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1 Introduction

Consider a fiber bundle ξ with projection p : E → X and structure groupG over
a simply connected finite CW-complexX and let aut◦(ξ) denote the topological
monoid of bundle maps

E

p

��

ϕ
// E

p

��

X
f

// X,

such that f is homotopic to the identity map of X and ϕ is a fiberwise isomor-
phism. The goal of this paper is to construct a dg Lie algebra model for the
classifying space Baut◦(ξ) in the sense of Quillen’s rational homotopy theory
[14]. In particular, this yields tractable models for the computation of the ra-
tional homotopy and cohomology groups of Baut◦(ξ). We assume that BG is
a nilpotent space, i.e., that the group π0(G) is nilpotent and acts nilpotently
on πk(G) for all k ≥ 1.
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240 A. Berglund

Theorem 1.1. Let L be the minimal Quillen model for X and let Π be a dg
Lie algebra model for BG. Furthermore, let τ : CL→ Π be a twisting function
that models the classifying map of the bundle ν : X → BG. Then Baut◦(ξ) is
rationally homotopy equivalent to the geometric realization of the dg Lie algebra

Homτ (CL,Π)〈0〉⋊τ∗

(
DerL⋉ad sL

)
〈1〉. (1)

Here, CL is the Chevalley-Eilenberg complex of L, we use 〈n〉 to indicate the
n-connected cover, and the decorations τ and τ∗ indicate that we take a twisted
semi-direct product (see §3.5 and §3.6).

In many cases of interest, there are simplifications of this model. For example,
we have the following if G is a compact connected Lie group.

Theorem 1.2. If G is a compact connected Lie group, then Baut◦(ξ) is ratio-
nally homotopy equivalent to the geometric realization of the dg Lie algebra

(
H∗(X ;Q)⊗ π∗(G)

)
〈0〉⋊τ∗

(
DerL⋉ad sL

)
〈1〉.

The twisting function is given explicitly by

τ =

n∑

i=1

ui(ξ)⊗ γi,

where ui(ξ) ∈ H
∗(X ;Q) are the characteristic classes of ξ associated to gen-

erators u1, . . . , un of the cohomology ring H∗(BG;Q) and γi ∈ π∗(G) ⊗ Q =
π∗+1(BG)⊗Q is dual to ui.

Similar simplifications are possible whenever H∗(BG;Q) is a free graded com-
mutative algebra, see §4. An immediate consequence is the following.

Corollary 1.3. If G is a compact connected Lie group, then the rational
homotopy type of Baut◦(ξ) depends only on the rational homotopy type of X
and the rational characteristic classes of ξ.

The main application which motivated this work is the construction of a dg Lie
algebra model for the classifying space of the block diffeomorphism group of a
simply connected smooth n-manifold M with boundary ∂M = Sn−1 (n ≥ 5).
The construction is carried out in [3, §4], using the results of this paper. The
key point is roughly speaking that, rationally, the block diffeomorphism group
may be replaced by the automorphisms of the stable tangent bundle (or stable
normal bundle), see [3] for more precise statements.
We now turn to some more direct applications. Earlier work on the rational
homotopy theory of automorphisms of fibrations has focused on the submonoid
autX(ξ) ⊆ aut◦(ξ) where f is equal to the identity onX , see e.g. [6]. Our results
yield models not only for BautX(ξ), but for the whole homotopy fiber sequence

BautX(ξ)→ Baut◦(ξ)→ Baut◦(X), (2)
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where aut◦(X) is the monoid of self-maps of X homotopic to the identity. We
show that (2) is modeled by the short exact sequence of dg Lie algebras

Homτ (CL,Π)〈0〉 → Homτ (CL,Π)〈0〉⋊τ∗

(

DerL⋉ad sL
)

〈1〉 →
(

DerL⋉ad sL
)

〈1〉

associated to the twisted semi-direct product (1).

As an application, the following gives an interesting class of spaces X for which
the fibration (2) is always split. Recall that a simply connected space X is
called elliptic if both H∗(X ;Q) and π∗(X) ⊗ Q are finite dimensional. The
Halperin conjecture asserts that aut◦(X) is rationally homotopy equivalent to
a product of odd dimensional spheres ifX is an elliptic space with positive Euler
characteristic, see e.g. [8, §9.7.2]. Examples of spaces for which the Halperin
conjecture is known to hold are homogeneous spaces G/H , for H ⊆ G a closed
subgroup of maximal rank, or elliptic Kähler manifolds with positive Euler
characteristic.

Theorem 1.4. Let X be an elliptic space with positive Euler characteristic
and let ξ be a fiber bundle over X with structure group a compact connected
Lie group G. If the Halperin conjecture is valid for X, then

1. There is a rational splitting,

Baut◦(ξ) ∼Q BautX(ξ)×Baut◦(X).

2. The cohomology ring H∗(Baut◦(ξ);Q) is a polynomial algebra on finitely
many generators of even degree.

The above result applies in particular to bundles over even dimensional spheres.
Bundles over odd dimensional spheres exhibit a different behavior; these pro-
vide examples where the fibration (2) does not split rationally, though it does
so after looping once. Also, the cohomology ring has an interesting structure
in this case.

Theorem 1.5. Let n ≥ 3 be odd and let ξ be a fiber bundle over Sn with
structure group a compact connected Lie group G.

1. There is a rational splitting,

aut◦(ξ) ∼Q autSn(ξ) × aut◦(S
n),

but the fibration

BautSn(ξ)→ Baut◦(ξ)→ Baut◦(S
n)

does not split, in fact the map H∗(Baut◦(ξ);Q) → H∗(BautSn(ξ);Q) is
not surjective.
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2. Write H∗(BG;Q) = Q[u1, . . . , uk, v1, . . . , vℓ], where |ui| < n and |vj | >
n. There is an algebra isomorphism

H∗(Baut◦(ξ);Q) ∼= Q[u1, . . . , uk]⊗
(
Q[z]⊕ d(Ω∗

Q[v1,...,vℓ]|Q
)
)
,

where z is a generator of degree n + 1 and the right factor is the (nilpo-
tent) algebra of exact Kähler differential forms on the polynomial ring
Q[v1, . . . , vℓ].

For an example where the fibration (2) does not split rationally even after
looping, see Remark 4.10.
We end this introduction with some observations about Diff(Sn), the topologi-
cal group of orientation preserving diffeomorphisms of the sphere, as a corollary
of the above results. It is well known that the map SO(n+ 1)→ Diff(Sn) ad-
mits a left homotopy inverse, in fact there is a homotopy equivalence

SO(n+ 1)×Diff(Sn, Dn)→ Diff(Sn), (3)

where Diff(Sn, Dn) ⊆ Diff(Sn) is the subgroup of diffeomorphisms that fix
a smoothly embedded disk Dn ⊆ Sn pointwise. The usual argument (see
e.g. [1, Lemma 1.1.5]) goes as follows. Let ξ denote the oriented frame bundle,
p : F (Sn)→ Sn, and consider the map

Diff(Sn)→ F (Sn), (4)

given by evaluating the differential on a standard frame over the basepoint. Its
fiber is homotopy equivalent to Diff(Sn, Dn) and the composite SO(n+ 1)→
Diff(Sn) → F (Sn) is a homotopy equivalence. This implies the homotopy
equivalence (3). One might ask to what extent the splitting deloops. The
map (4) does not deloop, at least not in any evident way, so the above argument
does not let us say whether BSO(n + 1) → BDiff(Sn) splits. However, the
map (4) factors as

Diff(Sn)→ aut◦(ξ)→ F (Sn),

and the same argument shows that SO(n+1)→ aut◦(ξ) is split. In particular,

BSO(n+ 1)→ Baut◦(ξ) (5)

induces and injection on rational homotopy groups. If n is even, then the
cohomology ring H∗(Baut◦(ξ);Q) is free by Theorem 1.4, and this implies
that (5) admits a left homotopy inverse in the rational homotopy category. A
fortiori, we get

Corollary 1.6. For n even, BSO(n+1)→ BDiff(Sn) admits a left homotopy
inverse, rationally.

For n odd, say n = 2r − 1, the cohomology calculation in Theorem 1.5
shows that the map (5) is not surjective in rational cohomology (e.g., pr−1 ∈
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H∗(BSO(2r);Q) is not hit), so it does not split rationally. However, this yields
no information about BSO(n+ 1)→ BDiff(Sn), except that an argument for
a splitting would need to use methods that do not apply to Baut◦(ξ). (In fact,
SO(4)→ Diff(S3) is known to be a homotopy equivalence [9].)
The paper is structured as follows. In Section 2 we interpret Baut◦(ξ) as
a classifying space for certain fibrations and relate it to the geometric bar
construction B

(
map(X,BG), aut(X), ∗

)
in the sense of [13, §7]. Section 3

contains general results about dg Lie algebra models and Q-localizations of
geometric bar constructions. These are used in the proof of Theorem 1.1,
which is given at the end of Section 3. A new technical tool is the construction
of a simplicial nilpotent group exp•(g) associated to any degree-wise nilpotent
dg Lie algebra g. It generalizes the Malcev group associated to a nilpotent Lie
algebra over Q, and provides a functorial simplicial group model of the loop
space ΩMC•(g) of the nerve of the dg Lie algebra g, see §3.2. Section 4 contains
the proofs of Theorem 1.2, Theorem 1.4 and Theorem 1.5.

2 Moduli spaces of F-fibrations

We will utilize the general framework for the classification of fibrations provided
by May [13]. Let (F , F ) be a category of fibers in the sense of [13, Definition
4.1] and assume it satisfies the hypotheses of the classification theorem [13,
Theorem 9.2]. Also recall the notions of F -spaces and F -maps from [5].
For a suitable choice of F , fiber bundles with structure group G are examples
of F -fibrations, see [13, Example 6.11]. Another special case is when F is the
category of all spaces weakly equivalent to a given CW-complex X , with mor-
phisms all weak equivalences between such spaces. In this case, the ‘structure
group’ G = aut(X) is the group-like monoid of homotopy automorphisms of X ,
and an F -fibration is the same thing as a fibration with fiber weakly homotopy
equivalent to X . We will refer to such fibrations as X-fibrations.
Returning to the general situation, we let G denote the group-like topological
monoid F(F, F ), to be thought of as the structure group for F -fibrations. Let
p∞ : E∞ → B∞ denote the universal F -fibration, the existence of which is
ensured by May’s classification theorem, and define

Fib(X,F) = B
(
map(X,B∞), aut(X), ∗

)
,

where the right hand side denotes the geometric bar construction, in the sense
of [13, §7], of the group-like monoid aut(X) acting on the space map(X,B∞)
from the right by precomposition. It is a consequence of May’s ‘Classification
of Y -structures’ [13, §11] that Fib(X,F) may be thought of as a moduli space
of F -fibrations with base weakly equivalent to X . More precisely, we have the
following:

Theorem 2.1. For a CW-complex A, there is a bijective correspondence be-
tween homotopy classes of maps

A→ Fib(X,F)
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and equivalence classes of X-fibrations p : E → A with a B∞-structure θ : E →
B∞.

Proof. This follows readily from [13, Theorem 11.1].

In particular, since an X-fibration over a point is just a space weakly equivalent
to X , we see that the set of path components,

π0Fib(X,F),

is in bijective correspondence with the set of equivalence classes of F -fibrations
with base weakly homotopy equivalent to X .

Definition 2.2. Given an F -fibration p : E → B, let autF(p) denote the
space of F -self equivalences of p, i.e., the topological monoid consisting of
commutative diagrams

E

p

��

ϕ
// E

p

��

X
f

// X,

such that f is a weak homotopy equivalence and ϕ is a fiberwise F -map, topol-
ogized as a subset of map(B,B) ×map(E,E). Let autF◦ (p) ⊆ autF(p) denote
the submonoid consisting of those pairs (f, ϕ) such that f is homotopic to the
identity map on X . If D ⊆ C ⊆ X are subsets, then let autFC(p) denote the
submonoid consisting of pairs as above such that f restricts to the identity map
on C, and write autD,F

C (p), or simply autDC (p), for the submonoid of autFC(p)
where ϕ restricts to the identity isomorphism on the fibers over points in D.
Finally, let autDC,◦(p) denote aut

D
C (p) ∩ aut

F
◦ (p).

By using standard properties of the geometric bar construction from [13, §7],
we can obtain information about the homotopy types of the components of
Fib(X,F).

Theorem 2.3. 1. There is a bijection

π0Fib(X,F) ∼= [X,B∞]/π0aut(X).

2. There is a weak equivalence of spaces over Baut(X),

Fib(X,F) ∼
∐

[p]

BautF (p),

where the union is over all equivalence classes of F-fibrations p : E → B,
with B weakly equivalent to X.
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Proof. As follows from [13, Proposition 7.9], there is a homotopy fiber sequence

aut(X)→ map(X,B∞)→ Fib(X,F)→ Baut(X).

The first statement follows by looking at the induced long exact sequence of
homotopy groups.
The space of F -maps mapF(p, p∞) is weakly contractible for every F -fibration
p : E → X by [5, Proposition 3.1]. Consider the diagram

autF(p)

��

// mapF(p, p∞)

��

// B
(

mapF(p, p∞), autF(p), ∗
)

��

// BautF(p)

��

aut(X) // map(X,B∞) // B
(

map(X,B∞), aut(X), ∗
)

// Baut(X).

According to [13, Proposition 7.9] the rows are quasifibration sequences.
The leftmost square is homotopy cartesian. It follows that the third vertical
map from the left induces a weak equivalence between the connected com-
ponents containing ν. Since mapF(p, p∞) is weakly contractible, the right-
most map in the top row is a weak homotopy equivalence. The rightmost
square yields a zig-zag of weak homotopy equivalences showing BautF(p) ∼
B
(
map(X,B∞), aut(X), ∗

)
ν
as spaces over Baut(X), where ν indicates the

component containing (the class of) ν.

Corollary 2.4. There are weak homotopy equivalences

BautF(p) ∼ B
(
map(X,B∞)ν , aut(X)[ν], ∗

)
,

BautF◦ (p) ∼ B
(
map(X,B∞)ν , aut◦(X), ∗

)
,

where aut(X)[ν] denotes the monoid of homotopy equivalences ϕ : X → X such
that ν ◦ ϕ ≃ ν and map(X,B∞)ν denotes the component of ν.

Proof. We have just seen that BautF(p) ∼ B
(
map(X,B∞), aut(X), ∗

)
ν
. The

latter is easily seen to be weakly equivalent to B
(
map(X,B∞)ν , aut(X)[ν], ∗

)
.

The second claim is proved similarly.

3 Rational models

This section contains the proof of the main theorem. We begin by examining
the effect of Q-localization on the geometric bar construction of [13, §7]. Then
we will construct a dg Lie model for the Q-localized bar construction, by com-
bining Schlessinger-Stasheff’s [15] and Tanré’s [16] theory of fibrations of dg
Lie algebras with Quillen’s theory of principal dg coalgebra bundles [14].
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3.1 Rationalization

Lemma 3.1. Let X be a connected nilpotent finite CW-complex, let Z be
a connected nilpotent space, and fix a map ν : X → Z. Then the space
B
(
map(X,Z)ν , aut◦(X), ∗

)
is rationally homotopy equivalent to

B
(
map(XQ, ZQ)νQ , aut◦(XQ), ∗

)
.

Proof. By using a functorial Q-localization for nilpotent spaces, e.g., the
Bousfield-Kan Q-completion, we can construct a commutative diagram

X
ν //

r

��

Z

q

��

XQ

νQ
// ZQ,

where the vertical maps are Q-localizations. We may also assume that r is a
cofibration. Define the monoid aut◦(r) as the pullback

aut◦(r)
∼ // //

∼Q

��

aut◦(X)

∼Q r∗

��

aut◦(XQ)
r∗

∼ // // map(X,XQ)r.

Thus, the monoid aut◦(r) consists of pairs (f, g) where f and g are self-maps
homotopic to the identity of X and XQ, respectively, such that r ◦ f = g ◦ r.
Since r is a cofibration, the map r∗ is a fibration. It is also a weak equiva-
lence by standard properties of Q-localization. The map r∗ is a rational ho-
motopy equivalence by [10, Theorem II.3.11]. It follows that the projections
from aut◦(r) to aut◦(X) and aut◦(XQ) are a weak equivalence and a rational
homotopy equivalence, respectively.
There are right actions of the monoid aut◦(r) on map(X,Z) and map(XQ, ZQ)
through the projections to aut◦(X) and aut◦(XQ), respectively. We get a zig-
zag of rational homotopy equivalences of right aut◦(r)-spaces

map(X,Z)ν
q∗
−→ map(X,ZQ)qν

r∗

←− map(XQ, ZQ)νQ .

This accounts for the top horizontal zig-zag in the following diagram, where we
write • instead of B

(
map(X,ZQ)qν , aut◦(r), ∗

)
to save space,

B
(
map(X,Z)ν , aut◦(r), ∗

)

∼

��

∼Q
// • B

(
map(XQ, ZQ)νQ , aut◦(r), ∗

)∼Q
oo

∼Q

��

B
(
map(X,Z)ν, aut◦(X), ∗

)
B
(
map(XQ, ZQ)νQ , aut◦(XQ), ∗

)
.
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3.2 Geometric realization of dg Lie algebras

Let g be a dg Lie algebra over Q, possibly unbounded as a chain complex. For
n ≥ 0, the n-connected cover is the dg Lie subalgebra g〈n〉 ⊆ g defined by

g〈n〉i =





gi, i > n,

ker(gn
d
−→ gn−1), i = n,

0, i < n.

We call g connected if g = g〈0〉 and simply connected if g = g〈1〉.
The lower central series of g is the descending filtration

g = Γ1g ⊇ Γ2g ⊇ · · ·

characterized by Γ1g = g and [Γkg, g] = Γk+1g. We call g nilpotent if the lower
central series terminates degree-wise, meaning that for every n, there is a k such
that (Γkg)n = 0. This definition of nilpotence mirrors the notion of nilpotence
for topological spaces. Indeed, a connected dg Lie algebra g is nilpotent if and
only if the Lie algebra g0 is nilpotent and the action of g0 on gn is nilpotent
for all n. And, clearly, every simply connected dg Lie algebra is nilpotent.
If g is an ordinary nilpotent Lie algebra, then exp(g) denotes the nilpotent
group whose underlying set is g and where the group operation is given by the
Baker-Campbell-Hausdorff formula, see e.g. [14]. The following generalizes this
to dg Lie algebras. Let g be a connected nilpotent dg Lie algebra. If Ω is a
commutative cochain algebra, then the chain complex g⊗Ω becomes a dg Lie
algebra with

[x⊗ α, y ⊗ β] = (−1)|α||y|[x, y]⊗ αβ

for x, y ∈ g and α, β ∈ Ω. If Ωk = 0 unless 0 ≤ k ≤ n for some n, then the
degree 0 component of g⊗ Ω decomposes as

(g⊗ Ω)0 = (g0 ⊗ Ω0)⊕ (g1 ⊗ Ω1)⊕ · · · ⊕ (gn ⊗ Ωn).

From the fact that [gi⊗Ωi, gj ⊗Ωj] ⊆ gi+j ⊗Ωi+j and that g0 acts nilpotently
on gk for all k, one sees that (g⊗ Ω)0 is a nilpotent Lie algebra. Hence, so is
the Lie subalgebra of zero-cycles Z0(g⊗ Ω).
Let Ω• be the simplicial commutative differential graded algebra where Ωn is
the Sullivan-de Rham algebra of polynomial differential forms on the n-simplex,
see [7]. Since Ωk

n = 0 unless 0 ≤ k ≤ n, the above construction may be applied
levelwise to the simplicial dg Lie algebra g⊗ Ω•.

Definition 3.2. Let g be a connected nilpotent dg Lie algebra. We define
exp•(g) to be the simplicial nilpotent group

exp•(g) = expZ0(g⊗ Ω•).

Next, we recall the definition of the nerve MC•(g) of a dg Lie algebra g. As we
will see below, the nerve MC•(g) is a delooping of the simplicial group exp•(g).
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Definition 3.3. A Maurer-Cartan element in g is an element τ of degree −1
such that

d(τ) +
1

2
[τ, τ ] = 0.

The set of Maurer-Cartan elements is denoted MC(g). The nerve of g is the
simplicial set

MC•(g) = MC(g⊗ Ω•).

Define the geometric realization of a dg Lie algebra to be the geometric real-
ization of its nerve,

|g| = |MC•(g)|.

3.3 Geometric realization of dg coalgebras

Let Ω be a commutative cochain algebra over Q. A dg coalgebra over Ω is
a coalgebra in the symmetric monoidal category of Ω-modules, i.e., a dg Ω-
module C together with a coproduct and a counit,

∆: C → C ⊗Ω C, ǫ : C → Ω,

such that the appropriate diagrams commute. We let dgc(Ω) denote the cate-
gory of dg coalgebras over Ω. If C is a dg coalgebra over Ω, we let

G(C)

denote the set of group-like elements, i.e., elements ξ ∈ C of degree 0 such that

∆(ξ) = ξ ⊗ ξ, d(ξ) = 0, ǫ(ξ) = 1.

Given a dg coalgebra C over Q, the free Ω-module C ⊗ Ω is a dg coalgebra
over Ω. Clearly,

Ω 7→ G(C ⊗ Ω)

defines a functor from commutative cochain algebras to sets.

Definition 3.4. Let C be a dg coalgebra. We defined the spatial realization
of C to be the simplicial set

〈C〉 = G(C ⊗ Ω•).

A dg Lie algebra over Ω is a dg Ω-module L together with a Lie bracket ℓ : L⊗Ω

L → L satisfying the usual anti-symmetry and Jacobi relations. Quillen’s
generalization of the Chevalley-Eilenberg construction can be extended to dg
Lie algebras over Ω, yielding a functor

CΩ : dgl(Ω)→ dgc(Ω).

The underlying coalgebra CΩ(L) is the symmetric coalgebra SΩ(sL), where

SΩ(V ) =
⊕

k≥0

(V ⊗Ωk)Σn
,
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for an Ω-module V . The differential is defined as usual, see e.g., [7, p.301]. If L
is a dg Lie algebra over Q, then L ⊗ Ω is a dg Lie algebra over Ω and there is
a natural isomorphism of dg coalgebras over Ω,

CΩ(L ⊗ Ω) ∼= C(L)⊗ Ω.

Proposition 3.5. Let L be a connected dg Lie algebra and let Ω be a bounded
commutative cochain algebra. There is a natural bijection

e : MC(L ⊗ Ω) ∼= G
(
CΩ(L⊗ Ω)

)
,

e(τ) =
∑

k≥0

1

k!
sτ∧Ωk ∈ CΩ(L⊗ Ω).

Proof. The crucial observation is that this series converges since Ω is bounded
and L is connected. Say Ωk = unless 0 ≤ k ≤ n. Then

(
L⊗ Ω

)
−1

= L0 ⊗ Ω1 ⊕ · · · ⊕ Ln−1 ⊗ Ωn,

whence τ ∈ L ⊗ Ω+ for every element τ of degree −1. Since (Ω+)k = 0 for
k > n, this implies that

sτ ∧Ω · · · ∧Ω sτ = 0

whenever there are more than n factors. Clearly, ∆(e(τ)) = e(τ) ⊗ e(τ) and
ǫ(e(τ)) = 0. As the reader may check, the equation d(e(τ)) = 0 is equivalent
to the Maurer-Cartan equation for τ .

Corollary 3.6. There is a natural isomorphism of simplicial sets,

MC•(L) ∼= 〈C(L)〉,

for every connected dg Lie algebra L.

Proof. Indeed, MC•(L) = MC(L⊗ Ω•) ∼= G
(
CΩ(L ⊗ Ω•)

)
∼= G

(
C(L)⊗ Ω•

)
.

Recall that for a commutative dg algebra A, the spatial realization is defined
by

〈A〉 = Homdga(A,Ω•),

see e.g., [2]. We use the same notation as for the coalgebra realization, but it
should be clear from the context which one is used.

Proposition 3.7. Let A be a commutative cochain algebra of finite type with
dual dg coalgebra A∨. Then there is a natural isomorphism

〈A∨〉 ∼= 〈A〉.
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Proof. For a bounded commutative cochain algebra Ω and a finite type dg
algebra A, there is a natural isomorphism of chain complexes

A∨ ⊗ Ω ∼= Hom(A,Ω).

Under this isomorphism, group-like elements in the dg coalgebra A∨ ⊗ Ω cor-
respond to morphisms of dg algebras A→ Ω.

Note that the spatial realization of dg coalgebras preserves products, 〈C ⊗
D〉 ∼= 〈C〉 × 〈D〉. In particular, since the universal enveloping algebra Ug of
a dg Lie algebra g is a dg Hopf algebra, i.e., a group object in the category
of dg coalgebras, its spatial realization 〈Ug〉 is a simplicial group. We also
remark that for every commutative cochain algebra Ω, the forgetful functor
dga(Ω)→ dgl(Ω) admits a left adjoint UΩ : dgl(Ω)→ dga(Ω).

Proposition 3.8. Let g be a simply connected dg Lie algebra. There is a
natural isomorphism of simplicial groups

exp•(g)
∼= 〈Ug〉.

Proof. Let Ω be a bounded commutative cochain algebra, say Ωk = 0 unless
0 ≤ k ≤ n. Observe that there is a canonical isomorphism Ug⊗Ω ∼= UΩ(g⊗Ω).
The isomorphism is effected by the exponential map

exp: Z0(g⊗ Ω)→ GUΩ(g⊗ Ω),

exp(x) =
∑

k≥0

1

k!
xk,

where the product xk is taken in UΩ(g⊗Ω). The crucial point is that the sum
converges. Indeed, since g is simply connected,

(
g⊗ Ω

)
0
= g1 ⊗ Ω1 + · · ·+ gn ⊗ Ωn,

so x ∈ g⊗Ω+, whence xk = 0 for k > n, whenever x is an element of degree 0.
The fact that exp respects the group structure is essentially by design of the
Baker-Campbell-Hausdorff group structure.

3.4 Principal dg coalgebra bundles

Next, recall Quillen’s theory of principal dg coalgebra bundles [14, Appendix
B, §5]. In particular, recall that C(g) serves as a classifying space for principal
g-bundles. Quillen’s universal principal g-bundle may be identified with

Ug→ C(Ug; g)→ C(g),

where Ug is the universal enveloping algebra of g and C(Ug; g) is the Chevalley-
Eilenberg complex of g with coefficients in the right g-module Ug.
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Theorem 3.9. Let g be a simply connected dg Lie algebra of finite type. The
realization of the universal principal g-bundle,

〈Ug〉 → 〈C(Ug; g)〉 → 〈C(g)〉,

is a universal principal 〈Ug〉-bundle.

Proof. This is proved in [7, Chapter 25]. Indeed, when g is simply connected
and of finite type, the coalgebra realization of Ug is the same as the algebra
realization of the dual dg algebra Ug∨.

Corollary 3.10. Let g be a simply connected dg Lie algebra of finite type.
The nerve MC•(g) is a delooping of the simplicial group exp•(g).

Proof. We have the isomorphisms exp•(g)
∼= 〈Ug〉 and MC•(g) ∼= 〈C(g)〉.

Remark 3.11. Since we work with coalgebras, the finite type hypothesis on g

can be dropped in Theorem 3.9 and Corollary 3.10. However, we will not repeat
the lengthy argument here since g will be of finite type in our applications.

3.5 Twisted semi-direct products and Borel constructions

We begin by recalling certain aspects of Tanré’s classification of fibrations in
the category of dg Lie algebras [16, Chapitre VII].

Definition 3.12. Let g and L be dg Lie algebras. An outer action of g on L
consists of two maps

α : L⊗ g→ L, ξ : g→ L,

satisfying the following conditions for all x, y ∈ g and a, b ∈ L, where we write

a. x = α(a⊗ x), x. a = −(−1)|a||x|a. x.

Firstly, the map α defines an action of g on L by derivations, i.e.,

[x, y]. a = x. (y. a)− (−1)|x||y|y. (x. a),

x. [a, b] = [x. a, b] + (−1)|x||a|[a, x. b].

Secondly, the map ξ is a chain map of degree −1 and a derivation, i.e.,

dξ(x) = −ξ(dx),

ξ[x, y] = ξ(x). y + (−1)|x|x. ξ(y).

Finally, the action and ξ are connected by the equation

d(x. a) = d(x). a + (−1)|x|x. d(a) + [ξ(x), a].
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Definition 3.13. Given an outer action of g on L, the twisted semi-direct
product L⋊ξ g is the dg Lie algebra whose underlying graded Lie algebra is the
semi-direct product of g acting on L,

[
(a, x), (b, y)

]
=

(
[a, b] + x. b+ a. y, [x, y]

)
,

and whose differential is twisted by ξ in the sense that

∂ξ(a, x) = (da+ ξ(x), dx).

The twisted semi-direct product is the total space in a short exact sequence
(i.e. fibration sequence) of dg Lie algebras,

0→ L→ L⋊ξ g→ g→ 0. (6)

The section g→ L⋊ξ g, x 7→ (0, x), is a morphism of graded Lie algebras, but
it commutes with differentials if and only if ξ = 0.
Outer actions on L are classified by the dg Lie algebra

DerL⋉ad sL,

whose underlying graded Lie algebra is the semi-direct product of DerL acting
on the abelian dg Lie algebra sL from the left by

θ. sx = (−1)|θ|sθ(x),

and whose differential is given by

∂
(
θ, sx

)
=

(
∂(θ) + adx,−sd(x)

)
,

where adx ∈ DerL is given by adx(y) = [x, y].

Proposition 3.14. Specifying an outer action of g on L is tantamount to
specifying a morphism of dg Lie algebras

φ : g→ DerL⋉ad sL.

The correspondence is given by

φ(x) =
(
θx,−sξ(x)

)
,

where θx(a) = x. a.

Proof. The proof is a straightforward calculation.

An outer action of g on L defines an action of g on C(L) by coderivations by
the following formula:

(sa1 ∧ · · · ∧ san). x = sa1 ∧ · · · ∧ san ∧ sξ(x)

+

n∑

i=1

±sa1 ∧ · · · ∧ s(ai. x) ∧ · · · ∧ san.
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Equivalently, C(L) becomes a Ug-module coalgebra, i.e., a right Ug-module
such that the structure map C(L)⊗Ug→ C(L) is a morphism of dg coalgebras.
The action of DerL ⋉ad sL by coderivations on C(L), derived from the tauto-
logical outer action on L, gives rise to a morphism of dg Lie algebras that we
will denote

χ : DerL⋉ad sL→ Coder C(L). (7)

Theorem 3.15. Let g be a simply connected dg Lie algebra of finite type with
an outer action on a connected dg Lie algebra L. There is a right action of the
simplicial group G = exp•(g) on MC•(L) and a weak equivalence of simplicial
sets over MC•(g),

MC•(L ⋊ξ g) ∼ MC•(L)×G EG.

Proof. The action of g on C(L) makes C(L) into a right Ug-module coalgebra.
This yields a right action of exp•(g)

∼= 〈Ug〉 on MC•(L) ∼= 〈C(L)〉. The key
observation, which may be checked by hand, is that there is an isomorphism of
dg coalgebras

C(L⋊ξ g) ∼= C(C(L); g).

Secondly, we have the standard isomorphism

C(C(L); g) ∼= C(L)⊗Ug C(Ug; g).

By combining these isomorphisms and taking realizations, we get isomorphisms
of simplicial sets

MC•(L⋊ξ g) ∼= 〈C(L⋊ξ g)〉 ∼= 〈C(L)⊗Ug C(Ug; g)〉 ∼= 〈C(L)〉 ×〈Ug〉 〈C(Ug; g)〉.

By Theorem 3.9, the simplicial set 〈C(Ug; g)〉 is a model for EG. This finishes
the proof.

Let L be a simply connected cofibrant dg Lie algebra of finite type with geo-
metric realization

X = |MC•(L)|,

and consider the simply connected dg Lie algebra

g =
(
DerL⋉ad sL

)
〈1〉,

with associated topological group

G = | exp•(g)|.

There is an evident outer action of g on L, whence an action of the simplicial
group exp•(g) on the nerve MC•(L), cf. Theorem 3.15, whence an action of G
on X . Since g is simply connected, the simplicial group exp•(g) is reduced,
i.e., has only one vertex. In particular, the topological group G is connected.
Therefore, the action yields a map of group-like monoids

G→ aut◦(X). (8)

This map is a weak homotopy equivalence, as follows from, e.g., Tanré’s theory
[16, Chapitre VII].
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3.6 Twisting functions and mapping spaces

Let C be a dg coalgebra with coproduct ∆: C → C ⊗ C and let L be a dg
Lie algebra with Lie bracket ℓ : L ⊗ L → L. Recall that a twisting function
τ : C → L is a Maurer-Cartan element in the dg Lie algebra Hom(C,L), whose
differential and Lie bracket are given by

∂(f) = dL ◦ f − (−1)|f |f ◦ dC ,

[f, g] = ℓ ◦ (f ⊗ g) ◦∆.

If τ is a twisting function, then Homτ (C,L) denotes the dg Lie algebra with
the same underlying graded Lie algebra but twisted differential

∂τ (f) = ∂(f) + [τ, f ].

Furthermore, there is an outer action of CoderC on Homτ (C,L) given by

f. θ = f ◦ θ, ξ(θ) = τ∗(θ) = τ ◦ θ,

for f ∈ Homτ (C,L) and θ ∈ CoderC. We note for future reference that we
may make the identification

(
Hom(C,L)⋊ CoderC

)τ
= Homτ (C,L)⋊τ∗ CoderC (9)

for every twisting function τ : C → L.

Theorem 3.16. Let L and Π be connected dg Lie algebras and suppose Π is
nilpotent and of finite type. There is a natural weak homotopy equivalence of
simplicial sets

MC
(
Hom(CL,Π⊗ Ω•)

) ∼
−→ map

(
MC•(L),MC•(Π)

)
.

Proof. Let Ω be a bounded commutative cochain algebra. We define a natural
map

MCHom(C(L),Π⊗ Ω)×MC(L⊗ Ω)→ MC(Π⊗ Ω) (10)

as follows. First, make the identifications

Hom(C(L),Π⊗ Ω) = HomΩ(CΩ(L⊗ Ω),Π⊗ Ω),

MC(L ⊗ Ω) = G
(
CΩ(L⊗ Ω)

)
,

the second of which is justified by Proposition 3.5, and then define

ǫ : MCHomΩ(CΩ(L⊗ Ω),Π⊗ Ω)× G
(
CΩ(L⊗ Ω)

)
→ MC(Π⊗ Ω),

simply by evaluation,

ǫ(τ, ξ) = τ(ξ).
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We need to verify that τ(ξ) satisfies the Maurer-Cartan equation. Since τ is a
twisting function, it satisfies the equation

0 = ∂(τ) +
1

2
[τ, τ ].

Evaluating both sides at the group-like element ξ yields

0 = dτ(ξ) + τd(ξ) +
1

2
ℓ ◦ (τ ⊗ τ) ◦∆(ξ) = dτ(ξ) +

1

2
[τ(ξ), τ(ξ)],

showing that τ(ξ) satisfies the Maurer-Cartan equation.
The map is clearly natural in Ω and yields a simplicial map

MCHom(C(L),Π⊗ Ω•)×MC(L ⊗ Ω•)→ MC(Π⊗ Ω•).

The map in the theorem is defined to be the adjoint of this map.
To show it is a weak homotopy equivalence, one argues as in [2, Theorem 6.6] by
induction on a suitable complete filtration of Π. The proof is entirely analogous
so we omit the details.

Remark 3.17. The dg Lie algebra Hom(CL,Π) with the descending filtration

F r+1 = Hom(CL,Π〈r〉), r ≥ 0,

is a complete dg Lie algebra in the sense of [2, Definition 5.1]. By [2, Theorem
6.3] (see also Definition 5.3 and Remark 6.4 in loc.cit.), the Kan complex

M̂C•(Hom(CL,Π)) = lim
←−

MC• Hom(CL,Π/Π〈r〉)

is homotopy equivalent to map(MC•(L),MC•(Π)). We would like to remark
how this relates to the statement in Theorem 3.16.
Since Π/Π〈r〉 is finite dimensional for all r, we have

Hom(CL,Π/Π〈r〉)⊗ Ω•
∼= Hom(CL,Π/Π〈r〉 ⊗ Ω•)

Upon taking the inverse limit, we get an isomorphism of simplicial sets

M̂C•(Hom(CL,Π)) ∼= MC(Hom(CL,Π⊗ Ω•)).

Thus, Theorem 3.16 and Theorem 6.3 in [2] say the same thing. The advantage
of Theorem 3.16 is that the explicit formula for the map gives us control over
equivariance properties, as we will see next.

Let L be a simply connected cofibrant dg Lie algebra of finite type. Precompo-
sition defines a right action of the dg Lie algebra Coder C(L) on the complete
dg Lie algebra Hom(C(L),Π). By composing with (7), and restricting to the
simply connected cover, we get an action of the dg Lie algebra

g =
(
DerL⋉ad sL

)
〈1〉
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on Hom(C(L),Π). By Theorem 3.15, this induces an action of the
simplicial group exp•(g) on the simplicial set MCHom(C(L),Π ⊗ Ω•) ∼=

M̂C•(Hom(C(L),Π)). On the other hand, exp•(g) acts on MC•(L) and hence
also on map(MC•(L),MC•(Π)). The following is an important addendum to
Theorem 3.16.

Proposition 3.18. The weak equivalence of Theorem 3.16,

MCHom(CL,Π⊗ Ω•)
∼
−→ map(MC•(L),MC•(Π)),

is equivariant with respect to the action of the simplicial group exp•(g).

Proof. The proof boils down to the easily checked fact that the map ǫ in the
proof of Theorem 3.16 satisfies

ǫ(θ. f, ξ) = ǫ(f, ξ. θ),

for θ ∈ GUΩ•
(g ⊗ Ω•), f ∈ MCHomΩ(CΩ(L ⊗ Ω),Π ⊗ Ω) and ξ ∈ G

(
CΩ(L ⊗

Ω)
)
.

Proposition 3.19. Let XQ and ZQ be Q-local connected nilpotent spaces of
finite Q-type. Let L be a finite type cofibrant dg Lie algebra model for XQ and
let Π be any dg Lie model for ZQ. The geometric bar construction,

B
(
map(XQ, ZQ), aut◦(XQ), ∗

)
,

is weakly homotopy equivalent to the geometric realization of the dg Lie algebra

Hom(CL,Π)⋊
(
DerL⋉ad sL

)
〈1〉.

Proof. We may as well assume XQ = MC•(L) and ZQ = MC•(Π). By Theorem
3.15, there is a weak homotopy equivalence

M̂C•

(
Hom(CL,Π)⋊ g

)
∼ B

(
M̂C•

(
Hom(CL,Π)

)
, exp•(g), ∗

)
.

The weak equivalence exp•(g)→ aut◦(X) of group-like simplicial monoids and
the weak equivalence of exp•(g)-spaces of Proposition 3.18 combine to give a
weak homotopy equivalence

B
(
M̂C•

(
Hom(CL,Π)

)
, exp•(g), ∗

) ∼
−→ B

(
map(XQ, ZQ), aut◦(XQ), ∗

)
.

3.7 Proof of the main result

Theorem 3.20. Suppose that F is a category of fibers such that the classifying
space B∞ is connected and nilpotent. Let p : E → X be an F-fibration over a
simply connected finite CW-complex X.
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Let L be a simply connected cofibrant dg Lie algebra model for X and let Π be a
connected nilpotent dg Lie algebra model for B∞. Let τ : CL→ Π be a twisting
function that models the map ν : X → B∞ that classifies p.
Then the classifying space BautF◦ (p) is rationally homotopy equivalent to the
geometric realization of the dg Lie algebra

Homτ (CL,Π)〈0〉⋊τ∗

(
DerL⋉ad sL

)
〈1〉.

Proof. For notational convenience, let Z = B∞. As before, let

g =
(
DerL⋉ad sL

)
〈1〉.

That the dg Lie algebras L and Π are models for X and Z means that we may
use their geometric realizations as models for the Q-localizations of X and Z;

XQ = |MC•(L)|, ZQ = |MC•(Π)|.

By Corollary 2.4 and Lemma 3.1 we have

BautF◦ (p) ∼ B
(
map(X,Z)ν , aut◦(X), ∗

)
∼Q B

(
map(XQ, ZQ)νQ , aut◦(XQ), ∗

)
.

The latter space is weakly homotopy equivalent to the component

B
(
map(XQ, ZQ), aut◦(XQ), ∗

)
νQ
.

By Proposition 3.19,

B
(
map(XQ, ZQ), aut◦(XQ), ∗

)
∼ M̂C•

(
Hom(CL,Π)⋊ g

)
.

Let τ : CL→ Π be a twisting function that corresponds to νQ. It follows from
[2, Corollary 1.3] that the component

M̂C•

(
Hom(CL,Π)⋊ g

)
τ
∼ M̂C•

(
(Hom(CL,Π)⋊ g)τ 〈0〉

)
.

Finally, as in (9) one checks that there is an isomorphism of dg Lie algebras

(Hom(CL,Π)⋊ g)τ 〈0〉 ∼= Homτ (CL,Π)〈0〉⋊τ∗ g.

This finishes the proof.

Remark 3.21. It is straightforward to derive the following variants of the
main result: If A ⊆ X is a subspace such that the inclusion of A into X is a
cofibration, then we may consider the submonoid autFA,◦(p) ⊆ autF◦ (p) where
the homotopy automorphism of the base restricts to the identity map on A. If

gA →
(
DerL⋉ad sL

)
〈1〉

is a dg Lie algebra morphism that models the map BautA,◦(X)→ Baut◦(X),
then

Homτ (CL,Π)〈0〉⋊τ∗ gA

is a dg Lie algebra model for the space BautFA,◦(p). Similarly, if we pick a

base-point ∗ ∈ A ⊆ X , and let aut∗A,◦(p) denote the submonoid of autFA,◦(p)
where the automorphism of the total space restricts to the identity over the
base-point, then one gets a model for Baut∗A,◦(p) by replacing C(L) with the
reduced Chevalley-Eilenberg chains.
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4 Examples and applications

Many classifying spaces of interest in geometry have simple rational homotopy
types:

• If G is a compact connected Lie group, then H∗(BG;Q) is a polynomial
algebra on finitely many generators of even degree (see, e.g., [8, Theorem
1.81]).

• The stable classifying spaces BO, BTop, BPL are infinite loop spaces
and have rational cohomology rings of the form Q[p1, p2, . . .], where pi is
a generator of degree 4i (see, e.g., [12]).

• When the ‘structure group’ is G = aut◦(X) for a finite simply connected
CW-complex X , Halperin’s conjecture is equivalent to the statement that
H∗(BG;Q) is a polynomial algebra whenever X is an elliptic space with
non-zero Euler characteristic.

In this section, we will provide a simplification of the model in Theorem 3.20
in the case when H∗(B∞;Q) is a polynomial algebra or, more generally, a free
graded commutative algebra Λ(u1, u2, . . .). We allow infinitely many genera-
tors, but we assume there are only finitely many generators in each degree.
Let X be a simply connected finite CW-complex together with an F -bundle ξ
classified by a map

f : X → B∞.

The characteristic classes of the bundle are defined by pulling back the universal
classes ui along f ;

ui(ξ) = f∗(ui) ∈ H
∗(X ;Q).

We first need a lemma about cochain algebra models for the map f . Note that
a space with free cohomology ring is intrinsically formal; the minimal Sullivan
model for B∞ is the cohomology ring with zero differential, (Λ(u1, u2, . . .), 0).

Lemma 4.1. Let (A, d) be any cochain algebra model for X. For any choice
of cocycles αi in (A, d) that represent ui(ξ), the cdga map ϕ : Q[u1, u2, . . .] →
(A, d), defined by ϕ(ui) = αi, is a model for the map f : X → B∞.

Proof. We know from the general theory of Sullivan models that there exists a
cdga model ψ : Q[u1, u2, . . .]→ (A, d) for the map f . In particular, βi = ψ(ui)
is then a cocycle representative of the class ui(ξ), but this is possibly different
from our chosen αi. However, βi = αi+dωi for some ωi ∈ A and the cdga map
h : Q[u1, u2, . . .]→ Λ(t, dt)⊗A defined by

h(ui) = (1 − t)αi + tβi + dtωi

shows that ψ and ϕ are cdga homotopic, which means that ϕ is a model for f
as well.
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We now turn to dg Lie algebra models. Consider the graded vector space

Π = π∗(ΩB∞)⊗Q,

and let γi ∈ π|ui|−1(ΩB∞) ⊗ Q = π|ui|(B∞) ⊗ Q be dual to ui under the
Hurewicz pairing between cohomology and homotopy. Equipped with trivial
differential and Lie bracket, Π is a dg Lie algebra model for B∞, because
the Chevalley-Eilenberg cochains C∗(Π) is isomorphic to the minimal model
(Λ(u1, u2, . . .), 0).
Let L denote the minimal Quillen model of X . It has the form

L =
(
L(V ), δ

)
,

where V = s−1H̃∗(X ;Q) and the differential δ is decomposable in the sense
that δ(L) ⊆ [L,L]. Thus, we may identify

H∗(X ;Q) ∼= Q⊕ sL/[L,L]. (11)

There is a quasi-isomorphism of chain complexes,

g : CL→ Q⊕ sL/[L,L], (12)

defined by g(1) = 1, g(sx) = s[x] and g(sx1 ∧ · · · ∧ sxn) = 0 for n ≥ 2, see [7,
Proposition 22.8]. For future reference, we note that g factors as

CL
1⊕sτL−−−−→ Q ⊕ sL

1⊕sa
−−−→ Q⊕ sL/[L,L], (13)

where τL : CL→ L is the universal twisting morphism, and a : L→ L/[L,L] is
the canonical projection.
Consider the degree −1 map of graded vector spaces

ρ : H̃∗(X ;Q)→ π∗(ΩB∞)⊗Q,

e 7→
∑

i

〈ui(ξ), e〉γi,

where 〈−,−〉 denotes the standard pairing between cohomology and homology
(and 〈u, e〉 = 0 unless u and e have the same degree). Note that we may
interpret ρ as a morphism of dg Lie algebras L/[L,L]→ Π.

Proposition 4.2. The composite morphism of dg Lie algebras L
a
−→ L/[L,L]

ρ
−→

Π is a model for the map f : X → B∞.

Proof. The quasi-isomorphism g in (12) dualizes to a quasi-isomorphism of
cochain complexes

g∗ : H∗(X ;Q) = Q⊕ (sL/[L,L])∨ → C∗(L).

In particular, we may take αi = g∗(ui(ξ)) as a cocycle representative of ui(ξ) in
C∗(L). By Lemma 4.1, the map ϕ : Λ(u1, u2, . . .)→ C∗(L) defined by ϕ(ui) =
αi is then a cdga model for f . Using the factorization (13), one checks that
ϕ agrees with the map (ρa)∗ : C∗(Π) → C∗(L) induced by the dg Lie algebra
morphism ρa : L→ Π. This means that ρa is a dg Lie algebra model for f .
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Corollary 4.3. The composite map

τ : C(L)
g
−→ Q⊕ sL/[L,L] = H∗(X ;Q)

ρ
−→ π∗(ΩB∞)⊗Q

is a twisting function that models the map ν : X → B∞.

Proof. Using the factorization (13), one sees that gρ is the same as τ∗L(ρa).

There is an action of DerL⋉ad sL on Q⊕ sL/[L,L] given by

θ. 1 = 0, sx. 1 = s[x],

θ. s[a] = (−1)|θ|s[θ(a)], sx. s[a] = 0,

for x, a ∈ L and θ ∈ DerL. The following is an easy but important observation.

Proposition 4.4. The quasi-isomorphism of chain complexes

g : CL→ Q⊕ sL/[L,L]

is a morphism of DerL⋉ad sL-modules.

Proof. The verification is direct and left to the reader.

Remark 4.5. The result may be interpreted as a formality result; it says that
CL is formal as a dg DerL ⋉ad sL-module. Note however that g is in general
far from being a morphism of dg coalgebras.

Theorem 4.6. If H∗(B∞;Q) is free graded commutative, then the classifying
space Baut◦(ξ) is rationally homotopy equivalent to the geometric realization
of the dg Lie algebra

Hom(H∗(X ;Q), π∗(ΩB∞)⊗Q)〈0〉⋊ρ∗

(
DerL⋉ad sL

)
〈1〉.

Proof. By Corollary 4.3, the map τ = ρ◦g : CL→ Π is a twisting function that
models the map f : X → B∞. By Theorem 3.20, the dg Lie algebra

Homτ
(
CL,Π

)
〈0〉⋊τ∗

(
DerL⋉ad sL

)
〈1〉

is a model for Baut◦(ξ). Since Π is abelian, twisting has no effect, i.e., we
have Homτ

(
CL,Π

)
= Hom

(
CL,Π

)
as dg Lie algebras. Since g∗(ρ) = τ by

definition of τ , we see that the quasi-isomorphism of DerL ⋉ad sL-modules
from Proposition 4.4 induces a quasi-isomorphism of dg Lie algebras

Hom(H∗(X ;Q),Π)〈0〉⋊ρ∗
g

g∗⋊1
−−−→ Hom(CL,Π)〈0〉⋊τ∗ g,

where g =
(
DerL⋉ad sL

)
〈1〉.
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Remark 4.7. If H∗(X ;Q) is finite dimensional, we can rewrite the result in
terms of cohomology,

Hom(H∗(X ;Q), π∗(ΩB∞)) ∼= H∗(X ;Q)⊗ π∗(ΩB∞).

Under this identification, ρ assumes the form

ρ =
∑

i

ui(ξ)⊗ γi ∈ H
∗(X ;Q)⊗ π∗(ΩB∞).

Remark 4.8. There are variants of this result that can be proved in a similar
fashion. If

h ⊆
(
DerL⋉ad sL

)
〈1〉

is a sub dg Lie algebra that models a connected submonoid H ⊆ aut◦(X), then

Hom
(
H∗(X ;Q), π∗(ΩB∞)⊗Q

)
〈0〉⋊ρ∗

h

is a dg Lie algebra model for the submonoid autH(ξ) ⊆ aut◦(ξ) of pairs (f, ϕ)
such that f ∈ H .
For example, let A ⊆ X be a subcomplex and let autA,◦(ξ) ⊆ aut◦(ξ) denote
the submonoid where the homotopy automorphism of the base restricts to the
identity map on A. If L′ → L is a cofibration of dg Lie algebras that models
the inclusion of A into X , then the dg Lie algebra Der(L;L′)〈1〉 of derivations
on L that vanish on L′ is a dg Lie algebra model for BautA(X) (see [4]), and

Hom
(
H∗(X ;Q), π∗(ΩB∞)⊗Q

)
〈0〉⋊ρ∗

Der(L;L′)〈1〉

is a dg Lie algebra model for the space BautA,◦(ξ).

We finally turn to the proof of the results in the introduction.

Proof of Theorem 1.4. Writing g =
(
DerL⋉adsL

)
〈1〉 for brevity, the fibration

(2) is modeled by the short exact sequence of dg Lie algebras

0→ H∗(X ;Q)⊗ π∗(G)〈0〉 →
(
H∗(X ;Q)⊗ π∗(G)

)
〈0〉⋊τ∗ g→ g→ 0.

But H∗(g) ∼= π∗(aut◦(X)) ⊗ Q is concentrated in odd degrees by Halperin’s
conjecture. On the other hand, it is known that the rational cohomology of an
elliptic space with positive Euler characteristic is concentrated in even degrees,
and that the rational homotopy of a compact connected Lie group is concen-
trated in odd degrees, so it follows that H∗(X ;Q)⊗ π∗(G) is concentrated in
odd degrees as well. Hence, the long exact sequence in homology splits and

W = π∗(aut◦(ξ))⊗Q

is concentrated in odd degrees as well. The minimal Sullivan model of Baut◦(ξ)
has the form (ΛV, d) where V = (sW )∨. Since V is concentrated in even
degrees, the differential must be zero, showing Baut◦(ξ) has cohomology ΛV ,
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which is polynomial on dimV generators. Since the differentials in the minimal
models are trivial, the splitting of homotopy groups carries over to a splitting
of the minimal models, showing

Baut◦(ξ) ∼Q BautX(ξ)×Baut◦(X).

Proof of Theorem 1.5. The minimal Quillen model for Sn is given by the free
graded Lie algebra L = L(α) on one generator α of degree n − 1, with zero
differential. The dg Lie algebra

(
DerL ⋉ad sL

)
〈1〉 is one-dimensional abelian

with a generator sα in degree n. This generator acts as ∂
∂x

on H∗(Sn;Q) = Λx.
The characteristic classes of ξ are zero, because these live in even degrees.
Writing π∗(G) ⊗ Q = 〈γ1, . . . , γk, ν1, . . . , νℓ〉, where γi is dual to ui and νj to
vj , the dg Lie algebra model for Baut◦(ξ) of Theorem 1.2 assumes the form

〈γ1, . . . , γk, ν1, . . . , νℓ, xν1, . . . , xνℓ,
∂

∂x
〉,

where the only non-zero Lie brackets are

[
∂

∂x
, xνi] = νi, i = 1, 2, . . . , ℓ,

and the differential is zero. The cohomology H∗(Baut◦(ξ);Q) may be com-
puted as the cohomology of the Chevalley-Eilenberg cochain complex, which
has the form

Λ(u1, . . . , uk, v1, . . . , vℓ, w1, . . . , wℓ, z),

where |wi| = |vi|−n, |z| = n+1, and the only non-trivial differentials are given
by dvi = wiz. This cdga may be written as

Q[u1, . . . , uk]⊗ Ω∗
Q[v1,...,vℓ]|Q

[z],

where
Ω∗

Q[v1,...,vℓ]|Q
=

(
Q[v1, . . . , vℓ]⊗ Λ(w1, . . . , wℓ), dvi = wi

)

is the complex of Kähler differentials on Q[v1, . . . , vℓ] and where Ω[z], for a cdga
Ω, denotes the cdga Ω⊗Q[z] with differential zd. There is an exact sequence

0→ dΩ→ H∗(Ω[z])→ H∗(Ω)[z]→ 0,

from which one deduces

H∗(Ω[z]) ∼= Q[z]⊕ dΩ,

when H∗(Ω) ∼= Q.

Remark 4.9. As is well-known, the exact Kähler differentials agree with the
negative cyclic homology of Q[v1, . . . , vℓ] (appropriately regraded), and the re-
sult may be written

H∗(Baut◦(ξ);Q) ∼= Q[u1, . . . , uk]⊗HC
−
∗ (Q[v1, . . . , vℓ]).
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The appearance of cyclic homology in this example can be explained as follows:
noting that aut◦(S

n) ∼Q S
n for n odd, the fibration

BautSn(ξ)→ Baut◦(ξ)→ Baut◦(S
n)

is similar to the fibration

LBG→ ES1 ×S1 LBG→ BS1

associated to the S1-action on the free loop space of BG.

Remark 4.10. It is easy to construct examples of bundles for which the fibra-
tion (2) does not split rationally even after looping. For example, consider the
complex vector bundle ξ over S3 × S3 classified by the composite

S3 × S3 → S6 → BU(3),

where the first map is the collapse map and the second a representative for a
generator of π6BU(3) = π5U(3) = Z. The Chern classes of ξ are c1(ξ) = 0,
c2(ξ) = 0 and c3(ξ) is a generator for H6(S3 × S3).
The minimal Quillen model for S3 × S3 is given by (L(α, β, γ), δ) where |α| =
|β| = 2, |γ| = 5 and δ(γ) = [α, β]. A calculation shows that the projection

(
DerL⋉ad sL

)
〈1〉 → sL/[L,L] = 〈sα, sβ〉

is a quasi-isomorphism of dg Lie algebras, where the right hand side is given the
trivial differential and Lie bracket. If sα and sβ are made to act on H∗(S3 ×
S3;Q) = Λ(x, y) by ∂

∂x
and ∂

∂y
, respectively, we obtain a quasi-isomorphism of

dg Lie algebras from the model in Theorem 1.2 to

g =
(
H∗(S3 × S3;Q)⊗ π∗U(3)

)
〈0〉⋊ρ∗

〈
∂

∂x
,
∂

∂y
〉.

Writing π∗U(3)⊗ Q = 〈γ1, γ2, γ3〉, where γi is dual to ci, we get the following
explicit description.

g = 〈γ1, γ2, γ3, xγ2, yγ2, xγ3, yγ3,
∂

∂x
,
∂

∂y
〉, D.

The differential D is governed by ρ = xyγ3. The only non-trivial differentials
are

D(
∂

∂x
) =

∂

∂x
(xyγ3) = yγ3,

D(
∂

∂y
) =

∂

∂y
(xyγ3) = −xγ3.

In particular, this shows that the map π∗autX(ξ)⊗Q→ π∗aut◦(ξ)⊗Q is not
injective in this example.
The cohomology of be computed explicitly from the Chevalley-Eilenberg
cochain complex. We omit the details of the computation. The result is

H∗(Baut◦(ξ);Q) ∼= Q[c1, c2, c3]⊗ Λ(α, β),

for certain classes α, β of degree 1.
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[8] Y. Félix, J. Oprea, D. Tanré, Algebraic models in geometry. Oxford Grad-
uate Texts in Mathematics, 17. Oxford University Press, 2008.

[9] A.E. Hatcher, A proof of the Smale conjecture, Diff(S3) ≃ O(4). Ann. of
Math. (2) 117 (1983), no. 3, 553–607.

[10] P. Hilton, G. Mislin, J. Roitberg, Localization of nilpotent groups and
spaces. North-Holland Mathematics Studies, No. 15. Notas de Matemática,
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