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Abstract. Symmetric multiple zeta values (SMZVs) are elements
in the ring of all multiple zeta values modulo the ideal generated
by ζ(2) introduced by Kaneko-Zagier as counterparts of finite mul-
tiple zeta values. It is known that symmetric multiple zeta values
satisfy double shuffle relations and duality relations. In this paper,
we construct certain lifts of SMZVs which live in the ring generated
by all multiple zeta values and 2πi as certain iterated integrals on
P1 \ {0, 1,∞} along a certain closed path. We call these lifted values
refined symmetric multiple zeta values (RSMZVs). We show double
shuffle relations and duality relations for RSMZVs. These relations
are refinements of the double shuffle relations and the duality rela-
tions of SMZVs. Furthermore, we compare RSMZVs to other variants
of lifts of SMZVs. Especially, we prove that RSMZVs coincide with
Bachmann-Takeyama-Tasaka’s ξ-values.
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1 Introduction

For an index k = (k1, . . . , kd), the multiple zeta value ζ(k) is the real number
defined by

ζ(k) =
∑

0<m1<···<md

m−k1

1 · · ·m−kd

d
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366 M. Hirose

where k1, . . . , kd−1 ∈ Z≥1 and kd ∈ Z≥2. Let Z be the Q-subalgebra of R

generated by 1 and all multiple zeta values. The symmetric multiple zeta value
(SMZV) is the element of Z/π2Z defined by

ζS(k1, . . . , kd)

:=

(
d∑

i=0

(−1)ki+1+···+kdζ
�

(k1, . . . , ki)ζ�(kd, . . . , ki+1) mod π2Z

)

for k1, . . . , kd ∈ Z≥1 where ζ
�

(k) is the shuffle regularized multiple zeta value.
SMZVs are introduced by Kaneko and Zagier as counterparts of finite multiple
zeta values [8][9]. In this paper, we define refined symmetric multiple zeta values
(RSMZV) ζRS(k) ∈ Z[2πi] = Z ⊕ 2πiZ by considering iterated integrals along
the non-trivial simple path from 0 to 0 on P1(C) \ {0, 1,∞} (see Figure 2.3),
and show the following properties:

• ζRS(k) is a lift of ζS(k) i.e., ρ(ζRS(k)) = ζS(k) where ρ : Z[2πi]
Re
−−→

Z → Z/π2Z (Corollary 6).

• ζRS satisfies double shuffle relations, duality relations, and reversal for-
mula (Theorems 8 and 10).

• ζRS coincides with Bachmann-Takeyama-Tasaka’s ξ-value in [1, Defini-
tion 2.12] (see Remark 13).

The contents of this paper are as follows. In Section 2, we give a definition
of RSMZVs and show some basic facts. In Section 3, we formulate the double
shuffle relations, and prove the duality relation and the reversal formula. In
Section 4, we consider other variants of SMZVs and compare them to RSMZVs,
and give a proof of the double shuffle relations. In Section 5, we present some
complementary results.

2 Iterated integral expression of refined symmetric multiple

zeta values

2.1 Iterated integral symbols

Let us introduce some notions concerning (regularized) iterated integrals. Our
basic references are [2] and [3, Section 2]. We define a tangential base point vp
as a pair of a point p ∈ C and a nonzero tangential vector v ∈ TpC = C. We
define a path from vp to wq on a subset M ⊂ C as a continuous piecewise
smooth map γ : [0, 1] → C such that γ(0) = p, γ′(0) = v, γ(1) = q, γ′(1) = −w
and γ(t) ∈ M for all 0 < t < 1. We denote by π1(M, vp, wq) the set of homotopy
classes of paths from vp to wq on M . For tangential base points x, y, z and a
subset M ⊂ C, the composition map

π1(M,x, y)× π1(M, y, z) → π1(M,x, z) ; (γ1, γ2) 7→ γ1γ2
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0 1

Figure 2.1: the path α

0 1

Figure 2.2: the path dch

0 1

Figure 2.3: the path β

and the inverse map

π1(M,x, y) → π1(M, y, x) ; γ 7→ γ−1

are naturally defined.

Definition 1. Fix complex numbers a1, . . . , an ∈ C and tangential base points
x, y. For Γ ∈ π1(C \ {a1, . . . , an}, x, y), we define IΓ(x; a1, . . . , an; y) ∈ C as
follows. For a representative γ of Γ, define the function Fγ : (0, 1

2 ) → C by

Fγ(t) :=

∫

t<t1<···<tn<1−t

n∏

j=1

dγ(tj)

γ(tj)− aj
.

Then there exist complex numbers c0, c1, . . . , cn ∈ C such that

Fγ(t) =

n∑

k=0

ck(log t)
k +O(t logn+1 t)

for t → 0. It is known that c0, . . . , cn do not depend on the choice of γ (see
[2, Proposition 3.238]). We define IΓ(x; a1, . . . , an; y) := c0. (In this notation,
the information of tangential base points x, y is redundant, however, we do not
omit them to conform to the standard notations).

If p 6= a1 and q 6= an then this is just a usual iterated integral i.e.,

I[γ](vp; a1, . . . , an;wq) =

∫

0<t1<···<tn<1

n∏

j=1

dγ(tj)

γ(tj)− aj
.

2.2 Definition and explicit expression of refined symmetric mul-

tiple zeta values

We define two tangential basepoints 0′ and 1′ by

0′ = 10, 1′ = (−1)1.

Put M = C\{0, 1}. Let dch ∈ π1(M, 0′, 1′) be (the homotopy class represented
by) the straight line from 0′ to 1′, α ∈ π1(M, 1′, 1′) the path from 1′ to 1′ which
circles 1 one times counterclockwise, and β = dch · α · dch−1 the path from 0′

to 0′ which circles 1 one times counterclockwise (see Figure 2.1, 2.2 and 2.3).
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Note that

(−1)dζ
�

(k1, . . . , kd) = Idch(0
′; 1,

k1−1
︷ ︸︸ ︷

0, . . . , 0, . . . , 1,

kd−1
︷ ︸︸ ︷

0, . . . , 0; 1′)

= (−1)k1+···+kdIdch−1(1′;

kd−1
︷ ︸︸ ︷

0, . . . , 0, 1, . . . ,

k1−1
︷ ︸︸ ︷

0, . . . , 0, 1; 0′)

and

Iα(1
′; a1, . . . , an; 1

′) =

{
(2πi)n

n! a1 = · · · = an = 1

0 otherwise

for a1, . . . , an ∈ {0, 1} (see [2, Theorem 3.251 and Examples 3.259]).

Definition 2. For d ≥ 0 and k1, . . . , kd ∈ Z≥1, we define the refined symmetric
multiple zeta value ζRS(k1, . . . , kd) ∈ C by

ζRS(k1, . . . , kd) :=
(−1)d

2πi
Iβ(0

′; 1,

k1−1
︷ ︸︸ ︷

0, . . . , 0, . . . , 1,

kd−1
︷ ︸︸ ︷

0, . . . , 0, 1; 0′).

For example, ζRS(3, 2) = 1
2πiI(0

′; 1, 0, 0, 1, 0, 1; 0′) and ζRS(∅) =
1

2πiIβ(0
′; 1; 0′) = 1.

Remark 3. In [7, Definition A.1.2 (i)], Jarossay defined the exponential adjoint
cyclotomic multiple zeta values by

ζexp,Ad
(
(ni)d; (ξi)d+1; l)

:=
∑

ξ∈µN (C)

ξ−1(x 7→ ξx)∗(Φ
−1
KZe

2iπe1ΦKZ)[e
l
0eξd+1

end−1
0 eξd . . . e

n1−1
0 eξ1 ].

Here N,n1, . . . , nd are positive integers, l is a nonnegative integer, µN (C) is
the set of N -th roots of unity, ξ1, . . . , ξd+1 are elements of µN (C), ΦKZ is the
noncommutative power series defined by

ΦKZ :=

∞∑

k=0

∑

a1,...,ak∈{0}∪µN (C)

Idch(1
′; a1, . . . , ak; 0

′)ea1
· · · eak

,

and (Φ−1
KZe

2iπe1ΦKZ)[e
l
0eξd+1

end−1
0 eξd . . . e

n1−1
0 eξ1 ] is the coefficient of

el0eξd+1
end−1
0 eξd . . . e

n1−1
0 eξ1 in Φ−1

KZe
2iπe1ΦKZ. Let N = 1 and l = 0.

The author could not find the definition of (x 7→ ξx)∗ in [7], but
if we assume that (x 7→ ξx)∗ is the identity map for ξ = 1, then
ζexp,Ad

(
(ni)d; (ξi)d+1; l) = ζexp,Ad

(
(ni)d; (1)d+1; 0) is equal to

Iβ(0
′; 1,

nd−1
︷ ︸︸ ︷

0, . . . , 0, . . . , 1,

n1−1
︷ ︸︸ ︷

0, . . . , 0, 1; 0′) = (−1)d2πiζRS(nd, . . . , n1)

by the path composition formula.
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There are several ways to express RSMZVs by multiple zeta values. We give
one of such expressions obtained by a most naive way here (see Corollary 12
for other expressions).

Proposition 4. We have

ζRS(k1, . . . , kd)

=
∑

0≤a≤b≤d
kj=1 for all a<j≤b

(−2πi)b−a

(b− a+ 1)!
(−1)kb+1+···+kdζ

�

(k1, . . . , ka)ζ�(kd, . . . , kb+1).

Proof. Let n = k1+· · ·+kd+1 and (a1, . . . , an) := (1,

k1−1
︷ ︸︸ ︷

0, . . . , 0, . . . , 1,

kd−1
︷ ︸︸ ︷

0, . . . , 0, 1).
Then from the path composition formula, we have

Iβ(0
′; a1, . . . , an; 0

′)

=
∑

0≤l≤m≤n

Idch(0
′; a1, . . . , al; 1

′)Iα(1
′; al+1, . . . , am; 1′)

× Idch−1(1′; am+1, . . . , an; 0
′)

=
∑

0≤l≤m≤n
aj=1 for all l<j≤m

(2πi)m−l

(m− l)!
Idch(0

′; a1, . . . , al; 1
′)Idch−1(1′; am+1, . . . , an; 0

′).

Here, again from the path composition formula, we have

∑

0≤l=m≤n

Idch(0
′; a1, . . . , al; 1

′)Idch−1(1′; am+1, . . . , an; 0
′)

= Idch·dch−1(0′; a1, . . . , an; 0
′) = 0.
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Thus

Iβ(0
′; a1, . . . , an; 0

′)

=
∑

0≤l<m≤n
aj=1 for all l<j≤m

(2πi)m−l

(m− l)!
Idch(0

′; a1, . . . , al; 1
′)Idch−1(1′; am+1, . . . , an; 0

′)

=
∑

0≤a≤b≤d
kj=1 for all a<j≤b

(2πi)b−a+1

(b− a+ 1)!
Idch(0

′; 1,

k1−1
︷ ︸︸ ︷

0, . . . , 0, . . . , 1,

ka−1
︷ ︸︸ ︷

0, . . . , 0; 1′)

× Idch−1(1′;

kb+1−1
︷ ︸︸ ︷

0, . . . , 0, 1, . . . ,

kd−1
︷ ︸︸ ︷

0, . . . , 0 1; 0′)

=
∑

0≤a≤b≤d
kj=1 for all a<j≤b

(2πi)b−a+1

(b− a+ 1)!
(−1)a+d−b+kb+1+···+kdζ

�

(k1, . . . , ka)

× ζ
�

(kd, . . . , kb+1)

= (−1)d2πi
∑

0≤a≤b≤d
kj=1 for all a<j≤b

(−2πi)b−a

(b − a+ 1)!
(−1)kb+1+···+kdζ

�

(k1, . . . , ka)

× ζ
�

(kd, . . . , kb+1).

Thus the claim is proved.

Corollary 5. We have ζRS(k1, . . . , kd) ∈ Z[2πi].

Corollary 6. ζRS(k1, . . . , kd) is a lift of ζS(k1, . . . , kd) i.e.,

ζRS(k1, . . . , kd) ≡
d∑

i=0

(−1)ki+1+···+kdζ
�

(k1, . . . , ki)ζ�(kd, . . . , ki+1)

(mod 2πiZ[2πi]).

Remark 7. Corollary 6 can also be deduced from the expansion

Φ−1
KZe

2iπe1ΦKZ = 1 + 2iπΦ−1
KZe1ΦKZ + (2iπ)2Φ−1

KZ

∑

n≥2

(2iπ)n−2en1
n!

ΦKZ

given in [7, page26] since Φ−1
KZe1ΦKZ is the generating function of ζS

�

(k) :=
ζS
�

(k; 0, 0).

3 Relations of refined symmetric multiple zeta values

In this section, we state the double shuffle relations, the duality, and the reversal
formula for the refined symmetric multiple zeta values. For this purpose, we
first introduce some notations and algebraic setup.
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3.1 Algebraic settings

Let Q〈e0, e1〉 be the free non-commutative ring generated by formal symbols
e0 and e1 over Q. Put

h := e0Q〈e0, e1〉 ⊕ e1Q〈e0, e1〉 ⊂ Q〈e0, e1〉,

h0 := e1Q⊕ e1Q〈e0, e1〉e1.

For k1, . . . , kd ∈ Z≥1, define w(k1, . . . , kd) ∈ h0 by

w(k1, . . . , kd) = (−1)de1e
k1−1
0 e1 · · · e1e

kd−1
0 e1.

Note that w(∅) = e1 where ∅ = () is an empty index, and that the elements
w(k1, . . . , kd) with d ≥ 0 and k1, . . . , kd ∈ Z≥1 form a basis of h0. We define a
linear map ZRS : h → C by

ZRS(ea1
· · · eak

) =
1

2πi
Iβ(0

′; a1, . . . , ak; 0
′).

From the definition, ZRS(w(k1, . . . , kd)) = ζRS(k1, . . . , kd).

3.2 Double shuffle relations

We define the shuffle product � : Q〈e0, e1〉 × Q〈e0, e1〉 → Q〈e0, e1〉 by the
recursion

u� 1 = 1� u = u,

eau� ebu
′ = ea(u� ebu

′) + eb(eau� u′),

where a, b ∈ {0, 1} and u, u′ ∈ Q 〈e0, e1〉, and define the harmonic product
∗ : h0 × h0 → h0 by

e1 ∗ u = u ∗ e1 = u,

w(k1, . . . , ka) ∗ w(l1, . . . , lb) = − e1e
k1−1
0 (w(k2, . . . , ka) ∗ w(l1, . . . , lb))

− e1e
l1−1
0 (w(k1, . . . , ka) ∗ w(l2, . . . , lb))

+ e1e
k1+l1−1
0 (w(k2, . . . , ka) ∗ w(l2, . . . , lb)) .

For example, w(k) ∗ w(l) = w(k, l) + w(l, k) + w(k + l).

Theorem 8 (Double shuffle relations for RSMZVs). We have

• ZRS(u� v) = 2πiZRS(u)ZRS(v) for u, v ∈ h,

• ZRS(u ∗ v) = ZRS(u)ZRS(v) for u, v ∈ h0.

The first formula is an immediate consequence of the iterated integral expres-
sion of RSMZVs, but the second one is not obvious from the definition. We
give a proof of Theorem 8 in Section 4.2 in a more general setting.

Remark 9. In [7, page27], Jarossay also mentioned about the fact that the
first formula of the theorem above is an immediate consequence of the iterated
integral expression for RSMZVs.
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3.3 Duality and reversal formula

We define an automorphism ϕ and anti-automorphism τ of Q〈e0, e1〉 by

ϕ(e0) = e0 − e1, ϕ(e1) = −e1,

τ(e0) = −e0, τ(e1) = −e1.

Theorem 10. We have

• ZRS(ϕ(w)) = −ZRS(w) for w ∈ h0,

• ZRS(τ(w)) = −ZRS(w) for w ∈ h.

Proof. The first formula follows from the Möbius transformation t 7→ t
t−1 . The

second formula follows from the reversal formula of iterated integrals.

4 Relation to other versions of symmetric multiple zeta values

For n ∈ Z, put βn = dch ·αn ·dch−1 ∈ π1(C\ {0, 1}, 0′, 0′). Define a linear map
Ln : Q 〈e0, e1〉 → C by

Ln(ea1
· · · eak

) := Iβn
(0′; a1, . . . , ak; 0

′).

For w ∈ Q 〈e0, e1〉, let L(w;T ) ∈ C[T ] be the unique polynomial of T such that

Ln(w) = L(w; 2πin).

We see the existence of such a polynomial as in the proof of Proposition 4 by
using the path composition formula. From the definition, for w ∈ h we have

ZRS(w) =
1

2πi
L(w; 2πi).

We can consider many variants of lifts of symmetric multiple zeta values. In
this section, we express such variants by using L(w;T ).

4.1 Generating functions

For an index k, we denote by ζ
�

(k;T ) ∈ R[T ] (resp. ζ∗(k;T ) ∈ R[T ]) the
shuffle (resp. harmonic) regularized multiple zeta values with T , which are
characterized by the shuffle (resp. harmonic) product identity and ζ

�

(1;T ) =
ζ∗(1;T ) = T . For d ≥ 0 and k1, . . . , kd ∈ Z≥1, we put

ζS
�

(k1, . . . , kd;T1, T2)

:=

d∑

i=0

(−1)kd+···+ki+1ζ
�

(k1, . . . , ki;T1)ζ�(kd, . . . , ki+1;T2),
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ζS∗ (k1, . . . , kd;T1, T2)

:=

d∑

i=0

(−1)kd+···+ki+1ζ∗(k1, . . . , ki;T1)ζ∗(kd, . . . , ki+1;T2).

Let R = Q〈〈X0, X1〉〉. Put Γ1(t) = exp(
∑∞

k=2
ζ(k)
k (−t)k) ∈ R[[t]]. Define an

anti-automorphism ǫ : R → R by ǫ(Xa) = −Xa. Put

Φ
�

(T ) :=
∞∑

k=0

∑

a1,...,ak∈{0,1}

Idch(0
′; a1, . . . , ak; 1

′)Xa1
· · ·Xak

exp(−TX1)

Φ∗(T ) := Φ
�

(T )Γ1(−X1)
−1

ΦS
�

(T1, T2) := Φ
�

(T1)X1ǫ(Φ�(T2))

ΦS
∗ (T1, T2) := Φ∗(T1)X1ǫ(Φ∗(T2))

ΦRS :=

∞∑

k=1

∑

a1,...,ak∈{0,1}

ZRS(ea1
· · · eak

)Xa1
· · ·Xak

ΦL(T ) :=

∞∑

k=0

∑

a1,...,ak∈{0,1}

L(ea1
· · · eak

;T )Xa1
· · ·Xak

.

We denote by coeff(f,Xa1
· · ·Xak

) the coefficient of Xa1
· · ·Xak

in f . The
following formulas are essentially proved in [5, Proposition 10 and Theorem 1].

coeff(Φ
�

(T ), X1X
k1−1
0 · · ·X1X

kd−1
0 ) = (−1)dζ

�

(k1, . . . , kd;T )

coeff(Φ∗(T ), X1X
k1−1
0 · · ·X1X

kd−1
0 ) = (−1)dζ∗(k1, . . . , kd;T ).

Thus from the definition, we have

coeff(ΦS
�

(T1, T2), X1X
k1−1
0 · · ·X1X

kd−1
0 X1) = (−1)dζS

�

(k1, . . . , kd;T1, T2)

coeff(ΦS
∗ (T1, T2), X1X

k1−1
0 · · ·X1X

kd−1
0 X1) = (−1)dζS∗ (k1, . . . , kd;T1, T2).

Theorem 11. We have

ΦS
�

(T1, T2) =
d

dT
ΦL(T )

∣
∣
∣
∣
T=−T1+T2

,

ΦS
∗ (T1, T2) =

ΦL(πi − T1 + T2)− ΦL(−πi − T1 + T2)

2πi
,

ΦRS =
ΦL(2πi)− ΦL(0)

2πi
(=

ΦL(2πi)− 1

2πi
), (4.1)

ΦRS =
1

2πi

∫ 2πi

0

ΦS
�

(0, T )dT,

ΦRS = ΦS
∗ (−

πi

2
,
πi

2
).
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Proof. It is enough to prove the first and second formulas since the third for-
mula is obvious from the definition and the fourth and fifth formulas are con-
sequences of first three formulas. From the path composition formula, we have

ΦL(T ) = Φ
�

(0) exp(TX1)ǫ(Φ�(0)). (4.2)

Thus the first and second formulas are proved as follows. For the first, we
compute

ΦS
�

(T1, T2) =Φ
�

(T1)X1ǫ(Φ�(T2))

=Φ
�

(0) exp(−T1X1)X1ǫ(Φ�(0) exp(−T2X1))

=Φ
�

(0) exp((−T1 + T2)X1)X1ǫ(Φ�(0))

=
d

dT
ΦL(T )

∣
∣
∣
∣
T=−T1+T2

.

Here, we have used Φ
�

(T ) = Φ
�

(0) exp(−TX1) for the second equality and
(4.2) for the last equality. For the second one, we compute similarly using (4.2)
and the classical formula for the gamma function as

ΦS
∗ (T1, T2) = Φ∗(T1)X1ǫ(Φ∗(T2))

= Φ
�

(0)Γ1(−X1)
−1 exp(−T1X1)X1

× ǫ
(
Φ
�

(0)Γ1(−X1)
−1 exp(−T2X1)

)

= Φ
�

(0)Γ1(−X1)
−1Γ1(X1)

−1X1 exp(−(T1 − T2)X1)ǫ(Φ�(0))

= Φ
�

(0)
sin(πX1)

π
exp((−T1 + T2)X1)ǫ(Φ�(0))

=
ΦL(πi− T1 + T2)− ΦL(−πi− T1 + T2)

2πi
.

Comparing the coefficients of the identities in the theorem, we get the following
corollary.

Corollary 12. For k = (k1, . . . , kd) ∈ (Z≥1)
d, we have

ζS
�

(k;T1, T2) =
d

dT
L(w(k);T )

∣
∣
∣
∣
T=−T1+T2

,

ζS∗ (k;T1, T2) =
L(w(k);πi − T1 + T2)− L(w(k);−πi − T1 + T2)

2πi
(4.3)

ζRS(k) =
1

2πi

∫ 2πi

0

ζS
�

(k; 0, T )dT,

ζRS(k) = ζS∗ (k;−
πi

2
,
πi

2
).

Remark 13. In [1], Bachmann, Takeyama and Tasaka introduced complex num-
bers ξ(k) as limits of certain finite multiple harmonic q-series. They also prove
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the equation

ξ(kd, . . . , k1) =
d∑

a=0

(−1)kd+···+ka+1ζ∗(k1, . . . , ka;−
πi

2
)ζ∗(kd, . . . , ka+1;

πi

2
)

(= ζS∗ (k1, . . . , kd;−
πi

2
,
πi

2
))

(see [1, Theorem 2.10, (2.18)]). Thus we have

ξ(kd, . . . , k1) = ζRS(k1, . . . , kd)

from the last formula of Corollary 12.

4.2 Proof of the double shuffle relations

Proposition 14. We have

• L(u� v;T ) = L(u;T )L(v;T ) for all u, v ∈ Q 〈e0, e1〉,

• L̃(u ∗ v;T ) = 1
2πi L̃(u;T )L̃(v;T ) for all u, v ∈ h0 where we put L̃(u;T ) :=

L(u;T + πi)− L(u;T − πi).

Proof. The first formula follows from the shuffle product formula for iterated
integrals. Define the harmonic coproduct ∆ : h0 → h0 ⊗ h0 by

∆(w(k1, . . . , kd)) :=

d∑

i=0

w(k1, . . . , ki)⊗ w(ki+1, . . . , kd).

Then (h0, ∗,∆) is a commutative Hopf algebra (see [4, Theorem 3.1]). We
define f : h0 → R[T1, T2] by f(u) = 1

2πi L̃(u;T ). Since f(w(k)) = ζS∗ (k;T1, T2)
by (4.3), f coincides with the composite map

h0
∆
−→ h0 ⊗ h0

g⊗h
−−−→ R[T1]⊗ R[T2]

a⊗b7→ab
−−−−−→ R[T1, T2]

where g, h are defined by

g(w(k1, . . . , kd)) = ζ∗(k1, . . . , kd;T1),

h(w(k1, . . . , kd)) = (−1)kd+···+k1ζ∗(kd, . . . , k1;T2).

Since (h0, ∗,∆) is a Hopf algebra and g, h are ring homomorphisms from (h0, ∗)
to R[T1] or R[T2], we have

f(u ∗ v) = f(u)f(v),

which is equivalent to the second formula of the proposition.

Proof of Theorem 8. By putting T = 2πi in the first formula of Proposition 14,
we obtain the first formula of Theorem 8. By putting T = πi in the second
formula of Proposition 14, we obtain the second formula of Theorem 8.
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Remark 15. It is also possible to prove the second formula of Theorem 8 by
the identity ξ(kd, . . . , k1) = ζRS(k1, . . . , kd) and the harmonic product for-
mula of the cyclotomic analogue of finite multiple zeta values ([1, (3.4)]) since
zn(k; e

2πi/n) in their paper satisfy limn→∞(1− e2πi/n)zn(k; e
2πi/n) = 0.

5 Complementary results and a conjecture

5.1 The space generated by RSMZVs

For an index k = (k1, . . . , kd), we call k1 + · · ·+ kd the weight of k. For k ∈ Z,
we denote by Zk (resp. ZRS

k ) the subspace of C over Q generated by all MZVs
(resp. RSMZVs) of weight k indices, i.e., we put

Zk := 〈ζ
�

(k1, . . . , kd) | d ∈ Z≥0, k1, . . . , kd ∈ Z≥1, k1 + · · ·+ kd = k〉
Q
,

ZRS
k :=

〈
ζRS(k1, . . . , kd) | d ∈ Z≥0, k1, . . . , kd ∈ Z≥1, k1 + · · ·+ kd = k

〉

Q
.

Proposition 16. For k ∈ Z, we have

ZRS
k = Zk ⊕ 2πiZk−1.

We need some lemma to prove this proposition.

Proof. Since ZRS
k ⊂ Zk ⊕ 2πiZk−1 from Proposition 4, it is enough to prove

that
Zk ⊕ 2πiZk−1 ⊂ ZRS

k .

We prove the proposition by induction on k. The case k < 0 is trivial. Assume
that ZRS

k−1 = Zk−1⊕2πiZk−2. Let x be an element of Zk. From the theorem of

Yasuda ([10, Theorem 6.1]), there exists y ∈ ZRS
k such that x− y ∈ 2πiZk−1⊕

(2πi)2Zk−2. Thus

x− y

2πi
∈ Zk−1 ⊕ 2πiZk−2 = ZRS

k−1.

From the special case of the shuffle product formula

ZRS(e1 � u) = 2πiZRS(u) (u ∈ h),

we have x − y ∈ 2πiZRS
k−1 ⊂ ZRS

k . Thus x = (x− y) + y ∈ ZRS
k and the claim

is proved.

It is conjectured by Zagier that

dimQ Zk
?
= dk (5.1)

where (dk)k are integers defined by

dk =







0 k < 0

1 k = 0

dk−2 + dk−3 k > 0.
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Therefore, from Proposition 16, the conjectural dimension of ZRS
k is given by

dimQ ZRS
k

?
= dk + dk−1.

5.2 Comparison of the shuffle relations of RSMZVs and Kaneko-

Zagier’s shuffle relations for SMZVs

We define ZS : h0 → Z/ζ(2)Z by ZS(w(k1, . . . , kd)) := ζS(k1, . . . , kd). Put
Z̃S(u) = ZS(ue1) and ū = −e1τ(u)e

−1
1 for u ∈ Q⊕ e1Q 〈e0, e1〉. The following

relations of SMZVs were already known.

Proposition 17 ([9],[11, Corollary 6.1.5]). ZS(u) ∗ ZS(v) = ZS(u)ZS(v) for
u, v ∈ h0.

Proposition 18 ([6],[9],[11, Theorem 6.3.4]). Z̃S(u� v) = Z̃S(uv̄) or equiva-
lently ZS((u� v)e1) = ZS(ue1ǫ(v)) for u, v ∈ Q⊕ e1Q 〈e0, e1〉.

Proposition 19 ([6, Corollaire 1.12]). ZS(ϕ(u)) = −ZS(u) for u ∈ h0.

Proposition 20 ([9],[11, Theorem 6.3.4]). ZS(ǫ(u)) = −ZS(u) for u ∈ h0.

On the other hand, we proved the following relations of RSMZVs in this paper.

(i) ZRS(u) ∗ ZRS(v) = ZRS(u)ZRS(v) for u, v ∈ h0 (Theorem 8).

(ii) ZRS(u� v) = 2πiZRS(u)ZRS(v) for u, v ∈ h (Theorem 8).

(iii) ZRS(ϕ(u)) = −ZRS(u) for u ∈ h0 (Theorem 10).

(iv) ZRS(ǫ(u)) = −ZRS(u) for u ∈ h (Theorem 10).

Now Propositions 17, 19 and 20 are immediate consequences of (i), (iii) and
(iv) respectively. However the relation of Proposition 18 and (ii) is not obvious.
The purpose of this section is to deduce Proposition 18 from (ii). First, we show
that Corollary 5 can be extended as follows.

Lemma 21. For u ∈ h, we have

ZRS(u) ∈ Z[2πi].

Proof. The claim follows from the identity

ΦRS = Φ
�

(0)
exp(2πiX1)− 1

2πi
ǫ(Φ

�

(0)),

which is a consequence of (4.1) and (4.2).

Lemma 22. We denote by h�h the subspace of h spanned by {u�v | u, v ∈ h}.
Then for all u, v ∈ Q 〈e0, e1〉 and a ∈ {0, 1}, we have

(u� v)ea − ueaǫ(v) ∈ h� h.
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Proof. It is enough to consider only the case where v is a monomial eb1 · · · ebn .
Then we have

(u� v)ea − ueaǫ(v) = −
n∑

i=1

(u� ebi+1
· · · ebn)ea� ǫ(eb1 · · · ebi) ∈ h� h.

Proof of Proposition 18 using (ii). Let u, v ∈ Q ⊕ e1Q 〈e0, e1〉. From Lemma
22, we have

(u� v)e1 − ue1ǫ(v) ∈ h� h.

Hence from (ii) and Lemma 21, we have

ZRS((u� v)e1 − ue1ǫ(v)) ∈ 2πiZ[2πi].

Therefore, from Corollary 6, we have

ZS((u� v)e1 − ue1ǫ(v)) = 0.

Thus Proposition 18 is proved.

5.3 The size of the double shuffle relations of RSMZVs

We define a grading h = ⊕∞
k=−1hk by hk = ⊕a1,...,ak+1∈{0,1}Qea1

· · · eak+1
. We

put h0k := hk ∩ h0. From Theorem 8, we have

D(u, v, w) := u ∗ (v� w)− v� (u ∗ w) ∈ kerZRS

for u, v, w ∈ h0. For example

D(e21, e1, e1) = 2w(2) + w(1, 1) ∈ kerZRS .

Conjecture 23. All Q-linear relations of RSMZVs are generated by
D(u, v, w), i.e., the space kerZRS ⊂ h0 is linearly spanned by

{D(u, v, w) | u, v, w ∈ h0}.

If we assume Zagier’s conjecture (5.1), the above conjecture is equivalent to
the following conjecture.

Conjecture 24. For k ≥ 1, we have

dimQ

〈

D(u, v, w)
∣
∣
∣

a+b+c=k−1,
(u,v,w)∈h0

a×h0
b×h0

c

〉

Q
≥ 2k−1 − dk − dk−1.

For u, v, w ∈ h0, we put

D′(u, v, w) : = D(w, v, u) −D(u, v, w) +D(u,w, v)

= w ∗ (u� v)− w� (u ∗ v).
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For u ∈ ha, v ∈ hb and k ≥ 1, we denote by Ek(u, v) (resp. E′
k(v, w)) the

subspaces of h0k spanned by {D(u, v, w) | w ∈ h0k−a−b−1} (resp. {D′(u, v, w) |
w ∈ h0k−a−b−1}). We verified Conjecture 24 up to k = 16 by numerical compu-
tation. More precisely, we checked that the dimension of the Q-linear subspace
spanned by

Ek(e
2
1, e1) ∪ Ek(e

2
1, e1e0e

2
1) ∪ E′

k(e1, e1) ∪E′
k(e

2
1, e1) ∪ E′

k(e
2
1, e

2
1)

is greater than or equal to 2k−1 − dk − dk−1 for each 1 ≤ k ≤ 16.
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