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1 Introduction

Siegel-Jacobi modular forms - called here after [15] - are higher dimensional
generalizations of classical Jacobi forms. As in the one-dimensional case they
are very closely related to Siegel modular forms. Indeed, many examples may
be naturally obtained from Fourier-Jacobi expansion of Siegel modular forms,
but it is known (see for example [34]) that not all of them can be obtained as
Fourier-Jacobi coefficients of Siegel modular forms.
The standard L-function attached to a Siegel modular form is perhaps one of
the most well-studied automorphic L-functions. Indeed, its analytic proper-
ties have been extensively studied by many authors such as Andrianov and
Kalinin [1], Böcherer [4, 5, 6], Garrett [11], Piatetski-Shapiro and Rallis [12],
and Shimura [24, 26]. Moreover, if one assumes that the Siegel modular form is
algebraic, in the sense that the Fourier coefficients at infinity are algebraic, then
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the values of the L-function at specific points (usually called special L-values),
after dividing by appropriate powers of π and the Petersson self inner product,
are algebraic. Results of this kind have been obtained first by Sturm [32], then
extended by Böcherer and Schmidt [7] and Shimura [28].

The central object of study of this paper and its continuation [9] is a standard L-
function attached to a Siegel-Jacobi form. In particular, we investigate whether
some of the properties mentioned in the previous paragraph (i.e. analytic
continuation, algebraicity of special values) hold also for such an L-function. It
is perhaps worth to note here that the underlying algebraic group, the Jacobi
group, is not reductive, which means in particular that Siegel-Jacobi modular
forms cannot be associated to Shimura varieties. However it is known (see
[15, 17]) that they can be associated to mixed Shimura varieties.

We now introduce some notation in order to give a brief account of the main
theorems proved in this paper. For simplicity we describe them here only for
Siegel-Jacobi modular forms over the rational numbers, even though our results
are more general and are proved over a totally real field.

Let S ∈ Ml,l(Q) be a positive definite half-integral symmetric matrix, and f
a Siegel-Jacobi modular form of weight k and index S for the congruence sub-
group Γ0(N). We give the detailed definition in section 3 but for the purposes
of this introduction it is enough to say that f is a holomorphic function on the
spaceHn,l := Hn×Mn,l(C), whereHn is the Siegel upper half space, satisfying a
particular modular property with respect to the group Γ0(N) := H(Z)⋊Γ0(N),
a congruence subgroup of the Jacobi group Gn,l(Q) := H(Q)⋊ Spn(Q). Here
H(Z) denotes the Z-points of the Heisenberg group of degree n and index l,
and Γ0(N) the classical congruence subgroup of level N in the theory of Siegel
modular forms.

A study of Siegel-Jacobi modular forms of higher index and their L-functions
was initiated by Shintani (unpublished), and then continued by Murase [19]
and Murase and Sugano [21]. However, the only known results concern trivial
level (N = 1). In this paper we generalize their work in various directions,
one of them is that we consider a rather general congruence subgroup. Then,
assuming that f is an eigenform for all Hecke operators T (m) with eigenvalues
λ(m) and χ is a Dirichlet character of a conductor M , we consider a Dirichlet
series D(s, f, χ) =

∑∞
m=1 λ(m)χ(m)m−s. This series is absolutely convergent

for Re(s) > 2n+ l + 1 and - as we show in section 7 - after multiplying by an
appropriate factor it possesses an Euler product representation. More precisely,
we prove the following:

Theorem 1.1. Assume that the matrix S satisfies the condition M+
p (see sec-

tion 7 for a definition) for every prime ideal p with (p,N) = 1. Then

L(χ, s)D(s+ n+ l/2, f, χ) = L(s, f, χ) :=
∏

p

Lp(χ(p)p
−s)−1,
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where for every prime number p

Lp(X) =

{∏n
i=1

(
(1 − µp,iX)(1− µ−1

p,iX)
)
, µp,i ∈ C×, if (p,N) = 1,∏n

i=1(1− µp,iX), µp,i ∈ C, otherwise.

Moreover, L(χ, s) =
∏

(p,N)=1 Lp(χ, s), where

Lp(χ, s) := Gp(χ, s)

{∏n
i=1 Lp(2s+ 2n− 2i, χ2) if l ∈ 2Z∏n
i=1 Lp(2s+ 2n− 2i+ 1, χ2) if l 6∈ 2Z,

and Gp(χ, s) is a ratio of Euler factors which for almost all p is one.

The above theorem was originally shown by Murase and Sugano in the case
of N = 1, χ = 1 and l = 1. We extended it to any N , any character χ and
any l. Together with generalization to any l certain new phenomena appear,
such as for example the presence of the factor G(χ, s), which is equal to one in
the case of l = 1. We defer a more detailed discussion to section 7.

The theorem above establishes that the function L(s, f, χ) is absolutely con-
vergent for Re(s) > n+ l

2 + 1 and hence holomorphic. A suitable adjustment
of the doubling method allows us to prove much more:

Theorem 1.2. With notation as above, assuming that χ(−1) = (−1)k, the
function L(s, f, χ) has a meromorphic continuation to the whole complex plane.

Actually in the full version of the theorem (Theorem 9.3), after introducing an
extra factor depending on the parity of l and some Gamma factors, we also
provide information on the location of the poles of the function. Our theorem
vastly extends previous work of Murase [19, 20]: we consider the case of totally
real fields, non-trivial level and twisting by characters. We should mention
here that, contrary to us, Murase establishes also a functional equation for the
L-function. Our methods allow us to obtain such a functional equation once it
is known for Jacobi-Eisenstein series of Siegel type, as for example in the recent
work of Mizumoto [18] in the case of trivial level and F = Q. We discuss this
in more detail in Remark 9.5.
The most notable difference with the work of Murase is the completely different
method that we use. Indeed, the work of Murase has as its prototype the
approach of Piatetski-Shapiro and Rallis [12] and their theory of zeta integrals.
Murase uses a homomorphism of the form

Gn,l(Q)×Gn,l(Q) → Sp2n+l(Q),

and computes an adelic zeta integral à la Piatetski-Shapiro and Rallis of a
Siegel-type Eisenstein series of Sp2n+l restricted to the image of the product

Gn,l(AQ)×Gn,l(AQ) against two copies of the adelic counterpart f of f .
We use instead a homomorphism of Arakawa, [3],

Gn,l(Q)×Gm,l(Q) → Gm+n,l(Q).
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This is a starting point in order to obtain a doubling method type identity: for
a Dirichlet character χ with χ(−1) = (−1)k and m ≥ n, we obtain

< f(w), En+m(diag[z, w], s;χ, k,N) >= L(s, f, χ, s)Em(z, s; f, χ,N), (∗)

where En+m(diag[z, w], s;χ, k,N) is the restriction under the diagonal embed-
ding Hn,l ×Hm,l →֒ Hn+m,l of a Siegel-type Jacobi Eisenstein series of degree
n + m associated to the character χ, and Em(z, s; f, χ,N) is a Klingen-type
Jacobi Eisenstein series of degree m associated to the cuspidal form f through
parabolic induction.
It is important to note here that contrary to Murase, we have the option to
take n 6= m. And, indeed, we will make use of this in order to obtain results
towards the analytic properties of Klingen-type Jacobi Eisenstein series (see
Theorem 9.6).
The identity (∗) above was first obtained by Arakawa in [3] in the case of N = 1
and trivial χ (and hence k even), and in this paper is extended to the situation
of totally real fields, arbitrary level as well as non-trivial characters χ. It
should be stressed though that these generalizations are by all means not trivial
and demand a different approach than the one taken by Arakawa. Indeed,
Arakawa’s approach is modeled on the work of Garrett in [11] who invented
the doubling method and applied it to the case of Siegel modular forms over Q
of trivial level and without twists by Dirichlet characters. Our approach follows
techniques introduced by Shimura [26], where he massively extended Garrett’s
approach to the case of totally real field, arbitrary level as well as twisting by
Hecke characters. However, as it will become clear in section 5 and especially
Lemma 5.3, (see also the Remark 5.4) many new technical difficulties need to
be addressed in the Jacobi setting.
It is worth to point out here that even though in some cases one can identify
the standard L-function associated to a Siegel-Jacobi form with the standard
L-function associated to a Siegel modular form (see for example the remark
on page 252 in [20]), this is possible under some quite restrictive conditions on
both index and level of the Siegel-Jacobi form. Actually, even in the situation
of classical Jacobi forms this correspondence becomes quite complicated when
one considers an index different than 1 and/or non-trivial level, which is very
clear for example in the work of [30].
We would also like to emphasize that in this work not only we establish results
for the standard L-function attached to a Siegel-Jacobi modular form, but
also for the analytic properties of Klingen-type Eisenstein series of the Jacobi
groups, something of interest on its own. Furthermore, the results presented in
this paper are used in another work of ours ([9]) to establish algebraicity results
for some critical values of the standard L-function attached to a Siegel-Jacobi
modular form in the spirit of Deligne’s period conjecture. Actually, an earlier
version of this paper ([8]) included this application, but due to the considerable
length of the paper we decided to separate the two. We have also shortened
some computations, and therefore refer the interested reader to [8] for a more
detailed account.
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The reader will notice that in all the theorems we assume a particular parity
condition between the sign of the twisting character χ and the weight k of the
Siegel-Jacobi modular form. It is, of course, very important to be able to relax
this condition and obtain the theorems for any finite character χ, independent
of the weight k. This is the subject of a forthcoming work.
Brief description of each section: We finish this introduction by giving
a short description of each section. In the second section we set most common
notation used throughout this paper. In section three we introduce the notion
of Siegel-Jacobi modular forms over a totally real field F , as well as the notion
of adelic or automorphic Siegel-Jacobi forms. To the best of our knowledge
their systematic study has not appeared before in the literature, notably
Proposition 3.4 on the adelic Fourier expansion. In section four we develop
the theory of Klingen-type Jacobi Eisenstein series. We do this in greatest
generality possible. Again, to the best of our knowledge, a systematic study of
the adelized Klingen-type Jacobi Eisenstein series has not appeared before in
the literature. In sections five and six we employ the doubling method in the
way described above and compute the Petersson inner product of a restricted
Siegel-type Jacobi Eisenstein series against a cuspidal Siegel-Jacobi form. In
section seven we introduce the theory of Hecke operators in the Jacobi setting
and extend previous results of Murase and Sugano. In the next section we turn
our attention to the analytic properties of Siegel-type Jacobi Eisenstein series.
We build on an idea going back to a work of Böcherer [4] and more recently
of Heim [13]. After establishing the analytic properties of these Eisenstein
series we use the results established in section 6 to obtain Theorem 9.3 on the
analytic properties of the standard L-function. Moreover, we also establish
Theorem 9.6 on the analytic continuation of Klingen-type Jacobi Eisenstein
series, and in the last section we discuss its near holomorphy for specific values
of s.

Acknowledgments: The authors acknowledge support from EPSRC through
the grant EP/N009266/1, Arithmetic of automorphic forms and special L-
values.

2 Notation

Throughout the paper we use the following notation:

• F denotes a totally real algebraic number field of degree d, d the different
of F , and o its ring of integers;

• A stands for the adeles of F ; we write a and h for the sets of archimedean
and non-archimedean places of F respectively, so that e.g. Ah :=

∏′
v∈h

Fv
(restricted product) and Aa :=

∏
v∈a

Fv denote the finite and infinite
adeles of F ; for x ∈ A we will write xh, xa meaning the finite and infinite
part of x, respectively; for a ring R we use the superscript R× to denote
the invertible elements in R;
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• A finite adele a ∈ Ah corresponds to a fractional ideal a of F via a :=∏
v∈h

pnv
v , where av = πnv

v o×v , nv ∈ Z, πv a uniformiser at v and pv the
corresponding prime ideal at the finite place v. We will call a the ideal
corresponding to a.

• We define Za := Zd, where a typical element k ∈ Za is of the form
k = (kv)v∈a with kv ∈ Z. Moreover for an integer µ ∈ Z we write
µa := (µ, µ, . . . , µ) ∈ Za.

• For an adelic Hecke character χ : A×/F× → C×, we will write χ∗ for
the corresponding ideal Hecke character obtained by class field theory.
Furthermore, if χ is finite, then its infinite part is of the form χa(xa) =
∏
v∈a

(
xv

|xv|

)kv
, for kv ∈ Z. We then write sgna(xa)

k for χa(xa) where

k := (kv) ∈ Za.

• Ml,n denotes the set of l × n matrices, and we set Mn := Mn,n. We
write Symn ⊂Mn for the subset of symmetric matrices; if A ∈Ml,n and
B ∈ Ml,m, then (AB) ∈ Ml,n+m denotes concatenation of the matrices
A,B; if S ∈ Syml, x ∈Ml,n, we set S[x] := txSx;

• For an invertible matrix x we define x̃ := tx
−1

;

• For two matrices a ∈Mn and b ∈Mm we define

diag[a, b] :=

(
a 0
0 b

)
∈Mn+m;

• We set ea(x) :=
∏
v∈a

e(xv) :=
∏
v∈a

e2πixv for x =
∏
v∈a

xv ∈ Ca.

• Gn stands for the algebraic group Spn whose F -points are defined as
follows:

Spn(F ) :=
{
g ∈ SL2n(F ) :

tg
(

−1n
1n

)
g =

(
−1n

1n

)}
;

For g ∈ Spn we write g =

(
ag bg
cg dg

)
, where ag, bg, cg, dg ∈Mn;

• For a fixed positive integer l, Gn,l := Hn,l ⋊ Spn denotes the Jacobi
group with Hn,l denoting the Heisenberg subgroup, whose global points
are defined as

Gn,l(F ) := {g = (λ, µ, κ)g : λ, µ ∈Ml,n(F ), κ ∈ Syml(F ), g ∈ Gn(F )},

Hn,l(F ) := {(λ, µ, κ)12n ∈ Gn,l(F )};

the group law is given by

(λ, µ, κ)g(λ′, µ′, κ′)g′ := (λ+ λ̃, µ+ µ̃, κ+κ′+λ tµ̃+ µ̃ tλ+ λ̃ tµ̃−λ′ tµ′)gg′,
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where (λ̃ µ̃) := (λ′ µ′)g−1 = (λ′ td−µ′ tc µ′ ta−λ′ tb), the identity element
of Gn,l(F ) is 1H12n, where 1H := (0, 0, 0) denotes the identity element
of Hn,l(F ), i.e. we always suppress the indices n, l in 1H as its size will
be clear from the context;
whenever it does not lead to any confusion, we omit superscripts and
write G,G,Gn or H ;
following the convention described above, G(A) =

∏′
v∈h∪a

G(Fv) =

GhGa, where Gh =
∏′
v∈h

G(Fv), Ga =
∏
v∈a

G(Fv);

• Hn,l := (Hn × Ml,n(C))
a, where Hn := {τ ∈ Symn(C) :

Im(τ) positive definite}; an element z ∈ Hn,l will be written as
z = (zv)v∈a = (τ, w), where τ = (τv)v∈a ∈ Ha

n, w = (wv)v∈a ∈ Ml,n(C)
a;

we distinguish an element i0 := (i, 0) ∈ Hn,l, where i := (i1n)
a;

for z = (τ, w) ∈ Hn,l we define δ(z) := det(Im(τ)) :=
∏
v∈a

det(Im(τv)));

• For a fractional ideal b and an integral ideal c we define the following
subgroups of G(A):

K[b, c] := Kn[b, c] := Kh[b, c]Ga,

K0[b, c] := Kn
0 [b, c] := Kh[b, c]×K∞,

K := Kn := Kh[b, c](H
n,l
a ⋊Da

∞),

where K∞ ≃ Syml(R)
a ⋊Da

∞ ⊂ Hn,l(R)a ⋊ Spn(R)
a is the stabilizer of

the point i0, and D∞ is the maximal compact subgroup of Spn(R),

Kh[b, c] := Ch[o, b
−1, b−1]⋊Dh[b

−1, bc] ⊂ Gh,

Ch[o, b
−1, b−1] := {(λ, µ, κ) ∈

∏

v∈h

′H(Fv) : ∀v∈h

λv∈Ml,n(ov), µv∈Ml,n(b
−1
v ),

κv∈Syml(b
−1
v )

},

Dh[b
−1, bc] :=

∏

v∈h

Dv[b
−1, bc],

Dv[b
−1, bc] :=

{
x =

(
ax bx
cx dx

)
∈ Gv : ax∈Mn(ov), bx∈Mn(b

−1
v ),

cx∈Mn(bvcv), dx∈Mn(ov)

}
;

• For r ∈ {0, 1, . . . , n} we define parabolic subgroups of Gn and Gn as
follows:

Pn,r(F ) :=








a1 0 b1 b2
a3 a4 b3 b4
c1 0 d1 d2
0 0 0 d4


 ∈ Gn(F ) : a1, b1, c1, d1 ∈Mr(F )




,

P n,r(F ) :=

{
((λ 0l,n−r), µ, κ)g :

λ ∈Ml,r(F ), µ ∈Ml,n(F ),
κ ∈ Syml(F ), g ∈ Pn,r(F )

}
;

additionally, we set P n := P n,0.
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3 Siegel-Jacobi modular forms of higher index

In this section we introduce the notion of Siegel-Jacobi modular form, both from
a classical and an adelic point of view, and then explain the relation between the
two notions. The content of this section is well-known to researchers working
on Jacobi forms, but to the best of our knowledge it has not been written
elsewhere in such detail and generality. Our exposition follows mainly [19, 34].

3.1 Siegel-Jacobi modular forms

For two natural numbers l, n, we consider the Jacobi group G := Gn,l of degree
n and index l over a totally real algebraic number field F . Note that the global
points G(F ) may be viewed as a subgroup of Gl+n(F ) := Spl+n(F ) via the
embedding

g = (λ, µ, κ)g 7−→

(
1l λ κ−µ tλ µ

1n
tµ
1l

− tλ 1n

)( 1l
a b

1l
c d

)
, g =

(
a b
c d

)
. (1)

We write {σv : F →֒ R, v ∈ a} for the set of real embeddings of F . Each σv
induces an embedding G(F ) →֒ G(R); we will write (λv , µv, κv)gv for σv(g).
The group G(R)a acts on Hn,l := (Hn ×Ml,n(C))

a component-wise via

gz = g(τ, w) = (λ, µ, κ)g(τ, w) =
∏

v∈a

(gvτv, wvλ(gv, τv)
−1 + λvgvτv + µv),

where gvτv = (avτv + bv)(cvτv + dv)
−1 and λ(gv, τv) := (cvτv + dv) for gv =(

av bv
cv dv

)
.

For k ∈ Za and a matrix S ∈ Syml(d
−1) we define the factor of automorphy

of weight k and index S by

Jk,S : G
n,l(F )×Hn,l → C

Jk,S(g, z) = Jk,S(g, (τ, w)) :=
∏

v∈a

j(gv, τv)
kvJSv

(gv , τv, wv),

where g = (λ, µ, κ)g, j(gv, τv) = det(cvτv + dv) = det(λ(gv, τv)) and

JSv
(gv , τv, wv) = e(−tr (Svκv) + tr (Sv[wv]λ(gv, τv)

−1cv)

− 2tr ( tλvSvwvλ(gv, τv)
−1)− tr (Sv[λv]gvτv))

with e(x) := e2πix, and we recall that S[x] = txSx. A rather long but straight-
forward calculation shows that Jk,S satisfies the usual cocycle relation:

Jk,S(gg
′, z) = Jk,S(g, g

′ z)Jk,S(g
′, z). (2)

For a function f : Hn,l → C we define

(f |k,S g)(z) := Jk,S(g, z)
−1f(g z).
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The property (2) implies that

(f |k,S gg
′)(z) = (f |k,S g|k,S g′)(z).

A subgroup Γ of G(F ) will be called a congruence subgroup if there exist a
fractional ideal b and an integral ideal c of F such that Γ is a subgroup of finite
index of the group G(F ) ∩ gK[b, c]g−1 for some g ∈ Gh.
Of particular interest will be the congruence subgroup,

Γ0(b, c) := Γ
n,l
0 (b, c) :={(λ, µ, κ)

(
a b
c d

)
∈G(F ) : λ∈Ml,n(o), µ∈Ml,n(b

−1),

κ∈Syml(b
−1), a, d ∈Mn(o), b ∈Mn(b

−1), c ∈Mn(bc)}.

Often we will be given a congruence subgroup Γ equipped with a homomor-
phism χ : Γ → C×. For example, given a Hecke character χ of F of conductor
fχ dividing c, we can extend it to a homomorphism

χ : Γ0(b, c) → C×, χ

(
(λ, µ, κ)

(
a b
c d

))
:= χ(det d).

We now consider an S ∈ bd−1Tl where

Tl := {x ∈ Syml(F ) : tr (xy) ∈ o for all y ∈ Syml(o)}. (3)

Moreover we assume that S is positive definite in the sense that if we write
Sv := σv(S) ∈ Syml(R) for v ∈ a, then all Sv are positive definite.

Definition 3.1. Let k and S be as above, and Γ a congruence subgroup
equipped with a homomorphism χ. A Siegel-Jacobi modular form of weight
k ∈ Za, index S, level Γ, Nebentypus χ is a holomorphic function f : Hn,l → C
such that

1. f |k,S g = χ(g)f for every g ∈ Γ,

2. for each g ∈ Gn(F ), f |k,S g admits a Fourier expansion of the form

f |k,S g(τ, w) =
∑

t∈L
t≥0

∑

r∈M

c(g; t, r)ea(tr (tτ))ea(tr (
trw)) (∗)

for some appropriate lattices L ⊂ Symn(F ) and M ⊂ Ml,n(F ), where
t ≥ 0 means that tv is semi-positive definite for each v ∈ a.

We will denote the space of such functions by Mn
k,S(Γ, χ).

The second property is really needed only in the case of n = 1 and F = Q
thanks to the Köcher principle for Siegel-Jacobi forms, as it is explained for
example in [34, Lemma 1.6].
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We note that if f ∈Mn
k,S(Γ0(b, c), χ), then

f(τ, w) =
∑

t∈bd−1Tn

t≥0

∑

r∈bd−1Tl,n

c(t, r)ea(tr (tτ))ea(tr (
trw)),

where Tl,n := {x ∈Ml,n(F ) : tr (
txy) ∈ o for all y ∈Ml,n(o)} .

We say that f is a cusp form if in the expansion (∗) above for every g ∈ Gn(F ),

we have c(g; t, r) = 0 unless

(
Sv rv
trv tv

)
is positive definite for every v ∈ a. The

space of cusp forms will be denoted by Snk,S(Γ, χ).
We now introduce the notion of Petersson inner product for Jacobi forms,
following [34]. Let f and g be Jacobi forms of weight k, one of which is a
cusp form. Moreover, assume that both f and g are of level Γ. For z =
(τ, w) ∈ Hn,l we write τ = x + iy with x, y ∈ Symn(Fa) and w = u + iv
with u, v ∈ Ml,n(Fa). Let dz := d(τ, w) := det(y)−(l+n+1)dxdydudv and set
∆S,k(z) := det(y)kea(−4πtr ( tvSvy−1)). Then we define

< f, g >Γ:=

∫

A

f(z)g(z)∆S,k(z)dz, A := Γ \ Hn,l,

and

< f, g >:= vol(A)−1

∫

A

f(z)g(z)∆S,k(z)dz,

so that the latter is independent of the group Γ as long as both f and g are in
Mn
k,S(Γ, χ). As it is explained in [34], the volume differential dz is selected in

such a way that vol(A) = vol(Γ \Ha
n) where Γ is the symplectic part of Γ.

3.2 Adelic Siegel-Jacobi modular forms

We keep writing G := Gn,l for the Jacobi group of degree n and index l. For
two ideals b and c of F , of which c is integral, we recall that we have defined
the open subgroups Kh[b, c] ⊂ Gh, Dh[b

−1, bc] ⊂ Gn
h
in Section 2.

Lemma 3.2. The strong approximation theorem holds for the algebraic group G.
In particular,

G(A) = G(F )Kh[b, c]Ga.

Proof. We give a sketch of the proof. We first observe that the strong approx-
imation holds for the Heisenberg group. Indeed, its center is isomorphic to the
group Syml of symmetric matrices, and we have Hn,l/Syml

∼= Mn,l ×Mn,l.
Furthermore, the strong approximation holds for the symmetric matrices (as
an additive group) and the same holds also forMn,l×Mn,l. From this it is easy
to see that the strong approximation holds for Hn,l. Then, for the whole Jacobi
group, it is enough to observe that the strong approximation holds for Spn with
respect to the subgroup D[b−1, bc] (see [26]), and hence the statement follows
by observing that the Heisenberg group is, by definition, a normal subgroup
of G.
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We now fix once and for all an additive character Ψ : A/F → C× as follows.
We write Ψ =

∏
v∈h

Ψv
∏
v∈a

Ψv and define

Ψv(xv) :=

{
e(−yv), v ∈ h

e(xv), v ∈ a,

where yv ∈ Q is such that TrFv/Qp
(xv)−yv ∈ Zp for p := v∩Q. Given a symmet-

ric matrix S ∈ Syml(F ) we define a character ψS : Syml(A)/Syml(F ) → C×

by taking ψS(κ) := Ψ(tr (Sκ)).
We consider an adelic Hecke character χ : A×

F /F
× → C× of F of finite order

such that χv(x) = 1 for all x ∈ o×v with x − 1 ∈ cv. We extend this character
to a character of the group K0[b, c] by setting χ(w) :=

∏
v|c χv(det(ag))

−1 for

w = hg ∈ K0[b, c].
Now, let k ∈ Za and S ∈ Syml(F ) be such that S ∈ bd−1Tl with Tl as in (3).
Moreover, let K be an open subgroup of K[b, c] for some b and c.

Definition 3.3. An adelic Siegel-Jacobi modular form of degree n, weight
k, index S and character χ, with respect to the congruence subgroup K is a
function f : G(A) → C such that

1. f ((0, 0, κ)γgw) = χ(w)Jk,S(w, i0)
−1ψS(κ)f(g), for all κ ∈ Syml(A),

γ ∈ G(F ), g ∈ G(A) and w ∈ K ∩K0[b, c];

2. for every g ∈ Gh the function fg on Hn,l defined by the relation

(fg |k,Sy)(i0) := f(gy) for all y ∈ Ga

is a Siegel-Jacobi modular form for the congruence group Γg := G(F ) ∩
gKg−1.

Note that the relation (1) is well defined. Indeed, thanks to the strong ap-
proximation for Syml we may write κ = κFκhκa with κF ∈ Syml(F ),
κh ∈

∏
v∈h

Syml(b
−1
v ) and κa ∈

∏
v∈a

Syml(R). Furthermore, observe that
ψS(κ) =

∏
v∈a

ψS,v(κv) = Jk,S((0, 0, κ), i0)
−1 since ψS,h(κh) = 1 by our choice

of the matrix S.
We denote the space of adelic Siegel-Jacobi modular forms by Mn

k,S(K,χ). As
in the case of Siegel modular forms (see for example [27, Lemma 10.8]) we
can use Lemma 3.2 to establish a bijection between adelic Siegel-Jacobi forms
and Siegel-Jacobi modular forms. Indeed, for any given g ∈ Gh we have the
bijective map

Mn
k,S(K,χ) →Mn

k,S(Γ
g , χg) (4)

given by f 7→ fg, with notation as in the Definition 3.3 and χg the character on
Γg defined as χ(γ) := χ(g−1γg). Furthermore, we say that f is a cusp form,
and we denote this space by Snk,l(K,χ) if in the above notation fg is a cusp
form for all g ∈ Gh. We will often use the bijection above with g = 1. In this
case, if we start with an adelic Siegel-Jacobi form f , we will write f for the
Siegel-Jacobi modular form corresponding to f .
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We finish this section with a formula for Fourier expansion of adelic Siegel-
Jacobi forms.

Proposition 3.4. Every Siegel-Jacobi form f ∈ Mn
k,S(K[b, c], χ) admits

Fourier expansion of the form

f

(
(λ, µ, 0)

(
q σq̃

q̃

))
=
∑

t∈L
t≥0

∑

r∈M

c(t, r; q, λ)eA(tr (tσ))eA(tr (
trλσ+ trµ)), (5)

where σ ∈ Symn(A), q ∈ GLn(A), λ, µ ∈ Ml,n(A) are such that λvqv ∈
Ml,n(b

−1
v ) for all v ∈ h; the lattices L,M are described in the proof. Moreover,

the coefficients c(t, r; q, λ) satisfy the following properties:

1) c(t, r; q, λ) = Ψa(tr (S[λ]σ))ea(tr (S[λ](iq
tq)))(det q)kaea(itr (

tqtq +
tq trλq))c0(t, r; q, λ), where c0(t, r; q, λ) is a complex number that depends
only on f , t, r, qh and λh.

2) c(t, r; aq, λa−1) = χ(det a)c( tata, ra; q, λ) for every a ∈ GLn(F ).

3) c(t, r; q, λ) 6= 0 only if (tqtq)v∈(bd−1Tn)v and ev(tr (
tqv

trv(Ml,n(b
−1
v )))=1

for every v ∈ h.

Proof. First of all, note that it is enough to provide a formula for f at (λ, µ, κ)g
with κ = 0 (thanks to the relation (1)) and g of the form as in the hypothesis.
Let Xl,n := {ν ∈ Ml,n(A) : νv ∈ Ml,n(b

−1
v ) for all v ∈ h} and X := {x ∈

Xn,n : x = tx}. As it was observed in [27, Lemma 9.6], we can write σ = s+qx tq
and λs + µ = m + ν tq with s ∈ Symn(F ), x ∈ X,m ∈ Ml,n(F ) and ν ∈ Xl,n.
Then:

f((λ, µ, 0)

(
q σq̃

q̃

)
) = f(

(
1 s

1

)
(λ, λs+ µ, λstλ)

(
q qx

q̃

)
)

= f((0,m, 0)(λ, ν tq, λstλ)a(λ, 0, 0)h(0, ν
tq, κ)h

(
q qx

q̃

)
)

= f((λ, ν tq, λstλ)a(λ, 0, 0)hdiag[q, q̃](0, ν, κ)h

(
1n x

1n

)

a

)

= ψS(κh)

(
fp|k,S(λ, ν

tq, λstλ)a

(
q qx

q̃

)

a

)
(i0),

where we take κ := λstλ− (λq tν + ν tq tλ),p := (λ, 0, 0)hdiag[q, q̃]h and fp is as
in Definition 3.3.
Since fp ∈Mn

k,S(G(F ) ∩ pK[b, c]p−1, χ), it is invariant under the translations

τ 7→ τ + b and w 7→ w + µ for every b ∈ L := Symn(F ) ∩ qhX
tqh and

µ ∈ Ll,n :=Ml,n(F ) ∩ (Xl,n
tqh). Indeed, for each such b and µ the finite parts

of the adelic elements

(0, 0, λbtλ)

(
1 b
0 1

)
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= (λ, 0, 0)diag[q, q̃](0,−λbq̃, 0)

(
1 q−1bq̃
0 1

)
diag[q−1, tq](−λ, 0, 0)

and

(0, µ, λqµq̃ + µtλ) = (λ, 0, 0)diag[q, q̃](0, µq̃, 0)diag[q−1, tq](−λ, 0, 0)

are in the finite part of the group pK[b, c]p−1. Hence, fp has a Fourier expan-
sion

fp(τ, w) =
∑

t∈L
t≥0

∑

r∈M

c(p; t, r)ea(tr (tτ +
trw)),

where
L = {x ∈ Symn(F ) : ea(tr (xL)) = 1},

M = {x ∈Ml,n(F ) : ea(tr (
txLl,n)) = 1}.

In particular, c(p; t, r) 6= 0 only if at every v ∈ h and for every x ∈ Xv, xl,n ∈
(Xl,n)v we have e(tr ( tqvtvqvx)) = 1 and e(tr ( tqv

trv(xl,n))) = 1. Further, if we
put r := (λ, ν tq, λstλ)a

( q qx
q̃

)
a
, we have

f((λ, µ, 0)

(
q σq̃

q̃

)
)= ψS(κh)Jk,S(r, i0)

−1fp(ri0)

= Ψh(tr (Sκ))ea(tr (S[λ]s)+tr (S[λ](iq tq + qx tq)))(det q)k
a

· fp(iq
tq + qx tq, iλq tq + λqx tq + ν tq)

= Ψh(tr (Sκ))ea(tr (S[λ](iq
tq + σ)))(det q)k

a

· fp(iq
tq + qx tq, iλq tq + λqx tq + ν tq),

Now note that

Ψh(tr (Sκ)) = Ψh(tr (S(λs
tλ− (λq tν + ν tq tλ)))) = Ψh(tr (S(λs

tλ))

= Ψh(tr (S(λσ
tλ))Ψh(−tr (S(λqxtqtλ)) = Ψh(tr (S(λσ

tλ))).

Moreover, since eh(tr (tqx
tq)) = 1 = eh(

trλqx tq + trν tq)) for t ∈ L, r ∈M , we
have

eA(tr (tσ)) = eA(tr (ts+ tqx tq)) = eA(tr (tqx
tq)) = ea(tr (tqx

tq))

and

eA(tr (
tr(λσ+µ))) = eA(tr (

tr(m+ ν tq)+ trλqx tq)) = ea(tr (
trν tq+ trλqx tq)).

Hence,

fp(ri0) =
∑

t∈L
t≥0

∑

r∈M

c(p; t, r)ea(itr (tq
tq+ trλq tq))eA(tr (tσ))eA(tr (

trλσ + trµ)).

In this way we obtain Fourier expansion (5) that satisfies properties 1) and 3).
The second property follows from the fact that f |k,Sdiag[a, ã] = χ(det a)−1f for
a ∈ GLn(F ).
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4 Jacobi Eisenstein series

In this section we introduce Klingen-type Jacobi Eisenstein series. We do
this both from a classical and adelic point of view, and also explore the
relation between the two in the spirit of the bijection (4) between classical
and adelic Siegel-Jacobi forms, which was established in the previous section.
First systematic study of Eisenstein series from a classical point of view was
undertaken by Ziegler in [34]. Here we extend his results to totally real fields,
include non-trivial level and non-trivial nebentype. Furthermore, we introduce
the adelic point of view, which, to the best of our knowledge, has not appeared
before in the literature in such detail in the Jacobi setting.

For an integer r ∈ {0, 1, . . . , n}, we let Pn,r,P n,r be Klingen parabolic sub-
groups of Gn and Gn,l respectively, as defined in Section 2. We define the map
λnr,l : G

n,l → F by
λnr,l((λ, µ, κ)g) := λnr (g),

where λnr : Spn → F is the map defined as in [26] by

λnr







a1 a2 b1 b2
a3 a4 b3 b4
c1 c2 d1 d2
c3 c4 d3 d4





 = det(d4),

where the matrices a1, b1, c1, d1 are of size r and the matrices a4, b4, c4, d4 of
size n − r; we set λnn(g) := 1. We extend this map to the adeles so that
λnr,l : G

n,l(A) → A.
Furthermore for r > 0 we define the map

ωr : Hn,l → Hr,l

by ωr(τ, w) := (τ1, w1), where τ1 denotes the r × r upper left corner of the
matrix τ and w1 is the l × r matrix obtained from the first r columns of w.
Note that τ1 = ωr(τ) for ωr as in [26]; we extend this and write ωr(w) := w1.
Finally, we define a (set theoretic) map

πr : H
n,l ×M2n → Hr,l ×M2r, πr((λ, µ, κ), g) := ((λ1, µ1, κ), πr(g)),

where λ1 (resp µ1) is the l×r matrix obtained by taking the first r columns of λ

(resp. µ), and πr(g) :=
(
a1(g) b1(g)
c1(g) d1(g)

)
is the map defined in [26] with π0(g) := 1.

As we pointed out above, the maps λnr ,ωr,πr generalize the maps defined
in [26]. In a similar manner their properties generalize the ones of the symplec-
tic setting.

Lemma 4.1. Assume r > 0. Then for all g ∈ P n,r(A)we have

ωr(gz) = πr(g)ωr(z) (6)

and
Jk,S(g, z) = (λnr,l(g)a)

kJk,S(πr(g),ωr(z)). (7)
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Proof. Write z = (τ, w) and g = hg = (λ, µ, κ)g. Then, by [26, (1.24)],
ωr(gτ) = πr(g)ωr(τ) and j(g, τ) = λr(g)aj(πr(g), ωr(τ)). Thus, to show (6) it
suffices to establish the equality

(w(cgτ + dg)
−1 + λgτ + µ)1 = w1(cπr(g)ωr(τ) + dπr(g))

−1 + λ1πr(g)ωr(τ) + µ1;

or, after using the fact that πr(g)ωr(τ) = ωr(gτ) for g ∈ Pn,r,

(w(cgτ + dg)
−1)1 = w1(cπr(g)ωr(τ) + dπr(g))

−1, (λgτ)1 = λ1ωr(gτ).

Set c := cg, d := dg and observe that for g ∈ P n,r(A),

cτ + d =

(
c1 0
0 0

)(
τ1 τ2
tτ2 τ4

)
+

(
d1 d2
0 d4

)
=

(
c1τ1 + d1 ∗

0 d4

)
,

where c1, τ1, d1 are r × r matrices. Hence,

(w(cτ + d)−1)1 = ((w1 w2)

(
(c1τ1 + d1)

−1 ∗
0 d−1

4

)
)1 = (w1(c1τ1 + d1)

−1 ∗)1

= w1(c1τ1 + d1)
−1 = w1(cπr(g)τ1 + dπr(g))

−1.

Similarly,

λgτ = (λ1 0)

(
ωr(gτ) ∗

∗ ∗

)
= (λ1ωr(gτ) ∗).

We will now sketch a proof of the equality (7). Because λnr,l(g)a = λr(g)a and
j(g, τ) = λr(g)aj(πr(g), ωr(τ)), it is enough to show that

JS(g, z) = JS(πr(g),ωr(z)),

that is,

1. tr (S[w](cgτ + dg)
−1cg) = tr (S[w1](cπr(g)τ1 + dπr(g))

−1cπr(g)),

2. tr ( tλSw(cgτ + dg)
−1) = tr ( tλ1Sw1(cπr(g)τ1 + dπr(g))

−1) and

3. tr (S[λ]gτ) = tr (S[λ1]πr(g)τ1).

Write w = (w1 w2), so that

S[w] =
(

tw1
tw2

)
S(w1 w2) =

(
tw1S
tw2S

)
(w1 w2) =

(
S[w1] ∗
∗ ∗

)
.

Moreover, as we have seen before, (cgτ + dg)
−1 =

(
(cπr(g)ωr(τ)+dπr(g))

−1 ∗
0 ∗

)
,

c =
(
cπr(g) 0

0 0

)
, so that

(cgτ + dg)
−1cg =

(
(cπr(g)ωr(τ) + dπr(g))

−1cπr(g) 0
0 0

)
.

Hence

tr (S[w](cgτ + dg)
−1cg) = tr

((
S[w1] ∗
∗ ∗

)(
(cπr(g)τ1 + dπr(g))

−1cπr(g) 0
0 0

))

= tr (S[w1](cπr(g)τ1 + dπr(g))
−1cπr(g)).

Similar calculations with λ = (λ1 0) prove the remaining equalities.
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4.1 Adelic Jacobi Eisenstein series of Klingen type

We are now ready to define adelic Jacobi Eisenstein series of Klingen type. Fix
a weight k ∈ Za and consider a Hecke character χ such that for a fixed integral
ideal c of F we have

1. χv(x) = 1 for all x ∈ o×v with x− 1 ∈ cv, v ∈ h,

2. χa(xa) = sgn(xa)
k :=

∏
v∈a

(
xv

|xv|

)kv
, for xa ∈ Aa;

we will also write χc :=
∏
v|c χv. We fix a fractional ideal b and an integral

ideal e such that c ⊂ e and e is prime to e−1c. Further, for r ∈ {1, . . . , n} we
set

K := Kh[b, c](H
n,l
a

⋊Da

∞),

Kn,r := {x = (λ, µ, κ)x ∈ K : (a1(x) − 1r)v ∈Mr,r(ev),

(a2(x))v ∈Mr,n−r(ev), (b1(x))v ∈Mr,r(b
−1
v ev) for every v|e},

where x =

(
ax bx

cx dx

)
=



a1(x) a2(x) b1(x) b2(x)
a3(x) a4(x) b3(x) b4(x)
c1(x) c2(x) d1(x) d2(x)
c3(x) c4(x) d3(x) d4(x)


, and

Kr := {x ∈ Kr[b−1e, bc] : (ax − 1r)v ∈Mr,r(ev) for every v|e}.

If r = 0, we put Kn,0 := K.
For a cusp form f ∈ Srk,S(K

r, χ−1), f := 1 if r = 0, we define a C-valued
function φ(x, s; f) with x ∈ Gn(A) and s ∈ C as follows. We set φ(x, s; f) := 0
if x /∈ P n,r(A)Kn,r and otherwise, if x = pw with p ∈ P n,r(A) and w ∈ Kn,r,
we set

φ(x, s; f) := χ(λnr,l(p))
−1χc(det(dw)))

−1Jk,S(w, i0)
−1f(πr(p))|λ

n
r,l(p)|

−2s
A ,

where w = hw with w ∈ Spn(A). We recall here that if we write p for the
symplectic part of p, then λnr,l(p) = λnr (p). Moreover, since at archimedean
places xa ∈ P n,r

a
Kn,r

a
= Pn,r

a
Kn,r

a
if and only if xa ∈ P ′

a
Kn,r

a
, where P ′ :=⋂n−1

r=0 P
n,r ([26], Lemma 3.1), we always choose p ∈ P n,r(A) so that p

a
= pa ∈

P ′
a
. We now check that φ(x, s; f) is well-defined, i.e. that it is independent of

the choice of p and w.
Let x = p1w1 = p2w2, set r := p−1

2 p1 = w2w
−1
1 ∈ P n,r(A)∩Kn,r and assume

that (p1)a, (p2)a ∈ P ′
a
. Observe that λnr,l(r)v = (det dp2,4)

−1
v (det dp1,4)v ∈ o×v

for every v ∈ h, and |λnr,l(r)v|v = 1 for all v ∈ a. Hence, |λnr,l(p)|
−2s
A is indepen-

dent of the choice of p and w, and χ(λnr,l(p))
−1 = χc(λ

n
r,l(p))

−1(λnr,l(p)a)
−k.

Because

f(πr(p1)) = f(πr(p2r)) = f(πr(p2)πr(r))
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= f(πr(p2))χc(det aπr(r))Jk,S(πr(r), i0)
−1,

we have to prove that

χc(λ
n
r,l(r))

−1(λnr,l(r)a)
−kχc(det(dw1))

−1χc(det(dw2))χc(det aπr(r))

= Jk,S(π(r), i0)Jk,S(w1, i0)Jk,S(w2, i0)
−1

First of all, since ra ∈ P ′
a
,

(λnr,l(r)a)
kJk,S(π(r), i0)Jk,S(w1, i0)Jk,S(w2, i0)

−1

= Jk,S(r, i0)Jk,S(r,w1 · i0)
−1 = 1.

Moreover, it is easy to check that

χc(λ
n
r,l(r))

−1χc(det(dw1))
−1χc(det(dw2))χc(det aπr(r))

= χc(det dπr(w2))χc(det dπr(w1))
−1χc(det aπr(r)) = 1.

This proves the statement above.
We define the Eisenstein series of Klingen type by

E(x, s; f , χ) := E(x, s; f , χ,Kn,r) :=
∑

γ∈Pn,r(F )\Gn(F )

φ(γx, s; f), Re(s) ≫ 0.

(8)
If r = 0 and f = 1, then we say that E(x, s) := E(x, s; 1) is an Eisenstein series
of Siegel type.
It is clear from the above calculations that this is well defined, and that for
γ ∈ P n,r(F ), w ∈ Kn,r

h
×K∞,

φ(γxw, s; f) = χc(det(dw))
−1Jk,S(w, i0)

−1φ(x, s; f).

In particular, for κ ∈ Syml(A), γ ∈ Gn(F ), x ∈ Gn(A) and w ∈ Kn,r
h

×K∞,

E((0, 0, κ)γxw, s; f) = ψS(κ)χc(det(dw))
−1Jk,S(w, i0)

−1E(x, s; f).

We will show in Proposition 4.3 below that the series above, evaluated at
s = k/2 for k ∈ Z, k > n+ r+ l+1, is absolutely convergent and hence defines
an adelic Siegel-Jacobi modular form of parallel weight ka := (k, k, . . . , k) ∈ Za.

We now investigate the relation of the adelic Eisenstein series (8) with the
classical one.
Write Kn,r

h
= Ch[o, b

−1, b−1]⋊Dn,r
h

[b−1, bc]. Then it follows from [26, Lemma
3.2] and [23, Lemma 1.3] that

Pn,r(A) =
⊔

x∈X

Pn,r(F )x(Pn,r(A) ∩Dn,r
h

[b−1, bc])Pn,r(Aa),
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where X is a finite subset of Pn,r(A) such that {ar(x) : x ∈ X} forms a set
of representatives for the ideal class group of F , where ar(x) is the ideal of F
defined in [26, page 551] as the ideal corresponding to the idele λr(x). In par-
ticular one may pick x’s of a very specific form, namely diag[1n−1, t

−1, 1n−1, t]
with t ∈ A×

h
. Since P n,r = Hn,l

r ⋊ Pn,r and the strong approximation holds
for Hn,l

r by the same argument as in Lemma 3.2,

P n,r(A) =
⊔

x′∈X′

P n,r(F )x′(P n,r(A) ∩Kn,r
h

[b, c])P n,r(Aa),

where X ′ is the set X extended trivially to Gn by the canonical embedding
Spn →֒ Gn. We can now establish that

P n,r(A)Kn,r =
⊔

x′∈X′

P n,r(F )x′Kn,r
h

[b, c]P n,r(Aa)K
n,r(Aa)

=
⊔

x′∈X′

P n,r(F )x′Kn,r
h

[b, c]Gn(Aa).

Indeed, we only need to establish that the union is disjoint. Assume that the
cosets determined by x1, x2 ∈ X ′ are not disjoint, that is x1 = ax2bc for some
a ∈ P n,r(F ), b ∈ Kh[b, c] and c ∈ P n,r(Aa)K

n,r(Aa). Since x1, x2 ∈ Gn
h
,

x1 = ahx2b. Moreover, since a ∈ P n,r(F ) and x1, x2 are diagonal,
b ∈ P n,r(A) ∩ Kn,r

h
[b, c] and ca ∈ P n,r(R). This implies that x1 ∈

P n,r(F )x2(P
n,r(A) ∩ Kn,r

h
[b, c])P n,r(Aa), and thus x1 = x2. We can now

conclude the analogue of [26, Lemma 3.3] in the Jacobi setting:

Lemma 4.2. Set Y :=
⋃
t∈A×

h

diag[1n−1, t
−1, 1n−1, t]Kh[b, c]P

n,r(Aa)K
n,r(Aa).

Then there exists a finite subset Z of Gn(F ) ∩ Y such that

P n,r(A)Kn,r =
⊔

ζ∈Z

P n,r(F )ζKn,r
h

[b, c]P n,r(R)Kn,r(Aa)

=
⊔

ζ∈Z

P n,r(F )ζKn,r
h

[b, c]Gn(R)

and

Gn(F ) ∩ P n,r(A)Kn,r =
⊔

ζ∈Z

P n,r(F )ζ (Kn,r
h

[b, c]P n,r(Aa)K(Aa) ∩Gn(F ))

=
⊔

ζ∈Z

P n,r(F )ζ (Kn,r
h

[b, c]Gn(Aa) ∩Gn(F )) .

Proof. Take the set X ′ to be of the particular form indicated above, that is
let x′ ∈ X ′ be of the form diag[1n−1, t

−1, 1n−1, t] ∈ Spn(A) →֒ Gn(A) with
t ∈ A×

h
. Observe that for any such x′, x′Kn,r

h
[b, c]Gn(Aa)∩G

n(F ) 6= ∅. Indeed,
this follows from the fact that diag[1n−1, t

−1, 1n−1, t]D
n,r
h

[b−1, bc]Spn(R) ∩
Spn(F ) 6= ∅. Moreover we note that by the discussion above the double coset
P n,r(F ) \ P n,r(A)Kn,r/Gn(R) is finite as so is the set Z.
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4.2 Classical Jacobi Eisenstein series of Klingen type

We now associate a Siegel-Jacobi modular form to an adelic Eisenstein series
defined in (8). We set Γ := Gn(F )∩Kn,r

h
[b, c]Gn(Aa), and with Z as in Lemma

4.2 we define Rζ := (P n,r(F ) ∩ ζΓζ−1) \ ζΓ, for ζ ∈ Z. Then, again by the
same lemma, it follows that a set of representatives for P n,r(F ) \ (Gn(F ) ∩
P n,r(A)Kn,r) is given by R :=

⋃
ζ∈Z Rζ . In particular, we may write

E(x, s; f , χ) =
∑

γ∈R

φ(γx, s; f).

For any given z ∈ Hn,l there is an y ∈ Gn
a
such that y · i0 = z. Moreover, we

can always pick y such that the symmetric matrix in the Heisenberg part of y is
zero, i.e. κy = 0. A Siegel-Jacobi modular form that corresponds to E(x, s; f)
via the bijection (4) with g = 1 is the Eisenstein series,

E(z, s; f , χ) = Jk,S(y, i0)
∑

γ∈R

φ(γy, s; f).

We will write it down in terms of f and z using the bijection (4) again. For some
ζ ∈ Z and γ ∈ Rζ we may write γy = τw, where τh = diag[1n−1, t

−1, 1n−1, t]
as in Lemma 4.2, τa ∈ ∩n−1

r=0P
n,r
a and w ∈ Kn,r. This is because Hn,l

a ⊂ Kn,r
a

and, by [26, Lemma 3.1], Gn(A) = ∩n−1
r=0P

n,r(A)Da
∞Dh[b

−1, b]. Therefore

φ(τw, s; f) = χh(t)
−1χa(λ

n
r,l(τ)a)

−1χc(det(dw))
−1Jk,S(w, i0)

−1

· f(πr(τa))|λ
n
r,l(τ)|

−2s
A .

Observe further that, in case r > 0,

1. f(πr(τa)) = Jk,S(πr(τa), i0)
−1f(πr(τa))

(6),(7)
= Jk,S(τa, i0)

−1(λnr,l(τ)a)
kf(ωr(γz));

2. |λnr,l(τ)a|F = | j(τa,i)
j(πr(τa),ωr(i))

|F =
(
δ(πr(τa),i)
δ(τa,i)

)1/2
=
(
δ(ωr(γz))
δ(γz)

)1/2
;

3. |λnr,l(τ)|A = |t|−1
F |λnr,l(τ)a|F ;

4. Jk,S(γ, z)Jk,S(y, i0) = Jk,S(γy, i0) = Jk,S(τ,wi0)Jk,S(w, i0)

= Jk,S(τ, i0)Jk,S(w, i0).

Moreover, since the product χh(t)
−1χc(det(dw))

−1 depends only on the sym-
plectic part of γ, we can follow the reasoning in [26, Lemma 3.6] and denote
it by χ[γ], which agrees with the definition of χ[γ] in [26, (3.11)]. Taking all
these into account we obtain

E(z, s; f , χ) =
∑

γ∈R

χ[γ]|t|2sF

(
δ(γz)

δ(ωr(γz))

)s−k/2
f(ωr(γz))Jk,S(γ, z)

−1
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=
∑

ζ∈Z

|λnr,l(ζ)|
2s
F

∑

γ∈Rζ

χ[γ]

(
δ(z)

δ(ωr(z))

)s−k/2
f(ωr(z))|k,Sγ. (9)

We also introduce the notation E(z, s; f, χ) := E(z, s; f , χ). Finally if r = 0
(and f = 1), we obtain the Siegel-type Jacobi Eisenstein series,

E(z, s) = E(z, s;χ) =
∑

ζ∈Z

|λn0,l(ζ)|
2s
F

∑

γ∈Rζ

χ[γ]δ(z)s−k/2|k,Sγ

=
∑

ζ∈Z

N(a(ζ))2s
∑

γ∈Rζ

χ[γ]δ(z)s−k/2|k,Sγ. (10)

We finish this section with a result regarding the absolute convergence of the
series.

Proposition 4.3. The Eisenstein series E(z, s; f, χ) is absolutely convergent
for Re(2s) > n + r + l + 1. In particular, for ka ∈ Za with k > n + r + l + 1
the series E(z, k/2; f, χ) is a Siegel-Jacobi form of parallel weight k.

Proof. This follows from the calculations of Ziegler in [34, pages 204-207]. The
difference with his Theorem 2.5 is the different normalisation of our Eisentein
series as well as the introduction of the complex parameter s, but it is easy
to see that his calculations lead to the range of absolute convergence stated
above.

In the last two sections of the paper we will explore analytic properties of
the Klingen-type Eisenstein series E(z, s; f, χ), such as analytic continuation
and possible poles regarding the parameter s. Furthermore, we will investigate
whether this series, even if it fails to be holomorphic in z, is still nearly holo-
morphic with respect to this variable, a notion which will be introduced in the
last section.

5 The Doubling Method

As it was discussed in the introduction of this paper one of the most fruitful
methods for studying various L-functions attached to (classical, i.e. Siegel,
Hermitian, orthogonal) automorphic forms is, what is often called, the doubling
method. It is perhaps not surprising that the same method can be used to study
also L-functions attached to Siegel-Jacobi forms. We will introduce the latter a
bit later in the paper, after developing necessary background for the doubling
method. Actually there are two, rather different, ways to use this method.

1. Method I. This is the original approach of Murase [19, 20], where he
used a homomorphism

Gn,l ×Gn,l → Spl+2n.
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One of the main advantages of this approach is the fact that analytic
properties of the L-function can be read off from analytic properties of
(classical) Siegel Eisenstein series of Sp2n+l, which are well-understood.
On the other hand, it is not quite clear how one could translate the
picture classically, i.e. pulling back the Siegel Eisenstein series to the
Jacobi symmetric space, which makes the method less attractive for other
applications (differential operators, algebraicity, study of Klingen-type
Eisenstein series and others).

2. Method II. The second approach, which we follow in this paper, was
first employed by Arakawa [3]. It uses a homomorphism (shortly to be
made explicit)

Gm,l ×Gn,l → Gn+m,l.

This seems to be a more natural approach and closer to the spirit of
the doubling method, since one “doubles” the same “kind” of a group.
Moreover, it is quite clear what happens on the corresponding symmetric
spaces. However, this method calls for a study of analytic and algebraic
properties of Siegel-type Jacobi Eisenstein series introduced in the previ-
ous section, a task that will be taken upon later in this paper.

In this section we will develop technical results which will be necessary to apply
the doubling method. The main result here is Lemma 5.3, which will be used
in the next section to study a particular pullback of a Siegel-type Eisenstein
series. Our approach is modeled on the work [26] of Shimura concerning the
symplectic case; we generalize his results to the Jacobi setting.
We define first the map mentioned above. Let

ιA : Gm,l ×Gn,l → Gm+n,l,

ιA((λ, µ, κ)g)× (λ′, µ′, κ′)g′)) := ((λλ′), (µµ′), κ+ κ′; ιS(g × g′)),

where

ιS : Gm ×Gn →֒ Gm+n, ιS
((

a b
c d

)
×
(
a′ b′

c′ d′

))
:=

(
a b
a′ b′

c d
c′ d′

)
.

In what follows we will often write g × g′ for ιA(g × g′). Sometimes it will be
useful to view elements of Gm+n,l as elements of Gl+m+n via the embedding
in equation (1). Denote by Hn,l

r the Heisenberg subgroup of P n,r, that is, put

Hn,l
r (F ) := {((λ 0l,n−r), µ, κ) ∈ Hn,l(F )}.

We will now adapt a method presented in [26] to find good coset representatives
for Pm+n(F )\Gm+n(F ). Let n ≤ m and define τ r := 1Hτr ∈ Gm+n(F ), where

τr :=

(
1m

1n
er 1m

ter 1n

)
, er :=

(
1r

0

)
∈Mm,n(F ).
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Lemma 5.1. If n ≤ m,

Gm+n(F ) =
⊔

0≤r≤n

Pm+n(F )τ rιA(G
m(F )×Gn(F )).

Proof. Let Gm+n(F ) =
⊔
i P

m+n(F )giιA(G
m(F )×Gn(F )) be a double coset

decomposition. There exist unique gi ∈ Gm+n(F ) and hi ∈ Hm+n,l(F ) such
that gi = gihi. Note also that ιA(G

m(F )×Gn(F )) = Hm+n,l(F )⋊ιA(G
m(F )×

Gn(F )). We have

Gm+n(F ) =
⊔

i

Pm+n(F )gihiH
m+n,l(F )ιA(G

m(F )×Gn(F ))

=
⊔

i

Hm+n,l
0 (F )Pm+n(F )Hm+n,l(F )giιS(G

m(F )×Gn(F )))

=
⊔

i

Hm+n,l
0 (F )Hm+n,l(F )Pm+n(F )giιS(G

m(F )×Gn(F )).

Since Gm+n(F ) = Hm+n,l(F )Gm+n(F ) and by [26, Lemma 4.2] Gm+n(F ) =⊔
0≤r≤n P

m+n(F )τrιS(G
m(F )×Gn(F )), we can take {gi}i = {τr : 0 ≤ r ≤ n}

and thus {gi}i = {τ r : 0 ≤ r ≤ n}.

Lemma 5.2.

Pm+n(F )τ r(G
m(F )×Gn(F )) =

⊔

ξ,β,γ

Pm+n(F )τ r((ξ × 1H12m−2r)β × γ),

where ξ runs over Syml(F )\G
r(F ), β over Pm,r(F )\Gm(F ), and γ over

P n,r(F )\Gn(F ).

Proof. By previous lemma and Lemma 4.3 from [26],

Pm+n(F )τ rιA(G
m(F )×Gn(F ))

=
⊔

ξ,β,γ

Hm+n,l
0 (F )Hm+n,l(F )Pm+n(F )τrιS(ιS(ξ × 12m−2r)β × γ)),

where ξ, β, γ run over Gr(F ), Pm,r(F )\Gm(F ), Pn,r(F )\Gn(F ) respectively.
Note that

Hm+n,l
0 (F )Hm+n,l(F ) =

⋃

λ∈Ml,m(F )

λ′∈Ml,n(F )

Hm+n,l
0 (F )((λ, 0, 0)12m × (λ′, 0, 0)12n),

and for g = (A B
D ) ∈ Pm+n(F ),

((λ, 0, 0)12m × (λ′, 0, 0)12n)1Hg ∈ Hm+n,l
0 (F )Pm+n(F )((λλ′)A, 0, 0)12(m+n).
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Indeed, if we view it as an element of Gl+m+n, we obtain




1l λ λ′

1m
1n

1l
− tλ 1m
− tλ′ 1n



( 1l

A B
1l
D

)

=

( 1l
A B

1l
D

)( 1l κ (λλ′)B

1m+n
tB t(λλ′)

1l
1m+n

)(
1l (λλ′)A

1m+n

1l
− tA t(λλ′) 1m+n

)

=

(
1l κ (λλ′)B tA

1m+n A tB t(λλ′)
1l

1m+n

)( 1l
A B

1l
D

)( 1l (λλ′)A
1m+n

1l
− tA t(λλ′) 1m+n

)
,

where κ = (λλ′)B tA t(λλ′). Moreover, because τ r commutes with
((λ, 0, 0)12m × (λ′, 0, 0)12n), we have

Pm+n(F )τ rιA(G
m(F )×Gn(F )) =

⊔

ξ,β,γ

⋃

λ∈Ml,m(F )λ′∈Ml,n(F )

Hm+n,l
0 (F )Pm+nτ r

ιA((λ, 0, 0)12m × (λ′, 0, 0)12n)ιS(ιS(ξ × 12m−2r)β × γ).

Write λ= (λ1 λ2) and λ′ = (λ′1 λ
′
2) as concatenation of matrices λ1 ∈Ml,r(F ),

λ2 ∈ Ml,m−r(F ), λ
′
1 ∈ Ml,r(F ), λ

′
2 ∈ Ml,n−r(F ). Because Hm+n,l

0 (F ) and
Pm+n(F ) commute (as follows from the above computation) and

Hm+n,l
0 (F )τ r = τ r{(µ

′ ter, µ, κ)12m × (µer, µ
′, κ′)12n :

µ ∈Ml,n(F ), µ
′ ∈Ml,n(F ), κ, κ

′ ∈ Syml(F )},

we can include (0, (λ′1 0), 0)12m × ((λ′1 0), 0, 0)12n in the set above for each λ′,
and so we are left with

(λ, (−λ′1 0), 0)ιS(ξ × 12m−2r)β × ((0λ′2), 0, 0)γ.

In fact,

(λ, (−λ′1 0), 0)ιS(ξ × 12m−2r)β = ((λ1,−λ
′
1, 0)ξ × 1H12m−2r)((0λ2), 0, 0)β.

Therefore we can exchange the representatives

τ rιA(ιA((λ1,−λ
′
1, 0)ξ × 1H12m−2r)((0λ2), 0, 0)β × ((0λ′2), 0, 0)γ)

with τ rιA((ιA(ξ × 1H12m−2r)β × γ), where ξ,β,γ are as in the hypothesis.
Reversing the process described above, it is easy to see that the cosets are
distinct.

We are now ready to prove the main result of this section. The following lemma
is the generalization of [26, Lemma 4.4].
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Lemma 5.3. Let e, b, c be as in Section 4.1, and σ an element of Gm+n
h given

by

σv :=

{
1Hdiag[1m, θ

−1
v 1n, 1m, θv1n] if v ∤ e,

1Hdiag[1m, θ
−1
v 1n, 1m, θv1n]τn if v|e,

where θ is an element of F×
h such that θo = b. Let Dm+n := Km+n[b, c] ⊂

Gm+n(A). Assume that n ≤ m. Then

Pm+n(F )τn(G
m(F )×Gn(F )) ∩ (Pm+n(A)Dm+nσ)

=
⊔

ξ∈X,β∈B

Pm+n(F )τn((1HιS(ξ × 12m′)β × 1H12n),

where m′ = m − n, B is a subset of Gm(F ) ∩ Y as in Lemma 4.2, which
represents Pm,n(F )\(Gm(F )∩Pm,n(A)Dm), and X = Gn(F )∩Gn

a

∏
v∈h

Xv

with

Xv=





{(λ, µ, κ)x ∈ Cv[o, b
−1, b−1]Dn

v [b
−1c, bc] : ax − 1 ∈Mn,n(ev)}, v|e,

Cv[o, b
−1, b−1]Dn

v [b
−1c, b]WvCv[o, b

−1, b−1]Dn
v [b

−1, bc], v|e−1c,

Cv[o, b
−1, b−1]Gn(Fv)Cv[o, b

−1, b−1], v ∤ c,

Wv = {diag[q, q̃] : q ∈ GLn(Fv) ∩Mn,n(cv)};

if m = n, we take B = {1H12m}.

Remark 5.4. Before we proceed to the proof of the lemma we should stress
a significant difference between this result and the symplectic case. In [26,
Lemma 4.4], at the places v which do not divide c, one obtains that the set
Xv (with the notation there) is the entire symplectic group Gn(Fv) = Spn(Fv).
However, this is not the case here as the set Xv above is not equal to the
group Gn(Fv). This is one of the main differences between the Jacobi and
the symplectic group regarding their Hecke theory at the “good places”. It
will become even more apparent later in this paper when we will consider the
theory of Hecke operators.

Proof of Lemma 5.3. We will divide the proof into two parts: the case where
v does not divide c (a good place) and when it does (a bad place). We first
consider the case of v being good.

We first obtain a description of the set Cv[o, b
−1, b−1]Gn(Fv)Cv[o, b

−1, b−1].
First note that a set of representatives for Gn(Fv)/Dv[b

−1, b] consists of

m(g, h, σ) :=

(
g−1h g−1σth

−1

0 tgth
−1

)

where (g, h) ∈ GLn(ov)\W/(GLn(ov) × 1n), σ ∈ Symn(Fv)/gSymn(b
−1
v )tg

and W = {(g, h) ∈ B × B : gL + hL = L} with B = GLn(Fv) ∩Mn(ov) and
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L =Mn,1(ov). In particular, if we write Dm+n
v = CvDv, then

CvG
n(Fv)Cv =

⋃

g,h,σ

Cvm(g, h, σ)DvCv =
⋃

g,h,σ

Cvm(g, h, σ)CvDv

=
⋃

g,h,σ
λ,µ

Cv(λh
−1g,−λh−1σtg

−1
+ µthtg

−1
, ∗)m(g, h, σ)Dv. (11)

Consider now Pm+n(Fv)D
m+n
v and write Pm+n(Fv) = H0(Fv)P

m+n(Fv).
Since

(
ap bp
0 dp

)
(λ, µ, ∗) = (λa−1

p , λa−1
p bpd

−1
p + µd−1

p , ∗)

(
ap bp
0 dp

)
,

we can conclude that

Pm+n(Fv)D
m+n
v =

{
(λ, µ, κ)g :

λ ∈Ml,n+m(ov)a
−1
p , µ ∈Ml,n+m(Fv),

g = pk∈Spn+m(Fv)

}
.

Note that this is well defined. Indeed, if we write g = p1k1 = p2k2 then
p−1
1 p2 ∈ Dv and in particular a−1

p1 ap2 ∈Mn+m(ov)∩GLn+m(Fv), and similarly
a−1
p2 ap1 ∈Mn+m(ov) ∩GLn+m(Fv); that is, a

−1
p1 ap2 ∈ GLn+m(ov).

Consider now α = ιA(ξ × 1H12m′)β with ξ ∈ Syml(F )\G
n(F ) and

β ∈ Pm,n(F )\Gm(F ), and write ξ = (λ1, µ1, 0)ξ,β = ((0λ2), 0, 0)β, where
λ2 ∈Mr,m−n(F ). Then

α = ιA((λ1, µ1, 0)ξ × 1H12m′)((0λ2), 0, 0)β

= ((λ1 0), (µ1 0), 0)(ξ × 12m′)((0λ2), 0, 0)β

= ((λ1 0), (µ1 0), 0)((0λ2), 0, 0)(ξ × 12m′)β = ((λ1 λ2), (µ1 0), 0)(ξ × 12m′)β,

and so

ιA(α× 1H12n) = ((λ1 λ2 0), (µ1 0 0), 0)((ξ × 12m′)β × 12n).

Now we see that

τnιA(α× 1H12n)σ
−1 = ((λ1 λ2 (−µ1)), (µ1 0 0), 0)τn((ξ × 12m′)β × 12n)σ

−1

= ((λ1 λ2 (−µ1)), (µ1 0 0), 0)τn((ξ × 12m′)β × 12n)σ
−1.

Put g := τn((ξ × 1m−n)β × 12n)σ
−1 and write g = pk ∈ Pm+nDm+n.

Then by [26, Lemma 4.4] we may take β to be of the form hw, where
h = diag[1m−1, t

−1, 1m−1, t] and w is in the congruence subgroup Dm. More-
over, we may take

ξ =

(
g−1h g−1σth

−1

0 tgth
−1

)
d,
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where g, h, σ are in the sets as above, and d ∈ Dn. In particular,

(ξ × 12m′)β × 12n =




A 0 B 0
0 1n 0 0
0 0 D 0
0 0 0 1n


 d1,

where d1 is some element in Dn+m,

A :=

(
g−1h 0

0 h̃

)
, B :=

(
g−1σth

−1
0

0 0

)
, D :=

(
tgth

−1
0

0 h̃−1

)

and h̃ = diag[1m−n−1, t]. In this way we obtain

τn((ξ × 12m′)β × 12n)σ
−1 =




A 0 B 0
0 θv1n 0 0
0 θven D 0

tenA 0 tenB θ−1
v 1n


 d′

for some d′ in the congruence subgroup Dn. Furthermore, if we write



A 0 B 0
0 θv1n 0 0
0 θven D 0

tenA 0 tenB θ−1
v 1n


 = pk

for some p ∈ Pn+m(Fv) and k =

(
k1 k2
k3 k4

)
∈ Dn+m

v [b−1, bc], then we can

conclude that

ta
−1
p k3 =

(
0 θven

tenA 0

)
and ta

−1
p k4 =

(
D 0

tenB θ−1
v 1n

)
.

Since the matrix [k3 k4] extends to an element in the congruence subgroup
Dn+m
v [b−1, bc], it follows that

θ−1
v k3Λ + k4Λ = Λ,

where now Λ = Mn+m,l(o). That is, for any given ℓ ∈ Λ there exist ℓ1, ℓ2 ∈ Λ
such that θ−1

v k3ℓ1 + k4ℓ2 = ℓ. Write Λ = t[Λ1,Λ2,Λ3] with Λ1,Λ3 ∈ Ml,n and

Λ2 ∈Ml,m−n. Then the relation ta
−1
p θ−1

v k3Λ+ ta
−1
p k4Λ = ta

−1
p Λ, which can be

also written as
(

0 en
θ−1
v

tenA 0

)
Λ +

(
D 0

tenB θ−1
v 1n

)
Λ = ta

−1
p Λ,

means that the set ta
−1
p Λ can be described as

(
0 en

θ−1
v

tenA 0

)
t[ℓ1, ℓ2, ℓ3] +

(
D 0

tenB θ−1
v 1n

)
t[ℓ′1, ℓ

′
2, ℓ

′
3],
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where ℓ1, ℓ
′
1 ∈ Λ1, ℓ3, ℓ

′
3 ∈ Λ3, ℓ2, ℓ

′
2 ∈ Λ2 and, recall, en =

(
1n
0

)
∈ Mm,n.

Therefore, since tenA =
(
g−1h 0

)
and tenB =

(
g−1σth

−1
0
)
, we get

(
0 en

θ−1
v

tenA 0

)
t[ℓ1, ℓ2, ℓ3] =




tℓ3
0

θ−1
v g−1htℓ1




and
(
D 0

tenB θ−1
v 1n

)
t[ℓ′1, ℓ

′
2, ℓ

′
3] =




tgth
−1tℓ′1
h̃tℓ′2

g−1σth
−1tℓ′1 + θ−1

v
tℓ′3


 .

Hence,

ta
−1
p Λ =




tℓ3 +
tgth

−1tℓ′1
h̃tℓ′2

g−1hθ−1
v

tℓ1 + g−1σth
−1tℓ

′
1 + θ−1

v
tℓ
′
3


 ,

and after taking a transposition

tΛa−1
p =

(
ℓ3 + ℓ′1h

−1g ℓ′2
t̃h θ−1

v ℓ1
thtg

−1
+ ℓ′1h

−1σtg
−1

+ θ−1
v ℓ′3

)
.

In particular, we see that the element

τnιA(α× 1H12n)σ
−1 = ((λ1 λ2 (−µ1)), (µ1 0 0), 0)τn((ξ × 1m−n)β × 12n)σ

−1

belongs to Pn+m(Fv)D
m+n
v if and only if λ1 is of the form ℓ3+ ℓ′1h

−1g, and µ1

is of the form −(θ−1
v ℓ1

thtg
−1

+ ℓ′1h
−1σtg

−1
+ θ−1

v ℓ′3). This together with (11)
concludes the proof of the lemma in the case of good places.
Now assume that v is a place in the support of c. First we consider the case
when v|e−1c. As above, we start with a description of the set

Cv[o, b
−1, b−1]Dn

v [b
−1c, b]WvCv[o, b

−1, b−1]Dn
v [b

−1, bc],

where Wv = {diag[q, q̃] : q ∈ GLn(Fv) ∩Mn,n(cv)}. As it was shown in [26,
page 567],

Dn
v [b

−1c, b]diag[q, q̃]Dn
v [b

−1, bc] =
⋃

f,g

(
f gf̃

0 f̃

)
Dn
v [b

−1, bc],

where f ∈ GLn(ov)\GLn(ov)qGLn(ov) and g ∈ Symn(b
−1
v cv)/

tfSymn(b
−1
v )f .

Set Cv := Cv[o, b
−1, b−1]. Then:

CvD
n
v [b

−1c, b]WvCvD
n
v [b

−1, bc] = CvD
n
v [b

−1c, b]WvD
n
v [b

−1, bc]Cv

=
⋃

q

⋃

fq ,gq

Cv

(
fq gqf̃q
0 f̃q

)
Dn
v [b

−1, bc]Cv
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=
⋃

q

⋃

fq ,gq

Cv

(
fq gqf̃q
0 f̃q

)
CvD

n
v [b

−1, bc] (12)

=
⋃

q

⋃

fq ,gq,λ,µ

Cv(λf
−1
q ,−λf−1

q gq + µtfq, ∗]

(
fq gqf̃q
0 f̃q

)
Dn
v [b

−1, bc],

where fq ∈ GLn(ov)\GLn(ov)qGLn(ov), gq ∈ Symn(b
−1
v cv)/

tf qSymn(b
−1
v )fq.

Further we argue as in the case of good places. In particular, we may write as
before

τnιA(α× 1H12n)σ
−1 = ((λ1 λ2 (−µ1)), (µ1 0 0), 0)τn((ξ × 1m−n)β × 12n)σ

−1

with ξ = (λ1, µ1, 0)ξ ∈ Syml(F )\G
n(F ) and β = ((0λ2), 0, 0)β ∈

Pm,n(F )\Gm,l(F ). Moreover, using [26, Lemma 4.4] again, we may

take ξ =

(
fq gqf̃q
0 f̃q

)
d for some q ∈ Mn(cv) ∩ GLn(Fv), fq ∈

GLn(ov)\GLn(ov)qGLn(ov), gq ∈ Symn(b
−1
v cv)/

tf qSymn(b
−1
v )fq and

d ∈ Dv[b
−1, bc]. Then we obtain

τn((ξ × 12m′)β × 12n)σ
−1 =




A 0 B 0
0 θv1n 0 0
0 θven D 0

tenA 0 tenB θ−1
v 1n


 d′

for some d′ ∈ Dm+n
v , where this time

A :=

(
fq 0

0 f̃q

)
, B :=

(
gq
tfq

−1
0

0 0

)
, D :=

(
tf

−1
q 0

0 h̃−1

)

As before, write

(
A 0 B 0
0 θv1n 0 0
0 θven D 0

tenA 0 tenB θ−1
v 1n

)
as a product of an element in Pm+n

and Dm+n. Then, after the same computations and with notation as above,
we obtain

tΛa−1
p =

(
ℓ3 + ℓ′1f

−1
q ℓ′2

t̃h θ−1
v ℓ1

tf q + ℓ′1f
−1
q gq + θ−1

v ℓ′3
)

In particular, we see that the element

τnιA(α× 1H12n)σ
−1 = ((λ1 λ2 (−µ1)), (µ1 0 0), 0)τn((ξ × 1m−n)β × 12n)σ

−1

belongs to Pn+m(Fv)D
m+n
v if and only if λ1 is of the form ℓ3 + ℓ′1f

−1
q , and µ1

is of the form −(θ−1
v ℓ1

tfq + ℓ′1f
−1
q gq + θ−1

v ℓ′3). This requirement matches the
decomposition (12), and thus finishes the proof of the second case.
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Finally, we consider the case of v|e. In this situation we also argue as before,
but note that now

τn((ξ × 12m′)β × 12n)σ
−1 =




A 0 B 0
0 θv1n 0 0
0 θven D 0

tenA 0 tenB θ−1
v 1n


 d′,

where

d′ ∈ Dm+n
v , A :=

(
1n 0
0 1n

)
, B :=

(
0 0
0 0

)
, D :=

(
1n 0

0 h̃−1

)
.

Hence, doing exactly the same computations as before, we see that the element

τnιA(α× 1H12n)σ
−1 = ((λ1 λ2 (−µ1)), (µ1 0 0), 0)τn((ξ × 1m−n)β × 12n)σ

−1

belongs to Pn+m(Fv)D
m+n
v if and only if λ1 is of the form ℓ3 + ℓ′1, and µ1

is of the form −(θ−1
v ℓ1 + ℓ′1 + θ−1

v ℓ′3), which gives the set we claimed in the
lemma.

6 Diagonal Restriction of Eisenstein Series

The map Gm,l×Gn,l → Gm+n,l introduced in the previous section induces an
embedding

Hm,l ×Hn,l →֒ Hn+m,l, z1 × z2 7→ diag[z1, z2],

defined by
(τ1, w1)× (τ2, w2) 7→ (diag[τ1, τ2], (w1 w2)).

The aim of this section is to obtain the main identity (20), that is, to compute
the Petersson inner product of a cuspidal Siegel-Jacobi modular form against
a pull-backed Siegel-type Eisenstein series. This identity should be seen as a
generalization of the identity [26, equation (4.11)] from the Siegel to the Jacobi
setting.

6.1 The factor of automorphy

We start with a study of the behavior of the factor of automorphy under diag-
onal restriction. First we compute Jk,S(τ r, z) for 0 ≤ r ≤ n.

Lemma 6.1. Let z = diag[z1, z2] be as above, and τ r as in the previous section.
Then

Jk,S(τ r, z) = ea(−tr (S[ωr(w2)ωr(τ2)
−1 − ωr(w1)](ωr(τ2)

−1 − ωr(τ1))
−1))

· Jk,S(ηr,ωr(z2))) det(ωr(τ1)− ωr(τ2)
−1)k,

where, recall, we write ωr(zi) = ωr(τi, wi) = (ωr(τi),ωr(wi)) for i = 1, 2.
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Proof. Similar calculations have been done in [3, page 191]; a difference in the
formulae comes from a difference between τ r and t

∗
m,n,r(D). First we find that

λ(τr , (
τ1
τ2 ))

−1
( er

ter

)

=



−ωr(τ2)(1r − ωr(τ1)ωr(τ2))

−1 0 (1r − ωr(τ2)ωr(τ1))
−1 0

0 0 0 0
(1r − ωr(τ1)ωr(τ2))

−1 0 −ωr(τ1)(1r − ωr(τ2)ωr(τ1))
−1 0

0 0 0 0


.

Then we compute the trace, so that

Jk,S(τ r, z) = ea(−tr (S[ωr(w2)ωr(τ2)
−1 − ωr(w1)](ωr(τ2)

−1 − ωr(τ1))
−1)))

· ea(tr (S[ωr(w2)ωr(τ2)
−1]ωr(τ2)))j(τr , diag[τ1, τ2])

k.

Finally, since

j(τr, diag[τ1, τ2]) = det(1r − ωr(τ1)ωr(τ2))

= det(ωr(τ1) + ηrωr(τ2)) det(−ωr(τ2)),

where ηr = 1H
(

−1r
1r

)
, the second factor is equal to

Jk,S(ηr, (ωr(τ2),ωr(w2))) det(ωr(τ1)− ωr(τ2)
−1)k.

Now, with the notation of Lemma 5.3, we compute Jk,S(τr((ξ × 12m−2r)β ×
γ), diag[z1 z2]).

Lemma 6.2. With notation as above,

Jk,S(τr((ξ × 12m−2r)β × γ), diag[z1 z2]) (13)

= Jk,S(ξ,ωr(βz1))Jk,S(β, z1)Jk,S(γ, z2)Jk,S(ηr,ωr(γz2))

· ea(−tr (S[ωr(w
′
2)ωr(τ

′
2)

−1 − ωr(w
′
1)](ωr(τ

′
2)

−1 − ωr(τ
′
1))

−1))

· det(ωr(τ
′
1)− ωr(τ

′
2)

−1)k

and

δ(τr((ξ × 12m−2r)β × γ), diag[z1 z2]) = δ(τr((ξ × 12m−2r)β × γ), diag[τ1 τ2])

= δ(βτ1)δ(γτ2)|j(ξ, ωr(βτ1))j(ηr , ωr(γτ2)) det(ξωr(βτ1)− ωr(γτ2)
−1)|−2.

(14)

Proof. By the cocycle relation,

Jk,S(τr((ξ × 12m−2r)β × γ), diag[z1 z2]) =

Jk,S(τr, ((ξ×12m−2r)β×γ)·diag[z1 z2])·Jk,S((ξ×12m−2r)β×γ), diag[z1 z2]).
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Note that

((ξ × 12m−2r)β × γ) · diag[z1 z2] = diag[(ξ × 12m−2r)βz1,γz2],

and thus we find that

Jk,S((ξ × 12m−2r)β × γ), diag[z1 z2])

= Jk,S((ξ × 12m−2r),βz1)Jk,S(β, z1)Jk,S(γ, z2).

Since ξ × 12m−2r ∈ Pm,r,

Jk,S((ξ × 12m−2r),βz1)
(7)
= (λmr,l(ξ × 12m−2r))

kJk,S(πr(ξ × 12m−2r),ωr(βz1))

= Jk,S(ξ,ωr(βz1)).

Moreover, by Lemma 6.1,

Jk,S(τr, diag[(ξ × 12m−2r)βz1,γz2]) =

= ea(−tr (S[ωr(w
′
2)ωr(τ

′
2)

−1 − ωr(w
′
1)](ωr(τ

′
2)

−1 − ωr(τ
′
1))

−1))

· Jk,S(ηr, (ωr(τ
′
2),ωr(w

′
2))) det(ωr(τ

′
1)− ωr(τ

′
2)

−1)k,

where we have set (ξ × 12m−2r)βz1 = (τ ′1, w
′
1) and γz2 = (τ ′2, w

′
2). Putting

everything together gives the equality (13).
The second formula follows from the identity

δ(gτ) = δ(τ)|j(g, τ)|−2 for g ∈ Gn, τ ∈ Hn.

6.2 Decomposing the Eisenstein series I: the non-full rank part

Thanks to the strong approximation (Lemma 3.2) we can pick an element
ρ = 1Hρ ∈ Gm+n(F )∩Km+n[b, c]σ such that aσvρ

−1
v

− 1 ∈Mm+n,m+n(c)v for

all v|c. If we now write ρ = wσ with w ∈ Km+n[b, c], then for y ∈ Ga such
that yi0 = z,

E(yσ−1) = E(ρ−1wy) = E(wy) = E(whway) = χ(det(dwh
))−1E(way)

= χ(det(dwh
))−1(E|k,Sway)(i0).

But since σa is trivial, wa = ρa and, by the condition on ρ, χ(det(dwh
)) =

χ(det(dσh
)−1. In particular, we see that the adelic Eisenstein series E(xσ−1, s)

corresponds to the classical series (E|k,Sρ)(z, s).

Let y,ρ be as above and put

εr(z, s) :=
∑

α∈Ar

pα(z, s), pα(z, s) := φ(αyσ−1, s)Jk,S(y, i0),
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where Ar := Pm+n(F )\Pm+n(F )τ rιA(G
m(F )×Gn(F )). Then

(E|k,Sρ)(z, s) =
∑

0≤r≤n

εr(z, s),

and for a fixed r each α ∈ Ar is of the form α(ξ,β,γ) := τ r((ξ×1H12(m−r))β×
γ) for some ξ,β,γ as in Lemma 5.2.
The following Lemma is a straightforward generalization of Lemma 2.2 in [26]
to the Jacobi case; we omit the proof.

Lemma 6.3. Let f be a cuspidal Siegel-Jacobi form on Hn,l of weight k ∈ Za and
g(z) a function on Hn,l depending only on ωr(z) and Im(z) := (Im(τ), Im(w))
for some r ∈ N with 0 ≤ r < n. If for a congruence subgroup Γ we have
g|k,Sγ = g for every γ ∈ P n,r(F ) ∩ τΓτ−1 with τ ∈ Gn,l(F ), then

<
∑

γ∈R

g|k,Sγ, f >= 0

for any set R of representatives for P n,r(F ) ∩ τΓτ−1 \ τΓ.

Proposition 6.4. Let n ≤ m, z1 ∈ Hm,l and z2 ∈ Hn,l. For a cusp form f
on Hn,l of weight k, 0 ≤ r < n and for s large enough, we have

< εr(diag[z1, z2], s), f(z2) >= 0.

Proof. Let z = diag[z1, z2] ∈ Hm+n,l and fix r ∈ {0, 1, . . . , n− 1}. Put

D′ := {x ∈ Km+n[b, c] : det(dx)v − 1 ∈ cv for every v|c}.

Let Γ be a congruence subgroup ofGn(F ) such that ιA(1H12m×Γ) ⊂ σ−1D′σ.
By the definition of φ, for any d′ ∈ Km+n[b, c]

φ(xd′, s) = χc(det(dd′))
−1Jk,S(d

′, i0)
−1φ(x, s),

and thus pα|kα
′ = pαα′ for α′ ∈ Gm+n(F )∩σ−1D′σ. Further, write Gn(F ) =⊔

τ∈T P n,r(F )τΓ, so that

εr =
∑

ξ,β,γ

pα(ξ,β,γ) =
∑

ξ,β

∑

τ∈T

∑

γ∈Rτ

pα(ξ,β,τ)|kιA(1H12m×τ−1)|kιA(1H12m×γ),

where Rτ := (P n,r(F ) ∩ τΓτ−1)\τΓ. We will check that for each τ ∈ T ,

gτ :=
∑

ξ,β

pα(ξ,β,τ)|kιA(1H12m × τ−1)

satisfies the conditions of Lemma 6.3.
Fix τ ∈ T and take η ∈ P n,r(F ) ∩ τΓτ−1. We will show that

∑

ξ,β

pα(ξ,β,τ)|kιA(1H12m × τ−1ητ ) =
∑

ξ,β

pα(ξ,β,τ), (15)
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which in turn immediately implies

∑

ξ,β

pα(ξ,β,τ)|kιA(1H12m × τ−1η) =
∑

ξ,β

pα(ξ,β,τ)|kιA(1H12m × τ−1).

First of all, because τ−1ητ ∈ Γ, pα(ξ,β,τ)|kιA(1H12m × τ−1ητ ) = pα(ξ,β,ητ ),
where

α(ξ,β,ητ )=τ r((ξ×1H12(m−r))β×ητ )=τ r(1H12m×η)((ξ×1H12(m−r))β×τ ).

Because pα depends only on Pm+n(F )α, in order to prove (15) it suffices to
show that there exists ζ ∈ Gr(F ) such that

α(ξ,β,ητ ) ∈ Pm+n(F )α(ζξ,β, τ ). (16)

Write η = ((λ′1 0), µ
′, κ′)η. By the same calculation as in the proof of Lemma

5.2,

τ r(1H12m × η) ∈ Pm+n(F )τ r((−µ
′ ter, (−λ

′
1 0), 0)12m × 1Hη)

= Pm+n(F )τ r(1H12m × 1Hη)((−µ
′ ter, (−λ

′
1 0), 0)12m × 1H12n).

On the other hand, by [26, Lemma 4.3], there is ζ ∈ Gr(F ) such that
τrιS(12m × η) ∈ Pm+n(F )τrιS(ιS(ζ × 12(m−r)) × 12n). Hence, (16) holds for

ζ = ζ(−µ′
(
1r
0

)
,−λ′1, 0). This proves (15), and thus also an invariance property

for gτ .
It remains to show that gτ (diag[z1, z2], s) depends only on s, z1, Im(z2) and
ωr(z2). Observe that whenever αyσ−1 = pw for some p ∈ P n,0(A), w ∈ Kn,0,
then

φ(αyσ−1, s)Jk,S(y, i0)

= χ(det dp)
−1χc(det(dw)c)

−1Jk,S(w, i0)
−1| det dp|

−2s
A Jk,S(y, i0)

= µ(αhσ
−1)χa(det(dp)a)

−1Jk,S(p, i0)Jk,S(α, z)
−1| det dp|

−2s
A ,

where we put µ(αhσ
−1) := χh(det(dp)h)

−1χc(det(dw)c)
−1. Moreover, because

Jk,S(p, i0) = χa(det(dp)a)| det dp|
k
a
, | det dp|

−2s
A = δ(αaz)

sN(a0(ασ
−1))2s,

we get

(E|k,Sρ)(z, s) =
∑

0≤r≤n

∑

α∈Ar

φ(αyσ−1, s)Jk,S(y, i0) (17)

=
∑

r

∑

α

N(a0(ασ
−1))2sµ(αhσ

−1)Jk,S(αa, diag[z1, z2])
−1δ(αadiag[z1, z2])

s− k
2 .

From this and the formulas (13), (14) we see that gτ depends only on
s, z1, Im(z2) and ωr(z2). This finishes the proof.
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6.3 Decomposing the Eisenstein series II: the full rank part

Lemma 6.5 (Reproducing Kernel). Let f be a holomorphic function on Hn,l of
weight k ∈ Za such that ∆S,k(z)f(z)

2 is bounded. Then for s ∈ Ca satisfying
Re(sν) ≥ 0, Re(sν) + kν − l/2 > 2n for each ν ∈ a, and for (ζ, ρ) ∈ Hn,l we
have

c̃S,k(s) det(Im(ζ))−sf(ζ, ρ) =
∫

Hn,l

f(τ, w)ea(−tr (S[w − ρ̄](τ − ζ̄)−1)) det(τ − ζ̄)−k| det(τ − ζ̄)|−2s

· det(Im(τ))s∆S,k(z)d(τ, w),

where

c̃S,k(s) =
∏

ν∈a

det(2Sν)
−n(−1)n(l+kν/2)2n(n+3)/2−4sν−nkνπn(n+1)/2

·
Γn(sν + kν −

l
2 − n+1

2 )

Γn(sν + kν −
l
2 )

and Γn(s) := πn(n−1)/4
∏n−1
i=0 Γ(s− i

2 ).

Proof. We remark that a very similar integral was computed in the proof of
[3, Lemma 2.8]. The main difference in the formula comes from a choice of
parametrization for w.
The proof is based on the identity:

∫

Rl×n

exp(atr (−S[X ]A+RXA))dX

= (detA)−l/2
(π
a

)nl/2
(detS)−n/2 exp

(a
4
tr (S−1[ tR]A)

)
,

where S ∈ Syml(R) is a symmetric positive definite matrix, X ∈ Ml,n(R),
A ∈ Symn(C) and a ∈ C×.
For f(τ, w) =

∑
T,R c(T,R)ea(tr (Tτ +Rw)), we obtain

∫

Hn,l

f(τ, w)ea(−tr(S[w − ρ̄](τ − ζ̄)−1)) det(τ − ζ̄)−k| det(τ − ζ̄)|−2s det(Im(τ))s

·∆S,k(z)d(τ, w)

= 2−nl/2 det(2S)−n
∑

R

ea(tr

(
Rρ+

1

4
S−1[ tR]ζ

)
)

·

∫

Ha
n

det(ζ − τ̄ )l/2−k(−1)n(k+l/2+l/4)| det(ζ − τ̄ )|−2s det(Im(τ))s+k−l/2

· ea

(
−
1

4
tr (S−1[ tR]τ)

)∑

T

c(T,R)ea(tr (Tτ)) det(Im(τ))ldτ.
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By the “classical” reproducing kernel formula for holomorphic functions on
the Siegel upper half space as stated for example in [26, Lemma 4.7], the last
integral equals

c̃S,k(s)

2−nl/2 det(2S)−n
ea

(
−
1

4
tr (S−1[ tR]ζ)

)
det(Im(ζ))−s

∑

T

c(T,R)ea(tr (Tζ)),

where c̃S,k(s) is as in the hypothesis. This concludes the proof.

In order to proceed further we introduce the following notation, taken from
[26, equation (4.5)]. We have that Gn(A) = Dn[b−1, b]WDn[b−1, b] with

W =

{
diag[q, q̃] : q ∈ GLn(Ah) ∩

∏

v∈h

GLn(ov)

}
,

that is, any element x ∈ Gn(A) may be written as x = γ1diag[q, q̃]γ2 with
γ1, γ2 ∈ Dn[b−1, b] and q ∈ W . We define ℓ0(x) to be the ideal associated to
det(q), ℓ1(x) :=

∏
v∤c ℓ0(x)v and set ℓ(x) for the norm of the ideal ℓ0(x). With

this notation we have,

Lemma 6.6. For z1 ∈ Hm,l and z2 ∈ Hn,l,

εn(diag[z1, z2], s)

=
∑

β∈B

∑

ξ∈X

N(b)−2nsN(a0(β))
2sℓ(ξ)−2sχh(θ

n)χ[β]χ∗(ℓ1(ξ))χc(det(dξ))
−1

· Jk,S(ξ,ωn(βz1))
−1Jk,S(β, z1)

−1Jk,S(ηn, z2)
−1 det(ωn(τ

′
1)− τ−1

2 )−k

· ea(tr (S[w2τ
−1
2 − ωn(w

′
1)](τ

−1
2 − ωn(τ

′
1))

−1))(δ(βτ1)δ(τ2))
s−k/2

· |j(ξ, ωn(βτ1))j(ηn, τ2) det(ωn(τ
′
1)− τ−1

2 )|−2s+k,

where we have set (ξ × 12m−2n)βz1 = (τ ′1, w
′
1).

Proof. The statement follows from the explicit computation of the factors oc-
curring in the formula (17). Recall that we have already computed the values of
the automorphy factor and δ in (13), (14). Therefore it suffices to find a0(ασ

−1)
and µ(αhσ

−1) for α = τnιA(ιA(ξ × 1H12(m−n))β × γ) with ξ ∈ X,β ∈ B as
in Lemma 5.3. Observe though that neither a0 nor µ depends on the elements
from Heisenberg group. Moreover, because for any symplectic matrix g we
have gH = Hg, the symplectic factors of the representatives given in Lemma
5.3 are exactly the same as the representatives provided in [26, Lemma 4.4].
Hence, it is clear that the formulas for a0 and µ have to be the same as the
ones computed in [26, Lemma 4.6]. That is:

a0(ασ
−1)=b−na0(β)ℓ0(ξ)

−1, µ(αhσ
−1)=χh(θ

n)χ[β]χ∗(ℓ1(ξ))χc(det(dξ))
−1.
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We now consider an f ∈ Sk(Γ, χ
−1) where Γ := Gn ∩D with

D := {(λ, µ, κ)x ∈ C[o, b−1, b−1]D[b−1e, bc] : ∀v|e (ax − 1n)v ∈Mn,n(ev)}.

We set νe = 2 if e|2, and 1 otherwise. Then by using the standard unfolding
trick regarding the z2 variable and setting A := Γ \ Hn,l, we obtain

<εn(diag[z1, z2], s), f(z2) >

= νevol(A)
−1
∑

β∈B

∑

ξ∈X

N(b)−2nsN(a0(β))
2sℓ(ξ)−2sχh(θ

n)χ[β]χ∗(ℓ1(ξ))

· χc(det(dξ))
−1Jk,S(ξ,ωn(βz1))

−1Jk,S(β, z1)
−1δ(βτ1)

s−k/2|j(ξ, ωn(βτ1))|
−2s+k

∫

Hn,l

det(ωn(τ
′
1)− τ−1

2 )−kea(tr (S[w2τ
−1
2 −ωn(w

′
1)](τ

−1
2 −ωn(τ

′
1))

−1))δ(τ2)
s−k/2

· Jk,S(ηn, z2)
−1|j(ηn, τ2) det(ωn(τ

′
1)− τ−1

2 )|−2s+kf(z2)∆S,k(τ2, w2)d(τ2, w2).

It is easy to show that the integral on the right of the above formula is equal
to

∫

Hn,l

f |k,Sηn(z2) det(τ2+ωn(τ
′
1))

−kea(−tr (S[w2+ωn(w
′
1)](τ2+ωn(τ

′
1))

−1))

· (−1)n(s+k/2)δ(τ2)
s−k/2| det(τ2 + ωn(τ

′
1))|

−2(s−k/2)∆S,k(τ2, w2)d(τ2, w2),

and by Lemma 6.5, this further equals

(−1)n(s+k/2)c̃S,k(s̄− k/2)δ(ξωn(βτ1))−s̄+k/2f |k,Sηn(−ξωn(βz1)). (18)

Put δn,k :=
∏
v∈a

δv,n,k, where δv,n,k is equal to 1 if nkv even and −1 otherwise,

and let cS,k(s) := δn,kc̃S,k(s). Then, because Γ(s̄) = Γ(s), the quantity (18)
equals

(−1)n(s+k/2)cS,k(s− k/2)δ(ξωn(βτ1))
−s+k/2f |k,Sηn(−ξωn(βz1)).

Hence, if we set f c(z) := f(−z̄), where −z̄ := (−τ̄ ,−w̄) for z = (τ, w), then

N(b)2nsχh(θ)
−n(−1)n(s−k/2)cS,k(s−

k

2
)−1vol(A)<εn(diag[z1, z2], s), f(z2)>

= νe
∑

β∈B

∑

ξ∈X

N(a0(β))
2sℓ(ξ)−2sχ[β]χ∗(ℓ1(ξ))χc(det(dξ))

−1Jk,S(β, z1)
−1

· Jk,S(ξ,ωn(βz1))
−1δ(βτ1)

s−k/2|j(ξ, ωn(βτ1))|
−2s+kδ(ξωn(βτ1))

−s+k/2

· ((f |k,Sηn)
c|k,Sξ)(ωn(βz1))Jk,S(ξ,ωn(βz1))

=
∑

β∈B

N(a0(β))
2sχ[β]Jk,S(β, z1)

−1

(
δ(βτ1)

δ(ωn(βτ1))

)s−k/2
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·
∑

ξ∈X

ℓ(ξ)−2sχ∗(ℓ1(ξ))χc(det(dξ))
−1((f |k,Sηn)

c|k,Sξ)(ωn(βz1)).

It is not hard to see that η−1
n X = Y η−1

n , where Y = Gn(F ) ∩Gn
a

∏
v∈h

Y v

with

Y v=





{(λ, µ, κ)y ∈ Cv[b
−1, o, b−1]Dn

v [bc, b
−1c] : ay − 1 ∈Mn,n(ev)}, v|e,

Cv[b
−1, o, b−1]Dn

v [b, b
−1c]ZvCv[b

−1, o, b−1]Dn
v [bc, b

−1], v|e−1c,

Cv[b
−1, o, b−1]Gn(Fv)Cv[b

−1, o, b−1], v ∤ c,

Zv = {diag[q̃, q] : q ∈ GLn(Fv) ∩Mn,n(cv)}.

Moreover, it follows from Proposition 7.10 which we prove later that
(f |k,Sηn)

c = f c|k,Sη−1
n . Set

D(z, s, g) :=
∑

ξ∈Y

ℓ′(ξ)−sχ∗(ℓ′1(ξ))χc(det(aξ))
−1(g|k,Sξ)(z), (19)

where ℓ′(ξ) := ℓ(ηnξη
−1
n ), ℓ′1(ξ) := ℓ′1(ηnξη

−1
n ). Then, using Proposition 6.4,

formula (9) and the fact that N(a(β)) = |λmn,l(β)|F , we obtain

N(b)2nsχh(θ)
−n(−1)n(s−k/2)cS,k(s− k/2)−1vol(A)

· < (E|k,Sρ)(diag[z1, z2], s), f(z2) >

= νe
∑

β∈B

N(a0(β))
2sχ[β]Jk,S(β, z1)

−1

(
δ(βτ1)

δ(ωn(βτ1))

)s−k/2

· D(ωn(βz1), 2s, f
c)|k,Sη

−1
n . (20)

7 Shintani’s Hecke Algebras and the standard L-function
attached to Siegel-Jacobi modular forms

In this section we define Hecke operators acting on the space of Siegel-Jacobi
modular forms. These operators were studied in the higher index case first by
Shintani (unpublished), Murase [19, 20] and Murase and Sugano [21]. As we
have indicated in the introduction, this was done in the case of trivial level,
and one of our contributions in this section is to define such operators also
for non-trivial level. Furthermore, in this section we introduce the standard
Dirichlet series which can be attached to a Hecke eigenform. Our main result
here is an Euler product representation for this series, which extends previous
results in [21] from index one to higher indices.
We start by fixing some notation. For the usual fractional ideals b, c, e let

D := {(λ, µ, κ)x ∈ C[o, b−1, b−1]D[b−1e, bc] : ∀v|e (ax − 1n)v ∈Mn(ev)},

Γ := Gn(F ) ∩D,
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Q(e) := {r ∈ GLn(Ah) ∩
∏

v∈h

Mn(ov) : rv = 1n for every v|e},

R(e) := {diag[r̃, r] : r ∈ Q(e)}.

For r ∈ Q(e) and f ∈ Mn
k,S(Γ, ψ) we define a linear operator Tr,ψ :

Mn
k,S(Γ, ψ) →Mn

k,S(Γ, ψ) by

f |Tr,ψ :=
∑

α∈A

ψc(det(aα)c)
−1f |k,Sα, (21)

where A ⊂ Gn(F ) is such that Gn(F ) ∩Ddiag[r̃, r]D =
∐

α∈A Γα. Further,
for an integral ideal a of F we put

f |Tψ(a) :=
∑

r∈Q(e)
det(r)o=a

f |Tr,ψ,

where we sum over all those r for which the cosets ErE are distinct, where
E :=

∏
v∈h

GLn(ov).
We also note here that if we let f |Tr,ψ be the adelic Siegel-Jacobi form associated
to f |Tr,ψ by the bijection given in (4) with g = 1, then

(f |Tr,ψ)(x) =
∑

α∈A

ψc(det(aα)c)
−1f(xα−1), x ∈ Gn(A),

where Ddiag[r̃, r]D =
∐

α∈A Dα with A ⊂ Gh. As above we may also define
f |Tψ(a).
We now consider a nonzero f ∈ Snk,S(D, ψ) such that f |Tψ(a) = λ(a)f for all
integral ideals a of F . For a Hecke character χ of F we define the series

D(s, f , χ) :=
∑

a

λ(a)χ∗(a)N(a)−s, Re(s) ≫ 0,

where for a Hecke character χ we write χ∗ for the corresponding ideal character.
Of course, for a prime ideal q that divides the conductor fχ we set χ∗(q) = 0. A
similar argument to [3, Lemma 2.2] extended to the totally real field case shows
that the function D(s, f , χ) is absolutely convergent for Re(s) > 2n+ l + 1.
We now impose a condition on the matrix S. We follow [19, page 142]. Consider
any prime ideal p of F such that (p, c) = 1 and write v for the corresponding
finite place of F . We say that the lattice L := olv ⊂ F lv is an ov-maximal lattice
with respect to a symmetric matrix 2S if for every ov lattice M of F lv that
contains L and satisfies S[x] ∈ ov for all x ∈ M , we have M = L. For any
uniformiser π of Fv we now set

L′ := {x ∈ (2S)−1L : πS[x] ∈ ov} ⊂ F lv.

We say that the matrix S satisfies the condition M+
p if L is an ov-maximal

lattice with respect to the symmetric matrix 2S and L = L′. The main aim of
this section is to prove the following theorem.
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Theorem 7.1. Let 0 6= f ∈ Snk,S(D, ψ) be such that f |Tψ(a) = λ(a)f for all

integral ideals a of F . Assume that the matrix S satisfies the condition M+
p for

every prime ideal p with (p, c) = 1. Then

L(χ, s)D(s+ n+ l/2, f , χ) = L(s, f , χ) :=
∏

p

Lp(χ
∗(p)N(p)−s)−s,

where for every prime ideal p of F

Lp(X) =





∏n
i=1

(
(1− µp,iX)(1− µ−1

p,iX)
)
, µp,i ∈ C× if (p, c) = 1,∏n

i=1(1− µp,iX) µp,i ∈ C if (p, e−1c) 6= 1

1 if (p, e) 6= 1.

Moreover, L(χ, s) =
∏

(p,c)=1 Lp(χ, s), where

Lp(χ, s) := Gp(χ, s) ·

{∏n
i=1 Lp(2s+ 2n− 2i, χ2) if l ∈ 2Z∏n
i=1 Lp(2s+ 2n− 2i+ 1, χ2) if l 6∈ 2Z

and Gp(χ, s) is a ratio of Euler factors which for almost all p is equal to one.
(Below, in Theorem 7.6 we make Gp(χ, s) very precise.) In particular, the
function L(s, f , χ) is absolutely convergent for Re(s) > n+ l/2 + 1.

Remark 7.2. It is worth to notice that the factor Gp(χ, s) does not appear in
the works of [21] and [3]. It is because in the case of l = 1 considered there, the
condition M+

p is equivalent to the condition that the matrix S is regular (see
for example [19, Remark 4.3]), which implies that the factor Gp(χ, s) is equal
to one for all good primes. We should also mention here that Sugano in [33],
in the case of n = 1, obtained an Euler product expression working under a
weaker assumption on S.

Before we proceed to the proof of the above theorem, we state an immediate
corollary regarding the vanishing of the L-function defined above.

Corollary 7.3. With notation and assumptions as in Theorem 7.1,

L(s, f , χ) 6= 0

whenever Re(s) > n+ l/2 + 1.

Proof. This follows from the fact that the function L(s, f , χ) is absolutely con-
vergent for Re(s) > n+ l/2 + 1 and has an Euler product representation. For
the formal argument see [28, Lemma 22.7].

The rest of this section is devoted to a proof of Theorem 7.1. Note that if we
fix a prime ideal p of F and consider the series

Dp(s, f , χ) :=

∞∑

j=0

λ(pj)χ∗(p)jN(p)−js, Re(s) ≫ 0,
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then

D(s, f , χ) =
∏

p

Dp(s, f , χ) =
∏

(p,fχ)=1

Dp(s, f , χ),

which means that it suffices to prove the theorem locally place by place.

Local Notation. For the rest of this section we fix the following notation.
We fix a finite place v ∈ h of F . We abuse the notation and write F for Fv,
o for ov, and just p for the corresponding maximal ideal in ov. Moreover, we
denote by π ∈ p any uniformiser of this place. We further set q := [o : p] and
denote by | · | the absolute value of F normalised so that |π| = q−1. We also
write G, G,D, D for G(Fv), G(Fv),Dv and Dv. Finally, in this part of the
paper we denote by ψS the v-component of the additive adelic character ψS
introduced in section 3.

7.1 The good places

We consider first a finite place v which is not in the support of cfχ. We
assume that the matrix Sv satisfies condition M+

p . As we have indicated at
the beginning of this section we will extend the results of [21] from the case
l = 1 to any l, and also introduce the twisting by a finite character χ. Here we
use (more or less) the notation from [19, 20, 21].

We define a local Hecke algebra X as in [19, page 142]. That is, let X be the
C-module consisting of C-valued functions φ on G which satisfy

φ((00, κ)dgd′) = ψS(κ)φ(g), d,d′ ∈ D, g ∈ G, κ ∈ Syml(F )

and have compact support modulo Z := Syml(F ) ⊂ G. As it is explained
in [19], one can give to this module the structure of an algebra by defining
multiplication through convolution of functions. Moreover, it is shown in [19,
Lemma 4.4] that the assumptionM+

p implies that a function φ ∈ X has support
in ⋃

α∈Λ+

Ddn(πα)DZ,

where Λ+ := {(a1, a2, . . . , an) ∈ Zn : a1 ≥ a2 ≥ . . . ≥ an ≥ 0},

dn : GLn →֒ G ⊂ G, dn(a) := diag[a, ta
−1

],

and πα := diag[πa1 , πa2 , . . . , πan ] ∈ GLn(F ).

Let

T := T (F ) := {dn(diag[t1, . . . , tn]) : ti ∈ F×} ∈ G

and

X0(T ) := {ξ ∈ Hom(T,C×) : ξ is trivial on T (o)}.
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For a character ξ ∈ X0(T ) and φ ∈ X set

λξ(φ) :=
∑

α∈Zn

ξ−1(dn(πα))φ̂(dn(πα)),

where for a function φ ∈ X, φ̂(t) is defined as in [19, equation (4.8)], that is,

φ̂(t) := δN0(t)
−1/2

∫

N0

φ(n0t)dn0,

where N0 := V0N0 ⊂ G, N0 is the unipotent radical of the Siegel parabolic P0

of Spn, V0 := {(0, µ, 0) : µ ∈ Ml,n}, and δN0 and the Haar measure dn0 are
normalized as in [19, page 144].
For an α ∈ Λ+ we define φα ∈ X by

φα(g) :=

{
ψS(κ) if g = (0, 0, κ)ddn(πα)d

′ ∈ ZDdn(πα)D,

0 otherwise,

and for a finite unramified character χ of F× we define the function νs,χ on G,
s ∈ C, by the conditions

νs,χ((0, 0, κ)dgd
′) = ψS(−κ)νs,χ(g), g ∈ G, d,d′ ∈ D

and
νs,χ(πα) := χ(πv)

ℓ(α)q−ℓ(α)s,

where ℓ(α) =
∑n

i=1 ai. It is shown in [21] that these two conditions uniquely
determine the function νs,χ. Now, given a character ξ ∈ X0(T ) and an unram-
ified character χ of F×, we introduce the series

B(ξ, χ, s) :=
∑

α∈Λ+
n

λξ(φα)χ(π)
ℓ(α)q−ℓ(α)s.

Given a ξ ∈ X0(T ) we define the function φξ on G following [19, equation
(4.11)] by

φξ((0, 0, κ)n0t(λ, 0, 0)d) = ψS(κ)(ξδ
1/2
n0

)(t)ΦL(λ), d ∈ D, t ∈ T, n0 ∈ N0,

where ΦL is the characteristic function of L := Ml,n(o). The following
lemma ([3], Lemma 5.2) gives an important integral representation of the series
B(ξ, χ, s).

Lemma 7.4 (Murase). For ξ ∈ X0(T ) and a finite unramified character χ of
F× we have

B(ξ, χ, s) =

∫

Z\G

νχ,s(g)φξ(g)dg.

Remark 7.5. The original lemma in [3] is stated without a twist by χ, but it is
easy to see that the arguments there extend easily to include also the case of
twisting by an unramified character.
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For a finite unramified character χ and a character ξ = (ξ1, . . . , ξn) ∈ X0(T ),
where ξi are unramified characters of F×, we define the local L-function

L(ξ, χ, s) :=
n∏

i=1

(1− ξi(π)χ(π)q
−s)−1(1− ξ−1

i (π)χ(π)q−s)−1.

In order to state the main theorem of this section we need to introduce a bit
more notation. We write αS(s, χ) for the Siegel series attached to the symmetric
matrix S and to the character χ, as defined for example in [27, Chapter III].
Moreover, by [27, Theorem 13.6], we have

αS(s, χ) =


L(s, χ)

[l/2]∏

i=1

L(2s− 2i, χ2)




−1

gS(s, χ) (22)

for some analytic function gS(s, χ) of the form gS(s, χ) = P (χ(π)q−s) for
some polynomial P (X) ∈ Z[X ] of constant term one. Moreover if S is regular,
that is, det(2S) = o× for l even and det(2S) = 2o× for l odd, then gS(s, χ) = 1.

The following theorem generalizes a result due to Murase and Sugano [21],
where the case of l = 1 and χ trivial is considered.

Theorem 7.6. With the notation as above,

L(ξ, χ, s) =
gS(s+ n+ l/2, χ)

gS(s+ l/2, χ)
Λ(χ, s)

∫

Z\G

νχ,s+n+l/2(g)φξ(g)dgΛ(χ, s),

where

Λ(χ, s) :=

{∏n
i=1 L(2s+ 2n− 2i, χ2) if l ∈ 2Z,∏n
i=1 L(2s+ 2n− 2i+ 1, χ2) if l 6∈ 2Z.

In particular,

L(ξ, χ, s) = B(ξ, χ, s+ n+ l/2)
gS(s+ n+ l/2, χ)

gS(s+ l/2, χ)
Λ(χ, s).

Remark 7.7. In the notation of Theorem 7.1 we have Gp(χ, s) =
gS(s+n+l/2,χ)
gS(s+l/2,χ) ,

where p is the prime ideal corresponding to the place v.

The rest of this subsection is devoted to a proof of this theorem. First we
extend some calculations of Murase and Sugano [21]. Denote by σn1,n2 the
characteristic function of Mn1,n2(o) and let

F (s, χ, g) := F (s, χ, hg) :=
∫

GL2n+l(Fv)

σ2n+l,4n+2l

((
y

(
1l 0
0 g

)
, yα(h)

))
χ(det(y))| det(y)|s+n+l/2d∗y,
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where for h = (λ, µ, κ) ∈ H we set

α(h) :=



κ− λtµ −λ −µ

tµ 1n 0
tλ 0 1n


 .

Define also

F(s, χ, g) :=

∫

Z

F (s, χ, (0, 0, κ)g)ψS(κ)dκ.

We now recall a theorem of Murase in [20, Theorem 2.12].

Theorem 7.8 (Murase). We have the equality:

L(ξ, χ, s) = αS

(
s+

l

2
, χ

)−1

L

(
s+

l

2
, χ

)−1 ∏n
i=1 L(2s+ 2n+ l − 2i, χ2)

∏2n+l−1
i=1 L(s+ n+ l/2− i, χ)

·

∫

Z\G

F(s, χ, g)φξ(g)dg.

The following lemma extends a result of Murase and Sugano in [21, Lemma
6.8] from the case of index one (l = 1) to any index.

Lemma 7.9. We have the following equality:

F(s, χ, g) =

(
l∏

i=1

L(s+ n+ l/2− i+ 1, χ)

)
αS(s+ n+ l/2, χ)

·

(
2n∏

i=1

L(s+ n− l/2− i+ 1, χ)

)
νs+n+l/2,χ(g).

Proof. We recall first a result of Shimura. By [27, Lemma 3.13], for any
g ∈Mm(F ),

∫

GLm(F )

σm,2m(yg, y)χ(det(y))| det(y)|sd∗y =

m∏

i=1

L(s−i+1, χ)χ(ν0(g))ν(g)
−s,

(23)
where ν0(g) and ν(g) denote the denominator ideal of g and its norm respec-
tively, as defined for example in [27, page 19].
By [20, Proposition 2.3 ],

F(s, χ, (0, 0, κ)dgd′) = ψS(−κ)F(s, χ, g)

for all κ ∈ Z and d,d′ ∈ D. That is, thanks to [19, Lemma 4.4], for a fixed s
the function F(s, χ, g) is supported on

⋃
m∈Λ+

n
ZDπmD. Hence, it is enough

to prove the equality of the Lemma for g = πm for an m ∈ Λ+
n . We have

F(s, χ, πm) =

∫

Z

ψS(κ)dκ
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·

∫

GL2n+l(F )

σ2n+l,4n+2l

(
y

(
1l

πm

)
, y

(
κ

12n

))
χ(det(y))| det(y)|s+n+l/2d∗y

Write y = k
(
a b
d

)
, where k ∈ GL2n+l(o), a ∈ GLl(F ), d ∈ GL2n(F ) and

b ∈Ml,2n(F ). Then F(s, χ, πm) = I1 · I2 · I3, where

I1 =

∫

Z

ψS(κ)

∫

GLl(F )

σl,l(a)σl,l(aκ)χ(det(a))| det(a)|
s+n+l/2d∗a,

I2 =

∫

Ml,2n(F )

σl,2n(bπm)σl,2n(b)db

and

I3 =

∫

GL2n(F )

σ2n,2n(d)σ2n,2n(dπm)χ(det(d))| det(d)|s+n+l/2| det(d)|−ld∗d.

We compute first the integral I1. By the equation (23),

∫

GLl(F )

σl,l(a)σl,l(aκ)χ(det(a))| det(a)|
s+n+l/2d∗a

=

l∏

i=1

L(s+ n+ l/2− i+ 1, χ)χ(ν0(κ))ν(κ)
−s−n−l/2,

and hence

I1 =
l∏

i=1

L(s+ n+ l/2− i+ 1, χ)

∫

Z

ψS(κ)χ(ν0(κ))ν(κ)
−s−n−l/2dκ.

But the last integral is nothing else than the Siegel series αS(s + n + l/2, χ),
and thus

I1 =
l∏

i=1

L(s+ n+ l/2− i+ 1, χ)αS(s+ n+ l/2, χ).

Finally, it is easy to see that I2 = q−(m1+...+mn)l, and that by the equation
(23) again,

I3 =
2n∏

i=1

L(s+ n− l/2− i+ 1, χ)χ(ν0(πm))ν(πm)−s−n−l/2.

Proof of Theorem 7.6. By Lemma 7.9,

L(ξ, χ, s) = αS(s+ l/2, χ)−1L(s+ l/2, χ)−1

(
2n+l−1∏

i=1

L(s+ n+ l/2− i, χ)

)−1
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·
l∏

i=1

L(s+ n+ l/2− i+ 1, χ)αS(s+ n+ l/2, χ)

·
n∏

i=1

L(2s+ 2n+ l − 2i, χ2)
2n∏

i=1

L(s+ n− l/2− i+ 1, χ)

·

∫

Z\G

νs+n+l/2,χ(g)φξ(g)dg

= αS(s+ l/2, χ)−1L(s+ l/2, χ)−1
n∏

i=1

L(2s+ 2n+ l − 2i, χ2)

· L(s+ n+ l/2, χ)αS(s+ n+ l/2, χ)

∫

Z\G

νs+n+l/2,χ(g)φξ(g)dg

=
αS(s+ n+ l/2, χ)

αS(s+ l/2, χ)

L(s+ n+ l/2, χ)

L(s+ l/2, χ)

n∏

i=1

L(2s+ 2n+ l− 2i, χ2)

·

∫

Z\G

νs+n+l/2,χ(g)φξ(g)dg.

If we now plug in the expression (22) for the Siegel series, we obtain

L(ξ, χ, s) =
gS(s+ n+ l/2, χ)

gS(s+ l/2, χ)

∏[l/2]
i=1 L(2s+ l − 2i, χ2)

∏[l/2]
i=1 L(2s+ 2n+ l − 2i, χ2)

·
n∏

i=1

L(2s+ 2n+ l − 2i, χ2)

∫

Z\G

νs+n+l/2,χ(g)φξ(g)dg

=
gS(s+ n+ l/2, χ)

gS(s+ l/2, χ)

[n+l/2]∏

i=[l/2]+1

L(2s+ 2n+ l − 2i, χ2)

·

∫

Z\G

νs+n+l/2,χ(g)φξ(g)dg,

which finishes the proof.

Given a cusp form 0 6= f ∈ Snk,S(D, ψ) we can define an action of an element φ
in the Hecke algebra X by

(f ⋆ φ)(g) =

∫

Z\G

f(gx−1)φ(x)dx.

If now f is a common eigenform for all φ ∈ X, that is, f ⋆ φ = λf (φ)f for
all φ, then we obtain a C-algebra homomorphism λf : X → C. Thanks to [19,
Theorem 4.15] we know that this homomorphism is of the form

λf (φ) = λξf (φ)
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for some character ξf ∈ X0(T ), and thus, as it is explained in [3, Lemma 5.4],

f ⋆ φα = f |Tπ−1
α ,ψS

for every α ∈ Λ+
n .

Note here that since Ddn(πα)D = Ddn(π
−1
α )D, we obtain

B(ξf , χ, s) = Dp(s, f , χ).

In this way we can conclude Theorem 7.1 in the case when v is a good prime
by taking µp,i := ξi(π) if ξf = (ξ1, . . . , ξn).

7.2 The bad places

We now consider the case of (p, c) 6= 1. If (p, e) 6= 1, then there is nothing to
show, because in this case each Hecke operator is just the identity. Hence we
consider the case of (p, e−1c) 6= 1. In this section we set E := GLn(o) and
S := S(b−1) := Symn(F ) ∩Mn(b

−1
v ).

First we work out the decomposition of the double cosets Ddiag[ξ̃, ξ]D. Recall
that we write D=CD with C =Cv[o, b

−1, b−1]⊂H and D=Dv[b
−1, bc]⊂G.

By [28, Lemma 19.2] we know that

Ddiag[ξ̃, ξ]D =
⊔

d,b

D

(
d̃ d̃b

d

)
,

where d ∈ E \ EξE and b ∈ S/tdSd, and thus

Ddiag[ξ̃, ξ]D = CDdiag[ξ̃, ξ]DC =
⊔

d,b

D

(
d̃ d̃b

d

)
C.

Observe that for elements (λ, µ, κ) ∈ C and

(
d̃ d̃b

d

)
as above we have

(
d̃ d̃b

d

)
(λ, µ, κ) = (λtd, (−λb+µ)d−1, κ+ λtdtd

−1t(−λb+ µ)− λtµ)

(
d̃ d̃b

d

)
.

In particular,

Ddiag[ξ̃, ξ]D =
⊔

d,b,µ

D(0, µ, 0)

(
d̃ d̃b

d

)
, (24)

where d ∈ E\EξE, b ∈ S/tdSd and µ ∈Ml,n(b
−1
v )d−1/Ml,n(b

−1
v ). We will show

that the set DXD, with X = {diag(ξ̃, ξ) : ξ ∈ Mn(ov) ∩ GLn(Fv)} is closed

under multiplication. For Ddiag[ξ̃i, ξi]D =
⊔
di,bi,µi

(0, µi, 0)

(
d̃i d̃ibi

di

)
,

i = 1, 2, we have

Ddiag[ξ̃1, ξ1]Ddiag[ξ̃2, ξ2]D
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=
⊔

d1,b1,µ1,d2,b2,µ2

D(0, µ1, 0)

(
d̃1 d̃1b1

d1

)
(0, µ2, 0)

(
d̃2 d̃2b2

d2

)

=
⊔

d1,b1,µ1,d2,b2,µ2

D(0, µ1, 0)diag[d̃1d̃2, d1d2]

(
1 b2 +

td2b1d2
1

)
(0, µ2d2, 0)

=
⊔

d1,b1,µ1,d2,b2,µ2

Ddiag[d̃1d̃2, d1d2](0, µ1d1d2, 0)

(
1 b2 +

td2b1d2
1

)
(0, µ2d2, 0).

Hence, because (0, µ1d1d2, 0), (0, µ2d2, 0) ∈ C,

(
1 b2 +

t
d2b1d2

1

)
∈ D and

d̃1d̃2 = d̃1d2, we have shown that

Ddiag[ξ̃1, ξ1]Ddiag[ξ̃2, ξ2]D ⊂ DXD.

We define the Hecke algebra X := Xv for v|e−1c to be the algebra generated
by the double cosets DXD.

In order to define the Satake parameters associated to an eigenform of this alge-
bra we need to define an injective algebra homomorphism ω : X → Q[t1, . . . , tn].
We will do this by reducing everything to the theory of GLn, very much in the
spirit of Shimura in [28, Theorem 19.8].

Given an element

Ddiag[ξ̃, ξ]D =
⊔

d,b,µ

(0, µ, 0)

(
d̃ d̃b

d

)
,

where d ∈ E \ EξE, b ∈ S/tdSd and µ ∈Ml,n(b
−1
v )d−1/Ml,n(b

−1
v ), we set

ω0

(
(0, µ, 0)

(
d̃ d̃b

d

))
:= ω0(Ed),

where ω0 is the classical map of the spherical Hecke algebra of GLn defined as
ω0(Ed) :=

∏n
i=1(ξ

−iti)
ei if an upper triangular representative of Ed has the

diagonal entries πe1 , πe2 , . . . , πen with ei ∈ Z. Further, let

ω(Ddiag[ξ̃, ξ]D) :=
∑

d,b,µ

ω0

(
(0, µ, 0)

(
d̃ d̃b

d

))
.

An identical argument to the one in [27, Proposition 16.14] shows that
ω : X → Q[[t±1 , t

±
2 , . . . , t

±
n ]] is an injective algebra homomorphism.

For a finite unramified character χ and for s ∈ C consider the formal series

B(χ, s) :=
∑

ξ∈E\B/E

(Ddiag[ξ̃, ξ]D)χ(det(ξ))N(det(ξ))−s,
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where B := GLn(F ) ∩Mn(o). Then, if we define

ω(B(χ, s)) :=
∑

ξ∈E\B/E

ω(Ddiag[ξ̃, ξ]D)χ(det(ξ))N(det(ξ))−s,

we have that

ω(B(χ, s)) =
∑

d∈E\B

ω0(Ed)| det(d)|
−n−lχ(det(d))N(det(d))−s.

Hence, by an argument similar to the one in [28, Theorem 19.8], we get

ω(B(χ, s)) =

n∏

i=1

(1− qn+ltiχ(π)q
−s)−1 ∈ Q[[t1, . . . , tn]].

Now [28, Lemma 19.9] states that if a Q-linear homomorphism λ : X → C maps
the identity element to 1, then there exist Satake parameters µ1, . . . , µn ∈ C
such that

∑

ξ∈E\B/E

λ(Ddiag[ξ̃, ξ]D)χ(det(ξ))N(det(ξ))−s =
n∏

i=1

(1− qn+lµiχ(π)q
−s)−1

or, equivalently,

∑

ξ∈E\B/E

λ(Ddiag[ξ̃, ξ]D)χ(det(ξ))N(det(ξ))−(s+n+l/2)

=

n∏

i=1

(1− q−l/2µiχ(π)q
−s)−1

as an equality of formal series in C[[q−s]]. Hence, if we take as λ the homomor-
phism obtained from the eigenform f and let µp,i := µiq

−l/2, we establish the
rest of Theorem 7.1, as in this case

Dp(s, f , χ) =
∑

ξ∈E\B/E

λ(Ddiag[ξ̃, ξ]D)χ(det(ξ))N(det(ξ))−s.

7.3 A ψ-twisted L-function

To an eigenform f ∈ Snk,S(D, ψ) we can associate yet another L-function. It
appears naturally in the doubling method when the form f has a non-trivial
nebentype. For a character χ of conductor f we define

Lψ(s, f , χ) :=
∏

p

Lp(χ
∗(p)(ψ/ψc)(πp)N(p)−s)

=


 ∏

(p,c)=1

Lp((χψ)
∗(p)N(p)−s)




∏

p|c

Lp(χ
∗(p)N(p)−s)


 ,
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where ψc =
∏
v|c ψv, πp ∈ op is a uniformizer of the ring of integers op, and the

factors Lp(X) are as in Theorem 7.1. We also define the series

Dψ(s, f , χ) :=
∑

a

λ(a)χ∗(a)ψ(a′)N(a)−s,

where for an ideal a with prime decomposition
∏

p p
np we put a′ :=∏

(p,c)=1 p
np . Then:

Dψ(s, f , χ) =
∏

(p,c)=1

Dp(s, f , χψ)
∏

p|c

Dp(s, f , χ).

In particular, by Theorem 7.1,

Lψ(χ, s)Dψ(s+ n+ l/2, f , χ) = Lψ(s, f , χ),

where Lψ(χ, s) =
∏

(p,c)=1 Lp(χψ, s), and

Lp(χψ, s) := Gp(χψ, s)

{∏n
i=1 Lp(2s+ 2n− 2i, (χψ)2) if l ∈ 2Z∏n
i=1 Lp(2s+ 2n− 2i+ 1, (χψ)2) if l 6∈ 2Z

.

Finally, for any given integral ideal x we define the function

Lψ,x(s, f , χ) :=
∏

(p,x)=1

Lp(χ
∗(p)(ψ/ψc)(πp)N(p)−s),

that is, we remove the Euler factors at the primes which divide x.

7.4 The global Hecke algebra

Now let X :=
⊗

v Xv be the global Hecke algebra. Since every local Hecke
algebra Xv can be embedded in a power series ring (for the good places this
has been established in [19, Theorem 4.14] and for the bad places above), and
thus is commutative, we can conclude that the global Hecke algebra X is also
commutative. Moreover, if Tr,ψ is the Hecke operator where rv = 1n at v|c,
then

< f |Tr,ψ, g >=< f, g|Tr,ψ > .

Indeed, this follows from the fact that < f |S,kα, g|S,kα >=< f, g > for any
α ∈ Gn and that for any r as above we have

Ddiag[r̃, r]D = CDdiag[r̃, r]DC = CDdiag[tr, r−1]CD = Ddiag[tr, r−1]D,

where the second equality follows from [27, Remark on page 89]. In particular,
it follows that the Hecke operators T (a) with (a, c) = 1 are normal, and thus
can be simultaneously diagonalized.
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We finish this section with a result which will be useful for our later con-
siderations. First recall that we have defined f c(z) = f(−z). Now set
ǫ := diag[1n,−1n] and define

ǫ((λ, µ, κ)γ)ǫ := (λ,−µ,−κ)ǫγǫ. (25)

It is easy to check that this map is an automorphism of the Jacobi group Gn.

Proposition 7.10. Let γ = (λ, µ, κ)γ ∈ G. Then

(f |k,Sγ)
c = f c|k,Sǫγǫ.

Moreover, if f is an eigenform with f |Tψ(a) = λ(a)f for all fractional ideals a

prime to c, then so is f c. In particular, f c|Tψ(a) = λ(a)f c and Lψ,c(s, f, χ) =
Lψ,c(s, f

c, χ).

Proof. The first equality easily follows from a direct computation.
Now assume that f is an eigenform of T (a) with eigenvalues λ(a) for all integral
ideals a. Because the map (25) is a group automorphism, we see that for any
r ∈ Q(e) if Gn(F )∩Ddiag[r̃, r]D =

∐
γ Γγ, then also Gn(F )∩Ddiag[r̃, r]D =∐

γ Γǫγǫ. This means that f c|Tr,ψ = (f |Tr,ψ)c. In particular,

f c|Tψ(a) = (f |Tψ(a))
c = (λ(a)f)c = λ(a)f c

for all integral ideals a. However, since 0 6= f , then < f, f > 6= 0 and thus the
equality

λ(a) < f, f >=< f |Tψ(a), f >=< f, f |Tψ(a) >=< f, f > λ(a)

implies that the eigenvalues λ(a) are totally real. The last statement regarding
the L-functions is now obvious.

8 Analytic properties of Siegel-type Jacobi Eisenstein series

In the previous section we introduced the standard L-function attached to a
Siegel-Jacobi eigenfunction. Our first aim is to study its analytic properties
using the identity (20). However, in order to do this we need to establish first
the analytic properties of the Siegel-type Jacobi Eisenstein series with respect
to the parameter s. This is the subject of this section. More precisely, we will
establish the analytic continuation and detect possible poles of this Eisenstein
series. The main idea of our method goes back to Böcherer [4], which was
further extended by Heim in [13], and its aim is to relate Jacobi Eisenstein
series of Siegel type to symplectic Eisenstein series (of Siegel type). We extend
their results to include level, character and - more importantly - we deal also
with the case of totally real field. This last generalization requires development
of some new techniques in case the class number is not trivial. In this section
the letter E is used for both Jacobi and symplectic Eisentein series, but the
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distinction is always clear from the argument: z = (τ, w) ∈ Hn,l is reserved for
Jacobi forms, whereas a single τ ∈ H is used for Siegel modular forms.
We start with the following lemma, which gives us good representatives for the
sets (P n ∩ ζΓζ−1) \ ζΓ, where ζ ∈ Spn(F ), and Γ is a congruence subgroup of
the form H ⋊ Γ0(b, c).

Lemma 8.1. A set of representatives for the left cosets (P n ∩ ζΓζ−1) \ ζΓ is
given by

(λ, 0, 0)γ, λ ∈Ml,n(o), γ ∈ P ∩ ζΓ0(b, c)ζ
−1 \ ζΓ0(b, c).

Proof. First note that ζΓ = ζ(H ⋊ Γ0(b, c)) = H ⋊ ζΓ0(b, c) and, similarly,
P n ∩ ζΓζ−1 = P n ∩ (H ⋊ ζΓ0(b, c)ζ

−1), which is nothing else than the set
(Hn

0 ∩H)⋊ (P ∩ ζΓ0(b, c)ζ
−1). Now, since

(P ∩ ζΓ0(b, c)ζ
−1)H = H(P ∩ ζΓ0(b, c)ζ

−1),

a set of representatives for the cosets is given by a product of representatives
for (Hn

0 ∩ H) \ H and for (P ∩ ζΓ0(b, c)ζ
−1) \ ζΓ0(b, c). This is precisely the

statement of the lemma.

Now recall the expression (10) for a Jacobi Eisenstein series of Siegel type:

E(z, s;χ) =
∑

ζ∈Z

N(a(ζ))2s
∑

γ∈Qζ

χ[γ]δ(z)s−k/2|k,Sγ,

where Qζ = (P ∩ ζΓ0(b, c)ζ
−1) \ ζΓ0(b, c).

We set Eζ(z, s) :=
∑
γ∈Qζ

χ[γ]δ(z)s−k/2|k,Sγ. Clearly, the analytic continua-

tion of E(z, s;χ) and its set of possible poles would follow by establishing such
a result for all the Eζ(z, s), as ζ ∈ Z.

If we write γ = hg and z = (τ, w), then

Eζ(z, s) =
∑

γ∈Qζ

χ[γ]δ(z)s−k/2|k,Sγ =
∑

γ∈Qζ

χ[γ]Jk,S(γ, z)
−1δ(gτ)s−k/2.

Further, by Lemma 8.1,

Eζ(z, s) =
∑

g∈Qζ

χ[g]j(g, τ)−kδ(gτ)s−k/2ea(−tr (S[w](cgτ + dg)
−1cg))

·
∑

λ∈Ml,n(o)

ea(2tr (
tλSw(cgτ + dg)

−1) + tr (S[λ]g · τ)).

For a lattice L in Ml,n(F ) we define the Jacobi theta series

ΘS,L(z) = ΘS,L(τ, w) :=
∑

λ∈L

ea(2tr (
tλSw) + tr (S[λ]τ)). (26)
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Recall (Lemma 4.2) that the elements ζ may be selected in the form
diag[1n−1, aζ , 1n−1, a

−1
ζ ]. In particular, for an element g ∈ Qζ of the form

g = ζg1,

cgτ + dg = (cζ(g1τ) + dζ)(cg1τ + dg1) =
(

1n−1

a−1
ζ

)
(cg1τ + dg1)

and
g · τ = ζg1 · τ =

(
1n−1

aζ

)
(g1 · τ)

(
1n−1

aζ

)
.

That is, we may write

∑

λ∈Ml,n(o)

ea(2tr (
tλSw(cgτ+dg)

−1)+tr (S[λ]g ·τ))=ΘS,Λaζ
(g1 ·τ, w(cg1τ+dg1)

−1),

where Λaζ :=Ml,n(o)
(
1n−1

aζ

)
and g = ζg1.

Moreover, because cg =
(

1n−1

a−1
ζ

)
cg1 ,

ea(tr (S[w](cgτ + dg)
−1cg)) = ea(tr (S[w](cg1τ + dg1 )

−1cg1)).

Hence, Eζ(z, s) is equal to

∑

g∈Qζ

χ[g]j(g, τ)−kδ(gτ)s−k/2ea(−tr (S[w](cg1τ + dg1)
−1cg1))ΘS,Λaζ

(g1z).

We now set Γθ := Spn(F ) ∩ Dθ, where Dθ := D[b−1, b] if l is even, and
Dθ := D[b−1, b] ∩D[2d−1, 2d] if l is odd. For γ ∈ Γθ, τ ∈ Ha let j(γ, τ)1/2 :=
h(γ, τ), where h is the half-integral factor of automorphy as defined for example
in [28, page 180]. Then for l odd and γ ∈ Γθ we have

j(γ, τ)l/2 = h(γ, τ)j(γ, τ)[l/2].

Therefore it makes sense to define

ΘS,Λaζ
(z)|S,l/2γ := h(γ, τ)−1JS,[l/2](γ, z)

−1ΘS,Λaζ
(γz), γ ∈ Γθ.

In fact, for a sufficiently deep subgroup Γaζ of finite index in Γ0(b, c))∩Dθ we
have that (see [28])

ΘS,Λaζ
(z)|S,l/2g1 = ψS(g1)ΘS,Λaζ

(z), for all g1 ∈ Γaζ ,

where ψS is the Hecke character of F corresponding to the extension
F (det(2S)1/2)/F if l is odd, and to the extension F ((−1)l/4 det(2S)1/2)/F
if l is even.
Moreover, for every g ∈ Qζ such that g = ζg1, g1 ∈ Γ0(b, c), we have

χ[g]j(g, τ)−kδ(gτ)s−k/2ea(−tr (S[w](cg1τ + dg1 )
−1cg1))ΘS,Λaζ

(g1z)
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= NF/Q(aζ)
l/2ψS(aζ)φ[g]j(g, τ)

−(k−l/2)δ(gτ)s−k/2(ΘS,Λaζ
(z)|S,l/2g1),

where φ := χψS , and we have used the fact that

j(g, τ) = j(ζg1, τ) = j(ζ, g1 · τ)j(g1, τ) = NF/Q(aζ)
−1j(g1, τ).

In particular, if we set Q′
ζ := ζΓaζ , we obtain

Eζ(z, s) = NF/Q(a)
l/2ψS(aζ)

∑

γ∈Γaζ
\Γ0(b,c)

χ[γ](Eζ(τ, s− l/4)ΘS,Λaζ
(z))|S,kγ,

where Eζ(τ, s) =
∑
g∈Q′

ζ
φ[g]j(g, τ)−(k−l/2)δ(gτ)s−k/2+l/4 is the symplectic

Eisenstein series of Siegel type of weight k − l/2. Since the above sum is
finite, it follows that the series Eζ(z, s) has poles at most at the same places
where Eζ(τ, s− l/4) may have.
Hence our focus now moves to detect the poles of the series Eζ(τ, s). Series of
this form appear as summands of the classical (i.e. symplectic) Siegel Eisenstein
series of some (perhaps half-integral) weight k and character χ, namely

E(τ, s;χ) := E(τ, s) =
∑

ζ∈Z

N(a(ζ))2s
∑

γ∈Rζ

χ[γ]δ(τ)s−k/2|kγ,

where
Eζ(τ, s;χ) := Eζ(τ, s) :=

∑

γ∈Rζ

χ[γ]δ(τ)s−k/2|kγ.

The analytic properties of E(τ, s) are well known, and thus we may use them
to derive similar properties for Eζ(τ, s).
We will use discrete Fourier analysis on the class group Cl(F ) of F . Recall
that Cl(F ) ∼= A×

F /F
×U , where U = F×

∞

∏
v o

×
v . Moreover, we may pick the

representatives a(ζ) for Cl(F ) in such a way that the ζ’s form the set of repre-
sentatives for the set Z (see [26, Lemma 3.2]).
Note that for any character χ and any character ψ of Cl(F ),

E(τ, s;χψ) =
∑

ζ∈Z

ψ(ζ)N(a(ζ))2s
∑

γ∈Rζ

χ[γ]δ(τ)s−k/2 |kγ

=
∑

ζ∈Z

ψ(ζ)N(a(ζ))2sEζ(τ, s),

that is, for every character ψi of Cl(F ),

E(τ, s;χψi) =
∑

ζ∈Z

ψi(ζ)N(a(ζ))2sEζ(τ, s), i = 1, 2, . . . , cl(F ),

where cl(F ) denotes the cardinality of Cl(F ). Since the characters ψi are
linearly independent over the group Cl(F ), we can solve the linear system of
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equations with respect to the unknowns N(a(ζ))2sEζ(τ, s). In particular, the
analytic properties of Eζ(τ, s) can be read off from the ones of E(τ, s;χψi),
i = 1, 2, . . . , cl(F ). Hence, since

Eζ(z, s) = NF/Q(a)
l/2

∑

γ∈Γaζ
\Γ0(b,c))

(Eζ(τ, s− l/4)ΘS,Λaζ
(z))|S,kγ,

we see that the analytic properties of E(z, s) can be obtained from those of
E(τ, χψi, s) for the various ψi’s. To do that we will employ the following
theorem of Shimura [28] on the analytic properties of symplectic Siegel-type
Eisenstein series, where

Γn(s) := πn(n−1)/4
n−1∏

j=0

Γ(s− j/2).

Theorem 8.2 (Shimura, Theorem 16.11 in [28]). For a weight k ∈ 1
2Z

a we
define

Gk,n(s) :=
∏

v∈a

γ(s, |kv|),

where

γ(s, h) :=





Γ
(
s+ h

2 −
[
2h+n

4

])
Γn(s+

h
2 ), n/2 ≤ h ∈ Z, n ∈ 2Z,

Γn(s+
h
2 ), n/2 < h ∈ Z, n ∈ 2Z+ 1,

Γ2h+1(s+
h
2 )
∏[n/2]
i=h+1 Γ(2s− i), 0 ≤ h < n/2, h ∈ Z,

Γ
(
s+ h−1

2 −
[
2h+n−2

4

])
Γn(s+ h/2), n/2 < h 6∈ Z, n ∈ 2Z+ 1,

Γn(s+ h/2), n/2 < h ∈ Z, n ∈ 2Z,

Γ2h+1(s+
h
2 )
∏[(n−1)/2]
i=[h]+1 Γ(2s− i− 1

2 ), 0 < h ≤ n/2, h 6∈ Z.

We also set E(s) := G(s)Λnk,c(s, χ)E(τ, s;χ), where

Λnk,c(s, χ) :=

{
Lc(2s, χ)

∏[n/2]
i=1 Lc(4s− 2i, χ2) if k ∈ Za,∏[(n+1)/2]

i=1 Lc(4s− 2i+ 1, χ2) if k 6∈ Za.

The function E(s) has a meromorphic continuation to the whole of C and is
entire if χ2 6= 1. If χ2 = 1, we distinguish two cases:

1. if χ2 = 1 and c 6= o. Set m := maxv∈a{kv}. Then if m > n/2, the
function E(s) has no poles except for a possible simple pole at s = n+2

4 ,
which occurs only if 2|kv| − n ∈ 4Z for every v such that 2|kv| > n. If
m ≤ n/2, then E has possible poles, which are all simple, in the set

S
(1)
k :=

{
{j/2 : j ∈ Z, [(n+ 3)/2] ≤ j ≤ n+ 1−m} if k ∈ Za,

{(2j + 1)/4 : j ∈ Z, 1 + [n/2] ≤ j ≤ n+ 1/2−m} if k 6∈ Za.
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2. if χ2 = 1, c = o, and k ∈ Za. In this case each pole, which is simple,
belongs to the set of poles described in (1) or to

S
(2)
k := {j/2 : j ∈ Z, 0 ≤ j ≤ [n/2]},

where j = 0 is unnecessary if χ 6= 1.

We can now state a theorem regarding the analytic properties of the Eisenstein
series E(z, s;χ), which extends a previous theorem due to Heim [13, Theorem
4.1]. Recall that ψS is the Hecke character of F corresponding to the extension
F (det(2S)1/2)/F if l is odd, and to the extension F ((−1)l/4 det(2S)1/2)/F if l
is even.

Theorem 8.3. With notation as above, let

E(s) := Gk−l/2,n(s− l/4)Λnk−l/2,c(s− l/4, χψS)E(z, s;χ).

The function E has a meromorphic continuation to the whole of C, and its
poles are caused by the functions

Λnk−l/2,c(s− l/4, χψS)

Λnk−l/2,c(s− l/4, χψSψi)
, i = 1, . . . , cl(F ).

These poles may appear only when F has class number larger than one and
supp(c) 6= supp(cond(χψS)). More precisely:

1. Assume that χ2ψ2
i 6= 1 for all i = 1, . . . , cl(F ). Then E(s) has no extra

poles.

2. Assume that there exist ψi such that χ2ψ2
i = 1. Then we consider the

following cases.

(a) c 6= o. Set m := maxv∈a{kv − l/2}. If m > n/2, then the function
E(s) has no extra poles except for a possible simple pole at s = n+2

4 ,
which occurs only if 2|kv − l/2| − n ∈ 4Z for every v such that
2|kv − l/2| > n. If m ≤ n/2, then all possible poles of E are simple

and belong to the set S
(1)
k−l/2.

(b) c = o, and k − l/2 ∈ Za. In this case each extra pole is simple and
belongs to the set described in (a) or to

S
(2)
k−l/2 := {j/2 : j ∈ Z, 0 ≤ j ≤

[n
2

]
},

where j = 0 is unnecessary if χψ 6= 1.

Documenta Mathematica 24 (2019) 2613–2684



2668 Thanasis Bouganis and Jolanta Marzec

Before we proceed to the proof of the theorem we recall the following fact
regarding zeros of Dirichlet series. For a Hecke character ψ of F and an integral
ideal c we consider the series

Lc(s, ψ) :=
∏

q|c

(1 − ψ(q)N(q)−s)L(s, ψ)

with functional equation

∏

v∈a

Γ((s+ tv)/2)L(s, ψ) =W (ψ, s)
∏

v∈a

Γ((1 − s+ tv)/2)L(1− s, ψ),

where W (ψ, s) is a non-vanishing holomorphic function, and tv ∈ {0, 1} is the
infinite type of the character. It is well known that if ψ 6= 1, then L(s, ψ) 6= 0
for Re(s) ≥ 1, and

∏
v∈a

Γ((s + kv)/2)L(s, ψ) is entire. If ψ = 1, then this
function is meromorphic with simple poles at s = 0 and s = 1, and L(s, ψ) 6= 0
for Re(s) > 1.
The absolute convergence and the functional equation imply that if two non-
trivial characters ψ1 and ψ2 have the same infinite type, then the zeros of
L(s, ψ1) and L(s, ψ2) as well as their orders are the same at the integers of the
real axis. Namely, for any 0 ≤ m ∈ Z, L(−m,ψ1) = L(−m,ψ2) = 0 if and only
if there exists v ∈ a such that ψ1(xv) = ψ2(xv) = sgn(xv)

m. Moreover, the
order of the zero equals precisely the number of places where this is happening.
In particular, the function

Lc(s, ψ1)

Lc(s, ψ2)
=


∏

q|c

(1− ψ1(q)N(q)−s)

(1− ψ2(q)N(q)−s)


 L(s, ψ1)

L(s, ψ2)

may have poles only at the integers where
∏

q|c
(1−ψ1(q)N(q)−s)
(1−ψ2(q)N(q)−s) has poles.

If the characters ψ1 = 1 and ψ2 have trivial type at infinity, then the same
argument as above shows that the function

Lc(s, ψ1)

Lc(s, ψ2)

may have poles at the integers where the function
∏

q|c
(1−ψ1(q)N(q)−s)
(1−ψ2(q)N(q)−s) has

poles. However, this time there may be an additional zero also at s = 0. This
is because at this point the order of vanishing of L(s, ψ1) is smaller by one from
the order of vanishing of L(s, ψ2).

Proof of Theorem 8.3. First note that since ψi’s are the characters of Cl(F ) ≡
A×
F /F

×U , where U = F×
a

∏
v o

×
v , their signature is trivial, that is, ψi∞(x) = 1

for all x ∈ F×
a . In particular, the characters χψS and χψSψi, i = 1, . . . , cl(F ),

have the same signature at infinity. The discussion above implies that the
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functions Λnk−l/2,c(s − l/2, χψS) and Λnk−l/2,c(s − l/2, χψSψi) have the same
zeros on the integers at the real line, and the ratio

Λnk−l/2,c(s− l/4, χψS)

Λnk−l/2,c(s− l/4, χψSψi)

may have poles in cases indicated in the theorem. However, then (Theorem
8.2) the series

Λnk−l/2,c(s− l/4, χψS)

Λnk−l/2,c(s− l/2, χψSψi)
Gk−l/2,n(s− l/4)Λnk−l/2,c(s− l/4, χψSψi)

· E(τ, s− l/4;χψiψS)

does not have any more poles unless χ2ψ2
i = 1 for some i, in which case the

poles are as described in the theorem.

Remark 8.4. The analytic properties of Jacobi Eisenstein series presented in
Theorem 8.3 were obtained from the well-studied symplectic Eisenstein series
via establishing the link between these two kinds of Eisenstein series. However,
perhaps one could also try to use the results of Arakawa in [2] on the Fourier
coefficients of Jacobi Eisenstein series.

9 Analytic continuation of the standard L-function

We are now ready to establish two main theorems regarding the analytic prop-
erties of the standard L-function and the Klingen-type Jacobi Eisenstein series.
The approach taken here can be regarded as an extension from the symplectic
to the Jacobi setting of the method utilized in [26].
We keep the notation introduced at the beginning of section 7 and additionally
we define groups

D′ := {(λ, µ, κ)x ∈ C[o, b−1, b−1]D[b−1c, be] : ∀v|e (ax − 1n)v ∈Mn(ev)},

Γ′ := Gn(F ) ∩D′

and
R(e, c) := {diag[q̃, q] : q ∈ Q(e), qv ∈Mn(cv) for every v|e

−1c}.

For diag[q̃, q] ∈ R(e, c) and f ∈ Mn
k,S(Γ, ψ), in a manner similar to f |Tr,ψ, we

define

f |Uq,ψ :=
∑

β∈B

ψc(det(aβ)c)
−1f |k,Sβ, (27)

where B ⊂ Gn(F ) is such that Gn(F ) ∩ Ddiag[q̃, q]D′ =
∐

β∈B Γβ. As in
section 7, if we write f |Uq,ψ for the adelic Jacobi form associated to f |Uq,ψ
(with g = 1) and Ddiag[q̃, q]D′ =

∐
β∈B Dβ with B ⊂ Gh, then

(f |Uq,ψ)(x) =
∑

β∈B

ψc(det(aβ)c)
−1f(xβ−1), x ∈ Gn(A).
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For the rest of this section we assume that 0 6= f ∈ Snk,S(Γ, ψ) is an eigenfunc-
tion of Tψ(a) for every a with eigenvalues λ(a). Note that Tψ(a) 6= 0 only if a
is coprime to e.
We start with a version of [26, Lemma 6.2] for Hecke operators in our Jacobi
setting.

Lemma 9.1. Let h be an element of A×
h

such that its corresponding ideal is
e−1c and hv = 1 for v ∤ e−1c. Then Uhr,ψ = Tr,ψUh1n,ψ for every r ∈ Q(e).
Moreover, for f ∈Mn

k,S(Γ, ψ) we have f |Th1n,ψ 6= 0 only if f |Uh1n,ψ 6= 0.

Proof. To prove the first statement it suffices to show that

D
(
h−1 r̃

hr

)
D′ = D ( r̃ r )D ·D

(
h−11n

h1n

)
D′.

This may be done place by place. As we established in (24), at each place v|c,

Dv

(
r̃v

rv

)
Dv =

⊔

d,b,µ

Dv(0, µ, 0)

(
d̃ d̃b

d

)
,

where d ∈ GLn(ov)\GLn(ov)rvGLn(ov), b ∈ Symn(b
−1
v )/tdSymn(b

−1
v )d and

µ ∈ Ml,n(b
−1
v )d−1/Ml,n(b

−1
v ). Using the same argument and a double coset

decomposition for symplectic groups, we get

Dv

(
h−1
v r̃v

hvrv

)
D′
v =

⊔

d1,b1,υ1

Dv(0, υ1, 0)

(
d̃1 d̃1b1

d1

)
,

where υ1 ∈Ml,n(b
−1
v )d−1

1 /Ml,n(b
−1
v ), d1 ∈ GLn(ov)\GLn(ov)hvrvGLn(ov) and

b1 ∈ Symn(b
−1
v cv)/

td1Symn(b
−1
v )d1. In particular, if we take r = 1n and a

coset decomposition over d2, b2, υ2, then we can take d2 = hv1n and it is easy
to see that the set

{(0, µ, 0)
(
d̃ d̃b
d

)
(0, υ2, 0)

(
h−1
v 1n h−1

v b2
hv1n

)
: µ, υ2, b, b2, d}

= {(0, µ+ υ2d
−1, 0)

(
h−1
v d̃ h−1

v d̃(b2+h
2
vb)

hvd

)
: µ, υ2, b, b2, d}

represents Dv\(D
(
h−1 r̃

hr

)
D′)v for each v|c.

To prove the second statement we use Proposition 3.4. We recall that the
Siegel-Jacobi modular form f and its adelic counterpart are related by f(y) =
Jk,S(y, i0)

−1f(y · i0), for every y ∈ Ga. Moreover, recall that the symmetric

space Hn,l is contained in {y · i0 : y ∈ Ga of the form (λ, µ, 0)
(
q σq̃
q̃

)
}.

For an α of the form (0, ν, 0)
(
h−11n h−1b

h1n

)
, with νa = 0, ba = 0, and y ∈ G(A)

such that y
h
= (0, 0, 0)12n and y

a
as above, we have

yα−1 = (λ, µ, 0)(0,−hν tq, 0)
(
hq h−1(−qb+σq̃)

h−1q̃

)
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= (λ, µ− hν tq,−hλq tν − hν tq tλ)
(
hq (−qb tq+σ)h−1 q̃

h−1q̃

)
,

and thus by the expansion (5),

f(yα−1)=
∑

t,r

c(t, r;hq, λ)eA(tr (tσ − tqb tq))eA(tr (
tr(λσ−λqb tq + µ− hν tq)))

=
∑

t,r

c(t, r;hq, λ)
∏

v|c

ev(tr (−tqvbv
tqv))

∏

v|c

ev(tr (
tr(−hvνv

tqv)))

· ea(tr (tσ + tr(λσ + µ))).

Hence,

f |Th1n,ψ(y)=
∑

b,ν

ψc(hc)
n
∑

t,r

c(t, r;hq, λ)
∏

v|c

ev(tr (−tqvbv
tqv +

tr(−hvνv
tqv)))

· ea(tr (tσ + tr(λσ + µ))),

where b ∈
∏
v|c Symn(b

−1
v )/h2vSymn(b

−1
v ), ν ∈

∏
v|cMl,n(b

−1
v )h−1

v /Ml,n(b
−1
v ).

That is, if we write c(f |Th1n,ψ; t, r; q, λ) for the (t, r)-coefficient of f |Th1n,ψ, we
have

c(f |Th1n,ψ; t, r; q, λ) = ψc(hc)
n
∑

b,ν


∏

v|c

ev(tr (−tqvbv
tqv +

tr(−hvνv
tqv)))


 .

Therefore, if

eh(tr (
tqtqh−2Symn(b

−1))) = 1 and eh(tr (
tq trMl,n(b

−1))) = 1,

then
c(f |Th1n,ψ; t, r; q, λ) = N(e−1c)n(l+n+1)ψc(hc)

nc(t, r;hq, λ),

otherwise c(f |Th1n,ψ; t, r; q, λ) = 0.
Arguing exactly in the same way we can also conclude that if both

eh(tr (
tqtqh−2Symn(b

−1c))) = 1 and eh(tr (
tq trMl,n(b

−1))) = 1,

then

c(f |Uh1n,ψ; t, r; q, λ) = N(e−1c)nl+n(n+1)/2ψc(hc)
nc(t, r;hq, λ),

otherwise c(f |Uh1n,ψ; t, r; q, λ) = 0, where we write c(f |Uh1n,ψ; t, r; q, λ) for the
(t, r)-coefficient of f |Uh1n,ψ.
Hence, if f |Uh1n,ψ = 0, then c(f |Uh1n,ψ; t, r; q, λ) = 0 for all t, r.
In particular, if for a pair t, r both eh(tr (

tqtqh−2Symn(b
−1c))) = 1

and eh(tr (
tq trMl,n(b

−1))) = 1, then c(t, r;hq, λ) = 0 and hence also
c(f |Th1n,ψ; t, r; q, λ) = 0. If on the other hand for a pair t, r either
eh(tr (

tqtqh−2Symn(b
−1c))) 6= 1 or eh(tr (

tq trMl,n(b
−1))) 6= 1, then also

either eh(tr (
tqtqh−2Symn(b

−1))) 6= 1 (since Symn(b
−1c) ⊂ Symn(b

−1) ) or
eh(tr (

tq trMl,n(b
−1))) 6= 1, which also implies that c(f |Th1n,ψ; t, r; q, λ) = 0.

Therefore f |Th1n,ψ = 0.
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We now fix uniformizers πv ∈ ov for every finite place v in the support of e.
Then for a fractional ideal t we pick t ∈ A×

h
, such that t is the ideal correspond-

ing to the idele t, and at every place v|e we have tv = π
ordv(t)
v , where ordv(·)

is the usual valuation at the place v. Further, we set τ := 1Hdiag[t−11n, t1n]
and define an isomorphism

It : M
n
k,S(D, ψ) → Mn

k,S(τ
−1Dτ , ψ), f |It(x) := ψ(tn)f(xτ−1) (x ∈ Gn(A)).

Lemma 9.2. The map It has the following properties:

1. it is independent of the choice of t,

2. it commutes with the operators Tr,ψ and Uq,ψ,

3. (f |It)c = f c|It, where f is the Siegel-Jacobi form corresponding to f .

Proof. 1. If t′ ∈ A×
h

is another idele that corresponds to the ideal t, then
t = t′l for some l ∈

∏
v∈h

o×v .

ψ(tn)f(xτ−1) = ψ((lt′)n)f(xdiag[t′1n, t
′−11n]diag[l1n, l

−11n]1H)

= ψ(t′n)f(xdiag[t′1n, t
′−11n]1H),

where we have used the fact that diag[l1n, l
−11n] ∈ D since lv = 1 if v|e.

2. This follows from direct computation, e.g. in case of Tr,ψ:

τ−1Ddiag[r̃, r]D = Dtdiag[r̃, r]Dtτ
−1,

where

Dt :={(λ, µ, κ)x ∈C[t−1, tb−1, tb−1]D[b−1et2, bct−2] : ∀v|e (ax−1n)v∈Mn(ev)}.

3. By strong approximation we may write τ = γd for some γ ∈ G(F ) and
d ∈ D. We moreover notice that since τ has no Heisenberg part we
may take γ = γ ∈ G(F ) →֒ G(F ), and d ∈ D →֒ D. Furthermore, for
ǫ := diag[1n,−1n], ǫτ ǫ

−1 = ǫγǫ−1ǫdǫ−1 as elements of G(F ). Note that
ǫdǫ−1 ∈ D and ǫτ ǫ−1 = τ .

Clearly, without loss of generality we may assume that ψ = 1. Then
(f |It)

c = (f |k,Sγ)
c = f c|k,Sǫγǫ

−1 = f c|It, where for the second equality
we have used Proposition 7.10.

Let χ be a Hecke character as in subsection 4.1 and assume that χ = ψ on∏
v∤e o

×
v . Then Snk,S(D, ψ) = Snk,S(D, χ) since the nebentype depends only on

the finite places that divide c and is trivial on places that divide e (det(ag) ≡ 1
mod ev for hg ∈ D). Moreover, the Hecke operators are related via:

(χ/ψ)∗(a)ψ∗(a′)Tψ(a) = χ∗(a′)Tχ(a), (χ/ψ)∗(e−1c)nUh1n,ψ = Uh1n,χ,

Documenta Mathematica 24 (2019) 2613–2684



The Standard L-Function Attached to Jacobi Forms 2673

where a′ :=
∏
v∤c av. Put τ := 1Hdiag[θ−11n, θ1n] with θ as in Lemma 5.3.

Then the set Y v is equal to the set (τ−1DR(e, c)D′τ )v at every place v. Put

∆(q) :=
(
Gn(F ) ∩ τ−1Dτ

)
\

(
Gn(F ) ∩Gn

a

∏

v∈h

(τ−1D
(
q̃
q

)
D′τ )v

)
.

For f ∈ Snk,S(Γ, ψ) such that f |Tψ(a) = λ(a)f and for D defined as in (19) we
have:

D(z, s, f |Ib) =
∑

ξ∈Y

ℓ′(ξ)−sχ∗(ℓ′1(ξ))χc(det(aξ))
−1(f |Ib)|k,Sξ(z)

=
∑

q∈R(e,c)

∑

β∈∆(q)

N(det(q)o)−sχ∗(
∏

v∤c

(det(q)o)v)χc(det(aβ))
−1

· (f |Ib)|k,Sβ(z)

Lemma9.1
= N(e−1c)−ns

∑

a

N(a)−sχ∗(a′)(f |Ib)|Tχ(a)Uh1n,χ(z)

= N(e−1c)−ns
∑

a

N(a)−s(χ/ψ)∗(a)ψ∗(a′)λ(a)f |Uh1n,χIb(z).

Joining the above formula for D(z, s, f |Ib) together with (20), after setting
f c|Ib for f there, we obtain

N(be−1c)2nsχh(θ)
−n(−1)n(s−k/2)vol(A)<(E|k,Sρ)(diag[z1, z2], s), (f

c|Ib)(z2)>

=νecS,k(s−k/2)E(z1, s;(f |Uh1n,χIb)|k,Sη
−1
n , χ)

∑

a

N(a)−2s(χ/ψ)∗(a)ψ∗(a′)λ(a),

where we have used the fact that (f c|Ib)c = f |Ib.

After multiplying both sides of the above equation with the functions
Gk−l/2,n+m(s− l/4)Λn+mk−l/2,c(s− l/4, χψS) with notation as in Theorem 8.3 and

setting E(z, s) := Gk−l/2,n+m(s− l/4)Λn+mk−l/2,c(s− l/4, χψS)E(z, s;χ), we obtain

N(be−1c)2nsχh(θ)
−n(−1)n(s−k/2)vol(A)<(E|k,Sρ)(diag[z1, z2], s), (f

c|Ib)(z2)>

= νecS,k(s− k/2)Gk−l/2,n+m(s− l/4)E(z1, s; (f |Uh1n,χIb)|k,Sη
−1
n , χ)

· Λn+mk−l/2,c(s− l/4, χψS)
∑

a

N(a)−2s(χ/ψ)∗(a)ψ∗(a′)λ(a),

where we recall that,

Λn+mk−l/2,c

(
s−

l

4
, χψS

)
=

{
Lc(2s−

l
2 , χψS)

∏[n+m
2 ]

i=1 Lc(4s− l − 2i, χ2), l ∈ 2Z,∏[(n+m+1)/2]
i=1 Lc(4s− l − 2i+ 1, χ2), l /∈ 2Z.

By the discussion in subsection 7.3, we have that

Lψ

(
χψ−1, 2s− n−

l

2

)∑

a

N(a)−2s(χ/ψ)∗(a)ψ∗(a′)λ(a)=Lψ(2s−n−
l

2
, f , χψ−1)
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with Lψ(χψ
−1, 2s− n− l/2) =

∏
(p,c)=1 Lp(χ, 2s− n− l/2), where

Lp(χ, 2s) := Gp(χ, 2s− n− l/2)

{∏n
i=1 Lp(4s− l − 2i, χ2) if l ∈ 2Z,∏n
i=1 Lp(4s− l − 2i+ 1, χ2) if l 6∈ 2Z.

That is, we obtain

N(be−1c)2nsχh(θ)
−n(−1)n(s−k/2)vol(A)<(E|k,Sρ)(diag[z1, z2], s), (f

c|Ib)(z2)>

= νecS,k(s− k/2)Gk−l/2,n+m(s− l/4)E(z1, s; (f |Uh1n,χIb)|k,Sη
−1
n , χ)

·G(χ, 2s− n− l/2)−1Lψ(2s− n− l/2, f , χψ−1) (28)

·

{
Lc(2s− l/2, χψS)

∏[(n+m)/2]
i=n+1 Lc(4s− l− 2i, χ2) if l ∈ 2Z,∏[(n+m+1)/2]

i=n+1 Lc(4s− l − 2i+ 1, χ2) if l 6∈ 2Z,

where we have set

G(χ, 2s− n− l/2) =
∏

(p,c)=1

Gp(χ, 2s− n− l/2). (29)

In particular, if m = n, we obtain

N(be−1c)2nsχh(θ)
−n(−1)n(s−k/2)vol(A)<(E|k,Sρ)(diag[z1, z2], s), (f

c|Ib)(z2)>

= νecS,k(s− k/2)Gk−l/2,2n(s− l/4)(f |Uh1n,χIb)|k,Sη
−1
n G(χ, 2s− n− l/2)−1

(30)

· Lψ(2s− n− l/2, f , χψ−1)

{
Lc(2s− l/2, χψS), if l ∈ 2Z,

1, if l 6∈ 2Z.

We are now ready to prove our first main theorem regarding the analytic prop-
erties of the function Lψ(s, f , χ), which should be seen as an extension of the
Theorem 6.1 in [26] to the Siegel-Jacobi setting.

Theorem 9.3. Let f ∈ Snk,S(D, ψ) be a Hecke eigenform of index S which

satisfies the M+
p condition for every prime p ∤ c. Moreover, let φ be a Hecke

character of F of conductor fφ such that φa(x) = sgn(xa)
k. Write x for the

product of all prime ideals p in the support of e−1c such that f |Tπp1n,ψ = 0.
Then the function

Λψ,x(s, f , φ) := La(s, k)Lψ,x(s, f , φ) ·

{
Lc(s+ n, φψψS), if l ∈ 2Z,

1, if l 6∈ 2Z,

where
La(s, k) := cS,k((s+ n− k)/2 + l/4)Gk−l/2,2n((s+ n)/2)

has a meromorphic continuation to the whole complex plane. More precisely,
the poles are exactly the poles of the Eisenstein series E((s + n + l/2)/2) as
described in Theorem 8.3 plus the poles of the function G(χ, s+n) (see Remark
10.8).
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Proof. The theorem follows now from equation (30) and Theorem 8.3 arguing
similarly to the proof of [26, Theorem 6.1]. Assume first that fφ|e, which is
equivalent to φv(o

×
v ) = 1 (i.e. φv is unramified) for all v that do not divide e

and that fφ|c. Then we can use the equation (30) with χ := φψ. We obtain the
statement of the theorem by observing that the function Lψ,x(s, f , φ) may be
obtained by changing e to e

∏
v|x cv and employing Lemma 9.1. This guaran-

tees that the equation (30) is not trivial (0=0) and hence we can read off the
analytic properties of Lψ,x(s, f , φ) from those of E .
We also give the proof of the general case by repeating the idea which was
used to show [26, Theorem 6.1]. Set c0 := c ∩ fφ and decompose c0 = e0e1

with (e0, e1) = 1, such that e0v = c0v for every v|exfφ, and e0v = ov oth-
erwise. Then if D0 denotes the group D with c0, e0 in place of c and e,
f ∈ Snk,S(D

0, ψ) = Snk,S(D
0, χ). In particular, we can apply the argument

of the previous paragraph with χ := φψ and the group D0 to conclude the
proof.

Remark 9.4. The proof above indicates the significance of considering in the
whole paper the case of a non-trivial ideal e. Indeed, let us consider a cusp
form f ∈ Snk,S(D[b−1, bc], ψ), that is with e = o, and assume for simplicity that
x is trivial. Moreover, consider a Hecke character φ whose conductor fφ - again,
for simplicity - is prime to c. Then c0 = cfφ and e0 = fφ, and thus we need to
consider non-trivial e even if we start with a form of trivial one.

Remark 9.5 (Functional equation of the L-function). As we saw in the
proof of the above theorem, the identity (30) provides a tool to derive analytic
properties of the L-function Lψ(s, f , χ) from the corresponding properties of
the Siegel-type Eisenstein series E(z, s). In a similar way, whenever one knows
a functional equation for E(z, s), one can also establish a functional equation
for the L-function. Actually in a recent work [18], Mizumoto establishes such
a functional equation for Jacobi-Eisenstein series of Siegel type in the case of
trivial level and F = Q. This allows one to derive a functional equation for the
untwisted L(s, f) in case f ∈ Snk,S(G(Z)). Since this has already been shown
by a different technique in [20] we omit the details. Nevertheless, we would like
to point out that various generalizations of [18], as for example to totally real
fields, combined with our results here will lead to new results concerning the
functional equation of the L-function. On the other hand it is a lot harder to
establish a functional equation in the presence of non-trivial level. In the case
of the standard L-function attached to a Siegel modular form this question has
been tackled by Lapid and Rallis in [16] where they define local epsilon factors
at the bad places. As their work also relies on the doubling method, it would be
interesting to see whether their techniques could be generalized to the Jacobi
setting.

Now we can also prove a theorem regarding the analytic continuation of the
Klingen-type Jacobi Eisenstein series attached to a form f in the case of e = c.
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Theorem 9.6. Let f ∈ Snk,S(Γ) be a Hecke eigenform with Γ = D ∩G where
we take e = c (i.e., in particular ψ = 1) and let χ be a Hecke character of F
such that χa(x) = sgna(x)

k. Then the Klingen-type Eisenstein series

E(z, s; f, χ) := cS,k(s− k/2)Gk−l/2,n+m(s− l/4)Λ(s, f, χ)E(z, s; f, χ)

for z ∈ Hm,l, s ∈ C and with

Λ(s, f, χ) :=

L(2s−n−l/2, f , χ)

{
Lc(2s− l/2, χψS)

∏[(n+m)/2]
i=n+1 Lc(4s− l − 2i, χ2), l ∈ 2Z,∏[(n+m+1)/2]

i=n+1 Lc(4s− l− 2i+ 1, χ2), l /∈ 2Z,

has a meromorphic continuation to the entire complex plane.

Proof. We need to rewrite the equation (28). First note that since e = c, we
have Uh1n,χ = 1. Now we extend an argument in [27, page 569] to the Siegel-
Jacobi case.
Observe that for every finite place v we haveYv = ηnDvRv(c)Dvη

−1
n . Further,

consider the isomorphism

Snk,S(D) ∼= Snk,S(D̃), f 7→ f |k,Sηn,

where D̃ := C[b−1, o, b−1]D[bc, b−1c]. Note that since e = c we do not have
any nebentype (i.e. ψ = 1). Now note that for any g ∈ R(c)

ηnD̃gD̃η−1
n = DgD,

and hence we can conclude that (f |Tg)|k,Sηn = (f |k,Sηn)|T̃g, where T̃g denotes

the Hecke operator defined with respect to the group D̃. Putting all these
observations together we see that the equation (28) can be also written as

G(χ, 2s− n− l/2)N(be−1c)2nsχh(θ)
−n(−1)n(s−k/2)vol(A)

· < (E|k,Sρ)(diag[z1, z2], s), (f |k,Sηn)
c(z2) >

= νecS,k(s− k/2)Gk−l/2,n+m(s− l/4)Λ(s, f, χ)E(z1, s; f, χ), (31)

where, recall, G(χ, 2s − n − l/2) is meromorphic on C. In particular, we can
extend the Klingen-type Eisenstein series to the whole of C with respect to
variable s by using the analytic properties of the Siegel-type Eisenstein series.
Moreover, we can read off the various poles from this expression.

10 Nearly holomorphic Jacobi Eisenstein series

In this section we will apply the doubling method identity (31) derived above to
study near holomorphy (definition below) of the Klingen-type Jacobi Eisenstein
series with respect to the variable z for some fixed values of s. Actually, in [9] we
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have already considered the case of Jacobi Eisenstein series of Siegel type, and
even studied their algebraic properties, in order to obtain algebraicity results
for some critical values of the L-function of a Jacobi form.
In order to prove the main result of this section (Theorem 10.7) we will need a
few results from [9] in a slightly simplified form. For convenience of the reader
we also include them here. We start with the definition of nearly holomorphic
Siegel-Jacobi modular forms, which generalizes the familiar notion from the
theory of Siegel modular forms.

Definition 10.1. A C∞ function f(τ, w) : Hn,l → C is said to be a nearly
holomorphic Siegel-Jacobi modular form (of weight k and index S) for a con-
gruence subgroup Γ if

1. f is holomorphic with respect to the variable w and nearly holomorphic
with respect to the variable τ , that is, f as a function on τ belongs to the
space N r(Hdn), r ∈ Zd+, where the space N r(Hdn) is defined in [28, page
99] or in [25, page 153];

2. f |k,Sγ = f for all γ ∈ Γ.

3. (Conditions at the cusps) for each g ∈ Gn(F ), f |k,S g admits a Fourier
expansion of the form

f |k,S g(τ, w) =
∑

t∈L
t≥0

∑

r∈M

c(g; t, r, τ)ea(tr (tτ))ea(tr (
trw)).

We denote this space by Nn,r
k,S (Γ) and write Nn,r

k,S :=
⋃

Γ
Nn,r
k,S (Γ) for the space

of all nearly holomorphic Siegel-Jacobi modular forms of weight k and index S.
Similarly, Nn,r

k stands for the space of all nearly holomorphic Siegel modular
forms as for example is defined in [25, page 153].

Theorem 10.2 (Theorem 5.2, [9]). Assume that n > 1 or F 6= Q. Let
A ∈ GLl(F ) be such that AS tA = diag[s1, . . . , sl], and define the lattices
Λ1 := AMl,n(o) ⊂ Ml,n(F ) and Λ2 := 2diag[s−1

1 , . . . , s−1
l ]Ml,n(o) ⊂ Ml,n(F ).

Then there is an isomorphism

Φ : Nn,r
k,S

∼
−→

⊕

h∈Λ1/Λ2

Nn,r
k−l/2

given by f 7→ (fh)h, where the fh ∈ Nn,r
k−l/2 are defined by the expression

f(τ, w) =
∑

h∈Λ1/Λ2

fh(τ)ΘS,Λ2+h(τ, w),

and Θ is a Jacobi theta series of characteristic h defined by equation (26).
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Proof. Given an f ∈ Nn,r
k,S , the modularity properties with respect to the vari-

able w show that (see for example [22, proof of Proposition 3.5]) we may write

f(τ, w) =
∑

h∈Λ1/Λ2

fh(τ)ΘS,Λ2+h(τ, w)

for some functions fh(τ) with the needed modularity properties. In order to
establish that they are actually nearly holomorphic one argues similarly to
the holomorphic case. Indeed, a close look at the proof of [22, Lemma 3.4]
shows that the functions fh have the same properties (real analytic, holomor-
phic, nearly holomorphic, meromorphic, etc.) with respect to the variable τ as
f(τ, w), since everything is reduced to a linear system of the form

f(τ, wi) =
∑

h∈Λ1/Λ2

fh(τ)ΘS,Λ2+h(τ, wi), i = 1, . . . , ♯Λ1/Λ2,

for some {wi} such that det(ΘS,Λ2+h(τ, wi)) 6= 0. In particular, after solving
the linear system of equations we see that the near holomorphy of fh follows
from that of f since the ΘS,Λ2+h(τ, wi) are holomorphic with respect to the
variable τ . Moreover, in the case of n > 1 or F 6= Q a nearly holomorphic Siegel
cusp form on Hn is necessarily finite at the cusps by the Köcher principle (see
for example [25, page 153]).

Remark 10.3. In the above theorem we assume that either n > 1 or F 6= Q.
Without this assumption the image of the map Φ may be a priori a larger
space: it is not clear whether the fh(τ)’s are finite at all the cusps since now
one cannot apply the Köcher principle. We note that even in the case of
holomorphic Jacobi forms Shimura excludes this case (see [22, Proposition 3.5]
and his remark at the end of [22, page 58]). However, we should mention here
that (still in the case of holomorphic Jacobi forms) Skoruppa and Zagier in
[31, page 172] claim that the fh(τ)’s are finite at the cusps but they provide
no explanation. The difficulty seems to be the presence of non-trivial level and
the behavior of the Jacobi theta series at the various cusps; the case of trivial
level, and hence of only one cusp (at infinity), is treated in the book [10] of
Eichler and Zagier.

The above theorem immediately implies the following.

Corollary 10.4 (Corollary 5.3, [9]). Assume n > 1 or F 6= Q. For a congru-
ence subgroup Γ, Nn,r

k,S(Γ) is a finite dimensional C vector space.

Proof. The theorem above states that Nn,r
k,S(Γ)

∼=
⊕

hN
n,r
k−l/2(Γh) for some

congruence subgroups Γh, which are known to be finite dimensional (see [28,
Lemma 14.3]).

Recall that in section 8 we related the Jacobi Eisenstein series E(z, s, χ) to
a sum of symplectic Eisenstein series E(τ, s − l/4, χψi), where ψi’s vary over
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characters of Cl(F ). In the same way as in the proof of Theorem 8.3 we can
read off near holomorphy of a normalized series E(z, s, χ) from the Eisenstein
series E(τ, s− l/4, χψi). The nearly holomorphic properties of the latter have
been established in [28, Theorem 17.9].

Theorem 10.5 (Theorem 5.5, [9]). Consider the normalized Siegel-type Jacobi-
Eisenstein series

D(s) := D(z, s; k, χ) := Λnk−l/2,c(s− l/4, χψS)E(z, s;χ).

Let µ ∈ Z be such that

(i) n+ 1− (kv − l/2) ≤ µ− l/2 ≤ kv − l/2 for all v ∈ a, and

(ii) |µ− l/2− n+1
2 |+ n+1

2 − kv + l/2 ∈ 2Z,

but exclude the cases

(a) µ = n+2
2 + l/2, F = Q and χ2ψ2

i = 1 for some ψi,

(b) µ = l/2, c = o and χψSψi = 1 for some ψi,

(c) 0 < µ− l/2 ≤ n/2, c = o and χ2ψ2
i = 1 for some ψi.

Then D(µ/2) ∈ Nn,r
k,S , where

r =





n(k−µ+2)
2 , µ = n+2

2 + l
2 , F = Q, χ2 = 1,

k
2 − l

4 , n = 1, µ = 2 + l
2 , F = Q, χψS = 1,

n
2 (k −

l
2 − |µ− l

2 − n+1
2 |a− n+1

2 a) otherwise.

Proof. In view of the aforementioned relation (between Jacobi and Siegel Eisen-
stein series) and Theorem 17.9 in [28], it remains to exclude the poles caused
by the functions

Λnk−l/2,c(s− l/4, χψS)

Λnk−l/2,c(s− l/4, χψSψi)
, i = 1, . . . , cl(F ),

which are described in Theorem 8.3.

Lemma 10.6 (Lemma 5.6, [9]). Let m ≥ n and assume n > 1 or F 6= Q.
Consider the embedding

∆ : Hm,l ×Hn,l →֒ Hn+m,l, (τ1, w1)× (τ2, w2) 7→ (diag[τ1, τ2], (w1 w2)).

Then we have

∆∗
(
Nn+m,r
k,S

)
⊂ Nm,r

k,S ⊗Nn,r
k,S .
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Proof. The proof of this lemma is identical to the Siegel modular form case (see
[28, Lemma 24.11]). Let f ∈ Nn+m,r

k,S (Γn+m) for a sufficiently deep congruence

subgroup Γn+m. Note that the function g(z1, z2) := ∆∗f(diag[z1, z2]) is in
Nm,r
k,S (Γn) as a function in z1 and inNn,r

k,S (Γ
m) as a function in z2 for appropriate

congruence subgroups Γm and Γn. Furthermore, if {hi ∈ Nn,r
k,S(Γ

n) : i ∈ I} is

a (finite) basis of the space Nn,r
k,S (Γ

m), then for each fixed z1 we may write

g(z1, z2) =
∑

i∈I

gi(z1)hi(z2),

where gi(z1) ∈ C. The general argument used in [28, Lemma 24.11], which
is based on the linear independence of the basis hi, shows that the functions
gi(z1) have the same properties as the function g when viewed as a function of
the variable z1. In particular, gi ∈ Nm,r

k,S , i ∈ I.

We can now state and prove the main theorem of this section. We use the
notation of Klingen-type Eisenstein series introduced in 4.2. That is, in the
notation below f ∈ Snk,S(Γ) is a Hecke eigenform and E(z, µ/2; f, χ) is the
Jacobi-Eisenstein series of Klingen type with z ∈ Hm,l for m ≥ n.

Theorem 10.7. Assume that n > 1 or F 6= Q. Let µ ∈ Z be such that

(i) n+m+ 1− (kv − l/2) ≤ µ− l/2 ≤ kv − l/2 for all v ∈ a, and

(ii) |µ− l/2− n+m+1
2 |+ n+m+1

2 − kv + l/2 ∈ 2Z,

but exclude the cases

(a) µ = n+m+2
2 + l/2, F = Q and χ2ψ2

i = 1 for some ψi,

(b) µ = l/2, c = o and χψSψi = 1 for some ψi,

(c) 0 < µ− l/2 ≤ (n+m)/2, c = o and χ2ψ2
i = 1 for some ψi.

(d) G(χ, s− n− l/2) has a pole at s = µ.

Then
Λ(µ/2, f, χ)E(z, µ/2; f, χ) ∈ Nm,r

k,S ,

where r = (n+m)(k−µ+2)
2 if µ = n+m+2

2 + l
2 , F = Q, χ2 = 1, and otherwise

r = n+m
2 (k − l

2 − |µ− l
2 − n+m+1

2 |a− n+m+1
2 a).

Remark 10.8. Before we give the proof of the above theorem we should remark
that the set of valid values of µ is in general not empty. The hardest condition
to check is the last one, i.e. that G(χ, s − n − l/2) does not have a pole at
s = µ. We recall from section 7 that G(χ, s) is a product of finitely many

factors, each one of the form gS(s+n+l/2,χ)
gS(s+l/2,χ) where gS(s, χ) = P (χ(π)q−s)) for

some polynomial P . It is known that the polynomial P is independent of χ, has
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constant term 1 and its degree is determined by S (see [27, Proposition 14.9
and Theorem 13.6]). Actually Katsurada [14] has obtained a rather complicated
recursive formula to write these polynomials explicitly. However, here we only
confine ourselves to say that for sufficiently large weights k the set above is
clearly not empty since the condition (d) excludes a finite number of µ’s, and
this number does not depend on k.

Proof of Theorem 10.7. We first notice that the equation (31) above can be
written as:

G(χ, 2s− n− l/2)N(be−1c)2nsχh(θ)
−n(−1)n(s−k/2)vol(A)

·<(E|k,Sρ)(diag[z1, z2],s),(f |k,Sηn)
c(z2)>=νecS,k(s−

k

2
)Λ(s, f, χ)E(z1, s;f, χ)

where now we have set

E(z, s) = Λk−l/2,c(s− l/4, χψS)E(z, s;χ).

We evaluate it at s = µ/2 with µ satisfying the assumptions of the theorem, so
that E(z, µ/2) ∈ Nn+m,r

k,S (Theorem 10.5). Then by Theorem 10.2,

E(z, µ/2) =
∑

h∈Λ1/Λ2

Eh(τ) ΘS,Λ2+h(τ, w)

for some Eh ∈ Nn+m,r
k−l/2 . Further, since ρ = 1Hρ with ρ ∈ Spn+m(F ), we can

write
E(z, µ/2)|k,Sρ =

∑

h∈Λ1/Λ2

Eh(τ)|kρΘS,Λ2+h(τ, w)|k,Sρ,

where Eh|kρ ∈ Nn+m,r
k−l/2 by [25, page 153]. In this way E(z, µ/2)|k,Sρ ∈ Nn+m,r

k,S .

Invoking now Lemma 10.6 we can write

E(diag[z1, z2], µ/2)|k,Sρ =
∑

i∈I

gi(z1)hi(z2),

where gi(z1) ∈ Nm,r
k,S , hi(z2) ∈ Nn,r

k,S . Hence,

G(χ, µ− n− l/2)N(be−1c)nµχh(θ)
−n(−1)n(µ/2−k/2)vol(A)

·
∑

i∈I

gi(z1) < hi(z2), (f |k,Sηn)
c(z2) >

= νecS,k(µ/2− k/2)Λ(µ/2, f, χ)E(z1, µ/2; f, χ).

Since by the condition (i) the constant cS,k(µ/2−k/2) is nonzero and since we
exclude the values of µ where G(χ, µ− n− l/2) has a pole, the above equation
states that Λ(µ/2, f, χ)E(z1, µ/2; f, χ) =

∑
i∈I αigi(z1) for some αi ∈ C. Since

gi(z1) ∈ Nm,r
k,S we can conclude that Λ(µ/2, f, χ)E(z1, µ/2; f, χ) ∈ Nm,r

k,S .
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