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1 Introduction

1.1 Summary of results

Koszul duality theory for operads was developed in the seminal paper [6], where
it is established that among operads with quadratic relations there is an im-
portant subclass formed by Koszul operads. The category of algebras over a
Koszul operad enjoys particularly nice homotopical properties. For that rea-
son, it is important to have tools to establish whether an operad is Koszul:
if it is Koszul, many questions about its algebras are answered automatically
by the methods of [6], if it is not Koszul, studying the homotopy category of
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algebras over that operad is a more unusual and challenging task. Currently,
the most general way to establish that an operad is Koszul seems to come from
operadic Gröbner bases [1, 2], and the most general way to establish that an
operad is not Koszul relies on a functional equation established in [6]. The lat-
ter equation, in slightly more modern terms, says that for a Koszul operad P ,
we have

gP(gP¡(t)) = t,

where P ¡ is the Koszul dual cooperad, and g is the Poincaré series (the gener-
ating series for the Euler characteristics of components).
The paper [6] is mostly concerned with operads whose generating operations are
all binary; algebras over such operads appear in applications more frequently
(for example the most famous operads ever studied, those of associative alge-
bras, commutative associative algebras, and Lie algebras, belong to that class).
While it is not hard to extend Koszul duality to the case of operads whose
generating operations may be of different arities (this was first done in [4]), or
at least not all binary, some early papers on the subject ignored crucial homo-
logical degree shifts, and as a consequence some claims made in those papers
were wrong. For example, the operad called the operad of n-ary partially asso-
ciative algebras in [7, 8], only resembles the Koszul dual operad of the operad
of totally associative algebras, contrary to the claims made there.
Recently, several examples of n-ary operads (that is, operads generated by
operations of the same arity n) were studied by the second and the third author
in the papers [12, 13] the first of which was circulated as a preprint back
in 2009. The defining relations of those operads describe various types of
“graded n-associativity” and resemble the defining relations of the operads of
totally associative and partially associative n-ary algebras, but have different
signs and homological degrees in the definition. For the latter reason, we refer
to them as operads of mock totally / partially associative n-ary algebras. In
[12, 13], some of those operads were proved to be Koszul, some of them were
proved to not be Koszul, and finally, the remaining ones were conjectured to not
be Koszul. In fact, it is quite easy to describe those conjecturally non-Koszul
operads. Fix n ≥ 2. The operad pÃssn0 of mock partially associative n-ary
algebras is generated by one operation µ of arity n and of degree 0 satisfying
one single relation

n∑

i=1

µ ◦i µ = 0.

In [12, 13], the operads pÃssn0 are proved to be non-Koszul for n ≤ 7, and it
was conjectured that they are not Koszul for all n ≥ 2.
The Koszul dual cooperad of pÃssn0 is the cooperad (tAssn1 )c, whose coalgebras
are mock totally coassociative coalgebras (with one operation of arity n and
degree 1); that operad has an extremely simple Poincaré series t− tn + t2n−1.
In this paper, we establish two results. First, we prove that the operad pÃssn0 is
not Koszul. For that, we establish and utilise a rather surprising combinatorial
formula representing a certain element in the cobar construction of (tAssn1 )c as
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a boundary. Second, we check that the inverse series of t− tn+ t2n−1 for n = 8
does not have any negative coefficients (so a positivity criterion of Koszulness
based on the Ginzburg–Kapranov functional equation is not of any help); for
that we make use of the Zeilberger’s algorithm for hypergeometric summation.

1.2 Plan of the paper

In Section 2, we recall the key definitions needed throughout the paper. In
Section 3, we prove that the mock partially associative operad is not Koszul.
In Section 4, we show that the result of the previous section cannot be obtained
using the positivity criterion of Koszulness.

1.3 Acknowledgements

The final draft of this paper was prepared at Max Planck Institute for Mathe-
matics in Bonn, where the authors’ stay was supported through the programme
“Higher Structures in Geometry and Physics”. The authors wish to thank
MPIM for the excellent working conditions enjoyed during their visit. The au-
thors are also grateful to David Speyer who both provided the answer [16] on
the MathOverflow website which convinced them of positivity of coefficients of
the inverse series for t− t8+ t15 and pointed out a gap in the proof of positivity
in a draft version of this paper.

2 (Non-)Koszulness and its criteria

Throughout this paper, we follow the notational conventions set out in [10].
We briefly recall the most important notational conventions and definitions,
and refer the reader to [10, Chapter 7] for the details. All the results of this
paper are valid for an arbitrary field k of characteristic zero. We use a formal
symbol s of homological degree 1 to encode suspensions and de-suspensions.

Unless otherwise specified, all operads P discussed in this paper are nonsym-
metric, that is they are monoids in the monoidal category of nonsymmetric
collections; the monoidal structure in that latter category is denoted ◦. In ad-
dition, all operads are implicitly assumed reduced (P(0) = 0) and connected
(P(1) ∼= k). Throughout this paper, we use the abbreviation ‘ns’ instead of the
word ‘nonsymmetric’. We use the notation X ∼= Y for isomorphisms of ns col-
lections, and the notation X ≃ Y for weak equivalences (quasi-isomorphisms).

The free operad generated by a ns collection X is denoted T (X ), the cofree
(conilpotent) cooperad cogenerated by a ns collection X is denoted T c(X );
the former is spanned by “tree tensors”, and has its composition product, and
the latter has the same underlying ns collection but a different structure, a
decomposition coproduct. The underlying ns collection of each of those is
weight graded (a tree tensor has weight p if its underlying tree has p internal
vertices), and we denote by T (X )(p) the subcollection which is the span of all
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tree tensors of weight p. Infinitesimal (partial) composition products on T (X )
are denoted ◦i.

2.1 Koszul duality for quadratic (co)operads

A pair consisting of a ns collection X and a subcollection R ⊂ T (X )(2) is called
quadratic data. To a choice of quadratic data one can associate the quadratic
operad P = P(X ,R) with generators X and relations R, the largest quotient
operad O of T (X ) for which the composite

R →֒ T (X )(2) →֒ T (X ) ։ O

is zero. Also, to a choice of quadratic data one can associate the quadratic
cooperad C = C(X ,R) with cogenerators X and corelations R, the largest sub-
cooperad Q ⊂ T c(X ) for which the composite

Q →֒ T c(X ) ։ T c(X )(2) ։ T c(X )(2)/R

is zero.

Definition 1 (Koszul duality). Let (X ,R) be a choice of quadratic data. The
Koszul duality for operads assigns to an operad P = P(X ,R) its Koszul dual
cooperad

P ¡ := C(sX , s2R).

Recall that the (left) Koszul complex of a ns quadratic operad P = P(X ,R)
is the ns collection P ◦ P ¡ equipped with a certain differential coming from a
“twisting morphism”

κ : C(sX , s2R) ։ sX → X →֒ P(X ,R),

see [10, Sec. 7.4] for details.

Definition 2 (Koszul operad). A quadratic operad P is said to be Koszul if
its Koszul complex is acyclic, so that the inclusion

k ∼= (P ◦ P ¡)(1) →֒ P ◦ P ¡

induces an isomorphism in the homology.

For a cooperad C, its cobar construction Ω(C) is, by definition, the chain com-
plex obtained by equipping the free operad T (s−1C) with the differential com-
ing from the infinitesimal decomposition coproducts on C. It is known [10,
Prop. 7.3.2] that for a Koszul operad P there is a weak equivalence Ω(P ¡) ≃ P ;
that is, the cobar construction Ω(P ¡) represents the minimal model of P , see
[11] for the precise definition.
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2.2 Poincaré series for operads and the positivity criterion for
Koszulness

A very useful numerical invariant of a ns collection is given by its Poincaré
series.

Definition 3 (Poincaré series). Let X be a ns collection with finite-
dimensional components. The generating series for Euler characteristics of
components of X is called the Poincaré series of X and is denoted by gX (t):

gX (t) =
∑

n≥0

χ(X (n))tn.

An important property of the Poincaré series is that it is compatible with the
ns composition ◦.
Proposition 4 ([6, Prop. 4.1.7]). Let X and Y be two ns collections with
finite-dimensional components. Then

gX◦Y(t) = gX (gY(t)).

Corollary 5. Let P be a ns operad with finite-dimensional components.

(i) If P is Koszul, then
gP(gP¡(t)) = t. (1)

(ii) More generally, if
(T (E), ∂) ≃ (P , 0)

is the minimal model of P, then

gP (t− gE(t)) = t. (2)

Proof. The claim (i) follows from either the more general (ii), or from the defi-
nition of the Koszul operad using the Koszul complex. The claim (ii) is proved
in [12]; it also immediately follows from Proposition 4 and [10, Th. 6.6.2]).

Equation (1) provides an obvious necessary condition for an operad to be
Koszul. However, in many cases it is too hard to compute the Poincaré se-
ries of both P and P ¡. For that reason, the following weaker result is used in
many known proofs of non-Koszulness in the available literature.

Corollary 6 (Positivity criterion). Suppose that P is a quadratic ns operad
with finite-dimensional components generated by operations of homological de-
gree zero. If the compositional inverse of either of the two power series gP¡(t)
and gP(t) has at least one negative coefficient, then P is not Koszul.

This criterion (or its mild variations) was utilised, for instance, in [5] for the
“mock Lie” operad and the “mock-commutative operad”, in [18] for some
Manin products of operads, and in [12, 13] for some other mock operads of
n-ary algebras.
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2.3 The gap criterion for n-ary operads

We fix n ≥ 2. Suppose that P is an n-ary quadratic operad. The operad P has
a weight grading, and so does its minimal model (T (E), ∂) ≃ (P , 0); we denote
by E(p) the subcollection of E consisting of all elements of weight p. It is clear
that P(p)(m) = E(p)(m) = 0 unless m = p(n− 1) + 1 for some p ≥ 0.

Definition 7 ([13, Def. 3.2]). The minimal model (T (E), ∂) of an n-ary operad
has a gap of length d ≥ 1 if there is a q ≥ 2 such that

E(p) = 0 for q ≤ p ≤ q + d− 1

while E(q−1) 6= 0 6= E(q+d).

Proposition 8 (Gap criterion, [12]). Suppose that the minimal model of a
quadratic n-ary operad P has a gap of finite length. Then P is not Koszul.

3 The mock partially associative operad is not Koszul

Let us fix n ≥ 2. In this section, we study the operad pÃssn0 of mock partially
associative n-ary algebras; it is generated by one operation µ of arity n and of
degree 0 satisfying one single relation

n∑

i=1

µ ◦i µ = 0.

In [12], the weak Ginzburg–Kapranov criterion was used to establish that the
operads pÃssn0 are not Koszul for n ≤ 7, and it was conjectured that they are
not Koszul for all n ≥ 2. In this section we prove this conjecture:

Theorem 9. The operad pÃssn0 is not Koszul for an arbitrary n ≥ 2.

The proof goes as follows. From [12, Prop. 14], it follows that the Koszul dual
cooperad of pÃssn0 is the cooperad (tAssn1 )c, whose coalgebras are mock totally
coassociative coalgebras (with one operation of arity n and degree 1). From [12,
Lemma 19], it follows that the only nonzero components of that latter cooperad
are those of arities 1, n and 2n− 1.
Assume that the operad pÃssn0 is Koszul, so that it coincides with the homology
of the cobar construction Ω((tAssn1 )c). Explicitly, the cobar construction is
freely generated by an operation µ of arity n and degree 0, and an operation ξ
of arity 2n− 1 and degree 1; its differential ∂ is given by

∂(µ) := 0, ∂(ξ) :=
n∑

i=1

µ ◦i µ.

As usual, we will represent elements of the free operad as linear combinations of
planar rooted trees. In homological degree 0 we have trees with n-ary vertices,
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and in degree 1 trees with n-ary vertices and exactly one vertex of arity 2n−1,
which we call the fat vertex. The central role in the proof is played by the
element µ(n+1) obtained by iterated composition of n+1 copies µ, where each
composition is at the last slot. For example, a pictorial presentation of µ(4) is

••
••

❅�
�

�
�❅

❅
❅ .

Computing Gröbner bases [1] of the defining relations for operads pÃssn0 for
small n, one notices that the operation µ(n+1) always appears as a Gröbner
basis element, and so it is natural to conjecture that the operation µ(n+1)

vanishes in any pÃssn0 -algebra. We establish that result below. The operation
µ(n+1) has weight n+1 and arity n2, and in fact, it is not completely surprising
that some unexpected vanishing result can be proved for that weight / arity.
Indeed, according to [1, Prop. 10.2.2.4], the number of distinct consequences
of weight w of one quadratic relation involving one n-ary operation is equal to(
nw−1
w−2

)
, and so for w = n+ 1 that number is equal to

(
n2 + n− 1

n− 1

)
=

(n2 + n− 1)!

(n2)!(n− 1)!
=

1

n2

(n2 + n)!

(n2 − 1)!(n+ 1)!
=

1

n2

(
n2 + n

n+ 1

)
,

which is the dimension of the whole weight n + 1 component of the corre-
sponding free operad. Therefore, for a “generic” relation it would even be
likely that all tree tensors vanish individually, but since our relation is far from
generic, only some partial vanishing is observed. Let us note that, in general,
the Gröbner basis of the defining relations of the operad pÃssn0 seems to be
far from tractable, and finding dimensions of components of that operad is an
open problem; therefore, we only establish that this operad gives an exam-
ple of limitations that the positivity test has, and not determine whether the
Ginzburg–Kapranov functional equation holds. Let us introduce, only for the
purposes of this section, the following:
Terminology. A degree-0 tree will mean a planar rooted tree with n + 1
vertices of arity n. A degree-1 tree will be a planar rooted tree with n − 1
vertices of arity n and one fat vertex. (As above, this degree refers to the
degree in the cobar complex.) With a few obvious exceptions, by a tree we
will mean either a degree-0 tree or a degree-1 tree. Thus µ(n+1) is a particular
example of a degree-0 tree.
We are going to describe a rule that divides internal edges of each tree X into
two disjoint subsets, the set reg(X) of regular edges and the set sng(X) of
singular ones. For a degree-0 tree S and its internal edge e ∈ edg(S) denote
by S/e the degree-1 tree obtained by collapsing e into a vertex. The crucial
property of this rule will be that

card(reg(S/e)) =

{
card(reg(S))− 1 if e is regular, and

card(reg(S)) if e is singular.
(3)
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Given a tree X , we “flatten” it in such a way that its rightmost input leg is at
the same level as its root leg, resulting in a diagram of the form

RsR2R1

· · ·
☞
☞
☞☞ ▲

▲
▲▲☞

☞
☞☞ ▲

▲
▲▲

▲
▲
▲▲☞☞

☞☞

where Ri’s are, for 1 ≤ i ≤ s, planar rooted trees. We call the result the body
of the tree X . The soul of a tree X is obtained from its body by removing all
the external legs; it is a diagram of the form

TsT2T1

· · ·
☞
☞
☞☞ ▲

▲
▲▲☞

☞
☞☞ ▲

▲
▲▲

▲
▲
▲▲☞☞

☞☞

(4)

where Ti’s are trees with no external legs. Note that there is a one-to-one
correspondence between the set edg(X) of internal edges of X and the set of
edges of its soul. In other words, the soul of X is the subtree of X spanned by
its internal edges drawn as in (4).
We call an internal edge of X singular if it corresponds to the outgoing edge of a
non-fat vertex of the soul of X with no input edge, i.e. when the corresponding
edge in the soul looks as •, where • has no input edges (we emphasize here
that horizontal edges are not considered as input edges). All remaining internal
edges of X are called regular. It is easy to see that this division of edges into
regular and singular fulfills (3). We believe that Figures 1 and 2 explain what
we mean; in these figures, non-fat vertices are represented by bullets • and fat
vertices are represented by black squares �, all the singular edges are dotted,
and all the regular ones are thick.

••••
·····

·····• •••
❅�
❅
.....❅

❅

.....
�• ••

•

❅�
❅
.....❅�

❅❅❅❅❅❅❅❅❅❅❅❅❅❅
❅❅❅❅❅❅❅❅❅❅❅❅❅❅
❅❅❅❅❅❅❅❅❅❅❅❅

........

••••••••
❆ ✁❆✁❆✁❆✁••

••µ(4) :

S :

❅�
�

�
�❅

❅
❅

❅
❅
❅

❅
❅
❅

❅
❅
❅

❅
❅
❅

❅
❅
❅

❅
❅
❅

❅
❅
❅

❅
❅
❅

❅
❅
❅

❅
❅
❅

❅
❅
❅

❅
❅
❅

❅
❅
❅

❅
❅
❅

❅
❅
❅

❅
❅
❅

❅
❅
❅

❅
❅
❅

❅
❅
❅

Figure 1: Two degree-0 trees for n = 3 together with their bodies and souls;
here card(reg(µ(4))) = 3 and card(reg(S)) = 1
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••
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✁
❅
❅

..........

.......... ••
�

❅�❅�

❅
❅

........
✄
✄

..........

�
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❅

••
�T1 :
.......

.......

�
❆✁�•

❅�
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❅�

.....
�•
❅❅�� •

.......

�•T2 :

• •
�

❅�
❅
.....

❆
❆

✁
✁
�

�
❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

• •�

❅�
❅
.....❅❅❇❇✂✂�� •

.......

•�T3 :

•
•
�

❅�
❆✁�

�❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅
❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅ � ••

❅❅❇❇✂✂�� ❅�❅�
� ••T4 :

Figure 2: Four degree-1 trees for n = 3 together with their bodies and
souls; here card(reg(T1)) = 0, card(reg(T2)) = 1, card(reg(T3)) = 1, and
card(reg(T4)) = 2.

We denote by edg(X) the set of internal edges of a tree X and e(X) the
cardinality of this set. Notice that

e(X) =

{
n if X is a degree-0 tree and

n− 1 if X is a degree-1 tree.

The core of our proof of Theorem 9 is the following combinatorial lemma.

Lemma 10. For a degree-1 tree T put g = g(T ) := card(reg(T )) and define

ǫT := (−1)g+n+1g!(n− g − 1)! (5)

Then
∂
(∑

T

ǫTT
)
= n! µ(n+1), (6)

with the sum in the left hand side taken over all degree-1 trees.

Proof. The scheme of the proof will be clearer if we rewrite (6) into

∂
(∑

T

ǫTT
)
= n!

(
B1 − (−1)nB0

)
, (7)
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in which B1 (resp. B0) is the sum of all degree-0 trees with sng(S) = ∅
(resp. with reg(S) = ∅). Since, by a direct inspection, µ(n+1) is the only
degree-0 tree with no singular edge, while each degree-0 tree has at least one
regular edge, (6) will be an immediate consequence of (7).
Let us prove (7). For a degree-0 tree S let ∂

(∑
T ǫTT

)
[S] be the coefficient of

S in ∂
(∑

T ǫTT
)
. It is clear from the definition of the differential that

∂
(∑

T

ǫTT
)
[S] =

∑

e∈edg(S)

ǫS/e =
∑

e∈reg(S)

ǫS/e +
∑

e∈sng(S)

ǫS/e. (8)

Denote k := card(reg(S)). By (3) one has

g(S/e) =

{
k − 1 if e is regular, and

k if e is singular,

therefore

ǫS/e =

{
(−1)k+n(k − 1)!(n− k)! if e is regular, and

(−1)k+n+1k!(n− k − 1)! if e is singular,

Notice finally that, since

card(reg(S)) + card(sng(S)) = card(edg(S)) = n,

one has card(sng(S)) = n− k. Using the above calculations we verify that, for
k different from 0 and n one has

∂
(∑

T

ǫTT
)
[S] =

∑

e∈reg(S)

(−1)k+n(k − 1)!(n− k)! +
∑

e∈sng(S)

(−1)k+n+1k!(n− k − 1)! =

k · (−1)k+n(k − 1)!(n− k)! + (n− k) · (−1)k+n+1k!(n− k − 1)! = 0.

If sng(S) = ∅ then k = n and the second sum in the right hand side of (8)
vanishes while the first one equals

∑

e∈reg(S)

(n− 1)!0! = n · (n− 1)!0! = n!.

The case reg(S) = ∅ is similar.

Example 11. For n = 2 one has five degree-1 trees:

T3 := ,� •�
�
❅❅❅❅❅❅❅❅
❅

.....
�

T2 := ,�• ❅
❅

T1 := ,�

•
❅�

❅
·····�
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.T5 :=
�

•
�
❅❅❅❅❅❅❅❅
❅

�
T4 := , and

❅
�

•
�

❅��������

One sees that card(reg(T1)) = card(reg(T2)) = 0 and card(reg(T3)) =
card(reg(T4)) = card(reg(T5)) = 1 so, by (5), ǫT1 = ǫT2 = −1 and ǫT3 =
ǫT4 = ǫT5 = 1. Equation (6) in this case reads

∂(−T1 − T2 + T3 + T4 + T5) = 2µ(3).

Example 12. The trees T1, T2 and T3 in Figure 2 are all degree-1 trees T such
that ∂(T )[S] 6= 0 for the degree-0 tree S in Figure 1. The tree T2 appears in
the left hand side of (6) with coefficient 2, the trees T1 and T3 with coefficients
−1, so indeed ∂(

∑
T ǫTT

)
[S] = 0.

Proof of Theorem 9. Notice first that all coefficients ǫT in (5) are non-zero, and
denote

ν :=
∑

T

ǫTT (sum over all degree-1 trees).

Let us show that the degree 1 element cn := µ ◦n ν − ν ◦n2 µ represents a
nontrivial homology class of the cobar complex Ω((tAssn1 )c). Using (6), we
verify that

∂(cn) = µ ◦n ∂(ν)− ∂(ν) ◦n2 µ = n!
(
µ ◦n µ(n+1) − µ(n+1) ◦n2 µ

)
= 0,

so cn is indeed a cycle. The crucial role in proving that cn is non-homologous
to zero is played by the “whistle-blower”

Wn := µ ◦n
[
(· · · ((ξ ◦n−1 µ) ◦n−2 µ) · · · ) ◦1 µ

]
.

For example, the whistle-blower W3 is represented by the degree-1 tree

.

••
•
�W3 =

❆✁✁�

❇❇✂✂�� ❅❅

❅�

We claim that the monomial Wn occurs in cn written as a linear combination
of monomials with a non-trivial coefficient. It is clear that Wn cannot appear
in ν ◦n2 µ, since the rightmost input of Wn is the input of ξ, while the rightmost
inputs of all monomials constituting ν ◦n! µ are that of µ. On the other hand,
it is clear that the degree-1 tree

xn := (· · · ((ξ ◦n−1 µ) ◦n−2 µ) · · · ) ◦1 µ (9)

is the unique monomial such that Wn = µ ◦n xn. For example, for n = 3, x3 is
represented by the degree-1 tree

••
� .

❆✁✁�

❇❇✂✂�� ❅❅
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The monomial xn occurs in ν with a nontrivial coefficient, so Wn appears in
cn with the same nontrivial coefficient.2

Let us prove that cn is not a boundary. Assume the existence of a degree 2
element bn such that cn = ∂(bn). This would in particular mean that the
coefficient of Wn in ∂(bn) is non-zero. The whistle-blower Wn was defined
in such a way that all internal edges of the corresponding tree Wn connect
non-fat vertices • representing µ with the fat vertex �, as in the graphical
representation of W3 above. All trees whose differentials may contain Wn are
obtained by contracting an internal edge of Wn. This contraction produces a
vertex with 3n− 2 inputs, while there is no generator of the cobar complex of
this arity.

Remark 13. The result we just proved establishes that the cobar complex
Ω((tAssn1 )c) has homology classes of positive degree, at least of weight n + 2.
We do not know if that is the smallest value of weight for which non-trivial
homology classes exist. It is also worth noting that our proof was using the
characteristic zero assumption in a rather crucial way; it would be interesting
to see if it can be relaxed.

To conclude this section, let us outline an alternative proof of the fact that
the operad pÃssn0 is not Koszul for n = 8 (the case of a particular interest
in the following section), not relying directly on the knowledge of its Koszul
dual; we believe this proof is of independent interest. To that end, we show
that the minimal model of the operad pÃss80 has a gap of finite length, so that
Proposition 8 applies. We begin with the following general statement.

Lemma 14. Let P be a quadratic operad generated by operations of the same
arity n ≥ 2 and of the same homological degree d. Then the generators of
the minimal model for P in weight 1, 2 and 3 are concentrated in homological
degrees d, 2d+ 1 and 3d+ 2, respectively.

Proof. By assumption, P = P(X ,R) with the generating collection X concen-
trated in arity n and homological degree d. Since P is quadratic, R must be
concentrated in arity 2n − 1 and homological degree 2d. The 2-step approxi-
mation to the minimal model for P (not taking into account higher syzygies)
is therefore of the form

P ρ2←−
(
T (E(1), E(2)), ∂

)
,

with the weight 1 part E(1) concentrated in arity n and homological degree
d, and the weight 2 part E(2) in arity 2n − 1 and homological degree 2d + 1.
The image ∂(E(2)) generates the operadic ideal of relations and ∂|E(2) is a
monomorphism.
The three-step approximation to the minimal model for P is of the form

P ρ3←−
(
T (E(1), E(2), E(3)), ∂

)
,

2Inspecting the pictorial presentation of xn we easily establish that this coefficient equals
(−1)n+1(n− 1)!.
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where ∂(E(3)) kills the homology classes in the kernel of H(ρ2) in weight 3
and arity 3n− 2. Notice that the weight 3 part T (E(1), E(2))(3) of T (E(1), E(2))
decomposes as

T (E(1), E(2))(3) = T (E(1))(3) ⊕ T (E(1), E(2))(1,1),

where T (E(1), E(2))(1,1) is the subspace of T (E(1), E(2)) spanned by infinitesimal
compositions of one element of E(1) with one element of E(2). The kernel of
H(ρ2)(3n− 2) is therefore concentrated in homological degrees 3d and 3d+ 1.
Observing that H3d(ρ2)(3n− 2) is an isomorphism

H3d

(
T (E(1), E(2)), ∂

)
(3n− 2) ∼= T (E(1))/(∂E(2))(3n− 2) ∼= P(3n− 2),

we conclude that the only elements to be killed by E(3) are of degree 3d + 1.
This finishes the proof.

Remark 15. Using methods of [3], it is possible to prove a stronger version of
Lemma 14 stating that for any quadratic operad P (with generators of any ar-
ities and homological degrees), the k-th Quillen homology of P is concentrated
in weight k for k ≤ 3.

The proof of non-Koszulness now goes as follows. Numerical calculations using
Gröbner bases for operads find the initial terms of the Poincaré series for pÃss80
as

t+ t8 + 7t15 + 69t22 + 790t29 + 9842t36 + · · · .
Using Corollary 5 (ii), one calculates that the Poincaré series for the generators
of the minimal model of pÃss80 is

t+ t8 + t15 + 0t22 + 0t29 + 0t36 + · · · .

We see that the Euler characteristic χ(E(3)) of the space of generators of the
minimal model for pÃss80 in arity 22 vanishes. By Lemma 14, E(3) is concen-
trated in degree 2, so the vanishing of χ(E(3)) implies that E(3) = 0. Mean-
while, analyzing the proof of Theorem 9, we see that in fact we did not use the
Koszul duality as such: in this proof, Ω((tAssn1 )c) may be replaced by the two-
step approximation to the minimal model of pÃssn0 . Therefore, the two-step
approximation to the minimal model is not acyclic in positive degrees, and the
minimal model must have a generator of higher arity, so by Proposition 8, the
operad pÃss80 is not Koszul.

4 The positivity criterion of Koszulness is not decisive for the
operad pÃss80

In this section, we consider the possibility of using the positivity criterion of
Koszulness for the operad pÃssn0 . Since the Koszul dual of this operad is a
very simple cooperad (tAssn1 )c, it is natural to try to prove non-Koszulness by
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establishing that the compositional inverse of the Poincaré series of the latter
cooperad has negative coefficients. This works for n ≤ 7, as shown in [12, 13],
but it turns out that for n = 8 the inverse series does not have any negative
coefficients, which we demonstrate below. For an idea of a different proof using
the saddle point method, see [16].
We first recall a classical result on inversion of power series. To state it, we
use, for a formal power series F (t), the notation

[
tk
]
F (t) for the coefficient of

tk in F (t), and the notation F (t)〈−1〉 for the compositional inverse of F (t) (if
that inverse exists).

Proposition 16 (Lagrange’s inversion formula [17, Sec. 5.4]). Let f(t) be a
formal power series without a constant term and with a nonzero coefficient of t.
Then f(t) has a compositional inverse, and

[
tk
]
f(t)〈−1〉 =

1

k

[
uk−1

]( u

f(u)

)k

.

Let us now prove the main result of this section. Namely, we show that the
compositional inverse of the power series g(

tAss8

1

)

c(t) has nonnegative coef-

ficients, and hence the positivity criterion of Corollary 6 cannot be used to
establish the non-Koszulness of the operad pÃssn0 .
Theorem 17. The compositional inverse of the power series

g(
tAss8

1

)

c(t) = t− t8 + t15

is of the form t h(t7), where h is a power series with positive coefficients.

Proof. First, let us recall the usual argument explaining the form of the inverse
series. By Proposition 16, we have

[
tk
]
(t− t8 + t15)〈−1〉 =

1

k

[
uk−1

]( u

u− u8 + u15

)k

=
1

k

[
uk−1

] ( 1

1− u7 + u14

)k

,

and the coefficients on the right vanish unless k = 7n+ 1, so the inverse series
is of the form t h(t7), where h is some formal power series.
Let us start the asymptotic analysis of the coefficients of the series h(t).

Lemma 18. The radius of convergence of h(t) is equal to 217

515 .

Proof. The radius of convergence of (t− t8+ t15)〈−1〉 is equal to the maximal r
for which the inverse function of t− t8+ t15 is analytic for the arguments whose
modulus is smaller than r. It is obvious that such r is the value of t− t8 + t15

at the modulus of the smallest zero of

(
t− t8 + t15

)′
= 1− 8t7 + 15t14 = (1− 3t7)(1− 5t7).
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As the latter modulus is manifestly 1
7√5

, the radius of convergence of the inverse

series is
1
7
√
5

(
1− 1

5
+

1

25

)
=

1
7
√
5

21

25
.

Now, as (t − t8 + t15)〈−1〉 = t h(t7), the radius of convergence of h(t) is equal

to
(

1
7√5

21
25

)7
= 217

515 .

Lemma 19. The n-th coefficient of h(t) is equal to

an =
1

7n+ 1

⌊n/3⌋∑

k=0

(−1)k
(
7n+ k

k

)(
7n+ 1

n− 3k

)
.

Proof. Continuing the computation that utilizes the Lagrange’s inversion for-
mula, we see that the n-th coefficient of h, or equivalently the coefficient of
t7n+1 of (t− t8 + t15)〈−1〉, is equal to

1

7n+ 1

[
u7n
]( 1

1− u7 + u14

)7n+1

=
1

7n+ 1
[vn]

(
1

1− v + v2

)7n+1

It remains to note that
1

1− v + v2
=

1 + v

1 + v3
,

so

(
1

1− v + v2

)7n+1

=

(
1 + v

1 + v3

)7n+1

=


∑

i≥0

(
7n+ 1

i

)
vi




∑

j≥0

(−1)j
(
7n+ j

j

)
v3j


 ,

therefore the coefficient of t7n+1 is given by the requested formula

an =
1

7n+ 1

⌊n/3⌋∑

k=0

(−1)k
(
7n+ k

k

)(
7n+ 1

n− 3k

)
.

The expression an is given by the formula which is a sum of “hypergeomet-
ric” terms, we see that Zeilberger’s algorithm [14, Ch. 6] applies. We used
the interface to it provided by the sumrecursion function of Maple; this func-
tion implements the Koepf’s version of Zeilberger’s algorithm [9, Ch. 7]. This
function instantly informs us that the sequence {an} is a solution to a rather
remarkable three term finite difference equation

s0(n)xn − s1(n)xn−1 + s2(n)xn−2 = 0, (10)
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where

s0(n) =2187

(
13∏

k=0

(7n+ 1− k)

)
(215870371n6− 1295222226n5+

2527684225n4− 658627050n3− 3846578936n2+

4812446376n− 1760658480),

s1(n) =

(
6∏

k=0

(7n− 6− k)

)

× (13362081892033179314n13− 126939777974315203483n12+

485734175892096120376n11− 848711700458546819207n10+

123881005609280551032n9+ 2596574853470043847011n8−
6061259307194791053272n7+ 7497470293244974003099n6−
5912167336650049878706n5+ 3092269284168816801572n4−
1062333018859963548504n3+ 228076143949070673408n2−
27319025166066426240n+ 1361946602938521600),

and

s2(n) = 15(15n− 14)

(
12∏

k=0

(15n− 16− k)

)
(215870371n6− 710371340n4

+ 817295010n3− 370521431n2 + 73255350n− 5085720).

The polynomials si(n) are of the same degree 20, and so our equation is of the
type considered by Poincaré in [15]. Namely, in [15, §2] linear finite difference
equations of order k

s0(n)xn + s1(n)xn−1 + · · ·+ sk(n)xn−k = 0

are considered, with the additional assumption that s0(n), . . . , sk(n) are poly-
nomials of the same degree d. To such an equation, one associates its charac-
teristic polynomial

χ(t) = α0t
k + α1t

k−1 + · · ·+ αk = 0,

where αi is the coefficient of td in si(n). If the absolute values of the complex
roots of χ(t) are pairwise distinct, then for any solution {an} to our equation,
the limit

lim
n→∞

an
an−1

exists and is equal to one of the roots of χ(t). Usually, that root will be the
one which is maximal in absolute value. The particular case when the root
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is the minimal in absolute value is the hardest both for computations and
for the qualitative analysis of the asymptotic behaviour, since in this case the
corresponding solution is unique up to proportionality, and so the situation is
not stable under small perturbations. In our case the polynomial χ(t) is, up to
a scalar factor 215870371, equal to

1483273860320763t2− 50976189815371562t+ 437893890380859375,

and so its roots are

λ− =
30517578125

1801088541
≈ 16.943963 and λ+ =

14348907

823543
≈ 17.423385,

so Poincaré theorem applies. In fact, λ− = 515

217 , so by Lemma 18 it is equal to
the inverse of the radius of convergence of h(t). By the usual ratio formula for
the radius of convergence, we see that

lim
n→∞

an
an−1

= λ−.

Let us consider the auxiliary sequence {bn} satisfying the same finite difference
equation (10) and the initial conditions b0 = 0, b1 = 1.

Lemma 20. All terms of the sequence {bn} are positive for n > 0, and we have

lim
n→∞

bn
bn−1

= λ+.

Proof. First, let us show that for all n ≥ 50 we have

bn
bn−1

≥ C, (11)

where C = b50
b49
≈ 16.9452857. This is easy to see by induction on n. First, for

n = 50, the statement is obvious. Next, if we suppose that it is true for all
values less than the given n, we have

bn
bn−1

=
s1(n)

s0(n)
− s2(n)bn−2

s0(n)bn−1
>

s1(n)

s0(n)
− s2(n)

s0(n)C
,

and so it suffices to show that

s1(n)

s0(n)
− s2(n)

s0(n)C
> C.

It is easy to check, using computer algebra software, that all the roots of the
polynomial s0(n) are less than 2, so this polynomial assumes positive values in
the given range. Thus, the above inequality is equivalent to

0 > C2s0(n)− Cs1(n) + s2(n).
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Using computer algebra software, we find that the latter expression is a poly-
nomial in n with the negative leading coefficient and the largest root approx-
imately equal to 24.69, so the step of induction is proved. We can also check
directly that bn > 0 for all 0 < n < 50, which then implies that bn > 0 for all
n > 0. Also, by Poincaré Theorem, the limit of the ratio bn

bn−1
as n → ∞ is

equal to either λ− or λ+. However, 16.9452857 > 16.944 > λ−, so the inequal-
ity (11) shows that the first of the two alternatives is impossible. Hence, the
limiting value is λ+.

Our results thus far imply that lim
n→∞

an

bn
= 0, as

an+1

bn+1
=

an
bn

an+1

an

bn+1

bn

,

and so an+1

bn+1
is a multiple of an

bn
by a factor close to λ

−

λ+
< 1 for large n, and

thus our sequence can be bounded from above by a geometric sequence with a
zero limit.
Now it is easy to complete the proof. We note that

an
bn
− an−1

bn−1
=

s1(n)an−1 − s2(n)an−2

s1(n)bn−1 − s2(n)bn−2
− an−1

bn−1
=

(s1(n)an−1 − s2(n)an−2)bn−1 − (s1(n)bn−1 − s2(n)bn−2)an−1

(s1(n)bn−1 − s2(n)bn−2)bn−1
=

s2(n)(an−1bn−2 − an−2bn−1)

s0(n)bnbn−1
=

s2(n)bn−2

s0(n)bn

(
an−1

bn−1
− an−2

bn−2

)

All roots of the polynomial s2(n) are less than 2 as well, so for n ≥ 3 the sign
of an

bn
− an−1

bn−1
is the same as the sign of an−1

bn−1
− an−2

bn−2
, and hence the same as the

sign of
a2
b2
− a1

b1
= − 77813

276830
< 0.

Thus,
{

an

bn

}
is a strictly decreasing sequence. For a decreasing sequence with

the limit zero, all terms must be positive, and hence an is positive for all
n > 0.
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