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Abstract. We consider a complex domain D × V in the space
C

m × C
n and a family of weighted Bergman spaces on V defined

by a weight e−kφ(z,w) for a pluri-subharmonic function φ(z, w) with
a quantization parameter k. The weighted Bergman spaces define
an infinite dimensional Hermitian vector bundle over the domain D.
We consider the natural covariant differentiation ∇Z on the sections,
namely the unitary Chern connections preserving the Bergman norm.
We prove a Dixmier trace formula for the curvature of the unitary
connection and we find the asymptotic expansion for the curvatures

R(k)(Z,Z) for large k and for the induced connection [∇
(k)
Z , T

(k)
f ] on

Toeplitz operators Tf . In the special case when the domain D is the
Siegel domain and the weighted Bergman spaces are the Fock spaces

we find the exact formula for [∇
(k)
Z , T

(k)
f ] as Toeplitz operators. This

generalizes earlier work of J.E. Andersen in Comm. Math. Phys. 255
(2005), 727–745. Finally, we also determine the formulas for the cur-
vature and for the induced connection in the general case of D × V
replaced by a general strictly pseudoconvex domain V ⊂ Cm × Cn

fibered over a domain D ⊂ C
m. The case when the Bergman space is

replaced by the Hardy space on the boundary of the domain is likewise
discussed.
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1 Introduction

There has been much interest in the study of bundles of infinite-dimensional
Hilbert spaces in complex analysis and in quantization. As in the case of
finite-dimensional Hermitian holomorphic vector bundles the central topics are
the Chern connection and the curvature tensor, if they exist. Another relevant
question of special interests in quantization is whether it is possible to introduce
an integer parameterm with 1

m interpreted as the Planck constant and to study
then the induced connection of sections of endomorphisms of the bundles. The
most studied and classical case is the bundle of Fock spaces on Cn over the
Siegel space D with the total space being the Siegel-Jacobi space D × Cn; see
e.g. [10] and Section 5 below. The periodic version of the Fock space are
the flat bundles over abelian varieties covered by Cn, which is an important
topic in quantization [1]. We may also replace the Siegel-Jacobi space D× C

n

by a domain V ⊂ Cm+n over a domain D and consider the corresponding
Bergman and Hardy spaces over the fibers Vz of z ∈ D. In the present paper
we shall study systematically connections and curvatures of these bundles by
using Toeplitz operators.

Consider first a product domain D×V ⊂ Cm×Cn and let φ be a plurisubhar-
monic function on D × V . The Bergman spaces L2

h(V, e
−φ) on V with respect

to the weight e−φ(z,·) form a holomorphic Hermitian vector bundle over D in
an appropriate sense, and there is a Chern connection ∇Z and the correspond-
ing curvature R(Z, Z̄) = [∇Z , ∂̄Z ]. In [2] the curvature is computed and it
is proved that for a strictly pseudoconvex bounded domain V the curvature
operator satisfies the Nagano positivity using the Hörmander estimate for so-
lutions of the ∂̄-equation. In the present paper we shall compute the Dixmier
trace of the curvature operator, more precisely we prove that the curvature
operator in this case is a Fredholm operator on the Bergman space L2

h(V, e
−φ)

of the form T0 + T1 where T0 is an invertible Toeplitz operator and T1 is a
compact operator, and we compute the Dixmier trace of T1. We consider also
the induced covariant differentiation [∇Z , Tf ] on the Toeplitz operators Tf as
endomorphism sections and prove likewise a Dixmier trace formula. Indeed
the covariant differentiation [∇Z , Tf ] is a natural generalization of the curva-
ture operator R(Z, Z̄) = [∇Z , ∂̄Z ]. We treat then the general case of fibrations
over D by a family of strictly pseudoconvex bounded domains. We find the
curvature operator as Toeplitz operators and find its principal symbol.

We note that yet another important case is when T is the infinite dimensional
Teichmüller space with the fibers being the unit disc whose complex structure
changes by the quasi-conformal mappings parameterizing T ; see [11]. There
are many important and difficult analytical problems in this case. We hope our
study here will also shed light on this subject. For a fibration X → T of Kähler
manifold X with compact fibers and a line bundle over X a general formulation
for the study of variations of Bergman kernels is through the relative canonical
bundle, namely the variation of the cohomology space H0(K ⊗ L|Xt

) on the
fiber space Xt. This has been studied extensively; see e. g. [2].
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2 Preliminaries

We formulate a convenient setup for vector bundles of Bergman spaces on
complex domains and fix notation. There has been a lot of study of the general
case of bundles of infinite dimensional Hilbert spaces and their connections; see
e.g. [9] and references therein.

2.1 Toeplitz operators on Bergman spaces

Let V ⊂ C
n be a bounded domain in C

n. Let L2(V, e−φ) be the L2-space
on V with respect to the measure e−φ(w)dm(w), where dm(w) is the Eu-
clidean measure on Cn, and L2

h(V, e
−φ) the Bergman space of holomorphic

functions. Let P : L2(V, e−φ) → L2
h(V, e

−φ) be the Bergman projection.
The Toeplitz operator Tf : L2

h(V, e
−φ) → L2

h(V, e
−φ) and the Hankel opera-

tor Hf : L2
h(V, e

−φ) → L2
h(V, e

−φ)⊥ with symbol f ∈ L∞(V ) = L∞(V, dm)
are defined by Tf = PMf , Hf = (I − P )Mf , where Mf is the operator of
multiplication by f .

2.2 Differentiation formulas for fiber integrations

Let V ⊂ Cm+n be a bounded domain with smooth boundary fibred over
a domain D ⊂ Cm. Let ρ be a defining function for V , V = {(z, w) ∈
Cm+n; ρ(z, w) < 0}. The coordinates will be written as z = (zα), w = (wj),
the (1, 0)-tangent vectors as Z,W and the (0, 1)-tangent vectors as Z,W . We
assume that the projection π : Cm+n → Cm on V is of rank m and each
Vz = π−1(z) is a connected domain. In particular each Vz is bounded with
smooth boundary. Let ν denote the surface measure on ∂V . We fix z0 ∈ D
and consider the differentiation by ∂α of integrations

∫

Vz
f(z, w)dm(w) and

∫

∂Vz
f(z, w)dν(w) of a function f along the fiber Vz and its boundary ∂Vz. For

simplicity we assume z0 = 0 ∈ D.

Lemma 2.1. Suppose there is a (1, 0)-vector field Lα = ∂α + Uα = ∂α +
∑

j U
j
α

∂
∂wj such that Lα(ρ) = 0 on ∂V , i.e. Lα is tangential to the boundary

∂V and π∗(Lα + Uα) = ∂α. Then we have

∂α

∫

Vz

f(z, w)dm(w) =

∫

Vz

(Lα + div(Uα)) fdm(w)

and

∂α

∫

∂Vz

f(z, w)ν =

∫

∂Vz

(Lα + divν(Lα)) fν
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where div(Uα) is the divergence of Uα with respect to the Euclidean measure
dm(w) on Vz and divν(Lα) is the divergence of the tangential vector field Lα

with respect to the area form ν on ∂Vz, i.e., defined by the Lie derivative of ν,
Lie(Lα)ν = divν(Lα)ν.

Proof. This is presumably well-known, see e.g. [12]; we sketch a proof here for
completeness. It is sufficient to consider the case when D is the unit disk in C,
so z = x+ iy. Consider the real vector field ∂x and a tangential lift H = ∂x+U
of ∂, dρ(H) = 0 when ρ = 0. The local diffeomorphism, say exp(xH), generated
by the non-vanishing vector field H preserves the level set ρ = 0 and thus maps
V0 to Vx, since π∗(H) = ∂x, namely exp(xH) : {0} × V0 → {x} × Vx. We have
then,

∫

Vx

f(x,w)dm(w) =

∫

V0

f(exp(xH)(0, w))J(exp(xH))(w)dm(w)

where J(exp(xH))(w) is the Jacobian of exp(xH) above in the vertical direc-
tion. Performing differentiation d

dx and evaluating at x = 0 we find

d

dx

∫

Vx

f(x,w)dm(w) =

∫

V0

(Hf(w) + div(U)f) dm(w)

since d
dxJ(exp(xH)) = div(U) is the divergence of H = ∂x + U with respect

to the volume dm at x = 0. The same argument works for any vector field
a∂x + b∂y. The first claim follows by taking complexification. The second
claim is almost the same.

Denote Lᾱ = Lα = ∂̄α +
∑

j U
j
α

∂
∂̄wj . Taking the complex conjugate of the

above formula we obtain the similar differentiation formula for Lᾱ.

2.3 Bundles of Hilbert spaces of holomorphic functions, Hermi-

tian connection and Curvature

Let V ⊂ Cn+m be a bounded domain fibered over D ⊂ Cn as above. Suppose
for each z ∈ D there is a Hilbert space Ez of holomorphic functions on Vz.
For such families we shall define a notion of Hermitian bundles and curvature
operator. A general treatment is to view Ez as Bergman space of (n, 0)-forms
but we shall adapt a rather elementary and ad-hoc approach. On the other
hand our definition includes families of Hilbert spaces whose norms are not
defined in terms of measures; see Remark 2.4 below.

Definition 2.2. Let E = {Ez, z ∈ D} be a family of Hilbert spaces Ez of
holomorphic functions on Vz = π−1(z).

1. The family E = {Ez} is called a holomorphic bundle of Hilbert spaces
over D if for each z0 ∈ D there is a neighborhood U0 ⊂ D of z0, a linear
space F (U0) of holomorphic functions on π−1(U0) ⊂ V such that the
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subspace Fz := F (U0)|z = {u(z, ·);u ∈ F (U0)} is dense in Ez, and the
coefficients uk(z, w) in the Taylor expansion of u(z, w) in z near z0,

u(z, w) = u(z0, w) + u1(z, w) · (z − z0) + · · ·+ uk(z, w) · ⊙
k(z − z0) + . . .

are all in Ez , z ∈ U0. Here uk(z, w) takes value in the symmetric tensors
⊙k

C
n and u · v is the standard pairing in ⊙k

C
n. The union of all spaces

F (U0) will be denoted by O(E) and will be called the space of locally
holomorphic sections of E.

2. A smooth section u of the bundle E near z0 is defined as a function
u = u(z, w) ∈ C∞(π−1(U0)) for a neighborhood U0 of z0, such that
u(z, ·) is in the dense subspace Fz and all derivatives in z are in Fz ,
∂k1

1 · · · ∂kn
n ∂̄l1

1 · · · ∂̄l1
n u(z, ·) ∈ Fz , z ∈ U0. The space of smooth sections

will be denoted by Γ(E). Note that O(E) ⊂ Γ(E).

3. A connection on Γ(E) is defined as a linear operator X → ∇X : Γ(E) →
Γ(E), for vector fields X on D such that

∇X(fg) = f∇Xg + (Xf)g

and
∇fXg = f∇Xg,

f ∈ C∞(D) and g ∈ Γ(E) whenever all the quantities are in Γ(E). ∇ is
called a Chern connection if

∇Z̄u = 0, ∂Z〈u, v〉 = 〈∇Zu, v〉

for all u, v ∈ O(E), and (1, 0)-vector fields Z on D.

4. The curvature operator R(Z, Z̄) at z0, Z ∈ T
(1,0
z0 (D), is defined as a linear

operator on the dense subspace Fz0 ⊂ Ez0 by

∂̄Z∂Z〈u, v〉 = −〈R(Z, Z̄)u(z), v(z)〉+ 〈∇Zu,∇Zv〉, z = z0

for all u, v ∈ O(E).

Remark 2.3. When E is a finite-dimensional holomorphic Hermitian vector
bundle over D it is an elementary fact that the curvature is determined by the
formula above. We claim that in our case the curvature operator (R(Z, Z̄)u)(z0)
is well-defined and depends only on u(z0), as in the finite-dimensional case. To
see this it is enough to take D to be the unit disk and z0 = 0. Let u(z) be a
holomorphic section near 0, such that u(0) = 0, and write u as

u(z) = u(0) + zu1(z) = zu1(z),

for some holomorphic function u1(z) = u1(z, w).
We prove that (R(∂, ∂̄)u)(0) = 0. Let v(z) be any holomorphic section near 0,
and perform the differentiation

∂〈u, v〉 = ∂〈zu1, v〉 = 〈z∇u1 + u1(z), v〉 = z〈∇u1, v〉+ 〈u1, v〉,
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194 M. Englǐs, G. Zhang

and
∂̄∂〈u, v〉 = z∂̄〈∇u1, v〉+ ∂̄〈u1, v〉 = z∂̄〈∇u1, v〉+ 〈u1,∇v〉. (2.1)

Here we have used the fact that u1 is holomorphic and ∂̄〈u1, v〉 = ∂〈v, u1〉.
Evaluating at 0 gives ∂̄∂〈u, v〉(0) = 〈u1(0),∇v(0)〉. On the other hand ∇u =
∇(zu1) = u1 + z∇u1 so that

〈∇u(0),∇v(0)〉 = 〈u1(0),∇v(0)〉.

It follows from the definition of the curvature that 〈(R(∂, ∂̄)u)(0), v(0)〉 = 0,
for all v. By the density assumption we have (R(∂, ∂̄)u)(0) = 0, proving our
claim.

There are many examples where the above assumption is satisfied, for example
when each Vz is a Reinhardt domain and E is the bundle of Bergman or Hardy
spaces where the dense subspace F can be taken to be the space of polynomials
in Cn. For general domains V and the family of Bergman spaces on Vz some
related questions have been studied; see e.g. [3, Lemma 3.4].

Example 2.4. A natural family of Bergman spaces on the unit disc D is the
following: Consider the unit ball B ∈ C1+n as fibered over the unit disk D,
the fiber being the ball Bz = {w ∈ Cn; |w|2 ≤ 1− |z|2}. Let Ez be the Hilbert
space of holomorphic functions on Bz with the reproducing kernel

(1− |z|2)1+α

(1− |z|2 − ww′)1+α+n
.

For α > −1 this corresponds to the Bergman space L2
a(Bz , e

−φdm(w)), e−φ =
(1− |z|2 − |w|2)α.

3 Trace formula for curvature of bundles of Bergman spaces.

The product case

3.1 Connection and curvature on bundles of Bergman spaces

We consider first the case when V = D × V is a product domain where D
and V are open domains in Cm and Cn respectively. This case is somewhat
easier than the general case of fibrations in the next section, and we give a
separate treatment here. In particular we obtain a Dixmier trace formula.
Some other results can be obtained as corollaries of the general case.
We assume further that the domain V = {w ∈ Cn, ρ(w) < 0} is a strongly
pseudoconvex bounded domain in Cn with smooth boundary, with ρ being a
strictly plurisubharmonic function on a neighborhood of the closure of V .
Let φ(z, w) be a smooth plurisubharmonic function on D× V . The Hessian of
φ(z, w) will be written as φαβ̄ , φαj̄ , φjk̄, etc., and the inverse of (φjk̄) as (φ

kj̄).
We write the function φ(z, w) of w as φ(z), φ(z)(w) = φ(z, w).
We consider the families L2(V, e−φ(z)), L2

h(V, e
−φ(z)) of L2-spaces and Bergman

spaces and view L2
z = L2(V, e−φ(z)) → z ∈ D, Ez = L2

h(V, e
−φ(z)) → z ∈ D
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as bundles of L2 and Bergman spaces on D; we denote them by L2 and E
respectively. Note that E is a holomorphic bundle of Hilbert spaces in the
sense of Definition 2.2 (though L2 is not, although still being a bundle of
Hilbert spaces in an obvious sense with a connection and curvature obtained
by differentiation of L2-integration). In the rest of this paper we shall consider
only the connections ∇ such that ∇Zu(z, w) = ∂Zu(z, w).
The Chern connections on L2 and E are

∇L2

Z = ∂Z − ∂Zφ,

∇E
Z = P∇L2

Z . (3.1)

It is a straightforward computation that the curvature RL2

(Z,Z) of ∇L2

is
then

RL2

(Z,Z) = ∂Z∂Zφ,

namely the multiplication operator by ∂Z∂Zφ. We shall be only interested in
the curvature RE .
The following proposition is essentially proved in [2]; for the convenience of the
reader, we provide a detailed proof here.

Proposition 3.1. The curvature of the vector bundle E is given by

R(Z,Z) = T∂Z∂
Z
φ −H∗

∂ZφH∂Zφ.

Proof. We perform differentiations according to the definition, for u ∈ O(E):

∂Z∂Z‖u‖
2 = −〈RL2

(Z,Z)u, u〉+ ‖∇L2

Z u‖2.

On the other hand the same computation with u being viewed as section of E
gives

∂Z∂Z‖u‖
2 = −〈RE(Z,Z)u, u〉+ ‖∇E

Zu‖
2.

Thus

〈RE(Z,Z)u, u〉 = 〈RL2

(Z,Z)u, u〉 −
(

‖∇L2

Z u‖2 − ‖∇E
Zu‖

2
)

= 〈T∂Z∂
Z
φu, u〉 − ‖(I − P )∇L2

Z u‖2.

The curvature tensor RE(Z,Z)u at z = z0 depends only on u(z0) so we can

choose u = u(z0) a constant section. Consequently ∇L2

Z = −∂Zφ and we find

〈RE(Z,Z)u, u〉 = 〈T∂Z∂
Z
φu, u〉 − 〈H∗

∂ZφH∂Zφu, u〉,

as claimed.

It seems interesting to note that the curvature operator Rαᾱ is the sum of a
positive invertible operator T∂Z∂Zφ and a compact operator, namely a Fred-
holm operator. Moreover the compact operator is in the Dixmier class and we
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can compute its Dixmier trace; see e.g [5] for the general theory of Dixmier
trace. Recall that the boundary of a smoothly-bounded strictly pseudoconvex
domain Ω comes equipped with the dual Levi form L∂Ω on T (0,1)∂Ω, so that,
in particular, for any f, g ∈ C∞(∂Ω) one has the function L(∂̄bf, ∂̄bg), where
∂̄b is the boundary Cauchy-Riemann operator on ∂Ω (see [7]).

Theorem 3.2. Let n ≥ 2. Suppose V is a strongly pseudoconvex domain with
smooth boundary ∂V . Suppose further that φ is smooth on D × V , where V
is the closure of V . Then we have

Trω(PRL2

(Z,Z)P −R(Z,Z))n

= Trω(T∂Z∂Zφ −R(Z,Z))n

=
1

n!(2π)n

∫

∂V

L∂V (∂̄b∂Zφ, ∂̄b∂Zφ)
n η ∧ (dη)n−1

where η = Im(∂ρ) = ∂ρ−∂̄ρ
2i .

Proof. By the last proposition, R(Z,Z) = T∂Z∂Zφ − H∗
∂ZφH∂Zφ. The L2-

curvature is RL2

(Z,Z) = ∂Z∂Zφ and PRL2

(Z,Z)|Ez
= T∂Z∂Zφ is the Toeplitz

operator. The Dixmier trace formula then follows from [7, Theorem 11].

The curvature tensor R can be viewed as an operator on the space
L2
h(V, e

−φ(z,·)) ⊗ T (1,0)D, via the Hermitian form R(u ⊗ ∂j , v ⊗ ∂j) =
〈R(∂j , ∂̄j)u, v〉. Similarly the dual Levi form L(∂̄b∂jφ, ∂̄b∂kφ) can be viewed
as a bivector and we let Ln be its power. Thus Trω(T∂Z ∂̄Zφ −R(Z,Z))n is an

element of the space of symmetric tensors ⊙n(T (1,0)(D) ⊗ T (1,0)(D)) and the
above result can also be written as

Trω(T∂∂φ̄ −R)n =
1

n!(2π)n

∫

∂V

trLn(∂̄b∂φ, ∂̄b∂φ) η ∧ (dη)n−1.

We finally remark that from Proposition 3.1 one gets very simple “semiclassi-
cal” asymptotics of the curvature when the potential φ is rescaled to mφ with
m → +∞ interpreted as the reciprocal of the Planck constant: namely,

R(m)(Z,Z) = mT
(m)
∂Z∂Zφ −m2(H

(m)
∂Zφ)

∗H
(m)
∂Zφ.

The product (H
(m)
∂Zφ)

∗H
(m)
∂Zφ = T

(m)
|∂Zφ|2 − T

(m)

∂̄Zφ
T

(m)
∂Zφ involves the product of two

Toeplitz operators, and can further be expanded as a sum of Toeplitz operators
using the standard techniques [6]:

(H(m)
g )∗H

(m)
f =

∞
∑

j=1

m−jTCj(f,g) (3.2)
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in operator norm, with some bidifferential operators Cj , where C1(f, g) =
L∂V(∂̄bf, ∂̄bg). Consequently,

R(m)(Z,Z) = mT
(m)

∂Z∂
Z
φ−L(∂̄b∂Zφ,∂̄b∂Zφ)

−

∞
∑

j=2

m2−jT
(m)
Cj(∂Zφ,∂Zφ),

with the cochains Cj above.

3.2 Induced connection on Toeplitz operators

We recall [1] that the induced connection on sections T of End(W) of a con-
nection ∇ on a complex bundle W is

∇ind
Z T = [∇Z , T ].

For any f = f(z, w) in C∞(D × V ) we denote, with some abuse of nota-
tion, Mf = Mf(z,·) and Tf = Tf(z,·) the multiplication operator by f(z, ·)

on L2(V, e−φ(z,·)) and respectively the corresponding Toeplitz operator on the
Bergman space L2

h(V, e
−φ(z,·)). We define the connection ∇ind

Z on the sections
z 7→ Tf(z,·) formally as above with ∇ being the (1, 0)-part in (3.1).

The next lemma justifies the definition. Let K(z;w,w′) be the Bergman kernel
for L2

h(V, e
−φ(z,·)) for each fixed z ∈ D.

Lemma 3.3. The induced connection∇ind
Z Tf on sections Tf = Tf(z,·) of Toeplitz

operators is a bounded operator for each z and is given by

∇ind
Z Tf = T∂Zf −H∗

f
H∂Zφ, ∂Ind

Z
Tf = T∂

Z
f −H∗

∂Zφ
Hf .

Proof. We prove the first formula for ∇ind
Z Tf , the second for ∂ind

Z
is done simi-

larly. We have

∇ind
Z Tf = [P∂ZP − T∂Zφ, Tf ] = [P∂ZP, Tf ] + [Tf , T∂Zφ],

and

[P∂ZP, Tf ] = P∂ZTf − TfP∂ZP.

The operator g 7→ ∇ind
Z Tfg depends only on g at z and we can take a section

g = g(w) independent of z, so that ∂Zg = 0. Thus

[P∂ZP, Tf ]g = P∂ZTfg − TfP∂ZPg = P∂ZTfg.

We perform the differentiation ∂Z on the Toeplitz operator

Tfg(w) =

∫

V

f(z, u)K(z;w, u)e−φ(z;u)g(u)dm(u)
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and get

〈∂ZTfg, h〉

=

∫

V

∫

V

∂Z

[

f(z, u))K(z;w, u)e−φ(z;u)g(u)
]

dm(u)h(w)e−φ(z;w) dm(w)

=

∫

V

∫

V

∂Z

[

f(z, u))K(z;w, u)e−φ(z;u)g(u)h(w)e−φ(z;w)
]

dm(u) dm(w)

−

∫

V

∫

V

f(z, u))K(z;w, u)e−φ(z;u)g(u)∂Z

[

h(w)e−φ(z;w)
]

dm(u) dm(w)

= ∂Z〈Tfg, h〉+

∫

V

∫

V

f(z, u))K(z;w, u)e−φ(z;u)g(u)h(w)

∂Zφ(z;w)e
−φ(z;w) dm(u) dm(w)

=

∫

V

∂Z(fe
−φ)gh dm+

∫

V

(Tfg)(∂Zφ)he
−φ dm

= 〈(Teφ∂Z(fe−φ) + T∂ZφTf )g, h〉.

Thus ∂ZTf = T∂Zf−f∂Zφ + T∂ZφTf (hence, in particular, P∂ZTf = ∂ZTf) and

∇ind
Z Tf = [Tf , T∂Zφ] + T∂Zf−f∂Zφ + T∂ZφTf

= T∂Zf−f∂Zφ + TfT∂Zφ = T∂Zf −H∗
f
H∂Zφ.

This completes the proof.

Note that, by the main result of [7], the operators H∗
f
H∂Zφ and H∗

∂Zφ
Hf above

again belong to the Lorentz class Sn,∞ (more precisely: upon identifying holo-
morphic functions on V with their distributional boundary values on ∂V , these
operators become generalized Toeplitz operators of order −1 on the Hardy
space) and we have formulas for the Dixmier trace of their n-th power in terms
of the dual Levi form.
Recall that the boundary Poisson bracket (cf. [7]) on ∂V is given by

{f, g}b := L∂V (∂̄bg, ∂̄bf̄)− L∂V (∂̄bf, ∂̄bḡ).

Theorem 3.4. Suppose V is a strongly pseudoconvex domain with smooth
boundary ∂V , V = {w ∈ Cn, r(w) < 0}, and r(w) = 0, ∂wr(w) 6= 0 on ∂V .
Then we have

Trω ∇ind
Z [Tf , Tg]

n =
1

(n− 1)!(2π)n
∫

∂V

({∂Zf, g}b + {f, ∂Zg}b){f, g}
n−1
b η ∧ (dη)n−1.

Proof. We compute the commutator

∇ind
Z [Tf , Tg]

n = [∇Z , [Tf , Tg]
n] =

n
∑

j=1

[Tf , Tg]
j−1[∇Z , [Tf , Tg]][Tf , Tg]

n−j ,
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and
[∇Z , [Tf , Tg]] = [[∇Z , Tf ], Tg] + [Tf , [∇Z , Tg]].

The commutator [∇Z , Tf ] is computed in Lemma 3.3 and equals T∂Zf−H∗
f
H∂Zφ

with H∗
f
H∂Zφ being (after passing again to the Hardy space via bound-

ary values) a Toeplitz operator of degree −1; similarly for the second term
[Tf , [∇Z , Tg]]. Thus

∇ind
Z [Tf , Tg]

n =

n
∑

j=1

[Tf , Tg]
j−1([T∂Zf , Tg] + [Tf , T∂Zg])[Tf , Tg]

n−j + U

with the rest term U being a Toeplitz operator of degree −n − 1. The rest
follows then from Theorem 11 in [7].

We again observe that Lemma 3.3 gives very simple “semiclassical” asymptotics
for the induced connection when the potential φ is rescaled to mφ and m →
+∞: namely,

∇ind
Z Tf = T∂Zf −mH∗

f
H∂Zφ, ∂Ind

Z
Tf = T∂Zf −mH∗

∂Zφ
Hf .

Applying (3.2) to the products of Hankel operators, as before, yields

∇ind
Z Tf = T∂Zf−L(∂̄b∂Zφ,∂̄bf)

−
∞
∑

j=2

m1−jTCj(∂Zφ,f),

and similarly for ∂Ind
Z

Tf .
We remark that the curvature of the induced connection is identically zero, by
the Jacobi identity.

4 Trace formula for curvature of bundles of Hardy and

Bergman spaces. The general case

We consider now the case of a holomorphic fibration π : V → D with strongly
pseudoconvex bounded domains Vz = π−1(z), z ∈ D, generalizing the previous
case with V = D × V . In [12] a curvature formula is found by following the
earlier approach in [2] using (n, 0)-forms. We shall use our elementary definition
above and derive a curvature formula using Toeplitz operators. Our formula
is different from that in [12] and in particular we prove that the curvature
operator is a Toeplitz operator of order 1 for general fibrations whose principal
symbol is positive.
We assume now that V = {(z, w) ∈ Cn+m; ρ(z, w) < 0} is a bounded strongly
pseudoconvex domain in Cn+m fibered over a domainD ⊂ Cn, with ρ a strongly
pluri-subharmonic function defined in a neighborhood of the closure of V . We
write φ = − log(−ρ). It might possible to choose a different φ independent of
the defining function ρ but we shall fix this choice in this section. We recall
the following lemma from [4].
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Lemma 4.1. The vector fields

Lα = ∂α + U j
α∂j = ∂α − φαk̄φ

jk̄∂j

are smooth on the closure of V and are tangential on ∂V .

This is easily verified using the explicit formulas

φk̄j = (−ρ)
(

ρk̄j +
ρjρk̄

ρ− |∂ρ|2

)

and

U j
α =

ρjρα
ρ− |∂ρ|2

− ραk̄ρ
k̄j −

ρjρk̄ραk̄
ρ− |∂ρ|2

. (4.1)

Here ρk̄j is the inverse matrix to ρjk̄, ρ
j := ρk̄jρk̄, ρ

k̄ := ρk̄jρj , |∂ρ|
2 := ρjρj is

the norm of ∂ρ with respect to (∂∂̄ρ)−1 = (ρk̄j), and we are (as always) using
the usual summation convention of automatically summing over any index that
appears twice.

4.1 Bundle of Hardy spaces

Throughout this subsection, we will denote by the same letter a holomorphic
function in Vz and its boundary value on ∂Vz (for ease of notation).
We keep our previous notation for the L2-spaces L2(∂Vz) on the boundary
∂Vz with respect to the surface measure, and for the Hardy spaces L2

h(∂Vz)
of boundary values of holomorphic functions in Vz, with Π = Πz the Szegö
projection of L2 onto L2

h. For f ∈ C∞(∂Vz), the Toeplitz operator Tf on the
Hardy space is defined by Tfu = Π(fu), and the Hankel operator Hf from the
Hardy space into its orthogonal complement is defined by Hfu = (I −Π)(fu).
(We will not consider the Toeplitz and Hankel operators on Bergman spaces in
this subsection, so the use of the same notation Tf , Hf for them should cause
no confusion.)
Furthermore, for a pseudo-differential operator A on L2(∂Vz), TA = ΠAΠ is
the (generalized) Toeplitz operator on L2

h(∂V), sometimes written as T (A) for
typographical reasons. The order of TA is defined as the order of A, and the
symbol σ(TA) of TA is defined as the restriction of the symbol of A to the
subset

Σz := {(x, tηx) : x ∈ ∂Vz, t > 0}

of the cotangent bundle T ∗∂Vz; here η is the one-form η = Im ρ(z) = 1
2i(∂ρ(z)−

∂̄ρ(z)) (which thus depends on z, although this is not reflected by the notation).
The reader is referred i.e. to Section 2.1 of [7] for more details on generalized
Toeplitz operators.
We also define generalized Hankel operators with pseudo-differential symbols
by HA = (I − Π)AΠ. Note that T ∗

A = TA∗ and TAB − TATB = H∗
A∗HB. The

operators Tf are recovered as TA for A the operator of multiplication by f ;
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in particular, Tf is of order zero and σ(Tf ) = f . It also follows from the proof
of [7, Theorem 9] that for f, g ∈ C∞(∂Vz), the product H∗

gHf = Tfg − TgTf is
of order −1 with principal symbol

σ(H∗
gHf )(x, tηx) =

1
tL∂Vz

(∂̄bf, ∂̄bg)(x).

A special case of the above operators are, in fact, the differentiations ∂j in
the fiber variables. Namely, with the notation K for the Poisson extension
operator (assigning to a function u on ∂Vz the harmonic function Ku on Vz

with boundary values u) and r for its inverse (i.e. the operator of taking the
boundary values of a harmonic function), it is known that r∂jK (which is well-
defined since the derivative ∂jKu of a harmonic function Ku is again harmonic)
is a pseudo-differential operator Zj of order 1 on the boundary. On the cone Σ,
the symbol of Zj satisfies

σ(Zj)(x, tηx) ≡ σ(TZj
)(x, tηx) = tρj . (4.2)

By the very definition of Zj ,
TZj

= ∂j .

Since the derivative of a holomorphic function is again holomorphic, we have
ZjΠ = ΠZjΠ, i.e. TZj

is just the restriction of Zj to the Hardy space; in par-
ticular, HZj

= 0, and

TAZj
= TATZj

= TA∂j , HATZj
= HAZj

for any generalized Toeplitz operator TA and generalized Hankel operator HA.
In this subsection we consider the bundle H of Hardy spaces Hz = L2

h(∂Vz).
Setting as before Uα = U j

α∂j , so that Lα = ∂α + Uα, we also denote by

dα := divν Lα

the divergence of the tangential operator Lα with respect to the surface measure
on ∂Vz.
By Lemma 2.1, we then get for u, v ∈ O(E),

∂α

∫

∂Vz

uv dν =

∫

∂Vz

(Lα + dα)(uv) dν =

∫

∂Vz

(Lα + dα)u v dν

since Lαv = Lαv = 0 by the holomorphy of v. As in Section 3.1, it transpires
that the Chern connection on H is given by

∇H
α u = Π(Lα + dα)u. (4.3)

Our main result is that the associated curvature is a generalized Toeplitz op-
erator of order 1.

Theorem 4.2. The curvature of ∇H is given by

Rαβ̄ = −T(Lβ̄U
j
α)Zj

− TLβ̄dα
−H∗

Uk
β
Zk+dβ

HUj
αZj+dα

.
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Proof. By the definition of curvature and (4.3), for u, v ∈ O(H),

〈Rαβu, v〉z = 〈Π(Lα + dα)u,Π(Lβ + dβ)v〉z − ∂β̄∂α〈u, v〉z .

Using Lemma 2.1, we have

∂β̄∂α〈u, v〉z = ∂β̄∂α

∫

∂Vz

uv dν

=

∫

∂Vz

(Lβ̄ + dβ̄)(Lα + dα)(uv) dν

=

∫

∂Vz

(Lβ̄ + dβ̄)[(Lα + dα)u · v] dν

=

∫

∂Vz

[Lβ̄(Lα + dα)u · v]

+ [(Lα + dα)u · (Lβ + dβ)v] dν

= 〈Π(Lβ̄(Lα + dα)u), v〉z + 〈(Lα + dα)u, (Lβ + dβ)v〉z .

Consequently,

〈Rαβu, v〉z = −〈(I −Π)(Lα + dα)u, (I −Π)(Lβ + dβ〉z

− 〈Π(Lβ̄(Lα + dα)u), v〉z

= −〈Π(Lβ̄(Lα + dα)u), v〉z − 〈HLα+dα
u,HLβ+dβ

v〉z .

Now

HLα
u = (I −Π)(∂αu+ U j

α∂ju)

= (I − P )(U j
α∂ju) = HUj

α
∂ju

= HUj
α
TZj

u ≡ HUj
αZj

u,

since ∂αu is holomorphic. Similarly, Π(Lβ̄dαu) = Π(Lβ̄dα)u = TLβ̄dα
u and

Π(Lβ̄Lαu) = ΠLβ̄(∂αu+ U j
α∂ju)

= ΠLβ̄(U
j
α∂ju) = Π(Lβ̄U

j
α)∂ju

= TLβ̄U
j
α
TZj

u ≡ T(Lβ̄U
j
α)Zj

u,

and the assertion follows.

We proceed to examine the principal symbol of the curvature operator.

Theorem 4.3. (i) H∗
Uk

β
Zk+dβ

HUj
αZj+dα

is a generalized Toeplitz operator of

order 1, whose principal symbol, however, vanishes; consequently, it is in fact
a generalized Toeplitz operator of order zero (hence, in particular, bounded).
(ii) T(Lβ̄U

j
α)Zj

is a generalized Toeplitz operator of order 1, and the matrix of

principal symbols {σ(−T(Lβ̄U
j
α)Zj

)}mα,β=1 is positive definite.
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Altogether, we thus see that (Rαβ̄) is a matrix of generalized Toeplitz operators
of order 1 with positive-definite principal symbol; the positivity of the matrix
(Rαβ̄) is generally defined as Nagano positivity [2].

Proof. (i) The claim concerning the order is immediate from the formula
H∗

A∗HB = TAB − TATB and the properties of generalized Toeplitz operators
(noting that both U j

αZj + dα and Uk
βZk + dβ are pseudo-differential operators

of order 1 on the boundary).
To compute the principal symbol, note that Hdβ

and Hdα
are of order zero,

hence it is enough to compute the principal symbol of

H∗
Uk

β
Zk

HUj
αZj

= T ∗
Zk

H∗
Uk

β

HUj
α
TZj

,

which equals, by (4.2),

tρk̄L∂Vz
(∂̄bU

j
α, ∂̄bU

k
β )ρj = tL∂Vz

(ρj ∂̄bU
j
α, ρk∂̄bU

k
β ). (4.4)

Now on the boundary, we have 0 = Lαρ = ρα + U j
αρj , and since ∂̄b depends

only on boundary values, this gives, by the Leibniz rule,

ρj ∂̄bU
j
α = −∂̄bρα − U j

α∂̄bρj .

Hence the principal symbol equals (for brevity we write just L for L∂Vz
through-

out the rest of this proof)

tL(∂̄bρα + U j
α∂̄bρj , ∂̄bρβ + Uk

β ∂̄bρk)

= t
[

L(∂̄bρα, ∂̄bρβ) + L(∂̄bρα, ∂̄bρℓ)U ℓ
β + Um

α L(∂̄bρm, ∂̄bρβ)

+ Um
α L(∂̄bρm, ∂̄bρℓ)U ℓ

β

]

(4.5)

Recall now from [7, page 618] that, quite generally,

L(∂̄bf, ∂̄bg) =

[

∂̄g
0

]∗ [
∂∂̄ρ ∂̄ρ
∂ρ 0

]−1 [
∂̄f
0

]

.

Computing the inverse of the middle matrix, this gives explicitly, in our nota-
tion,

L(∂̄bf, ∂̄bg) = ∂k̄f
(

ρk̄j −
ρk̄ρj

|∂ρ|2

)

∂j ḡ. (4.6)

Thus, in particular,

L(∂̄bρα, ∂̄bρβ) = ραk̄

(

ρk̄j −
ρk̄ρj

|∂ρ|2

)

ρjβ̄ ,

L(∂̄bρα, ∂̄bρℓ) = ραℓ̄ −
ραk̄ρ

k̄ρℓ̄
|∂ρ|2

,

L(∂̄bρm, ∂̄bρβ) = ρmβ̄ −
ρmρjρjβ̄
|∂ρ|2

,

L(∂̄bρm, ∂̄bρℓ) = ρmℓ̄ −
ρmρℓ̄
|∂ρ|2

.
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Next, from (4.1) we have

Um
α = −

ρmρα
|∂ρ|2

− ραs̄ρ
s̄m +

ρmρs̄ραs̄
|∂ρ|2

on ∂V . (4.7)

Hence

Um
α L(∂̄bρm, ∂̄bρβ) =

(

ρmβ̄ −
ρmρjρjβ̄
|∂ρ|2

)(ρmρs̄ραs̄
|∂ρ|2

− ραs̄ρ
s̄m −

ρmρα
|∂ρ|2

)

=
ρmβ̄ρ

mρs̄ραs̄

|∂ρ|2
− ρmβ̄ραs̄ρ

s̄m −
ρmβ̄ρ

mρα

|∂ρ|2
−

ρjρjβ̄ρ
s̄ραs̄

|∂ρ|2

+
ρjρjβ̄ραs̄ρ

s̄

|∂ρ|2
+

ραρ
jρjβ̄

|∂ρ|2

= ραs̄

(

− ρs̄m +
ρmρs̄

|∂ρ|2

)

ρmβ̄ = −L(∂̄bρα, ∂̄bρβ),

since on the middle line the first term cancels the fourth and the third term
cancels the sixth. Similarly,

U ℓ
βL(∂̄bρα, ∂̄bρℓ) = −L(∂̄bρα, ∂̄bρβ)

and
Um
α L(∂̄bρm, ∂̄bρℓ)U ℓ

β = L(∂̄bρα, ∂̄bρβ).

Consequently, in (4.5) the first and fourth terms cancel the second and third,
and the symbol vanishes, as claimed.
(ii) Using again the formula (4.2) for the symbol of TZj

, we have

σ(T(Lβ̄U
j
α)Zj

)(x, tηx) = tρj(x)Lβ̄U
j
α(x).

By the Leibniz rule,

ρjLβ̄U
j
α = Lβ̄(ρjU

j
α)− U j

αLβ̄(ρj).

Now Lβ̄ is a tangential operator, so the boundary values of Lβ̄(ρjU
j
α) depend

only on the boundary values of ρjU
j
α; but since Lαρ = 0 there, we have

0 = Lαρ = ρα + U j
αρj ,

or ρjU
j
α = −ρα on the boundary. Thus on the boundary,

−ρjLβ̄U
j
α = Lβ̄(ρα) + U j

αLβ̄(ρj)

= ραβ̄ + Uk
βραk̄ + U j

αρjβ̄ + U j
αU

k
βρjk̄

=
[

I, U j
α

]

[

ραβ̄ ραk̄
ρjβ̄ ρjk̄

]

[

I

Uk
β

]

.

By the hypothesis of strict plurisubharmonicity of ρ on the closure of V , the last
2×2 block matrix is positive definite; hence also the whole product of the three
block matrices is positive definite, proving the claim.
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Remark 4.4. By an analogous computation as in the proof of part (i) above,
one can derive the following explicit formula for the last symbol:

σ(T(Lβ̄U
j
α)Zj

) = ραβ̄ + ραℓ̄

(ρmρℓ̄

|∂ρ|2
− ρℓ̄m

)

ρmβ̄ +
ραρβ̄ − ρmβ̄ρ

mρα − ραℓ̄ρ
ℓ̄ρβ̄

|∂ρ|2
,

which however is not very enlightening, nor is it immediate that it is positive
definite.

Example 4.5. We work out the various quantities in this subsection for the
situation of the ball V = B

n+m from Example 2.4 with α = 1. By (4.1), upon
a small computation,

U j
α = −

z̄α
1− |z|2

wj .

Hence HUj
α
= − z̄α

1−|z|2Hwj
= 0 since wj is holomorphic.

To compute dα, observe that, by rotational symmetry in the fibers, it must
be constant on each ∂Vz. Applying Lemma 2.1 to the function constant one
therefore gives

∂αν(∂Vz) = dαν(∂Vz),

or dα = ∂α log ν(∂Vz). As in our case ν(∂Vz) = const.(1−|z|2)(2m−1)/2, we get

dα = −(m− 1
2 )

z̄α
1− |z|2

.

Further computations give

Lβ̄dα = ∂β̄dα = −(m− 1
2 )∂β̄∂α log

1

1− |z|2
,

Lβ̄U
j
α∂ju = −

(

∂β̄∂α log
1

1− |z|2

)

Rwu,

where Rw denotes the radial derivative in the w-variables. Hence Hdα
= 0 and

thus both Hankel operators in Theorem 4.2 vanish, while the Toeplitz operator
there become

Rαβ̄ =
(

∂β̄∂α log
1

1− |z|2

)

(Rw +m− 1
2 ).

Note that the matrix {∂β̄∂α log 1
1−|z|2 }

n
α,β=1 is nothing else but the standard

invariant metric onB
n (hence, in particular, positive definite, in full accordance

with part (ii) of the last theorem).

We conclude by computing the induced connection ∇ind = [∇, ·] on Toeplitz
operators. We deal only with the holomorphic part, leaving ∂̄ind to the reader.

Theorem 4.6. We have

∇ind
α Tf = TLαf −H∗

f̄HUα+dα
.

Furthermore, the second term is actually an operator of order −1 (hence, be-
longing to the Lorentz ideal Sn,∞).
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Proof. By the definition of the induced connection, we have for g ∈ O(H)

∇ind
α Tfg = [Π(Lα + dα)Π, Tf ]g = [Π∂αΠ, Tf ]g + [TUα+dα

, Tf ]g

= ∂αTfg − Tf∂αg + [TUα+dα
, Tf ]g,

where we dropped some Π’s on the last line since ∂α preserves O(H). Now,
recalling the definition of the Chern connection and using Lemma 2.1, for g, h ∈
O(H),

〈∂αTfg, h〉 = 〈(∇H
α − Uα − dα)Tfg, h〉

= ∂α〈Tfg, h〉 − 〈TUα+dα
Tfg, h〉

=

∫

∂Vz

(Lα + dα)(fgh) dν − 〈TUα+dα
Tfg, h〉

=

∫

∂Vz

((Lα + dα)(fg))h dν − 〈TUα+dα
Tfg, h〉

=

∫

∂Vz

(((Lαf) + fLα + fdα)g)h dν − 〈TUα+dα
Tfg, h〉

= 〈T(Lαf)+f(Lα+dα)g, h〉 − 〈TUα+dα
Tfg, h〉,

implying that ∂αTf = T(Lαf)+f(Lα+dα) − TUα+dα
Tf . Consequently,

∇ind
α Tf = T(Lαf)+f(Lα+dα) − TUα+dα

Tf − Tf∂α + [TUα+dα
, Tf ]

= T(Lαf)+f(Uα+dα) − TUα+dα
Tf + [TUα+dα

, Tf ]

= T(Lαf)+f(Uα+dα) − TfTUα+dα

= TLαf +H∗
f̄HUα+dα

,

proving the first claim. The second term in the last expression is a generalized
Toeplitz operator of order 0 + 1− 1 = 0, with principal symbol

σ(H∗
f̄HUα

) = σ(H∗
f̄HUm

α
T∂m

) = ρmL(∂̄bU
m
α , ∂̄bf),

which equals, by the same argument as in the proof of part (i) of the last
theorem,

− L(∂̄bρα + Um
α ∂̄bρm, ∂̄bf). (4.8)

Now, using again (4.6),

L(∂̄bρα, ∂̄bf) = ∂j f̄
(

ρk̄j −
ρk̄ρj

|∂ρ|2

)

ραk̄,
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while

Um
α L(∂̄bρm, ∂̄bf) = ∂j f̄

(

ρk̄j −
ρk̄ρj

|∂ρ|2

)

ρmk̄U
m
α

= ∂j f̄
(

U j
α −

ρmρj

|∂ρ|2
Um
α

)

= ∂j f̄
(

U j
α +

ραρ
j

|∂ρ|2

)

as ρmUm
α + ρα = Lαρ = 0

= −ραs̄

(

ρs̄j −
ρs̄ρj

|∂ρ|2

)

∂j f̄ ,

where the last equality follows from (4.7). Thus the two summands in (4.8)
cancel each other, proving the second claim.

From the second part of the last theorem, it follows in particular that
(H∗

f̄
HUα+dα

)n is Dixmier traceable. We have not tried to compute its Dixmier
trace.

4.2 Curvature formula for bundle of Bergman spaces

We now consider the bundle E of Bergman spaces Ez = L2
h(Vz , e

−φ(z)dm).
Keeping our previous notation

Lα = ∂α + Uα, Uα := U j
α∂j , U j

α = −φαk̄φ
jk̄,

we again denote for brevity

dα := divUα = ∂k(U
k
α).

(Note: this is a different quantity than the function dα in the preceding subsec-
tion; however there should be no danger of confusion.) By Lemma 2.1, we then
have, for u, v ∈ O(E),

∂α

∫

Vz

uve−φ dm =

∫

Vz

(Lα + dα)(uve
−φ) dm =

∫

Vz

ve−φ(Lα + dα−Lαφ)u dm.

It follows, as in Section 3.1, that the Chern connection on E is given by

∇E
αu = P (Lα + dα − Lαφ)u. (4.9)

Similarly as for the Hardy space, we will need a generalization of Toeplitz
operators on the Bergman space whose symbols are allowed to be not only
functions but differential operators: namely, quite generally, for a differential
operator L on a complex domain Ω with coefficients smooth on the closure of
Ω we define the Toeplitz operator TL on a weighted Bergman space L2

h(Ω, e
−φ)

by TLu := P (Lu). Of course, TL is in general only a densely defined, closed
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unbounded operator. The simplest examples of such Toeplitz operators are the
coordinate differentiations T∂k

= ∂k.
Generalized Hankel operators with HL : L2

h → L2⊖L2
h are defined analogously

as HLu := (I − P )(Lu).
Note that it is not in general true that T ∗

L = TL∗ , as also witnessed by the
following lemma.

Lemma 4.7. Assume that the weight −e−φ = ρ is a defining function for Ω.
Then T ∗

∂k
= −T2ρk̄

T−1
ρ .

Proof. This is well-known, but we include a proof for completeness. Assume
that u, v ∈ L2

h(Ω, e
−φ) are smooth up to the boundary ∂Ω. By the Stokes

theorem (νk stands for the appropriate component of the outward unit normal
on the boundary),

∫

Ω

∂k(uvρ
2) dm =

∫

∂Ω

uvρ2νk = 0,

since by hypothesis ρ vanishes on the boundary. By the Leibniz rule, it follows
that

0 =

∫

Ω

(−ρ∂ku− 2uρk)ve
−φ dm.

Since this holds for all u, v in a dense subset, we conclude that

TρT∂k
+ 2Tρk

= 0,

or T∂k
= −T−1

ρ T2ρk
. Taking adjoints completes the proof.

Identifying holomorphic functions with their boundary values — or, somewhat
more precisely, using the Poisson extension operator K and the operator r of
restriction to the boundary — one can transfer operators T on the Bergman
space L2

h(Ω, e
−φ) to operators rTK on the Hardy space L2

h(∂Ω) from the pre-
ceding section. Abusing language, we will say that T is a (generalized) Toeplitz
operator (of order k and with leading symbol σ) on the Bergman space if rTK
is a generalized Toeplitz operator (of order k and with symbol σ) on the Hardy
space. It is then a famous result due to Boutet de Monvel that ordinary Toeplitz
operators Tf , with f smooth on the closure of Ω, are Toeplitz operators of order
zero in the above sense, with symbol σ(x, ξ) = f(x), x ∈ ∂Ω; and if f vanishes
on ∂Ω to order k, that Tf is actually of order −k. In particular, if −e−φ = ρ is
a defining function, Tρ is a Toeplitz operator of order −1 with principal symbol

σ(Tρ)(x, tηx) = −2/t.

The product H∗
gHf of two Hankel operators, with f, g smooth on the closure

of Ω, being equal to Tfg − TgTf , is a generalized Toeplitz operator of order −1
(more generally, of order −k − q − 1 if f, g vanish on the boundary to orders
k, q, respectively), with principal symbol again given by (cf. [7, Theorem 9])

σ(H∗
gHf )(x, tηx) = tL∂Ω(∂̄bf, ∂̄bg)(x), (4.10)
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for t > 0 and x ∈ ∂Ω. Furthermore, T∂k
is a generalized Toeplitz operator of

order 1, with symbol
σ(T∂k

)(x, tηx) = tρk|∂Ω. (4.11)

The reader is again referred e.g. to Section 2 in [7] and the references therein
for more details about all the facts just mentioned.
All the above notions apply, in particular, to our domains Vz. We then have
the following theorem. Note that the Toeplitz operator in the formula below
is of order 1, as is the product of the two Hankel operators.

Theorem 4.8. The curvature of ∇E is given by

Rαβ = TLβ̄Lαφ−Lβ̄dα−(Lβ̄U
j
α)∂j

−H∗
Uβ+dβ−Lβφ

HUα+dα−Lαφ.

Proof. By the definition and (4.9), for u, v ∈ O(E),

〈Rαβu, v〉z = 〈P (Lα + dα − Lαφ)u, P (Lβ + dβ − Lβφ)v〉z − ∂β̄∂α〈u, v〉z .

Using again Lemma 2.1, we have

∂β̄∂α〈u, v〉z = ∂β̄∂α

∫

Vz

uve−φ dm

=

∫

Vz

(Lβ̄ + dβ̄)(Lα + dα)(uve
−φ) dm

=

∫

Vz

(Lβ̄ + dβ̄)[(Lα + dα − Lαφ)u · ve−φ] dm

=

∫

Vz

Lβ̄(Lα + dα − Lαφ)u · ve−φ

+ (Lα + dα − Lαφ)u · (Lβ + dβ − Lβφ)v · e−φ] dm

= 〈TLβ̄(Lα+dα−Lαφ)u, v〉z

+ 〈(Lα + dα − Lαφ)u, (Lβ + dβ − Lβφ)v〉z .

Consequently,

〈Rαβu, v〉z = −〈(I − P )(Lα + dα − Lαφ)u, (I − P )(Lβ + dβ − Lβφ)v〉z

− 〈TLβ̄(Lα+dα−Lαφ)u, v〉z

= 〈TLβ̄(Lαφ−dα−Lα)u, v〉z − 〈HLα+dα−Lαφu,HLβ+dβ−Lβφv〉z .

Note that since Lβ̄ involves only anti-holomorphic differentiations, we have

Lβ̄Lαu = Lβ̄(∂αu + U j
α∂ju) = (Lβ̄U

j
α)∂ju, and similarly HLα

= HUα
, HLβ

=
HUβ

. The assertion follows.

From the formula H∗
LHK = TL∗K − TL∗TK , valid for any pair of differential

operators L,K, it follows that H∗
Uβ

HUα
differs from H∗

Uβ+dβ−Lβφ
HUα+dα−Lαφ

by an operator of order zero (hence bounded); similarly TLβ̄Lαφ−Lβ̄dα
is a
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bounded operator (recall that Lαφ and U j
α are smooth on the closure of Vz, see

the preceding section). The next theorem therefore describes the leading order
terms of Rαβ̄ .

Theorem 4.9. (i) H∗
Uβ

HUα
is a generalized Toeplitz operator of order 1, whose

principal symbol however vanishes, so that it is in fact of order zero (hence,
in particular, bounded).
(ii) T(Lβ̄U

j
α)∂j

is a generalized Toeplitz operator of order 1, and the matrix of

principal symbols {σ(−T(Lβ̄U
j
α)∂j

)}nα,β=1 is positive definite.

Proof. (i) By (4.11) and (4.10),

σ(H∗
Uβ

HUα
) = σ(T ∗

∂k
H∗

Uk
β

HUj
α
T∂j

) = tρk̄L(∂̄bU
j
α, ∂̄bU

k
β )ρj

= tL(ρj ∂̄bU
j
α, ρk∂̄bU

k
β ).

However, this is the same expression as (4.4) we had for the Hardy bundle in
the preceding subsection, and we showed in the proof of Theorem 4.3 that it
vanishes identically.
(ii) From (4.11),

σ(T(Lβ̄U
j
α)∂j

)(x, tηx) = tρj(x)Lβ̄U
j
α(x)

for x on the boundary. However, this is exactly the same expression as in the
proof of part (ii) of Theorem 4.3, and thus we immediately get the conclusion
by the argument used there.

Altogether, we thus see that the curvature Rαβ̄ is again a matrix of generalized
Toeplitz operators of order 1, with principal symbol which is positive definite
— and is, remarkably, the same as for the Hardy bundle in the preceding
subsection.

Example 4.10. We again work out the various quantities in this subsection
for the situation of the ball V = B

n+m from Example 2.4. As we already saw
in Example 4.5,

U j
α = −

z̄α
1− |z|2

wj .

Hence

Uα = −
z̄α

1− |z|2
Rw,

where as before Rw denotes the radial derivative in the w-variables. The latter
preserves holomorphic functions, so in particular HUα

= 0. Further computa-
tions give

dα = −m
z̄α

1− |z|2
,

Lαφ =
z̄α

1− |z|2
,

Lβ̄dα = ∂β̄dα = −m∂β̄∂α log
1

1− |z|2
,

Documenta Mathematica 25 (2020) 189–217



Bundles of Bergman Spaces and Toeplitz Operators 211

while we already saw in Example 4.5 that

Lβ̄U
j
α∂ju = −

(

∂β̄∂α log
1

1− |z|2

)

Rwu.

Hence Hdα
= HLαφ = 0 and both Hankel operators in Theorem 4.8 vanish,

while the Toeplitz operator there gives

Rαβ̄ =
(

∂β̄∂α log
1

1− |z|2

)

(Rw +m+ 1).

We again witness the appearance of the matrix {∂β̄∂α log 1
1−|z|2 }

n
α,β=1 repre-

senting the standard invariant metric on B
n (hence, in particular, positive

definite, in full accordance with part (ii) of the last theorem), except the term
Rw +m− 1

2 for the Hardy space now becomes Rw +m+ 1.

As in the previous subsection, we conclude by giving a formula for the induced
connection on Toeplitz operators. We again deal only with the holomorphic
part.

Theorem 4.11. For the induced connection ∇indT = [∇E , T ], we have

∇indTf = TLαf +H∗
f̄HUα+dα−Lαφ.

The second term is a generalized Toeplitz operator of order −1, in particular,
it is a compact operator in the Lorentz ideal Sn,∞.

Proof. The proof is exactly the same as for the Hardy case, with trivial mod-
ifications. Namely, by the definition of the induced connection, we have for
g ∈ O(E)

∇ind
α Tfg = [P (Lα + dα − Lαφ)P, Tf ]g = [P∂αP, Tf ]g + [TUα+dα−Lαφ, Tf ]g

= ∂αTfg − Tf∂αg + [TUα+dα−Lαφ, Tf ]g,

where we dropped some P ’s on the last line since ∂α preserves O(E). Now,
recalling the definition of the Chern connection and using Lemma 2.1, for g, h ∈
O(E),

〈∂αTfg, h〉 = 〈(∇E
α − Uα − dα + Lαφ)Tfg, h〉

= ∂α〈Tfg, h〉 − 〈TUα+dα−LαφTfg, h〉

=

∫

Vz

(Lα + dα)(fghe
−φ) dm− 〈TUα+dα−LαφTfg, h〉

=

∫

Vz

(eφ(Lα + dα)(fge
−φ))he−φ dm− 〈TUα+dα−LαφTfg, h〉

=

∫

Vz

(((Lαf) + fLα + fdα − fLαφ)g)h dm− 〈TUα+dα−LαφTfg, h〉

= 〈T(Lαf)+f(Lα+dα−Lαφ)g, h〉 − 〈TUα+dα−LαφTfg, h〉,
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implying that ∂αTf = T(Lαf)+f(Lα+dα−Lαφ) − TUα+dα−LαφTf . Consequently,

∇ind
α Tf = T(Lαf)+f(Lα+dα−Lαφ) − TUα+dα−LαφTf − Tf∂α + [TUα+dα−Lαφ, Tf ]

= T(Lαf)+f(Uα+dα−Lαφ) − TUα+dα−LαφTf + [TUα+dα−Lαφ, Tf ]

= T(Lαf)+f(Uα+dα−Lαφ) − TfTUα+dα−Lαφ

= TLαf +H∗
f̄HUα+dα−Lαφ,

proving the first claim. The second term in the last expression is a generalized
Toeplitz operator of order 0+1− 1 = 0, whose principal symbol coincides with
the one from Theorem 4.6, which we have shown to vanish. This settles also
the second claim.

Again, we have not tried to compute the Dixmier trace of (H∗
f̄
HUα+dα−Lαφ)

n.

Note that replacing φ by mφ (which leaves Uα, dα and Lα unchanged) and let-
ting m → +∞, we also get simple “semiclassical” expansions for the curvature
and for the induced connection.

5 Fock bundle

We study now another important fibration and family of Bergman spaces,
namely the domain V being the space Cn with a family of Fock spaces pa-
rameterized by the Siegel domain D. One may consider further the quotients
of Cn by lattices Z2n

z , z ∈ D, and the corresponding spaces of holomorphic
sections of flat bundles, the so-called theta bundle; see [1]. However we will
restrict ourself to the Fock bundle, much computations can be extended to that
case.

5.1 Siegel-Jacobi domain

We let V = Cn and D be the Siegel domain

D := {z = zt ∈ Mn,n(C); y = Im z > 0}. (5.1)

The product D × V is also called the Siegel-Jacobi space. Let

φ(z, w) = − log det(Im z) + 2π〈(Im z)−1 Imw, Imw〉

= − log det y + 2π
(

y−1v, v
)

.
(5.2)

Here (w, t) =
∑

j w
jtj is the bilinear form on Cn. The Hessian ∂∂̄φ is given by

∂Z1
∂Z2

φ =
1

4

(

y−
1

2Z1y
− 1

2 , y−
1

2Z2y
− 1

2

)

+ π
(

Qy−1(Z1, Z2)y
−1v, y−1v

)

(5.3)

∂Z∂Wφ = −π
(

y−1Zy−1v,W
)

, ∂W1
∂W 2

φ = π
(

y−1W1,W 2

)

, (5.4)
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where Qy−1 denotes the (Jordan theoretic) sesqui-linear operator

Qy−1(Z1, Z2) =
1

2
(Z1y

−1Z2 + Z2y
−1Z1).

The positivity of the Hessian follows simply by Cauchy-Schwarz inequality.

5.2 Fock bundle over the Siegel domain

For each z ∈ D we let Fz(C
n) be the Fock space of holomorphic functions h

on Cn equipped with the inner product

‖h‖2 = ‖h‖2z =

∫

Cn

|h(w)|2dµz(w) < ∞,

where

dµz(w) = e−φ(z,w)dm(w) = (det Im z)e−2π((Im z)−1v,v)dm(w), w = u+ iv.

The reproducing kernel is well-known and is given by

K(z;w, t) = det(y)−2 exp
(

−
π

2

(

y−1(w − t̄), w − t̄
)

)

, w, t ∈ C
n.

It can be easily checked that the family F = {Fz(C
n)}z∈D forms then a Her-

mitian bundle over D according to Definition 2.2.

Remark 5.1. In [10] a different normalization for the measure dµz(w) =

e−φdm(w) is chosen, with det Im z above replaced by (det Im z)
1

2 , our choice
of φ is made so that it is plurisubharmonic on the total space in consistence
with Section 3 above. In particular the formula for the covariant differentiation
∇Z below is different from that in [10]. We remark also that we may intro-

duce the weights det(Im z)e−(y
−1v,v) on the total space D×V and consider the

Bergman-Fock space of holomorphic functions h(z, w) on D × V with respect
to the weight; the corresponding reproducing kernel is

det
(z − z̄′

2i

)− 1

2

exp

(

−
π

2

((z − z̄′

2i

)−1

(w − t̄), w − t̄
)

)

.

In particular each such h(z, w) for fixed z is in the Fock space Fz(C
n) and can

be viewed as global holomorphic section of the Fock bundle.

5.3 Connection and Curvature on the Fock bundle

We introduce the holomorphic wave operator

�Zh = ∂Zh−
1

4πi

n
∑

j,k=1

Zjk∂j∂kh,
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and its constant shift

∇Zh =
i

4

(

y−1, Z
)

h+�Zh.

This can be written also as

∇ =
1

4i

(

y−1, dz
)

I + ∂jk ⊗ dzjk −
1

4πi

n
∑

j,k

∂j∂k ⊗ dzjk,

taking values on differential forms on D.

Lemma 5.2. The Chern connection on the Fock bundle is given by ∇Z .

Proof. The connection is ∇Z = ∂Z −T∂Zφ with the symbol ∂Zφ of the Toeplitz
operator T∂Zφ being

∂Zφ(z, t) = −
1

2i

(

Z, y−1
)

+ πi
(

y−1Zy−1s, s
)

, t = r + is.

Thus

T∂Zφh(w) = −
1

2i

(

Z, y−1
)

h+ π

∫

Cn

(

y−1Zy−1s, s
)

K(z;w, t)h(t)dµz(t). (5.5)

We claim that the Toeplitz operator T∂Zφ is

T∂Zφh(w) =
1

4πi
(Z∂, ∂)h−

1

4i

(

Z, y−1
)

h. (5.6)

Indeed differentiating the reproducing formula h(w) = 〈(h(·),K(z; ·, w)〉 we
find

∂j∂kh(w)

=

∫

Cn

(

π2
(

y−1ej, w − t̄
) (

y−1ek, w − t̄
)

− π
(

y−1ek, ej
))

K(z;w, t)h(t)dµz(t)

= π2

(

y−1ej ⊗ y−1ek,

∫

Cn

(w − t̄)2K(z;w, t)h(t)dµz(t)

)

− π

∫

Cn

(

y−1ek, ej
)

K(z;w, t)h(t)dµz(t),

(5.7)

where we have written u2 = u⊗ u and extended the bilinear product on Cn to
the tensor product Cn ⊗ Cn. Write w − t̄ = (w − t) + (t − t̄) and (w − t̄)2 =
(w − t)2 + (t − t̄) ⊗ (w − t) + (w − t) ⊗ (t − t̄) + (t − t̄)2. The corresponding
integrations in (5.7) involving the first three terms are vanishing due to the
reproducing kernel property that

∫

Cn

(wj − tj)h(t)K(z;w, t)dµz(t) = 0,

∫

Cn

(wj − tj)(wk − tk)h(t)K(z;w, t)dµz(t) = 0.
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Thus
∑

jk

Zjk∂j∂kh(w)

=
∑

jk

Zjk

∫

Cn

(

π2
(

y−1ej ⊗ y−1ek, (t− t̄)2
)

− π
(

y−1ek, ej
))

K(z;w, t)h(t) dµz(t)

=

∫

Cn

(

−4π2
(

y−1Zy−1s, s
)

− π
(

y−1, Z
))

K(z;w, t)h(t) dµz(t)

= −4π2

∫

Cn

(

y−1Zy−1s, s
)

K(z;w, t)h(t) dµz(t)− π
(

y−1, Z
)

h(w).

Here we have used the simple fact that

∑

Zjk

(

y−1ej ⊗ y−1ek, s⊗ s
)

=
(

y−1Zy−1, s⊗ s
)

=
(

y−1Zy−1s, s
)

.

Hence

1

4πi

∑

jk

Zjk∂j∂kh(w) =

iπ

∫

Cn

(

y−1Zy−1s, s
)

K(z;w, t)h(t) dµz(t)−
1

4i

(

y−1, Z
)

h(w).

Comparing this with (5.5) we obtain (5.6).

Proposition 5.3. The curvature of Fock bundle is given by

R(Z,Z) =
1

8

(

y−1Zy−1, Z
)

Id.

i.e., it is proportional to the Siegel metric
(

y−1Zy−1, Z
)

on D.

Proof. This follows by a direct computation. We take a section h(z) = h(z, w)
holomorphic on the total space with h(z) being in the Fock space Fz, and
compute

R(Z,Z)h = [∇Z , ∂Z ]h = −∂Z∇Zh = −
1

4i
∂Z

(

y−1, Z
)

h =
1

8

(

y−1Zy−1, Z
)

h.

Next we find the induced connection on sections of Toeplitz operators. For
that purpose we introduce the Jordan product

T ◦ S =
1

2
(TS + ST )

for any two operators.
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Proposition 5.4. The induced connection of ∇D on Tf is

∇ind
Z Tf = [∇Z , Tf ]

= T∂Zf +
i

2
tr(y−1Zy−1)Tf + [Tf , T∂Zφ] + πiT(y−1Zy−1v,v)f)

−
π

4i



Tf ◦ T(y−1Zy−1w,w) −

n
∑

j=1

T(w̄,ej)f ◦ T(y−1Zy−1w,ej)





(5.8)

Proof. The commutator is [∇Z , Tf ] = [∂Z − T∂Zφ, Tf ] = [∂Z , Tf ] + [Tf , T∂Zφ].
Writing the Toeplitz operator Tf as an integral operator

Tfg(z, t) =

∫

f(z, w)g(z, w)K(z; t, w)dµz(w)

we find

[∂Z , Tf ]g = T∂Zfg +

∫

f(z, w)g(z, w)K(z; t, w)

(

− tr(y−1Z)− πi(y−1Zy−1v, v)−
πi

4
(y−1Zy−1(t− w̄), t− w̄)

)

dµz(w).

The integrals above can all be written in terms of Toeplitz operators and we
omit the computations here.

Finally if we replace φ by mφ then ∇ind
Z T

(m)
f has a formal expansion

∑

j(
1
m )jT

(m)
fj

in m in terms of Toeplitz operators Tfj with symbols fj be-
ing differential operators acting on f ; the expansion of product of Toeplitz
operators has been very well studied [6, 8].
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[9] L. Lempert and R. Szöke, Direct images, fields of Hilbert spaces, and geo-

metric quantization, Comm. Math. Phys. 327 (2014), 49-99. pages 191

[10] J. Peetre, Fock bundles, in: C. Sadosky (ed.), Analysis and partial differen-
tial equations. A collection of papers dedicated to Mischa Cotlar, Lecture
Notes in Pure and Applied Mathematics, Marcel Dekker, New York and
Basel, 1990, 301-326. pages 190, 213

[11] L. A. Takhtajan and L.-P. Teo, Weil-Petersson metric on the universal

Teichmller space, Mem. Amer. Math. Soc., 861, 2006. pages 190

[12] X. Wang, A curvature formula associated to a family of pseudoconvex

domains Ann. Inst. Fourier 67 (2017), 269-313. pages 192, 199

Miroslav Englǐs
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