
Documenta Math. 55

Finite Group Schemes of Essential Dimension One

Najmuddin Fakhruddin

Received: August 7, 2019

Revised: January 4, 2020

Communicated by Nikita Karpenko

Abstract. We prove that if a finite group scheme G over a field k
has essential dimension one, then it embeds in PGL2/k. We use this
to give an explicit classification of all infinitesimal group schemes of
essential dimension one over any field and a characterisation of all fi-
nite group schemes of essential dimension one over algebraically closed
fields.
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1 Introduction

Let G be a group scheme over a field k. The essential dimension of G—see
e.g. [8] or [7] for the definition—is a non-negative integer defined using G-
torsors over all extensions of k. For example, if G = GLn/k then all G torsors
are trivial and the essential dimension is zero. The essential dimension of a
non-trivial finite group scheme G is always positive, so those having essential
dimension one are of particular interest. The main aim of this note is to prove
the following:

Theorem 1.1. Let G be a finite group scheme over a field k.

1. If the essential dimension of G over k is one then G can be embeded in
PGL2/k and dimk(Lie(G)) ≤ 1.

2. If G is infinitesimal then it has essential dimension one over k iff it can
be embedded in PGL2/k, dimk(Lie(G)) = 1, and G lifts to GL2/k. Such
group schemes exist over k iff char(k) = p > 0 and a complete list of such
group schemes is as follows:
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(a) αpn for all n > 0;

(b) µpn for all n > 0;

(c) any form of µpn , n > 0, which becomes isomorphic to µpn over a
quadratic extension of k if p 6= 2.

Ledet proved in [5] that a constant finite group G has essential dimension one
iff it embeds in PGL2/k and lifts to GL2/k. A complete list of such G was
given by Chu, Hu, Kang and Zhang [3]. It is likely that by combining these
results with Theorem 1.1 one can classify all finite group schemes of essential
dimension one. Theorem 4.1 gives such a classification for group schemes over
perfect fields with constant etale quotients.

Tossici has conjectured [9, Conjecture 1.4] that for a finite commutative unipo-
tent group G, edk(G) ≥ nV (G), where nV (G) is the order of nilpotence of the
Verschiebung morphism of G. Theorem 1.1, and the fact that edk(Z/p

2Z) = 2
(over a field of characteristic p), implies that edk(G) ≥ 2 if nV (G) ≥ 2. In par-
ticular, we see that the p-torsion of a supersingular elliptic curve has essential
dimension two (Example 4.2).

For a constant group scheme G with essential dimension one over k it is imme-
diate that G embeds in PGL2/k; this is because any rationally defined action
of a finite group on a smooth projective curve extends to a regular action.
However, this extension property is far from being true for infinitesimal group
actions and the key to our classification is a simple criterion (Proposition 2.2)
for the existence of such extensions. Aside from this, we also use some basic
structure theory of finite group schemes, especially in the case char(k) = 2.

For the basic definitions in the theory of essential dimension we refer the reader
to [8] or [7]; we only need the definition of essential dimension of a group
scheme over a field k, denoted by edk(G) below, the p-essential dimension for
a prime p, denoted by edk(G; p) and the notion of versal torsors [7, §3d]. For
the particular case of infinitesimal group schemes the reader may consult [10].
Our basic reference for the theory of (finite) group schemes is [4].
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2 Preliminary results

2.1 An extension criterion

Lemma 2.1. Let ι : A → B be an inclusion of noetherian integral domains
with A normal and with the map Spec(B) → Spec(A) being surjective (or with
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image containing all height one primes). If b ∈ B is such that b ∈ A(0) (the
quotient field of A), then b ∈ A.

Proof. Since A is normal, it suffices to show that the valuation of b at any height
one prime of A is non-negative, so by localisation we may assume that A is a
dvr. If b /∈ A then b−1 ∈ mA. By surjectivity of the map Spec(B) → Spec(A),
it follows that b−1 ∈ P for some prime ideal P of B. But this implies that
1 = b · b−1 ∈ P , a contradiction.

Proposition 2.2. Let k be a field, let G be an infinitesimal group scheme
over k and let Y be a normal projective curve with a generically defined action
of G. If there exists X, a normal projective variety over k with a regular action
of G, and a dominant rational map f : X 99K Y compatible (generically) with
the G-actions, then the rational action of G extends uniquely to a regular action
on Y . If k is perfect or Y is smooth, then G can be taken to be any finite group
scheme.

It is easy to see that rational actions of infinitesimal group schemes on smooth
projective curves do not always extend to regular actions, so our hypothesis on
the existence of the equivariant rational map f : X 99K Y is not superfluous;
see Example 2.4 below.

Proof. Assume first that k is arbitrary and G is infinitesimal. Let U be the
maximal open subset of X on which the rational map f restricts to a morphism
f |U : U → Y . The map f |U is surjective, because by normality X\U is of
codimension at least two in X so a general complete intersection curve C ⊂ X
will lie in U and f |C : C → Y is surjective since C is proper and also general.
Let y ∈ Y be any closed point and let u ∈ U be a (closed) point such that
f(u) = y. Let V = Spec(A) be any open affine subset of Y with y ∈ V and such
that the G-action on Y is defined at all points of V \{y}. Let W ⊂ U be any
affine open subset such that u ∈ W and f(W ) ⊂ V . Since G is infinitesimal,
W is G-invariant and G acts generically on V . Let W = Spec(B), so f induces
an inclusion ι : A → B.
Let G = Spec(R). Then R is a Hopf algebra and the G-actions correspond
to maps c1 : B → R ⊗k B and c2 : A(0) → R ⊗ A(0) (satisfying the usual
properties). For any a ∈ A, we have that c1(ι(a)) = c2(a), where the equality
holds in R⊗B(0). Choosing a basis of R over k and then applying Lemma 2.1
coordinatewise, we see that c2(a) ∈ R ⊗ A. This proves that the action of G
on V \{y} extends to all of V—the necessary identities hold because the map
A → A(0) is an injection—and this extension is clearly unique. Since y ∈ Y was
arbitrary, it follows that the generically defined action of G extends uniquely
to all of Y .
Now suppose that k is perfect and G is any finite group scheme over k. By
[4, II, §5, 2.4], G is a semidirect product of its identity component G0 and
its etale quotient Get. The action of G0 extends to all of Y and the generic
action of an etale group scheme (over any field) on a normal projective curve
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extends uniquely to a regular action. This is clear for a constant group scheme
and the case of an etale group scheme follows from this by Galois descent. The
uniqueness of the two extensions then implies that the action of G also extends.
Now suppose that k is arbitrary, G is any finite group scheme, and Y is smooth.
We know that an extension of the G0 action exists over k and an extension of
the G action exists after we base change to any perfect field K/k, since YK

is also smooth. For V = Spec(A) any nonempty affine open subset of Y as
above, consider the action map c2 : A(0) → R ⊗ A(0) as above. Using a basis
of R over k and writing c2(a) in terms of coordinates, we see that an extension
of the G action actually exists over k since any element of A(0) which lies in
A⊗kK must also lie in A. The extension is unique since this holds over K.

Remark 2.3. The assumption that Y is a curve was only used in the proof to
deduce the surjectivity of f |U . If instead of f being a rational map, we assume
that it is regular and surjective (in codimension one), then the proof in the case
of infinitesimal G works for any normal Y (without any projectivity/properness
hypothesis on Y or X).

Example 2.4. Let Z be a smooth projective ordinary curve of genus g ≥ 2 over
an algebraically closed field k of charactersitic p > 0. Let T be a non-trivial
µp-torsor over Z corresponding to non-zero element of Pic(Z)[p]. Such a torsor
is non-trivial over the generic point of Z, so T must be integral at its generic
point. However, there is no µp-equivariant completion of this torsor with total
space a smooth projective curve since such a curve would map to Z, so would
have genus at least 2, and a smooth projective curve of genus g ≥ 2 has no
non-zero vector fields.

We do not know the answer to the following:

Question 2.5. Does the action of a finite group scheme on a function field
of transcendence degree one always extend to a proper model of the function
field?

Lemma 2.6. Let k be any field and G an affine group scheme of finite type over
k. Then there exists a smooth projective (geometrically irreducible) rational
variety X over k with a generically free action of G.

Proof. Since G is of finite type it can be embedded in GLn for some n > 0, so
G acts linearly and generically freely on Mn, the space of n× n matrices. We
may then take X to be the projective completion of Mn, i.e., P(Mn ⊕ k).

2.2 Infinitesimal group schemes with one dimensional Lie algebra

In this section we assume that char(k) = p > 0. We denote the Lie algebra of
group schemes G, H , . . . , by g, h, . . . .

Lemma 2.7. Let G be an infinitesimal group scheme over a field k with
dimk(g) = 1. If H is any subquotient of G, then dimk(h) ≤ 1.

Documenta Mathematica 25 (2020) 55–64



Group Schemes of Essential Dimension One 59

Proof. The statement is clear for subgroup schemes so it suffices to prove it
for quotients. Let K ⊂ G be a normal subgroup scheme and let H = G/K.
Clearly O(G) ∼= B = k[x]/(xpn

) for some n ≥ 0, and O(H) ∼= A, where A is a
k-subalgebra of B such that B is flat over A. If A = k the lemma is clear, so
we may assume that the maximal ideal mA of A is nonzero.

Let r be the smallest integer such that mA contains an element a ∈ mr
B\m

r+1
B .

Then the elements 1, x, . . . , xr−1 of B are linearly independent in B/mAB, so
they must be part of a basis of B over A. In particular, we get that pn =
dimk(B) ≤ r dimk(A). On the other hand, the structure of the ring B implies

that 1, a, . . . , a⌈
p
n

r
⌉ are k-independent elements of A. This implies that r|pn

and a generates mA, so h is one dimensional.

Remark 2.8. The lemma holds with 1 replaced by n for arbitrary finite type
group schemes G over a field k, but we do not give the details here since we do
not need this.

Proposition 2.9. Let G be an infinitesimal group scheme over a field k with
dimk(g) = 1. Then either G is multiplicative or it is unipotent.

Proof. Since Lie algebras are compatible with field extensions and so are the
notions of multiplicative and unipotent groups, we may assume that k is alge-
braically closed.

Let G1 be the height one subgroup scheme of G corresponding to g (viewed as
p-Lie algebra); see for example [4, II, §7, 4.3]. This is a characteristic subgroup
scheme of G of order p, so we may form the quotient G/G1. By Lemma 2.7
and induction on the order of G, we get a filtration

{1} = G0 ⊂ G1 ⊂ G2 ⊂ . . . ⊂ Gn = G

where each Gi is a characteristic subgroup of G and Gi/Gi−1 is of order p for
1 ≤ i ≤ n, so isomorphic to αp or µp. To prove the lemma it suffices by [4, IV,
§1, 4.5] to show that all these quotients are of the same type.

If G is neither unipotent nor multiplicative, it follows from the above that G
has a subquotient of order p2 which is an extension of µp by αp or an extension
of αp by µp.

In the first case, [4, IV, §2, 3.3] implies that the extension is a trigonalisable
group scheme. Then by [4, IV, §2, 3.5] the extension splits, i.e., it is a semidirect
product. In the second case, since k is algebraically closed, so perfect, it follows
from [1, Théorème 6.1.1 (B)] that the extension is trivial.

Lemma 2.7 leads to a contradiction in both cases, so the proposition is proved.

Remark 2.10. Multiplicative group schemesG with dimk(g) = 1 are just forms
of µpn for some n > 0. Can one classify all unipotent group schemes with one
dimensional Lie algebras? (It seems likely that they are all commutative.)
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3 Proof of the main theorem

Proof of Theorem 1.1. For any non-trivial finite group scheme G, edk(G) ≥ 1
since there exist G-torsors over any extension of k whose underlying scheme is
integral.

Now supposeG is an arbitrary finite group scheme with edk(G) = 1. By Lemma
2.6, there exists a smooth projective rational variety X with a generically free
action of G. Let ∅ 6= U ⊂ X be an open subset on which G acts freely and let
V = X/G, so U is the total space of a G-torsor over V . The induced torsor
over Spec(k(V )) does not have essential dimension 0, since any G-torsor over
Spec(k) becomes trivial over an algebraic closure k̄ of k but the torsor over
Spec(k̄(Vk̄)) is non-trivial. Thus, since edk(G) = 1, there is a normal integral
curve Z over k, a G-torsor T over Z, and a dominant rational map V 99K Z
such that X is generically equal to V ×Z T (which makes sense over the generic
point of V ) as a G-torsor.

Since X is integral, the fibre of T over the generic point of Z must also be
integral. Let Y be the unique normal projective curve with function field equal
to k(T ) (the residue field at the generic point of T ), so Y has a generically
defined, generically free, action of G and we have a G-equivariant dominant
rational map from X to Y . Since X is rational, Luroth’s theorem implies that
Y ∼= P1

k; in particular, Y is smooth. By Proposition 2.2, the generic G-action
extends to a regular action of G on Y . The generic freeness of the G-action on Y
then gives an embedding G →֒ Aut(Y ) ∼= PGL2/k. Finally, since the G-action
on Y is generically free and Y is a smooth curve, it follows that dimk(g) ≤ 1.

Now let G ⊂ PGL2/k be an infinitesimal subgroup scheme with dimk(g) = 1.
If G lifts to a subgroup scheme of GL2/k, then G acts generically freely on
A

2
k and the map A

2
k → A

2
k/G gives rise to a versal G-torsor over a non-empty

open subset of A2
k/G. We also have a G-torsor corresponding to the quotient

map P1
k → P1

k/G, and this torsor gives a one dimensional compression of the
versal G-torsor. Thus edk(G) ≤ 1 and if G is non-trivial then we must have
edk(G) = 1.

To prove that G lifts to GL2/k if edk(G) = 1, we first consider the case that
char(k) 6= 2. Then we have an etale isogeny SL2/k → PGL2/k, so if G is
infinitesimal it lifts (uniquely) to SL2/k, therefore to GL2/k.

Suppose that G is multiplicative (with char(k) arbitrary) and let C(G) be the
centralizer of G in PGL2/k. By [1, XI, Corollaire 2.4], the centralizer of a group
scheme of multiplicative type in any smooth affine group scheme is smooth, so
C(G) is smooth; let C0(G) be its identity component. Now C(G) is a proper
subgroup scheme of PGL2/k since the centre of PGL2/k is trivial. Also, G is
contained in the centre of C0(G), which must therefore be positive dimensional.
If C0(G) is not a torus then it must contain a smooth one dimensional unipotent
subgroup U . However, since G ⊂ G0(G) and G is multiplicative, it follows that
in this case C0(G) must be two dimensional. Therefore, C0(G) must be a
Borel subgroup of PGL2/k and U must be its unipotent radical. However, the
centre of a Borel subgroup of PGL2/k is trivial, so this contradicts the fact that
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G is contained in the centre of C0(G). Thus, any infinitesimal multiplicative
subgroup G of PGL2/k in any characteristic must be contained in a torus T .

Let T ′ be the inverse image of T in GL2/k, so T ′ is a two dimensional torus.
It is a maximal torus, of which the non-split ones are classified by separable
quadratic extensions of k: the action of the Galois group on the character group
∼= Z2 is given by switching coordinates. It follows that T ′ is a quadratic twist
of Gm. If char(k) > 2 this gives the claimed classification of all multiplicative
G with edk(G) = 1.

If T is non-split then the above description shows that it contains a unique
subgroup scheme of order 2. If char(k) = 2, it follows from this that G ⊂ T ′

lifts to a subgroup of GL2/k iff T (equivalently T ′) is split; in particular, G
must be isomorphic to µ2n for some n.

By [6, Proposition 6.1], if G is a non-trivial quadratic twist of µ2n then
edk(G; 2) = 2. Since edk(G) ≥ edk(G; p) for any prime p, we conclude that
if char(k) = 2 the only infinitesimal multiplicative group schemes G with
edk(G) = 1 are the µ2n for n > 0.

Now suppose G 6= {1} is unipotent and assume that the G-action on P1
k gives

a versal G-torsor.

Claim. G preserves a point in P1
k(k).

Proof of claim. Consider a faithful representation of G on a finite dimensional
k-vector space V . Since G is unipotent, by [4, IV, §2, 2.5] V has a complete
filtration by k-subspaces

0 = V0 ⊂ V1 ⊂ . . . ⊂ Vn−1 ⊂ Vn = V

which is preserved by G. By induction on n, we may assume that the action
on Vn−1 is not faithful.

Since Lie(G) is one dimensional, the action of G on V (which we now think
of as an affine variety) is generically free. By the assumed versality of the
G-action on P1

k, there exists a rational G-equivariant morphism f : V 99K P1
k.

Since P1
k is proper, f is defined at the generic point of Vn−1. The restriction

of f to Vn−1 cannot be dominant since the action of G on Vn−1 is not faithful,
so f(Vn−1) must be a rational point x ∈ P1

k(k). Since Vn−1 is G-invariant, it
follows that so is x, and the claim is proved.

The stabilizer in PGL2/k of any point in P1
k(k) is Borel subgroup so G is

contained in a Borel B. Since G is unipotent, it is in fact contained in the
unipotent radical of B which lifts to GL2/k. Thus, G also lifts to GL2/k.

1

Any unipotent subgroup of GL2/k in any characteristic preserves a line, so
we see that any infinitesimal unipotent group G with edk(G) = 1 must be
isomorphic to a subgroup of Ga, so must be αpn for some n > 0.

1When p = 2 there do exist infinitesimal unipotent subgroups of PGL2/k which do not
lift to GL2/k ; this was pointed out to us by D. Tossici.

Documenta Mathematica 25 (2020) 55–64



62 N. Fakhruddin

Remark 3.1. If char(k) = 2 and µ2 is embedded in PGL2/k as a subgroup
of a torus (which is uniquely determined as the connected centralizer), then
the µ2 action on P1

k has a fixed point iff the torus is split. It follows that the
embedding gives a versal µ2-torsor iff the torus is split.

4 Applications of the main theorem

4.1 Finite group schemes of essential dimension one

Let G be any finite group scheme over k with edk(G) = 1. By Theorem 1.1, G
embeds in PGL2/k and we also have dimk(g) = 1. If G is any finite subgroup
scheme of PGL2/k with dimk(g) = 1, then a sufficient condition for edk(G) = 1
is that G lifts to GL2/k. If this condition were also necessary—we know this
is the case for constant as well as infinitesimal group schemes—then we would
have a complete classification of all finite group schemes G with edk(G) = 1.
As a first step, one should verify this for etale group schemes. This can pre-
sumably be done using the classification of constant groups G with edk(G) = 1
in [3], but we do not do this here and proceed after making some simplifying
assumptions.
Recall that for any finite group scheme G we have an exact sequence

1 → G0 → G → Get → 1,

where G0 is infinitesimal and Get is etale. This sequence splits when k is
perfect, i.e., G ∼= G0 ⋊Get [4, II, §5, 2.4].

Theorem 4.1. A finite group scheme over a perfect field k with Get constant
has edk(G) ≤ 1 iff G can be embedded in PGL2/k, dimk(g) ≤ 1 and G lifts to
GL2/k.

Note that if k is algebraically closed this gives a classification of all finite group
schemes over k with edk(G) = 1. For general perfect k the method of proof,
together with the classification results of [3], can be used to make a more
explicit list of all such group schemes.

Proof. The conditions are clearly sufficient and we have already seen that the
first two are necessary, so we need to show that if edk(G) = 1 then G has
an embedding in PGL2/k which lifts to GL2/k. We may assume that G0 is
non-trivial since otherwise the theorem is a consequence of [5].
If edk(G) = 1 then there is an embedding G →֒ PGL2/k which makes the
quotient map P

1
k → P

1
k/G generically into a versal G-torsor. This implies (as

is well known) that edk(G
0) = 1 and edk(G

et) and the corresponding quotient
maps are also versal torsors. By Theorem 1.1 and [5, Theorem 8], both G0 and

Get lift to GL2/k; call the lifts G̃0 and G̃et.
If char(k) 6= 2, we saw in the proof of Theorem 1.1 that we can assume that

G̃0 ⊂ SL2/k and such a lift is unique. It follows that G̃et normalizes G̃0 and

the subgroup G̃0 ⋊ G̃et ⊂ GL2/k is a lift of G.
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If char(k) = 2 and G0 is unipotent then G̃0 is still unique, so again G̃0 ⋊

G̃et ⊂ GL2/k is a lift of G. Finally, suppose that G0 is multiplicative, so it

is isomorphic to µ2n for some n > 0. We may assume that G̃0 is a subgroup

of the group T ′ of diagonal matrices in GL2/k and G̃0 ∩ Z(GL2/k) = {1}. If

G̃0 6= {1}, one easily sees that the normalizer of G̃0 in GL2/k is T ′. Thus, G
has a lift to GL2/k iff G ⊂ T , the image of T ′ in PGL2/k. If this condition
is not satisfied then G contains a subgroup G1

∼= µ2 × Z/2Z. By [2, Theorem
3.1] edk(µ2 × Z/2Z) = 2—one may give an elementary proof of this particular
case by using that the action of G1 on P1

k does not have any fixed points2—
and this implies that edk(G) > 1.

We conclude that if edk(G) = 1 then G lifts to GL2/k.

4.2 Some finite group schemes of essential dimension two

Using Theorem 1.1 we may compute edk(G) for various other group schemes.
The point is that if one knows that edk(G) ≤ 2 for some group scheme G
not occurring in the list of group schemes with edk = 1 then we must have
edk(G) = 2.

Example 4.2. Let G = E[p], the p-torsion of a supersingular elliptic curve E
over a field k with char(k) = p > 0. It sits in an exact sequence

0 → αp → E[p] → αp → 0,

so by [10, Theorem 1.4] we have edk(E[p]) ≤ 2. However, E[p] is not isomor-
phic to αp2 , so we conclude that edk(E[p]) = 2. The group scheme E[p] is
trigonalizable, but 2 = edk(E[p]) > dimk(Lie(E[p])) = 1, so it is not almost
special in the sense of [10, Definition 4.2]. This answers a question discussed
in [10, Example 4.8].
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