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Abstract. In this manuscript, we consider cobordism operations
in the 2-dimensional labeled open-closed topological quantum field
theory for the classifying space of a connected compact Lie group in
the sense of Guldberg. In particular, it is proved that the whistle
cobordism operation is non-trivial in general provided the labels are
in the set of maximal closed subgroups of the given Lie group. The
non-triviality of cobordism operations induced by gluing the whistle
with the opposite and other labeled cobordisms is also discussed.
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1 Introduction

String topology initiated by Chas and Sullivan [6] until now provides many
impressive and fruitful algebraic structures for the homology of the free loop
spaces of orientable manifolds [9, 8, 12], orbifolds [19], the classifying spaces of
Lie groups [7, 14, 15], Gorenstein spaces [11, 16] and differentiable stacks [3].
In this manuscript, we deal with string topology for classifying spaces, which
is enriched with a 2-dimensional labeled open-closed topological quantum field
theory (TQFT).
In [13], Guldberg has developed such a labeled TQFT for the classifying space
BG of a connected compact Lie group G. In consequence, the homology groups
of double coset spaces associated to G and of the free loop space LBG are
simultaneously incorporated into the open-closed TQFT with labels in a set of
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closed connected subgroups of G. The structure is indeed induced by an open-
closed homological conformal field theory (HCFT) which is an extended version
of a closed HCFT for classifying spaces due to Chataur and Menichi [7]; see [13,
Theorem 1.2.3 and Lemma 2.4.1]. The aim of this manuscript is to investigate
the non-triviality of an important cobordism operation which connects the open
and closed theories in the labeled TQFT.
To describe a labeled open-closed TQFT in general, we need to introduce
the category oc-Cobor(S) of open-closed strings. Its objects are finite disjoint
unions of oriented circle and intervals with ends labeled by elements of a fixed
set S. A morphism in the category is the diffeomorphism class of cobordisms
from Y0 to Y1 labeled in S, where such a cobordism is indeed a 2-dimensional
oriented manifold Σ whose boundary consists of three parts Y0 ∪ Y1 ∪ ∂freeΣ.
Here the part ∂freeΣ called the free boundary is a cobordism between ∂Y0 and
∂Y1. Moreover, it is required that the connected component of ∂freeΣ is la-
beled by elements of S compatible with the labeling of ∂Y0 and ∂Y1; see [21,
Section 2] and [17, Section 3] for the precise definition and [18, Section 2] for
a physical point of view. The compositions are given by gluing cobordisms
provided the labelings of the boundaries are compatible. By definition, a 2-
dimensional labeled open-closed topological quantum field theory is a monoidal
functor µ from (oc-Cobor(S),

∐
) to (K-Vect,⊗) the category of graded vector

space over K, where the monoidal structure
∐

of oc-Cobor(S) is given by the
disjoint union of cobordisms. We may write µΣ for the linear map assigned by a
cobordism Σ. Moreover, we denote by (Σ, {ΣH}H∈S′) a one or two dimensional
labeled cobordism whose free boundary has conected components {ΣH}H∈S′ ,
where S ′ is a subset of S.
While the labeled open-closed TQFT for a classifying space is investigated
in this article, we refer the reader to the results due to Blumberg, Cohen
and Teleman [4] for an open-closed TQFT labeled by submanifolds of a given
manifold; see also [12] for an HCFT based on the free loop space of a manifold.
Let G be a compact connected Lie group and B a set consisting of connected
closed subgroups of G. LetW = (W, {WH}) denote the whistle cobrodism from
the interval I to the circle S1 whose incoming boundary ∂in := I is connected
with an arc WH labeled by a subgroup H ∈ B at the each endpoint; see the
figure below for the whistle cobordism.

I = ∂in

∂out = S1

WH

❘❘
❘❘

❘❘
❘❘

❘
❘❘

❘

Observe that the arc WH is the only free boundary of the whistle. In [13],
the non-triviality of a cobordism operation of open strings, namely intervals, is
revealed with a computational example; see Section 4 for more computations in
an open TQFT. Since the whistle cobrodism connects open and closed strings,
it is anticipated that the operation associated with the whistle plays a key role
in the open-closed TQFT. In fact, an open-closed TQFT splits into the open
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theory and the closed one if all whistle cobordism operations are trivial; see
[17, Propositions 3.8 and 3.9] for generators of morphisms in oc-Cobor(B) for
example. In this article, we focus on the whistle cobordism operation and the
non-triviality is discussed.

In what follows, the homology and cohomology are with coefficients in a field K.
Our main theorem is described as follows.

Theorem 1.1. Let G be a connected compact Lie group and H a connected
closed subgroup of maximal rank. Suppose that the integral homology groups
of G and H are p-torsion free, where p is the characteristic of K. Then the
operations µW and µW op associated to the whistle cobordisms (W, {WH}) and
(W op, {(W op)H}) are non-trivial. Moreover, the composite operation µW ◦
µW op = µW◦W op is also non-trivial if (deg(Bι)∗(xi), p) = 1 for any i = 1, ..., l,
where Bι : BH → BG stands for the map between classifying spaces induced
by the inclusion ι : H → G and x1, ..., xl are generators of H∗(BG;K).

This enables us to conclude that the open theory and closed theory are insep-
arable in general. In consequence, we can explicitly determine every labeled
open-closed cobordism operation over the rational Q under an appropriate as-
sumption on the set of labels; see Assertion 4.1.

We observe that the cobordism W ◦W op in Theorem 1.1 is the cylinder with
a hole labeled by H a subgroup of maximal rank. Operations associated with
other composites of the whistle cobordisms are discussed in Remark 3.3 below.

We also discuss a cobordism operation in the labelled open TQFT for classifying
spaces. Let G be a connected compact Lie group whose cohomology with
coefficients in K is a polynomial algebra over generators with even degree.
Let K, H and L be connected closed subgroup of G of maximal rank, whose
cohomology algebras satisfy the same condition as that of G. Then we have

Theorem 1.2. Let Υ be the basic cobordism from two labeled intervals IKH and
IHL to one labeled interval IKL , which is pictured below. Then the cobordism
operation µΥ is trivial but not µΥop in general. More precisely, the operation
µΥop is injective.

IKH

H

IHL

IKL

K

L

As an advantage of the explicit form of the operation µΥop described in the
proof of Theorem 1.2 in Section 4, we have a computational example of a more
complicated operation associated with the cobordism

ΣOC := (Σ1+2,0

∐
IdIH

L
) ◦ (W

∐
IdIH

L
) ◦Υop
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in the open-closed TQFT for the classifying space of a Lie group G; see Sec-
tion 4, where each labelled cobordism is pictured below.

(1.1)
Υop

W

IdIH
L

Σ1+2,0

IdIH
L

IHL

H IHH

H

IHLL

H

H

L

H

L

More precisely, we choose the unitary group U(m+ 1) as the given Lie group
G and U(m)× U(1) as the labeling H . Then we have

Proposition 1.3. For arbitrary connected closed subgroup L of U(m+1) whose
integral homology is p-torsion free, the cobordism operation µΣOC

is injective.

This gives the first nontrivial calculation in the 2-dimensional labeled open-
closed TQFT for the classifying space.
The rest of the article is organized as follows. In Section 2, we briefly review
the construction of a cobordism operation in the labeled TQFT for classifying
spaces due to Guldberg. After describing our strategy for proving the main
theorem, we consider the Eilenberg-Moore spectral sequences for appropriate
pullback diagrams and give the proof in Section 3. Section 4 proves Theorem 1.2
and Proposition 1.3. In Appendix A, we discuss rational homotopy theoretical
methods for computing the whistle cobordism operation.

2 A brief review of the labeled TQFT for classifying spaces

We recall the cobordism operation introduced in [13, Section 2.3]. In what
follows, we denote by map(X,Y ) the mapping space of maps from X to Y with
compact-open topology. Observe that map(S1, BG) = LBG by definition.
For a two dimensional labeled cobordism Σ := (Σ, {ΣH}H∈B) with in-coming
boundary ∂in and outgoing boundary ∂out, we define a space M(Σ) by the
pullback diagram

M(Σ) //

��

// map(Σ, BG)

i∗

��∏
H map(ΣH , BH)

Bι∗

// ∏
H map(ΣH , BG),

where ι : H → G is the inclusion and i :
∐
H ΣH = ∂freeΣ → Σ denotes the

embedding. By applying the same pullback construction as above to a one
dimensional cobordism of the form ∂in = (∂in, {Σ

H ∩ ∂in}H∈B), we define a
space M(∂in). The naturality of the construction enables us to obtain a map
in∗ : M(Σ) → M(∂in) from the inclusion in : ∂in → Σ of the in-coming
boundary.
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Proposition 2.1. [13, Proposition 2.3.9] (i) The map in∗ induced the inclusion

gives rise to a fibration M(Σ)c → M(Σ)
in∗

→ M(∂in) whose fibre M(Σ)c is the
product of ΩBH ≃ H, G/H and the total space E of a fibration of the form
ΩBH → E → G/H in which H’s are the labels of the cobordism Σ.
(ii) The fibration in (i) is orientable; that is, the action of the fundamental
group of the base on the homology of the fibre is trivial.

Thus for the fibration h := in∗ : M(Σ) → M(∂Σ), we can define the integration
along the fibre h! : H∗(M(∂Σ)) → H∗+i(Σ) with degree i the top degree of
H∗(M(Σ)c). The main result [13, Theorem 1.2.3] asserts that an operation µΣ

defined by the composite

µΣ : H∗(M(∂in))
h!−→ H∗(M(Σ))

(out∗)∗
−→ H∗(M(∂out))

for each labeled cobordism Σ gives rise to a labeled open-closed TQFT structure
for the classifying space of G. We here and henceforth omit the action of
determinants in the TQFT for classifying spaces; see [7, 13] for the action.
This means that our computation of the cobordism operations below is made
up to multiplication by non-zero scalar.
For a labeled whistle cobordismW = (W,WH), let a and b be the two endpoints
of the arc WH and hence they are also endpoints of the in-boundary ∂in of W .
In what follows, we may write a∩b and a—b for the arcW

H and the in-boundary
∂in, respectively.

Remark 2.2. As for the whistle W = (W,WH), the fibration h = in∗ :
M(W ) → M(∂in) induced by the embedding ∂in → W is the homotopy pull-
back of

in∗ : M(WH) = map(WH , BG) → M({a, b}) = map({a, b}, BH)

along the map (in′)∗ : M(∂in) → M({a, b}). Thus the map in∗ is regarded
as the evaluation map BHI → BH × BH at 0 and 1. We see that the fibre
of h has the homotopy type of ΩBH and then of H . Moreover, the fibration
k = out∗ : M(W ) → M(∂out) is the homotopy pullback of the fibration Bι :
BH → BG along the evaluation map ev0 : M(∂out) = LBG → BG. This
implies that the fibre of k has the homotopy type of the homogeneous space
G/H . These results follow from the proof of [13, Proposition 2.3.9]. We observe
that deg µW = dim H and degµW op = (dim G/H) = (dim G− dim H).
If labels are in the set of subgroups of maximal rank, then Grassmann manifolds
and flag manifolds can appear as the fibres of the fibrations k : M(W ) →
M(∂out).

3 Proof of the main result

We begin by describing our strategy for proving Theorem 1.1.

(i) We deal with the dual operation DµW = h! ◦ k∗ on the cohomology.
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(ii) Determine explicitly the cohomology algebras of M(∂W ) and M(W )
with the Eilenberg–Moore spectral sequences, and investigate the behav-
ior of the maps h∗ and k∗ for generators of the cohomology comparing
the spectral sequences.

(iii) Consider the Leary–Serre spectral sequence (LSSS) for the fibration in
Proposition 2.1 in order to compute the integration h! along the fibre.

(iv) Determine the value of the composite h! ◦ k∗ at an appropriate element
of H∗(M(∂out)).

(v) As for the latter half of the assertions, we also consider the dual operation
DµW op = k! ◦ h∗ with the same strategy as above.

(vi) Reveal the nontriviality of the composite DµW op ◦DµW = D(µW◦W op )
with the description of the fundamental class of the homogeneous space
G/H due to Smith [24].

We recall the Eilenberg–Moore spectral sequence (EMSS) in a general setting.
Let p : E → B be a fibration over a simply-connected base B and π : Eϕ → X
the pullback along a map ϕ : X → B. We then have the Eilenberg–Moore
spectral sequence [22] converging to the cohomology H∗(Eϕ) as an algebra
with

E∗,∗
2

∼= Tot∗,∗
H∗(B)(H

∗(E), H∗(X))

as a bigraded algebra. Observe that each term of the spectral sequence appears
in the second quadrant.
In order to compute the cohomology concerning the whistle cobordism opera-
tion by using the EMSS, we consider commutative diagrams
(3.1)

M(∂out)
i //

��

map(S1, BG)

��

M(W )
j

//

k:=(out)∗ 44✐✐✐✐✐✐✐✐

��

map(W,BG)
≃

res 44✐✐✐✐✐✐

res

��

map(∅, BG) map(∅, BG)

map(a∩b, BH)
(Bι)∗

//

44✐✐✐✐✐✐
map(a∩b, BG),

44✐✐✐✐✐✐

(3.2)

M(W )
h

ss❤❤❤❤❤
❤❤
❤❤
❤❤

��

j // map(W,BG)

restt❤❤❤❤
❤❤

res

��

M(∂in) //

β

��

map(a—b, BG)

p

��

map(a∩b, BH)
(Bι)∗ //

res
ss❤❤❤❤

❤❤

map(a∩b, BG)
res

tt❤❤❤❤
❤❤

map({a, b}, BH)
(Bι)∗

// map({a, b}, BG)

in which the front and back squares are pullback diagrams, and res and p
denote the maps induced by the embeddings. Moreover, using a deformation
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retraction r : W → ∂out with r(a) = 0 = r(b) and r(a—b) = ∂out, which is
a homotopy inverse of the embedding out : ∂out → W , we have commutative
diagrams

(3.3) map(W,BG)
res
tt✐✐✐✐

✐✐

res

��

map(S1, BG)

ev0

��

r∗

≃
oo u // BGI

ε0×ε1

��

map(a—b, BG)

res

��

=

33

map(a∩b, BG)
res
tt✐✐✐✐✐

✐

BG
≃

t∗oo ∆ // BG×BG,

map({a, b}, BG) =

33

in which the back right square is a pullback diagram, where t : a∩b → {a}
denotes a deformation retraction.

For morphisms f : A → M and g : A → N of algebras, we can regard M
and N as A-modules via the morphisms. Then we write TorA(M,N)f,g for
the torsion product of M and N . By the assumption of the theorem, we see
that the cohomology algebras of BG and BH are polynomial, say H∗(BG) ∼=
K[xi, ..., xl] and H∗(BH) ∼= K[ui, ..., ul]; see [20]. Applying the EMSS to the
pullback diagrams in (3.1) and (3.2), we have commutative diagrams
(3.4)

H∗(M(∂out))

k∗

��

TorK(K,H∗(BGS1

)) =: A

Torη(η,(out
∗)∗)

��

∼=

EM

oo

H∗(M(W )) TorH∗(BG∩)(H
∗(BH∩),H∗(BGW )))(Bι∗)∗,res∗ =: B

∼=

EM

oo

H∗(M(∂in))

h∗

OO

TorH∗(BG{a,b})(H
∗(BH{a,b}),H∗(BGa—b)))(Bι∗)∗,p∗ =: C,

∼=

EM

oo

Torres∗ (res∗,res∗)

OO

where η is the unit, XK is the mapping space map(K,X) and ∩ denotes the
arc a∩b = WH . In fact, the argument with the two sided Koszul resolution
implies that each spectral sequence collapses at the E2-term. We observe that
the resolution is of the form

(H∗(BG) ⊗H∗(BG) ⊗ ∧(y1, ..., yl), D)
m // H∗(BG) ∼= H∗(BGI) // 0,

where D(yi) = xi ⊗ 1 − 1 ⊗ xi, bideg yi = (−1, deg xi) and m stands for
the multiplication on H∗(BG); see [2]. There exists no extension problem
in the spectral sequences; see the diagram (3.6) below. Thus the naturality
of each isomorphism EM : TotE∗,∗

2 → TotE∗,∗
∞

∼= (the target cohomology),
which is induced by the Eilenberg–Moore map [22], allows us to obtain the
commutative diagram. Moreover, by using the retraction r mentioned above,
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we have commutative diagrams

(3.5) A

��

=
// H∗(BGS

1

) =: A′

ι⊗1
��

B
∼=

Tor(1,(r∗)∗)// TorH∗(BG∩)(H
∗(BH∩), H∗(BGS

1

)))(Bι∗)∗,(r∗)∗◦res∗ =: B′

C

OO

∼=
// TorH∗(BG×2)(H

∗(BH×2), H∗(BGa—b))((Bι∗)∗)⊗2,res∗ =: C′,

Tor(res∗,(r∗)∗◦res∗)

OO

where the left vertical arrows are the same ones as in (3.4). Since the back left
diagram in (3.3) is commutative, it follows that (r∗)∗ ◦ res∗ = (ev0)

∗ ◦ (t∗)∗.
Moreover, the diagram (3.3) enables us to deduce the commutativity of the
left-hand side two squares in the diagram
(3.6)

A′

��

TorH∗(BG×2)(H
∗(BG),H∗(BGI)))∆∗,(ε0×e1)∗

∼=

EM

oo

��

H∗(BG)⊗∧(y1, ..., yl)
∼=oo

(Bι)∗⊗1

��
B′

∼=

Tort∗ (t∗,1)

// TorH∗(BG)(H
∗(BH),H∗(BGS1

)))(Bι∗)∗,(ev0)∗ H∗(BH)⊗∧(y1, ..., yl)
∼=oo

C′

OO

∼=
// TorH∗(BG×2)(H

∗(BH×2),H∗(BGI)((Bι∗)∗)⊗2,res∗

Tor∆∗ (∆∗,u∗)

OO

H∗(BH)⊗H∗(BH)
((Bι)∗xi⊗1−1⊗(Bι)∗xi)

.
∼=oo

m

OO

Explicit calculations of the EMSS’s with the Koszul resolutions above give the
commutative diagrams in the right-hand side in (3.6), where m denotes the
map induced by the multiplication of the algebra H∗(BH). We observe that

(Bι)∗x1 ⊗ 1− 1⊗ (Bι)∗x1, ..., (Bι)
∗xl ⊗ 1− 1⊗ (Bι)∗xl

give a regular sequence since H is of maximal rank.
We are ready to prove main theorem.

Proof of the non-triviality of µW . In order to compute the integration along
the fibre associated with the fibration h := in∗ : M(W ) → M(∂in), we consider
the LSSS {LSE

∗,∗
r , dr} for the fibration. As mentioned in Remark 2.2, the

fibration h fits into the commutative diagram

M(W ) //

h

��

BHI

ε0×ε1

��

// K(Z/p, degui)
I

ε0×ε1

��
M(∂in)

β
// BH ×BH

fi×fi

// K(Z/p, deg ui)×K(Z/p, deg ui)

in which the left-hand side square is a pullback, where β is the map in (3.2)
and the map fi represents the element ui. The argument with the EMSS yields
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that H∗(ΩBH) ∼= H∗(H) ∼= ∧(z1, ..., zl) as algebras, where deg zi = deg ui− 1.
Comparing the LSSS of the right two fibrations, we see that zi is transgressive
to ui⊗ 1− 1⊗ ui for i = 1, ..., l in the LSSS of the middle fibration. Therefore,
we have

Lemma 3.1. In {LSE
∗,∗
r , dr}, the element zi is transgressive to an element

of the form ui ⊗ 1 − 1 ⊗ ui ∈ H∗(M(∂in)) for i = 1, ..., l, where β∗ui is
identified with ui ∈ H∗(M(∂in)) via isomorphisms in (3.4), (3.5) and (3.6)
for i = 1, ..., l.

By [23, Lemma 3.4], we can write

(3.7) (Bι)∗xi ⊗ 1− 1⊗ (Bι)∗xi =

l∑

j=1

ζij(uj ⊗ 1− 1⊗ uj)

in H∗(BH)⊗H∗(BH) for i = 1, ..., l with elements ζij in H
∗(BH)⊗H∗(BH)

which satisfy the condition that m(ζij) =
∂(Bι)∗xi

∂uj
, where m denotes the multi-

plication on H∗(BH). Then it follows from Lemma 3.1 that an element of the

form wi :=
∑l

j ζijzj is a permanent cycle for i = 1, ..., l. Moreover, we have

Lemma 3.2. The elements w1, ..., wl are linearly independent in the vector space
(QTotLSE

∗,∗
∞ )odd of the indecomposable elements of TotLSE

∗,∗
∞ with odd degree.

The computation in (3.4), (3.5) and (3.6) implies that

K{w1, ..., wl} ∼= (QTotLSE
∗,∗
∞ )odd ∼= (QH∗(M(W )))odd ∼= K{y1, ..., yl}.

As for the first isomorphism, it follows from Lemma 3.2 that there exists
an injective linear map K{w1, ..., wl} → (QTotLSE

∗,∗
∞ )odd. The second and

third isomorphisms yield that dim(QTotLSE
∗,∗
∞ )odd = l. We have the first

isomorphism. It turns our that 0 6= y1 · · · yl = w1 · · ·wl = det(ζij)z1 · · · zl in

LSE
∗,dimH
∞ changing the generators y1, ..., yl if it is necessary. This implies that

µW (1⊗y1 · · · yl) = h!◦k∗(1⊗y1 · · · yl) = h!(1⊗y1 · · · yl) = h!(det(ζij)z1 · · · zl) =
det(ζik). The last equality follows from the definition of the integration.

Proof of Lemma 3.2. Let K1 be the graded algebra H∗(BH)⊗H∗(BH)
((Bι)∗xi⊗1−1⊗(Bι)∗xi)

. Let

K denote a cochain algebra of the form ∧(z1, ..., zl)⊗K1 with d(zi) = u1 ⊗ 1−
1⊗ ui. We define the decreasing filtration of K by

F pK := {
∑

αi ⊗ βi ∈ K1 | αi ∈ ∧(z1, .., zl), βi ∈ K1, deg zi ≥ p}

for p ≥ 0. We have the spectral sequence {E
∗,∗

r , dr} associated by the filtration,
which converges to the homology H(K). Lemma 3.1 enables us to obtain a

morphism {fr} : {E
∗,∗

r , dr} → {LSE
∗,∗
r , dr} of spectral sequences for which

f2 is an isomorphism of cochain algebras. Then we see that f∞ induces an

isomorphism f̂∞ : TotE
∗,∗

∞

∼=
→ TotLSE

∗,∗
∞ which assigns wi to wi =

∑l
j ζijzj.
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In order to prove the lemma, it suffices to show that w1, ..., wl are linearly
independent in the vector space (QH(K))odd. We consider the surjective map
of cochain algebra ρ : K → (∧(z1, ..., zl)⊗Λ⊗Λ, d) =: K′ defined by ρ(zi) = zi
and ρ([v]) = [v] for v ∈ H∗(BG) ⊗ H∗(BG), where Λ = ( H

∗(BH)
((Bι)∗xi)

, 0) and

d(zi) = ui ⊗ 1− 1⊗ ui. The result [23, Lemma 3.3] yields that there exists an

isomorphism Θ : H(K′)
∼=
→ ∧(w1, ..., wl)⊗Λ of graded algebras with Θ(wi) = wi.

Thus we have a sequence

H(K)
H(ρ)// QH(K′)

Θ
∼=

// Q(∧(w1, ..., wl)⊗ Λ) = K{w1, ..., wl} ⊕QΛ

for which ΘH(ρ)(wi) = wi. We have the result.

Proof of the non-triviality of µW op . We consider the integration k! along the
fibre associated with the fibration

(∗) : G/H
i
→ M(W op) = M(W )

k
→ M(∂out) = M((∂op)in)

which is mentioned in Remark 2.2. By virtue of [1, 3.5 Proposition], we see
that H∗(BH) ∼= K[(Bι)∗x1, ..., (Bι)

∗xl] ⊗M as an H∗(BG)-module for some
graded vector space M . In particular, H∗(M(W )) is a free H∗(M(∂out))-
module. Thus the argument of the EMSS for the fibration (∗) enables us to

deduce that i∗ :M
∼=
→ H∗(G/H) is an isomorphism; see [22, Proposition 4.2].

It follows from the definition of k! that k!(ΛW · α⊗ yi1 · · · yil) = α⊗ yi1 · · · yil ,
where α ∈ K[(Bι)∗xi], ik = 0 or 1 and i∗(ΛW ) denotes the fundamental class
of the homogeneous space G/H . Therefore, we see that DµW op(1⊗ΛW · α) =
k! ◦ h∗(1 ⊗ ΛW · α) = k!(ΛW · α) = α for an element of the form

1⊗ ΛW · α ∈
H∗(BH)⊗H∗(BH)

((Bι)∗xi ⊗ 1− 1⊗ (Bι)∗xi | 1 ≤ i ≤ l)
∼= H∗(M(∂in)).

Thus DµW op is non-trivial in general.

Proof of the latter half of Theorem 1.1. It remains to show that the composite

DµW op ◦DµW = D(µW ◦ µW op) = D(µW◦W op )

is non-trivial. By the assumption of the degree of (Bι)∗xi for i and the result

[24, Proposition 3], we see that det(∂(Bι)
∗xi

∂uj
) is the fundamental class ΛW

of G/H . The computation above and the choice of elements ζij allow us to
conclude that

DµW op ◦DµW (y1 · · · yl) = DµW op(det(ζij)) = k!(m(det(ζij)))

= k!(det(m(ζij)) = k!
(
det

(∂(Bι)∗xi
∂uj

))
= 1.

This completes the proof.

Documenta Mathematica 25 (2020) 125–142



On the Whistle Cobordism Operation 135

We conclude this section with remarks on other operations obtained by a com-
posite with the whistle cobordism. The results show a fruitful structure of the
labeled TQFT for classifying spaces.

Remark 3.3. (i) The integration h! along the fibre is a morphism of
H∗(M(∂in))-modules via h∗. Thus the computation of µW above yields that
for γ ∈ H∗(BG),

DµW (γ ⊗ yi11 · · · yill ) = h!((Bι)∗γ ⊗ yi11 · · · yill ) = (1⊗ (Bι)∗γ)h!(1 ⊗ yi11 · · · yill )

=

{
(1⊗ (Bι)∗γ)det(ζij) if i1 · · · il = 1

0 otherwise.

(ii) The computation in the proof of Theorem 1.1 implies that the image of
DµW op is in H∗(BG) ⊗ 1. Then, it follows from (i) that D(µW op◦W1

) =
D(µW op ◦ µW1

) = DµW1
◦ DµW op = 0, where W1 denotes a whistle cobor-

dism whose label is not necessarily the same as that of W . This yields that
in the labeled TQFT for the classifying space, the operation for a cobordism
with n holes labeled by connected closed subgroups of maximal rank is triv-
ial provided n ≥ 2 and the characteristic of the underlying field is sufficiently
large. As a consequence, under the same assumption, the Cardy condition [17,
(2.14)] implies that the cobordism operation associated with the double-twist
diagram [21, Fig. 11] in the open TQFT is trivial. This result also follows from
Theorem 1.2 below in which the open theory is clarified in our setting.
(iii) Let Σ be the pair of pants with one incoming boundary. The result [15,
Theorem 4.1], in which each yj is replaced with the notation xj , enables us
to deduce that the operator µΣ◦W = µΣ ◦ µW is non-trivial in general; see an
explicit calculation in the end of Section 4.
(iv) We can consider the whistle cobordism operation in a homological confor-
mal field theory (HCFT). Let

⊕
H∗(BDiff

+(Σ; ∂)) be the prop parameterized
by the homology of mapping class groups. By using the prop, we have a HCFT
structure for classifying spaces; see [7, 13]. Let C be the cylinder S1 × [0, 1]
and

◦ : H∗(BDiff
+(C; ∂))⊗H∗(BDiff

+(W ; ∂)) → H∗(BDiff
+(C ◦W ; ∂))

the prop structure coming from the gluing of bordisms. The Dehn twist gives
rise to the element ∆ in H1(BDiff

+(C ◦W ; ∂)) via the Hurewicz map. In fact,
the element ∆ induces the Batalin-Vilkovisky (B–V) operator on H∗(LBG) by
the HCFT structure; see [7, Proposition 60]. Observe that µW is regarded
as an element in H0(BDiff

+(W ; ∂)). Then under the same assumption as
in (ii) and with the notation in the proof of Theorem 1.1, we see that D(∆ ◦
µW )(x1y2 · · · yl) = (DµW ◦ D∆)(x1y2 · · · yl) = DµW (y1 · · · yl) 6= 0. Observe
that the B–V operator is a derivation with respect to the cup product on the
cohomology. Then the second equality follows from [15, Theorem 3.1].

Under the same assumption as in Remark 3.3 (ii), the cobordism operation
associated to the pair of pants with two incoming boundaries is trivial on
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H∗(LBG); see [15, Theorems 7.1 and 7.3]. Thus we can exactly understand the
closed TQFT structure for classifying spaces. Thanks to the main theorem, we
can also compute every cobordism operation in the open-closed TQFT labeled
in B the set of connected closed subgroups of maximal rank if the open TQFT is
clarified. The consideration of the open theory is the topic in the next section.

4 A labelled open TQFT for classifying spaces

This section is devoted to proving Theorem 1.2. We consider fibrations below
which define the cobordism operations µΥ and µΥop . Moreover, we investigate
the cohomology algebras of total and base spaces. The results are described
with the commutative diagram
(4.1)

M(IKL ) H∗(M(IKL ))

((out)∗)∗

��

H∗(BK)⊗H∗(BL)
((Bk)∗xi⊗1−1⊗(Bℓ)∗xi)

ϕ

��

∼=oo

M(Υ)

(out)∗

OO

(in)∗

��

H∗(M(Υ)) H∗(BK)⊗H∗(BH)⊗H∗(BL)
((Bk)∗xi⊗1−1⊗(Bι)∗xi,(Bι)∗xi⊗1−1⊗(Bℓ)∗xi)

∼=oo

M(IKH
∐

IHL ) H∗(M(IKH
∐

IHL ))

((in)∗)∗

OO

H∗(BK)⊗H∗(BH)
((Bk)∗xi⊗1−1⊗(Bι)∗xi)

⊗
H∗(BH)⊗H∗(BL)

((Bι)∗xi⊗1−1⊗(Bℓ)∗xi)

1⊗m⊗1

OO

∼=oo

where ϕ is the map induced by the natural map

H∗(BK)⊗H∗(BL)→ H∗(BK)⊗1⊗H∗(BL)→ H∗(BK)⊗H∗(BH)⊗H∗(BL),

and k : K → G, ι : H → G and ℓ : L → G denote the inclusions. Observe
that the fibres of the fibrations (out)∗ and (in)∗ are G/H and ΩBH ≃ H ,
respectively; see the proof of [13, Lemma 2.3.11]. The cohomology algebras
are computed with the Eilenberg–Moore spectral sequence as made in Sec-
tion 3 associated with pullback diagrams defining the spaces M(IKL ), M(Υ)
and M(IKH

∐
IHL ).

The computation of H∗(M(Υ)) is here given. We choose a homotopy equiva-
lence

r : ∂in = a1 • a2 a3
≃ // a1 a2 a3 = I ∪a2 I

with a homotopy inverse i which satisfies the condition that i(as) = as for
s = 1, 2 and 3. We regard Υ as a labeled cobordism (Υ, {ΥHi}i=1,2,3}), where
H1 = K, H2 = H , H3 = L. Observe that the in-boundaries of the free
boundaries ΥH1 , ΥH2 and ΥH3 are the sets {a1}, {•, a2} and {a3}, respectively.
By the definition of the space M(Υ), we have commutative diagrams

M(Υ) //

��

map(Υ, BG)
i∗

≃
//

��

BGI∪a2
I

(ev0,ev 1
2
,ev1)

��

// BGI ×BGI

(ev0×ev1)
×2

��∏3
i=1 map(ΥHi , BHi)

ψ
// ∏3

i=1 map(ΥHi , BG)
γ

≃ // BG×3

1×∆×1
// BG×4
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in which the right-hand side and left-hand side squares are pullback diagrams,
where the map γ is defined by the embeddings which are homotopy inverses of
deformation retractions ΥHi → {ai} and ψ is the map induced by the inclusions
k, ι and ℓ mentioned above. Thus applying the EMSS to the big square which
is a homotopy pullback, we can compute the cohomology algebra H∗(M(Υ))
in (4.1) with the two sided Koszul resolution mentioned in Section 3.

Proof of Theorem 1.2. By definition, we see that DµΥ = ((in)∗)! ◦ ((out)∗)∗.
The image of ((out)∗)∗ is in the image of ((in)∗)∗. This follows from the
commutativity of the diagram (4.1). Then the definition of the integration
along the fibre yields that DµΥ is trivial.
We investigate the Leray–Serre spectral sequence {E∗,∗

r , dr} for the fibration

G/H
j

−→ M(Υ)
(out)∗

−→ M(IKL ). Since the subgroup H is of maximal rank,
it follows that the E2 term is generated by elements with even degree and
hence the map j∗ induced by the inclusion j is an epimorphism. Therefore,
there exists an element ΛΥ of the form

∑
i qi · (1 ⊗ bi ⊗ 1) in H∗(M(Υ)) with

qi ∈ H∗(BK)⊗H∗(BL) and bi ∈ H∗(BH) such that j∗(ΛΥ) is the fundamental
class of G/H . We can assume that deg qi = 0 for any i because qi is in the
image of ϕ in (4.1). Thus we see that DµΥop(

∑
i qi ·(1⊗bi⊗1⊗1)) = ((out)∗)!◦

((in)∗)∗(
∑

i qi · (1⊗ bi⊗ 1⊗ 1)) = ((out)∗)!(
∑

i qi · (1⊗ bi⊗ 1)) = 1H∗((M(IK
L

))).

The computations of the cohomology ring H∗(M(Υ)) and H∗(M(IKH
∐
IHL ))

via the EMSS show that the map ((in)∗)∗ is a morphism of H∗(BK) ⊗
H∗(BH) ⊗ H∗(BL)-modules. Moreover, the construction of the shriek map
((out)∗)! enables us to conclude that the map is a morphism of H∗(BK) ⊗
H∗(BL)-modules. Since each element x ∈ H∗(M(IKL )) is of the form
x = β1H∗((M(IK

L
))) for some β ∈ H∗(BK) ⊗ H∗(BL), it follows that

DµΥop(β
∑

i qi · (1 ⊗ bi ⊗ 1 ⊗ 1)) = β1H∗((M(IK
L

))) = x. This implies that
the dual operator DµΥop is an epimorphism. We have the result.

The results [15, Theorems 4.1 and 7.1] asserts that the closed TQFT for the
classifying space BG is completely determined if the cohomology H∗(BG,K)
is a polynomial algebra. Therefore, by virtue of Theorems 1.1, 1.2, and the
result [17, Proposition 3.9], we have

Assertion 4.1. Let B be the set of connected closed subgroup of G of maximal
rank. Then one can make a calculation of each of the dual operations for
the labeled TQFT µ : (oc-Cobor(B),

∐
) → (Q-Vect,⊗) introduced by Guldberg

up to multiplication by non-zero scalar with the cohomology algebras and their
generators described in (3.6) and (4.1), and moreover, with representatives
ΛW and ΛΥ of the fundamental classes of the homogeneous spaces G/H in
H∗(M(W )) and H∗(M(Υ)); see the proof of Theorems 1.1 and 1.2 for ΛW
and ΛΥ.

In particular, we see that µΣ ≡ 0 for a cobordism Σ which has two holes, or
contains at least either one of Υ and the pair of pants with two in-boundaries
as a component constructing the cobordism with gluing.
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We conclude this section with a computational example which proves Proposi-
tion 1.3. Let G be the Lie group U(m+ 1) and H the subgroup U(m)× U(1)
of G. Let L be a maximal rank sub group of U(m + 1) whose homology is
p-torsion free, where p is the characteristic of the underlying field K. Observe
that the homogeneous space G/H is nothing but the projective space CPm+1

and that

H∗(G/H ;K) ∼= K[c1, c
′
1, c

′
2, ..., c

′
m]/

( ∑

i+j=k

cic
′
j | 0 ≤ i ≤ 1, 0 ≤ j ≤ m, k ≥ 1

)

∼= K[c1]/
(
cm+1
1

)
.

In what follows, we write H∗(X) for H∗(X ;K). We show that the string oper-
ation DµΣOP

for the labeled cobordism ΣOP = (Σ1+2,0

∐
IdIH

L
)◦ (W

∐
IdIH

L
)◦

Υop is non trivial with an explicit calculation, where each cobordism is pictured
in (1.1). We observe that the domain of the cobordism operation DµΣ is the
cohomology H∗(LBG)⊗2 ⊗ H∗(M(IHL )) ∼= (H∗(BG) ⊗ ∧(y1, ..., ym+1))

⊗2 ⊗
H∗(M(IHL )). The result [15, Theorem 4.1] gives an explicit formula of the
cobordism operation DµΣ1+2,0

. In fact the dual to the loop coproduct ⊙ in

the loop cohomology is induced by a ⊙ b = (−1)d(d−dega)DµΣ1+2,0
(a ⊗ b),

where d denotes the dimension of G. As a consequence, we have (**) :
DµΣ1+2,0

(y1 · · · yl ⊗ y1 · · · yl) = y1 · · · yl.
Recall the formula (3.7) to compute DµW (1⊗ y1 · · · yl). Then we see that the
matrix

(
ζij

)
is of the form




1 1 0 · · · · · · · · · 0
c′1 ⊗ 1 1⊗ c1 1 0 · · · · · · 0
c′2 ⊗ 1 0 1⊗ c1 1 · · · · · · 0

... 0 0
. . . 1 · · · 0

...
...

...
. . .

...
... 1

c′m ⊗ 1 0 0 · · · 1⊗ c1




.

The direct calculation enables us to deduce that

det
(
ζij

)
= 1⊗ cm1 − c′1 ⊗ cm−1

1 + · · · (−1)l−1c′l−1 ⊗ cm−l+1
1 + · · ·+(−1)mc′m⊗ 1.

Let j be the inclusion of the fibration G/H
j

−→ M(Υ)
(out)∗

−→ M(IHL ). One
of important properties of the EMSS [22] allows us to conclude that the map
j∗ : H∗(M(Υ)) → H∗(G/H) induced by j coincides with the composite of
maps

H∗(M(Υ)) // // Tor0,∗
H∗(M(IH

L
))
(K, H∗(M(Υ))) = E0,∗

2
// // E0,∗

∞

�

� // H∗(G/H).

The proof of Theorem 1.2 implies that j∗ is an epimorphism. Therefore, we
can choose j∗(1⊗ cm ⊗ 1H∗(BL)) = j∗(det(ζij)⊗ 1H∗(BL)) as the fundamental
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class of H∗(G/H) = H∗(CPm). The calculation in the proof of Theorem 1.2
allows us to deduce that DµΥop(det(ζij) ⊗ 1H∗(BL)) = 1. Combining it with
(**), we have

DµΣOP
(y1 · · · yl ⊗ y1 · · · yl ⊗ 1)

= DµΥop ◦DµW
∐
Id

IH
L

◦DµΣ1+2,0

∐
Id

IH
L

(y1 · · · yl ⊗ y1 · · · yl ⊗ 1)

= DµΥop ◦DµW
∐
Id

IH
L

(y1 · · · yl ⊗ 1)

= DµΥop(det(ζij)⊗ 1) = 1.

Proof of Proposition 1.3. The computation above shows that the unit of
H∗(M(IHL )) is in the image of the operation DµΣOP

. Then the same argu-
ment as in the proof of Theorem 1.2 yields the result.
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5 Appendix A: An algebraic model for the whistle cobordism op-

eration

We give an algebraic model for µW in cochain level over the rational. In this
section, the cochain algebra A∗

PL(X) for a space X is regarded as the DG
algebra of PL differential forms on X thought the same notation as that of the
singular cochain algebra is used; see [5] and [10, Section 10] for PL differential
forms. In what follows, we assume that H is an arbitrary connected closed
subgroup of a connected compact Lie group G.

We recall the commutative diagram in (3.2) and first consider the fibration
res : map(a∩b, BH) → map({a, b}, BH) in the left square. The results [10,
Theorems 14.12 and 15.3] allow us to obtain a minimal relative Sullivan model
for res of the form

ζ : A∗
PL(map({a, b}, BH))⊗H∗(ΩBH)

≃
−→ A∗

PL(map(a∩b, BH)).

Observe that the source is the tensor product as a vector space, but not as a
DGA. By using the model ζ, we have a model res! : A∗

PL(map({a, b}, BH))⊗
H∗(ΩBH) → A∗

PL(map({a, b}, BH)) for the integration along the fibre of the
fibration res mentioned above; see [11, Theorem 5]. The left-hand side diagram
in (3.2) is the pullback described in Remark 2.2. Then the proof of [11, Theorem
6] yields that res!⊗1 in (5.1) below is a model for the integration h!. Moreover,
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a quasi-isomorphism

u : A∗
PL(map({a, b}, BH))⊗L

A∗
PL

(map(a∩b,BG)) A
∗
PL(map(a–b, BG))

−−−−→
≃

A∗
PL(M(∂in))

is induced by the front pullback in (3.2). Thus we have commutative diagrams
with solid arrows
(5.1)

A∗
PL(M(∂out))

k∗

��

Q⊗Q A∗
PL(map(S1, BG))

η⊗res∗

��

≃oo

A∗
PL(map(a∩b, BH))⊗L

A∗
PL

(map(a∩b,BG)) A
∗
PL(map(W,BG))

≃

ξ1rr❡❡❡❡❡❡❡
❡❡❡

❡❡
❡❡❡

❡❡❡
❡❡

Ψ

~~

A∗
PL(M(W ))

h!

��

A∗
PL(map(a∩b, BH))⊗L

A∗
PL

(map(a∩b,BG)) A
∗
PL(map(a–b, BG))

≃

ξ2
ll❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨

1⊗res∗res∗

OO

1⊗u≃
��

A∗
PL(M(∂in)) A∗

PL(map(a∩b, BH))⊗L
A∗

PL
(map({a,b},BH)) A

∗
PL(M(∂in))

≃

ξ3

__

res!⊗1

oo

in which ξ1 and ξ3 are quasi-isomorphisms induced by the back pullback di-
agram and the left-hand side pulback diagram in (3.2), respectively, and ξ2 is
a quasi-isomorphism induced by the big pullback which the left-hand side and
the front pullback diagrams give. By the lifting lemma [10, Proposition 12.9]
enables us to obtain a right inverse Ψ of 1 ⊗res∗ res

∗ in the derived category
of A∗

PL(map(a∩b, BG))-modules. The last step in constructing the model for
µW = h!◦k∗ is not explicit. In fact, as expected from the proof of Theorem 1.1,
it seems that the construction of the lift is complicated in general. Under ap-
propriate assumptions on G and the subgroup H , it is anticipated that Sullivan
models serve the explicit calculation. However, we do not pursue the topic in
this article.
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