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concerned the splitting problem for subspaces of superspaces. We
begin with a general account of projective superspaces. Subsequently,
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1 Introduction

Motivation I: Mirror Superspaces

In the paper by Sethi [Set94] certain constructions of superspaces were pro-
posed as mirrors to rigid, Kähler manifolds appearing in Landau-Ginzberg
models. This idea was explored further by Aganagic and Vafa in [AV04]

where the superspace mirror of the projective superspace P
3|4
C

was derived

as a quadric in P
3|3
C

× P
3|3
C

. The objective of this article is not to study this
derivation of mirror superspaces, but rather to comment on the superspaces
derived therein. We refer to [N17] where the mirror map for superspaces,
among other topics, are studied in more detail.

Generally speaking, mirror symmetry relates structures on a space M with
structures on another, M̂ , referred to as its mirror. For instance, the symplec-
tic structure on M might be suitably interchanged with the complex structure
on M̂ . In analogy we can ask, what structures might be interchanged in the
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mirror symmetry between superspaces? In [Bet20] it was proposed, under
the mirror symmetry detailed by Sethi; and by Aganagic and Vafa, that the
Kähler parameter ought to be interchanged with the obstruction to splitting
the mirror superspace. This article is hence, in part, an effort to further
justify this proposal. We will argue that a large class of superspace varieties
obtained in the above-mentioned articles are non-split, i.e., have non-vanishing
obstruction class to splitting.

Motivation II: Examples

A well known example of a non-split superspace is the superspace quadric

Q ⊂ P
2|2
C

. In homogeneous coordinates (x1, . . . , θ2) it is given by the locus:
(x1)2+(x2)2+(x3)2+ θ1θ2 = 0. Arguments showing Q is non-split date to the
works of Berezin in [Ber87], Manin in [Man88], Green in [Gre82] and Onishchik
and Bunegina in [BO96]. Another argument, motivated by the observations
of Donagi and Witten in [DW15], was given in [Bet20]. More generally, it
is natural to ask when subvarieties given by loci g + hθk = 0 in projective
superspace will be non-split.1 Adequately resolving this problem could lead to
a number of interesting examples of non-split superspaces.

In general, it is a difficult problem to determine whether an analytic su-
perspace is split or not. In [Bet20] the splitting problem was studied by
reference to embeddings. That is, if we want to study the splitting problem
for a superspace Y, one method would be to embed it in a split superspace X.
One can then study the splitting problem of Y relative to that of X. This
perspective was applied in [Bet20] to study the splitting problem for certain
superspace extensions of rational normal curves. In this article we apply this
perspective to subvarieties of projective superspaces more generally.

We summarise the contents and main results of this article below.

Outline and Main Results

This paper can be broadly divided into three parts, excluding the introductory
material in Section 2. The first part concerns the geometry of projective su-
perspaces. The second concerns the splitting problem for subspaces therein,
referred to as projective superspace varieties. The third part concerns applica-
tions.2

1by hθk it is meant
∑

hi1,...,ikθi1 · · · θik , the sum being over (ordered) multi-indices
(i1, . . . , ik).

2While the material in the first part of the paper might be well known, the author could
not find definitive references for some of the statements made, so they are reproduced in this
article.
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Part I: Projective Superspaces

A well known result, dating at least to Manin in [Man88], is that the projective

superspace P
m|n
C

is split with structure sheaf O
P
m|n
C

∼= ∧•
(
⊕n OPm

C
(−1)

)
. In

Section 3 we consider a generalisation to a certain class of weighted projective

superspaces P
m|n
C

(1|~b) described in Construction 3.2, where ~b = (b1, . . . , bn)

is an n-tuple of integers. In Theorem 3.3 we show that P
m|n
C

(1|~b) is a split
superspace with structure sheaf O

P
m|n
C

(1|~b)
∼= ∧•

OPm
C

(
⊕j OPm

C
(−bj)

)
.

Part II: Splitting Projective Superspace Varieties

By Theorem 3.3, projective superspace varieties are subspaces of split super-
spaces. This allows us to apply some of the theory developed in [Bet20]. In
Theorem 4.10 we obtain a general characterisation applicable to subvarieties of

all weighted projective superspaces P
m|n
C

(~a|~b) (c.f., Remark 3.6), being: when

the weighting is ‘positive’, i.e., when ~b is a tuple of positive integers, then any
‘homogeneously non-reduced’, projective superspace variety (see Definition 4.5)
will be ‘homogeneously non-split’ (see Definition 4.7). Roughly, this means one
cannot eliminate the odd variables defining the subvariety by automorphisms
of the homogeneous coordinate ring alone. As a complement to our study of
projective superspaces, we present a short study of their automorphisms in
Appendix A. We argue in Theorem A.5 that certain automorphisms of certain
projective superspaces over the projective line can be identified with the general
linear group.

In Section 5 we establish our main theoretical result in this article. We in-
troduce the notion of ‘normal embeddings’ of superspaces in Definitions 5.3
and 5.4; Lemma 5.5 then clarifies the relation between normal embeddings and
non-splitting. Our main result is Theorem 5.6 where we show: any ‘positive’,
projective superspace variety is k-normal for all k, i.e., ‘normal’.

Part III: Applications

If we are given a projective, superspace variety with defining polynomial equa-
tions, how can we confirm whether or not it splits? In order to address this
question we give, in Section 6, a more detailed account of the principles under-
lying the notions and results of the previous section. Section 7 is then concerned
with applications to superspace quadrics, which we define generally in Defini-
tion 7.1. Our main result here is Theorem 7.2 where it is shown: any smooth,
non-reduced, superspace quadric hypersurface is non-split. With this result we
deduce, in Example 7.3, non-splitness of a class of mirror superspaces obtained
by Sethi in [Set94]. We next turn our attention to quadrics in products of
projective superspaces. Following the work of Lebrun and Poon in [LPW90]
we present a superspace variant of the classical Segre embedding of products
of projective spaces in Theorem 7.5. The proof is deferred to Appendix B.
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Non-splitting of non-reduced, quadric hypersurfaces in products of (positive)
projective superspaces then follows naturally (see Corollary 7.6). We conclude
the article with Example 7.7 where non-splitness of the mirror superspace to

P
3|4
C

, derived by Aganagic and Vafa in [AV04], is deduced.

2 Preliminaries

2.1 Analytic Superspaces

Following the conventions in [GR84], let (X,OX) be a complex analytic space.
If we now fix a locally free sheaf ofOX -modules E , we can form the locally ringed
space (X,∧•

OX
E). This is the prototypical example of an analytic superspace

and is referred to as a split superspace. Our convention in this article is to
set T ∗

X,− := E and to denote by S(X,T ∗
X,−) the split superspace (X,∧•T ∗

X,−).
More generally, an analytic superspace is a locally ringed space X = (X,OX)
where OX is a sheaf of supercommutative rings on X that is locally isomorphic
to ∧•T ∗

X,−. We say S(X,T ∗
X,−) is the split model associated to X or that X

is modelled on S(X,T ∗
X,−).

3 The superspace X is itself said to be split if it is
isomorphic to its split model S(X,T ∗

X,−). Otherwise, X is non-split.

Definition 2.1. Let X be an analytic superspace modelled on S(X,T ∗
X,−).

The underlying analytic space (X,OX) is called the reduced space of X; and
the locally free sheaf T ∗

X,− is referred to as the odd cotangent sheaf.4

Definition 2.2. If X is isomorphic to its reduced space, it is called reduced.

Definition 2.3. A complex supermanifold is an analytic superspace whose
reduced space is a smooth, i.e., a complex manifold.

2.2 Obstruction Sheaves

The splitting problem for analytic superspaces involves studying the cohomol-
ogy of what are termed obstruction sheaves. To any model (X,T ∗

X,−) we can
assign the obstruction sheaf QT∗

X,−
. This is a Z-graded sheaf of OX -modules,

non-zero in degrees 0, . . . , n where n = rank T ∗
X,−. In even degree 2k we have

an isomorphism,

Q
(2k)
T∗
X,−

∼= TX ⊗ ∧2kT ∗
X,−. (1)

for TX the tangent sheaf of X . The obstruction sheaves QT∗
X,−

appear in

the paper by Green in [Gre82] and the works of Berezin, collected in [Ber87].
The obstruction classes to splitting superspaces X, modelled on S(X,T ∗

X,−),

3The pair (X, T ∗

X,−) in isolation is referred to as a model. Accordingly, we might also

refer to X as being ‘modelled on (X, T ∗

X,−)’.
4With OX the structure sheaf of X, there is an augmentation map α : OX ։ OX defining

an embedding X ⊂ X. The kernel J of α is referred to as the fermionic ideal. The odd
cotangent sheaf can be recovered from J as T ∗

X,−
∼= J /J 2.
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are housed in H1(X,QT∗
X,−

). However, not every class therein need be an
obstruction to splitting some superspace. This point is explored further in
[EL86, Bet19, Bet16]. It is shown that H1(X,QT∗

X,−
) can be interpreted as a

space of thickenings which themselves can, in a suitable sense, be obstructed.

Remark 2.4. The obstruction sheaves in odd degree also play an important role
in studying the splitting problem, since a superspace can define obstructions
to splitting therein. In this article only the even degree components of QT∗

X,−

will be relevant as the superspaces we intend on studying will only define even
degree obstructions.

For the ultimate applications in this paper we will make use of the following
classical result, which we will refer to as the ‘Supermanifold Non-Splitting
Theorem’. One can find it in the works of Berezin in [Ber87]. Another proof
was given in [Bet18, Appendix A]. This theorem plays an essential role in the
deduction of the non-splitness of supermoduli spaces by Donagi and Witten in
[DW15]. It is given below.

Supermanifold Non-Splitting Theorem. Let X be a complex superman-
ifold modelled on (X,T ∗

X,−). Suppose it admits an atlas which defines a non-

vanishing obstruction in degree 2, i.e., a non-zero element in H1
(
X,Q

(2)
T∗
X,−

)
.

Then X is non-split.

Remark 2.5. The Supermanifold Non-Splitting Theorem does not generalise
with ‘degree 2’ replaced by ‘degree d’ for d > 2. This is due to the existence of
exotic atlases. We refer to [DW15, Bet18] for more discussion on this point.

3 Projective Superspaces

3.1 Split Models over Projective Space

The following is a classical construction of projective superspace which appears
in [Man88, p. 195] as part of a more general construction of superspace Grass-
mannians. It is directly analogous to the construction of projective space as a
quotient of Euclidean space.

Construction 3.1. Consider (m + 1|n)-superspace Cm+1|n endowed with
global coordinates (xµ|θa). The group of units C× acts on Cm+1|n by,

(xµ|θa)
λ

7−→ (λxµ|λθa)

for λ ∈ C×. The quotient
(
Cm+1|n − {(0|0)}

)
/C× is referred to as complex

projective superspace and is denoted P
m|n
C

.

In [Bet20] it was stated without proof that P
m|n
C

coincides with the split model
S(Pm

C
,⊕nOPm

C
(−1)

)
. This statement is not new and can be found in [Man88].

We consider a generalisation below.
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Construction 3.2. On Cm+1|n with coordinates (xµ|θa) consider a weighted
action of C× as follows,

(xµ|θa)
λ

7−→ (λxµ|λbaθa) (2)

for integers b1, . . . , bn and λ ∈ C×. The quotient of Cm+1|n − {(0|0)} by the

above action will be denoted P
m|n
C

(1|b1, . . . , bn). For notational convenience,

let ~b = (b1, . . . , bn) and set P
m|n
C

(1|b1, . . . , bn) = P
m|n
C

(1|~b). As with P
m|n
C

in

Construction 3.1, we refer to P
m|n
C

(1|~b) as ‘complex projective superspace’.

Theorem 3.3. Let ~b = (b1, . . . , bn) be an n-tuple of integers. There exists an
isomorphism of supermanifolds:

P
m|n
C

(1|~b) ∼= S
(
Pm
C ,⊕jOPm

C
(−bj)

)

Proof. The assertion of the present theorem is precisely the following:

(i) P
m|n
C

(1|~b) is a superspace;

(ii)
(
P
m|n
C

(1|~b)
)
red

= Pm
C
;

(iii) J /J 2 = ⊕jOPm
C
(−bj);

5

(iv) P
m|n
C

(1|~b) is split.

Hence to prove this theorem we need to confirm (i)—(iv) above.
(i) A superspace is a locally ringed space X with sheaf of rings OX, supercom-
mutative and locally isomorphic to an exterior algebra. Therefore, to show

P
m|n
C

(1|~b) is a superspace, we need to show its structure sheaf is a sheaf of
supercommutative algebras, locally isomorphic to an exterior algebra. Recall

that P
m|n
C

(1|~b) is the quotient of Cm+1|n by the action of C×. Let (xµ|θj) be
coordinates on Cm+1|n, µ = 1, . . . ,m + 1 and j = 1, . . . , n. On the open set

Uµ = (xµ 6= 0) in A
m+1|n
C

we write,

zν{µ} =
xν

xµ
and ξ

{µ}
j =

θa
(xµ)ba

.

By construction zν{µ} and ξ
{µ}
j are even resp., odd, C×-invariant, regular func-

tions on A
m+1|n
C

. The algebra C
[
z{µ}|ξ

{µ}
]
= C

[
z1{µ}, . . . , z

m+1
{µ} |ξ

{µ}
1 , . . . , ξ

{µ}
n

]

inherits the structure of an exterior algebra from C[x|θ]. If O(Uµ) denotes the

sheaf of holomorphic functions on Uµ, then C
[
z{µ}|ξ

{µ}
]
= O(Uµ)

C
×

= O(Ũµ),

where Ũµ = U/C× ⊂ P
m|n
C

(1|~b). In identifying O
P
m|n
C

(1|~b)
(Ũµ) = O(Ũµ) and

observing that
(
Ũµ

)
µ=1,...,m+1

covers P
m|n
C

(1|~b) we see that O
P
m|n
C

(1|~b)
is locally

an exterior algebra. Hence P
m|n
C

is a superspace.

5c.f., footnote (4)
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(ii)
(
P
m|n
C

(1|~b)
)
red

is characterised by its structure sheaf O
P
m|n
C

(1|~b)
/J , where

J ⊂ O
P
m|n
C

(1|~b)
is the fermionic ideal. With respect to the cover-

ing (Ũµ) described above, J (Uµ) is generated by (ξ
{µ}
1 , . . . , ξ

{µ}
n ). Hence(

O
P
m|n
C

(1|~b)
/J

)
(Ũµ) ∼= OPm

C
((Ũµ)red). Since (Ũµ) covers P

m|n
C

(1|~b) we deduce

an isomorphism of sheaves O
P
m|n
C

(1|~b)
/J ∼= OPm

C
and so

(
P
m|n
C

(1|~b)
)
red

= Pm
C
.

(iii) Let J ⊂ O
P
m|n
C

(1|~b)
be the fermionic ideal. Over Ũµ we have

(
J /J 2

)
(Ũµ) ∼=

OPm
C

(
(Ũµ)red

)
[ξ

{µ}
1 , . . . , ξ

{µ}
n ]/

(
ξ
{µ}
i ξ

{µ}
j ). On the intersection Uµ ∩ Uν where

both xµ 6= 0 and xν 6= 0 we have,

ξ
{µ}
j =

θj
(xµ)bj

=

(
xν

xµ

)bj θk
(xν)bj

=

(
xµ

xν

)−bj

ξ
{ν}
j =

(
zµ{ν}

)−bj
ξ
{ν}
j .

Hence each generator ξ
{µ}
j transforms as sections of OPm

C
(−bj)(Uµ). Therefore,

J /J 2 ∼= ⊕jOPm(−bj).

(iv) To see that P
m|n
C

(1|~b) is split, observe that in (i)—(iii) we have constructed

an atlas for P
m|n
C

(1|~b) with transition data on Ũµ ∩ Ũν ,

zσ{µ} =
zσ{ν}

zµ{ν}
and ξ

{µ}
j =

(
zµ{ν}

)−bj
ξ
{ν}
j . (3)

This is an atlas with trivial obstruction cocycle and so is a split atlas for

P
m|n
C

(1|~b). Hence P
m|n
C

(1|~b) is split.
This theorem now follows.

Remark 3.4. Since
(
P
m|n
C

(1|~b)
)
red

= Pm
C

is a complex manifold (i.e., non-

singular, analytic space) we see that P
m|n
C

(1|~b) is a complex supermani-

fold according to Definition 2.3. When ~b = (1, . . . , 1) we recover P
m|n
C

∼=
S(Pm

C
,⊕nOPm

C
(−1)

)
.

Since any holomorphic vector bundle on P1
C
splits into a sum of line bundles,

we have the following immediate corollary.

Corollary 3.5. Any (1|n)-dimensional, split supermanifold with reduced

space P1
C

is of the form P
1|n
C

(1|b1, . . . , bn) for some n-tuple of integers
(b1, . . . , bn).

Remark 3.6. The action in (2) can be generalised to (xµ|θa)
λ

7−→ (λaµ

xµ|λbaθa)
for fixed, positive integers a1, . . . , am+1. Setting ~a = (a1, . . . , am+1), the quo-

tient of Cm+1|n by this action is (~a|~b)-weighted projective superspace P
m|n
C

(~a|~b).

By construction P
m|n
C

(~a|~b)red = P
m|n
C

(~a). Since P
m|n
C

(~a) is generally a singu-

lar variety, P
m|n
C

(~a|~b) is an example of a singular superspace by Definition 2.3.
Subvarieties of weighted projective superspaces appear in [Set94] as mirror su-
perspaces.
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4 Subvarieties and Splitting

4.1 Homogeneous Coordinates

The ring C[x1, . . . , xm+1] = C[x] is graded, with graded pieces C[x](n) com-
prising homogeneous polynomials of degree n. These graded pieces C[x](n)
correspond to global sections of Serre’s twisting sheaves OPm

C
(n). In the su-

percommutative case we consider C[x1, . . . , xm+1, θ1, . . . , θn], abbreviated to
C[x|θ]. If θj is positively weighted, with weight bj > 0, then θj will define local

sections (ξ
{µ}
j ) of OPm

C
(−bj) as we see from Theorem 3.3. The sheaf OPm

C
(−bj)

has no global sections however so, in stark contrast with the commutative case,
θj cannot be interpreted as a global section. Despite this shortcoming, it will
nevertheless be instructive to view C[x|θ] as the homogeneous coordinate ring
for projective superspace. Projective superspace varieties then corresponding
to homogeneous, prime ideals. Accordingly, with C[x] the homogeneous coor-
dinate ring of Pm

C
, we view the odd variables θ as ‘formal parameters’ over Pm

C
.

4.2 Projective Superspace Varieties

Let F = (fα) be a finite collection of even, homogeneous polynomials in C[x|θ],
i.e., polynomials of even degree, homogeneous with respect to the action of C×.
We generically write,

fα(x|θ) = fα(x|0) + hα|2(x)θ2 + hα|4(x)θ4 + . . . (4)

where, e.g., by the notation hα|2(x)θ2 it is meant
∑

i,j h
α|ij(x)θiθj for appro-

priate polynomial functions hα|ij(x) preserving homogeneity of fα.

Definition 4.1. A polynomial f(x|θ) in C[x|θ] is said to be irreducible if
f(x|0) ∈ C[x] is irreducible.

We assume F = (fα) is a (finite) collection of even, irreducible, homogeneous
polynomials. In supposing the coordinates xµ and θj are weighted, with weights
1 and bj respectively, the locus {(x|θ) | fα(x|θ) = 0, ∀α} defines a subvariety

V (F ) ⊂ P
m|n
C

(1|~b).6 Since each fα(x|θ) is homogeneous, then so is fα(x|0).
Moreover, since fα(x|θ) is irreducible then so is fα(x|0) by definition. Hence
the ideal generated by

(
fα(x|0)

)
in C[x] will define a subvarety V0 ⊂ Pm

C
. In

viewing V (F ) as a superspace7, V0 is its reduced space and its odd cotangent

sheaf is the restriction of that of Pm
C
(1|~b) to V0. By Theorem 3.3, V (F ) is

modelled on
(
V0,⊕jOPm

C
(−bj)|V0

)
. In accordance with Definition 2.3, V (F ) is

non-singular iff V0 is non-singular.

6In the case where there is a single polynomial equation F = (f), the subvariety V (F ) is
referred to as a hypersurface. In [DW15], hypersurfaces are referred to as superspace divisors.

7from the material so far presented, it is not yet clear that V (F ) will be a superspace as
it is unclear whether it will be ‘locally split’. We address this issue in the subsequent section.
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4.3 Splittings

We begin with a digression on splittings of affine superspaces.

4.3.1 Affine Superspace Varieties

Generally, a splitting of a superspaceYmodelled on (Y, T ∗
Y,−) is an isomorphism

of Y with its split model S(Y, T ∗
Y,−). Now for a (finite) family Z =

(
ζα(x|θ)

)
of

even, irreducible polynomials in C[x|θ], the zero set V (Z) ⊂ A
m+1|n
C

is an affine
superspace variety. Its coordinate ring is C[x|θ]/(ζ). The data modelling V (Z)
is

(
V0, T

∗
A

m+1

C
,−
|V0

)
, where V0 =

{
ζα(x|0) = 0, ∀α

}
⊂ Am+1

C
and T ∗

A
m+1

C
,−

=

⊕nO
A

m+1

C

.

Proposition 4.2. Any affine superspace variety is isomorphic to its split
model.

Proof. Let V (Z) ⊂ A
m+1|n
C

be an affine superspace variety. Then
(
V (Z)

)
red

=
V0 is an affine variety. Cartan’s Theorem B in the complex analytic setting, or
Serre’s criterion for affineness in the algebraic setting, asserts that the cohomol-
ogy of any abelian sheaf on an affine variety is acyclic. Now, any obstruction
to splitting V (Z) lies in the first cohomology of the obstruction sheaf on V0,
which is an abelian sheaf. Hence this cohomology group vanishes and so any
obstructions to splitting V (Z) must vanish. Therefore V (Z) must be split.

Now consider the variety V0 defined by the locus of ζ =
(
ζα(x|0)

)
. Let Iζ ⊂

C[x] denote the ideal generated by
(
ζα(x|0)

)
. The coordinate algebra for the

split model S
(
V0, T

∗

A
m|n
C

,−
|V0

)
is C[x|θ]/Iζ .

8 If IZ ⊂ C[x|θ] denotes the ideal

generated by Z =
(
ζα(x|θ)

)
then Proposition 4.2 implies,

C[x|θ]

IZ
∼=

C[x|θ]

Iζ
. (5)

Any isomorphism between the algebras in (5) is referred to as a splitting.

4.3.2 Projective Superspace Varieties

We consider the implications of Proposition 4.2 now for varieties in projective
superspace. The following addresses footnote (7).

Proposition 4.3. Any variety V in a projective superspace P
m|n
C

(1|~b) is itself
a superspace.

8As an exterior algebra: C[x|θ]/Iζ = ∧•

C[x]/Iζ

(

J̃/J2
)

, where J ⊂ C[x|θ] is the fermionic

ideal; and J/J2 is a C[x]-module and J̃/J2 = (J/J2)/Iζ(J/J
2).
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Proof. In the proof of Theorem 3.3 we described a system of local coordi-

nates which served to show that P
m|n
C

(1|~b) is a split supermanifold. Denote by

(Uµ)µ=1,...,m+1 this coordinate atlas. For any variety V ⊂ P
m|n
C

(1|~b) note that
V ∩ Uµ will be an affine superspace variety. Hence it will be split by Proposi-
tion 4.2. Hence V will be locally split. The local splitting will be of the form
(5) and so V and its split model will be locally isomorphic. It is therefore a
superspace.

Remark 4.4. A splitting of a projective superspace variety V ⊂ P
m|n
C

(1|~b)
is now immediate. It is a consistent choice of local splittings, which exist by
Proposition 4.3, that integrate to a global splitting, i.e., that give the same
splitting on intersections.

4.4 Homogeneous Splittings

In contrast to other sections, the results here will apply generally to weighted

projective superspaces P
m|n
C

(~a|~b) (c.f., Remark 3.6). Subvarieties of weighted
projective superspaces are defined analogously to those of projective super-
spaces, i.e., by homogeneous, prime ideals in the homogenous coordinate ring.
By Definition 2.2, a superspace X is reduced if it is isomorphic to its reduced
space Xred. If the rank of the odd cotangent sheaf is non-zero then X cannot be
reduced and so the ‘interesting’ superspaces are all non-reduced. To a projec-
tive superspace variety, we consider the notion ‘homogeneously non-reduced’
in what follows.

Definition 4.5. Fix the homogeneous coordinate ring C[x|θ] and let F =
(fα) be a finite collection of even, irreducible, homogeneous polynomials in
C[x|θ]. The projective, superspace variety V (F ) is said to be homogeneously
non-reduced if there exists at least one α and k such that ∂fα/∂θk 6= 0.

Remark 4.6. If a projective, superspace variety is homogeneously reduced,
then it will be split as a superspace (c.f., (5)).

In the previous section we described splittings of subvarieties of P
m|n
C

(1|~b).
Presently, we will consider a weaker form of splitting which is more generally

applicable to subvarieties of P
m|n
C

(~a|~b).

Definition 4.7. Let F = (fα) be a finite collection homogeneous, even, irre-

ducible polynomials in C[x|θ]. The subvariety V (F ) ⊂ P
m|n
C

(~a|~b) is homoge-
neously split if there exists an automorphism ϕ of C[x|θ] such that:

(i) the induced map ϕ : C[x|θ]/(θ2) → C[x|θ]/(θ2) is the identity;

(ii) ϕ preserves the weight, i.e.,

wt.(xµ) = wt.(ϕ(xµ)) and wt.(θj) = wt.(ϕ(θj));
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(iii) V
(
(F ◦ ϕ)

)
=

{(
fα ◦ ϕ

)
(x|θ) = 0 | ∀α

}
is homogeneously reduced.

If V (F ) is not homogeneously split, it is said to be homogeneously non-split.

Restricting to subvarieties of P
m|n
C

(1|~b), we have the following relation to split-
ness following the characterisation in the previous section.

Lemma 4.8. If a subvariety of P
m|n
C

(1|~b) is homogeneously reduced, then it is
split as a superspace.

Proof. A homogeneous splitting will induce local splittings of the subvariety
by Definition 4.7(iii). These local splittings are compatible on intersections
by construction. Hence, by Remark 4.4, we will have a global splitting of the
subvariety.

Our objective is to show that homogeneous splittings do not exist if the
weighted projective superspace is ‘positive’, defined below.

Definition 4.9. The weighted projective superspace P
m|n
C

(~a|~b) is positive if

the weights bj ∈ ~b are all positive.

We arrive now at the main result of this section.

Theorem 4.10. Let P
m|n
C

(~a|~b) be a positive, weighted projective superspace and
suppose:

bj ≥ aσ for all j and σ. (6)

Then any homogeneously non-reduced subvariety of P
m|n
C

(~a|~b) will be homoge-
neously non-split.

Proof. The argument is based on comparing degrees. We will consider hyper-
surfaces. The generalisation to arbitrary varieties is straightforward. Recall

that a hypersurface in P
m|n
C

(~a|~b) is given by the vanishing locus of an irre-
ducible, homogeneous, even polynomial f ∈ C[x|θ]. Now, by Definition 4.7(i)
a homogeneous splitting ϕ will be an automorphism ϕ : C[x|θ] → C[x|θ] given
by,

xµ 7−→ ϕ(xµ) = xµ + ϕµ|2(x)θ2 + ϕµ|4(x)θ4 + · · · (7)

θj 7−→ ϕ(θj) = θj + ϕj|3(x)θ
3 + ϕj|5(x)θ

5 + · · · (8)

Definition 4.7(ii) gives constraints on the coefficients of ϕ. Suppose f = g+hθk

for some k > 0 and polynomials g, h ∈ C[x]. If V (f) is homogeneously split
then, by Definition 4.7(iii), V (f ◦ ϕ) is reduced. This means ∂(f ◦ ϕ)/∂θj = 0
for all j by Definition 4.5. As such we must write

h =
∑

σ

hσ(x)
∂g

∂xσ
(9)
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for some hσ(s), in which case ϕσ = xσ − hσθk + . . ., where the ellipses denote
terms of order θk+1 and higher. In supposing all of this, we will deduce a
contradiction. Firstly, since f is homogeneous we have:

deg g = deg hθk. (10)

While the product hθk is homogeneous, the individual factors need not be.
They are sums of homogeneous polynomials however. Writing out hθk explic-
itly, it is:

hθk =
∑

|I|=k

hI(x)θbI =
∑

|I|=k,σ

hI|σ(x)
∂g

∂xσ
θbI , (11)

where I = (i1, . . . , ik) is a multi-index of length k and θbI = θbi1 · · · θbik . The
latter equality in (11) follows from (9). By (10) the degree of each summand
in (11) is constant and equal to deg g. Hence we have:

deg g = deg hI|σ + deg g − deg xσ + deg θbI

⇐⇒ deg θbI = deg xσ − deg hI|σ. (12)

Since deg xσ is positive for all σ and hI|σ is a homogeneous polynomial in C[x],
it follows that the right hand side of (12) is less-than-or-equal-to deg xσ. Hence

that deg θbI ≤ deg xσ. But now, since P
m|n
C

(~a|~b) is positive, note that for any
iℓ ∈ I, we have the inequality biℓ < deg θbI . The inequality is strict since
|I| > 0. Hence, biℓ < deg xσ = aσ which contradicts (6). The theorem now
follows.

Example 4.11. Any homogeneously non-reduced subvariety in P
m|n
C

(1|~b), for ~b
positive, will be homogeneously non-split.

A consequence of Theorem 4.10 is: the property of a variety being homoge-
neously non-reduced is independent of its embedding into the appropriately
weighted, positive, projective superspace. However, to clarify, it is more
difficult to deduce non-splitness of the variety abstractly. That is, a variety
could be abstractly split albeit homogeneously non-split. In the following
section we will consider an alternate viewpoint on non-splitting for subvari-

eties of positive, projective superspaces P
m|n
C

(1|~b). We will eventually show
that for ‘quadrics’ in a positive, projective superspace, the property of being
homogeneously non-reduced implies non-splitness.

In Appendix A we have included a brief study of the automorphisms of
projective superspaces, building on some of the ideas in this section. As it is
irrelevant for the main purposes of this article it is included as an appendix,
largely for the sake of interest.
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5 k-Normal Embeddings

5.1 Preliminaries

We recall some relevant results from [Bet20] which we intend on applying here.
To a smooth embedding of split superspaces S(Y, T ∗

Y,−) ⊂ S(X,T ∗
X,−) we have

the following morphism of exact sequences of sheaves,

0 // QT∗
Y,−,T∗

X,−

��

// QT∗
X,−

��

// RT∗
Y,−,T∗

X,−

��

// 0

0 // QT∗
Y,−

// QT∗
X,−

|Y // NT∗
Y,−,T∗

X,−

// 0

(13)

where the vertical maps are the restriction of sheaves on X to Y ⊂ X .

Remark 5.1. Just like the obstruction sheaf, the sheaves in (13) are all non-
negatively Z-graded. They are non-trivial in degrees 0 ≤ k ≤ n for n =
rank T ∗

X,−. As we are only concerned with even embeddings, the odd-graded

components in (13) are irrelevant. Indeed, for even embeddings, N
(2k+1)
T∗
Y,−,T∗

X,−
=

(0).

On cohomology we obtain from (13) a commutative diagram, a piece of which
is:

H0
(
X,QT∗

X,−

)
//

��

H0
(
X,RT∗

Y,−,T∗
X,−

)
//

��

H1
(
X,QT∗

Y,−,T∗
X,−

)

��
H0

(
Y,QT∗

X,−
|Y
)

// H0
(
Y,NT∗

Y,−,T∗
X,−

) δ // H1
(
Y,QT∗

Y,−

)

(14)

The following result is proved in [Bet20].

Theorem 5.2. Let Y be a supermanifold with split model S(Y, T ∗
Y,−) and sup-

pose there exists a smooth embedding ι : Y ⊂ S(X,T ∗
X,−). Then there exists a

global section φ(ι) ∈ H0
(
Y,NT∗

Y,−,T∗
X,−

)
associated to ι which, under the bound-

ary map δ in (14), maps to an obstruction class to splitting Y.

5.2 Normal Embeddings

Observe that the diagram in (14) depends essentially on the embedding of
models (Y, T ∗

Y,−) ⊂ (X,T ∗
X,−).

9 This leads to the following definitions.

9From [Bet20], an embedding of models (Y, T ∗

Y,−) ⊂ (X, T ∗

X,−) is defined by (i) an em-

bedding j : Y ⊂ X and (ii) a surjection j∗T ∗

X,− → T ∗

Y,− → 0. The embedding is smooth if
j is smooth.
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Definition 5.3. Let (Y, T ∗
Y,−) ⊂ (X,T ∗

X,−) be an embedding of models. We
say this embedding is k-normal if the boundary map δ in (14) is injective in

degree k, i.e., if δ : H0
(
Y,N

(k)
T∗
Y,−,T∗

X,−

)
→ H1

(
Y,Q

(k)
T∗
Y,−

)
is injective. If the

embedding of models is k-normal for all k > 1, then it is referred to as normal.

Any embedding of superspaces Y ⊂ X is predicated on an embedding of models
(Y, T ∗

Y,−) ⊂ (X,T ∗
X,−). This is explained in more detail in [Bet20]. We mention

it now only in order to justify the following definition.

Definition 5.4. An embedding of superspaces Y ⊂ X is said to be k-normal
(resp., normal) if the corresponding embedding of models (Y, T ∗

Y,−) ⊂ (X,T ∗
X,−)

is k-normal (resp., normal).

In the special case where k = 2 the Supermanifold Non-Splitting Theorem
implies:

Lemma 5.5. Let Y ⊂ S(X,T ∗
X,−) be a smooth, 2-normal embedding and suppose

the global section φ associated to this embedding lies in H0
(
Y,N

(2)
T∗
Y,−;T∗

X,−

)
. If

φ 6= 0 then Y is non-split.

5.3 Projective Superspace Varieties

In the sections to follow we will be more explicit in our description of subvari-
eties and splittings. Presently, our objective is to prove the following.

Theorem 5.6. Smooth, positive, projective superspace varieties are normal.

Proof. To a smooth embedding j : Y ⊂ X and a sheaf F on Y , we have:

Hℓ
(
Y,F

)
∼= Hℓ

(
X, j∗F

)
. (15)

Hence the sheaf cohomology of subspaces Y of X can be calculated on the
ambient space X . We apply this to the case of a smooth projective variety V
of degree d. Let j : V ⊂ Pm

C
be the smooth embedding. For any abelian sheaf

G on Pm
C

we have the short exact sequence,

0 −→ G(−d) −→ G −→ j∗j
∗G −→ 0 (16)

where G(−d) = G ⊗ OPm
C
(−d). Since j is smooth we can identify j∗G with

the restriction G|V . By (15) we have the following exact pieces aiding in the
calculation of the cohomology of j∗G = G|V :

Hℓ
(
Pm
C ,G

)
−→ Hℓ

(
V,G|V

)
−→ Hℓ+1

(
Pm
C ,G(−d)

)
(17)

Now set G = QT∗
Pm
C

,−
, the obstruction sheaf of the ambient superspace P

m|n
C

.

By exactness of the rows in (14), this theorem will follow if we can show
H0(V,QT∗

Pm
C

,−
|V ) = (0) in even degree and for any V . This is what we will
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show now. By Theorem 3.3 we know T ∗
Pm
C
,− = Cn⊗OPm

C
(−1) = ⊕n

j=1OPm
C
(−1).

From the characterisation of obstruction sheaves in (1) we have:

Q
(2k)
T∗
Pm
C

,−
= TPm

C
⊗ ∧2kT ∗

P
m|n
C

,−
= ⊕( n

2k)TPm
C
(−2k).

Now by (17) with G = QT∗
Pm
C

,−
we have the exact piece,

C(
n
2k) ⊗H0

(
Pm
C , TPm

C
(−2k)

)
−→ C(

n
2k) ⊗H0

(
V, TPm

C
(−2k)|V

)
(18)

−→ C(
n
2k) ⊗H1

(
Pm
C , TPm

C
(−2k − d)

)
. (19)

Bott’s formula asserts the left-most and right-most cohomology groups in (18)
resp., (19) vanish for k > 0 and any d > 0. Hence H0

(
V, TPm

C
(−2k)|V

)
= (0)

for all k > 0 and any degree d, smooth projective variety V . We can thus
conclude that the embedding of models (V, T ∗

V,−) ⊂ (Pm
C
, T ∗

PC,−
) is normal.

This argument applies verbatim with P
m|n
C

replaced by P
m|n
C

(1|~b) with ~b > 0.
This theorem now follows.

Remark 5.7. For subvarieties of non-positive projective superspaces (i.e., when
bj ≤ 0 for at least some j), the left-most cohomology group in (19) need not
vanish. As such we cannot readily conclude normality.

Before discussing applications of Theorem 5.6 we digress to explain how exactly
one assigns sections in H0(Y,NT∗

Y,−;T∗
X,−

) to subspaces Y ⊂ S(X,T ∗
X,−) in

the case where Y is a projective superspace variety, i.e., when S(X,T ∗
X,−) =

P
m|n
C

(1|~b).

6 Normal Obstruction Sections

In Theorem 5.2 we see that when a supermanifold Y is embedded in a split
superspace S(X,T ∗

X,−), the obstruction class to splitting Y will lie in the image
of some global section, which we term below.

Definition 6.1. Let Y be a supermanifold and S(X,T ∗
X,−) some split model.

To a given smooth embedding ι : Y ⊂ S(X,T ∗
X,−), any global section

φ ∈ H0(Y,NT∗
Y,−;T∗

X,−
) which maps to an obstruction to splitting Y will be

referred to as a normal obstruction section associated to ι, or simply a normal
obstruction section with the embedding ι understood.

In order to get a more explicit description of the obstruction normal section
we will need to firstly characterise NT∗

Y,−;T∗
X,−

via more recognisable sheaves.

This is done in [Bet20] and we will only state the characterisation here: let
(Y, T ∗

Y,−) ⊂ (X,T ∗
X,−) be an even embedding of models10 and let IY be the

10the embedding (Y, T ∗

Y,−) ⊂ (X, T ∗

X,−) is even if T ∗

X,−|Y ∼= T ∗

Y,−.
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ideal sheaf of Y ⊂ X . Then,

N
(2k)
T∗
Y,−;T∗

X,−

∼= HomOY

(
IY /I

2
Y ,∧

2kT ∗
Y,−

)
.

Accordingly, in what follows, we will construct OY -linear homomorphisms
IY /I

2
Y → ∧2kT ∗

Y,− from the data of a superspace variety. These homomor-
phisms will be the obstruction normal section associated to the variety.

Remark 6.2. It is instructive compare subspaces of split models with infinites-
imal deformations of subschemes. The obstruction normal section is analogous
to the class labelling infinitesimal deformations of subschemes, as detailed in
[Har10].

6.1 Affine Superspace Varieties

Let C[x|θ] be the coordinate algebra of affine superspace A
m+1|n
C

and F =
(fα) ∈ C[x|θ] a finite collection of even, irreducble polynomials. Let Y = V (F )
be the variety defined by the locus {fα = 0 | ∀α} and suppose fα =
gα + hαθk + · · · . The reduced variety V0 is the locus {gα = 0 | ∀α} in
Am+1

C
. Observe that with fα we can tautologically define a lift gα 799K fα

for all α. This defines a homomorphism of C[x]-modules IG → C[x|θ] for
IG ⊂ C[x] the ideal sheaf generated by G = (gα). We now recall some ba-
sic properties. Let J =

(
θ1, . . . , θn

)
⊂ C[x|θ] be the fermionic ideal. Recall

C[x|θ] = ∧•
C[x]

(
J/J2

)
. Denote by πk the projection C[x|θ] → ∧k

C[x]

(
J/J2

)
.

Composing this with the lift G 799K F defines a map ρ(F ) : (gα) 7→ (hαθk)
and hence a C[x]-module homomorphism IG → ∧k

C[x]

(
J/J2

)
. Now recall that

we have p : C[x] → C[x]/IG = O(V0) with respect to which we can form the
induced module p∗ ∧k

C[x]

(
J/J2

)
= ∧kT ∗

V0,−
. Composing the lift ρ(F ) with

the projection πk and the map ∧k
C[x]

(
J/J2

)
→ ∧kT ∗

V0,−
yields the homomor-

phism ρ(F ) : IG → ∧kT ∗
V0,−

. By construction ρ(F ) sends I2G → (0). Hence

ρ(F ) ∈ HomO(V0)(IG/I
2
G,∧

kT ∗
V0,−

). The obstruction normal section associated

to the affine superspace variety V (F ) is this homomorphism ρ(F ).

6.2 Projective Superspace Varieties

We consider here varieties in projective superspaces of the form P
m|n
C

(1|~b).

Recall that P
m|n
C

(1|~b) is covered by locally affine pieces A
m|n
C

. Denote by

(Uµ)µ=1,...,m+1 the affine covering of P
m|n
C

described in the proof of Theo-

rem 3.3. If V ⊂ P
m|n
C

(1|~b) is a subvariety, then V ∩ Uµ ⊂ A
m|n
C

is an
affine superspace variety. Write V = V (F ) for F = (fα) a finite collection
of even, irreducible, homogeneous polynomials in C[x|θ]. As in the previous
section, suppose fα = gα + hαθk + · · · , and denote by V0 ⊂ Pm

C
the variety

{gα = 0 | ∀α}. Let IV0
⊂ OPm

C
be the ideal sheaf defining V0 ⊂ Pm

C
. With

respect to the covering (Uµ), denote V (f)µ := V (f) ∩ Uµ the subvariety in
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A
m|n
C

. The construction in the previous section assigns to V (F )µ a morphism

ρ(F )µ :
(
IV0

/I2V0

)
(Uµ) → ∧kT ∗

V0,−
(Uµ). Clearly,

ρ(F )
∣∣∣
Uµ

= ρ(F )µ. (20)

We therefore obtain from V (F ) a morphism of sheaves ρ(F ) : IV0
/I2V0

→

∧kT ∗
V0,−

. This is the normal obstruction section associated to V (F ).

Remark 6.3. The obstruction normal section ρ(F ) depends on choice of homo-

geneous coordinate ring C[x|θ] and hence on the embedding V (F ) ⊂ P
m|n
C

(1|~b).
If the variety V (F ) is positive, i.e., a subvariety of a positive, projective

superspace P
m|n
C

(1|~b), then homogeneous non-splitting in Theorem 4.10 im-

plies that ρ(F ) depends on C[x|θ] only upto re-scalings by non-zero, com-
plex numbers. In particular, the line defined by ρ(F ) in the projectivisation
P
(
HomOV0

(IV0
/I2V0

,∧kT ∗
V0,−

)
)
is an invariant of V (F ). These statements can

also be deduced from normality of positive, projective superspace varieties in
Theorem 5.6.

At the beginning of Section 4 it was observed that the odd variables in C[x|θ],
if positively weighted, ought to be viewed as ‘formal homogeneous coordi-
nates’ for projective superspace. Hence any positive, projective, superspace
variety V (F ) ought to also be viewed formally. The sheaf morphism ρ(F )
need not necessarily be formal however. It is formal if and only if the sheaf
HomOV0

(
IV0

/I2V0
,∧kT ∗

V0,−

)
does not have any global sections.

Proposition 6.4. Let V (F ) be a positive, projective, superspace variety. Sup-
pose there does not exist any global section ϕ such ϕ|Uµ

= ρ(F )µ. Then V (F )
is split.

Proof. Let (Uµ)µ=1,...,m+1 → P
m|n
C

(1|~b) be the affine covering in Theorem 3.3
with coordinates

(
z{µ}|ξ

{µ}
)
on Uµ. Suppose V (f) =

(
f = 0

)
with f = g+hθk.

We will argue, under the hypotheses of this proposition, that V (f) = (g =
0) ∩ (h = 0), which means V (f) must be split (c.f., (5)). Over each Uµ we
have the affine variety f

(
z{µ}|ξ

{µ}
)
= 0. We view V (f) =

(
f(x|θ) = 0

)
as

being glued together by these affine varieties V (f) ∩ Uµ =
(
f
(
z{µ}|ξ

{µ}
)
= 0

)

in P
m|n
C

(1|~b). Indeed, we have:
(
V (f) ∩ Uµ

)
|Uµ∩Uµ

=
(
V (f) ∩ Uν

)
|Uµ∩Uµ

. (21)

Now to each V (f) ∩ Uµ we have the homomorphism ρ(f)µ. By (21)

we have ρ(f)µ|Uµ∩Uµ
= ρ(f)ν |Uµ∩Uµ

. This is precisely the condition

that there exist a global section ϕ = ρ(f) in HomOV0
(Ig/I

2
g ,∧

kT ∗
V0,−

) =

H0
(
V (f),HomOV0

(Ig/I
2
g ,∧

kT ∗
V0,−

)
)
satisfying (20). But this violates our as-

sumption that no such global section exists, thereby violating (21) unless
ρ(f)µ = 0 for all µ, in which case f = 0 iff g = 0 and h = 0. Now if h = 0, then
V (f) will be homogeneously reduced. Hence by Lemma 4.8, V (f) is split.
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Corollary 6.5. Let V (F ) be a positive, projective, superspace variety and
suppose ρ(F ) is formal. Then V (F ) is split.

Remark 6.6. Proposition 6.4 and Corollary 6.5 clarify why the superspace
extension of the rational normal curve of degree d described in [Bet20] is split
for d > 2. When d = 2 it is an irreducible quadric and, as we shall see, these
will generically be non-split.

We will conclude with a general characterisation which we intend on applying in
the section to follow. To present the characterisation, we introduce the notion
of ‘homogeneous order’ for varieties.

Definition 6.7. Fix a homogeneous coordinate ring C[x|θ] and let F = (fα) be
a finite collection of even, irreducible polynomials. We define the homogeneous
order of V (F ), denoted ord(V (F )), to be the integer:

ord (V (F )) = sup
{k|k≥2}

{
V (F ) is homogeneously reduced modulo Jk

}

where J ⊂ C[x|θ] is the fermionic ideal.

Lemma 6.8. Let V (F ) be a positive, projective, superspace variety. Then the
following are equivalent:

(i) the obstruction normal section of V (F ) satisfies, ρ(F ) 6= 0;

(ii) V (F ) is homogeneously non-reduced;

(iii) 2 ≤ ord (V (F )) < rank J/J2.

Theorem 6.9. Let V (F ) be a positive, projective, superspace variety with re-
duced space V0. Suppose H0

(
V0,HomOV0

(
IV0

/I2V0
,∧kT ∗

V0,−

))
6= (0). Then if

ord (V (F )) = k, the k-th obstruction to splitting V (F ) is non-vanishing.

Proof. This follows by combining Proposition 6.4 with normality of positive,
projective superspace varieties in Theorem 5.6.

7 Superspace Quadrics

7.1 Quadrics and Non-Splitting

A classical construct in algebraic geometry is the irreducible quadric. It is a
projective variety of degree 2. In projective space Pm

C
any smooth (i.e., non-

singular) quadric can be written in homogeneous coordinates in the form (x1)2+

· · ·+(xm+1)2 = 0. In projective superspace P
m|n
C

we have the natural analogue
of a quadric, being the locus of a degree two, homogeneous polynomial:

Q(x|θ) =
∑

µ,ν

Qµνx
µxν +

∑

i,j

Qijθiθj (22)
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where (Qµν) and (Qij) are symmetric resp., antisymmetric matrices over C. In
general we propose the following definition of a superspace quadric in (positive)
projective superspaces:

Definition 7.1. Let C[x|θ] be the homogeneous coordinate ring of a posi-

tive, projective superspace P
m|n
C

(1|~b) and let J =
(
θ1, . . . , θn

)
⊂ C[x|θ] be the

fermionic ideal. A positive, projective superspace variety Q ⊂ P
m|n
C

(1|~b), with
ideal sheaf IQ ⊂ C[x|θ], is a superspace quadric if and only if there exists a
unique homomorphism IQ → C[x|θ]/J3 commuting the following diagram,

IQ

∃!
$$

// C[x|θ]

C[x|θ]/J3

99
s
s
s
s
s
s
s
s
s

where the map C[x|θ]/J3 → C[x|θ] is a splitting of the exact sequence J3 →
C[x|θ] → C[x|θ]/J3.

Loci of polynomials of the form (22) are superspace quadrics in P
m|n
C

as per
Definition 7.1. Note however that, more generally, the reduced space of super-

space quadrics Q ⊂ P
m|n
C

(1|~b) need not itself be a quadric in Pm
C
.11 In what

follows we will consider superspace quadric hypersurfaces.

Theorem 7.2. Let Q be a homogeneously non-reduced, smooth superspace
quadric hypersurface. Then Q is non-split.

Proof. Let Q ⊂ P
m|n
C

(1|~b) be a smooth superspace quadric. Then ~b = (bj) is
a tuple of positive integers. By homogeneity, bi + bj must be constant for all
i, j. Say, bi + bj = d. Let Q0 ⊂ Pm

C
be the reduced space of Q. By smoothness

and homogeneity, Q0 will be a smooth projective variety of degree d. If IQ0
is

the ideal sheaf defining Q0 ⊂ Pm
C
, we identify IQ0

= OPm
C
(−d). Observe now

that, by smoothness, the global sections of obstruction normal sheaf can be
calculated on Pm

C
. Hence, we have:

H0
(
Q0,HomOQ0

(
IQ0

/I2
Q0

, ∧2 T ∗
Pm
C
,−|Q0

))

∼=

⊕jH
0
(
Pm
C ,HomOPm

C

(
OPm

C
(−d),OPm

C
(−d)

))

∼= Cn. (23)

In particular, the obstruction normal sheaf admits non-vanishing, global sec-
tions. Hence, we can apply Theorem 6.9. The present theorem now follows
from the Supermanifold Non-Splitting Theorem and Theorem 6.9.

11e.g., this cannot be the case if, for all pairs of odd weighings (bi, bj), we have bi + bj 6= 2
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As an immediate application we can deduce that the following class of hypersur-
faces, appearing in [Set94] as potential mirrors to Landau-Ginzberg orbifolds,
are non-split.

Example 7.3. Let C[x|θ] be the homogeneous coordinate ring for the projec-

tive superspace P
3N |2N−2
C

(1|1, 2, . . . , 1, 2), where there are (N − 1)-many pairs
(1, 2). Then the hypersurface defined by

∑
i x

3
i +

∑
k≥0 θ2k+1θ2k+2 = 0 is a

non-singular, superspace quadric. As it is homogeneously non-reduced, it is
non-split as a superspace by Theorem 7.2.

7.2 Quadrics in Products

The category of superspaces admit products. That is, given superspaces X =
(X,OX) and X′ = (X ′,OX′) we can form the product X×X′ as the locally ringed
space (X ×X ′,OX ⊠OX′), where OX ⊠OX′ = p∗XOX ⊗ p∗

X′OX′ for projections
pX : X × X ′ → X resp. pX′ : X × X ′ → X ′. Note that X × X′ will be a
superspace since, locally, we have OX⊠OX′ ∼=loc. p

∗
X ∧• T ∗

X,−⊗ p∗X′ ∧• T ∗
X′,−

∼=

∧•p∗XT ∗
X,− ⊗ ∧•p∗X′T ∗

X′,−
∼= ∧•

(
p∗XT ∗

X,− ⊕ p∗X′T ∗
X′,−

)
, i.e., that OX ⊠ OX′ is

locally isomorphic to a sheaf of exterior algebras. If X and X′ are (m|n)-
resp., (m′|n′)-dimensional, then the product X × X′ will be (m + m′|n + n′)-
dimensional. Clearly, (X × X′)red = X × X ′ and the odd cotangent sheaf is
T ∗
X×X′,− = T ∗

X,− ⊞ T ∗
X′,− = p∗XT ∗

X,− ⊕ p∗X′T ∗
X′,−.

Example 7.4.

P
m|n
C

(1|~b)× P
m′|n′

C
(1|~b′) = S

(
Pm
C × Pm′

C ,OPm
C
(−~b)⊞O

Pm′

C

(−~b′)
)
.

Let V and W be m- and m′-dimensional, complex vector spaces. The projec-
tivisation of the tensor product map V × W → V ⊗ W is referred to as the
Segre embedding. Phrased alternately, it is an embedding of projective spaces

Pm
C
× Pm′

C
⊂ P

(m+1)(m′+1)−1
C

. This generalises to projective superspaces in the
following way.

Theorem 7.5. There exists a smooth embedding of positive, projective super-
spaces,

P
m|n
C

(1|~b)× P
m′|n′

C
(1|~b′) →֒ P

m′′|n′′

C
(1|~b′′),

for some m′′, n′′ and ~b′′ positive. Explicitly, see (B.3), (B.4) and (B.5) respec-
tively.

Proof. The proof involves some aspects of supermanifold theory that have not
yet been introduced so we defer it to Appendix B.

A corollary of the embedding in Theorem 7.5 is the analogue of Theorem 7.2
for quadrics in products of projective superspaces.
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Corollary 7.6. Let Q be a homogeneously non-reduced, quadric hypersurface
in a product of positive, projective superspaces. Then Q is non-split.

Proof. If Q ⊂ P
m|n
C

(1|~b) × P
m|n
C

(1|~b′) is homogeneously non-reduced then, via
the embedding in Theorem 7.5, it will be a homogeneously non-reduced, quadric

hypersurface in P
m′′|n′′

C
(1|~b′′). If P

m|n
C

(1|~b)×P
m|n
C

(1|~b′) is a product of positive,

projective superspaces, then so is P
m′′|n′′

C
(1|~b′′). The proof now follows from

Theorem 7.2.

With Corollary 7.6 above we can deduce non-splitness of the mirror superspace
quadric obtained by Aganagic and Vafa in [AV04].

Example 7.7. If (x|θ) and (y|η) are homogeneous coordinates for P
m|n
C

×P
m|n
C

,
the quadric defined by the locus

∑
µ x

µyµ +
∑

j θjηj = 0 will be non-split.

A Automorphisms of Superspaces

Preliminaries

We present a brief study here of the automorphisms of projective superspace.
We begin with some preliminary theory, starting with the following definition.

Definition A.1. An automorphism of a superspace X which fixes the mod-
elling data (X,T ∗

X,−) is referred to as a framed automorphism. The group of
framed automorphisms of X is denoted AutfrX.

When X = S(X,T ∗
X,−) is the split model, OX

∼= ∧•T ∗
X,−. In this case we have

a short exact sequence of sheaves of groups:

{1} −→ GT∗
X,−

−→ AutZ2
∧• T ∗

X,− −→ AutOX
T ∗
X,− −→ {1} (A.1)

where AutZ2
∧• T ∗

X,− are the automorphisms of ∧•T ∗
X,− as a sheaf of su-

percommutative algebra which preserves the global, Z2-grading. Denote by
Aut0S(X,T ∗

X,−) the automorphisms of S(X,T ∗
X,−) which act trivially on the

reduced space S(X,T ∗
X,−)red = X . In terms of sheaves then, Aut0S(X,T ∗

X,−)

are the global sections ofAutZ2
∧•T ∗

X,−, i.e, Aut0S(X,T ∗
X,−) = H0(X,AutZ2

∧•

T ∗
X,−). The framed automorphisms are then:

AutfrS(X,T ∗
X,−) = H0

(
X,GT∗

X,−
). (A.2)

From the long exact sequence on cohomology induced by (A.1) we see that as
groups:

(i) AutfrS(X,T ∗
X,−) is a subgroup of Aut0S(X,T ∗

X,−) and;

(ii) there exists a natural homomorphism

η : Aut S(X,T ∗
X,−) → GL(T ∗

X,−), (A.3)

where GL(T ∗
X,−) = H0(X,AutOX

T ∗
X,−).

In what follows we will consider projective superspaces.
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Automorphisms of Projective Superspace

If C[x|θ] denotes the homogeneous coordinate ring of P
m|n
C

(~a|~b), then automor-

phisms of P
m|n
C

(~a|~b) are induced by automorphisms ϕ : C[x|θ] → C[x|θ] which
preserve the Z2-grading and the weights of the variables x and θ, i.e., that

wt.(xµ) = wt.(ϕ(xµ)) and wt.(θj) = wt.(ϕ(θj)). (A.4)

Our objective is to prove:

Theorem A.2. Let P
m|n
C

(1|~b) be a positive, projective superspace. The auto-

morphisms Aut0P
m|n
C

(1|~b) is a subgroup of GLn(C).

En route to proving Theorem A.2 is the following.

Lemma A.3. Let P
m|n
C

(1|~b) be a positive, projective superspace. Then any

framed automorphism is trivial, i.e., AutfrP
m|n
C

(1|~b) = {1}.

Proof. Consider the covering of P
m|n
C

(1|~b) described in the proof of Theorem
3.3. Over an open set Uµ, GT∗

Pm
C

,−
(Uµ) is generated by transformations of the

form:

zν{µ} 7−→ zν{µ} + ϕ
ν|kl
{µ} (z{µ})ξ

{µ}
k ξ

{µ}
l + . . . (A.5)

ξ
{µ}
j 7−→ ξ

{µ}
j + ϕ

{µ}|lmn
j (z{µ})ξ

{µ}
l ξ{µ}m ξ{µ}n + . . . (A.6)

where the summation over the free Latin indices is implied. By (A.2) any
framed automorphism is a global section of GT∗

Pm
C

,−
and hence will induce a local

transformation as in (A.5) and (A.6). Therefore, in homogeneous coordinates,

any framed automorphism must be of the form (7) and (8). Assuming P
m|n
C

(1|~b)
is positive, any such automorphism must be trivial as, otherwise, it would
violate (A.4). The lemma now follows.

Proof of Theorem A.2. By Lemma A.3, the framed automorphisms of P
m|n
C

(1|~b),

for ~b a tuple of positive integers, is trivial. Hence the natural map η :

Aut0P
m|n
C

(1|~b) → GL(T ∗
Pm
C
,−) from (A.3) is injective, i.e. Aut0P

m|n
C

(1|~b) is a

subgroup of GL(T ∗
Pm
C
,−). It remains to show that GL(T ∗

Pm
C
,−) is a subgroup

of GLn(C). This is immediate upon recalling: (i) from Theorem 3.3 that
T ∗
Pm
C
,− = ⊕jOPm

C
(−bj); and (ii) that GL(T ∗

Pm
C
,−) = H0(Pm

C
,AutOPm

C

T ∗
Pm
C
,−).

Remark A.4. In the case where ~b = b~1 = (b, . . . , b) for some integer b, we
have: GL(T ∗

Pm
C
,−) = GLn(C).

As an application we can characterise automorphisms of certain, (1|n)-
dimensional projective superspaces.

Documenta Mathematica 25 (2020) 65–91



Superspace Varieties, Quadrics and Non-Splitting 87

Theorem A.5. Fix a positive integer d > 0 and let d~1 = (d, . . . , d) be an
n-tuple. Then,

Aut0
(
P
1|n
C

(1|d~1)
)
∼= GLn(C).

Proof. By Theorem A.2 we know that Aut0
(
P
1|n
C

(1|d~1)
)

is a subgroup of
GLn(C). With T ∗

P1
C
,−

= ⊕nOP1
C

(−d) the odd cotangent sheaf, note that

GL(T ∗
P1
C
,−
) = GLn(C) (c.f., Remark A.4). We therefore have an exact sequence,

being the long exact sequence on cohomology induced from (A.1):

{1} −→ Aut0
(
P
1|n
C

(1|d~1)
) η
−→ GLn(C)

∂
−→ Ȟ

1(
P1
C,GT∗

X,−

)
−→ · · · (A.7)

where α is an injective morphism of groups and ∂ is a map of pointed sets. In
the article [Bet18] the notion of a ‘good model’ (X,T ∗

X,−) was introduced in
order to study the class of supermanifolds modelled on (X,T ∗

X,−). It was shown
there (see [Bet18, Theorem 4.3]) that: (X,T ∗

X,−) is a good model if and only if

the boundary map ∂ : GL(T ∗
X,−) → Ȟ

1
(X,GT∗

X,−
) from the long exact sequence

on cohomology in (A.1) is trivial. As an application the model (P1
C
, T ∗

P1
C
,−
),

with T ∗
P1
C
,−

= ⊕nOP1
C

(−d), d > 0, was shown to be ‘good’ (see [Bet18, Theorem

5.5]). Hence ∂ in (A.7) is trivial. Now note the following: if A
η
→ B → {e} is

an exact sequence of pointed sets, then A
η
→ B is surjective as a map of sets.

Hence η in (A.7) will be surjective as a map of pointed sets. As it is also an
injective homomorphism of groups, it must therefore be isomorphism of groups.
The theorem now follows.

B Proof of Theorem 7.5

A superspace variant of the classical Segre embedding is described in [LPW90].

This variant is Theorem 7.5 for ~b,~b′ = ~1. The statement for general ~b,~b′

(positive) follows from a similar argument as in [LPW90]. To give it we need to
begin with some preliminary observations. Firstly, from Theorem 3.3 we know

that P
m′′|n′′

C
(1|~b′′) is a split supermanifold. Secondly, from Example 7.4 we see

that the product P
m|n
C

(1|~b) × P
m′|n′

C
(1|~b′) is also a split supermanifold. Hence

this theorem concerns embeddings of split supermanifolds. Very generally we
have the following useful lemma.

Lemma B.1. Let (Y, T ∗
Y,−) and (X,T ∗

X,−) be models. Suppose there exists an
embedding j : Y ⊂ X of spaces and a surjection j∗T ∗

X,− → T ∗
Y,− of odd cotan-

gent sheaves, i.e., an embedding of models (Y, T ∗
Y,−) ⊂ (X,T ∗

X,−). Then there
exists an embedding of split supermanifolds S(Y, T ∗

Y,−) ⊂ S(X,T ∗
X,−).

Proof. This lemma was first observed by Lebrun and Poon in [LPW90]. It can
be proved by appealing to a characterisation of embeddings by Donagi and
Witten in [DW15], details of which can be found in [Bet20].
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Recall that we wish to show there exists an embedding of supermanifolds

P
m|n
C

(1|~b) × P
m′|n′

C
(1|~b′) ⊂ P

m′′|n′′

C
(1|~b′′). By Lemma B.1 it suffices to show

there exists an embedding of models. This entails:

(i) an embedding of reduced spaces j : Pm
C
× Pm′

C
⊂ Pm′′

C
and;

(ii) a surjection j∗O
Pm′′

C

(−~b′′) → OPm
C
(−~b) ⊞ O

Pm′

C

(−~b′) of odd, cotangent

sheaves.

As might be clear, the embedding of reduced spaces j is the classical Segre
embedding. It remains to deduce (ii), a surjection of odd cotangent sheaves.
So let j : Pm

C
×Pm′

C
⊂ Pm′′

C
be the Segre embedding. Inspection of the coordinate

description of j reveals the following important isomorphism:

j∗O
Pm′′

C

(1) ∼= OPm
C
(1)⊠O

Pm′

C

(1) = p∗OPm
C
(1)⊗ p′∗O

Pm′

C

(1) (B.1)

where p resp., p′ is the projection of Pm
C
×Pm′

C
onto the first resp., second factor.

Then for some integer k ≥ 0, the isomorphism in (B.1) leads to:

j∗O
Pm′′

C

(k) ∼= OPm
C
(k)⊠O

Pm′

C

(k). (B.2)

We will now argue the following.

Lemma B.2. Let k ∈ Z be non-negative. Set
h
Pm′

C

(k) := dimC H0(Pm′

C
,O

Pm′

C

(k)). There exists a surjection of sheaves

⊕
h
Pm

′
C

(k)
j∗O

Pm′′

C

(−k) → OPm
C
(−k) → 0.

Proof. In rearranging (B.2) we have the isomorphism:
j∗O

Pm′′

C

(−k)⊠O
Pm′

C

(k) ∼= p∗OPm
C
(−k). Now O

Pm′

C

(k) is generated by its

global sections, which means the natural map
H0(Pm′

C
,O

Pm′

C

(k))⊗O
Pm′

C

→ O
Pm′

C

(k) is surjective. Taking the tensor product

with j∗O
Pm′′

C

(−k) then gives the desired surjection.

Now recall that the odd cotangent sheaf of P
m|n
C

(1|~b) is

OPm
C
(−~b) = ⊕iOPm

C
(−bi). If P

m|n
C

(1|~b) is positive, then bi is positive for each i.
Then from Lemma B.2 we have a surjection:
⊕

i j
∗O

Pm′′

C

(−bi)
h
Pm

′
C

(bi)
→ ⊕iOPm

C
(−bi) = OPm

C
(−~b). A similar statement

applies to the odd cotangent sheaf O
Pm′
C

(−~b′) of P
m′|n′

C
(1|~b′). In using that

the odd cotangent sheaf of the product P
m|n
C

(1|~b)× P
m′|n′

C
(1|~b′) is

OPm
C
(−~b)⊞O

Pm′

C

(−~b′) we therefore have the surjection:

i=n,i′=n′⊕

i=1,i′=1

(
j∗O

Pm′′

C

(−bi)
h
Pm

′
C

(bi)
⊕ j∗O

Pm′′

C

(−b′i′)
hPm

C
(b′

i′
)
)

−→ OPm
C
(−~b)⊞O

Pm′

C

(−~b′) −→ 0.
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We can now conclude by Lemma B.1 that there exists an embedding of split

supermanifolds P
m|n
C

(1|~b)× P
m′|n′

C
(1|~b′) ⊂ P

m′′|n′′

C
(1|~b′′) and appropriate n′′

and ~b′′. Theorem 7.5 now follows.
We will be more specific about the embedding data m′′, n′′ and ~b′′ in
Theorem 7.5 here. Firstly, since the embedding of reduced spaces is the Segre
embedding, we have:

m′′ = (m+ 1)(m′ + 1)− 1. (B.3)

As for n′′, note firstly that the odd cotangent sheaf of P
m′′|n′′

C
(1|~b′′) is the

sheaf
⊕i=n,i′=n′

i=1,i′=1

(
O

Pm′′

C

(−bi)
h
Pm

′
C

(bi)
⊕O

Pm′′

C

(−b′i′)
hPm

C
(b′

i′
)

)
. As such n′′ is

found by counting the number of summands, which is:

n′′ =

n∑

i=1

h
Pm′
C

(bi) +

n′∑

i′=1

hPm
C
(b′i′)

=

n∑

i=1

(
m′ + bi

bi

)
+

n′∑

i′=1

(
m+ b′i′

b′i′

)
. (B.4)

To describe ~b′′ we will need to establish some notation. To an n-tuple and
n′-tuple of integers ~b = (b1, . . . , bn) and ~b′ = (b′1, . . . , b

′
n′), we denote by (~b,~b′)

the (n+ n′)-tuple of integers (b1, . . . , bn, b
′
1, . . . , b

′
n′). For integers k and l,

l > 0, the expression (k)l is the l-tuple (k, . . . , k). And, for another pair of
integers k′ and l′, l′ > 0, the expression ((k)l, (k

′)l′ ) is the (l + l′)-tuple
(k, . . . , k, k′, . . . , k′). We now have:

~b′′ =
(
(b1)h

Pm
′

C

(b1), . . . , (bn)h
Pm

′
C

(bn), (b
′
1′)hPm

C
(b′

i′
), . . . , (b

′
n′)hPm

C
(b′

i′
)

)
. (B.5)

If ~b and ~b′ are positive, then clearly ~b′′ will be positive.

Example B.3. When ~b = ~1 and ~b′ = ~1 we recover the superspace variant of
the Segre embedding in [LPW90] being,

P
m|n
C

× P
m′|n′

C
→֒ P

(m+1)(m′+1)−1|n(m′+1)+n′(m+1)
C

.

For m = m′ = n = n′ = 1, we have P
1|1
C

× P
1|1
C

⊂ P
3|4
C

. If [x0 : x1 : θ] and
[y0 : y1 : η] are coordinates for each factor, the embedding is given by:

(
[x0 : x1 : θ], [y0 : y1 : η]

)
7−→

[
x0y0 : x0y1 : x1y0 : x1y1 : x0η : x1η : y0θ : y1θ

]
.
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