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Abstract. We show that index 1 Fano 3-folds which lie in weighted
Grassmannians in their total anticanonical embedding have finite au-
tomorphism group, and we relate the deformation theory of any Fano
3-fold that has a K3 elephant to its Hodge theory. Combining these re-
sults with standard Gorenstein projection techniques calculates both
the number of deformations and the Hodge numbers of most quasi-
smooth Fano 3-folds in low codimension. This provides detailed new
information for hundreds of families of Fano 3-folds.
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1 Introduction

1.1 Aims and context

The classification of nonsingular Fano 3-folds [29, 30, 38] is a landmark in
modern birational geometry. The result is a (finite) list of deformation fami-
lies, documented by Iskovskikh–Prokhorov [31, §12.2], with detailed informa-
tion about each family, including equation formats and the Hodge numbers of
individual members. The need for generalisation to the ‘Mori category’ of Q-
factorial terminal Fano 3-folds has been well understood since the 1980s. The
Mori-theoretic classification remains incomplete, but a wealth of information is
known. For example, Kawamata’s finiteness result [32, 34] leads to a finite list
of Hilbert series which includes all those of Fano 3-folds; this list is documented
in the Graded Ring Database [8]. At this stage, we have some understanding
of a few hundred families of Fano 3-folds that form a subset of the ultimate
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classification, which may comprise a few thousand or even tens of thousands of
families. The search by graded ring methods works systematically in increasing
codimension (in the full anticanonical embedding that is intrinsic to a Fano;
see §2.1). All families are known up to codimension 3, and in codimension 4 a
collection of results (such as those by Takagi and others [57, 10, 9, 52, 58], and
Suzuki, Prokhorov–Reid and others [56, 43, 44, 23, 17] in higher Fano index)
suggest we know most families there.

The main results of this paper (Theorems 1, 3 and 10) are on the vanishing
of infinitesimal automorphisms of Fano 3-folds (that is, H0(X,TX) = 0), their
deformations and Hodge theory, and a Lefschetz theorem on weighted Grass-
mannians (we refer to [16] for weighted Grassmannians). The latter seems
surprisingly delicate: in the weighted context, low-degree linear systems are
seldom free and so the state of the art ([47, Theorem 1] and [26, Corollary 2.8]
for example) does not apply directly. Put together, these establish a connection
between the deformation theory of a range of Fano 3-folds and their Hodge the-
ory by proving a formula that calculates h1(X,TX) in terms of h2,1(X). The
systematic use of weighted cones to relate results on manifolds to their ana-
logues on a large set of orbifolds (the proof of Lemma 9, for example) seems
new to us in this context.

As an application, this paper also contributes detailed numerical information
analogous to that of [31] for the families up to codimension 3, and some cases
in codimension 4. The theorems provide tools that we apply to calculate the
Hodge numbers hp,q(X) and the number of moduli h1(X,TX) of all known in-
dex 1 Fano 3-folds X in codimensions 1, 2 and 3. These results are presented
in Tables 1, 2 and 3 respectively; the Picard rank is 1 in every case. It seems
to be the nature of the birational classification of Fano 3-folds, or perhaps
the array of different gradings that arise, that some results boil down to hun-
dreds of calculations that cannot always be systematised in one go (compare
Corti–Pukhlikov–Reid [15] and Przyjalkowski–Cheltsov–Shramov [45], both of
which summarise extensive calculations in Big Tables). Thus in §4 we explain
general approaches in different situations, and illustrate them with particular
calculations, including some in codimension 4.

It is worth emphasising that computing these numbers seems hard: we do not
have flexible techniques to hand for working with the orbifold Chern classes of
non complete intersections, and so resort to birational techniques of projection.
Nevertheless, most cases follow the models in §4 and can be worked out by hand:
we explain in Appendix A.3 and §2.6 how Tables 1–3 encode both the strategy
and the proof of the calculations, working up from hypersurfaces through a
‘staircase’ of projections (§2.5). Techniques here are similar to the ones used
in [15, 14].

In the few cases where we do not have geometric projections to work with, we
can recover numerical information from certain graded pieces of the deforma-
tion theory using computer algebra to calculate in certain Jacobian rings; this
is explained in §2.3. The key is Di Natale–Fatighenti–Fiorenza’s [20] character-
isation of deformation theory in terms of Hodge theory, and this also provides
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an additional computer check on all our manual results.
To illustrate the computer algebra tool further, we compute the Hodge numbers
of some Fano 3-folds that lie in codimension 4. General varieties in codimen-
sion 4 are beyond our theoretical methods today, seemingly because they tend
not to lie in concrete formats related to key varieties, such as a Grassmanni-
ans, whose own deformation theory could be exploited. This lack of format is
a recurring theme in Gorenstein codimension 4, notwithstanding the ancient
wisdom of P1 × P1 × P1 and P2 × P2 (see [9]); compare with Reid’s structure
theory [51] and the commentary therein. Our calculations in codimension 4
give a computer-assisted verification of a result of Takagi [57, Theorem 0.3],
and begin to answer the main open question of Brown–Kerber–Reid [10, 3.4]
on the Picard ranks of Fano 3-folds in codimension 4.

1.2 Formal statement of results

A Fano 3-fold is a normal complex 3-dimensional projective variety X with
ample anticanonical class −KX and Q-factorial terminal cyclic quotient singu-
larities. (Of course more general notions of Fano 3-fold exist in the literature,
but our methods work with orbifolds, and so this definition is appropriate
here. In the Mori-theoretic context, it would be natural to broaden the def-
inition slightly, by allowing X to have arbitrary terminal singularities. But
note that, in that case, if X does not have a terminal singularity of the ex-
ceptional type 1

4
(1, 1, 3, 2; 2) (see [37] [49, Theorem (6.1)(2)]), then Sano [52,

Theorem 1.5] shows that there is a small deformation that has only quotient
singularities – this is a so-called Q-smoothing. Thus our restriction to cyclic
quotient singularities is not so severe.)
The index qX of a Fano 3-fold X is the largest integer q for which there exists

a Q-Cartier Weil divisor A with −KX
lin
∼ qA.

A K3 elephant of a Fano 3-foldX is an irreducible surfaceE ⊂ X with canonical
singularities that is linearly equivalent to −KX . In particular, E has KE = 0,
and so E is a K3 surface.
This paper has three main ingredients. The first is an unprojection calculus
(see §2.5 or [10]). The second is a relation between the Hodge numbers of a
Fano 3-fold and the number of its moduli, and the third is an infinitesimal
rigidity result; we summarise these two as follows.

Theorem 1. Let X be a Fano 3-fold with K3 elephant E ⊂ X.

i. Setting αE = h1,1(E)− h0(E,−KX|E), we have

h1(X,TX)− h0(X,TX) = αE + h2,1(X)− h2,2(X). (1)

ii. Suppose in addition that X has index qX = 1 and that X is a complete
intersection in weighted projective space or in a weighted Grassmannian
wGr(2, 5). Then h0(X,TX) = 0. In particular, Aut(X) is a finite group
in this case.
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The final part of this result compares with a sequence of recent papers that
compute the automorphism group of smooth Fano varieties. Smooth weighted
complete intersections of dimension at least 3 have finite automorphism groups
by [46]; indeed [46, Corollary 4.5] proves h0(X,TX) = 0 in that case, similarly
exploiting [24] as we do here, and thus concludes finiteness. In contrast, [36, 45]
classify smooth Fano 3-folds with infinite automorphism group.
Part (i) is proved in §3.1. In the case where qX = 1 we may express αE

purely in terms of the geometry of E and X as αE = h1,1(E)− gX − 1, where
gX = h0(X,−KX) − 2 is the genus of X . Part (ii) is proved in §3.2. The fact
that h1,1(X) = 1 for most cases we consider is Theorem 3. We work over C

throughout.

Acknowledgments

It is a pleasure to acknowledge our debt to Miles Reid, who led us into this
geometry and continues to guide us, and to a superb referee who identified
many points where clarification has substantially improved this paper over its
preprint version.

2 Hodge numbers of Fano 3-folds

2.1 Fano 3-folds in their anticanonical embeddings

We study a Fano 3-fold X using its anticanonical graded ring

R(X,−KX) =
⊕

m≥0

H0(X,OX(−mKX)).

A minimal set of generators x0, . . . , xn for R(X,−KX), whose degrees are de-
noted a0, . . . , an, present X as a subvariety X ⊂ P(a0, . . . , an) defined by the
relations holding in the ring. By definition, the codimension of a Fano 3-fold X
is its codimension in this embedding: codim(X) = n − 3. (These numerical
properties are well defined for each givenX : each graded piece of R(X,−mKX)
is finite dimensional, so choosing generators xi inductively modulo products
from lower degrees determines n and the ai, even though there is choice for
the xi. But it is important to note that the Hilbert series PX of R(X,−KX)
does not determine these numerical quantities.)
According to [32, 34], the classification of Fano 3-folds consists of finitely many
deformation families. The Hilbert series of members of those families whose
generic element lies in codimension at most 4 are known [1, 2] and available on
the Graded Ring Database [8]. They fall into 95 + 85 + 70 + 145 = 395 cases,
according to the minimum realised codimension. There may be more than
one irreducible family for any given Hilbert series, they may lie in different
codimensions [9], and in codimension 4 there are usually two or more families
in each case [10]; in all known cases, the different families are distinguished by
the Euler characteristic of their general member.
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Hodge Numbers and Deformations of Fano 3-Folds 271

The relationship between the orbifold nature of X and its equations when
embedded in this way is standard, following [27, §§6,8], though not without
subtlety. A variety X ⊂ P(a0, . . . , an) = An+1//C∗ is said to be quasismooth
if its affine cone CX ⊂ An+1 is smooth away from the origin. This condition
may be tested by the usual Jacobian condition (on the rank of the Jacobian
matrix at every point). If the equations at a point P ∈ X satisfy the Jacobian
condition, then an analytic neighbourhood of P inside X is the quotient of a
complex 3-ball by a finite cyclic group. Thus a quasismooth X ⊂ P(a0, . . . , an)
is a V-manifold.

2.2 The Hodge numbers of Fano 3-folds

Because it is a V-manifold, the cohomology of a quasismooth variety X ⊂
P(a0, . . . , an) carries a pure Hodge structure by Steenbrink [55, Theorem 1.12],

defined as follows. Consider the smooth locus j : X0 →֒ X and set Ω̂p
X :=

j∗Ω
p
X0

. Then the Hodge decomposition then takes the form

Hk(X,C) =
⊕

p+q=k

Hq(X, Ω̂p
X),

and one defines Hp,q(X) := Hq(X, Ω̂p
X). Since there is no risk of confusion

as we only ever work with Ω̂p
X , we abuse notation from here on and write Ωp

X

instead of Ω̂p
X . It follows at once from the Lefschetz hyperplane theorem [55,

Theorem (1.13)] and Kawamata–Viehweg vanishing [35, Theorem 2.70] that
the Hodge diamond of a Fano 3-fold X has the form

h3,3

h3,2 h2,3

h3,1 h2,2 h1,3

h3,0 h2,1 h1,2 h0,3

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

=

1
0 0

0 h2,2 0
0 h2,1 h1,2 0

0 h1,1 0
0 0

1

.

Since such a Hodge structure is pure and an appropriate version of the Hard Lef-
schetz theorem holds in this context ([55, Theorem (1.13)]), h2,2(X) = h1,1(X)
and the Euler characteristic e(X) of X satisfies

e(X) = 2 + 2h1,1(X)− 2h2,1(X).

We calculate these three integers for X in the known families of Fano 3-folds
with small codimension. We explain the different strategies we employ in §2.6
below.
The answer is well known in codimension 1: the Hodge numbers of weighted
hypersurfaces are computed by results of Griffiths, Dolgachev and Dimca. (Re-
call that primitive cohomology is the kernel of the hyperplane operator: if X
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has dimension m and hyperplane class L, then

Hk(X,C)prim = ker
{
∩Lm−k+1 : Hk(X,C)→ H2m+2−k(X,C)

}
,

and Hp,q
prim(X) = Hp,q(X) ∩ Hp+q(X,C)prim. When X is a Fano 3-fold, then

b5(X) = 0 and so H2,1
prim(X) = H2,1(X).)

Theorem ([22, 21, 27]). Let Xd : (f = 0) ⊂ P(a0, . . . , an) be a quasismooth
hypersurface defined by a homogeneous polynomial f of degree d in weighted
homogeneous coordinates x0, . . . , xn of degrees deg xi = ai. Then the Milnor
algebra M = C[x0, . . . , xn]/Jf of X is finite dimensional, and there is an
isomorphism

Hn−p,p−1
prim (X) ∼=Mpd−

∑
ai .

The Hilbert Series PM of the Milnor algebraM is given, in the notation of the
theorem, by

PM =
(1 − tb0) · · · (1− tbn)

(1 − ta0) · · · (1− tan)
, where bi = d− ai.

For example, X66 ⊂ P(1, 5, 6, 22, 33) has

PM =

∏
b∈{65,61,60,44,33}(1 − tb)
∏

a∈{1,5,6,22,33}(1− ta)

which equals

1 + t+ t2 + t3 + t4 + 2t5 + · · ·+ 118t64 + 120t65 + 122t66 + · · ·+ t196.

Thus we read off h2,1(X) = dimM2·66−67 = dimM65 = 120. We list all 95
cases in Table 1.

2.3 Calculating T 1 and h2,1(X)

We recall the context and results of [20]. A subcanonical pair (X,OX(1))
consists of a quasismooth projective varietyX and an ample sheaf OX(1) which
satisfies ωX

∼= OX(kX) for some kX ∈ Z. (The results of [20] are stated with X
smooth. However, the proofs apply verbatim to give the same conclusions in
the case X quasismooth, as noted in [20] at the beginning of §2.2, and we use
that level of generality here.)
Let (X,OX(1)) be a subcanonical pair. We denote by AX the affine cone overX
and by UX = AX \ {v}, where v is the vertex of the cone. The results of [20]
require that depthvAX ≥ 3, which holds in our context sinceH1(X,OX(j)) = 0
for any j ∈ Z.
For i ≥ 0, one defines (following [53], since X is projectively normal)

T i
AX

:= ExtiOAX

(Ω1
AX

,OAX
);
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this admits a Z-grading given by the natural C∗-action on AX , and we denote
the graded piece in degree d by T i

AX
(d).

The space T 1
AX

parametrizes the set of isomorphism classes of first order in-
finitesimal deformations of AX . By [53], the degree 0 component T 1

AX
(0) of the

deformations of the affine cone parametrizes the embedded deformations of X ;
that is, the deformations of the pair (X,OX(1)). Furthermore, the negative
components are identified with the smoothings of the affine cone, while the
positive components parametrize equisingular deformations. In the case of a
smooth projective hypersurface of degree d,

T 1
AX

(−d) ∼= C[x0, . . . , xn]/Jf ,

the Jacobian ring of X , as in §2.2.

Theorem 2 ([20] Theorem 1.1). Let (X,OX(1)) be a subcanonical pair with
ωX
∼= OX(kX). Set n = dimX. Then there is an isomorphism

T 1
AX

(k) ∼= ker
(
λ : H1(X,Ωn−1(k − kX)) −→ H2(X,ωX(k − kX)

)
,

where λ(η) = c1(OX(1)) ∧ η.

When k = kX , the statement becomes T 1
AX

(kX) ∼= Hn−1,1
prim (X), the primitive

cohomology.

2.4 Calculating the Picard number

Every Fano 3-fold in codimension up to 3 arises in one of the two situations of
the Theorem 3, which calculates h1,1(X). (Recall that if V ⊂ wPN , in coor-
dinates x0, . . . , xN , is a variety in weighted projective space, then a weighted
cone CV on V is defined by the equations of V in a larger space wPN+ℓ with
coordinates x0, . . . , xN , y1, . . . , yℓ. See for example [16, (2.5)].)

Theorem 3 (c.f. [15] Lemma 3.5, [42]). Suppose that X is a quasismooth Fano
3-fold that is either

i. a complete intersection in weighted projective space, or

ii. a complete intersection in a weighted cone over a weighted Gr(2, 5) with
index qX = 1.

Then h1,1(X) = 1.

Proof. Part (i) is Proposition 2.3 of [42]. For part (ii), we prove that T 2
AX

(−1) =
0, where AX is the affine cone on X . This is enough since by [20, Theorem
2.6] we have H1,1

prim(X) ∼= T 2
AX

(−1) = 0, and so h1,1(X) = 1. (Note that X

satisfies the arithmetically Cohen–Macaulay conditions H1(X,mKX) = 0 for
all m ∈ Z required for [20] by Kawamata–Viehweg vanishing and Serre duality
[35, Theorem 2.70, Corollary 5.27].)
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Let CP denote the ambient projective space for the Grassmannian in its Plücker
embedding with the addition of the cone variables. It follows from [20] that
T 2
AX

(−1) ∼= H1(X,NX/C P(−1)). Indeed this is a graded piece of equation (2.3)
of [20], together with the isomorphism T 2

AX

∼= H2(UX ,ΘUX
) that follows it,

given that H2(X,OX(−1)) = 0.
From [54, §D.1, (D.3)] the flag of schemes X ⊂ CGr ⊂ CP determines a
sequence of sheaves on X :

0→ NX/CGr → NX/C P → NCGr /C P ⊗OX → 0,

where the last map is exact, by the argument in [54, §D.1, Lemma D.3(ii)]: we
have that Ext1OX

(N∗
X/CGr

,OX) = H1(X,NX/CGr), and that group is 0 since

X is arithmetically Cohen–Macaulay. Twisting by OX(−1) we get

H1(NX/C P(−1)) ∼= H1(NCGr /C P(−1)|X) = 0.

The latter equality follows from the Koszul complex, together with the descrip-
tion of the normal bundle of Gr(2, 5) as

∧2
Q, see [16] in the weighted case.

This proves part (ii).

Our proof of (ii) above also gives an alternative proof of (i), at least in the
index 1 case: [53, 1.3] provides the required vanishing of T 2

AX
(−1).

We found (ii) stated several times in the literature, such as [33], but we could
not find a proof to cite. In this situation, one would like appeal to folklore and
simply apply a weighted Lefschetz hyperplane theorem for ample systems. But
unfortunately the linear systems we cut by to make X are rarely base-point
free when there are nontrivial weights, so the strong results in the literature
such as [47, Theorem 1] and [26, Corollary 2.8] do not apply directly.
Thus the strategy for most cases in codimension 1, 2 and 3 is to compute the
Euler characteristic by some means, deduce the remaining Hodge numbers by
Theorem 3, and finally compute deformations by Theorem 1. In codimension 3
there are three cases which don’t have a simple projection we can use to com-
pute e(X). In these three cases we use computer algebra to calculate h2,1(X)
directly, and then proceed as before; these three cases are labelled by T 1 in
Table 3; see §4 for a sample calculation.
In codimension 4 we calculate a few first cases using a hybrid approach (§4.3):
the projection calculus computes e(X), then Theorem 1 computes deforma-
tions, and finally we use a computer calculation, similar to that of the three
codimension 3 cases, to pick out one of the remaining Hodge numbers to com-
plete the calculation. In these cases, the Picard rank can exceed 1.

2.5 Fano 3-folds and projection

Consider the following arrangement of projective 3-folds:

Ỹ → X
↓

Y  Y

(2)
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where X and Y are quasismooth, Y  Y is a degeneration to a singular
orbifold whose only non-quasismooth points are ordinary nodes, Y ← Ỹ is a
projective small resolution of the nodes, and Ỹ → X is the contraction of a
divisor D̃ ⊂ Ỹ . The passage from Y to Ỹ , that shrinks a number of vanishing
cycles to nodes and then resolves the nodes by exceptional P1s, is well known
as a conifold transition.
In our context, the exceptional divisor D̃ ∼= P(a, b, c) maps to a divisor
P(a, b, c) → D ⊂ Y , and the nodes of Y lie on D. The small resolution is

the relatively D̃-ample resolution, so is projective, and D̃ → D is birational—
often an isomorphism, in fact. With this setup, we recall from [48, §5]) (which
follows Clemens [13], detailed in the same context as diagram (2) above):

Theorem 4. Let X and Y be Fano 3-folds related as in diagram (2). Then

e(X) = e(Y ) + 2n− 2, (3)

where n is the number of nodes of Y . In particular, if h1,1(X) = h1,1(Y ), then

h2,1(X) = h2,1(Y )− n+ 1. (4)

The relevance of this is as follows (see [15, 2.6.3], [10, 3.2]). If X is a Fano
3-fold in codimension k, then it often happens that the Gorenstein projection
from a quotient singularity sits in diagram (2) as X 99K Y , and that Y lies
in codimension < k. If this nodal Fano Y deforms to a quasismooth Y whose
Hodge numbers are known, then we may recover the invariants of X .

2.6 An overview of the calculations

We adopt different tactics to compute the Hodge numbers of a Fano 3-fold X
according to its graded ring.

2.6.1

When X is a hypersurface, this calculation is well known (see §2.2).

2.6.2

When X is a complete intersection in weighted projective space, we may cal-
culate using orbifold Chern classes (see [4] or §A.2).

2.6.3

If X is a complete intersection in weighted projective space or inside a weighted
Grassmannian, then h1,1(X) = 1 (Theorem 3). If X arises by (possibly multi-
ple) unprojection from a hypersurface, then we can compute e(X) and hence
the whole Hodge diamond. This applies to most X that lie in codimension 2
or 3; see §§4.1–4.2. Up to codimension 3, this calculation can be done by
hand—the key point is to confirm the existence of a nodal degeneration.
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2.6.4

Denoting the affine cone over X by AX , [20, Theorem 2.4] gives

H2,1(X) ∼= T 1
AX

(−1).

Indeed we are interested in complete intersections in weighted projective spaces
and weighted Grassmannian, where the index 1 case is equivalent to having the
amplitude equal to 1 (see [27, 6.14] and [16]). IfX is given by explicit equations,
we may use standard algorithms and implementations in computer algebra to
calculate h2,1(X); see §2.3 and §A.1.
In these cases we compute h2,1(X) for a single quasismooth member of each
family, expressed in the format we expect. Since hp,q are deformation invariants
for orbifolds (since Steenbrink [55, Theorem 2] applies in the context of V-
manifolds), the numbers we obtain are also the Hodge numbers of any orbifold
Fano 3-fold in the family.

2.6.5

By [20, Theorem 2.6],

H1,1
prim(X)(X) ∼= T 2

AX
(−1),

and so if X is given by explicit equations we may compute h1,1(X); see Sec-
tion 4.3 for an example. This algorithm seems to be more complicated, and in
practice choosing good equations is delicate.

3 Moduli of Fano 3-folds

We explain a relation between H2,1(X) of a Fano threefold X and the tangent
space to its versal deformation space H1(X,TX). Since deformations of qua-
sismooth Fano 3-folds X are unobstructed (by [52, Theorem 1.7]), this is the
number of moduli of X .

3.1 Deforming a Fano with an elephant

The idea comes from Calabi–Yau 3-folds. Given such a V , it follows by Serre
duality (non-canonically, involving a choice of determinant) that H2,1(V ) ∼=
H1(V, TV ); or one may observe that both are isomorphic to the same graded
piece T 1

AV
(0) ⊂ T 1

AV
.

If a Fano 3-fold X has a K3 elephant E = (x = 0) ⊂ X , we may regard
the pair (X,E) as a log Calabi–Yau and hope to mimic this relationship. In
the index 1 case, one has H2,1(X) ∼= T 1

AX
(−1) and H1(X,TX) ∼= T 1

AX
(0),

and the analogue to the Calabi–Yau isomorphism is the multiplication map
x : H2,1(X) → H1(X,TX). This map is not an isomorphism, in general, but
Theorem 6 below explains the difference in terms of the geometry of E. To
make this intuition precise, we start with a more general lemma about Fano
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3-folds of arbitrary index m > 0. Note that by [18, Proposition A.4.1], the
tangent sheaf TX is isomorphic to HomOX

(Ω1
X ,OX) ∼= Ω2

X(m), bearing in

mind our abuse of notation writing Ωi
X in place of Ω̂i

X .

Lemma 5. Let X a Fano threefold. If E ⊂ X a K3 elephant E ∈ |−KX |, then

h1(X,TX)− h0(X,TX) = αE + h2,1(X)− h2,2(X),

where αE = h1,1(E)− gX − 1.

Proof. Suppose X is of index m with −KX
lin
∼ mH , for an ample Q-Cartier

divisor H . We write F(m) for F ⊗OX(mH).
Consider the standard exact sequence of OX -modules twisted by Ω2(m),

0→ Ω2
X → Ω2

X(m)→ Ω2
X(m)|E → 0.

In cohomology this yields a long exact sequence

0→ H0(Ω2
X(m))→ H0(Ω2(m)X |E)→ H1(Ω2

X)

→ H1(Ω2
X(m))→ H1(Ω2

X(m)|E)→ H2(Ω2
X)→ 0,

(5)

where H0(Ω2
X) = 0 (by Hodge theory) and h2(Ω2

X(m)) = 0 by Akizuki–
Kodaira–Nakano vanishing [3, Theorem 1].
On the other hand the relative exact tangent sequence

0→ TE → TX |E → OE(m)→ 0

yields a long exact sequence

0→ H0(E, TX |E)→ H0(E,OE(m))→ H1(E, TE)→ H1(E, TX |E)→ 0, (6)

where H1(E,OE(m)) = 0 and H0(E, TE) = H0(E,Ω1
E) = 0, since E is K3

surface. By (5) and (6) we get

h0(X,Ω2
X |E(m)) + h1(X,Ω2

X(m)) + h2,2(X) =

h2,1(X) + h1(X,Ω2
X(m)|E) + h0((X,Ω2

X(m))
(7)

and
h1(TX |E)− h0(TX |E) = h1(TE)− h0(OE(m)).

We have (see [18, A.4]) Ω2
X(m) ∼= TX from the pairing

Ω1
X ⊗ Ω2

X → ωX
∼= OX(−m).

So with αE defined as in the statement, we get

h1(X,TX)− h0(X,TX) = αE + h2,1(X)− h2,2(X)

as required.
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Theorem 6. Let X be a Fano 3-fold with K3 elephant E ⊂ X and αE as
defined in Lemma 5. If h0(X,TX) = 0, then

h1(X,TX)− h2,1(X) = αE − h2,2(X).

This gives an estimate of the difference between the moduli and Hodge theory
of X : when b2 = h2,2(X) is small, we have a more moduli than h2,1, while if
b2 >> 0 the opposite holds.

Remark 1. The number αE = h1,1(E) − gX − 1 = h1,1(E) − h0(E,OE(E))
is a function of the polarised K3 surface (E, (−KX)|E). When E is smooth
h1,1(E) = 20, and so if X has Fano index 1 then αE = 20 − h0(E,OE(1)).
More generally, if E has canonical singularities with corresponding basket B ={

1
r (a,−a)

}
(see [49, Theorem (9.1)(III)]), then

αE = 20−
∑

B

(r − 1)− h0(E,OE(1)).

In every case that we know, when a general member X of a family of Fano
3-folds has a K3 elephant E ⊂ X , then both X and (the general) E are quasis-
mooth; in particular, they both have only quotient singularities, and the basket
of E is equal to the set of singularities of E.

3.2 Automorphisms of Fano 3-folds in Grassmannians

Lemma 7. Let X be a Fano 3-fold of index 1. If X is a weighted complete
intersection (in its total anticanonical embedding), then H0(X,TX) = 0.

Proof. Recall from Flenner [24, Satz 8.11] that if X is an n-dimensional
weighted complete intersection, thenHp(X,Ωq

X(t)) = 0 whenever p+q < dimX
and t < q − p.
The lemma follows by setting q = 2, p = 0, t = 1 together with Serre duality
TX
∼= Ω2

X(1).

We prove an analogous result for complete intersection in weighted Grass-
mannians. Our main interest is in Fano 3-folds of index 1 in codimension 3,
X ⊂ P(a0, . . . , a6), most of which arise in this way. We show in Theorem 10
below that H0(X,TX) = 0 in this case. We first show the vanishing result in
standard (non-weighted) Grassmannians.

Lemma 8. Let X a Fano 3-fold of index 1 that is a complete intersection of
multidegree (d1, . . . , dc), with every di ≥ 2, in a cone V = CGr(2, n), on vertex
a linear projective space that is disjoint from X, over a Grassmannian Gr(2, n)
for some n ≥ 5. Then H0(X,TX) = 0.

Proof. We show that H0(X,Ω2
X(1)) = 0, which suffices since TX

∼= Ω2
X(1) for

X a Fano 3-fold of index 1.
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We consider the case V = Gr(2, n) first, with no cone structure. Suppose that
X = (f1 = · · · = fc = 0) ⊂ G = Gr(2, n), and denote di = deg fi. The Koszul
complex of OX -modules for OX twisted by Ω2(1)|G is

0→ Ω2
G(1− d1 − · · · − dc)→ · · · →

⊕

i,j,k

Ω2
G(1 − di − di − dk)→

⊕

i,j

Ω2
G(1− di − dj)→

⊕

i

Ω2
G(1− di)→ Ω2

G(1)→ Ω2
G(1)|X → 0.

By [41, Lemma 0.1], Hp(G,Ω2
G(t)) = 0 for each of p = 1, 2, 3 and any t ≤ −1,

and also H0(G,Ω2
G(1)) = 0. (But note that H2(G,Ω2

G) 6= 0; this is why
we exclude the case where some di = 1.) It follows, by splitting the Koszul
sequence above into short exact sequences, that

H0(X,Ω2
G(1)|X) = H1(X,Ω2

G(1)|X) = H1(X,Ω2
G(1− di)|X) = 0. (8)

The conormal exact sequence of X ⊂ G is

0→
⊕

1≤i≤c

OX(−di)→ Ω1
G|X → Ω1

X → 0.

Taking its second exterior power and twisting by OX(1) we get

0→
⊕

1≤i,j≤c

OX(1− didj)→
⊕

1≤i≤c

Ω2
G(1 − di)|X → Ω2

G(1)|X → Ω2
X(1)→ 0.

After splitting this into short exact sequences, the vanishing statements in (8)
show at once that H0(X,Ω2

X(1)) = 0, as required.
The proof for a cone is the same, replacing Ω2

Gr by the extension of the pullback
of Ω2

Gr to the complement of the vertex, in which X is a complete intersection;
this restricts to X as above, and the proof follows.

The proof of Lemma 8 suggests that we need a Bott vanishing type of result to
extend the vanishing statements to complete intersections in wGr(2, 5). The
following lemma gives the precise statement we need.

Lemma 9. Let wG = wGr(2, 5). Then Hp(wGr,Ω2
wGr(−k)) = 0 for p = 1, 2, 3

and any k > 0.

Proof. If A•
G denotes the punctured affine cone over the (weighted or not)

Grassmannian, we have the following diagram

A•
G

π1 ւ ց π2

Gr(2, 5) wGr(2, 5)

where π1 and π2 denote the quotients by the standard and the weighted C∗

actions respectively. We use the vanishing results from [41, Lemma 0.1] for the
standard Gr(2, 5) repeatedly.
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The grading on the cohomology groups of A• is interpreted in terms of local
cohomology at the maximal ideal m of the vertex of the affine cone A.
Consider the short exact sequence

0→ π∗
1Ω

1
G → Ω1

A• → OA• → 0. (9)

Since Hi(G,OG(−k)) = 0 for any i < dim(G), we have

H1(A•,Ω1
A•)(−k) = H1(G,Ω1

G(−k)) = 0.

In the same way one also gets H0(A•,Ω1
A•)(−k) = 0.

Raising the short exact sequence (9) to the second exterior power we have

0→ π∗
1Ω

2
G → Ω2

A• → π∗
1Ω

1
G → 0;

by the vanishing statements above this reduces to

H1(A•,Ω2
A•)(−k) = H1(G,Ω2

G(−k)) = 0.

Comsidering analogous exact sequences for the second projection π2 gives

0→ π∗
2Ω

1
wG → Ω1

A• → OA• → 0,

0→ π∗
2Ω

2
wG → Ω2

A• → π∗
2Ω

1
wG → 0.

Putting all these vanishing statements together with H0(OwG(−k)) = 0 we get

H1(wG,Ω2
wG(−k)) = H1(A•,Ω2

A•)(−k) = 0,

as required. The results for i = 2, 3 follow similarly.

Theorem 10. Let X a Fano 3-fold of index 1 that is a complete intersection of
multidegree (d1, . . . , dc), with every di ≥ 2, in a weighted cone CGr(2, 5), with
vertex a linearly-embedded weighted projective space that is disjoint from X.
Then H0(X,TX) = 0.

Corollary 11. If X ⊂ wP6 is a quasismooth member of one of the 69 Pfaffian
families of Fano 3-folds in codimension 3, then H0(X,TX) = 0.

The point is that each of these is expressed as a complete intersection, as in
Theorem 10, with no equations of degree 1. In practical terms, this is the
observation that the number of Plücker variables of degree 1 (that is, above-
diagonal entries of degree 1 in the skew-symmetric syzygy matrix) never exceeds
the number of degree 1 variables of the ambient wP6.
Both the lemma and the theorem can be extended to weighted Grassmannians
wGr(2, n), for n ≥ 5, using Bott-type vanishing theorems, but we only need
the Gr(2, 5) case here.
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4 Explicit calculations

It takes a few hundred calculations to complete Tables 1–3 below. In this
section, we give illustrative examples of each type.

4.1 Codimension 2

There are 85 deformation families of Fano 3-folds in codimension 2 ([27, 12]),
each one a complete intersection with h1,1(X) = 1. The case X2,3 ⊂ P5 is
classical: e(X) = c3(TX) can be calculated directly to give e(X2,3) = −36 and
so h2,1(X2,3) = 20.
More generally, Blache [4] describes a general theory of orbifold character-
istic classes and their relations with the usual topological notions (see Ap-
pendix A.2). This gives an effective method for calculating the Euler char-
acteristic of complete intersections. As a warmup for higher codimension, we
recalculate the Euler characteristic by birational projection or by Gröbner ba-
sis: of the remaining 84 cases, 66 have a Type I projection (§4.1.1), a further
10 cases have a Type II1 projection (§4.1.2), and 8 cases have no projection of
either type (§4.1.3).

4.1.1 66 cases with Type I projection

Consider one of the families of Fano 3-folds of the form X = Xa3+r,a4+r ⊂
P(1, a, r − a, a3, a4, r) with a < r. The general member has a quotient singu-
larity 1

r (1, a, r − a), and admits a Type I projection, as in diagram (2), to a
hypersurface:

X ⊂ P(1, a, r − a, a3, a4, r)

πr ↓

D ⊂ (x3A = x4B) = Y ⊂ P(1, a, r − a, a3, a4),

where D = (x3 = x4 = 0) = P(1, a, r − a) and πr is the projection from the
final coordinate point of index r. In each one of these 66 cases, the general Y is
quasismooth away from n = deg(A) deg(B)/(a(r− a)) nodes that lie on D (by
Bertini’s theorem), and it admits a Q-smoothing to a general Y = Ya3+a4+r ⊂
P(1, a, r − a, a3, a4). Thus we calculate e(X) = e(Y ) + 2n− 2 by (3).

Example 12. Working from the bottom up in diagram (2), let Y4 ⊂ P4 be a
smooth quartic. We know e(Y4) = −56 and h2,1(Y4) = 30. Imposing a linear
plane D = P2 on Y4 gives, in coordinates x, y, z, t, u of P4,

P2 = D = (x = y = 0) ⊂ Y 4 = (Ax = By) ⊂ P 4,

where A,B are general cubic forms. Such Y has 9 nodes at (A = B = 0) ⊂ D.
The unprojection of D ⊂ Y is a quasismooth variety X3,3 ⊂ P(15, 2), which has
Fano Hilbert series No. 20522. By (3) we have e(X3,3) = e(Y4)+18− 2 = −40,
and so h2,1(X3,3) = 30.
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This calculation is recorded in Table 2, together with the numerical data de-
scribed here.

4.1.2 10 cases with Type II1 projection

Again we work from bottom up in diagram (2). Thus, for example, to study X
whose Hilbert series PX is no. 6858 in the Grdb [8], we observe from that
database (or by hand with the methods of [2]) that the numerics suggest a
Type II1 projection to Y with Hilbert series PY no. 5837, whose general member
we know to be of the form Y10 ⊂ P(1, 1, 2, 2, 2, 3). The task in this case is to
impose a divisor D onto a special (nodal) member of this family, where the

divisor D may be singular, but its normalisation is D̃ ∼= P2.

Example 13. Consider X = X4,6 ⊂ P(1, 1, 2, 2, 2, 3), which has Fano Hilbert
series no. 6858 in [8]. As in Example 12 we work bottom up, first constructing
D ⊂ Y 10 ⊂ P(1, 1, 2, 2, 5) and then unprojecting. We follow Reid [50, §9] and
Papadakis [40] for Type II1 unprojections.
In coordinates x, y, z, t, u on P(1, 1, 2, 2, 5), the finite morphism

P2 ∼= D̃ −→ D ⊂ P(1, 1, 2, 2, 5)

(a, b, c) 7→ (a, b, c2, (a− b)c, abc3 + c5)

has image D defined by the 2× 2 minors of

M =

(
t u (x− y)z (xy + z)z2

x− y (xy + z)z t u

)
.

The surface D has two singular points, each of which has a length 2 preimage
in D̃: the point (1 : 1 : 0 : 0 : 0) is the pinched image of (1 : 1 : 0) ∈ D̃, and
(1 : 1 : −1 : 0 : 0) is the image of two points (1 : 1 : ±i).
A general Y 10 containing this D has 34 nodes, all of which lie on D. (Two lie

at the singularities of D, so the preimage in D̃ of the singular subscheme of Y
has length 36 on D̃.)
The unprojection of D ⊂ Y is given by the maximal Pfaffians of the skew 5× 5
matrix



x− y (xy + z)z t u
s0 1 s1 +A3

s1 B6

zs0 + C4


 with entries of degrees




1 4 2 5
2 0 3

3 6
4




in P(1, 1, 2, 2, 5, 2, 3) with coordinates x, y, z, t, u, s0, s1, where A,B,C may be
determined by the unprojection calculus if we wish to know them explicitly.
Eliminating u using the linear equation gives X4,6 ⊂ P(1, 1, 2, 2, 2, 3), as re-
quired. We know e(Y ) = −124, so conclude that e(X) = −124+2·34−2 = −58
and h2,1(X) = 31.
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4.1.3 8 cases with no projection

Our projection techniques do not work in these cases, but Theorem 2 can be
realised in computer algebra instead.

Example 14. Consider a quasismooth Fano 3-fold X6,6 : (f = g = 0) ⊂
P(1, 23, 32) with Fano Hilbert series number 3508, defined by

f = x6 + y3 + z3 + t3 + u2 + v2 and g = y2z + z2t+ t2y + uv.

Ilten’s Macaulay2 package [28] works as follows (compressing blank lines in the
output):

Macaulay2, version 1.5

with packages: ConwayPolynomials, Elimination, IntegralClosure,

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : loadPackage "VersalDeformations"

o1 = VersalDeformations

o1 : Package

i2 : R = QQ[x,y,z,t,u,v,Degrees=>{1,2,2,2,3,3}];

i3 : I = ideal ( x^6 + y^3 + z^3 + t^3 + u^2 + v^2,

y^2*z + z^2*t + t^2*y + u*v );

o3 : Ideal of R

i4 : CT^1(-1,I)

2 24

o4 : Matrix R <--- R

The answer is that h2,1(X) = dimT 1
AX

(−1) = 24.

Since X has a K3 elephant E = (x = 0) ⊂ X with basket 9× 1
2
(1, 1) quotient

singularities, and h0(X,TX) = 0 by Theorem 1(ii), we know at this stage
from the moduli formula Theorem 1(i) that h1(X,TX) = 34. This can also be
calculated directly by Macaulay2 as follows:

i5 : CT^1(0,I)

2 34

o5 : Matrix R <--- R

Again, the answer is that h1(X,TX) = dim T 1
AX

(0) = 34.

A similar calculation works with X12,14 : (f = g = 0) ⊂ P(2, 3, 4, 5, 6, 7), with
Hilbert series number 37, with, for example,

f = x6 + y4 + z3 − u2 + tv and g = x7 + z2u+ xu2 + zt2 + v2.

In this case there is no elephant E ⊂ X , so the moduli formula (1) does not
apply as stated. However, the Macaulay2 results are that h2,1(X) = 18 and
h1(X,TX) = 23, and so the formula holds with “αE = 6”, which is the correct
number calculated on X from its basket indices and h0(X,O(1)) = 0.
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4.2 Codimension 3

There are 70 known deformation families of Fano 3-folds in codimension 3. The
complete intersection X = X2,2,2 ⊂ P5 is classical: the Chern class calculation
and Lefschetz gives e(X) = −24, ρX = 1 and h2,1(X) = 14. The remaining 69
cases are all complete intersections in weighted Grassmannians wGr(2, 5), and
so h1,1(X) = 1 in every case.

4.2.1 64 cases Type I

We say that a Fano 3-fold X has a Type I staircase if it admits a sequence of
alternate Type I projections and Q-smoothings to a hypersurface. Concretely,
if X ⊂ wP6 lies in codimension 3, then the staircase is

Ỹ → X
↓

Ỹ → Y  Y
↓

Z  Z

(10)

where X 99K Y ⊂ wP5 eliminates a single variable, Y ⊂ wP5 is a general Q-
smoothing of Y , and Y 99K Z is a projection to a nodal hypersurface Z ⊂ wP4

as in §4.1. Counting nodes on Y and Z and using the formula of Theorem (4)
completes the calculation of e(X) and h2,1(X).
Of the 64 Fano 3-folds in codimension 3 with a Type I projection, 57 have a
Type I staircase to a hypersurface.

Example 15. Consider the family with Hilbert series no. 20523 in [8]. A typical
member X ⊂ P(1, 1, 1, 1, 1, 2, 3), in coordinates x1...5, y, z, is given by the five
maximal Pfaffians of a skew 5× 5 matrix of forms




x1 x2 A D
x3 B E

C F
z


 where the entries have degrees




1 1 2 2
1 2 2

2 2
3


 .

It has a quotient singularity 1
3
(1, 1, 2) at the z-coordinate point Pz ∈ X .

Projection from that point is calculated by eliminating z from these equations.
Doing that leaves the two Pfaffians of degree 3, which define

Y 3,3 :





(
A B C
D E F

)


x3

−x2

x1


 = 0



 ⊂ P(1, 1, 1, 1, 1, 2).

For general degree 2 forms A, . . . , F , the image Y has 6 nodes (by Hilbert–
Burch) and a Q-smoothing Y3,3 which was computed in Example 12 above.
Making the projection from Y3,3 as in Example 12 completes the staircase. In
any case, using the result of Example 12 gives e(X) = e(Y ) + 2 · 6 − 2 =
−40 + 12− 2 = −30, and so h2,1(X) = 17.
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Of the remaining 7 cases, 4 have a Type I projection to a family that arises by
Type II1 unprojection from a hypersurface, so again have a staircase, but with
a more complicated second step. A fifth case has a Type I projection to the
classical family Y2,3 ⊂ P5, so also works.
But in two remaining cases, the image of the Type I projection lies in a family
whose Hodge numbers were computed using the algorithms for dimT 1; in this
paper, these cases remain dependent on computational algebra.

4.2.2 2 cases Type II1

Of the cases without a Type I projection, two have a Type II1 projection:
X7,8,8,9,10 ⊂ P(1, 2, 3, 3, 4, 4, 5) has a Type II1 projection from 1

4
(1, 1, 3) and

X10...14 ⊂ P(1, 3, 4, 5, 5, 6, 7) has a Type II1 projection from 1
5
(1, 2, 3). We

consider the latter in detail, following Reid [50, 9.5] and Papadakis [40, 4.4].
Consider D ⊂ P(1, 3, 4, 5, 6) defined by the maximal minors of

MD =

(
t v yz z2

y z t v

)
.

This D is the image of P(1, 2, 3) → P(1, 3, 4, 5, 6) given by (a, b, c) 7→
(a, c, b2, bc, b3); the normalising variable b is recovered as the ratio of the rows
of MD.
The general hypersurface Y 18 containing D has the form

Y 18 = (A12m12 +B11m13 + 2B12m23 +B22m24 = 0) ⊂ P(1, 3, 4, 5, 6),

where mij denotes the minor of MD involving columns i and j.
The unprojection ofD ⊂ Y 18 is a codimension 3 varietyX ⊂ P(1, 3, 4, 5, 5, 6, 7),
in coordinates x, y, z, t, u, v, w, defined by the maximal Pfaffians of the skew
5× 5 matrix 



y z t v
−u −B22 w +B12

−w +B12 −B11

−uz −A12


 .

For example, setting

A12 = yv + y3 + x9, B11 = yt+ x8, B12 = 0 and B22 = v

results in a quasismooth X , and Y 18 whose non-quasismooth locus is defined
by the equations

zt− yv, y2z − t2, yz2 − tv, z3 − v2,

x9y + y4 + y2v + 2v2, x9z − 2x8t− yt2 + yzv,

x9t+ y3t+ 2z2v + ytv, x8y2 + y3t+ z2v, 2x8yz − x9v + y3v − yv2

and consists of 22 nodes, all of which lie on D ⊂ Y 18.
The general Y18 ⊂ P(1, 3, 4, 5, 6) has e(Y18) = −80, so e(X) = −38 and
h2,1(X) = 21.
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4.2.3 No Type I or II1 projection

The three remaining cases are

X12...16 ⊂ P(1, 4, 5, 5, 6, 7, 8), X16...20 ⊂ P(1, 5, 6, 7, 8, 9, 10)

and X14...18 ⊂ P(1, 5, 5, 6, 7, 8, 9).

The first has only a type IV projection, while the other two do not have any
Gorenstein projections at all. We compute T 1 in these cases: we work out the
first in detail here; the other two are similar.

Example 16. A particular X12...16 ⊂ P(1, 4, 5, 5, 6, 7, 8), in coordinates
x, y, z, t, u, v, w, is given by the maximal Pfaffians of the skew 5× 5 matrix




y z u v
u v y2 + w
−y2 + w x9 + yz

zt+ t2




in the usual antisymmetric notation. One checks that the scheme defined by
those equations is quasismooth. We compute h2,1(X) = 20 and h1(X,TX) = 23
by Macaulay2 as before.
We verify the moduli formula (i) of Theorem 1. The basket of X is

BX =

{
1

2
(1, 1, 1),

1

4
(1, 1, 3), 2×

1

5
(1, 1, 4),

1

5
(1, 2, 3)

}
.

The K3 elephant E = (x = 0) ⊂ X is the unique member of |−KX |. It has
h0(OE(1)) = 0 and h1,1(E) = 20 −

∑
ri − 1, where the ri are the indices of

singularities of BX . Thus

h1(TX)− h2,1(X) = αE − h2,2(X) = (20− 1− 3− 3 · 4)− 1 = 3,

which agrees with 23− 20.

The other two cases work similarly; in each case h2,1(X) = 20.

4.3 Codimension 4

All the calculations in codimensions 4 in this section depend on computer
algebra: we use Magma [6] to compute examples of the codimension 4 equations
by unprojection, and Macaulay2 [25, 28] for the Hodge numbers.
When a Hilbert series is realised by a Fano 3-fold in codimension 4, it frequently
happens that there is more than one deformation family of such Fano 3-folds.
For 116 of Hilbert series listed in [8] in codimension 4, [10] computes the differ-
ent families, and observes that they are distinguished by the Euler characteristic
of a quasismooth member. However it does not compute the Picard rank of
these Fano 3-folds, in part because there is no known format in which they lie
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as complete intersections, and so we have no Lefschetz theorem to apply di-
rectly (although see [9] for some special cases where ρX = 2, including the case
of Hilbert series 24078 in Example 18 below). But the computational methods
of this paper still apply, in conjunction with the unprojection construction of
[10, 39]. We compute a few examples here as first calculations.

Example 17. Fano Hilbert series 24097. By [10] there are 3 families of
Fano 3-folds Y ⊂ P(16, 22) with (typically) two 1

2
(1, 1, 1) quotient singularities,

each with the Hilbert series No.24097 in [8]. They arise by unprojection of

P2 = D ⊂ Y ⊂ P(16, 2),

where D ⊂ P(16, 2) is a linearly embedded plane, and Y is defined by the
vanishing of Pfaffians of a skew 5× 5 matrix of forms of weights




1 1 1 2
1 1 2

1 2
2


 . (11)

The three families arise as so-called “Tom” and “Jerry” unprojections (see [10,
§2.3] for details), and the three different results are listed in the Big Table
[11]: Tom1, Jer12 and Jer15. Takagi’s analysis [57, Theorem 0.3] of prime Fano
3-folds with index 2 terminal singularities shows that the first and third of
these families have h1,1(X) = 1. Using the Macaulay2 computation, and Theo-
rem 1(i) (which holds since each unprojection does indeed carry a quasismooth
elephant E with αE = 19− 1− 5 = 13), we complete the table below.

unproj type # nodes eX h1,1(X) h2,1(X) h1(X,TX) h0(X,TX)
Tom1 6 −14 1 9 21 0
Jer12 8 −10 3 9 19 0
Jer15 9 −12 1 8 20 0

For example, the Jer12 case above uses Y defined by Pfaffian matrix




t u v w
v t+ u ux

x y2 − z2

yz + t2 + u2




in the coordinates x, y, z, t, u, v and w of P(16, 2). Such Y contains the plane
D = (t = u = v = w = 0). Unprojecting D ⊂ Y gives X ⊂ P(16, 22), defined
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by

xt− tu− u2 + v2, y2t− z2t− xu2 + vw, x2v − xw + ts,

yzu+ t2u+ u3 − y2v + z2v + xw, yzt+ t3 + tu2 − xuv + tw + uw,

x2u− y2u+ z2u− xu2 + yzv + t2v + u2v + vw,

−xyz − xt2 − xu2 − xw − us, −x3 + xy2 − xz2 + x2u+ vs,

(x2y2 − y4 − x2z2 + 3y2z2 − z4 + yzt2 − xy2u+ xz2u+ yzu2+

+ y2uv − z2uv + xtuv + yzw − xuw − tuw + u2w − ws)

in coordinates x, y, z, t, u, v, w and unprojection variable s.

Example 18. Fano Hilbert series 24078. By [10] there are 3 families of
Fano 3-folds X ⊂ P(16, 2, 3) with a 1

3
(1, 1, 2) quotient singularity, each with the

Hilbert series No.24078 in [8]. They arise by unprojection of

P2 = D ⊂ Y ⊂ P(16, 2),

where D ⊂ P(16, 2) is a linearly embedded P(1, 1, 2), and Y is defined by the
vanishing of Pfaffians of a skew 5 × 5 matrix of forms of the same weights as
(11) above.
The three different results [11] are: Tom1, Tom5 and Jer12. In this case the
elephant E ⊂ X has αE = 13, and the table below summarises the results.

unproj type # nodes eX h1,1(X) h2,1(X) h1(X,TX) h0(X,TX)
Tom1 5 −16 1 10 22 0
Tom5 4 −18 2 12 23 0
Jer12 6 −14 1 9 21 0

These calculations seem to be on the limit of what we can do, as they terminate
only when the equations are relatively small. For example, the Tom5 case above
uses Y defined by Pfaffian matrix




z t v + u w
u t xv + zu

z w − y2

x2 − v2




in the coordinates x, y, z, t, u, v and w of P(16, 2).

Of the 145 Hilbert series of Fano 3-folds listed in [8] as presented naturally
in codimension 4, 116 have the numerical properties consistent with having
a Type I unprojection. The unprojection analysis of these is the subject of
[10], with the results presented in [11], and in principle they could all be com-
puted as above. A further 16 Hilbert series have the numerical properties of a
Type II1 projection, and a computational approach following Papadakis [40] is
conceivable; the constructions are part of Taylor’s thesis [58].
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Some of the remaining 13 cases have more complicated projections that we
do not know how to work with systematically yet, but four cases have no
Gorenstein projections at all, and some other approach is required (even to
write down examples by equations). These cases are:

No. 25 X ⊂ P(2, 5, 6, 7, 8, 9, 10, 11)
No. 166 X ⊂ P(2, 2, 3, 3, 4, 4, 5, 5)
No. 282 X ⊂ P(1, 6, 6, 7, 8, 9, 10, 11)
No. 308 X ⊂ P(1, 5, 6, 6, 7, 8, 9, 10).

4.4 A quasismooth unprojection from codimension 4

As a final, related curiosity, we construct a codimension 4, quasismooth Fano
3-fold X ⊂ P(16, 22) with Hilbert series number 24097 which contains a qua-
sismooth divisor E ⊂ X that is itself a complete intersection; this contrasts
with the more typical nodal cases above, and is a novelty to us. We adapt
Example 17 so that the codimension 3 projection Y ⊂ P(16, 2) contains two
divisors: the coordinate planes D = P2 and E = P(1, 1, 2) meeting along the
coordinate line P1. Indeed define Y by the maximal Pfaffians of




t u v w
v u −zv − u2

z − t yz − x2

y2 − t2




in the coordinates x, y, z, t, u, v and w of P(16, 2). Then D = (t = u = v = w =
0) = P2 lies inside Y in Jer12 format while E = (z = t = u = v = 0) = P(1, 1, 2)
lies inside Y in Tom5 format.
Altogether Y has 8 nodes; these all lie onD (in accordance with Jer12 unprojec-
tion ofD to construct Hilbert series 24097), and 4 of them lie on the intersection
D ∩ E (in accordance with the Tom5 unprojection or E to construct Hilbert
series 24078).
We may unproject either divisor, and we choose to unproject D ⊂ Y to give
X ⊂ P(16, 22). All the 8 nodes are resolved by this, and X is quasismooth.
The Fano 3-fold X has Picard rank ρX = 3 (as in Example 17 above).
Furthermore, E ⊂ Y has birational image in X , which we also denote E ⊂ X
defined by equations

E = (z = t = u = v = 0) ∩X ⊂ P(16, 22),

in coordinates x, y, z, t, u, v, w, s. Computing the unprojection shows that
E ∼= (x4 − y4 − w2 + ws = 0) ⊂ P(12, 22) in coordinates x, y, w, s, which is
P(1, 1, 2) blown up in 4 points on the coordinate line L = P(1, 1) followed by

the contraction of the resulting −2-curve L̃, the birational transform of L. Thus
it is a index 2 Fano surface with two 1

2
(1, 1) quotient singularities, Picard rank 4

and K2
E = 4. It can be unprojected to an ordinary, isolated cDV singular point

(the cone on E, in new local coordinates) on an otherwise smooth complete
intersection Z2,2,2 ⊂ P6.
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A Hodge numbers of Fano 3-folds

Tables 1–3 in A.3 below list the invariants for all known families of Fano 3-folds
in codimension at most 3. The majority of the calculations can be carried out
by hand. We use computer algebra in the three cases where not (denoted by
T 1 in Table 3), and also use it as a check on all results.
In codimensions 1 and 2 respectively the Fano 3-folds come from Iano-Fletcher
([27] Tables 5 and 6 respectively); in codimensions 3 and 4 they are from Altınok
([1]). The graded ring database identifier (denoted ‘Grdb’ in the tables) is that
of [8].

A.1 Our use of computer algebra

The explicit calculations we need are standard, although sometimes rather
involved. There are three places computer algebra may assist.

i. Checking that a variety is quasismooth can usually be done with Bertini’s
theorem. In codimension 3 and 4, this can be carried out as in [7, §3–4],
for example, when Type I projections (and staircases) are available. In
other cases, we check the Jacobian condition by machine. This, or some
equivalent (such as [59, Theorem 5.5] or [5]), can be checked by computer
algebra given explicit equations.

ii. Checking that a variety has only ordinary nodes as singularities, and
counting those nodes, can again usually be done by Bertini’s theorem
together with a Chern class calculation when we have Type I projections;
see for example [7, §4] for the nodes and [10, §7] for the count. In other
cases, we use computer algebra following [10, §6].

iii. Computing the dimensions of graded pieces of spaces T 1
AX

seems too
hard by hand in most cases, but there are algorithms to do this based on
Gröbner basis; see [28].

We are indebted to the developers of the computer algebra systems Macaulay2
[25], Magma [6] and Singular [19] that we used for these calculations, and
to Ilten [28] for the Versal Deformation package for Macaulay2. (The latter
conveniently handles the gradings on variables automatically when computing
graded pieces of T 1

AX
; on other systems we had to pick out the graded piece

given generators for the whole module “by hand”.)
In practice, most computations here work when the equations of the Fano 3-
fold are fairly sparse, and as the codimension increases it becomes harder to
find such sparse representatives.

A.2 Blache’s orbifold formula

Let V be a projective orbifold of dimension n, embedded as a quasismooth
subvariety of weighted projective space V ⊂ P = P(a0, . . . , aN ). We suppose,
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in addition, that V is a manifold away from a finite set of strictly orbifold
points Q1, . . . , Qs ∈ V .

We define the orbifold total Chern class corb(TP) = 1 + c1,orb(TP ) + · · · +
corb,n(TP) of P via

0→ OP → ⊕
N
i=0OP(ai)→ TP → 0.

Taking the restriction of this to V , we derive the top Chern class corb(V ) of V
from the tangent exact sequence

0→ TV → TP|V → NV |P → 0

exactly as in the smooth case: that is, we make the formal computation

1 + corb,1(TP) + · · ·+ corb,N (TP) = corb(TP) :=
∏

(1 + aih),

where H2(P,Q) = hQ and corb,j ∈ H2j(P,Q), and then

(
1 + corb,1(TV ) + · · ·+ corb,n(TV )

)
c(NV |P) = corb(TP).

Then we define the orbifold euler class eorb(V ) by

eorb(V ) :=

∫

V

corb,n(V ) ∈ Q.

This is a formal computation that ignores orbifold behaviour. However, it is
related to the topological euler characteristic e(V ) by the following theorem of
Blache [4].

Theorem 19 ([4] (2.11–14)). Let V be a projective orbifold with finite orbifold
locus as above. Then eorb(X) ∈ Q satisfies

e(X) = eorb(X) +
∑

Q∈B

r − 1

r
,

where r = r(Q) is the local index of the orbifold point Q.

For a hypersurface Xd ⊂ P(a0, . . . , an+1) we have

eorb(X) = the coefficient of hn in series expansion of

∏
(1 + aih)

1 + dh
deg(X).

For example, Fano number 337 is X28 ⊂ P(1, 4, 6, 7, 11) and has basket

B =

{
2×

1

2
(1, 1, 1),

1

6
(1, 1, 5),

1

11
(1, 4, 7)

}
.
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Calculating as above gives

e(X) = eorb(X) + 2×
1

2
+

5

6
+

10

11

= coeffh3

(
(1 + 29h+ 309h2)(1− 28h+ 784h2 − 21952h3)

) 28

4 · 6 · 7 · 11

+ 2×
1

2
+

5

6
+

10

11

= coeffh3(1 + h+ 281h2 − 6385h3)
1

66
+ 2×

1

2
+

5

6
+

10

11

=
−6385

66
+ 1 + 5/6 + 10/11

= −94.

This agrees with our calculation h2,1(X) = 49 and e(X) = 4− 2× 49.

A.3 Tables of results

Tables 1–3 list the Hodge number h2,1(X), the topological euler characteristic
e(X) and the number of moduli h1(TX) = dimH1(X,TX) for quasismooth
members X of the families of Fano 3-folds in codimensions 1–3 respectively.

In codimension 1, we apply the Griffith’s Residue Theorem in §2.2 together
with the formulas of Theorem 1. In codimension 2, Table 2 documents the
method we use to compute the invariants. This could be the conventional Chern
class calculation, indicated by c3(TX), a projection calculation, indicated by I
or II1 depending on the type of the projection, or a computer calculation of
T 1
AX

, indicated by T 1 (which we also use as a check on all the calculations).

Where we use a projection, we also list the centre 1
r of projection (leaving the

polarising weights of 1
r (1, a,−a) implicit), the number of nodes on the image of

projection, and the number of that image in the Grdb. Where there is more
than one possible centre of projection, we list them all. Combining this data
with the results of Table 1 and Theorems 1 and 4, one can quickly check the
calculations by hand. For example, number 20522, X3,3 ⊂ P(15, 2) (the second
line in Table 2) projects to number 20521 with 9 nodes; the Euler charactistic
of the smoothed image is listed in Table 1 as −56, and so the for X3,3 it is
−56 + 2× 9− 2 = −40, as displayed.

In codimension 3, Table 3 documents the method we use in the 70 cases as
follows:

i. 57 cases have at least one ‘staircase’ of two Type I projections to a hy-
persurface. This is indicated by I–I.

ii. 4 cases have a Type I projection to a codimension 2 family that has as a
Type II1 projection to a hypersurface (indicated by I–II1).

iii. 2 cases have a Type II1 projection directly to a hypersurface (II1).
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iv. 2 cases have a Type I projection to a codimension 2 family with no
projection (I–T 1).

v. 1 case has a Type I projection to a known smooth Fano (I–smooth).

vi. 1 case is a known smooth Fano complete intersection (c3(TX)).

vii. 3 cases have no Type I or II1 projections at all (T 1).

Again, where there is a projection from X we list the centre 1
r , the number of

nodes and the Grdb identifier for each possibility, and applying Theorems 1
and 4 together with data from previous tables calculates the invariants.

Table 1: Codimension 1: h1,1(X) = 1 and h0(X,TX) = 0 in all
cases.

Grdb variety h2,1 e(X) h1(TX)

20521 X4 ⊂ P4 30 −56 43
16203 X5 ⊂ P(1, 1, 1, 1, 2) 38 −72 51
16202 X6 ⊂ P(1, 1, 1, 1, 3) 52 −100 66
11101 X6 ⊂ P(1, 1, 1, 2, 2) 41 −78 55
10981 X7 ⊂ P(1, 1, 1, 2, 3) 51 −98 63
10980 X8 ⊂ P(1, 1, 1, 2, 4) 64 −124 78
10960 X9 ⊂ P(1, 1, 1, 3, 4) 71 −138 83
10959 X10 ⊂ P(1, 1, 1, 3, 5) 85 −166 98
10958 X12 ⊂ P(1, 1, 1, 4, 6) 111 −218 125
5838 X8 ⊂ P(1, 1, 2, 2, 3) 45 −86 58
5837 X10 ⊂ P(1, 1, 2, 2, 5) 64 −124 79
5257 X9 ⊂ P(1, 1, 2, 3, 3) 49 −94 62
5157 X10 ⊂ P(1, 1, 2, 3, 4) 56 −108 66
5153 X11 ⊂ P(1, 1, 2, 3, 5) 65 −126 74
5152 X12 ⊂ P(1, 1, 2, 3, 6) 75 −146 88
5137 X12 ⊂ P(1, 1, 2, 4, 5) 70 −136 81
5136 X14 ⊂ P(1, 1, 2, 4, 7) 90 −176 102
5134 X15 ⊂ P(1, 1, 2, 5, 7) 97 −190 106
5133 X16 ⊂ P(1, 1, 2, 5, 8) 108 −212 119
5132 X18 ⊂ P(1, 1, 2, 6, 9) 128 −252 141
4984 X12 ⊂ P(1, 1, 3, 4, 4) 60 −116 73
4909 X13 ⊂ P(1, 1, 3, 4, 5) 66 −128 73
4907 X15 ⊂ P(1, 1, 3, 4, 7) 82 −160 89
4906 X16 ⊂ P(1, 1, 3, 4, 8) 91 −178 102
4893 X15 ⊂ P(1, 1, 3, 5, 6) 78 −152 87
4892 X18 ⊂ P(1, 1, 3, 5, 9) 104 −204 114
4891 X21 ⊂ P(1, 1, 3, 7, 10) 126 −248 133
4890 X22 ⊂ P(1, 1, 3, 7, 11) 136 −268 144
4889 X24 ⊂ P(1, 1, 3, 8, 12) 154 −304 165

Continued on next page

Documenta Mathematica 25 (2020) 267–307



294 G. Brown, E. Fatighenti

Table 1 continued from previous page

4835 X16 ⊂ P(1, 1, 4, 5, 6) 77 −150 83
4834 X20 ⊂ P(1, 1, 4, 5, 10) 108 −212 119
4822 X18 ⊂ P(1, 1, 4, 6, 7) 88 −172 94
4821 X22 ⊂ P(1, 1, 4, 6, 11) 120 −236 127
4820 X28 ⊂ P(1, 1, 4, 9, 14) 165 −326 172
4819 X30 ⊂ P(1, 1, 4, 10, 15) 182 −360 190
4807 X21 ⊂ P(1, 1, 5, 7, 8) 99 −194 104
4806 X26 ⊂ P(1, 1, 5, 7, 13) 137 −270 143
4805 X36 ⊂ P(1, 1, 5, 12, 18) 211 −418 218
4794 X24 ⊂ P(1, 1, 6, 8, 9) 110 −216 115
4793 X30 ⊂ P(1, 1, 6, 8, 15) 154 −304 160
4792 X42 ⊂ P(1, 1, 6, 14, 21) 240 −476 247
2402 X12 ⊂ P(1, 2, 2, 3, 5) 47 −90 59
2401 X14 ⊂ P(1, 2, 2, 3, 7) 60 −116 74
1389 X12 ⊂ P(1, 2, 3, 3, 4) 40 −76 54
1162 X14 ⊂ P(1, 2, 3, 4, 5) 45 −86 52
1160 X16 ⊂ P(1, 2, 3, 4, 7) 54 −104 62
1159 X18 ⊂ P(1, 2, 3, 4, 9) 65 −126 76
1155 X15 ⊂ P(1, 2, 3, 5, 5) 48 −92 60
1149 X17 ⊂ P(1, 2, 3, 5, 7) 56 −108 60
1147 X18 ⊂ P(1, 2, 3, 5, 8) 61 −118 66
1146 X20 ⊂ P(1, 2, 3, 5, 10) 72 −140 82
1144 X21 ⊂ P(1, 2, 3, 7, 9) 72 −140 78
1143 X24 ⊂ P(1, 2, 3, 7, 12) 89 −174 97
1142 X24 ⊂ P(1, 2, 3, 8, 11) 87 −170 93
1141 X26 ⊂ P(1, 2, 3, 8, 13) 99 −194 106
1140 X30 ⊂ P(1, 2, 3, 10, 15) 121 −238 131
1113 X20 ⊂ P(1, 2, 4, 5, 9) 62 −120 70
1112 X22 ⊂ P(1, 2, 4, 5, 11) 72 −140 81
1079 X20 ⊂ P(1, 2, 5, 6, 7) 55 −106 60
1078 X26 ⊂ P(1, 2, 5, 6, 13) 80 −156 87
1076 X27 ⊂ P(1, 2, 5, 9, 11) 77 −150 79
1075 X32 ⊂ P(1, 2, 5, 9, 16) 100 −196 104
1074 X42 ⊂ P(1, 2, 5, 14, 21) 144 −284 150
1067 X30 ⊂ P(1, 2, 6, 7, 15) 88 −172 96
866 X15 ⊂ P(1, 3, 3, 4, 5) 40 −76 52
545 X18 ⊂ P(1, 3, 4, 5, 6) 42 −80 49
539 X19 ⊂ P(1, 3, 4, 5, 7) 45 −86 47
537 X20 ⊂ P(1, 3, 4, 5, 8) 48 −92 53
536 X24 ⊂ P(1, 3, 4, 5, 12) 63 −122 71
534 X24 ⊂ P(1, 3, 4, 7, 10) 57 −110 58
533 X28 ⊂ P(1, 3, 4, 7, 14) 72 −140 80
532 X30 ⊂ P(1, 3, 4, 10, 13) 74 −144 75

Continued on next page
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Table 1 continued from previous page

531 X34 ⊂ P(1, 3, 4, 10, 17) 90 −176 92
530 X36 ⊂ P(1, 3, 4, 11, 18) 97 −190 101
529 X42 ⊂ P(1, 3, 4, 14, 21) 120 −236 125
508 X21 ⊂ P(1, 3, 5, 6, 7) 45 −86 51
507 X33 ⊂ P(1, 3, 5, 11, 14) 74 −144 74
506 X38 ⊂ P(1, 3, 5, 11, 19) 92 −180 93
505 X48 ⊂ P(1, 3, 5, 16, 24) 126 −248 130
500 X24 ⊂ P(1, 3, 6, 7, 8) 48 −92 56
356 X24 ⊂ P(1, 4, 5, 6, 9) 45 −86 47
355 X30 ⊂ P(1, 4, 5, 6, 15) 62 −120 69
353 X25 ⊂ P(1, 4, 5, 7, 9) 46 −88 46
352 X32 ⊂ P(1, 4, 5, 7, 16) 65 −126 69
351 X44 ⊂ P(1, 4, 5, 13, 22) 91 −178 91
350 X54 ⊂ P(1, 4, 5, 18, 27) 120 −236 121
337 X28 ⊂ P(1, 4, 6, 7, 11) 49 −94 50
336 X34 ⊂ P(1, 4, 6, 7, 17) 65 −126 67
296 X27 ⊂ P(1, 5, 6, 7, 9) 42 −80 42
295 X30 ⊂ P(1, 5, 6, 8, 11) 46 −88 45
294 X38 ⊂ P(1, 5, 6, 8, 19) 64 −124 64
293 X66 ⊂ P(1, 5, 6, 22, 33) 120 −236 120
289 X40 ⊂ P(1, 5, 7, 8, 20) 64 −124 68
271 X36 ⊂ P(1, 7, 8, 9, 12) 42 −80 41
270 X50 ⊂ P(1, 7, 8, 10, 25) 63 −122 62

Table 2: Codimension 2: h1,1(X) = 1 and h0(X,TX) = 0 in all
cases. Centre of projection indicated by 1

r ; number of nodes is
denoted by N ; GRDB number of projection target by ‘ID’.

Grdb variety / method: 1
r , N , ID h2,1 e(X) h1(TX)

24076 X2,3 ⊂ P5 20 −36 34
c3(TX)

20522 X3,3 ⊂ P(1, 1, 1, 1, 1, 2) 22 −40 36
I: 1

2
, 9, 20521

16225 X3,4 ⊂ P(1, 1, 1, 1, 2, 2) 27 −50 41
I: 1

2
, 12, 16203

16204 X4,4 ⊂ P(1, 1, 1, 1, 2, 3) 31 −58 45
I: 1

3
, 8, 16203

11435 X4,4 ⊂ P(1, 1, 1, 2, 2, 2) 26 −48 39
I: 1

2
, 16, 11101

11102 X4,5 ⊂ P(1, 1, 1, 2, 2, 3) 32 −60 45
I: 1

2
, 20, 10981; 1

3
, 10, 11101

Continued on next page
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Table 2 continued from previous page

11002 X4,6 ⊂ P(1, 1, 1, 2, 3, 3) 40 −76 53
I: 1

3
, 12, 10981

10983 X5,6 ⊂ P(1, 1, 1, 2, 3, 4) 42 −80 55
I: 1

2
, 30, 10960; 1

4
, 10, 10981

10982 X6,6 ⊂ P(1, 1, 1, 2, 3, 5) 46 −88 59
I: 1

5
, 6, 10981

10961 X6,8 ⊂ P(1, 1, 1, 3, 4, 5) 60 −116 73
I: 1

5
, 12, 10960

6858 X4,6 ⊂ P(1, 1, 2, 2, 2, 3) 31 −58 43
II1:

1
2
, 34, 5837

5857 X5,6 ⊂ P(1, 1, 2, 2, 3, 3) 31 −58 42
I: 1

3
, 15, 5838

5843 X6,6 ⊂ P(1, 1, 2, 2, 3, 4) 34 −64 45
I: 1

4
, 12, 5838

5839 X6,7 ⊂ P(1, 1, 2, 2, 3, 5) 39 −74 50
I: 1

5
, 7, 5838

5514 X6,6 ⊂ P(1, 1, 2, 3, 3, 3) 32 −60 42
I: 1

3
, 18, 5257

5261 X6,7 ⊂ P(1, 1, 2, 3, 3, 4) 36 −68 46
I: 1

3
, 21, 5157; 1

4
, 14, 5257

5258 X6,8 ⊂ P(1, 1, 2, 3, 3, 5) 42 −80 52
I: 1

3
, 24, 5153; 1

5
, 8, 5257

5200 X6,8 ⊂ P(1, 1, 2, 3, 4, 4) 41 −78 51
I: 1

4
, 16, 5157

5161 X7,8 ⊂ P(1, 1, 2, 3, 4, 5) 43 −82 53
I: 1

3
, 28, 5137; 1

5
, 14, 5157

5159 X6,9 ⊂ P(1, 1, 2, 3, 4, 5) 48 −92 58
I: 1

4
, 18, 5153; 1

5
, 9, 5157

5158 X8,9 ⊂ P(1, 1, 2, 3, 4, 7) 51 −98 61
I: 1

7
, 6, 5157

5156 X6,10 ⊂ P(1, 1, 2, 3, 5, 5) 56 −108 66
I: 1

5
, 10, 5153

5155 X8,10 ⊂ P(1, 1, 2, 3, 5, 7) 58 −112 68
I: 1

3
, 40, 5134; 1

7
, 8, 5153

5154 X9,10 ⊂ P(1, 1, 2, 3, 5, 8) 60 −116 70
I: 1

8
, 6, 5153

5138 X8,10 ⊂ P(1, 1, 2, 4, 5, 6) 55 −106 65
I: 1

6
, 16, 5137

5135 X10,14 ⊂ P(1, 1, 2, 5, 7, 9) 88 −172 98
I: 1

9
, 10, 5134

4985 X8,9 ⊂ P(1, 1, 3, 4, 4, 5) 43 −82 51
I: 1

4
, 24, 4909; 1

5
, 18, 4984

Continued on next page
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Table 2 continued from previous page

4936 X8,10 ⊂ P(1, 1, 3, 4, 5, 5) 47 −90 55
I: 1

5
, 20, 4909

4912 X9,10 ⊂ P(1, 1, 3, 4, 5, 6) 49 −94 57
I: 1

4
, 30, 4893; 1

6
, 18, 4909

4911 X8,12 ⊂ P(1, 1, 3, 4, 5, 7) 59 −114 67
I: 1

5
, 24, 4907; 1

7
, 8, 4909

4910 X10,12 ⊂ P(1, 1, 3, 4, 5, 9) 61 −118 69
I: 1

9
, 6, 4909

4908 X12,14 ⊂ P(1, 1, 3, 4, 7, 11) 77 −150 85
I: 1

11
, 6, 4907

4894 X10,12 ⊂ P(1, 1, 3, 5, 6, 7) 59 −114 67
I: 1

7
, 20, 4893

4848 X10,12 ⊂ P(1, 1, 4, 5, 6, 6) 54 −104 61
I: 1

6
, 24, 4835

4837 X11,12 ⊂ P(1, 1, 4, 5, 6, 7) 56 −108 63
I: 1

5
, 33, 4822; 1

7
, 22, 4835

4836 X12,15 ⊂ P(1, 1, 4, 5, 6, 11) 72 −140 79
I: 1

11
, 6, 4835

4823 X12,14 ⊂ P(1, 1, 4, 6, 7, 8) 65 −126 72
I: 1

8
, 24, 4822

4808 X14,16 ⊂ P(1, 1, 5, 7, 8, 9) 72 −140 78
I: 1

9
, 28, 4807

4795 X16,18 ⊂ P(1, 1, 6, 8, 9, 10) 79 −154 85
I: 1

10
, 32, 4794

3508 X6,6 ⊂ P(1, 2, 2, 2, 3, 3) 24 −44 34
T 1

2419 X6,8 ⊂ P(1, 2, 2, 3, 3, 4) 28 −52 37
II1:

1
3
, 33, 2401

2409 X6,10 ⊂ P(1, 2, 2, 3, 4, 5) 36 −68 45
II1:

1
4
, 25, 2401

2403 X9,10 ⊂ P(1, 2, 2, 3, 5, 7) 39 −74 47
I: 1

7
, 9, 2402

1390 X8,9 ⊂ P(1, 2, 3, 3, 4, 5) 29 −54 36
I: 1

5
, 12, 1389

1249 X8,10 ⊂ P(1, 2, 3, 4, 4, 5) 30 −56 37
II1:

1
4
, 36, 1159

1179 X9,10 ⊂ P(1, 2, 3, 4, 5, 5) 31 −58 37
I: 1

5
, 15, 1162

1171 X8,12 ⊂ P(1, 2, 3, 4, 5, 6) 36 −68 43
II1:

1
5
, 30, 1159

1165 X10,11 ⊂ P(1, 2, 3, 4, 5, 7) 35 −66 41
I: 1

7
, 11, 1162

Continued on next page
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1164 X9,12 ⊂ P(1, 2, 3, 4, 5, 7) 37 −70 43
I: 1

5
, 18, 1160; 1

7
, 9, 1162

1163 X10,12 ⊂ P(1, 2, 3, 4, 5, 8) 38 −72 44
I: 1

8
, 8, 1162

1161 X12,14 ⊂ P(1, 2, 3, 4, 7, 10) 47 −90 53
I: 1

10
, 8, 1160

1156 X10,12 ⊂ P(1, 2, 3, 5, 5, 7) 37 −70 42
I: 1

5
, 20, 1149; 1

7
, 12, 1155

1154 X10,14 ⊂ P(1, 2, 3, 5, 7, 7) 43 −82 48
I: 1

7
, 14, 1149

1152 X10,15 ⊂ P(1, 2, 3, 5, 7, 8) 47 −90 52
I: 1

7
, 15, 1147; 1

8
, 10, 1149

1151 X12,14 ⊂ P(1, 2, 3, 5, 7, 9) 45 −86 50
I: 1

5
, 28, 1144; 1

9
, 12, 1149

1150 X14,15 ⊂ P(1, 2, 3, 5, 7, 12) 51 −98 56
I: 1

12
, 6, 1149

1148 X15,16 ⊂ P(1, 2, 3, 5, 8, 13) 56 −108 61
I: 1

13
, 6, 1147

1145 X14,18 ⊂ P(1, 2, 3, 7, 9, 11) 59 −114 64
I: 1

11
, 14, 1144

1121 X10,12 ⊂ P(1, 2, 4, 5, 5, 6) 33 −62 39
II1:

1
5
, 40, 1112

1114 X10,14 ⊂ P(1, 2, 4, 5, 6, 7) 38 −72 44
II1:

1
6
, 35, 1112

1083 X12,16 ⊂ P(1, 2, 5, 6, 7, 8) 41 −78 46
II1:

1
5
, 48, 1067; 1

7
, 40, 1078

1080 X14,15 ⊂ P(1, 2, 5, 6, 7, 9) 41 −78 45
I: 1

9
, 15, 1079

1077 X18,22 ⊂ P(1, 2, 5, 9, 11, 13) 60 −116 63
I: 1

13
, 18, 1076

1068 X14,18 ⊂ P(1, 2, 6, 7, 8, 9) 44 −84 49
II1:

1
8
, 45, 1067

867 X10,12 ⊂ P(1, 3, 3, 4, 5, 7) 31 −58 36
I: 1

7
, 10, 866

640 X10,12 ⊂ P(1, 3, 4, 4, 5, 6) 28 −52 33
T 1

547 X12,13 ⊂ P(1, 3, 4, 5, 6, 7) 30 −56 34
I: 1

7
, 13, 545

546 X12,15 ⊂ P(1, 3, 4, 5, 6, 9) 34 −64 38
I: 1

9
, 9, 545

544 X12,14 ⊂ P(1, 3, 4, 5, 7, 7) 32 −60 35
I: 1

7
, 14, 539

Continued on next page
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542 X12,15 ⊂ P(1, 3, 4, 5, 7, 8) 34 −64 37
I: 1

7
, 15, 537; 1

8
, 12, 539

541 X14,15 ⊂ P(1, 3, 4, 5, 7, 10) 36 −68 39
I: 1

10
, 10, 539

540 X14,16 ⊂ P(1, 3, 4, 5, 7, 11) 38 −72 41
I: 1

11
, 8, 539

538 X15,16 ⊂ P(1, 3, 4, 5, 8, 11) 39 −74 42
I: 1

11
, 10, 537

535 X20,21 ⊂ P(1, 3, 4, 7, 10, 17) 52 −100 54
I: 1

17
, 6, 534

509 X14,15 ⊂ P(1, 3, 5, 6, 7, 8) 32 −60 35
I: 1

8
, 14, 508

453 X12,14 ⊂ P(1, 4, 4, 5, 6, 7) 28 −52 32
T 1

359 X14,16 ⊂ P(1, 4, 5, 6, 7, 8) 29 −54 32
T 1

358 X12,20 ⊂ P(1, 4, 5, 6, 7, 10) 36 −68 39
II1:

1
7
, 27, 355

357 X18,20 ⊂ P(1, 4, 5, 6, 9, 14) 38 −72 40
I: 1

14
, 8, 356

354 X18,20 ⊂ P(1, 4, 5, 7, 9, 13) 37 −70 38
I: 1

13
, 10, 353

338 X16,18 ⊂ P(1, 4, 6, 7, 8, 9) 30 −56 33
T 1

297 X18,20 ⊂ P(1, 5, 6, 7, 9, 11) 31 −58 32
I: 1

11
, 12, 296

279 X18,30 ⊂ P(1, 6, 8, 9, 10, 15) 36 −68 38
T 1

265 X24,30 ⊂ P(1, 8, 9, 10, 12, 15) 30 −56 31
T 1

37 X12,14 ⊂ P(2, 3, 4, 5, 6, 7) 18 −32 23
T 1

Table 3: Codimension 3: h1,1(X) = 1 and h0(X,TX) = 0 in all
cases. Centre of projection indicated by 1

r ; number of nodes is
denoted by N ; GRDB number of projection target by ‘ID’.

Grdb variety / method: 1
r , N , ID h2,1 e(X) h1(TX)

26988 X2,2,2 ⊂ P6 14 −24 27
c3(TX)

24077 X2,3... ⊂ P(1, 1, 1, 1, 1, 1, 2) 14 −24 27
I – T 1: 1

2
, 7, 24076

Continued on next page
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20543 X3,3... ⊂ P(1, 1, 1, 1, 1, 2, 2) 15 −26 28
I – I: 1

2
, 8, 20522

20523 X3,3... ⊂ P(1, 1, 1, 1, 1, 2, 3) 17 −30 30
I – I: 1

3
, 6, 20522

16338 X3,3... ⊂ P(1, 1, 1, 1, 2, 2, 2) 18 −32 31
I – I: 1

2
, 10, 16225

16226 X3,4... ⊂ P(1, 1, 1, 1, 2, 2, 3) 21 −38 34
I – I: 1

2
, 11, 16204; 1

3
, 7, 16225

16205 X4,4... ⊂ P(1, 1, 1, 1, 2, 3, 4) 25 −46 38
I – I: 1

4
, 7, 16204

12062 X4,4... ⊂ P(1, 1, 1, 2, 2, 2, 2) 15 −26 27
I – I: 1

2
, 12, 11435

11436 X4,4... ⊂ P(1, 1, 1, 2, 2, 2, 3) 19 −34 31
I – I: 1

2
, 14, 11102; 1

3
, 8, 11435

11122 X4,4... ⊂ P(1, 1, 1, 2, 2, 3, 3) 24 −44 36
I – I: 1

2
, 17, 11002; 1

3
, 9, 11102

11105 X4,5... ⊂ P(1, 1, 1, 2, 2, 3, 4) 25 −46 37
I – I: 1

2
, 18, 10983; 1

4
, 8, 11102

11103 X4,5... ⊂ P(1, 1, 1, 2, 2, 3, 5) 28 −52 40
I – I: 1

2
, 19, 10982; 1

5
, 5, 11102

11003 X4,5... ⊂ P(1, 1, 1, 2, 3, 3, 4) 32 −60 44
I – I: 1

3
, 11, 10983; 1

4
, 9, 11002

10984 X5,6... ⊂ P(1, 1, 1, 2, 3, 4, 5) 34 −64 46
I – I: 1

2
, 27, 10961; 1

5
, 9, 10983

10962 X6,7... ⊂ P(1, 1, 1, 3, 4, 5, 6) 50 −96 62
I – I: 1

6
, 11, 10961

6859 X4,5... ⊂ P(1, 1, 2, 2, 2, 3, 3) 21 −38 32
I – II1:

1
3
, 11, 6858

5962 X5,5... ⊂ P(1, 1, 2, 2, 3, 3, 3) 20 −36 30
I – I: 1

3
, 12, 5857

5865 X5,6... ⊂ P(1, 1, 2, 2, 3, 3, 4) 22 −40 32
I – I: 1

3
, 13, 5843; 1

4
, 10, 5857

5858 X5,6... ⊂ P(1, 1, 2, 2, 3, 3, 5) 26 −48 36
I – I: 1

3
, 14, 5839; 1

5
, 6, 5857

5844 X6,6... ⊂ P(1, 1, 2, 2, 3, 4, 5) 25 −46 35
I – I: 1

5
, 10, 5843

5840 X6,7... ⊂ P(1, 1, 2, 2, 3, 5, 7) 34 −64 44
I – I: 1

7
, 6, 5839

5515 X6,6... ⊂ P(1, 1, 2, 3, 3, 3, 4) 22 −40 31
I – I: 1

3
, 15, 5261; 1

4
, 11, 5514

5302 X6,6... ⊂ P(1, 1, 2, 3, 3, 4, 4) 25 −46 34
I – I: 1

3
, 17, 5200; 1

4
, 12, 5261

Continued on next page
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5267 X6,7... ⊂ P(1, 1, 2, 3, 3, 4, 5) 26 −48 35
I – I: 1

3
, 18, 5161; 1

5
, 11, 5261

5264 X6,6... ⊂ P(1, 1, 2, 3, 3, 4, 5) 30 −56 39
I – I: 1

3
, 19, 5159; 1

4
, 13, 5258; 1

5
, 7, 5261

5262 X6,7... ⊂ P(1, 1, 2, 3, 3, 4, 7) 32 −60 41
I – I: 1

3
, 20, 5158; 1

7
, 5, 5261

5259 X6,8... ⊂ P(1, 1, 2, 3, 3, 5, 8) 38 −72 47
I – I: 1

3
, 23, 5154; 1

8
, 5, 5258

5201 X6,7... ⊂ P(1, 1, 2, 3, 4, 4, 5) 30 −56 39
I – I: 1

4
, 14, 5161; 1

5
, 12, 5200

5175 X6,7... ⊂ P(1, 1, 2, 3, 4, 5, 5) 36 −68 45
I – I: 1

5
, 13, 5159; 1

5
, 8, 5161

5162 X7,8... ⊂ P(1, 1, 2, 3, 4, 5, 6) 32 −60 41
I – I: 1

3
, 24, 5138; 1

6
, 12, 5161

5160 X6,8... ⊂ P(1, 1, 2, 3, 4, 5, 7) 42 −80 51
I – I: 1

4
, 17, 5155; 1

7
, 7, 5159

5139 X8,9... ⊂ P(1, 1, 2, 4, 5, 6, 7) 42 −80 51
I – I: 1

7
, 14, 5138

4999 X8,8... ⊂ P(1, 1, 3, 4, 4, 5, 5) 29 −54 36
I – I: 1

4
, 19, 4936; 1

5
, 15, 4985

4988 X8,9... ⊂ P(1, 1, 3, 4, 4, 5, 6) 30 −56 37
I – I: 1

4
, 20, 4912; 1

6
, 14, 4985

4986 X8,9... ⊂ P(1, 1, 3, 4, 4, 5, 9) 39 −74 46
I – I: 1

4
, 23, 4910; 1

9
, 5, 4985

4937 X8,9... ⊂ P(1, 1, 3, 4, 5, 5, 6) 33 −62 40
I – I: 1

5
, 17, 4912; 1

6
, 15, 4936

4914 X9,10... ⊂ P(1, 1, 3, 4, 5, 6, 7) 35 −66 42
I – I: 1

4
, 25, 4894; 1

7
, 15, 4912

4913 X8,9... ⊂ P(1, 1, 3, 4, 5, 6, 7) 43 −82 50
I – I: 1

6
, 17, 4911; 1

7
, 7, 4912

4895 X10,11... ⊂ P(1, 1, 3, 5, 6, 7, 8) 43 −82 50
I – I: 1

8
, 17, 4894

4849 X10,11... ⊂ P(1, 1, 4, 5, 6, 6, 7) 37 −70 43
I – I: 1

6
, 20, 4837; 1

7
, 18, 4848

4838 X11,12... ⊂ P(1, 1, 4, 5, 6, 7, 8) 39 −74 45
I – I: 1

5
, 27, 4823; 1

8
, 18, 4837

4824 X12,13... ⊂ P(1, 1, 4, 6, 7, 8, 9) 46 −88 52
I – I: 1

9
, 20, 4823

4809 X14,15... ⊂ P(1, 1, 5, 7, 8, 9, 10) 50 −96 55
I – I: 1

10
, 23, 4808

4796 X16,17... ⊂ P(1, 1, 6, 8, 9, 10, 11) 54 −104 59
I – I: 1

11
, 26, 4795

Continued on next page
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2420 X6,7... ⊂ P(1, 2, 2, 3, 3, 4, 5) 21 −38 29
I – II1:

1
5
, 8, 2419

2404 X9,10... ⊂ P(1, 2, 2, 3, 5, 7, 9) 32 −60 39
I – I: 1

9
, 8, 2403

1409 X7,8... ⊂ P(1, 2, 3, 3, 4, 4, 5) 20 −36 27
II1:

1
4
, 21, 1389

1396 X8,8... ⊂ P(1, 2, 3, 3, 4, 5, 5) 20 −36 26
I – I: 1

5
, 10, 1390

1394 X8,9... ⊂ P(1, 2, 3, 3, 4, 5, 7) 22 −40 28
I – I: 1

7
, 8, 1390

1391 X8,9... ⊂ P(1, 2, 3, 3, 4, 5, 8) 24 −44 30
I – I: 1

8
, 6, 1390

1252 X8,9... ⊂ P(1, 2, 3, 4, 4, 5, 5) 20 −36 26
I – II1:

1
5
, 11, 1249

1250 X8,9... ⊂ P(1, 2, 3, 4, 4, 5, 7) 24 −44 30
I – II1:

1
7
, 7, 1249

1184 X8,9... ⊂ P(1, 2, 3, 4, 5, 5, 6) 24 −44 30
I – II1:

1
5
, 13, 1171

1180 X9,10... ⊂ P(1, 2, 3, 4, 5, 5, 7) 23 −42 28
I – I: 1

5
, 13, 1165; 1

7
, 9, 1179

1168 X9,10... ⊂ P(1, 2, 3, 4, 5, 7, 7) 28 −52 33
I – I: 1

7
, 10, 1164; 1

7
, 8, 1165

1166 X10,11... ⊂ P(1, 2, 3, 4, 5, 7, 9) 27 −50 32
I – I: 1

9
, 9, 1165

1157 X10,12... ⊂ P(1, 2, 3, 5, 5, 7, 12) 33 −62 37
I – I: 1

5
, 19, 1150; 1

12
, 5, 1156

1153 X10,12... ⊂ P(1, 2, 3, 5, 7, 8, 9) 37 −70 41
I – I: 1

8
, 9, 1151; 1

9
, 11, 1152

1090 X12,13... ⊂ P(1, 2, 5, 6, 7, 7, 8) 27 −50 31
I – II1:

1
7
, 15, 1083

1081 X14,15... ⊂ P(1, 2, 5, 6, 7, 9, 11) 30 −56 33
I – I: 1

11
, 12, 1080

868 X10,12... ⊂ P(1, 3, 3, 4, 5, 7, 10) 25 −46 29
I – I: 1

10
, 7, 867

641 X10,11... ⊂ P(1, 3, 4, 4, 5, 6, 7) 20 −36 24
I – T 1: 1

7
, 9, 640

568 X10,11... ⊂ P(1, 3, 4, 5, 5, 6, 7) 21 −38 25
II1:

1
5
, 22, 545

548 X12,13... ⊂ P(1, 3, 4, 5, 6, 7, 10) 23 −42 26
I – I: 1

10
, 8, 547

543 X12,14... ⊂ P(1, 3, 4, 5, 7, 8, 11) 28 −52 30
I – I: 1

8
, 11, 540; 1

11
, 7, 542

Continued on next page
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510 X14,15... ⊂ P(1, 3, 5, 6, 7, 8, 11) 24 −44 26
I – I: 1

11
, 9, 509

454 X12,13... ⊂ P(1, 4, 4, 5, 6, 7, 9) 21 −38 24
I – T 1: 1

9
, 8, 453

392 X12,13... ⊂ P(1, 4, 5, 5, 6, 7, 8) 20 −36 23
T 1

326 X14,15... ⊂ P(1, 5, 5, 6, 7, 8, 9) 20 −36 22
T 1

298 X16,17... ⊂ P(1, 5, 6, 7, 8, 9, 10) 20 −36 22
T 1
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