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Abstract. This paper investigates the behavior of Hilbert–Samuel
multiplicity and Hilbert–Kunz multiplicity in families of ideals. We
show that Hilbert–Samuel multiplicity is upper semicontinuous and
that Hilbert–Kunz multiplicity is upper semicontinuous in families
of finite type. As a consequence, F-rational signature, an invariant
defined by Hochster and Yao as the infimum of relative Hilbert–Kunz
multiplicities, is, in fact, a minimum. This gives a different proof
for its main property: F-rational signature is positive if and only if
the ring is F-rational. The tools developed in this paper can be also
applied to families over Z and yield a solution to Claudia Miller’s
question on reduction mod p of Hilbert–Kunz function.
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1 Introduction

Hilbert–Kunz multiplicity is a multiplicity theory native to positive character-
istic. Its definition mimics the definition of Hilbert–Samuel multiplicity but
replaces regular powers In with Frobenius powers I [p

e] = {xpe

| x ∈ I}. The
Hilbert–Kunz multiplicity of an m-primary ideal I of a local ring (R,m) is the
limit

eHK(I) = lim
e→∞

λR(R/I [p
e])

pe dimR
.

It is not easy to see that the above limit exists. Existence was shown by
Monsky, who introduced the concept in [Mon83] as a continuation of earlier
work of Kunz [Kun69, Kun76].
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Hilbert–Kunz multiplicity is very hard to calculate, and Paul Monsky was a
driving force behind most of the known examples. Several interesting families
appear in literature: plane cubics ([Mon97, Mon11, BC97, Par94]), quadrics in
characteristic two ([Mon98a, Mon98b]), and another family in [Mon05]. The
most famous of these families is the one appearing in [Mon98b].

Example 1.1. Let K be an algebraically closed field of characteristic 2. For
α ∈ K let Rα = K[x, y, z]/(z4 + xyz2 + (x3 + y3)z + αx2y2) localized at
(x, y, z). Then

1. eHK(Rα) = 3 + 1
2 , if α = 0,

2. eHK(Rα) = 3 + 4−m, if α 6= 0 is algebraic over Z/2Z, where m =
[Z/2Z(λ) : Z/2Z] for λ such that α = λ2 + λ

3. eHK(Rα) = 3 if α is transcendental over Z/2Z.

Monsky’s computations were later used by him and Brenner to give in [BM10]
a counter-example to an outstanding problem in the field: localization of
tight closure, the problem originating already from the foundational treatise
of Hochster and Huneke [HH90]. For this result, it is better to think about
the example as a family of rings parametrized by SpecK[t] and the necessary
phenomenon is the jump in the values between the generic fiber, corresponding
to transcendental values, and special fibers, corresponding to algebraic values.
Another consequence of Monsky’s example was found by the author in [Smi19],
where it was shown that Hilbert–Kunz multiplicity takes infinitely many values
as a function on

SpecK[x, y, z, t]/(z4 + xyz2 + (x3 + y3)z + tx2y2)

by developing a technique of lifting this phenomenon from special fibers to the
corresponding maximal ideals mα = (x, y, z, t− α).
Semicontinuity in Hilbert–Kunz theory was already studied by Kunz, who
showed in [Kun76] upper semicontinuity of individual terms of the sequence
(also, see [SB79]), but the real momentum was given by Enescu and Shimo-
moto in [ES05], where they investigated both semicontinuity of Hilbert–Kunz
multiplicity as a function on the spectrum and in a one-parameter family. In
both settings, they established weaker forms of semicontinuity [ES05, Theo-
rem 2.5, Theorem 2.6]. The complete solution for the spectrum was obtained
by the author in [Smi16, Smi19], and the goal of this article is to establish
semicontinuity for a class of families similar to the situation in Example 1.1
(see Definition 3.8).
Our definition of a family is versatile enough to include another outstanding
problem in the field: the behavior of Hilbert–Kunz multiplicity in reduction
mod p. For an illustration, consider the family Z → R := Z[x, y, z]/(z4+xyz2+
(x3+y3)z+x2y2). A natural way to define the Hilbert–Kunz multiplicity of the
generic fiber Q[x, y, z]/(z4 + xyz2 + (x3 + y3)z + x2y2), a ring of characteristic
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zero, would be by taking the limit of Hilbert–Kunz multiplicities of special
fibers limp→∞ eHK(R(p)), and the question is whether the limit exists.
Hilbert–Kunz multiplicity is independent of characteristic for several classes
of “combinatorial” rings because it only depends on the combinatorial data,
for example: Stanley–Reisner rings ([Con96]), toric rings ([Wat00]), monoid
algebras [Eto02, Bru05], and binoid algebras, generalizing the previous cases
([BB]). Monsky’s work provides examples where Hilbert–Kunz multiplicity
depends on the characteristic ([GM]), but the only general case where this
problem was solved is for graded rings of dimension two [Tri07, BLM12]. In an
attempt to simplify the problem, in [BLM12] Claudia Miller asked whether it is
possible to replace the double limit limp→∞ eHK(R(p)) by a single limit of the
individual terms limp→∞ λ(R(p)/m[pe]R(p))/ped for a fixed e ≥ 1. A positive
answer to this question (and a more general statement) was recently announced
by Pérez, Tucker, and Yao ([PTY]). The methods of this paper provide an easy
proof of this result in a special case (Corollary 4.12) and generalize a recent
result of Trivedi ([Tri19]) which was established in the graded case. However,
neither this paper nor [PTY] provide new cases in which limp→∞ eHK(R(p)) is
known to exist, but rather make a step in Miller’s approach.
Another application of this work is in the theory of F-rational signature, an
invariant introduced by Hochster and Yao in [HY]. If (R,m) is a local ring,
then its F-rational signature is defined by

srat(R) = inf
u

{eHK(x)− eHK(x, u)}

where the infimum is taken over socle elements u modulo a system of parame-
ters x. Proposition 4.14 proves that if the residue field is algebraically closed,
then the infimum in the definition is attained. This gives a fundamentally dif-
ferent proof of the main property of F-rational signature ([HY, Theorem 4.1]):
srat(R) is positive if and only if R is F-rational.
Last, we want to mention that using results in [PTY] Carvajal-Rojas, Schwede,
and Tucker [CRST] recently obtained results in the spirit of this work. However,
their motivation is to study the behavior of Hilbert–Kunz multiplicity in a
family of varieties, while this work focuses on a family of ideals which are not
necessarily maximal.

The methods and the structure of the paper

This paper uses the uniform convergence method that was introduced by Tucker
in [Tuc12] to show convergence of F-signature as a limit and was later extended
by the author in [Smi16] to show semicontinuity of Hilbert–Kunz multiplicity.
Polstra and Tucker in [PT18] gave a more “functorial” approach to the uniform
convergence constants based on the discriminant technique in tight closure
theory ([HH90, Section 6]). This approach was then applied by Polstra and the
author [PS] to study Hilbert–Kunz multiplicity under small perturbations. The
uniform convergence machinery of this paper is largely a mix of the techniques
developed in [PS] and [Smi16]. Moreover, the appearing constants can be
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made independent of the characteristic, which gives a uniform convergence
statement for fibers even if the base ring has characteristic zero (Corollary 4.9).
It should be noted that [CRST, Proposition 4.5] can be used to get a version
of Theorem 4.7 under stronger assumptions.
Section 2 slightly expands on [PT18] by further incorporating ideas from
[HH90]. Section 3 presents old and new results on the behavior of Hilbert–
Samuel function in families. Definition 3.8 introduces the assumptions of this
work. The main results are presented in Section 4 and we finish with questions
coming from this work.

2 Discriminants and separability

Definition 2.1. Let R be a ring and A a finite R-algebra which is a free R-
module. If e1, . . . , en are a free basis of A, then the discriminant of A over R
is defined as

DR(A) = det











Tr(e21) Tr(e1e2) · · · Tr(e1en)
Tr(e2e1) Tr(e22) · · · Tr(e2en)

...
... · · ·

...
Tr(ene1) Tr(ene2) · · · Tr(e2n)











,

where Tr(A) denotes the trace of the multiplication map ×A on A. Up to
multiplication by a unit of R, the discriminant is independent of the choice of
basis. Discriminants are also functorial in R, for example, see [PS].

We start with a fundamental lemma provided by Hochster and Huneke in
[HH90, Lemmas 6.4, 6.5].

Lemma 2.2. Let R be a normal domain of characteristic p > 0 and A be a
module-finite, torsion-free, and generically separable R-algebra. Let L be the
fraction field of R, L′ = A ⊗R L, and d = DL(L

′) computed using a basis of
elements in A. Then 0 6= d ∈ R and dA1/p ⊆ R1/p[A] ∼= R1/p ⊗R A.

The lemma also provides a way to define a discriminant of a non-free algebra.
We will abuse the notation and still denote it by DR(A). If A is not torsion-free,
we will use the ideal TR(A) = {a ∈ A | ar = 0 for some 0 6= r ∈ R}.

Corollary 2.3. Let R be a normal domain and A be module-finite and gener-
ically separable R-algebra. Let L be the fraction field of R, L′ = A ⊗R L,
and d = DR(A) computed as in Lemma 2.2. If c ∈ R such that cTR(A) = 0,
then we have maps α : R1/p ⊗R A → F∗A and β : F∗A → R1/p ⊗R A such that
cd(cokerα) = 0 and cd(cokerβ) = 0.

Proof. Multiplication by c on A induces a map A′ := A/TR(A)
×c
−−→ A. Observe

that A′ is still generically separable over R, since L′ = A ⊗R L = A′ ⊗R L.
Hence dF∗A

′ ⊆ R1/p[A′] ∼= R1/p ⊗R A′ by Lemma 2.2.
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Now we construct the maps in the assertion as compositions:

α : R1/p ⊗R A → R1/p ⊗R A′ → F∗A
′ ×F∗c−−−→ F∗A,

where the first map is natural and the second map is the multiplication F∗r ⊗
a 7→ F∗a

pr, and

β : F∗A → F∗A
′ ×d
−−→ R1/p ⊗R A′ 1⊗×c

−−−→ R1/p ⊗R A.

For the first map, we note that cdF∗A ⊆ dF∗A
′ ⊆ R1/p[A′] by Lemma 2.2.

Because R1/p[A′] is the image of α, cokerα is annihilated by cd. In the second
map, we note that F∗A → F∗A

′ is surjective, R1/p[A′] ⊆ F∗A
′, and cA = cA′,

so it follows that the cokernel of β is annihilated by cd.

The corollary becomes especially powerful after combining it with another re-
sult of Hochster and Huneke [HH90, Lemma 6.15].

Lemma 2.4. Let A be a reduced ring, module-finite over a regular ring R of
characteristic p > 0. Then for all sufficiently large e, A ⊗R R1/pe

is module-
finite and generically separable over R1/pe

.

Proof. Let L be the fraction field of R and L′ = A⊗R L. Since A is reduced,
L′ is a product of fields. Tensoring with L we get that

A⊗R R1/pe

⊗R L = (A⊗R L)⊗L (R1/pe

⊗R L) = L′ ⊗L L1/pe

.

Hence the statement is reduced to the field case.

Corollary 2.5. Let A be a reduced ring, module-finite over a regular ring R
of characteristic p > 0. Let c ∈ R such that there exists a free R-module F ⊆ A
such that cA ⊆ F . Then for large e we have exact sequences of A-modules

R1/pe+1

⊗R A → F∗(A⊗R R1/pe

) → C1,e → 0

and

F∗(A⊗R R1/pe

) → R1/pe+1

⊗R A → C2,e → 0,

where the cokernels are annihilated by cDR1/pe (A⊗R R1/pe

).

Proof. We take e large enough to satisfy Lemma 2.4. Let A′ = A ⊗R R1/pe

,
R′ = R1/pe

, and F ′ = F ⊗RR1/pe

. Because R1/pe

is flat by [Kun69], cA′ ⊆ F ′,
so cTR′(A′) ⊆ cA′ ⊆ F ′ and cTR′(A′) = 0 because F ′ is torsion-free. Now, we
may use Corollary 2.3 for A′ and R′.

Documenta Mathematica 25 (2020) 381–399



386 I. Smirnov

3 Families and semicontinuity

We adopt the following notion of a family from [Lip82]. Let R be a ring, A be
an R-algebra, and I ⊂ A be an ideal such that A/I is a finitely generated R-
module. For any prime ideal p ∈ SpecR define A(p) := A⊗R k(p) and I(p) =
IA(p) := I(A(p)). By the assumption, A(p)/I(p) = A/I ⊗R k(p) has finite
length. Thus, I(p) is a family of finite colength ideals in a family of rings A(p)
parametrized by SpecR. If M is a finite A-module, then M(p) := M ⊗R k(p)
is a finite A(p)-module for all p ∈ SpecR.

Hilbert–Kunz multiplicity (and Hilbert–Samuel multiplicity) is now a real-
valued function on SpecR via p 7→ eHK(I(p), A(p)). An example of such func-
tion is given in Example 1.1 by a family K[t] → K[x, y, z, t]/(z4+xyz2+(x3+
y3)z + tx2y2) with I = (x, y, z).

We also fix the following definition of semicontinuity.

Definition 3.1. Let X be a topological space and (Λ,≺) be a partially ordered
set. We say that a function f : X → Λ is upper semicontinuous if for each λ ∈ Λ
the set

X≺λ = {x ∈ X | f(x) ≺ λ}

is open.

In the literature, one can find an alternative definition of semicontinuity that
instead requires the sets X�λ = {x ∈ X | f(x) � λ} to be open. This definition
is stronger than Definition 3.1 but coincides if f is discretely valued. As it was
observed by Enescu and Shimomoto ([ES05, Theorem 2.7]), Monsky’s example
shows that Hilbert–Kunz multiplicity is not an upper semicontinuous function
in this, stronger sense (take λ = 3).

Remark 3.2. Nagata’s criterion of openness ([Mat80, 22.B]) is often used to
show that a function is semicontinuous. Namely, if R is Noetherian, then a
function f : SpecR → Λ is upper semicontinuous if and only if the following
two conditions hold:

1. if p ⊂ q then f(p) � f(q),

2. if f(p) ≺ λ then there exists an elements s /∈ p such that for every q with
s /∈ q and p ⊆ q we have f(q) ≺ λ.

3.1 Hilbert–Samuel function in families

The theory of families of ideals originates from the work of Teissier ([Tei80])
on the principle of specialization of integral closure and was further developed
by Lipman in [Lip82].

We start with a lemma found in the proof of [FM00, Proposition 4.2].

Documenta Mathematica 25 (2020) 381–399



On Semicontinuity of Multiplicities in Families 387

Lemma 3.3. Let R → A be a map of Noetherian rings and I be an ideal of A
such that R → A/I is finite. Suppose M is a finite A-module. If GrI(M) is
flat over R, then for every finite R-module N the canonical map

GrI(M)⊗R N → GrI(M ⊗R N)

is an A-isomorphism.

Proof. It is sufficient to show that for all n the natural map InM ⊗R N →
In(M⊗RN) is an A-isomorphism. BecauseR acts onM⊗RN by multiplication
on M , the map is surjective, so it remains to check injectivity.
Because InM/In+1M is a flat R-module as a direct summand of GrI(M), there
is an exact sequence

0 → In+1M ⊗R N → InM ⊗R N → (InM/In+1M)⊗R N → 0.

Using induction on n it is now easy to verify the natural maps InM ⊗R N →
In(M ⊗R N) are injective.

Using this lemma we are able to expand [Lip82, Proposition 3.1].

Theorem 3.4. Let R → A be a map of Noetherian rings and I be an ideal in
A such that A/I is a finite R-module. Let M be a finitely generated A-module.
Then the following functions on SpecR are upper semicontinuous:

1. p 7→ dimk(p) M(p)/InM(p) for any n,

2. p 7→
(

dimk(p) M(p)/IM(p), dimk(p) M(p)/I2M(p), . . .
)

(with lex-order),

Proof. It can be shown by induction that, for all n, the modules M/InM and
InM/In+1M are finitely generated R-modules. Observe that M(p)/InM(p) ∼=
R/In ⊗R M(p) ∼= M/InM ⊗R k(p). But for any finite R-module N ,
dimk(p) N⊗Rk(p) is the minimal number of generators of N(p), which is clearly
an upper semicontinuous function, see for example [PT18, Lemma 2.2]. In par-
ticular, we obtain that the first condition of Nagata’s criterion from Remark 3.2
is satisfied.
For the second condition, we provide a neighborhood of p where the func-
tions are constant. Observe that GrI(M) is a finitely generated module
over a finitely generated R-algebra, because it is a finite GrI(A)-module and
GrI(A) is a finitely generated module over A/I[x1, . . . , xN ] where x1, . . . , xN

are homogeneous generators of GrI(A) of degree one. For a fixed prime ideal
p ∈ SpecR, we may apply generic freeness ([Mat80, 22.A]) over R/p for the
module GrI(M/pM).
In the resulting neighborhood D(s) where GrI(M/pM) is free, by Lemma 3.3
and flatness of localization, for all q ∈ D(s) ∩ V (p) we have the isomorphism

GrI(M/pM)⊗R k(q) ∼= GrI(M ⊗R k(q)).

Because each (In + p)M/(In+1 + p)M is projective, it follows that
dimk(q) I

nM(q)/In+1M(q) is constant on V (p) ∩D(s) for all n.
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Corollary 3.5 ([Lip82, Proposition 3.1]). Let R → A be a map of Noetherian
rings and I ⊂ A be an ideal such that A/I is a finite R-module. If p ⊆ q ⊂ R
are prime ideals and M is a finitely generated A-module, then dimM(p) ≤
dimM(q) and if dimM(p) = dimM(q) then e(IM(p)) ≤ e(IM(q)).

Corollary 3.6. Let R → A be a map of Noetherian rings and I be an ideal
such that A/I is a finite R-module. Let d = maxm∈MaxR dimA/mA. Then
there exists a constant C such that for all p ∈ SpecR and all n

dimk(p) A(p)/I
n(p) < Cnd.

Proof. First, note that if p ⊆ m then dimA/mA = dimA(m) ≥ dimA(p). So,
for every p, there is some constant C(p) that will work for all n. Given any C
the set

U(C) = {p | dimk(p) A(p)/I
n(p) < Cnd for all n}

= ∩∞
n=1{p | dimk(p) A(p)/I

n(p) < Cnd}

is open by Theorem 3.4. Thus we can build C by Noetherian induction: we
first choose C to be the maximum C(p) over the generic points and then keep
increasing C by considering generic points of the complement of U(C) until
U(C) = SpecR.

The following result of Lipman ([Lip82, Proposition 3.3]) provides a natural
sufficient condition for equidimensionality of a family.

Lemma 3.7. Let R → A be a map of Noetherian rings and I an ideal of A such
that A/I is a finite R-module and R ∩ I = 0. Furthermore, assume that

1. ht q+ dimA/q = dimA for every prime ideal q ⊇ I in A,

2. dimA/mA+ dimR = dimA for every maximal ideal m of R.

Then for every prime ideal p of R we have dimA(p) = dimA− dimR = ht I.

Due to the fundamental nature of Lemma 3.7, we would like to call the map
R → A satisfying its assumptions an I-family.

Definition 3.8. We say that R → A is an affine I-family if A is a finitely
generated R-algebra and I ⊂ A is an ideal such that

1. A/I is a finite R-module,

2. R ∩ I = 0,

3. ht q+ dimA/q = dimA for every prime ideal q ⊇ I in A,

4. dimA/mA+ dimR = dimA for every maximal ideal m of R.
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The second condition guarantees that I(p) 6= A(p) for every p. We can always
pass to such a family by factoring by I ∩ R. If A is formally equidimensional
then it satisfies (3), if A is a flat R-algebra, then it satisfies (4). In partic-
ular, Example 1.1 is coming from an affine (x, y, z)-family: localization does
not change the Hilbert–Kunz multiplicity because the Frobenius powers are
(x, y, z)-primary.

4 Semicontinuity

We want to show that eHK(I(p)) is an upper semicontinuous function on SpecR
in the sense of Definition 3.1. In order to build the uniform convergence ma-
chinery, we start with auxiliary lemmas.

Lemma 4.1. Let R → A be a map of rings of characteristic p > 0 and I be
an ideal in A such that A/I is a finite R-module. For each integer e ≥ 1 the
function p → dimk(p)(A(p)/I(p)

[pe]) is upper semicontinuous on SpecR.

Proof. If I can be generated by h elements, then Ihp
e

⊆ I [p
e], so A/I [p

e] is
a finite R-module as in Theorem 3.4. Thus p → dimk(p)(A(p)/I(p)

[pe]) is the
minimal number of generators of that module at p and is an upper semicontin-
uous function.

Corollary 4.2. Let R → A be an I-family as in Lemma 3.7. Then for every
p ⊆ q we have eHK(I(p)) ≤ eHK(I(q)).

Proof. Observe that dimA(p) = ht I by Lemma 3.7, so we may pass to the
limit in Lemma 4.1.

Lemma 4.3. Let R be a Noetherian ring and let A be an intersection flat R-
algebra, i.e., ∩λ∈Λ(IλA) = (∩λ∈ΛIλ)A for arbitrary Λ and ideals Iλ ⊂ R. Then
for any element f ∈ A the set

VR(f) := {p ∈ SpecR | f ∈ pA}

is closed.

Proof. Let I be the intersection of all primes in VR(f). Then f ∈ ∩p∈VR(f)pA =
(∩p∈VR(f)p)A = IA. Hence VR(f) = V (I).

Last, we record a crucial lemma that provides a uniform upper bound for the
main result. Note that polynomial extensions are intersection flat.

Lemma 4.4. Let R be a Noetherian domain, A = R[T1, . . . , Td], and I be an
(T1, . . . , Td)-primary ideal. Let M be a finite A-module annihilated by 0 6= f ∈
A. Then there exists a constant D with the following property: for any e ≥ 0
and p in the open subset SpecR \ VR(f) with p := chark(p) we have

dimk(p) M(p)/I [p
e]M(p) < Dpe(d−1),

where the characteristic of k(p) may depend on p.

Documenta Mathematica 25 (2020) 381–399



390 I. Smirnov

Proof. For every maximal ideal m /∈ VR(f)

dimA/(f,m)A = dimR/m[T1, . . . , Td]/(f) ≤ d− 1.

Let N be such that (T1, . . . , Td)
N ⊆ I. Then we have inclusions

(T1, . . . , Td)
Ndpe

⊆ ((T1, . . . , Td)
[pe])N ⊆ I [p

e].

Suppose that M can be (globally) generated by ν elements. We note that
SpecR \ VR(f) is a finite union of principal open set D(c) and for each c we
may apply Corollary 3.6 to the map Rc → Ac and estimate

dimk(p) M(p)/I [p
e]M(p) ≤ ν dimk(p) A(p)/I(p)

[pe]

< νC(Ndpe)d−1 = (νCNd−1dd−1)pe(d−1).

4.1 Main result

Before proceeding to the proof of the main theorem we recall two lemmas. The
first is due to Kunz [Kun76].

Lemma 4.5. Let R be a Noetherian ring of characteristic p > 0. Then for every
p ⊂ q

[k(q)1/p
e

: k(q)] = pedimRq/p[k(p)1/p
e

: k(p)].

Second, we will need the following form of the Noether normalization theorem
from [Nag62, 14.4].

Theorem 4.6. Let R be a domain and A be a finitely generated R-algebra.
Then there exists an element 0 6= c ∈ R such that Ac is module-finite over a
polynomial subring Rc[z1, . . . , zd].

Theorem 4.7. Let R be a regular F-finite ring of characteristic p > 0 and
R → A be an affine I-family with reduced fibers of dimension h = ht I. Then
there exists an open set U ⊆ SpecR and a constant D such that for all q ∈ U
and all e ≥ 1

∣

∣

∣

∣

∣

dimk(q) A(q)/I
[pe+1]A(q)

p(e+1)h
−

dimk(q) A(q)/I
[pe]A(q)

peh

∣

∣

∣

∣

∣

<
D

pe
.

Proof. Because A(0) is reduced, after inverting an element of R we may assume
that A is reduced. Next, by Theorem 4.6 we invert another element and assume
that A is finite over S = R[T1, . . . , Th].
Applying Lemma 2.4 to the pair S ⊆ A we find e0 such that S1/pe0

→ A ⊗S

S1/pe0
is generically separable. Since S is a domain, there exists a free module

F ⊆ A and an element 0 6= c ∈ S such that cA ⊆ F . Because S1/pe0
is flat,

F ⊗S S1/pe0
⊆ A ⊗S S1/pe0

is a free submodule and c still annihilates the
cokernel. Let d1/p

e0
to be the discriminant of A⊗S S1/pe0

over S1/pe0
.
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Claim 1. Let q be a prime ideal in the open set SpecR \ VR(cd). Then F (q)
is a free submodule of A(q) such that cA(q) ⊆ F (q).

Proof of the claim. We have the induced map F ⊗S S(q) → A ⊗S S(q) whose
cokernel is annihilated by the image of c in S(q). The image of c is nonzero by
the assumption, Fc

∼= Ac, and c /∈ qS, so F (q) and A(q) are still generically
isomorphic as S(q)-modules. Thus, since F (q) is a free S(q)-module and S(q) ∼=
k(q)[T1, . . . , Th] is a domain, the induced map F ⊗S S(q) → A⊗S S(q) is still
an inclusion.

By the functoriality of discriminants (as in [PS, Proposition 2.2]), the image of
d is still a discriminant of A(q)⊗S(q)S(q)

1/pe0
over S(q)1/p

e0
. Since d /∈ qS, the

inclusion is still generically separable. Hence, by Lemma 2.5, we have sequences

A(q)⊗S(q) S(q)
1/pe0+1

→ F∗

(

A(q)⊗S(q) S(q)
1/pe0

)

→ C1 → 0 (4.1)

and

F∗

(

A(q)⊗S(q) S(q)
1/pe0

)

→ A(q)⊗S(q) S(q)
1/pe0+1

→ C2 → 0, (4.2)

where cdC1 = 0 = cdC2. Tensoring these exact sequences with B := A/I [p
e],

we obtain that

| dimk(q) B(q)⊗S(q) S(q)
1/pe0+1

− dimk(q) B ⊗A F∗

(

A(q)⊗S(q) S(q)
1/pe0

)

|

(4.3)

≤ max
(

dimk(q) C1/I
[pe]C1, dimk(q) C2/I

[pe]C2

)

.

Claim 2. Denote α(q, e) := peh[k(q)1/e : k(q)]. There is a constant D inde-
pendent of q such that

dimk(q) C1/I
[pe]C1, dimk(q) C2/I

[pe]C2 < Dpe(h−1)α(q, e0 + 1).

Proof. Tensoring the exact sequence (4.1) by ⊗AA/(cd, I
[pe]) we obtain a sur-

jection

F∗

(

A(q)/(cpdp, I [p
e+1])A(q)⊗S(q) S(q)

1/pe0
)

→ C1/I
[pe]C1 → 0.

Since S(q) is a polynomial ring of dimension h, by Lemma 4.5 S(q)1/p
e0

is a
free S(q)-module of rank α(q, e0). Then we may bound

dimk(q) C1/I
[pe]C1 ≤ α(q, e0) dimk(q) F∗(A(q)/(c

pdp, I [p
e+1])A(q))

= α(q, e0)[k(q)
1/p : k(q)] dimk(q) A(q)/(c

pdp, I [p
e+1])A(q)

= α(q, e0 + 1)p−h dimk(q) A(q)/(c
pdp, I [p

e+1])A(q).
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Because A/I is a finite R-module, I is (T1, . . . , Th)-primary, so by Corollary 4.4
applied to A/(cd) we may find a constant D independent of q such that

dimk(q)(A(q)/(c
pdp, I [p

e+1])A(q)) ≤ p dimk(q)(A(q)/(cd, I
[pe+1])A(q))

≤ pDp(e+1)(h−1) = Dphpe(h−1),

thus dimk(q)(C1/I
[pe]C1) < Dpe(h−1)α(q, e0 + 1).

The second bound is similar: C2/I
[pe] is an image of A(q)/(cd, I [p

e])A(q)⊗S(q)

S(q)1/p
e0+1

, thus

dimk(q)(C2/I
[pe]C2) ≤ α(q, e0 + 1) dimk(q) A(q)/(cd, I

[pe])A(q)

< Dpe(h−1)α(q, e0 + 1).

As in the proof Claim 2, we have dimk(q) A/I
[pe]⊗AF∗(A(q)⊗S(q)S(q)

1/pe0
) =

α(q, e0 + 1)p−h dimk(q) A(q)/I
[pe+1]A(q), and

dimk(q) A(q)/I
[pe]A(q)⊗S(q) S(q)

1/pe0+1

= α(q, e0 + 1) dimk(q) A(q)/I
[pe]A(q).

Now, dividing (4.3) by pehα(q, e0 + 1), from Claim 2 we obtain that
∣

∣

∣

∣

∣

dimk(q) A(q)/I
[pe+1]A(q)

p(e+1)h
−

dimk(q) A(q)/I
[pe]A(q)

peh

∣

∣

∣

∣

∣

<
Dpe(h−1)

peh
≤

D

pe
.

4.2 Families over Z

A careful analysis of the proof shows that it can be applied even when the
characteristic varies in a family.

Theorem 4.8. Let R be a regular ring of characteristic 0 and R → A be an
affine I-family with reduced fibers of dimension h. Suppose that for every p ∈
SpecR the residue field k(p) is F-finite whenever it has positive characteristic.
Then there exists an open set U ⊆ SpecR and a constant D with the following
property: if q ∈ U and p := chark(q) > 0 then

∣

∣

∣

∣

∣

dimk(q) A(q)/I
[pe+1]A(q)

p(e+1)h
−

dimk(q) A(q)/I
[pe]A(q)

peh

∣

∣

∣

∣

∣

<
D

pe
.

Note that p, the characteristic of k(q), may vary in the family and D is inde-
pendent of p.

Proof. After inverting an element if necessary, we choose a Noether normal-
ization S = Rf [x1, . . . , xd] of Af . Note that S ⊆ A is generically separable,
because A(0) has characteristic 0. So, we may proceed with the proof of Theo-
rem 4.7 with e0 = 0. The constant D in claim Claim 2 comes from Lemma 4.4
and does not depend on characteristic as it arises from the Hilbert–Samuel
theory.
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Corollary 4.9. Let R → A be an affine I-family with reduced fibers of di-
mension h. Suppose that for every p ∈ SpecR the residue field k(p) is F-finite
whenever it has positive characteristic (e.g., R is F-finite or R = Z). Then
there exists an open set U ⊆ SpecR and a constant D with the following prop-
erty: if q ∈ U and p := chark(q) > 0 then

∣

∣

∣

∣

∣

eHK(I(p))−
dimk(q) A(q)/I

[pe]A(q)

peh

∣

∣

∣

∣

∣

<
2D

pe
.

Proof. We may pass to R/p → A/p and assume that p = 0. An F-finite ring
is excellent ([Kun76, Theorem 2.5]), so the regular locus of R is open and, by
inverting an element, we assume that R is regular.
Let D be the constant provided by Theorem 4.7 or Theorem 4.8, then the claim
follows from the proof of [PT18, Lemma 3.5].

Corollary 4.10. Let R be an F-finite ring of characteristic p > 0 and R → A
be an affine I-family with reduced fibers. Then the function p 7→ eHK(I(p)) is
upper semicontinuous on SpecR.

Proof. We use uniform convergence to pass semicontinuity from the in-
dividual term to the limit as in [PT18, Smi16]. Each individual term,
dimk(p) A(p)/I

[pe]A(p) is the number of generators of A/I [p
e] at p and, thus, is

naturally upper semicontinuous.

We have the following geometric consequence.

Corollary 4.11. Let X → T together with a section σ : T → X be a flat
family of finite type with reduced fibers over a variety T of characteristic p > 0.
Then the function t 7→ eHK(σ(t), Xt) is upper semicontinuous on T .

The following corollary provides a positive answer to the question of Claudia
Miller from [BLM12] and recovers the main result, [BLM12, Corollary 3.3].
Similar result was recently obtained by Trivedi in [Tri19, Corollary 1.2] for
families of geometrically integral graded rings and e ≥ h − 1. A much more
general result about reductions mod p was announced in [PTY].

Corollary 4.12. Let Z → R be an affine I-family with reduced fibers of
dimension h. Then for every e ≥ 1

lim
p→∞

(

eHK(IR(p))−
λ(R(p)/I(p)[p

e])

peh

)

= 0.

Proof. By Corollary 4.9, we obtain that for all sufficiently large p

∣

∣

∣

∣

eHK(IR(p))−
λ(R(p)/I(p)[p

e])

peh

∣

∣

∣

∣

<
2D

pe
.

and the theorem follows.
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4.3 F-rational signature

In [HY] Hochster and Yao introduced the following definition.

Definition 4.13. Let (R,m) be a local ring. The F-rational signature of R is
defined as

srat(R) = inf
u

{eHK(x)− eHK(x, u)}

where the infimum is taken over all systems of parameters x and socle ele-
ments u.

Proposition 4.14. Let k be a field of characteristic p > 0, R be a finitely
generated k-algebra, and m be a maximal ideal of R. Then the infimum in the
definition of srat(Rm) is achieved.

Proof. In [HY, Theorem 2.5], it was shown that one can fix an arbitrary x in
the definition. Thus, the assertion is equivalent to showing that for a system of
parameters x the function eHK(x, u) has a maximum as u varies through socle
elements modulo x.
Let u1, . . . , uN be a basis of (x) : m/(x) as a k-vector space. We may
parametrize the socle ideals (I, u) via two affine families: (x, T1u1 + · · · +
TN−1uN−1 + uN)-family

S := k[T1, . . . , TN−1] → R[T1, . . . , TN−1]

and, similarly, for u1 + T2u2 + · · · + TNuN . By Corollary 4.10, the function
f : p 7→ eHK((x, T1u1+ · · ·+TN−1uN−1+uN)R(p)) is upper semicontinuous on
SpecS.
The claim now follows since an upper semicontinuous function satisfies the
ascending chain condition. Namely, let un be a sequence of socle elements
such that eHK(x, un) < eHK(x, un+1) for all n. Without loss of generality
we may assume that un correspond to maximal ideals mn of S. Then Un =
{p ∈ SpecS | f(p) < eHK(x, un))} is an increasing family of open sets which
cannot stabilize because mn ∈ Un+1 \Un. Since SpecS is Noetherian, this is a
contradiction.

Remark 4.15. We want to note that Proposition 4.14 can be also applied when
R is given as a quotient of a power series ring by an ideal generated by polyno-
mials, since the lengths do not change under completion. By Artin’s celebrated
result ([Art69, Theorem (3.8)]) this gives us that the conclusion holds for com-
plete isolated singularities with a perfect residue field.

As a consequence, we recover a special case of [HY, Theorem 4.1].

Corollary 4.16. Let k be a field of characteristic p > 0, R be a finitely
generated k-algebra, and m be a maximal ideal of R. Then srat(Rm) > 0 if and
only if Rm is F-rational.

Proof. Recall that R is F-rational if x is tightly closed or, equivalently, that
eHK(x) > eHK(x, u) for every socle element u.
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Remark 4.17. A variation of the Hochster–Yao definition, relative F-rational
signature, was proposed in [ST]

srel(R) = inf
x⊂I

eHK(x)− eHK(I)

λ(R/x)− λ(R/I)
,

where the infimum is taken over all m-primary ideals I containing a system of
parameters x. The paper shows that the definition also does not depend on
the choice of x and that it might have better properties than srat(R).
By considering higher degree Grassmannians of (x) : m/(x), from the proof
of Proposition 4.14 we may also get that the relative F-rational signature is a
minimum.

5 Questions

5.1 Nilpotents

Like the preceding work [PS], this paper has to assume that the family is
reduced because of the lack of control in non-reduced rings. While Hilbert–
Kunz multiplicity exists for non-reduced rings, the original proof in [Mon83]
and its extensions pass to Rred by observing that F e0

∗ R is an Rred-module for
large e0. This is not satisfactory for two reasons: the approach via discriminants
does not adapt for modules and we do not see how to control the exponent e0.

5.2 F-signature

F-signature is a measure of singularity in positive characteristic introduced by
Huneke and Leuschke in [HL02]. Due to similarities between the two theories,
it is natural to ask whether the results of this paper extend to F-signature.
A related statement was observed in [CRST, Theorem 4.9], however, it does
not give lower semicontinuity since A is assumed to be of finite type over a
field and cannot be localized to apply Nagata’s criterion. In fact, F-signature
is not lower semicontinuous in families, because an example of Singh shows
that strong F-regularity is not open ([Sin99], see also [DSS]).

5.3 Localization of tight closure

As it was mentioned above, in [BM10] Brenner and Monsky showed that tight
closure does not localize. However, we do not understand the underlying rea-
sons. In particular, how does it relate to the results of [HH00] and how typical
is this phenomenon? As [BM10] depends on an irregular behavior of Hilbert–
Kunz multiplicity in a family, we hope that it should be possible to give a
general procedure for producing counter-examples from such families, for ex-
ample, the family in [Mon05]. The study of Hilbert–Samuel multiplicity in
families was pioneered by Teissier ([Tei80]) to give a criterion of equimultiplic-
ity: e(I(p)) is independent of p if and only if ℓ(I) = ht(I). The author suspects
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that a study of equimultiplicity in families for Hilbert–Kunz multiplicity might
explain the phenomenon presented in [BM10].
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