (x, y)

∣

∣

≤ C1CΦC
k
2

Γ(kθ/α)

∫ t

0

(t− s)−1+kθ/αs−1+θ/α

∫

Rd

H
(γ,θ)
t−s (x− z)H(γ,θ)

s (z − y) dzds

≤ C1CΦCHCk
2

Γ(kθ/α)
H

(γ,θ)
t (y − x)

∫ t

0

(t− s)−1+kθ/αs−1+θ/α ds

=
C1CΦCHCk

2

Γ(kθ/α)
t−1+(k+1)θ/αH

(γ,θ)
t (y − x)

Γ(kθ/α)Γ(θ/α)

Γ((k + 1)θ/α)

=
C1C

k+1
2

Γ((k + 1)θ/α)
t−1+(k+1)θ/αH

(γ,θ)
t (y − x).

Corollary 3.5. For x, y ∈ R
d and k = 1, 2, ..., t → Φ⊠k

t (x, y) is continuous.

Proof. For every h ∈ (0, t/2) we have

∣

∣

∣
Φ

⊠(k+1)
t+h (x, y) − Φ

⊠(k+1)
t (x, y)

∣

∣

∣

≤
∫ t−h

0

∫

Rd

|Φt+h−s(x, z) − Φt−s(x, z)|Φ⊠k
s (z, y) dzds

+

∫ t

t−h

∫

Rd

|Φt+h−s(x, z) − Φt−s(x, z)|Φ⊠k
s (z, y) dzds

+

∫ t+h

t

∫

Rd

Φt+h−s(x, z)Φ⊠k
s (z, y) dzds = I1(h) + I2(h) + I3(h).
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Using Lemma 3.2, Lemma 3.4 and (64) we obtain

I1(h)

≤ c1h

∫ t−h

0

∫

Rd

(t− s)−2(1 ∧ |z − x|θ)G
(α+γ)
t−s (z − x)Φ⊠k

s (z, y) dzds

≤ c2h

∫ t−h

0

∫

Rd

(t− s)−2+θ/αs−1+kθ/αH
(γ,θ)
t−s (z − x)H(γ,θ)

s (y − z) dzds

≤ c3hH
(γ,θ)
t (y − x)

∫ t−h

0

(t− s)−2+θ/αs−1+kθ/α ds

≤ c4H
(γ,θ)
t (y − x)t−1+kθ/αhθ/α,

and so limh→0+ I1(h) = 0. Furthermore,

I2(h)

≤ c1

∫ t

t−h

∫

Rd

(1 ∧ |z − x|θ)(t + h− s)−1G
(α+γ)
t+h−s(z − x)Φ⊠k

s (z, y) dzds

+ c2

∫ t

t−h

∫

Rd

(1 ∧ |z − x|θ)(t− s)−1G
(α+γ)
t−s (z − x)Φ⊠k

s (z, y) dzds

≤ c3H
(γ,θ)
t+h (y − x)

∫ t

t−h

s−1+kθ/α(t + h− s)−1+θ/α ds

+ c4H
(γ,θ)
t (y − x)

∫ t

t−h

s−1+kθ/α(t− s)−1+θ/α ds

≤ c5

(

H
(γ,θ)
t+h (y − x) + H

(γ,θ)
t (y − x)

)

t−1+kθ/αhθ/α.

Similarly we obtain

I3(h)

≤ c1

∫ t+h

t

∫

Rd

(1 ∧ |z − x|θ)(t + h− s)−1G
(α+γ)
t+h−s(z − x)Φ⊠k

s (z, y) dzds

≤ c2

∫ t+h

t

∫

Rd

s−1+kθ/α(t + h− s)−1+θ/αH
(γ,θ)
t+h−s(z − x)H(γ,θ)

s (y − z) dzds

≤ c3H
(γ,θ)
t+h (y − x)t−1+kθ/αhθ/α,

so limh→0+ I2(h) = limh→0+ I3(h) = 0 (and analogously for negative h).

Proof of Proposition 3.1. By Lemma 3.4, the series

Ψ#
t (x, y) =

∞
∑

m=1

|Φ|(⊠k)
t (x, y)
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converges uniformly on compact subsets of (0,∞) × R
d × R

d. By the sub-

convolution property of H
(γ,θ)
t (x), (65), (67), and the estimate

∞
∑

k=0

Ck
2 t

ζk

Γ((k + 1)ζ)
≤ c1e

c2t, ζ > 0, t > 0, (68)

for which see, e.g., [25], we get

|Ψt(x, y)| ≤ Ψ#
t (x, y) ≤ c3t

−1+θ/αec2tH
(γ,θ)
t (y−x), x, y ∈ R

d, t > 0. (69)

For every t > 0 we have

G(α+γ)
s (x) ≤ 1

t−θ/α ∧ 1
H(γ,θ)

s (x), x ∈ R
d, s ∈ (0, t]. (70)

Then, for x, y ∈ R
d, t > 0,

∣

∣

(

p0 ⊠ Ψ
)

t
(x, y)

∣

∣ ≤
(

p0 ⊠ Ψ#
)

t
(x, y) (71)

=

∫ t

0

∫

Rd

p0t−s(x, z)Ψ#
s (z, y) dzds

≤ c4

∫ t

0

s−1+θ/αec2s
∫

Rd

G
(α+γ)
t−s (z − x)H(γ,θ)

s (y − z) dzds

≤ c4

∫ t

0

s−1+θ/αec2s

t−θ/α ∧ 1

∫

Rd

H
(γ,θ)
t−s (z − x)H(γ,θ)

s (y − z) dzds

≤ c5t
θ/αec2tH

(γ,θ)
t (y − x) ≤ c5e

c2tG
(α+γ)
t (y − x), (72)

which follows from (61). This proves (54).

From (72) we see in particular that pt(x, y) is well defined.

Lemma 3.6. The following perturbation formula holds for all t > 0, x, y ∈ R
d,

pt(x, y) = p0t (x, y) +

∫ t

0

∫

Rd

ps(x, z)Φt−s(z, y) dzds. (73)

Proof. The identity follows from (15), (14) and Proposition 3.1.

3.2 Regularity of Ψs(x, y) and pt(x, y)

The statement of Proposition 3.1 implies the existence of the function pt(x, y).
In this section we establish the Hölder continuity in x of the function Ψ and a
few auxiliary results for the proof of Theorem 1.1.

Lemma 3.7. For all ǫ ∈ (0, θ), where θ satisfies (66), and T > 0 there exists
C = C(T ) > 0 such that for all t ∈ (0, T ], x1, x2, y ∈ R

d,
∣

∣Ψt(x1, y) − Ψt(x2, y)
∣

∣

≤ C
(

|x1 − x2|θ−ǫ ∧ 1
)

t−1+ǫ/α
(

H
(γ,θ)
t (y − x1) + H

(γ,θ)
t (y − x2)

)

.
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Proof. We begin with the proof of the following inequality for t ∈ (0, T ],
x1, x2, y ∈ R

d:

∣

∣Φt(x1, y) − Φt(x2, y)
∣

∣

≤ C
(

|x1 − x2|θ−ǫ ∧ 1
)

t−1+ǫ/α
(

H
(γ,θ)
t (y − x1) + H

(γ,θ)
t (y − x2)

)

.

For |x1 − x2| ≥ 1 the estimate simply follows from (65). Suppose now that
t1/α ≤ |x1 − x2| ≤ 1. Then,

∣

∣Φt(x1, y) − Φt(x2, y)
∣

∣ ≤ c1
(
∣

∣Φt(x1, y)
∣

∣+
∣

∣Φt(x2, y)
∣

∣

)

≤ c2t
−1+θ/α

(

H
(γ,θ)
t (y − x1) + H

(γ,θ)
t (y − x2)

)

≤ c3|x1 − x2|θ−ǫt−1+ǫ/α
(

H
(γ,θ)
t (y − x1) + H

(γ,θ)
t (y − x2)

)

.

Let |x1 − x2| ≤ t1/α ∧ 1 and

g(x, y, u) = p0t (x + u, y) − p0t (x, y) − u · ∇xp
0
t (x, y)1{|u|≤t1/α}.

We have

Φt(x1, y) − Φt(x2, y) =

∫

Rd

g(x1, y, u)[ν(x1, du) − ν(x2, du)]

+

∫

Rd

(

g(x1, y, u) − g(x2, y, u)
)

[ν(x2, du) − ν(y, du)] = I1 + I2.

For I1 by A2, Lemma 2.4 and Lemma 2.2 with ζ = d, κ = 0, we get

|I1| ≤ c1(|x1 − x2|θ ∧ 1)A#
t p

0
t (x1, y) ≤ c2(|x1 − x2|θ ∧ 1)t−1G

(α+γ)
t (y − x1).

To estimate I2 let
ft(x) = pyt (x + x2 − x1) − pyt (x).

Using the Taylor expansion, Lemma 2.4 and the fact that |x2 − x1| ≤ t1/α, we
get

|ft(x)| = |(x2 − x1) · ∇xp
y
t (x + ζ(x2 − x1))|

≤ c1|x2 − x1|t−1/αGα+γ
t (x + ζ(x2 − x1))

≤ c2|x2 − x1|t−1/αGα+γ
t (x), x ∈ R

d, t > 0,

where we used some ζ ∈ [0, 1]. Similarly, if β ∈ Nd
0, |β| = 2, then

|∂β
x ft(x)| ≤ c|x2 − x1|t−3/αGα+γ

t (x).

By A2 and Lemma 2.2 (applied with ζ = d + 1, κ = 0) we get

|I2| ≤ M0(|x2 − y|θ ∧ 1)A#
t ft(y − x2)

≤ c2(|x2 − y|θ ∧ 1)|x2 − x1|t−1−1/αG
(α+γ)
t (y − x2).

(74)
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Then for |x1 − x2| ≤ t1/α ∧ 1, t ∈ (0, T ], using the inequality

G
(α+γ)
t (x) ≤ (T θ/α ∨ 1)H

(γ,θ)
t (x), (75)

we derive

|I1| ≤ c1(T θ/α ∨ 1)|x1 − x2|θ−ǫt−1+ǫ/αH
(γ,θ)
t (y − x1).

Furthermore, using (64) we obtain

|I2| ≤ c1(|x2 − y|θ ∧ 1)|x2 − x1|t−1−1/αG
(α+γ)
t (y − x2)

≤ c1|x2 − x1|t−1−1/α+θ/αH
(γ,θ)
t (y − x2)

= c1|x2 − x1|θ−ǫ|x2 − x1|1−θ+ǫt−1−1/α+θ/αH
(γ,θ)
t (y − x2)

≤ c1|x2 − x1|θ−ǫt−1+ǫ/αH
(γ,θ)
t (y − x2).

We now prove the inequality in the statement of the lemma. For |x1 − x2| ≥ 1
the estimate follows from the bound (69) on Ψt(x, y), so we let |x1 − x2| ≤ 1.
Since

Ψt(x, y) = Φt(x, y) + (Φ ⊠ Ψ)t(x, y),

by Proposition 3.3 for t ∈ (0, T ] we get

∣

∣

∣
Ψt(x1, y) − Ψt(x2, y)

∣

∣

∣

≤ c1|x1 − x2|θ−ǫt−1+ǫ/α
(

H
(γ,θ)
t (y − x1) + H

(γ,θ)
t (y − x2)

)

+ c2|x1 − x2|θ−ǫ

∫ t

0

∫

Rd

(t− s)−1+ǫ/α

·
(

H
(γ,θ)
t−s (z − x1) + H

(γ,θ)
t−s (z − x2)

)

· s−1+θ/αH(γ,θ)
s (y − z) dzds

≤ c3|x1 − x2|θ−ǫt−1+ǫ/α
(

H
(γ,θ)
t (y − x1) + H

(γ,θ)
t (y − x2)

)

.

We can finally apply the operator L to pt(x, y).

Lemma 3.8. For all y ∈ R
d and t > 0 we have pt(·, y) ∈ D(L), and

Lxpt(x, y) = Lxp
0
t (x, y) +

∫ t

0

∫

Rd

Lxp
0
t−s(x, z)Ψs(z, y) dzds. (76)

Proof. Since p0t (·, y) ∈ C2
∞(Rd), the term Lxp

0
t (x, y) is well defined. Using the

representation of Lx,δ, Lemma 2.4 and Lemma 2.2, for every δ > 0 we get

|Lδ
xp

0
t (x, y)|

≤
∫

|u|>δ

∣

∣p0t (x + u, y) − p0t (x, y) − u · ∇xp
0
t (x, y)1{|u|≤t1/α}

∣

∣ ν(x, du)

≤ A
#
t p

0
t (x, y) ≤ ct−1G

(α+γ)
t (y − x).
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Let us show that the function

fy
t (x) :=

∫ t

0

∫

Rd

p0t−s(x, z)Ψs(z, y) dzds (77)

belongs to D(L) and

Lxf
y
t (x) =

∫ t

0

∫

Rd

Lxp
0
t−s(x, z)Ψs(z, y) dzds.

We use the definition (3) of Lx. By (71) for every δ > 0 we get

∫

|u|>δ

∫ t

0

∫

Rd

∣

∣

(

p0t−s(x + u, z) − p0t−s(x, z)
)

Ψs(z, y)
∣

∣ dzdsν(x, du)

≤ c1

∫

|u|>δ

(G
(α+γ)
t (y − x− u) + G

(α+γ)
t (y − x)) ν(x, du)

< c2t
−d/αν0(B(0, δ)c).

By Fubini’s theorem and the symmetry of ν we get

Lδfy
t (x) =

∫ t

0

∫

Rd

Lδ
xp

0
t−s(x, z)Ψs(z, y) dzds

=

∫ t

0

∫

Rd

Lδ
xp

0
t−s(x, z)

[

Ψs(z, y) − Ψs(x, y)
]

dzds

+

∫ t

0

∫

Rd

Lδ
xp

0
t−s(x, z)Ψs(x, y) dzds

=

∫ t

0

∫

Rd

Lδ
xp

0
t−s(x, z)

[

Ψs(z, y) − Ψs(x, y)
]

dzds

+

∫ t

0

∫

Rd

Lx,δ(pzt−s − pxt−s)(z − x)Ψs(x, y) dzds

+

∫ t

0

∫

Rd

Lx,δpxt−s(z − x)Ψs(x, y) dzds = I1(δ) + I2(δ) + I3(δ).

Let us estimate the functions under the integrals I1(δ) and I2(δ). Using
Lemma 3.7 and (64) for T > 0 and 0 < s < t ≤ T we get

∣

∣Lδ
xp

0
t−s(x, z)

[

Ψs(z, y) − Ψs(x, y)
]
∣

∣

≤ c1(t− s)−1G
(α+γ)
t−s (z − x)

(

|x− z|θ−ǫ ∧ 1
)

s−1+ǫ/α

·
[

H(γ,θ)
s (y − z) + H(γ,θ)

s (y − x)
]

≤ c2s
−1+ǫ/α(t− s)−1+(θ−ǫ)/αH

(γ,θ−ǫ)
t−s (z − x)

[

H(γ,θ)
s (y − z) + H(γ,θ)

s (y − x)
]

=: g
(x,y)
t (s, z),
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with c1, c2 > 0 depending on T . Using Proposition 3.3 and the inequality

H
(γ,θ−ǫ)
t−s (z − x) ≤ (T ǫ/α ∨ 1)H

(γ,θ)
t−s (z − x), 0 < s < t ≤ T,

we obtain
∫ t

0

∫

Rd

g
(x,y)
t (s, z) dzds ≤ c1

∫ t

0

s−1+ǫ/α(t− s)−1+(θ−ǫ)/α

·
[

H
(γ,θ)
t (y − x) + H(γ,θ)

s (y − x)
]

ds ≤ c2t
−1+θ/αH

(γ,θ)
t (y − x) (78)

+ c3

∫ t

0

s−1+(ǫ−d)/α(t− s)−1+(θ−ǫ)/α

(

1 ∨ |y − x|
s1/α

)−γ−α+θ

ds.

We need to estimate carefully the integral. We split

(

∫ |x−y|α∧t

0

+

∫ t

|x−y|α∧t

)

s−1+(ǫ−d)/α(t− s)−1+(θ−ǫ)/α

·
(

1 ∨ |y − x|
s1/α

)−γ−α+θ

ds = J1 + J2.

For J1 after changing variables we get

J1 = t−1+ γ+α−d
α |x− y|−α−γ+θ

∫

|x−y|α

t ∧1

0

τ−1+ ǫ−d−θ+α+γ
α (1 − τ)−1+ θ−ǫ

α dτ.

Treating two cases |x− y| ≤ (t/2)1/α and |x− y| > (t/2)1/α separately, we get

J1 ≤ Ct−1+ γ+α−d
α |x− y|−α−γ+θ

·
(( |x− y|α

t

)

ǫ−d−θ+α+γ
α

1{|x−y|≤t1/α} + 1{|x−y|>t1/α}

)

= Ct−1+ θ
α

( t
−ǫ
α

|x− y|d−ǫ
1{|x−y|≤t1/α} +

t
γ+α−d−θ

α

|x− y|α+γ−θ
1{|x−y|>t1/α}

)

=: Ct−1+ θ
αK

(1)
t (x, y).

For J2 we have

∫ t

|x−y|α∧t

s−1+(ǫ−d)/α(t− s)−1+(θ−ǫ)/αds

= t−1+ θ−d
α

∫ 1

|x−y|α

t ∧1

τ−1+ ǫ−d
α (1 − τ)−1+ θ−ǫ

α dτ

≤ C|y − x|ǫ−dt−1+ θ−ǫ
α 1{|x−y|≤t1/α}

≤ Ct−1+ θ
αK

(1)
t (x, y).
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Thus,

I1(δ) ≤ Ct−1+θ/α
[

H
(γ,θ)
t (y − x) + K

(1)
t (x, y)

]

.

For later convenience note that

∫

Rd

[H
(γ,θ)
t (y − x) + K

(1)
t (x, y)]dy ≤ C, x ∈ R

d, t ∈ (0, T ].

To estimate the integrand in I2(δ) we use Lemma 2.11, 2.2, (69) and (64):

∣

∣

∣
Lx,δ(pzt−s − pxt−s)(z − x) |Ψs(x, y)|

∣

∣

∣
≤ A

#
t−s(p

z
t−s − pxt−s)(z − x) Ψs(x, y)

≤ c1(|z − x|η ∧ 1)(t− s)−1Gα+γ−θ
t−s (z − x)s−1+θ/αH(γ,θ)

s (y − x)

≤ c2s
−1+θ/α(t− s)−1+θ/αH

(γ−θ,θ)
t−s (z − x)H(γ,θ)

s (y − x) =: h
(x,y)
t (s, z).

Using Proposition 3.3 and the same argument as for estimating (78),
for θ < (α + γ − d)/2 we get

∫ t

0

∫

Rd

h
(x,y)
t (s, z) dzds ≤ c1

∫ t

0

s−1+θ/α(t− s)−1+θ/αH(γ,θ)
s (y − x) ds

≤ c1

∫ t

0

s−1+(θ−d)/α(t− s)−1+θ/α

(

1 ∨ |y − x|
s1/α

)−γ−α+θ

ds

≤ c3t
−1+θ/αK

(2)
t (x, y),

where

K
(2)
t (x, y) =

1

|x− y|d−θ
1{|x−y|≤t1/α} +

t
γ+α−d

α

|x− y|α+γ−θ
1{|x−y|>t1/α}.

Observe that

∫

Rd

K
(2)
t (x, y)dy ≤ Ctθ/α, x ∈ R

d, t ∈ (0, T ].

We get

I2(δ) ≤ Ct−1+θ/αK
(2)
t (x, y), x, y ∈ R

d, t ∈ (0, T ].

Furthermore, we have

∫

Rd

∫

|u|>δ

∣

∣pxt−s(z − x + u) − pxt−s(z − x)
∣

∣ ν(x, du)dz

≤
∫

|u|>δ

∫

Rd

(

G
(α+γ)
t−s (z − x + u) + G

(α+γ)
t−s (z − x)

)

dzν(x, du)

≤ cν0(B(0, δ)c),
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hence by Fubini’s theorem we get for every δ > 0,

I3(δ)

=

∫ t

0

∫

|u|>δ

[
∫

Rd

(

pxt−s(z − x + u) − pxt−s(z − x)
)

dz

]

ν(x, du)Ψs(x, y) ds

=

∫ t

0

∫

|u|>δ

(1 − 1) ν(x, du)Ψs(x, y) ds = 0.

Thus, by the dominated convergence theorem,

lim
δ→0+

Lδfy
t (x)

= lim
δ→0+

(I1(δ) + I2(δ) + I3(δ))

=

∫ t

0

∫

Rd

Lxp
0
t−s(x, z)

[

Ψs(z, y) − Ψs(x, y)
]

dzds

+

∫ t

0

∫

Rd

Lx(pzt−s − pxt−s)(z − x) dzΨs(x, y) ds,

=

∫ t

0

∫

Rd

[

Lxp
0
t−s(x, z)Ψs(z, y) − Lxpxt−s(z − x)Ψs(x, y)

]

dzds.

By Corollary 2.9 we also have
∫

Rd L
xpxt−s(z − x) dz = 0, and (76) follows for

every t ∈ (0, T ]; since T is arbitrary it holds for every t > 0.

Corollary 3.9. We have

|Lδ
xpt(x, y)| ≤ Ct−1

(

Gα+γ
t (y − x) + tθ/αKt(x, y)

)

, (79)

for all t ∈ (0, T ], x, y ∈ R
d, δ > 0, θ ∈ (0, α+γ−d

2 ∧ η) and some kernel
Kt(x, y) ≥ 0 such that

∫

Rd

Kt(x, y)dy ≤ C, t ∈ (0, T ], x ∈ R
d.

Furthermore,
∣

∣

∣

∣

∫

Rd

Lδ
xpt(x, y)dy

∣

∣

∣

∣

≤ Ct−1+θ/α, t ∈ (0, T ], x ∈ R
d, δ > 0. (80)

Proof. Let K = K(1) + K(2) + H(γ,θ), where the terms on the right-hand side
are as in the proof of Lemma 3.8. This gives (79). To prove (80), consider

∣

∣

∣

∫

Rd

Lδ
xp

0
t (x, y) dy

∣

∣

∣
≤
∣

∣

∣

∫

Rd

Lδ
x[pyt (y − x) − pxt (y − x)]dy

∣

∣

∣

+
∣

∣

∣

∫

Rd

Lδ
xp

x
t (y − x)dy

∣

∣

∣
.
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The last integral is 0. To estimate the first integral we use the Hölder continuity
of pzx(y − x) in z, i.e. (47) with β = 0 and |β| = 2:

∣

∣∂β
wp

y
t (y − x) − ∂β

wp
x
t (w)

∣

∣ ≤ c(|w|η ∧ 1)t−|β|/αG
(α+γ−θ)
t (w)

≤ c|w|θt−|β|/αG
(α+γ−θ)
t (w)

≤ ct(θ−|β|)/αG
(α+γ−2θ)
t (w).

Applying Lemma 2.2 with κ = 2θ, ζ = d− θ, we get
∫

Rd

∣

∣Lδ
x[pyt (y − x) − pxt (y − x)]

∣

∣dy ≤ Ct−1+θ/α

∫

Rd

G
(α+γ−2θ)
t (y − x)dy

≤ Ct−1+θ/α.

The proof is complete.

Next we show how to differentiate (p0 ⊠ Ψ)t(x, y) in t.

Lemma 3.10. For x, y ∈ R
d, 0 < s < t, 0 < t ≤ T , we have

∂t

∫

Rd

p0t−s(x, z)Ψs(z, y) dz =

∫

Rd

∂tp
0
t−s(x, z)Ψs(z, y) dz, (81)

∫ t

s

∣

∣

∣

∣

∫

Rd

∂rp
0
r−s(x, z)Ψs(z, y) dz

∣

∣

∣

∣

dr < ∞, (82)

∫ t

0

∫ r

0

∣

∣

∣

∣

∫

Rd

∂rp
0
r−s(x, z)Ψs(z, y) dz

∣

∣

∣

∣

dsdr < ∞. (83)

Proof. In order to prove (81) it suffices to show that for all fixed t > s > 0 and
x, y ∈ R

d there is ε0 > 0 and a function g(z) ≥ 0 such that
∫

Rd g(z) dz < ∞,
and

∣

∣∂tp
0
t+ε−s(x, z)Ψs(z, y)

∣

∣ ≤ g(z), z ∈ R
d, ε ∈ (−ε0, ε0).

Using Lemma 2.7 and (69), for every ε0 < t− s we get

∣

∣∂tp
0
t+ε−s(x, z)Ψs(z, y)

∣

∣

≤ c1(t + ε− s)−1G
(α+γ)
t+ε−s(z − x)s−1+θ/αec2sH(γ,θ)

s (z − y)

≤ c1(t− ε0 − s)−1−d/αs−1+θ/αec2sH(γ,θ)
s (z − y) := g(z),

and the finiteness of
∫

Rd g(z) dz follows from Proposition 3.3.
The integral in (83) is not bigger than

∫ t

0

∫ r

0

∣

∣

∣

∣

∫

Rd

∂rp
0
r−s(x, z)(Ψs(z, y) − Ψs(x, y)) dz

∣

∣

∣

∣

dsdr

+

∫ t

0

∫ r

0

∣

∣

∣

∣

∫

Rd

∂rp
0
r−s(x, z) dz

∣

∣

∣

∣

|Ψs(x, y)| dsdr = I1 + I2.
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Consider now I1. By Lemma 2.7, Lemma 3.7, (64) and Proposition 3.3 we
derive that for every ǫ ∈ (0, θ) and θ ∈ (0, η ∧ (γ − d + α)),

I1 ≤ c1

∫ t

0

∫ r

0

∫

Rd

(r − s)−1G
(α+γ)
r−s (z − x)

(

|x− z|θ−ǫ ∧ 1
)

s−1+ǫ/α

·
[

H(γ,θ)
s (y − z) + H(γ,θ)

s (y − x)
]

dz ds dr

≤ c1

∫ t

0

∫ r

0

∫

Rd

(r − s)−1+(θ−ǫ)/αs−1+ǫ/αH
(γ,θ−ǫ)
r−s (z − x)

·
[

H(γ,θ)
s (y − z) + H(γ,θ)

s (y − x)
]

dz ds dr

≤ c2

∫ t

0

∫ r

0

∫

Rd

(r − s)−1+(θ−ǫ)/αs−1+ǫ/αH
(γ,θ)
r−s (z − x)

·
[

H(γ,θ)
s (y − z) + H(γ,θ)

s (y − x)
]

dz ds dr.

Further,

I1 ≤ c3

∫ t

0

∫ r

0

(r − s)−1+(θ−ǫ)/αs−1+ǫ/α

[

H(γ,θ)
r (y − x) + H(γ,θ)

s (y − x)
]

dsdr

= c3

∫ t

0

∫ t

s

(r − s)−1+(θ−ǫ)/αs−1+ǫ/α

[

H(γ,θ)
r (y − x) + H(γ,θ)

s (y − x)
]

drds

= c4

[

∫ t

0

∫ t

s

(r − s)−1+(θ−ǫ)/αs−1+ǫ/αH(γ,θ)
r (y − x) drds

+

∫ t

0

(t− s)(θ−ǫ)/αs−1+ǫ/αH(γ,θ)
s (y − x) ds

]

.

By the estimate H
(γ,θ)
t (x) ≤ c|x|−α−γ+θt1+(γ−θ−d)/α we obtain

I1 ≤ c4

[

∫ t

0

∫ t

s

(r − s)−1+(θ−ǫ)/αs−1+ǫ/αr−d/α

( |y − x|
r1/α

)−γ−α+θ

drds

+

∫ t

0

(t− s)(θ−ǫ)/αs−1+(ǫ−d)/α

( |y − x|
s1/α

)−γ−α+θ

ds
]

≤ c5|y − x|−α−γ+θ
[

t1+(γ−d−θ)/α

∫ t

0

(t− s)(θ−ǫ)/αs−1+ǫ/α ds

+

∫ t

0

(t− s)(θ−ǫ)/αs(γ−θ+ǫ−d)/α ds
]

= c6|y − x|−α−γ+θt1+(γ−d)/α.

We note that the constants ci in this proof may depend on T . From
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Lemma 2.14, (69) and (64) with θ ∈ (0, η ∧ α+γ−d
2 ) we get similarly

I2 ≤ c1

∫ t

0

∫ r

0

(r − s)−1+θ/α|Ψs(x, y)| dsdr

≤ c2

∫ t

0

∫ r

0

(r − s)−1+θ/αs−1+θ/αH(γ,θ)
s (y − x) dsdr

= c2

∫ t

0

∫ t

s

(r − s)−1+θ/αs−1+θ/αH(γ,θ)
s (y − x) drds

≤ c3|y − x|−α−γ+θ

∫ t

0

(t− s)θ/αs(γ−d)/αds

= c4|y − x|−α−γ+θt1+(θ+γ−d)/α,

because we assumed γ − d + α > 0. This yields (82) and (83).

3.3 Proof of Theorem 1.1

From (15), Lemma 2.4, (72), Lemma 2.13 and (63) we obtain (17). Next we
verify (16). Using Lemmas 3.10, 3.7 and 2.13 we get

∫ t

s

[

∂r

∫

Rd

p0r−s(x, z)Ψs(z, y) dz
]

dr =

∫

Rd

p0t−s(x, z)Ψs(z, y) dz − Ψs(x, y).

Integrating the above equation from 0 to t and using Lemma 3.10 and Fubini’s
theorem we obtain

∫ t

0

∫

Rd

p0t−s(x, z)Ψs(z, y) dzds−
∫ t

0

Ψs(x, y) ds

=

∫ t

0

∫ r

0

∫

Rd

∂rp
0
r−s(x, z)Ψs(z, y) dzdsdr.

By Corollary 3.5 and the locally uniform convergence of the series defining Ψt

the function t → Ψt(x, y) is continuous, implying

∂tpt(x, y) = ∂tp
0
t (x, y) + Ψt(x, y) +

∫ t

0

∫

Rd

∂tp
0
t−s(x, z)Ψs(z, y) dzds. (84)

Subtracting Lxpt(x, y) from both sides and using Lemma 3.8 we get

(

∂t − Lx

)

pt(x, y) = −Φt(x, y) + Ψt(x, y)

−
∫ t

0

∫

Rd

Φt−s(x, z)Ψs(z, y) dzds = 0.

The proof of Theorem 1.1 is complete.
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4 Further regularity

4.1 Time derivatives of Ψt(x, y)

We begin with an auxiliary estimate of the time derivative of Ψt(x, y).

Lemma 4.1. The function Ψt(x, y) is differentiable in t and ∂tΨt(x, y) is con-
tinuous on (0,∞). There are C, c > 0 and θ ∈ (0, η ∧ (α + γ − d)) such that

∣

∣∂tΨt(x, y)
∣

∣ ≤ Cectt−2+θ/αH
(γ,θ)
t (y − x), x, y ∈ R

d, t > 0. (85)

Proof. It follows from Lemma 3.2 and (64) that ∂tΦt(x, y) is continuous and
∣

∣∂tΦt(x, y)
∣

∣ ≤ CΦt
−2+θ/αH

(γ,θ)
t (y − x), x, y ∈ R

d, t > 0. (86)

We show by induction for all k ≥ 1 that ∂tΦ
⊠k
t = ∂t(Φ

⊠k
t ) exists and

∣

∣∂tΦ
⊠k
t (x, y)

∣

∣ ≤ C3C
k
4

Γ(kθ/α)
t−2+θk/αH

(γ,θ)
t (y − x), x, y ∈ R

d, t > 0, (87)

where

C3 = (1 ∨ (Γ(θ/α))−1)C1, C4 = 8
(

1 ∨ (2 − 2θ/α)−θ/α)C2, (88)

and C1, C2 come from (67). The case of k = 1 is verified by (86).
Note that

Φ
⊠(k+1)
t (x, y) =

∫ t/2

0

∫

Rd

Φ⊠k
t−s(x, z)Φs(z, y) dzds

+

∫ t/2

0

∫

Rd

Φ⊠k
s (x, z)Φt−s(z, y) dzds,

for k ∈ N. Accordingly, we claim that for k ∈ N,

∂tΦ
⊠(k+1)
t (x, y) =

∫ t/2

0

∫

Rd

∂tΦ
⊠k
t−s(x, z)Φs(z, y) dzds

+

∫ t/2

0

∫

Rd

Φ⊠k
s (x, z)∂tΦt−s(z, y) dzds +

∫

Rd

Φ⊠k
t/2(x, z)Φt/2(z, y) dz.

(89)

Indeed, we consider
(

Φ
⊠(k+1)
t+h (x, y) − Φ

⊠(k+1)
t (x, y)

)

/h as h → 0. If for some

k ≥ 1, continuous ∂tΦ
⊠k
t (x, y) exists for all t > 0, x, y ∈ R

d, and (87) holds for
every t > 0, then for h ∈ (−t/4, t/4) we have

∣

∣

∣
∂tΦ

⊠k
t+h−s(x, z)Φs(z, y)

∣

∣

∣

≤ c1(t + h− s)−2+kθ/αs−1+θ/αH
(γ,θ)
t+h−s(z − x)H(γ,θ)

s (y − z)

≤ c2(t− s)−2+kθ/αs−1+θ/αH
(γ,θ)
t−s (z − x)H(γ,θ)

s (y − z)

=: g
(x,y)
t (s, z), s ∈ (0, t/2), x, y, z ∈ R

d.
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It follows from Proposition 3.3 that
∫ t/2

0

∫

Rd g
(x,y)
t (s, z) dzds < ∞. Estimating

similarly
∣

∣Φ⊠k
s (x, z)∂tΦt+h−s(z, y)

∣

∣, by the continuity of t 7→ Φ⊠k
t (x, z) we get

(89). Denote by I1, I2, I3 the integrals in (89), respectively. Using induction,
Lemma 3.2 and Proposition 3.3 we get for the first term

|I1| ≤ 2CΦC3C
k
4 t

−1

Γ(kθ/α)

∫ t

0

∫

Rd

(t− s)−1+kθ/αs−1+θ/α

·H(γ,θ)
t−s (z − x)H(γ,θ)

s (y − z) dzds

≤ 2C3CΦCHCk
4

Γ(kθ/α)
B
(

kθ/α, θ/α
)

t−2+(k+1)θ/αH
(γ,θ)
t (y − x)

=
C3

Γ((k + 1)θ/α)
·
(

2C2C
k
4

)

· t−2+(k+1)θ/αH
(γ,θ)
t (y − x).

The same estimate holds for I2, so let us estimate I3. By (67),

|I3| ≤ C1CΦC
k
2

Γ(kθ/α)

( t

2

)−2+(k+1)θ/α
∫

Rd

H
(γ,θ)
t/2 (z − x)H

(γ,θ)
t/2 (y − z) dz

≤ C1CΦCHCk
2

Γ(kθ/α)

( t

2

)−2+(k+1)θ/α

H
(γ,θ)
t (y − x).

Using the inequality u ≤ eu, valid for all u ∈ R, we get for ζ = θ/α,

Γ((k + 1)ζ) =

∫ ∞

0

e−uu(k+1)ζ−1 du ≤ (1 − ζ)−kζΓ(kζ).

Therefore,

|I3| ≤ C1CΦCHCk
2 22−(k+1)θ/α

(1 − θ/α)kθ/αΓ((k + 1)θ/α)
t−2+(k+1)θ/αH

(γ,θ)
t (y − x)

≤ C3

Γ((k + 1)θ/α)
4
( C2

(2 − 2θ/α)θ/α

)k+1

t−2+(k+1)θ/αH
(γ,θ)
t (y − x),

because C2 = CΦCHΓ(θ/α). Observe that for C4 given in (88) we have

4C2C
k
4 + 4

( C2

(2 − 2θ/α)θ/α)

)k+1

≤ Ck+1
4 ,

and thus

I1 + I2 + I3 ≤ C3C
k+1
k

Γ((k + 1)θ/α)
t−2+(k+1)θ/αH

(γ,θ)
t (y − x),

proving (87). By (68) and (87) we get (85).
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4.2 Proof of Theorem 1.2

The proof of (20) for k = 0 easily follows from Proposition 3.1. Let us show
(20) for k = 1. Our starting point is (15). Lemma 2.7 estimates ∂tp

0
t (x, y).

We then use the estimate for ∂tΨt(x, y) given in Lemma 4.1. The estimate of
∂t
(

p0 ⊠ Ψ
)

t
(x, y) can be obtained similarly as the estimates for ∂tΦt(x, y) in

Lemma 4.1. Indeed, as in the proof of (89), using (70) for every h ∈ (−t/4, t/4)
we get

∣

∣

∣
∂tp

0
t+h−s(x, z)Ψs(z, y)

∣

∣

∣
≤ c1(t− s)−1G

(α+γ)
t−s (z − x)s−1+θ/αec2sH(γ,θ)

s (y − z)

≤ c1
(t− s)−1

t−θ/α ∧ 1
H

(γ,θ)
t−s (z − x)s−1+θ/αec2sH(γ,θ)

s (y − z)

=: g
(x,y)
t (s, z), s ∈ (0, t/2),

and it follows from Proposition 3.3 that the majorant satisfies

∫ t/2

0

∫

Rd

g
(x,y)
t (s, z) dsdz < ct−1+θ/αec3tH

(γ,θ)
t (y − x) < ∞.

Similarly we estimate |p0s(x, z)(∂tΨ)t+h−s(z, y)|. These bounds and the conti-
nuity of t 7→ p0t (x, y) and t 7→ Ψt(x, y) allow us to write

∂t
(

p0 ⊠ Ψ
)

t
(x, y) =

∫ t/2

0

∫

Rd

(∂tp
0)t−s(x, z)Ψs(z, y) dzds

+

∫ t/2

0

∫

Rd

p0s(x, z)(∂tΨ)t−s(z, y) dzds +

∫

Rd

p0t/2(x, z)Ψt/2(z, y) dz.

We obtain
∣

∣∂t
(

p0 ⊠ Ψ
)

t
(x, y)

∣

∣ ≤ Ct−1ectG
(α+γ)
t (y − x).

This finishes the proof of (20). To verify (21), we observe that

p0t (x, y) ≈ t−d/α, |y − x| ≤ ct1/α, t > 0,

where the upper bound follows from (35) and (36) and the lower one from
Lemma 7 in [34]. The second term in (15), which we denote by Rt(x, y), can
be estimated (cf. (71) and (72)) as follows:

|Rt(x, y)| ≤ Ctθ/αt−d/α, |y − x| ≤ ct1/α, t ∈ (0, 1].

Combining these estimates we get (21) for t ∈ (0, t0], if t0 > 0 is small enough.

We finally prove (22). We observe that by (48),

∣

∣p0t (x1, y) − p0t (x2, y)
∣

∣ ≤ C
( |x1 − x2|

t1/α
∧1
)(

G
(α+γ)
t (y − x1) + G

(α+γ)
t (y − x2)

)

.
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Suppose first that t ∈ (0, 1]. Using (69) for Ψ, (70) and the sub-convolution

property of H
(γ,θ)
t (x) we obtain

∫ t

0

∫

Rd

|p0t−s(x1, z) − p0t−s(x2, z)||Ψs(z, y)| dzds

≤ c1|x2 − x1|θ
∫ t

0

∫

Rd

(t− s)−θ/α
(

G
(α+γ)
t−s (z − x1) + G

(α+γ)
t−s (z − x2)

)

· s−1+θ/αH(γ,θ)
s (y − z) dzds

≤ c2|x2 − x1|θ
(

H
(γ,θ)
t (y − x1) + H

(γ,θ)
t (y − x2)

)

≤ c2

( |x2 − x1|
t1/α

)θ (

G
(α+γ)
t (y − x1) + G

(α+γ)
t (y − x2)

)

,

where in the last line we used that tθ/αH
(γ,θ)
t (x) ≤ G

(α+γ)
t (x) for t ∈ (0, 1].

Next we assume that t > 1. Using the estimate for Ψ and (70) twice we get

∫ t

0

∫

Rd

|p0t−s(x1, z) − p0t−s(x2, z)||Ψs(z, y)| dzds

≤ c1|x2 − x1|θect
∫ t

0

(t− s)−θ/α

∫

Rd

(

G
(α+γ)
t−s (z − x1) + G

(α+γ)
t−s (z − x2)

)

· s−1+θ/αH(γ,θ)
s (y − z) dzds

≤ c1|x2 − x1|θect
∫ t

0

(1 ∨ (t− s)−θ/α)

·
∫

Rd

(

H
(γ,θ)
t−s (z − x1) + H

(γ,θ)
t−s (z − x2)

)

s−1+θ/αH(γ,θ)
s (y − z) dzds

≤ c2|x2 − x1|θtθ/αect
(

H
(γ,θ)
t (y − x1) + H

(γ,θ)
t (y − x2)

)

≤ c2|x2 − x1|θect
(

G
(α+γ)
t (y − x1) + G

(α+γ)
t (y − x2)

)

≤ c2

( |x2 − x1|
t1/α

)θ

ec3t
(

G
(α+γ)
t (y − x1) + G

(α+γ)
t (y − x2)

)

.

This finishes the proof of (22) for t > 0.

According to our choice of the first approximation p0t (x, y), the regularity of
y 7→ pt(x, y) is less obvious than that of x 7→ pt(x, y). The next result gives a
preparation for such regularity and may be confronted with Lemma 3.7.

Lemma 4.2. For all t > 0 and y ∈ R
d we have

lim
z→y

sup
x∈Rd

|Φt(x, z) − Φt(x, y)| = 0. (90)
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Proof. Since ∂tp
z
t (x) = Lzpzt (x) we get

|∂t(pzt (z − x) − pyt (y − x))| = |Lzpzt (z − x) − Lypyt (y − x)|
≤ |Lzpzt (z − x) − Lypzt (z − x)| + |Lypzt (z − x) − Lypyt (z − x)|

+ |Lypyt (z − x) − Lypyt (y − x)|
= I1 + I2 + I3.

From A2 and Lemma 2.2 we have

I1 ≤
∫

Rd

∣

∣pzt (z − x + u) − pzt (z − x) − u · ∇xp
z
t (z − x)1|u|≤t1/α(u)

∣

∣

· |ν(z, du) − ν(y, du)|
≤ M0(|z − y|η ∧ 1)A#

t p
z
t (z − x)

≤ c1(|z − y|η ∧ 1)t−1G
(α+γ)
t (z − x) ≤ c1t

−1−d/α(|z − y|η ∧ 1).

From Lemma 2.11 and Lemma 2.2 we obtain

I2 = |Ly(pzt − pyt )(z − x)| ≤ A
#
t (pzt − pyt )(z − x)

≤ c2(|z − y|η ∧ 1)t−1G
(α+γ−θ)
t (z − x) ≤ c2t

−1−d/α(|z − y|η ∧ 1).

Finally, let |y − z| < t1/α and gt(w) = pyt (w − (y − z)) − pyt (w). Using Taylor
expansion and Lemma 2.4, for every β ∈ Nd

0 such that |β| ≤ 2 we get

|∂β
wgt(w)| ≤ c3|z − y|t(−1−|β|)/αG

(α+γ)
t (w).

This and Lemma 2.2 yield

I3 = |Lygt(y − x)| ≤ A
#
t gt(y − x) ≤ c4|z − y|t−1−1/αG

(α+γ)
t (y − x)

≤ c4t
−1−(1+d)/α|z − y|.

Therefore,

lim
z→y

sup
x∈Rd

|∂t(pzt (z − x) − pyt (y − x))| = 0.

Similarly,

|Lxpzt (z − x) − Lxpyt (y − x)|
≤ |Lx(pzt − pyt )(z − x)| + |Lxpyt (z − x) − Lxpyt (y − x)|
≤ A

#
t (pzt − pyt )(z − x) + A

#
t gt(y − x)

≤ c5t
−1−d/α(|z − y|η ∧ 1) + c6t

−1−(1+d)/α|z − y|,

limz→y supx∈Rd |Lxpzt (z − x) − Lxpyt (y − x)| = 0, and (90) follows.

Lemma 4.3. For all t > 0 and x ∈ R
d the function y 7→ pt(x, y) is continuous.

Documenta Mathematica 25 (2020) 1–54



Heat Kernel of Anisotropic Nonlocal Operators 43

Proof. For the proof we rely on (73). It is straightforward to see that

H(γ,θ)
s (y + h) ≤ cH(γ,θ)

s (y),

where y ∈ R
d, s > 0, h ∈ R

d and |h| < s1/α. Let T ∈ (0,∞) and t ∈ (0, T ]. By
Theorem 1.2, (70), (65) and Proposition 3.3 for every ε ∈ (0, t) and |h| < ε1/α,

∫ t−ε

0

∫

Rd

|ps(x, z)Φt−s(z, y + h)| dzds

≤ c1e
c2t

t−θ/α ∧ 1

∫ t−ε

0

∫

Rd

H(γ,θ)
s (z − x)(t − s)−1+θ/αH

(γ,θ)
t−s (y + h− z) dzds

≤ c3

∫ t−ε

0

∫

Rd

(t− s)−1+θ/αH(γ,θ)
s (z − x)H

(γ,θ)
t−s (y − z) dzds

≤ c4

∫ t−ε

0

(t− s)−1+θ/αH
(γ,θ)
t (y − x) ds ≤ c5H

(γ,θ)
t (y − x),

with c3, c4, c5 depending on T . By the dominated convergence and Lemma 4.2,

lim
h→0

∫ t−ε

0

∫

Rd

ps(x, z)Φt−s(z, y + h) dzds =

∫ t−ε

0

∫

Rd

ps(x, z)Φt−s(z, y) dzds.

Furthermore, for every |h| < t1/α,

∣

∣

∣

∣

∫ t

t−ε

∫

Rd

ps(x, z)Φt−s(z, y + h) dzds

∣

∣

∣

∣

≤ c6

∫ t

t−ε

∫

Rd

H(γ,θ)
s (z − x)(t− s)−1+θ/αH

(γ,θ)
t−s (y + h− z) dzds

≤ c7

∫ t

t−ε

(t− s)−1+θ/αH
(γ,θ)
t (y + h− x) ds ≤ c8ε

θ/αH
(γ,θ)
t (y − x) < ∞.

This and Lemma 2.12 yield the continuity of y 7→ pt(x, y).

The proof of Theorem 1.2 is complete.

Remark 4.1. The lower bound in (21) extends to t ∈ (0, T ] for every finite
T > 0. The interested reader may use Lemma 5.4 below for a proof. By (20),
the upper bound in (21) holds for all x, y ∈ R

d and t ∈ (0, T ], if T < ∞.

5 The maximum principle

In this part of our development we follow Kochubĕı’s argument from [39, Sec-
tion 6] with some modifications – we temper by e−λt rather than restrict time.
For λ ∈ R we let p̃t(x, y) = e−λtpt(x, y), where t > 0, x, y ∈ R

d. By The-
orem 1.2, p̃t(x, y) ≤ Ce−(λ−c)tGα+γ

t (y − x). We can give a solution to the
Cauchy problem for L− λ.
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Lemma 5.1. If f ∈ C0(Rd), u(t, x) =
∫

Rd p̃t(x, y)f(y) dy for t > 0 and

u(0, x) = f(x), x ∈ R
d, then u is a continuous function on [0,∞) ×R

d, and

(

∂t − Lx + λ
)

u(t, x) = 0, t > 0, x ∈ R
d. (91)

If λ > c, where c is from Theorem 1.2, then u ∈ C0([0,∞) ×R
d).

Proof. Let (t0, x0) ∈ (0,∞) ×R
d. We have

|u(t0, x0) − u(t, x)| ≤
∫

Rd

|p̃t0(x0, y) − p̃t(x, y)||f(y)| dy

≤ e−λt0

∫

Rd

|pt0(x0, y) − pt0(x, y)||f(y)| dy

+

∫

Rd

|p̃t0(x, y) − p̃t(x, y)||f(y)| dy → 0,

as (t, x) → (t0, x0). This follows from the dominated convergence, since Theo-

rem 1.2 yields for |x− x0| < t
1/α
0

∣

∣pt0(x0, y) − pt0(x, y)
∣

∣

≤ c1

(

|x0 − x|
t
1/α
0

)θ

ect0
(

G
(α+γ)
t0 (y − x0) + G

(α+γ)
t0 (y − x)

)

≤ c2

(

|x0 − x|
t
1/α
0

)θ

ect0G
(α+γ)
t0 (y − x0),

and for |t− t0| ≤ t0/2 and some s ∈ (t ∧ t0, t ∨ t0) we have

|p̃t0(x, y) − p̃t(x, y)| =
∣

∣

(

e−λs∂sps(x, y) − λe−λsps(x, y)
)

(t0 − t)
∣

∣

≤ c3(s−1 + λ)e(c−λ)sG(α+γ)
s (y − x)|t0 − t|

≤ c4(2/t0 + λ)e[(c−λ)∨0](3t0/2)G
(α+γ)
t0 (y − x)|t0 − t|.

If (t, x) → (0, x0) for some x0 ∈ R
d, then by Theorem 1.1 and continuity of f ,

|f(x0) − u(t, x)| ≤ |f(x0) − f(x)| + |f(x) − u(t, x)| → 0,

This gives the continuity of u on [0,∞) ×R
d.

Let δ > 0. Using the notation from Section 1, by Fubini’s theorem we get

Lδu(t, x) =

∫

|u|>δ

(u(t, x + u) − u(t, x)) ν(x, du) =

∫

Lδ
xp̃t(x, y)f(y)dy.

By (79) and the dominated convergence theorem we get

Lu(t, x) =

∫

Lxp̃t(x, y)f(y) dy. (92)
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In order to show that ∂tu(t, x) =
∫

∂tp̃t(x, y)f(y) dy, it suffices to estimate
|∂tp̃t(x, y)| for every t0 > 0 and all t ∈ (t0/2, 3t0/2) by an integrable function
depending only on t0 and x, y. We obtain the estimate by using Theorem 1.2,
which yields

|∂tp̃t(x, y)| ≤ λe−λt|pt(x, y)| + e−λt|∂tpt(x, y)|
≤ c1e

(c−λ)tG
(α+γ)
t (y − x)(λ + t−1)

≤ λc2e
[(c−λ)∨0](3t0/2)G

(α+γ)
t0 (y − x)(λ + (t0/2)−1).

By the dominated convergence theorem,

∂tu(t, x) =

∫

∂tp̃t(x, y)f(y) dy. (93)

We note here that (92) and (93) hold in fact for every bounded function f .
Now it easily follows from Theorem 1.1 that

(∂t − Lx)p̃t(x, y) = e−λt∂tpt(x, y) − λe−λtpt(x, y) − e−λtLxpt(x, y)

= −λp̃t(x, y),

which, together with (93) and (92), yields (91). If λ > c, then we have
∣

∣

∣

∣

∫

Rd

p̃t(x, y)f(y) dy

∣

∣

∣

∣

≤ c1e
−(λ−c)t

∫

Rd

Gα+γ
t (y − x)|f(y)| dy

= c1e
−(λ−c)t

∫

Rd

Gα+γ
1 (y)|f(t1/αy + x)| dy

≤ c1e
−(λ−c)t‖f‖∞

∫

Rd

Gα+γ
1 (y) dy ≤ c2‖f‖∞.

In fact, e−(λ−c)t|f(t1/αy + x)| → 0 as |(t, x)| → ∞. By the dominated conver-
gence theorem, lim|(t,x)|→∞ u(t, x) = 0.

Lemma 5.2. If u(t, x) ∈ C0([0,∞) ×R
d), λ ≥ 0 and (∂t − Lx + λ)u(t, x) = 0

on (0,∞) ×R
d, then

sup
(t,x)∈[0,∞)×Rd

|u(t, x)| = sup
x∈Rd

|u(0, x)|.

Proof. Let m = inf(t,x)∈[0,∞)×Rd u(t, x) and M = sup(t,x)∈[0,∞)×Rd u(t, x). We
have −∞ < m ≤ 0 ≤ M < ∞. If M > 0 and u(t0, x0) = M for some
t0 > 0 and x0 ∈ R

d, then ∂tu(t0, x0) = 0 and Lxu(t0, x0) < 0 by the maximum
principle from Section 1. Hence (∂t − Lx + λ)u(t0, x0) > 0. This contradicts
the assumptions of the lemma, hence M = 0 or the supremum of u is attained
at some boundary point (0, x0). Similarly, if m < 0 and u(t0, x0) = m for some
t0 > 0 and x0 ∈ R

d, then ∂tu(t0, x0) = 0, Lxu(t0, x0) > 0, hence (∂t − Lx +
λ)u(t0, x0) < 0. Again, we conclude that m = 0 or the infimum of u is attained
at some point (0, x0).
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Corollary 5.3. Let λ ≥ 0. There is at most one solution u ∈ C0([0,∞)×R
d)

to the Cauchy problem for L− λ.

Proof. By Lemma 5.2, the difference of two solutions is zero on [0,∞)×R
d.

Lemma 5.4. p is nonnegative and satisfies the Chapman-Kolmogorov equation.

Proof. Let, as usual, p̃t(x, y) = e−λtpt(x, y) and pick λ > c, the constant in
Theorem 1.2. Let f ∈ C0(Rd). By Lemma 5.1, u(t, x) :=

∫

p̃t(x, y)f(y)dy
extends to a function of the class C0([0,∞) ×R

d). Recall that p is continuous
(see Lemma 4.3), hence p̃ is continuous. Taking into account that all the
nonnegative functions f ∈ C0(Rd) are allowed here, by the proof of Lemma 5.2
we get that p̃ ≥ 0 and thus p ≥ 0.
Next we consider s > 0 and u(s, x) defined above. For t ≥ 0, x ∈ R

d, let w(t, x)
be the solution to the Cauchy problem for L − λ with the initial condition
w(0, x) = u(s, x), x ∈ R

d. By Lemma 5.1 and Corollary 5.3,

∫

Rd

p̃s+t(x, y)f(y)dy = u(s+t, x) = w(t, x) =

∫

Rd

p̃t(x, y)

∫

Rd

p̃s(y, z)f(z)dzdy.

Since f ∈ C0(Rd) is arbitrary, using Fubini’s theorem we see that p̃ satisfies
the Chapman-Kolmogorov equation and so does p.

For f ∈ C0(Rd), t > 0 and x ∈ R
d, we let

P̃tf(x) =

∫

Rd

p̃t(x, y)f(y)dy.

We conclude that {P̃t} and {Pt} are strongly continuous semigroups on C0(Rd).

Lemma 5.5. If λ > c1, the constant from Theorem 1.2, then {P̃t} is sub-
Markovian.

Proof. By Lemma 5.4, P̃tf ≥ 0 if f ∈ C0(Rd) and f ≥ 0. By Lemma 5.1 and
Lemma 5.2, ‖P̃tf‖∞ ≤ ‖f‖∞, as needed.

In particular, if λ > c1, then for all t > 0 and x ∈ R
d we have

∫

Rd p̃t(x, y)dy ≤ 1.
We next verify that pt(x, y) is in fact a transition probability density. The
result requires preparation. Let L be the generator of {Pt}. Then L − λ is
the generator of {P̃t}, with the same domain, say D(L), a dense subset of
C0(Rd). We will make a connection between L and L. Let φ ∈ C0(Rd),

0 < T < ∞ and f =
∫ T

0 Psφds. By the general semigroup theory, f ∈ D(L) and

∂tPtf = LPtf ∈ C0(Rd) for every t > 0. By Lemma 5.1, ∂tPtf(x) = LPtf(x)
for all t > 0 and x ∈ R

d, hence LPtf = LPtf for all such t and f . Therefore
L = L on a dense subset of C0(Rd).
The following more explicit result is rather delicate.

Theorem 5.6. Lf = Lf for f ∈ C2
0 (Rd).
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Proof. We first prove that for Hölder continuous function g ∈ C0(Rd) we have

L

∫ t

0

Psg(x)ds =

∫ t

0

LPsg(x)ds, x ∈ R
d. (94)

Indeed, for δ > 0 the operator Lδ is bounded and linear on C0(Rd), hence

L

∫ t

0

Psg(x)ds = lim
δ→0

Lδ

∫ t

0

Psg(x)ds = lim
δ→0

∫ t

0

LδPsg(x)ds

= lim
δ→0

∫ t

0

∫

Rd

Lδ
xps(x, y)g(y)dyds = I + II,

where

I = lim
δ→0

∫ t

0

∫

Rd

Lδ
xps(x, y)[g(y) − g(x)]dyds,

II = g(x) lim
δ→0

∫ t

0

∫

Rd

Lδ
xps(x, y)dyds

are finite, as we will shortly see. For II, by Corollary 3.9 and Lemma 3.8,

lim
δ→0

∫

Rd

Lδ
xps(x, y)dy =

∫

Rd

lim
δ→0

Lδ
xps(x, y)dy =

∫

Rd

Lxps(x, y)dy.

Therefore by (80) and the dominated convergence theorem,

II = g(x)

∫ t

0

lim
δ→0

∫

Rd

Lδ
xps(x, y)dyds = g(x)

∫ t

0

(

∫

Rd

Lxps(x, y)dy
)

ds.

It is important to notice that the last (outer) integral
∫ t

0
(. . .)ds converges ab-

solutely. We now turn to I. Let ǫ > 0 be such that α + γ − ǫ > d. Let g be
Hölder continuous of order ǫ. Then for x, y ∈ R

d and s ∈ (0, t), by (79) we get

∣

∣Lδ
xps(x, y)[g(y) − g(x)]

∣

∣ ≤ c|Lδ
xps(x, y)|(1 ∧ |x− y|ǫ)

≤ cs−1
(

Gα+γ
s (y − x) + sθ/αKs(x, y)

)

(1 ∧ |x− y|ǫ)
≤ cs−1+ǫ/αG(α+γ−ǫ)

s (y − x) + s−1+θ/αKs(x, y).

The above expression is integrable in dyds. Of course, limδ→0 L
δ
xps(x, y) =

Lxps(x, y). By the dominated convergence theorem,

I =

∫

(0,t)×Rd

Lxps(x, y)[g(y) − g(x)]dyds,

which is finite. Adding I and II we obtain

L

∫ t

0

Psg(x)ds =

∫ t

0

(

∫

Rd

Lxps(x, y)g(y)dy
)

ds.
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By (79) and the boundedness of Lδ we have that

∫

Rd

Lxps(x, y)g(y)dy =

∫

Rd

lim
δ→0

Lδ
xps(x, y)g(y)dy = lim

δ→0

∫

Rd

Lδ
xps(x, y)g(y)dy

= lim
δ→0

Lδ

∫

Rd

ps(x, y)g(y)dy = lim
δ→0

LδPsg(x).

Therefore,
∫

Rd Lxps(x, y)g(y)dy = LPsg(x), which gives (94).

We claim that for f ∈ C2
0 (Rd), 0 < t < ∞ and x ∈ R

d,

Ptf(x) − f(x) =

∫ t

0

PsLf(x)ds. (95)

To prove (95) we let λ > c > 0, with c from Theorem 1.2, and we define

u(t, x) = e−λt
[

Ptf(x) − f(x) −
∫ t

0

PsLf(x)ds
]

.

We also let u(0, x) = 0. By Lemma 5.1, u ∈ C0([0,∞) ×R
d). We can directly

verify that Lf is Hölder continuous on R
d, and then by (94) with g = Lf ,

(∂t − L)u(t, x) = −λu(t, x) + e−λt
[

Lf(x) − PtLf(x) +

∫ t

0

LPsLf(x)ds
]

.

From the discussion of (94) the last integral is absolutely convergent, implying
that ∂sPsLf(x) = LPsLf(x) is also absolutely integrable, cf. Lemma 5.1.
Therefore,

(∂t − L)u(t, x) = −λu(t, x) + e−λt

[

−
∫ t

0

∂sPsLf(x)ds +

∫ t

0

LPsLf(x)ds

]

= −λu(t, x).

We now prove that u ≡ 0. Recall that u ∈ C0([0,∞) × R
d). If u attains a

strictly positive maximum at some point (t0, x0) ∈ (0,∞) × R
d, then (∂t −

L)u(t0, x0) = −λu(t0, x0) < 0, but the maximum principle for L contradicts
this: (∂t − L)u(t0, x0) = −Lu(t0, x0) > 0. Therefore we must have u ≤ 0.
Analogously we prove that u ≥ 0 and so u = 0 everywhere. Finally, we divide
both sides of (95) by t and let t → 0. We obtain Lf(x) = Lf(x). The proof is
complete: the operator L and the generator L coincide on C2

0 (Rd).

5.1 Proof of Theorem 1.3

We only need to prove that for all t > 0 and x ∈ R
d we have

∫

Rd pt(x, y)dy = 1.
We know that the operators Ptf(x) =

∫

Rd pt(x, y)f(y) dy, t > 0, form a strongly

continuous semigroup on C0(Rd) with the generator L. We fix t > 0. If f is in
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the domain of L, then from the general theory of semigroups (see [18, Ch. 2,
Lemma 1.3] or [30, Lemma 4.1.14]),

Ptf(x) − f(x) =

∫ t

0

PsLf(x) ds.

In particular, let f ∈ C2
0 (Rd) be such that |f(x)| ≤ 1 for all x ∈ R

d and
f(x) = 1 for |x| < 1. Let fn(x) = f(x/n), n ≥ 1. We have limn→∞ fn(x) =
1 and limn→∞ Ptfn(x) =

∫

Rd pt(x, y) dy, which easily follows from bounded
convergence. Furthermore,

Ptfn(x) − fn(x) =

∫ t

0

PsLfn(x) ds. (96)

If x ∈ R
d is fixed and n > 2|x|, then

|Lfn(x)| =
1

2

∣

∣

∣

∣

∫

Rd

(fn(x + u) + fn(x− u) − 2fn(x)) ν(x, du)

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

∣

∫

|u|>n/2

(f((x + u)/n) + f((x− u)/n) − 2) ν(x, du)

∣

∣

∣

∣

∣

≤ ν(x,B(0, n/2)c) ≤ M0ν0(B(0, n/2)c) ≤ c1n
−α.

This yields
∣

∣

∣

∣

∫ t

0

PsLfn(x) ds

∣

∣

∣

∣

≤
∫ t

0

|PsLfn(x)| ds ≤ c2tn
−α → 0,

as n → ∞. By (96) and the above discussion we get
∫

Rd pt(x, y) dy = 1. The
proof of Theorem 1.3 is complete.
We end the paper by pointing out in which sense pt(x, y) is unique. Plainly, if
pt(x, y) has the properties listed in Theorem 1.1 and 1.2, then pt(x, y) = pt(x, y)
for all t > 0, x, y ∈ R

d. Indeed, let s > 0 and z ∈ R
d. By the proof of

Lemma 5.1, u(t, x) := e−λt
∫

Rd pt(x, y)ps(y, z)dy and u(t, x) := e−λtpt+s(x, z)
give solutions to the same Cauchy problem for L−λ, and they are in C0([0,∞)×
R

d) for large λ > 0. By Corollary 5.3,
∫

Rd

pt(x, y)ps(y, z)dy = pt+s(x, z), s, t > 0, x, y ∈ R
d.

We claim that for all f ∈ C0(Rd), uniformly in x ∈ R
d we have

lim
t→0

∫

Rd

f(x)pt(x, y) dx = f(y). (97)

For clarity, this is different from (17). To prove (97) we note that
∫

Rd

p0t (x, y)dx =

∫

Rd

py(y − x)dx = 1, t > 0, y ∈ R
d,

Documenta Mathematica 25 (2020) 1–54



50 K. Bogdan, P. Sztonyk, V. Knopova

we recall (15), (72), (63), Lemma 2.4 with β = 0, the scaling of G
(α+γ)
t and

the dominated convergence. By (97) we get ps(x, z) = ps(x, z) for all s > 0,
x, z ∈ R

d.
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50-370 Wroc law
Poland
krzysztof.bogdan@pwr.edu.pl

Pawe l Sztonyk
Faculty of Pure and Applied
Mathematics

Wroc law University of
Science and Technology

Wyb. Wyspiańskiego 27
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