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Abstract. In a previous paper, we proved that a projective Kähler
manifold of positive total scalar curvature is uniruled. At the other
end of the spectrum, it is a well-known theorem of Campana and
Kollár-Miyaoka-Mori that a projective Kähler manifold of positive
Ricci curvature is rationally connected. In the present work, we inves-
tigate the intermediate notion of k-positive Ricci curvature and prove
that for a projective n-dimensional Kähler manifold of k-positive Ricci
curvature the MRC fibration has generic fibers of dimension at least
n− k+1. We also establish an analogous result for projective Kähler
manifolds of semi-positive holomorphic sectional curvature based on
an invariant which records the largest codimension of maximal sub-
spaces in the tangent spaces on which the holomorphic sectional cur-
vature vanishes. In particular, the latter result confirms a conjecture
of S.-T. Yau in the projective case.
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1 Introduction and statement of the results

In our previous work [HW12], we showed that an n-dimensional complex pro-
jective Kähler manifold M of positive total scalar curvature is uniruled, which
means that there exists a dominant rational map from P1×N ontoM , where N
is a complex projective variety of dimension n− 1. Recall that being uniruled
is the same as having a rational curve passing through every point. Our proof
was based on the important equivalence, established by Boucksom-Demailly-
Păun-Peternell in [BDPP13], of uniruledness to the property that the canonical
line bundle of M is not pseudo-effective.
On the other hand, it is a well-known result of Campana [Cam92] and Kollár-
Miyaoka-Mori [KMM92] that a projective Kähler manifold of positive Ricci
curvature (aka a Fano manifold) is rationally connected, i.e., any two points
can be joined by a chain of rational curves or, equivalently, by a single rational
curve. In light of all of this, we establish two main theorems in the case of
partially positive curvature which are natural extensions of the previous results.
Throughout the paper, we shall work over the field of complex numbers C.
The main kinds of partially positive curvatures which we will consider are k-
positive Ricci curvature and semi-positive holomorphic sectional curvature with
a certain amount of positivity captured by the numerical invariant r+M . For the
definitions, we refer to Section 2. Our first main theorem is the following.

Theorem 1.1. Let M be a projective manifold with a Kähler metric with k-
positive Ricci curvature, where k ∈ {1, . . . , n := dimM}. Then a generic fiber
of the MRC fibration of M has dimension at least n− k + 1.

Remark 1.2. The case k = 1 in Theorem 1.1 represents the above-mentioned
well-known result of Campana and Kollár-Miyaoka-Mori. The case k = n is
the case of positive scalar curvature, which was handled in [HW12] (under the
even weaker assumption of positive total scalar curvature).

We remark that at the end of the proof of Theorem 1.1, the symbol ε merely
has to denote a semi-positive continuous function which is positive at at least
one point in order for the proof to go through verbatim. Thus, Theorem 1.1
can immediately be generalized to the following theorem.

Theorem 1.3. Let M be a projective manifold with a Kähler metric with k-
semi-positive Ricci curvature, where k ∈ {1, . . . , n := dimM}. Assume that
that there exists at least one point of M at which the Kähler metric has k-
positive Ricci curvature. Then a generic fiber of the MRC fibration of M has
dimension at least n− k + 1.

Since it might be of independent interest, we would also like to point out that
the proof of Theorem 1.1 immediately yields the following corollary.

Corollary 1.4. Let M be a projective manifold with a Kähler metric with
k-semi-positive Ricci curvature, where k ∈ {1, . . . , dimM}. Assume that there

Documenta Mathematica 25 (2020) 219–238
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exists at least one point of M at which the Kähler metric has k-positive Ricci
curvature. Let Z be a projective k-dimensional manifold with pseudo-effective
canonical line bundle. Then there does not exist a dominant rational map from
M to Z.

Our second main theorem is the subsequent one. The invariant r+M captures
the largest codimension of maximal subspaces in the tangent spaces on which
the holomorphic sectional curvature vanishes. Its analog in the semi-negative
curvature case (which we denoted by rM ) was used for the structure theorems
in [HLW16] and it is similar to the established notion of the Ricci rank. One of
our more philosophical points is that in connection with holomorphic sectional
curvature, rM and r+M are appropriate numerical invariants to consider. It is
thus tempting to call them the HSC rank. For a precise definition, we refer to
Section 2.

Theorem 1.5. Let M be a projective manifold with a Kähler metric of semi-
positive holomorphic sectional curvature. Then a generic fiber of the MRC
fibration of M has dimension at least r+M .

Remark 1.6. In the special case that r+M = dimM , the above theorem yields
that M is rationally connected. It is immediate from the definition that r+M =
dimM is achieved as soon as the holomorphic sectional curvature is positive
at one point of M (and semi-positive on all of M). In particular, Theorem 1.5
yields that a projective manifold with a Kähler metric of positive holomorphic
sectional curvature is rationally connected. This had been conjectured by S.-T.
Yau (even in the Kähler case) and was included in his 1982 list of problems
[Yau82, Problem 47].

Remark 1.7. The original manuscript of this paper was completed in June
2015 and subsequently posted as arXiv:1509.02149. In 2017, Yang posted the
manuscript arXiv:1708.06713, in which he proved that a Kähler manifold M of
positive holomorphic sectional curvature satisfies H2,0

∂̄
(M) = H0,2

∂̄
(M) = 0. It

is immediate from this cohomology vanishing statement that M is projective,
and Yang has thus extended our proof of Yau’s conjecture to the Kähler case.
Yang’s manuscript has recently appeared in final form as [Yan18].

Recall that Tsukamoto [Tsu57] proved that a compact Kähler manifold of pos-
itive holomorphic sectional curvature is simply connected. We would like to
observe that the above theorem yields the same conclusion for the case of a
projective Kähler manifold M of positive holomorphic sectional curvature and
in fact extends it to the case of semi-positive holomorphic sectional curvature
with r+M = dimM . The reason is that, due to [Cam91], it is known that a
rationally connected projective manifold is simply connected. Recall further-
more that it is known that a rationally connected projective manifold has no
global non-zero covariant holomorphic tensor fields and that the converse of
this statement is a conjecture of Mumford (see [Kol96, p. 202]).
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The proof of the next theorem is essentially identical to that of Theorem 1.5.
Thus, we simply record the theorem here and omit its proof.

Theorem 1.8. Let M be a projective manifold with a Kähler metric of semi-
positive scalar curvature with respect to k-dimensional subspaces, where k ∈
{1, . . . , n := dimM}. Assume that there exists at least one point of M at
which the scalar curvature with respect to k-dimensional subspaces is positive.
Then a generic fiber of the MRC fibration of M has dimension at least n−k+1.

In this case, the corresponding statement regarding the non-existence of certain
maps is the following corollary.

Corollary 1.9. Let M be a projective manifold with a Kähler metric of semi-
positive scalar curvature with respect to k-dimensional subspaces, where k ∈
{1, . . . , dimM}. Assume that there exists at least one point of M at which the
scalar curvature with respect to k-dimensional subspaces is positive. Let Z be a
projective k-dimensional manifold with pseudo-effective canonical line bundle.
Then there does not exist a dominant rational map from M to Z.

At first glance, it might seem that the kinds of methods used in our proof of
Theorems 1.5 and 1.8 require that the generic fibers of the dominant rational
map in the above corollary are assumed to be compact. However, this is not the
case, as one can show with the following additional arguments. Let us assume
that a map ς from M to Z exists as in the corollary. We may remove the
indeterminacy of ς as usual with a holomorphic birational map ρ : M∗ → M
such that ς ◦ ρ : M∗ → Z is holomorphic. It is immediate from the definition
that the generic fibers of the respective MRC fibrations of M and M∗ have the
same dimension, which is at least n− k+1 according to Theorem 1.8. Since Z
is assumed to be k-dimensional, the generic fibers of ς ◦ ρ are of the strictly
smaller dimension n− k, and it is now clear that there exists a rational curve
through a generic point of Z, i.e., Z is uniruled. However, this is impossible
due to [BDPP13] and the assumption that Z has pseudo-effective canonical
line bundle.

Remark 1.10. We would like to point out that in our theorems, the Ricci cur-
vature may have negative eigenvalues and our theorems will still apply as long
as the assumed positivity conditions hold, while other works in this direction
seem to require that the Ricci curvature is semi-definite.

Remark 1.11. It is clear that all we really require in terms of positivity as-
sumptions is the positivity of the integrals appearing in our proofs. It is for
this same reason that our result in [HW12] is stated in terms of total scalar
curvature, which is the integral of the scalar curvature function. Therefore,
making pointwise positivity assumptions as we do in our theorems is actually
overkill and basically just due to our desire to formulate iconic theorems.

Remark 1.12. In the remainder of this paper, we will use the symbol k as part
of the set of indices i, j, k, l, and thus speak of κ-positive Ricci curvature etc.,
again with κ ∈ {1, . . . , n := dimM}.
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The outline of this paper is as follows. In Section 2, we provide the basic
definitions and technical background. In Section 3, our two main theorems are
proven. The proofs completely coincide except at their very end, where the
respective specific positivity assumptions are used. In the subsection entitled
Proof of Theorem 1.5, we provide the part of the proof that differs from the
proof of Theorem 1.1.

Acknowledgement. The first author thanks Brian Lehmann for a helpful
discussion about pseudo-effective line bundles.

2 Differential and algebraic geometric background material

In this section, we will give all the relevant definitions used throughout the
paper. They are mostly well-known, but we hope the reader will find it useful
to have all of them gathered neatly in one place.

2.1 Notions of curvature

Let M be an n-dimensional complex manifold. If V is a hermitian vector
bundle on M of rank ρ, then we denote by θαβ (α, β = 1, . . . , ρ) the connection
matrix of the metric connection with respect to a local frame f1, . . . , fρ. The
corresponding curvature tensor Θ is determined by

Θαβ = dθαβ −
ρ∑

γ=1

θαγ ∧ θγβ.

One of the most interesting cases of the above is when V is the holomorphic
tangent bundle of M with a local frame ∂

∂z1
, . . . , ∂

∂zn
, and the hermitian metric

is a Kähler metric. Let us recall the basics of this case.
Let z1, . . . , zn be local coordinates on M . Let

g =

n∑

i,j=1

gij̄dzi ⊗ dz̄j

be a hermitian metric on M and

ω =

√
−1

2

n∑

i,j=1

gij̄dzi ∧ dz̄j

the (1, 1)-form associated to g. Then g is called Kähler if and only if locally

there exists a real-valued function f such that gij̄ = ∂2f
∂zi∂z̄j

. An equivalent

characterization of the Kähler property is that dω = 0.
For holomorphic tangent vectors u =

∑n
i=1 ui

∂
∂zi

, v =
∑n

i=1 vi
∂
∂zi

, we define
the (1, 1)-form Θuv̄ to be

Θuv̄ =
n∑

i,j,k=1

Θikgkj̄uiv̄j .
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Moreover, the curvature 4-tensor is given by

R(
∂

∂zi
,
∂

∂z̄j
,

∂

∂zk
,
∂

∂z̄l
) = Θ ∂

∂zk

∂
∂z̄l

(
∂

∂zi
,
∂

∂z̄j
).

Since we assume the metric g to be Kähler, the curvature 4-tensor satisfies the
Kähler symmetry

R(
∂

∂zi
,
∂

∂z̄j
,

∂

∂zk
,
∂

∂z̄l
) = R(

∂

∂zk
,
∂

∂z̄l
,
∂

∂zi
,
∂

∂z̄j
).

Now, we define the Ricci curvature form to be the (1, 1)-form

Ric =
√
−1Tr(Θ)(·, ·) =

√
−1

n∑

i,j,k=1

R(
∂

∂zi
,
∂

∂z̄j
, ek, ēk)dzi ∧ dz̄j,

where e1, . . . , en is a unitary frame. If we let

Rij̄ =

n∑

k=1

R(
∂

∂zi
,
∂

∂z̄j
, ek, ēk),

then

Ric =
√
−1

n∑

i,j=1

Rij̄dzi ∧ dz̄j .

We say that the Ricci curvature is κ-(semi-)positive at the point p ∈ M if
the eigenvalues of the hermitian n× n matrix Rij̄ at p have the property that
any sum of κ of them is (semi-)positive. Note that if κ ≤ κ′, then being κ-
(semi-)positive implies being κ′-(semi-)positive. Moreover, by definition, being
n-(semi-)positive is the same as having (semi-)positive scalar curvature, and
being 1-(semi-)positive is the same as having (semi-)positive Ricci curvature.
We say that the Ricci curvature is κ-(semi-)positive if it is κ-(semi-)positive at
all points p ∈ M .

The scalar curvature with respect to a κ-dimensional subspace Σ ⊂ TpM is
defined to be

κ∑

i,j=1

R(ei, ēi, ej , ēj),

where e1, . . . , eκ is a unitary basis for Σ. When Σ = TpM , we simply speak
of the scalar curvature. We say that the scalar curvature with respect to κ-
dimensional subspaces is (semi-)positive at the point p ∈ M if the scalar curva-
ture with respect to all κ-dimensional subspaces Σ ⊂ TpM is (semi-)positive.
We say that the scalar curvature with respect to κ-dimensional subspaces is
(semi-)positive if it is (semi-)positive at all points p ∈ M . Note again that these
(semi-)positivity properties are preserved under increasing the value of κ.
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If ξ =
∑n

i=1 ξi
∂
∂zi

is a non-zero complex tangent vector at p ∈ M , then the
holomorphic sectional curvature H(ξ) is given by

H(ξ) =


2

n∑

i,j,k,l=1

Rij̄kl̄(p)ξiξ̄jξk ξ̄l


 /




n∑

i,j,k,l=1

gij̄gkl̄ξiξ̄jξk ξ̄l


 .

We say that the holomorphic sectional curvature is (semi-)positive if

H(ξ) > 0 (≥ 0)

for all non-zero complex tangent vectors ξ at all points p ∈ M . Now, let us
assume that H is semi-positive. We define the invariant r+M as follows. For
p ∈ M , let n(p) be the maximum of those integers ℓ ∈ {0, . . . , dimM} such
that there exists a ℓ-dimensional subspace L ⊂ TpM with H(ξ) = 0 for all

ξ ∈ L\{~0}. Set r+M := n − minp∈M n(p). Note that by definition r+M = 0 if
and only if H vanishes identically. Also, r+M = dimM if and only if there
exists at least one point p ∈ M such that H is positive at p. Moreover, n(p) is
upper-semicontinuous as a function of p, and consequently the set

{p ∈ M | n− n(p) = r+M}

is an open set in M (in the classical topology).
We conclude this subsection with some hopefully useful historical remarks, in
particular about the relationship of Ricci and holomorphic sectional curvature.
The existence of a Kähler metric of negative holomorphic sectional curvature
implies the existence of a (different) metric of negative Ricci curvature, as was
recently established by [WY16a] in the projective case and, in the Kähler case,
by [TY16]. Previously, the three-dimensional projective case of this statement
had been proven in [HLW10]. Very recently, the even more general quasi-
negative Kähler case has been established by [DT19] and [WY16b]. It should
be noted that [TY16], [DT19], and [WY16b] are all based on the Monge-Ampère
type equation and refined Schwarz Lemma introduced in [WY16a]. The pa-
pers [HLW16] and [HLWZ18] contain partial positivity results for the canonical
line bundle and reduction theorems in the semi-negative projective case. Con-
versely, it is easy to show via a Schwarz Lemma that there are many Kähler
manifolds of negative Ricci curvature which do not admit metrics of negative
holomorphic sectional curvature.
Under the assumption of positive scalar curvature on a hermitian manifold, in
the pioneering paper [Yau74], S.-T. Yau proved that the Kodaira dimension
is negative. At the other end of the positive curvature spectrum, Siu and
Yau [SY80] proved the Frankel conjecture, which states that a compact Kähler
manifold of positive bisectional curvature is biholomorphic to projective space.
At approximately the same time, Mori [Mor79] established a more general
conjecture of Hartshorne, which states that a compact complex manifold with
ample tangent bundle is biholomorphic to projective space.
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In light of the above, it may come as a bit of a surprise that positive holo-
morphic sectional curvature does in general not imply the existence of a metric
of positive Ricci curvature, as pointed out by Hitchin [Hit75] in his discussion
of the Hirzebruch surfaces P(OP1(a) ⊕ OP1), a ∈ {0, 1, 2, . . .}. Moreover, we
do not know if a compact Kähler manifold of positive holomorphic sectional
curvature is projective. Conversely, the question of the implications of positive
Ricci curvature for the existence of a metric of positive holomorphic sectional
curvature seems to be open at this point as well.

2.2 The MRC fibration

On a smooth projective variety X it is quite natural to consider the equiva-
lence relation of being connected by a rational curve, i.e., two points x, y ∈ X
are considered to be equivalent if and only if there exists a rational curve con-
taining both x and y. The problem is that the map to the quotient under
this equivalence relation is in general not a good map. This is the case, for
example, when X is a very general projective K3 surface because such an X
possesses countably infinitely many rational curves. The question of how to
obtain a good map based on this equivalence relation has been answered by
Campana [Cam92] and Kollár-Miyaoka-Mori [KMM92]. The following theorem
is [KMM92, Theorem 2.7].

Theorem 2.1. Let X be a smooth proper algebraic variety over an algebraically
closed field of characteristic 0. Then there exist an open dense subset U ⊂ X
and a proper smooth morphism f : U → Z with the following properties:

• Every fiber of f is rationally connected.

• For a sufficiently general z ∈ Z, there are no rational curves D ⊂ X such
that dimD ∩ f−1(z) = 0.

The morphism f is called the maximally rationally connected fibration of X (or
MRC fibration for short).
Equivalently, one can think of f as being a dominant rational map which is
holomorphic and proper on a dense open subset of X (aka “almost holomor-
phic”). Its general fiber is rationally connected. Moreover, the fibers of f are
maximal in the sense that f factors through any other map with rationally
connected fibers.
Furthermore, we may assume that the base Z is smooth, because if it is not, we
can compose f with a birational map Z 99K Z ′ which resolves the singularities
of Z. The rational map X 99K Z ′ still has all the properties of the original f . In
general, it is clear that the MRC fibration is well-defined only up to birational
equivalence.
Finally, it will be central to our argument that the base Z of the MRC fibra-
tion is not uniruled. This statement can be obtained as an immediate corol-
lary ([GHS03, Corollary 1.3]) to the following theorem of Graber-Harris-Starr
([GHS03, Theorem 1.1]).
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Theorem 2.2. Let f : X → B be a proper morphism of complex varieties with
B a smooth curve. If the general fiber of f is rationally connected, then f has
a section.

It is then a consequence of [BDPP13] that the canonical line bundle KZ of the
base Z is pseudo-effective.

3 Proof of Theorems 1.1 and 1.5

In this section, we prove Theorems 1.1 and 1.5. The proofs are initially the
same, but there are some subtle differences towards the end in how the con-
tradiction is obtained. In particular, the use of the positivity condition in
the proof of Theorem 1.1 is a matter of linear algebra, whereas the proof of
Theorem 1.5 requires a lemma of Berger and a global argument involving the
Divergence Theorem.

3.1 Proof of Theorem 1.1

We start with some general observations about MRC fibrations for which we
could not find a reference in the literature. We thus hope that this part is of
independent interest for the overall understanding of this important map.

Let V ⊂ M denote the indeterminacy locus of our MRC fibration f . On M\V ,
the pullback of the tangent bundle of Z, denoted f∗TZ, is a rank m := dimZ
holomorphic vector bundle. Since the codimension of V is at least two, this
vector bundle can be extended to all of M as a reflexive sheaf in a unique way,
and we denote this extension with the symbol E. The canonical line bundle
KZ and its dual K∗

Z can be pulled back under f and extended to all of M as
line bundles. We denote these extensions by f∗KZ and f∗K∗

Z and note that
they agree with detE∗ and detE, respectively.

On M\V , there is an exact sequence of coherent sheaves

0 → T(M\V/f(M\V )) → TM
df→ f∗TZ → N → 0,

where N is a coherent sheaf supported on the locus B where f : M\V →
f(M\V ) is not smooth (see [Ser06, Definition 3.4.5]). Let W = V ∪B.

We will now prove that ∫

M

c1(E) ∧ ωn−1

is non-positive, based on the following proposition. The proof of our theorems
will then be finished by establishing that this integral can also be shown to
be positive under the assumption that generic fibers of the MRC fibration are
of dimension no greater than n − κ and, respectively, that these fibers are of
dimension no greater than r+M −1. We suspect the statement of the proposition
is known to experts, but for lack of a suitable reference, we provide a proof.
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Proposition 3.1. Let ν : X 99K Y be a dominant rational map between com-
plex projective manifolds X,Y . Let L be a pseudo-effective line bundle on Y .
Then the pull-back line bundle ν∗L is a pseudo-effective line bundle on X.

Proof. Among the various equivalent definitions of pseudo-effectivity for a line
bundle (see [Dem01]), a convenient one to use in this context is the following.
The line bundle L is pseudo-effective if the numerical class of the divisor of a not
identically zero rational section of L lies in the pseudo-effective cone PEff(Y ),
i.e., in the closure of the convex cone generated by the numerical classes of
effective divisors in the real Néron-Severi vector space N1(Y )R.
First, we observe that in the special case of a surjective holomorphic map
ν′ : X ′ → Y from a complex projective manifold X ′, the pullback map ν′∗ :
N1(Y )R → N1(X ′)R is a well-defined linear map of finite dimensional real
vector spaces. Moreover, note that the pullback of an effective divisor under ν′

remains effective. Therefore, according to the definition of the pseudo-effective
cone as the closure of the convex cone generated by the numerical classes of
effective divisors and the continuity of ν′∗, there is a well-defined induced map
ν′∗ : PEff(Y ) → PEff(X ′), yielding the pseudo-effectivity of the pull-back line
bundle ν′∗L.
Now, in order to prove the proposition, let σ : X ′ → X be a birational holomor-
phic map such that the composition ν′ := ν ◦ σ : X ′ → Y is a surjective holo-
morphic map. Due to the previous paragraph, ν′∗L is a pseudo-effective line
bundle onX ′. Furthermore, the pushforward σ∗ of divisors induces a linear map
σ∗ : N1(X ′)R → N1(X)R. Since the pushforward of an effective divisor is still
effective (or zero), we get a well-defined induced map σ∗ : PEff(X ′) → PEff(X).
Let D be the divisor of a not identically zero rational section ζ of L. Then the
divisor σ∗(ν′∗D) is the divisor of the rational section ν∗ζ of ν∗L and, according
to the discussion above, the image under σ∗ ◦ ν′∗ : N1(Y )R → N1(X)R of the
numerical class of D lies in PEff(X). Thus, ν∗L is pseudo-effective.

In [HW12, Section 2], a linear algebra argument was given for the fact that any
pseudo-effective line bundle P on M satisfies

∫

M

c1(P ) ∧ ωn−1 ≥ 0.

Alternatively, the non-negativity of this integral can be justified by arguing that
it holds if the numerical class of P is a positive scalar multiple of the numerical
class of an effective line bundle. The non-negativity is then preserved when
taking limit.
Since

detE = f∗K∗
Z ,

we have c1(E) = −c1(f
∗KZ). Also, by Proposition 3.1, the pseudo-effectivity of

KZ implies the pseudo-effectivity of f∗KZ , and we obtain the desired inequality
as follows.∫

M

c1(E) ∧ ωn−1 =

∫

M

c1(f
∗K∗

Z) ∧ ωn−1 = −
∫

M

c1(f
∗KZ) ∧ ωn−1 ≤ 0.
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In the rest of this section, we shall infer that the value of the above integral is
positive under the assumptions of Theorems 1.1 and 1.5, respectively, resulting
in contradictions. Our argument is based on the well-known fact that, as
a quotient bundle of TM over M\W , the vector bundle E|M\W carries an
induced hermitian metric h whose curvature is equal to or more positive than
that of g on TM over M\W .
To be precise, let us recall the following standard setup. Locally on M\W , we
choose a unitary frame e1, . . . , en for TM such that e1, . . . , en−m is a frame for
S := T(M\V/f(M\V )). The connection matrix for the metric connection on TM
is

θTM =

(
θS ĀT

A θE

)
,

where θS , θE are the respective connection matrices for S and E, and A ∈
A1,0(Hom(S,E)) is the second fundamental form of S in TM . Now, the cur-
vature matrix in terms of the unitary frame e1, . . . , en is

ΘTM =

(
dθS − θS ∧ θS − ĀT ∧ A ∗

∗ dθE − θE ∧ θE −A ∧ ĀT

)
,

which implies that ΘE = ΘTM |E +A ∧ ĀT and, in particular,

ΘE ≥ ΘTM |E . (1)

We let the (1, 1)-form η be the trace of the matrix ΘE over M\W , i.e.,

η =
m∑

α=1

(ΘE)αα.

Let h̃ be an arbitrary smooth hermitian metric on detE over the entire M with
curvature form η̃. If τ is a local nowhere zero holomorphic section of detE, the
ratio

q =
(deth)(τ, τ)

h̃(τ, τ)

is independent of the choice of τ and constitutes a smooth positive function on
M\W . Over that same set, we have the following relationship:

η̃ = η + ∂∂̄ log q.

By standard techniques from the theory of resolution of singularities and the
removal of indeterminacy, there is a compact complex manifold M∗ and a
surjective holomorphic map ρ : M∗ → M such that

ρ|M∗\ρ−1(W ) : M
∗\ρ−1(W ) → M\W

is biholomorphic, the total transform ρ∗(W ) is a divisor with simple normal
crossing support in M∗, and f ◦ρ is holomorphic. With positive integers ai, bj ,
write

ρ∗(W ) =
∑

i∈I

aiD
(1)
i +

∑

j∈J

bjD
(2)
j ,
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where the D
(1)
i are the irreducible components of ρ∗(W ) such that ρ(D

(1)
i ) has

codimension one and the D
(2)
j are the irreducible components of ρ∗(W ) such

that ρ(D
(2)
j ) has codimension at least two.

Furthermore,

∫

M

c1(E) ∧ ωn−1 =

∫

M

√
−1

2π
η̃ ∧ ωn−1

=

∫

M\W

√
−1

2π
η̃ ∧ ωn−1 (2)

=

∫

M\W

√
−1

2π
η ∧ ωn−1 +

∫

M\W

√
−1

2π
∂∂̄ log q ∧ ωn−1. (3)

The equality (2) holds because η̃ is a smooth (1, 1)-form and the removal of a
proper closed subset does not affect the value of the integral.

We proceed by showing that the second summand in (3), i.e.,

∫

M\W

√
−1

2π
∂∂̄ log q ∧ ωn−1 =

∫

M∗\ρ−1(W )

√
−1

2π
∂∂̄ log ρ∗q ∧ ρ∗ωn−1,

is a non-negative number. To be more precise, we will see that this integral
is always non-negative and, additionally, positive if and only if there exists
a divisor along which f is not smooth. The reason is the following chain of
equalities:

∫

M∗\ρ−1(W )

√
−1

2π
∂∂̄ log ρ∗q ∧ ρ∗ωn−1

=
∑

i∈I

ai

∫

D
(1)
i

ρ∗ωn−1 +
∑

j∈J

bj

∫

D
(2)
j

ρ∗ωn−1 (4)

=
∑

i∈I

ai

∫

ρ(D
(1)
i )

ωn−1 +
∑

j∈J

bj

∫

ρ(D
(2)
j )

ωn−1

=
∑

i∈I

ai

∫

ρ(D
(1)
i )

ωn−1 + 0. (5)

Note that equality (4) is due to the Poincaré-Lelong equation and equality (5)

is due to the fact that dim ρ(D
(2)
j ) ≤ n− 2. Moreover, if I = ∅, then the value

of (5) is zero. If I 6= ∅, then the value of (5) is positive.
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We now observe that on M\W :
√
−1η ∧ ωn−1

=
√
−1

m∑

α=1

(ΘE)αα ∧ ωn−1

≥
√
−1

m∑

α=1

(ΘTM )(n−m+α) (n−m+α) ∧ ωn−1 (6)

=
√
−1

m∑

α=1

(ΘTM )e(n−m+α) ē(n−m+α)
∧ ωn−1

=
√
−1

m∑

α=1

n∑

i,j=1

R(
∂

∂zi
,

∂

∂z̄j
, e(n−m+α), ē(n−m+α))dzi ∧ dz̄j ∧ ωn−1

=
√
−1

m∑

α=1

n∑

i,j=1

R(e(n−m+α), ē(n−m+α),
∂

∂zi
,

∂

∂z̄j
)dzi ∧ dz̄j ∧ ωn−1 (7)

=
2

n

(
m∑

α=1

Ric(e(n−m+α), ē(n−m+α))

)
ωn. (8)

The inequality in (6) is due to the curvature increasing property (1). The
equality (7) is due to the Kähler symmetry of the curvature 4-tensor, and
equality (8) is due to the trace formula.
To obtain the desired contradiction, let us assume that a general fiber of the
MRC fibration is of dimension no greater than n− κ. This condition is clearly
equivalent tom ≥ κ. The technical reason behind our argument is the theory of
minimax formulae and extremal partial traces for the eigenvalues of hermitian
matrices. For a nice account of this material we refer to [Tao12, Section 1.3.2].
In a nutshell, the key point is the following.
Given an n × n matrix T and an m-dimensional subspace S ⊂ Cn, one can
define the partial trace of T with respect to S and a fixed hermitian inner
product to be the expression

trS T :=

m∑

i=1

v∗i Tvi,

where v1, . . . , vm is any unitary basis of S. We simply write trT for trCn T .
The displayed expression is easily seen to be independent of the choice of the
unitary basis and thus well-defined. If we assume that T is hermitian and let
λ1 ≥ . . . ≥ λn be the eigenvalues of T , then for any 1 ≤ m ≤ n, one has

λ1 + . . .+ λm = sup
dim(S)=m

trS T

and
λn−m+1 + . . .+ λn = inf

dim(S)=m
trS T. (9)
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Now, the sum
∑m

α=1 Ric(e(n−m+α), ē(n−m+α)) is the partial trace of the her-
mitian n × n matrix Rij̄ with respect to S = span{e(n−m+1), . . . , en}. Thus,
according to (9), the expression (8) is bounded below by

2

n

(
m∑

α=1

τn−m+α

)
ωn, (10)

where τn−m+1, . . . , τn denote the m smallest eigenvalues of the hermitian n×n
matrix Rij̄ . Due to m ≥ κ and the assumption of κ-positivity,

∑m
α=1 τn−m+α is

positive everywhere on M , and the expression (10) is therefore bounded below
by εωn for some positive number ε. To conclude the proof, we observe that
altogether

∫

M

c1(E) ∧ ωn−1

≥
∫

M\W

√
−1

2π
η ∧ ωn−1 (11)

≥ 1

2π

∫

M\W
εωn

> 0.

Note that the inequality (11) is due to the non-negativity of the second sum-
mand in (3). We have obtained the desired contradiction to complete the proof
of Theorem 1.1.

3.2 Proof of Theorem 1.5

Let us assume that a general fiber of the MRC fibration is of dimension no
greater than r+M − 1. This condition is clearly equivalent to m ≥ n − r+M + 1.
We enter the proof of Theorem 1.1 at the point where it was determined that
it remained to prove the positivity of

∫

M\W

√
−1

2π
η ∧ ωn−1 (12)

in order to obtain a contradiction.
Now, we recall that the set W is the union of the indeterminacy locus V of the
MRC fibration f and the locus where the map does not have full rank. Since
f is almost holomorphic and due to the standard generic smoothness property
of holomorphic maps, the set W does not intersect a generic fiber of f . Thus,
there is a dense Zariski-open subset Z ′ ⊂ Z such that

f |f−1(Z′) : f
−1(Z ′) → Z ′

is a holomorphic submersion. Moreover, since the integrand in (12) is a smooth
form, the domain of integration can be replaced with the dense subset f−1(Z ′).
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Thus, it suffices to take an arbitrary but fixed small open set V ⊂ Z ′ and prove
that

∫

f−1(V)

√
−1

2π
η ∧ ωn−1 (13)

is non-negative in general and positive for a certain choice of V .
Let w1, . . . , wm be local coordinates on a given V . For each q ∈ V , we write
Mq := f−1(q) for the fiber over q. For each p ∈ f−1(V), we can choose tangent
vectors {

∂̃

∂w1
, . . . ,

∂̃

∂wm

}

forming a smooth frame for ((TpMf(p))
⊥)p∈f−1(V) and having the property that

dfp

(
∂̃

∂wi

)
=

∂

∂wi
(i = 1, . . . ,m).

In a small neighborhood U of an arbitrary but fixed p ∈ Mq, we can choose
holomorphic coordinate functions z1, . . . , zn−m such that for all p′ ∈ U :

Tp′Mf(p′) = span

{
∂

∂z1
, . . . ,

∂

∂zn−m

}
.

We write

φ1 =
∂

∂z1

∗
, . . . , φn−m =

∂

∂zn−m

∗
, φn−m+1 =

∂̃

∂w1

∗

, . . . , φn =
∂̃

∂wm

∗

for the dual fields of one-forms.
Let h continue to denote the induced hermitian metric on E|M\W . If we denote
by sE the trace of η with respect to g, we can rewrite (13) by the trace formula
as

∫

f−1(V)

√
−1

2π
η ∧ ωn−1 =

∫

f−1(V)

1

nπ
sEω

n,

where

sE =

n∑

i,j=1

gij̄ηij̄ , ηij̄ = −∂2 log deth

∂zi∂z̄j
(1 ≤ i, j ≤ n).

This is true for any holomorphic coordinate system.
Subsequently, we will express the Kähler form ω in terms of the smooth forms
φ1, . . . , φn as

ω =

√
−1

2

n∑

i,j=1

gij̄φi ∧ φ̄j ,
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where gij̄ = g(φ∗
i , φ̄

∗
j ). Note that in writing this, we naturally identify the

tangent bundle with its double dual. Recall that ωn is a smooth volume form
on f−1(V).
For a fixed point p ∈ f−1(V), we introduce a compatible local holomorphic coor-
dinate system z1, . . . , zn−m, zn−m+1, . . . , zn satisfying the following properties:

(i) z1, . . . , zn−m coincide with the above holomorphic coordinate functions
locally along Mf(p),

(ii) Mf(p) is locally given by zn−m+1 = . . . = zn = 0 around p,

(iii) ∂
∂zn−m+i

(p) = ∂̃
∂wi

(p) for i = 1, . . . ,m.

This compatible local holomorphic coordinate system can be obtained by a
complex linear transformation at p of the local product coordinates.
We note that sE is a real-valued function which is independent of the choice of
local coordinates. If we evaluate sE at p with respect to the compatible local
holomorphic coordinate system, then we will have a splitting sE = K1 +K2 at
the given point p as follows. In fact, the handling of the integrand sEω

n at p is
done entirely with respect to this compatible holomorphic coordinate system

even when we write ω =
√
−1
2

∑n
i,j=1 gij̄φi ∧ φ̄j in terms of the smooth forms

φ1, . . . , φn.
Returning to the above-described general linear algebra setting for a moment,
observe that for any subspace S and its orthogonal complement S⊥, the trace
trT satisfies

trT = trS⊥ T + trS T.

If we apply this with S = TpMf(p), then we obtain, using property (iii) of the
compatible local holomorphic coordinate system,

sE =

n∑

i,j=1

gij̄ηij̄ = K1 +K2,

where

K1 =

n∑

i,j=n−m+1

gij̄ηij̄ = −
n∑

i,j=n−m+1

gij̄
∂2 log det h

∂zi∂z̄j
,

K2 =

n−m∑

i,j=1

gij̄ηij̄ = −
n−m∑

i,j=1

gij̄
∂2 log deth

∂zi∂z̄j
.

Note that gij̄ = 0 (due to gij̄ = 0) if 1 ≤ i ≤ n−m and n−m+ 1 ≤ j ≤ n, or
if n −m+ 1 ≤ i ≤ n and 1 ≤ j ≤ n −m. Moreover, although the dual frame
φ1, . . . , φn−m, φn−m+1, . . . , φn is only locally defined and the compatible local
holomorphic coordinates vary from point to point, the integrand sEω

n and this
splitting sE = K1 +K2 are well-defined within f−1(V).
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By the curvature increasing property, K1 is bounded from below by the scalar
curvature of g with respect to the plane S⊥, which we refer to as K̂1. Due
to [Ber66, Lemme 7.4], K̂1 can be expressed as a positive constant times the
integral of H over the unit sphere of vectors in S⊥. Due to the overall semi-
positivity of H , we can conclude K̂1 ≥ 0. Furthermore, at a point p with
n− n(p) = r+M , because of

dimS⊥ = m ≥ n− r+M + 1 = n(p) + 1,

we actually have K̂1(p) > 0. Note that due to the openness of the set {p ∈
M | n− n(p) = r+M}, there exists a V with

{p ∈ M | n− n(p) = r+M} ∩ f−1(V) 6= ∅.

We can thus conclude
∫

f−1(V)

1

nπ
K1ω

n ≥
∫

f−1(V)

1

nπ
K̂1ω

n > 0,

and it remains to show that the integral
∫
f−1(V)

1
nπK2ω

n is non-negative. A

direct computation yields (we write ~ for deth)

K2 =−
n−m∑

i,j=1

gij̄
∂2 log ~

∂zi∂z̄j

=−
n−m∑

i,j=1

gij̄

~

∂2~

∂zi∂z̄j
+

n−m∑

i,j=1

gij̄

~2

∂~

∂zi

∂~

∂z̄j

=− ∆′~

~
+

n−m∑

i,j=1

gij̄

~2

∂~

∂zi

∂~

∂z̄j
, (14)

where ∆′ is the Laplacian operator on the fibers with respect to the restriction
of the metric g to the fibers. By properties (i) and (ii) of the compatible
holomorphic coordinate systems, although their choices vary from point to

point, ∆′ =
∑n−m

i,j=1 g
ij̄ ∂2

∂zi∂z̄j
is intrinsically well-defined along each Mf(p) for

p ∈ f−1(V). Since the second summand in (14) is always non-negative, we are
done when we prove that

∫

f−1(V)

∆′~

~
ωn = 0.

In order to do this, note that the normal bundle of a general fiber is the trivial
bundle of rank m. Therefore, we can regard ~ as global smooth function of any
given general fiber. We can rewrite

ωn

~
= ω′ ∧ φn−m+1 ∧ φ̄n−m+1 ∧ . . . ∧ φn ∧ φ̄n,
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where ω′ is the volume form of the restriction of the metric g on the fibers.
Applying the Fubini Theorem of iterated integrals, we have

∫

f−1(V)

∆′~

~
ωn =

∫

V

(∫

f−1(w)

(∆′
~)ω′

)
dw1 ∧ dw̄1 ∧ . . . ∧ dwm ∧ dw̄m.

It follows from the Divergence Theorem that on the compact manifold f−1(q):

∫

f−1(q)

(∆′
~)ω′ = 0

for all q ∈ V . This finishes the proof.
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