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Abstract. Let TR be a 1-tilting module with tilting torsion pair
(Gen T,F) in Mod-R. The following conditions are proved to be equiv-
alent: (1) T is pure projective; (2) GenT is a definable subcategory of
Mod-R with enough pure projectives; (3) both classes GenT and F
are finitely axiomatizable; and (4) the heart of the corresponding HRS
t-structure (in the derived category Db(Mod-R)) is Grothendieck.
This article explores in this context the question raised by Saoŕın if
the Grothendieck condition on the heart of an HRS t-structure implies
that it is equivalent to a module category. This amounts to asking
if T is tilting equivalent to a finitely presented module. This is re-
solved in the positive for a Krull-Schmidt ring, and for a commutative
ring, a positive answer follows from a proof that every pure projective
1-tilting module is projective. However, a general criterion is found
that yields a negative answer to Saoŕın’s Question and this criterion
is satisfied by the universal enveloping algebra of a semisimple Lie
algebra, a left and right noetherian domain.
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1 Introduction

In their study [5] of perverse sheaves, Beilinson, Bernstein and Deligne intro-
duced the notion of a t-structure on a triangulated category D and showed that
the triangulated structure of D induces the structure of an abelian category on
the heart Ht ⊆ D of the t-structure. In the case when D = Db(G) is the
bounded derived category of a Grothendieck category, their results [5, Propo-
sition 3.1.10] provide an exact functor Db(Ht) → Db(G), called the realization
functor, that extends the inclusion Ht ⊆ Db(G). For a torsion pair (T ,F) in G,
Happel, Reiten, and Smalø [17] introduced a t-structure on the bounded de-
rived category Db(G) called the HRS t-structure on Db(G), and they proved [17,
Theorem 3.3] that if (T ,F) is a torsion tilting pair, then the realization functor
Db(Ht) → Db(G) is an equivalence of triangulated categories. In their study of
what properties are preserved by this kind of derived equivalence, Parra and
Saoŕın ([27] and [28, Theorem 1.2]) showed that the heart Ht of the HRS t-
structure on Db(G) induced by a torsion pair (T ,F) in G is itself Grothendieck
if and only if the torsion free class F is closed under direct limits in G. In a
module category Mod-R, tilting torsion pairs (Gen T,F) arise from a 1-tilting
module T, which prompted Saoŕın to ask whether the realization functor is a
derived Morita equivalence, in the following form.

Question 1. [27, Question 5.5] Let R be a ring, TR a 1-tilting R-module, and
Ht ⊆ Db(Mod-R) the heart of the HRS t-structure induced in Db(Mod-R) by
the tilting torsion pair (GenT,F). If Ht is Grothendieck, is it equivalent to the
module category Mod-S for some ring S?

The question of whether the heart of an HRS t-structure induced by a torsion
pair in Mod-R (resp., mod-R) is equivalent to a module category has been
explored by several authors [17, 6, 1]. To formulate Saoŕın’s Question in terms
of module theory, we show (Corollary 4.5) that if T is a 1-tilting module,
then the heart Ht ⊆ D(Mod-R) of the HRS t-structure induced by the tilting
torsion pair (Gen T,F) in Mod-R is a Grothendieck category if and only if T is
pure projective. Recall that a Grothendieck category is equivalent to a module
category if and only if it contains a finitely generated projective generator.
Corollary 4.7 implies that this is the case if and only if T is a classical 1-
tilting module, defined to be a tilting module tilting equivalent to a finitely
presented module. These results may also be seen as special cases of the work
of Angeleri, Marks and Vitoria [1, Theorem 3.7 and Lemma 2.9], and they
suggest the following module theoretic formulation of Saoŕın’s Question, which
we take up in this article.

Question 2. (Saoŕın, pure projective version) For which rings R is every pure
projective 1-tilting module classical?

Saoŕın’s Question comes about from considerations that arise in the derived
Morita theory of rings, but the notion of a pure projective 1-tilting module is
a natural one to study in any case, because it represents the situation dual to
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the result of the first author [2] (generalized by Št́ov́ıček [36] to all cotilting
modules), that every 1-cotilting module is pure injective. On the other hand,
there are many examples of 1-tilting modules that are not pure projective.

The pure projective version of Saoŕın’s Question is related to the study [19] of
definable subcategories with enough pure projective modules. It is well known
that if C ⊆ Mod-R is a definable subcategory and M ∈ C, then there exists
a pure monomorphism m : M → U with U a pure injective module in C.
A definable subcategory C ⊆ Mod-R is said to have enough pure projective
modules if for every moduleM ∈ C, there exists a pure epimorphism e : V →M
with V a pure projective module in C. Such definable subcategories of Mod-R
arise ”classically” (cf. [8, 24]) as the categories C obtained by taking the closure
under direct limits C = lim

→
(X ), of a covariantly finite subcategory X ⊆ mod-R

of finitely presented modules. As part of our analysis of a pure projective 1-
tilting module T, we show (Theorem 4.4) that the class T = GenT = T⊥ of
Mod-R, which is also definable [3], has enough pure projective modules, and
(Theorem 4.6) that if T is a classical 1-tilting module, then T = lim

→
(X ), with

X ⊆ mod-R covariantly finite.

The pure projective version of Saoŕın’s Question has a positive answer for a
large class of rings. By Corollary 4.8, if R is a ring over which every pure
projective module is a direct sum of finitely presented modules, then every
1-tilting module T is classical. This includes the Krull-Schmidt rings, the
rings over which every finitely presented module is a direct sum of modules
with a local endomorphism ring. For a general commutative ring, we use a
henselization argument (Theorem 5.7) to show that every pure projective 1-
tilting module is projective. Considerably easier proofs are provided for a
noetherian commutative ring or an arithmetic ring.

But the answer to Saoŕın’s Question is not affirmative in general. In Theo-
rem 6.3, we identify a criterion for an idempotent ideal I of R, finitely gener-
ated on the left, sufficient to yield a pure projective 1-tilting module T that is
not classical. The construction is an elaboration of J. Whitehead’s method of
producing a projective module whose trace is such an idempotent ideal. The
tilting class that arises is given by T = {M ∈ Mod-R |M =MI}. For example,
if R = U(L) is the universal enveloping algebra of a semisimple Lie algebra L
and I is the annihilator of the trivial module CL, then the conditions of The-
orem 6.3 are met, so that one obtains a nonclassical pure projective 1-tilting
module TU(L) over a domain that is both left and right noetherian.

A preliminary section of the article is devoted to the rôle that definable subcat-
egories of Mod-R play in torsion theory. If (T ,F) is a torsion pair in Mod-R,
then the torsion free class F always has direct limits, given by the torsion free
quotient module of a direct limit in Mod-R. By the work of Parra and Saoŕın,
the heart of the associated HRS t-structure is Grothendieck if and only if the
direct limits in F coincide with those in the ambient category Mod-R, that is,
if F is closed under direct limits in Mod-R. This is equivalent to the condi-
tion that the torsion free class F is a definable subcategory of Mod-R, or that
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the torsion radical of (T ,F) respects direct limits. Hereditary torsion pairs
with this property are called elementary [31, §11.1.3]. We call a torsion pair
(T ,F) for which both T and F are definable a coherent torsion pair, in view
of Theorem 3.4, which implies that this condition is equivalent to the torsion
radical being a coherent functor. If T is a pure projective 1-tilting module, then
Corollary 4.5 and [3] imply that the tilting torsion pair (GenT,F) is coherent.

In what follows, R is an associative ring with unit, Mod-R denotes the category
of right R-modules, and mod-R the subcategory of finitely presented right R-
modules. The category of abelian groups is denoted by Ab. For a subcategory C
of Mod-R, Add(C) (resp., add(C)) denotes the class of modules isomorphic to
a summand of a (resp., finite) direct sum of modules in C. If the class C = {T }
is singleton, we write AddT (resp., addT ). Similarly, Gen(C) (resp., GenT )
denotes the class of epimorphic images of direct sums of modules in C (resp.,
of copies of T ).

Consider a subcategory C of Mod-R and a module M ∈ C. A homomorphism
φ : M → CM is a C-preenvelope of M, if for every homomorphism f : M → C
with C ∈ C there exists a homomorphism fM : CM → C such that the diagram

M
φ

//

f
!!❈

❈

❈

❈

❈

❈

❈

❈

❈

CM

fM

��

C

commutes. A C-preenvelope φ :M → CM is a C-envelope if every endomorphism
f : CM → CM such that f ◦ φ = φ is an automorphism of CM . We say that C
is preenveloping in an additive category A ⊇ C if every module A ∈ A has a C-
preenvelope. If A = Mod-R, we just say that C is preenveloping; if A = mod-R,
we call C a covariantly finite subcategory of mod-R. The notions of a C-precover
and precovering are defined dually.

The superscript ⊥i is used to denote orthogonality with respect to the bifunc-
tor ExtiR(−,−), so if C ∈ Mod-R, then C⊥i = KerExtiR(C,−) and similarly
for ⊥iC; if C ⊆ Mod-R is a class, then C⊥i = ∩{C⊥i | C ∈ C}. The unadorned
superscript ⊥ refers to ⊥1 and ⊥∞ will be used to denote the class orthogonal
(on the appropriate side) with respect to all the bifunctors ExtiR, i ≥ 1. A C-
preenvelope φ :M → MC is special if it is a monomorphism with Cokerφ ∈ ⊥C;
special C-precovers are defined dually.

The language for right R-modules is L(R) = (+,−, 0, r)r∈R; the standard ax-
ioms for a right R-module are expressible in L(R) and the theory Th(Mod-R)
of right R-modules consists of the consequences of these axioms. A subcate-
gory C ⊆ Mod-R is elementary if it is the class of models of some collection
Σ ⊇ Th(Mod-R) of sentences in L(R), C = Mod(Σ). Equivalently, the class
C ⊆ Mod-R is axiomatized by Σ. An elementary class E ⊆ Mod-R is finitely
axiomatizable (relative to the theory Th(Mod-R)) if there exists a sentence σ
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in L(R) such that E = Mod(Th(Mod-R) ∪ {σ}) is the subcategory of Mod-R
of modules M that satisfy σ, M |= σ.
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3 Coherent torsion pairs

Definable subcategories of Mod-R were introduced by Crawley-Boevey [9] to
characterize in non-logical terms the elementary additive classes of right R-
modules, which arise in the model theory of modules and are in bijective cor-
respondence with the closed subsets of the Ziegler spectrum [39].

Definition 3.1. A full subcategory C ⊆ Mod-R is definable if it is closed under
products, pure submodules and direct limits.

Definable subcategories are also closed under direct sums, which may be re-
garded as direct limits of finite direct products, or pure submodules of direct
products. There are several characterizations of definable categories that are
useful. Recall that an additive functor F : Mod-R → Ab is coherent if it re-
spects direct limits and direct products. Recall also that pure exact sequences
arise as direct limits of split exact sequences, so that a coherent functor takes
a pure exact sequence in Mod-R to one in Ab.

Proposition 3.2. Let C be a full subcategory of Mod-R. The following are
equivalent:

1. C is definable;

2. C is defined by the vanishing of some set of coherent functors;

3. C is closed under direct products, pure submodules and pure epimorphic
images; and

4. C is an elementary class, closed under direct sums and direct summands.

Proof. The equivalences (1) ⇔ (2) and (1) ⇔ (4) are from [9, §2.1, 2.3], where
they are stated for an algebra over an infinite field; for the general case, one
must include in Condition (4) that the elementary class is closed under direct
sums.
(2) ⇒ (3). This is a consequence of the fact that coherent functors are exact
on pure short exact sequences (see [9, §2.1, Lemma 1]).
(3) ⇒ (1). This holds because every direct limit is a pure epimorphic image of
the direct sum of the modules in the directed system.
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An important consequence of Proposition 3.2(4) is that definable subcategories
of Mod-R are closed under pure injective envelopes. This is because the pure
injective envelope M → PE(M) of a module M is an elementary embed-
ding [31, Theorem 4.3.21], and therefore belongs to any elementary subcategory
of Mod-R that contains M.
Suppose that (T ,F) is a torsion pair in Mod-R. The torsion free class F is
already closed under products and submodules, so that it is definable if and
only if it is closed under direct limits. On the other hand, the torsion class T is
closed under coproducts and quotients, so that it is already closed under direct
limits. It is therefore definable if and only if it is closed under pure submodules
and products.

Definition 3.3. A torsion pair (T ,F) in Mod-R is called coherent if the as-
sociated torsion radical t : Mod-R → Mod-R (composed with the forgetful
functor to Ab) is coherent.

If the torsion radical t of (T ,F) is a coherent functor, then both of the classes
T and F are definable, because F is defined by the vanishing of t, while T is
defined by the vanishing of the torsion free quotient functor, M 7→ M/t(M),
which is also coherent. Indeed, by [9, Lemma 2, §2.1], every coherent subfunctor
of the forgetful functor is given by a positive primitive formula τ(u) in the
language L(R) of R-modules, so that t(M) = τ(M) for all R-modules MR.
This implies that the torsion class is axiomatized by the sentence ∀u(τ(u)), so
that T = Mod (∀u(τ(u))), and that the torsion free class is axiomatized by the
sentence ∀u(τ(u) → (u

.
= 0)). Thus both of the classes T and F are finitely

axiomatizable.

Theorem 3.4. (cf. [30, Theorem 7]) Let (T ,F) be a torsion pair in Mod-R
with torsion radical t. The torsion free class F is definable if and only if t
respects direct limits. The torsion class T is closed under direct products in
Mod-R if and only if t respects products. Therefore, (T ,F) is coherent if and
only if both of the classes T and F are definable.

Proof. If t respects direct limits, then it is clear that a direct limit of torsion
free modules is torsion free. To prove the converse, suppose that a directed
system Mi, i ∈ I, in Mod-R is given, with direct limit M = lim

→
Mi. Each Mi

is an extension of its torsion free quotient by its torsion submodule. These
extensions themselves form a directed system of short exact sequences, with
limit as shown in

0 // t(Mi) //

��

Mi
//

��

Mi/t(Mi) //

��

0

0 // lim
→
t(Mi) // M // lim

→
Mi/t(Mi) // 0.

A torsion class is closed under direct limits so that lim
→
t(Mi) is torsion, which
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induces a canonical morphism lim
→
t(Mi) → t(lim

→
Mi). By assumption, the di-

rect limit lim
→
Mi/t(Mi) is torsion free, so that the short exact sequence in the

bottom row represents M as the extension of its torsion free quotient by its
torsion submodule, which implies that the canonical morphism is an isomor-
phism.
If t respects direct products, then it is clear that a direct product of torsion
modules is torsion. To prove the converse, let Nj , j ∈ J, be a family of modules
with product N =

∏

j Nj, and use a dual argument, but taking a product
instead of a direct limit, to obtain the short exact sequence

0 //
∏

j t(Nj) // N //
∏

j N/t(Nj) // 0.

A torsion free class is closed under products, so the right term
∏

j Nj/t(Nj)
is torsion free, which induces a canonical morphism t(

∏

j Nj) →
∏

j t(Nj). By
assumption, the product

∏

j t(Nj) is torsion, so that the short exact sequence
represents N as the extension of its torsion free quotient by its torsion sub-
module, which implies that the canonical morphism is an isomorphism.
If T and F are both definable, then these two statements imply that t respects
direct limits and direct products.

Corollary 3.5. A torsion pair (T ,F) in Mod-R is coherent if and only if
both T and F are finitely axiomatizable.

Proof. If T and F are both finitely axiomatizable, then they are elementary
and additive, and therefore definable.

Finitely axiomatizable definable subcategories correspond to basic Zariski open
subsets of the Ziegler spectrum in the sense of [31, Chapter 14]. Examples of
coherent torsion pairs will be found with the help of pure projective modules.

Definition 3.6. An R-module is pure projective if it has the projective prop-
erty with respect to pure exact sequences. Other equivalent formulations are
the following:

1. A module is pure projective if and only if it is a direct summand of a direct
sum of finitely presented modules. For this reason, the subcategory of
pure projective modules is denoted by Add(mod-R).

2. A module M is pure projective if and only if every pure short exact
sequence 0 → A→ B →M → 0 splits.

Corollary 3.7. If (T ,F) is a coherent torsion pair in Mod-R, then T ∩⊥T ⊆
Add(mod-R).

Proof. Consider a pure short exact sequence 0 → A→ B
g
→ P → 0, with P in

T ∩ ⊥T and B a direct sum of finitely presented modules. Apply the torsion
radical,

0 // t(A) // t(B)
t(g)

// P // 0.
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The sequence is exact, because t is a coherent functor, and the third term is
t(P ) = P. But t(A) ∈ T and P ∈ ⊥T , so the sequence splits. If s : P → t(B)
is a section of t(g), then, because t is a subfunctor of the identity functor on
Mod-R, the composition s : P → t(B) ⊆ B is a section of g : B → P.

Recall from the Introduction that a definable subcategory D ⊆ Mod-R has
enough pure projectives [19] if for every module DR ∈ D, there exists a pure
epimorphism g : P → D, where P is a pure projective module in D.

Lemma 3.8. If 0 → H → M → B → 0 is an exact sequence with H finitely
generated and M pure projective, then B is pure projective.

Proof. First recall that if M is finitely presented and H is finitely generated,
then B is also finitely presented. For the general case, takeM ′ so thatM⊕M ′ =
⊕

iMi is a direct sum of finitely presented modules. Because H is finitely
generated, it is a submodule of a finite sum of the Mi, and so we can assume it
is a submodule of just one of them, sayM0. ThenM/H⊕M ′ = (M⊕M ′)/H =
M0/H ⊕

⊕

i6=0Mi is a direct sum of finitely presented modules.

Theorem 3.9. The following are equivalent for a torsion pair (T ,F) in Mod-R
with T definable:

1. the module RR has a T -preenvelope that is pure projective;

2. every finitely presented module has a pure projective T -preenvelope;

3. T has enough pure projectives;

4. T = GenP for some pure projective module.

Moreover, if these conditions are satisfied, then (T ,F) is a coherent torsion
pair.

Proof. (1) ⇒ (2). Let ε : R → TR be a pure projective T -preenvelope. We will
use the lemma to build a pure projective T -preenvelope of a finitely presented
module A. There is a short exact sequence 0 → H → Rn π

→ A → 0 with H
a finitely generated module. Take the pushout of π and the pure projective
T -preenvelope εn : Rn → T n

R to obtain the commutative diagram

0 // H // Rn π
//

εn

��

A

δ

��

// 0

0 // H // T n
R

// TA // 0.

(1)

The morphism δ : A→ TA is then a T -preenvelope of A, with TA pure projec-
tive, by Lemma 3.8.
(2) ⇔ (3). This is just [19, Theorem 8].
(2) ⇒ (4). Let S be a set of representatives of the isoclasses of finitely presented
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modules and P the direct sum of the pure projective D-preenvelopes. Then
T ⊆ GenP. The converse inclusion is clear, since P ∈ T and T is a torsion
class.
(4) ⇒ (1). Rada and Saoŕın [32, Theorem 3.3] proved that every subcategory
closed under direct products and pure submodules is preenveloping. Every
definable subcategory is therefore preenveloping. Let ε : R → TR be a T -
preenvelope of R. By hypothesis, there is an epimorphism φ : P (I) → TR from
a coproduct of copies of P. The T -preenvelope ε then factors through φ, and
yields the module P (I) as a pure projective T -preenvelope of RR.

To prove the last statement, use Condition (4) to see that F = {M ∈
Mod-R | HomR(P,M) = 0}. As P is pure projective, F is closed under pure
epimorphic images. By Proposition 3.2(3), it is definable.

Conjecture 3.10. If (T ,F) is a coherent torsion pair, then T has enough
pure projective modules.

If R is right noetherian, the conjecture can be verified by expressing a torsion
module T = lim

→
Mi as the direct limit of its finitely generated submodules.

Then T = lim
→
t(Mi) is the direct limit of its finitely generated torsion submod-

ules. These are all finitely presented and T is a pure epimorphic image of the
pure projective module obtained by taking the direct sum of the t(Mi).

4 Pure projective tilting modules

Definition 4.1. A right R-module T is a (large) 1-tilting module if it satisfies
the following conditions:

(T1) pd(T ) ≤ 1;

(T2) Ext1R(T, T
(λ)) = 0, for every cardinal λ;

(T3) there exists an exact sequence:

0 // R // T0 // T1 // 0,

where T0, T1 ∈ AddT. The notion of a 1-cotiltingmodule is defined dually.

By [7] a module T is 1-tilting if and only if T = T⊥ = GenT, which is called
the tilting class of T. By [14, Lemma 14.2], T is a torsion class in Mod-R and
gives rise to the tilting torsion pair (T ,F), where

F = {M ∈ Mod-R | HomR(T,M) = 0}.

Two 1-tilting modules T and U are said to be tilting equivalent if T⊥ = U⊥

or, equivalently, if AddT = AddU. A 1-tilting module equivalent to a finitely
presented 1-tilting module is called classical. For later reference, we recall a
useful criterion for a module U to be a 1-tilting module equivalent to a given
one T.
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Lemma 4.2. Let T be a 1-tilting module and suppose there is a short exact
sequence

0 // R // U0
// U1

// 0,

where U0, U1 ∈ AddT. Then U = U0⊕U1 is a 1-tilting module equivalent to T.

Proof. (cf. the proof of [14, Theorem 13.18]). Every module in AddT satisfies
Conditions (T1) and (T2) for a 1-tilting module. This is because the class of
modules that satisfy Condition (T1) is closed under direct sums and summands.
Similarly, the class of modules that satisfy Condition (T2) is clearly closed
under direct summands, and it is readily verified that for every index set I, the
direct sum T (I) of copies of T also satisfies Condition (T2). Because U belongs
to Add T it satisfies the Conditions (T1) and (T2). It satisfies Condition (T3)
by hypothesis, so that U is itself a 1-tilting module. Therefore GenU = U⊥.
Now U ∈ AddT implies that the tilting class of U, GenU ⊆ GenT is contained
in that of T. On the other hand, U is a direct summand of some direct sum
T (I), so that U⊥ ⊇ (T (I))⊥ = T⊥, as required.

If I ⊆ R is a two sided ideal, then we may think of the module category
Mod-R/I as a full subcategory of Mod-R induced by restriction of scalars along
the quotient map R → R/I of rings. It consists of the modules M ∈ Mod-R
for which MI = 0. Given a torsion pair (T ,F) in Mod-R, with torsion ideal
I = t(R) ⊆ R, we have that for every F ∈ F , HomR(I, F ) = 0, hence
HomR(R/I, F ) ∼= F, that is, FI = 0. We may therefore think of F as a sub-
category of Mod-R/I.

Proposition 4.3. Let (T ,F) be a torsion pair in Mod-R, with torsion radical
t and torsion ideal I = t(R). The torsion free class F is closed under direct
limits in Mod-R if and only if there exists a 1-cotilting R/I-module C, such
that

F = {M ∈ Mod-R |MI = 0 and Ext1R/I(M,C) = 0}.

Proof. As a consequence of the result that every 1-cotilting module CR is pure
injective [2], the cotilting class ⊥C ⊆ Mod-R/I is a definable subcategory. It
follows that F ⊆ Mod-R is definable.
For the converse, note that submodules, direct products and direct limits of
modules in F are R/I-modules. Thus, we may consider F as a definable sub-
category of Mod-R/I, which is therefore closed under pure epimorphic images
in Mod-R/I.Moreover, F contains all the projective R/I-modules, thus by [10,
Proposition 5.2.2] or [20, Theorem 2.5], F is a covering class in Mod-R/I. Every
cover is an epimorphism, since F contains the projective R/I-modules. As F
is closed under extensions, Wakamatsu’s Lemma implies that F is a special
precovering class in Mod-R/I. By [14, Theorem 15.22], there is a 1-cotilting
R/I-module C such that F = KerExt1R/I(−, C).

Note that Proposition 4.3 also follows from [27, Proposition 5.7]. Indeed, F
is closed under direct limits in Mod-R if and only if it is closed under direct
limits in Mod-R/I and in this case F generates Mod-R/I.
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In a tilting torsion pair (T ,F), generated by a 1-tilting module T, the tilting
class T = GenT is definable. This was proved by the first author and Her-
bera [3], by giving a collection A ⊆ mod-R of finitely presented modules of
projective dimension at most 1, such that T = A⊥. If AR is a finitely pre-
sented module of projective dimension at most 1, then the functor Ext1R(A,−)
is coherent, so that T is definable by Condition (2) of Proposition 3.2.

Theorem 4.4. The following are equivalent for a 1-tilting module T, with tilting
class T = GenT :

1. the module T is pure projective;

2. the definable subcategory T has enough pure projective modules;

3. the tilting torsion pair (T ,F) is coherent;

4. T ∩ ⊥T ⊆ Add(mod-R);

5. the module RR admits a pure projective special T -preenvelope;

6. every finitely presented module admits a special pure projective T -
preenvelope;

7. every finitely presented module in ⊥T admits a special pure projective
T -preenvelope in AddT ; and

8. T is tilting equivalent to a countably presented pure projective 1-tilting
module.

If R is a right noetherian ring, these conditions are equivalent to the condi-
tion that X = T ∩ mod-R is a covariantly finite subcategory of mod-R and
T = lim

−→
(X ).

Proof. (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (1). The first two implications follow from
Theorem 3.9; the third from Corollary 3.7; and the fourth from the general fact
about a 1-tilting module T that T ∩ ⊥T = Add T.
(1) ⇒ (5). By Condition (T3) for a 1-tilting module, there is an exact sequence
0 → R → T0 → T1 → 0 where both T0 and T1 are in AddT = T ∩ ⊥T . Thus
0 → R → T0 is a special T -preenvelope of R with T0 pure projective.
(5) ⇒ (6). Let A be a finitely presented module. Consider a short exact

sequence 0 → H → Rn π
→ A → 0 with H a finitely generated module, and

argue as in the proof of (1) ⇒ (2) of Theorem 3.9, by taking the pushout (1)
of π and εn, where ε : R → T0 is a special pure projective T -preenvelope. By
the properties of a pushout, the morphisms εn : Rn → T n

0 and δ : A→ TA are
also special pure projective T -preenvelopes.
(6) ⇒ (7). If A is a finitely presented module in ⊥T , then the special T -
preenvelope given by the hypothesis lies in T ∩ ⊥T = AddT.
(7) ⇒ (2). Apply the hypothesis to the module RR and apply the implication
(1) ⇒ (3) of Theorem 3.9.
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(1)⇔ (8). By assumption, every module T0 in AddT is pure projective, a direct
summand of a direct sum ⊕i∈IEi with Ei finitely presented modules, hence in
particular countably generated. By Kaplansky’s Theorem [23, Theorem 1],
T0 is a direct sum of countably generated submodules Xα in Add T, T0 =
⊕α∈ΛXα. By Condition (T3) for a 1-tilting module, there is a short exact

sequence 0 → R
ε
→ T0 → T1 → 0 with T0 as described. The image of ε is

contained in a summand U0 of T, U0 = ⊕β∈F0
Xβ where F0 is a finite subset

of Λ. Hence, U0 is countably generated and T1 ∼= U0/ε(R)⊕⊕α∈Λ\F0
Xα. The

quotient module U1 = U0/ε(R) is a summand of T1 and so also belongs to
Add T. It follows from Lemma 4.2 that U = U0 ⊕ U1 is a countably generated
1-tilting module in AddT that is tilting equivalent to T. By [4, Corollary 3.9],
a countably generated 1-tilting module is countably presented, that is, admits
a presentation by countably generated projective modules.
If the ring R is right noetherian, then the condition in the last statement follows
from the remark in the last paragraph of Section 1, together with [14, Lemma
8.35]; the converse from [14, Lemma 8.36].

From a tilting torsion pair (T ,F) in a Grothendieck category G there arises [17,
§I.2] a corresponding torsion pair (F [1], T [0]) in the heart Ht ⊆ Db(G) of
the HRS t-structure with the property that F [1] ∼= F is equivalent to the
given torsion free class, while T [0] ∼= T is equivalent to the torsion class. If
G = Mod-R is a module category and T = GenT for some 1-tilting module T,
then the stalk complex T [0] is a projective generator of Ht.

Corollary 4.5. Let T be a 1-tilting module. The heart Ht of the HRS t-
structure in the bounded derived category Db(Mod-R) induced by the torsion
pair (GenT,F) is a Grothendieck category if and only if T is a pure projective
module.

Proof. Since T is a 1-tilting module, the torsion class GenT is definable, by [3].
By [28, Theorem 1.2], the heartHt is a Grothendieck category if and only if F is
definable, and this is equivalent to T being pure projective, by the equivalence
(1) ⇔ (3) of Theorem 4.4.

The following is the classical version of Theorem 4.4.

Theorem 4.6. Let T be 1-tilting module with tilting class T = GenT . The
following are equivalent:

1. T is classical;

2. T ∩ ⊥T ⊆ Add(T ∩ ⊥T ∩mod-R);

3. the module RR admits a finitely presented special T -preenvelope;

4. every finitely presented module admits a finitely presented special T -
preenvelope; and
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5. every finitely presented module in ⊥T admits a finitely presented special
T -preenvelope in AddT.

In case these conditions hold, the subcategory X = T ∩ mod-R is covariantly
finite in mod-R and T = lim

→
(X ).

Proof. (1) ⇒ (2). If T is equivalent to a finitely presented module E, then

T ∩ ⊥T = Add T = AddE ⊆ Add(T ∩ ⊥T ∩mod-R).

(2) ⇒ (3). Condition (T3) implies that there is a short exact sequence 0 →
R → T0 → T1 → 0 with T0 and T1 in AddT. By hypothesis, T0 is a direct
summand of a direct sum T0⊕T

′
0 = ⊕i∈IEi with Ei finitely presented modules

in AddT. Adding to both of the modules T0 and T1 the direct summand T ′
0,

we may assume that there exists a sequence 0 → R → V0 → V1 → 0 with V0
and V1 in AddT and V0 is a direct sum ⊕i∈IEi of finitely presented modules
Ei. Arguing as in the proof of (1) ⇒ (8) of Theorem 4.4 yields a short exact
sequence 0 → R → U0 → U1 → 0 where U0 and U1 are finitely presented
modules in AddT = T ∩ ⊥T . Thus 0 → R → U0 is a special T -preenvelope of
R with U0 finitely presented.
(3) ⇒ (4). Let A be a finitely presented module and argue as in the proof
of (1) ⇒ (2) of Theorem 4.4, with ε : R → T0 a special finitely presented
T -preenvelope. Then εn is also such and δ : A → TA is the required special
finitely presented T -preenvelope of A.
(4) ⇒ (5). Clear, since a special T -preenvelope of a module in ⊥T belongs to
Add T.
(5) ⇒ (1). Let 0 → R → U0 → U1 → 0 be a special T -preenvelope of R with
U0 finitely presented. Then both U0 and U1 belong to T ∩ ⊥T = AddT, so
that U = U0 ⊕ U1 is, by Lemma 4.2, a 1-tilting module equivalent to T.
For the last statement, note that Condition (4) implies that T ∩ mod-R is
covariantly finite and use Lenzing’s special case [24] of [19, Theorem 8].

Recall from [7] that a module X is self small if the canonical morphism
HomR(X,X)(I) → HomR(X,X

(I)) is an isomorphism, for every index set I. If
T is a pure projective 1-tilting module, then, because the tilting class GenT is
cogenerating, Proposition 5.3 of [27] implies that the heart Ht ⊆ Db(Mod-R)
of the HRS t-structure associated to the torsion pair (GenT,F) is a module
category if and only if the tilting class GenT may be represented by a self-small
tilting module T. By [7, Proposition 1.3] a 1-tilting module is self-small if and
only if it is finitely presented.

Corollary 4.7. Let T be a 1-tilting module. The heart Ht of the HRS t-
structure in Db(Mod-R) induced by the torsion pair (GenT,F) is equivalent to
a module category if and only if T is classical.

Corollary 4.8. If R is a ring over which every right pure projective module
is a direct sum of finitely presented modules, then every pure projective 1-tilting
module is classical.
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Proof. If T is a pure projective 1-tilting module over such a ring, with tilting
class T , then T ∩⊥T = Add T consists of pure projective modules, so that the
hypothesis implies Condition (2) of Theorem 4.6.

If A ∈ mod-R is a finitely presented module of projective dimension at most 1,
then the functor Ext1R(A,−) : mod-R → Ab is coherent so that the condition
for a module MR to satisfy Ext1R(A,M) = 0 is elementary [31, §10.2.6]: there
is a sentence σA in L(R) such that Ext1R(A,M) = 0 if and only if M |= σA.

Proposition 4.9. Let T be a 1-tilting module. The tilting class T = GenT =
T⊥ is finitely axiomatizable if and only if there exists a finitely presented module
AR of projective dimension at most 1 such that T = A⊥.

Proof. If T = A⊥, then T is axiomatized by the sentence σA. For the converse,
suppose that T is finitely axiomatized by the sentence σ, and let A ⊆ mod-R
be an additive subcategory of modules of projective dimension at most 1 for
which T = A⊥. The collection Th(Mod-R) ∪ {¬σ} ∪ {σA | A ∈ A} of sen-
tences in L(R) is inconsistent. By the Compactness Theorem, some finite
subcollection is already inconsistent, which implies that there are finitely many
A1, A2, . . . , An ∈ A such that Th(Mod-R) ⊢

∧n
i=1 σAi

→ σ. In other words, if
A = ⊕n

i=1Ai, then Ext1R(A,M) = 0 implies M ∈ T .

According to Theorem 4.4(8), a pure projective 1-tilting module is equivalent to
a countably presented pure projective 1-tilting module T. For many purposes,
we may thus replace the given 1-tilting module by T and extract some further
information when T is pure projective. Arguing as in [37, Lemma 4.4], every
countably presented 1-tilting module T, with tilting class T may be represented
as the limit of a linear system T = lim

n→∞
An, where for each n :

1. An ∈ mod-R;

2. pd(An) ≤ 1; and

3. An ∈ ⊥T .

Such a linear system (An, fn : An → An+1)n∈N is called a system associated to
T ; it yields a pure exact sequence

0 // ⊕n∈NAn
φ

// ⊕n∈NAn
// T // 0

in the usual way, where φ(a1, a2, · · · , an, · · · ) = (a1, a2 − f1(a1), · · · , an −
fn−1(an−1), · · · ).

Proposition 4.10. If T is a countably presented pure projective 1-tilting mod-
ule with associated system (An|n ∈ N), then

1. T ⊕ (⊕n∈NAn) ∼= ⊕n∈NAn;

2. there exists a k ∈ N such that Bk = ⊕n≤kAn satisfies B⊥
k = T ; and
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3. lim
n→∞

An/t(An) = 0.

Proof. Because T is pure projective, the pure exact sequence above splits and
yields (1). This implies that

⋂

nA
⊥
n ⊆ T⊥ ⊆ A⊥

k for every k ∈ N, since
Ak ∈ ⊥T . The first inclusion is thus an equality. As T is pure projective,
T = T⊥ is finitely axiomatizable, so that we can argue as in the proof of Propo-
sition 4.9 to get (2). Finally, the pure projective assumption on T also entails,
by Theorem 3.4, that the torsion radical t : mod-R → mod-R is coherent, and so
respects direct limits. This implies that lim

n→∞
t(An) = t( lim

n→∞
An) = t(T ) = T.

Consider the linear system of short exact sequences

0 // t(An) // An
// An/t(An) // 0

associated to the system (An|n ∈ N) and take the limit to obtain the short
exact sequence

0 // T
1T

// T // lim
n→∞

An/t(An) // 0,

which establishes (3).

5 The Commutative case

In this section we prove that a pure projective 1-tilting module over a commu-
tative ring is projective. The result involves the notion of the henselization of
local rings, but for some classes of commutative rings, like noetherian or arith-
metic rings the arguments are simpler. First, recall that a 1-tilting module T
over a commutative ring is equivalent to a classical tilting module if and only
if T is projective (see for instance [29, Lemma 1.2]).

Lemma 5.1. Let T be a 1-tilting module over a commutative ring R and let S
be a multiplicative subset of R. Then TS is a 1-tilting RS-module and if T is
pure projective, so is TS.

Proof. By [14, Proposition 13.50], TS is a 1-tilting RS-module. (Note that the
proof given there becomes simpler in the case of 1-tilting modules, since the
first syzygy of T is projective). If T is pure projective, it follows immediately
that TS is pure projective, since RS is a flat R-module.

The next proposition allows to reduce the investigation to the case of local
commutative rings.

Proposition 5.2. Let T be a 1-tilting module over a commutative ring R.
Then T is projective if and only if Tm is a projective 1-tilting Rm-module, for
every m ∈ MaxR.
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Proof. By Lemma 5.1, Tm is a 1-tilting Rm-module, for every m ∈ MaxR. If T
is projective, then clearly Tm is a projective Rm-module.
For the converse, let us apply again the result [3] that every 1-tilting module
T is of finite type, that is, there exists a set {Ai; i ∈ I} of finitely presented
modules with pd(Ai) ≤ 1 such thatM ∈ T⊥ if and only if Ext1R(Ai,M) = 0, for
every i ∈ I. For every maximal ideal m of R we have Ext1Rm

((Ai)m, Tm) = 0.
This implies that (Ai)m ∈ ⊥(T⊥

m
). By assumption, Tm is a projective Rm-

module. Thus (Ai)m is projective, too. We conclude that Ai is a projective
R-module, for every i ∈ I. Hence T is projective.

A module M over a ring R is FP2 if M is finitely presented and a first syzygy
of M is finitely presented.

Lemma 5.3. Let (R,m) be a commutative local ring and let A be an FP2-module
R-module. The following are equivalent:

1. A is projective;

2. TorR1 (A,R/m) = 0;

3. Ext1R(A,R/m) = 0.

Proof. (1) ⇔ (2). This is well known (see for instance [13, Lemma 2.5.8]).
(2) ⇔ (3). For every R-module M let M∗ = HomR(M,E) where E is an in-
jective envelope of R/m. Then (R/m)∗ ∼= R/m and by well known homological
formulas, Ext1R(A,R/m) = 0 if and only if TorR1 (A,R/m) = 0.

Proposition 5.4. Let (R,m) be a local commutative ring. A 1-tilting module T
is projective if and only if R/m ∈ T⊥. So if T is not projective, then no nonzero
finitely generated module is torsion.

Proof. Necessity is clear. As in the proof of Proposition 5.2, let {Ai, i ∈ I} be
a set of finitely presented modules of projective dimension at most one such
that T⊥ = (

⊕

i∈I

Ai)
⊥. By assumption Ext1R(Ai, R/m) = 0 for every i ∈ I. By

Lemma 5.3 we conclude that every Ai is projective, hence T
⊥ = Mod-R and T

is projective.
If T is not projective andM ∈ T is a nonzero finitely generated torsion module,
Nakayama’s Lemma implies that the nonzero quotient M/Mm and therefore
R/m belongs to T .

We can use Proposition 5.4 to see that every pure projective 1-tilting module T
over a commutative noetherian ring is projective. By Proposition 5.2 and
Theorem 4.4, it suffices to verify the case when R is a local and T countably
presented. If (An|n ∈ N) is a system associated to T, then Proposition 4.10(1)
implies that T ⊕ (⊕n∈NAn) = ⊕n∈NAn. Because t(T ) = T, the submodule
t(An) ⊆ An must be nonzero for some n. As R is noetherian, this implies that
t(An) is a finitely generated torsion module. By Proposition 5.4, T must be
projective.
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Proposition 5.5. If R is a commutative local Krull-Schmidt ring, then every
pure projective 1-tilting module over R is projective.

Proof. Over a Krull-Schmidt ring, every finitely presented module is a direct
sum of indecomposable modules with a local endomorphism ring, so that every
pure projective module T is a direct sum of finitely presented modules. If T
were not projective, then by Proposition 5.4, none of these finitely presented
modules would be in T , which is absurd.

Recall that a commutative ring R is a chain ring if the lattice of its ideals is
linearly ordered and R is arithmetic if the lattice of its ideals is distributive.
By [21, Theorem 1], a ring R is arithmetic if and only every localization of R
at a maximal ideal is a chain ring. It is well known that if R is a chain ring,
then every finitely presented module is a direct sum of cyclically presented
modules (see e.g. [22, Theorem 9.1]), that is, modules of the form R/rR, for
some r ∈ R. The endomorphism rings of such modules are clearly local, so that
every chain ring is Krull-Schmidt. Propositions 5.2 and 5.5 imply that every
pure projective 1-tilting module over an arithmetic ring is projective.
Recall that a local commutative ring (R,m) with residue field k is henselian if
for every monic polynomial f ∈ R[X ] and every factorization f = g0h0 in k[X ]
with g0 and h0 comaximal (i.e., they generate k[x]), there is a factorisation
f = gh in R[X ] such that g = g0 and h = h0. Examples of henselian rings
include 0-dimensional local rings and local rings (R,m) which are complete in
the m-adic topology. An important result about henselian rings is that they
are Krull-Schmidt (see [34] or [11, V Section7]).
In order to prove the main result of this section, we need to recall that every
commutative local ring admits a henselization (see [26, Chapter VII] or [15,
18.6]).

Proposition 5.6. Let (R,m) be a local commutative ring. There is a local ring
RH and a local ring homomorphism h : R → RH , such that:

1. RH is henselian;

2. R→ RH is faithfully flat;

3. mRH is the maximal ideal of RH ;

4. for every ring homomorphism f : R → R′ with R′ henselian, there is a
unique ring homomorphism g : RH → R′ such that f = g ◦ h.

Theorem 5.7. Let R be a commutative ring. Then every pure projective 1-
tilting module is projective, and therefore classical.

Proof. By Proposition 5.2 we can assume that R is local. Let T be a 1-tilting
R-module and consider a henselization RH of R. Since RH is flat, we can argue
as in the proof of [14, Proposition 13.50], to conclude that the RH -module
TH = T ⊗RR

H is 1-tilting. Moreover, again by flatness, if T is pure projective
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so is TH . Since henselian rings are Krull-Schmidt, Proposition 5.5 gives that
TH is a projective RH -module and since projectivity descends along faithfully
flat ring homomorphisms (see [33, Part II], corrected in [16], or by [35, 10.92.1]),
we conclude that T is a projective R-module.

6 The Noetherian case

In this section we show how to construct examples of nonclassical pure projec-
tive 1-tilting modules over noetherian rings. The construction is based on the
following result of J. Whitehead [38].

Theorem 6.1. Let I be an idempotent ideal of R finitely generated on the left.
Then there exists a countably generated projective module P ∈ Mod-R with
trace ideal I.

Let us briefly explain how to construct P . Suppose that I = Ri1 + · · · + Rik
and let c = (i1, . . . , ik)

T be a column containing the generators of I. For every

n ∈ N let Fn = Rkn−1

and let fn : Fn → Fn+1 be the homomorphism given by
the block-diagonal matrix having every diagonal block equal to c. For example,
if k = 2 we have

f1 =

(

i1
i2

)

× −, f2 =









i1 0
i2 0
0 i1
0 i2









×−

Then it is possible to show the existence of homomorphisms gn : Fn+1 → Fn

such that fn = gn+1fn+1fn for every n ∈ N. Let P = lim
−→

Fi, then the canonical
presentation of the direct limit in the short exact sequence

0 // ⊕i∈NFi
// ⊕i∈NFi

// P // 0

splits, so P is projective.
Our aim is to modify the construction a bit to obtain a pure projective 1-tilting
module. From now on assume that I = Ri1 + · · ·+Rik is an idempotent ideal
satisfying the following property: If Ir = 0 for some r ∈ R then r = 0. Observe
that this property holds if and only if εl+1 = fl · · · f2f1 is a monomorphism
for every l ∈ N. Further let πl : Fl → Ml be the cokernel of εl. Consider the
following diagram whose columns are short exact sequences

F1 F1

ε2

��

F1

ε3

��

F1

ε4

��

· · ·

F1

��

f1
// F2

π2

��

f2
// F3

π3

��

f3
// F4

f4
//

π4

��

· · ·

0 // M2
f2

// M3
f3

// M4
f4

// · · ·
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Considering the direct limits of the rows in this diagram we obtain an exact
sequence

0 // R
ε

// P
π

// Q // 0,

where P is projective and Q is pure projective by Lemma 3.8. In fact, it is easy
to see that every homomorphism gn : Fn+1 → Fn induces a homomorphism
gn : Mn+1 → Mn such that gn+1fn+1 fn = fn holds for every n ≥ 2. Then
the canonical presentation of Q as lim

−→
Mn splits, in particular Q is a direct

summand of ⊕2≤i∈NMi.

Proposition 6.2. The module T = P ⊕Q constructed above is pure projective
1-tilting and such that

T⊥ = GenT = {M ∈ Mod-R |MI =M}.

Proof. It is easy to see and well known that GenT = GenP = {M ∈ Mod-R |
MI = M} since I is the trace ideal of P . Further observe that T⊥ = Q⊥

and 0 → R
ε
→ P

π
→ Q → 0 is a projective presentation of Q. Therefore

if N ∈ Q⊥, then every homomorphism f : R → N is of the form f ′ε for
some f ′ : P → N . Now NI = N is an easy consequence of PI = P . So
T⊥ ⊆ {M ∈ Mod-R |MI =M}.
Thus we are left to prove that if N ∈ {M ∈ Mod-R |MI =M} then N ∈ Q⊥

that is for every ϕ : R → N there exists ϕ′ : P → N such that ϕ = ϕ′ε. Recall
that P is a direct limit of the sequence

F1
f1

// F2
f2

// F3
f3

// · · · .

For any i ∈ N let ιi : Fi → P be the colimit injection. Observe that F1 = R and
ε = ι1. Further f1 is a multiplication by the column consisting of generators
of RI. Then it is easily verified that for a given homomorphism ϕ : F1 → N
there exists ψ : F2 → N such that ψf1 = ϕ. For every i ≥ 2 put ϕi =
ψg2g3 · · · gifi : Fi → N . The property gi+1fi+1fi = fi shows that ϕi+1fi = ϕi

for every i ≥ 2. The universal property of direct limits gives the homomorphism
ϕ′ : P → N such that ϕ′ιi = ϕi for every i ≥ 2. In particular, ϕ′ι2f1 = ϕ2f1.
The LHS of this equality is just ϕ′ε and the RHS is ϕ2f1 = ψg2f2f1 = ψf1 = ϕ.
So ϕ′ε = ϕ and we are done.

Recall that a finitely generated module M ∈ Mod-R is stably free if there exist
a finitely generated free module F ∈ Mod-R such that M ⊕ F is free (finitely
generated).
Let us present a criterion for producing a pure projective 1-tilting module that
is not classical.

Theorem 6.3. Let R be a ring and let I ⊆ R be an idempotent ideal finitely
generated on the left satisfying Ir = 0 ⇒ r = 0. Further suppose that the
following conditions hold:
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(1) every finitely generated projective right R-module is stably free;

(2) there exists a proper ideal K containing I such that every finite power of
R/K is a directly finite module, that is, it is not isomorphic to a proper
direct summand of itself;

(3) there exists a flat homomorphism ϕ : R → S of rings such that S is a
nontrivial semisimple artinian ring and ϕ(I) 6= 0.

If T ∈ Mod-R is a 1-tilting module such that T⊥ = {M ∈ Mod-R |MI =M},
then T is not tilting equivalent to a direct sum of finitely presented modules,
hence not classical.

Proof. We claim that every finitely presented module MR of projective dimen-
sion at most 1 satisfying MI =M satisfies M ⊗R S = 0: Let

0 // P1
// P2

// M // 0

be a projective presentation of such a module, where P1, P2 are finitely gen-
erated projectives. By (1) we may assume P1 ≃ Rm and P2 ≃ Rn for some
m,n ∈ N. Now apply the functor − ⊗R R/K to this free presentation of M.
UsingMK =M we get an epimorphism (R/K)m onto (R/K)n. Since (R/K)m

is directly finite, m ≥ n follows. Finally apply − ⊗R S to the presentation of
M to obtain

0 // Sm // Sn // M ⊗R S // 0.

Sincem ≥ n and S is an S-module of finite length thenm = n andM⊗RS = 0.
This proves the claim.
We can complete the proof easily. Let T be a 1-tilting module such that
T⊥ = {M ∈ Mod-R | MI = M} and AddT = Add(⊕i∈IMi), where every Mi

is a finitely presented module. Since T is 1-tilting, every Mi is of projective
dimension at most 1 and MiI = Mi. Because T is a direct summand of a
sum of the Mi, the claim implies T ⊗R S = 0. On the other hand, there is
a projective module P of the trace ideal I, so PI = P ∈ GenT and P is a
direct summand of T (κ). In particular, P ⊗R S = 0. But it is not possible if
ϕ(I) 6= 0.

Observe that if R is noetherian and 0 6= I 6= R then Condition (2) of The-
orem 6.3 holds with I = K. Moreover, if R is noetherian semiprime then
Condition (3) is a consequence of Goldie’s theorem [25, Theorem 2.3.6, Propo-
sition 2.1.16(ii)]. So in the noetherian context we have to care only about the
existence of a suitable idempotent ideal I and Condition (1).
Now we can give the promised examples. First, let us consider the universal
enveloping algebra of sl(2,C), that is R = C〈h, e, f〉/(h = ef − fe, 2e = he −
eh,−2f = hf − fh). This is a noetherian domain, let I be the ideal generated
by h, e, f . Obviously I2 = I and R/I ≃ C. So we can take K = I in order to
check (2). The condition (3) is satisfied as the inclusion of R into its (right)
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quotient division ring is flat. Finally, according to [25, Corollary 12.3.3] every
finitely generated projective R-module is stably free.
We give one more example, this noetherian domain is a bit artificial but on
the other hand it is semilocal and its projective modules are classified. For
details see [18, Example 5.1]. Let R be a semilocal principal ideal domain
such that R/J(R) ≃ M3(F ) ×M3(F ), where F is a field (existence of such
a ring follows from the work of Fuller and Shutters [12], see for example [18,
Examples 3.3]). Let π : R →M3(F )×M3(F ) be the canonical surjection and let
ι : F × F →M3(F )×M3(F ) be given by ι(x, y) = diag(x, y, y)× diag(x, x, y) .
Consider Λ to be the pullback of the diagram

Λ //

��

R

π

��

F × F
ι

// M3(F )
2

Then Λ is a noetherian domain, Λ/J(Λ) ≃ F ×F , every finitely generated pro-
jective right Λ-module is free but there exists a countably generated projective
module P ∈ Mod-Λ such that 0 6= Tr(P ) 6= R. So we can apply Theorem 6.3
directly.
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Pavel Př́ıhoda
Faculty of Mathematics
and Physics
Department of Algebra
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