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Abstract. To each symmetric algebra we associate a family of al-
gebras that we call quantum affine wreath algebras. These can be
viewed both as symmetric algebra deformations of affine Hecke alge-
bras of type A and as quantum deformations of affine wreath algebras.
We study the structure theory of these new algebras and their natural
cyclotomic quotients.
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1 Introduction

Affine Hecke algebras and their degenerate versions are fundamental in the
study of Lie algebras and quantum groups. Affine wreath algebras, whose sys-
tematic study was undertaken in [Sav], provide a unifying and generalizing
framework for various modified versions of degenerate affine Hecke algebras (of
type A) appearing in the literature.1 (Certain cases of these algebras were also
considered in [KM19].) Affine wreath algebras also occur naturally as endo-
morphism algebras in the Frobenius Heisenberg categories of [Sav18, RS17]. It
is natural to ask if such a general approach exists in the quantum (i.e. non-
degenerate) setting. The purpose of the current paper is to answer this question
in the affirmative.
Fix a commutative ground ring k and z ∈ k. To any symmetric superalgebra A,
we associate a quantum wreath algebra Hn(A, z). The superalgebra Hn(A, z)
can be viewed as a z-deformation of the wreath algebra A⊗n ⋊Sn, in the sense
that Hn(A, 0) = A⊗n ⋊ Sn. Simultaneously, Hn(A, z) can be thought of as an

1The terminology affine wreath product algebras was used in [Sav]. We drop the word
“product” in the current paper for simplicity.
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A-deformation of the Iwahori–Hecke algebra of type A. In particular, taking
A = k = C[q, q−1] and z = q−q−1 recovers the Iwahori–Hecke algebra. We then
define an affine version, the quantum affine wreath algebra Haff

n (A, z). Again,
this superalgebra can be viewed simultaneously as a z-deformation of the affine
wreath algebras of [Sav] and as an A-deformation of the affine Hecke algebra
of type A.
The quantum affine wreath algebras defined in the current paper unify and
generalize existing analogs of affine Hecke algebras. In particular, we have the
following:

(a) When A = C, the affine wreath algebra is the degenerate affine Hecke
algebra of type A. As noted above, when A = C[q, q−1] and z = q− q−1,
the quantum affine wreath algebra is the affine Hecke algebra of type A.

(b) When A is the group algebra of a finite group G, the affine wreath algebra
is the wreath Hecke algebra of Wan and Wang [WW08]. When G is a
finite cyclic group, the quantum (affine) wreath algebra is the (affine)
Yokonuma–Hecke algebra. (See Examples 2.4 and 2.7 for details.) For
more general groups, the quantum affine wreath algebra seems to be new.

(c) When A is a certain skew-zigzag algebra (see [HK01, §3] and [Cou16, §5]),
the corresponding affine wreath algebras appear in the endomorphism
algebras of the categories constructed in [CL12] to study Heisenberg cat-
egorification and the geometry of Hilbert schemes. They were then also
considered in [KM19], where they were related to imaginary strata for
quiver Hecke algebras (also known as KLR algebras). For this choice of
A, the quantum affine wreath algebras of the current paper yield natural
z-deformations of these affine zigzag algebras. These deformations seem
to be new.

Despite their high level of generality, one can deduce a great deal of the struc-
ture of quantum affine wreath algebras. Specializing the symmetric superalge-
bra A then recovers known results in some cases and new results in others. In
addition, just as the affine wreath algebras appear as endomorphism algebras
in the Frobenius Heisenberg categories of [Sav18, RS17], the quantum affine
wreath algebras defined in the current paper appear as endomorphism algebras
in the quantum Frobenius Heisenberg categories of [BSW]. In fact, this is one
of the main motivations of the current paper. The quantum Frobenius Heisen-
berg category acts on categories of modules for the quantum cyclotomic wreath
algebras introduced here. This action generalizes the action of the quantum
Heisenberg category of [BSW18] (see also [LS13]) on categories of modules for
cyclotomic Hecke algebras.
We now give an overview of the main results of the current paper. We define
the quantum (affine) wreath algebras in Section 2 and discuss some natural
symmetries. In Section 3 we examine the structure theory of these algebras.
We first introduce natural Demazure operators which are useful in computa-
tions. We then describe an explicit basis of Haff

n (A, z) in Theorem 3.10, and
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the center of Haff
n (A, z) in Theorem 3.16. Finally, we define natural Jucys–

Murphy elements in Section 3.4 and give a Mackey Theorem for Haff
n (A, z) in

Theorem 3.20. In Section 4 we turn our attention to cyclotomic quotients. We
define the quantum cyclotomic wreath algebra Hf

n(A, z) associated to a monic
polynomial f with coefficients in the even part of the center Z(A) of A. These
quotients are analogues of cyclotomic Hecke algebras. We prove a basis the-
orem (Theorem 4.10) for these quotients and a cyclotomic Mackey Theorem
(Theorem 4.14). Finally, we prove that the quantum cyclotomic wreath alge-

bras are symmetric algebras and that Hf
n+1(A, z) is a Frobenius extension of

Hf
n(A, z).

We expect that most of the results of the current paper can be generalized
to the setting where A is a Frobenius superalgebra, instead of a symmetric
superalgebra (see Remark 2.8). This more general setting was treated in the
degenerate case in [Sav] since the choice of A to be the Clifford superalgebra,
which is not symmetric in the super sense, yielded the affine Sergeev algebra
(also called the degenerate affine Hecke–Clifford superalgebra). However, in the
quantum setting of the current paper we choose to focus on the case where A
is symmetric for simplicity. In fact, the Clifford case is more naturally treated
by considering an odd affinization of the quantum wreath algebra. This will
be explored in future work.

Hidden details

For the interested reader, the tex file of the arXiv version of this paper includes
hidden details of some straightforward computations and arguments that are
omitted in the pdf file. These details can be displayed by switching the details
toggle to true in the tex file and recompiling.
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2 Definitions

In this section we introduce our main objects of study. Throughout the docu-
ment, we fix a commutative ground ring k of characteristic not equal to two.
(This assumption on the characteristic is not needed if one works in the non-
super setting.) We also fix an element z ∈ k. All tensor products and algebras
are over k unless otherwise specified. In addition, all algebras and modules are
associative superalgebras and supermodules. We drop the prefix “super” for
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simplicity. For a homogeneous element a, we use the notation ā to denote its
parity. We use N to denote the set of nonnegative integers.

2.1 Quantum wreath algebras

Fix a symmetric algebra A with parity-preserving linear supersymmetric trace
map tr : A → k. (Here we consider k to live in parity zero.) In other words,
the map

A→ Homk(A, k), a 7→
(
b 7→ tr(ab)

)
,

is a parity-preserving isomorphism of k-modules and, for homogeneous elements
a, b,

tr(ab) = (−1)āb̄tr(ba), a, b ∈ A.

We will assume that A is free as a k-module. So we have a basis B with dual
basis {b∨ : b ∈ B} defined by

tr(a∨b) = δa,b, a, b ∈ B.

It follows from the supersymmetry of the trace that

(b∨)∨ = (−1)b̄b, b ∈ B. (2.1)

Fix n ∈ Z>0. For a ∈ A and 1 ≤ i ≤ n, we define

ai = 1⊗(i−1) ⊗ a⊗ 1⊗(n−i) ∈ A⊗n.

Definition 2.1 (Quantum wreath algebra). For n ∈ N, n ≥ 2, we define the
quantum wreath algebra (or Frobenius Hecke algebra) Hn(A, z) to be the free
product

A⊗n ⋆ 〈Ti : 1 ≤ i ≤ n− 1〉,

(here the angled brackets mean the free associative algebra on the given gen-
erators) modulo the relations

TiTj = TjTi, 1 ≤ i, j ≤ n− 1, |i− j| > 1, (2.2)

TiTi+1Ti = Ti+1TiTi+1, 1 ≤ i ≤ n− 2, (2.3)

T 2
i = zti,i+1Ti + 1, 1 ≤ i ≤ n− 1, (2.4)

Tia = si(a)Ti, a ∈ A⊗n, 1 ≤ i ≤ n− 1, (2.5)

where
ti,j :=

∑

b∈B

bib
∨
j , 1 ≤ i, j ≤ n− 1,

and si(a) denotes the action of the simple transposition si on a by superper-
mutation of the factors. It is straightforward to verify that ti,j does not depend
on the choice of basis B. We adopt the conventions that H1(A, z) := A and
H0(A, z) := k.
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For w ∈ Sn, we define

Tw = Ti1Ti2 · · ·Tik ,

where w = si1si2 · · · sik is a reduced decomposition. Since the generators Ti
satisfy the braid relations (2.2) and (2.3), this definition is independent of the
choice of reduced decomposition.

Remark 2.2. In the degenerate case, it was shown in [Sav, Lem. 3.2] that affine
wreath algebras depend, up to isomorphism, only on the underlying algebra A,
and not on the trace map. However, in the quantum setting of the current
paper, there do not seem to be obvious isomorphisms between quantum affine
wreath algebras corresponding to the same algebra, but with different trace
maps.

Example 2.3 (Iwahori–Hecke algebras). If A = k = C[q, q−1] and z = q− q−1,
then Hn(A, z) is the Iwahori–Hecke algebra of type An−1.

Example 2.4 (Yokonuma–Hecke algebras). Let Cd be a cyclic group of order
d. If k = C[q, q−1], z = (q − q−1)/d, and A = kCd, with trace map given
by projection onto the identity element of the group, then Hn(kCd, z) is the
Yokonuma–Hecke algebra (see [CPd14, §2.1]).

It follows from (2.1) that

ti,j = tj,i, 1 ≤ i, j ≤ n.

Then, by (2.5), we have

Titj,k = tsi(j),si(k)Ti, 1 ≤ i ≤ n− 1, 1 ≤ j, k ≤ n.

In particular,

Titi,i+1 = ti,i+1Ti, 1 ≤ i ≤ n− 1.

It then follows from (2.4) that the Ti are invertible and we have a Frobenius
skein relation:

Ti − T−1
i = zti,i+1, 1 ≤ i ≤ n− 1. (2.6)

We also have

atj,k = tj,ksj,k(a), a ∈ A⊗n, 1 ≤ i, j, k ≤ n, (2.7)

where sj,k is the transposition of j and k. For this reason, we call the ti,j
teleporters. (In the string diagram formalism for monoidal categories, (2.7)
corresponds to tokens teleporting between strands. See [Sav18, §2.1].)

Documenta Mathematica 25 (2020) 425–456



430 D. Rosso, A. Savage

2.2 Quantum affine wreath algebras

Definition 2.5 (Quantum affine wreath algebra). For n ∈ N, n ≥ 1, we define
the quantum affine wreath algebra (or affine Frobenius Hecke algebra) Haff

n (A, z)
to be the free product of algebras

k[X±1
1 , . . . , X±1

n ] ⋆ Hn(A, z),

modulo the relations

TiXj = XjTi, 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n, j 6= i, i+ 1, (2.8)

TiXiTi = Xi+1, 1 ≤ i ≤ n− 1, (2.9)

Xia = aXi, 1 ≤ i ≤ n, a ∈ A⊗n. (2.10)

We define Haff
n,+(A, z) to be the subalgebra of Haff

n (A, z) generated by Hn(A, z)
together with k[X1, . . . , Xn] (no inverses). We adopt the convention that
Haff

0 (A, z) = Haff
0,+(A, z) := k.

Example 2.6 (Affine Hecke algebras). If A = k = C[q, q−1] and z = q − q−1,
then Haff

n (A, z) is the affine Hecke algebra of type An−1.

Example 2.7 (Affine Yokonuma–Hecke algebras). In the setting of Exam-
ple 2.4, Haff

n (kCd, z) is the affine Yokonuma–Hecke algebra (see [CPd14, §3.1]).

Remark 2.8. One can work in the more general setting where A is a Frobenius
algebra. In general, there exists a Nakayama automorphism ψ : A → A such
that tr(ab) = (−1)āb̄tr(bψ(a)) for all a, b ∈ A. Then we modify the relation
(2.10) to be aXi = Xiψi(a), where ψi = 1⊗(i−1) ⊗ ψ ⊗ 1⊗(n−i). In the current
paper we focus on the symmetric case, where ψ = 1, for simplicity. However,
it is this more general setting that motivates our use of the word “Frobenius”
in some of our terminology.

2.3 Symmetries

It is straightforward to verify that we have an algebra automorphism of
Haff

n (A, z) given by

X±1
i 7→ X±1

n+1−i, ai 7→ an+1−i, Tj 7→ −T−1
n−j = −Tn−j + ztn−j,n−j+1,

(2.11)
for all 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1, a ∈ A.

Any algebra automorphism ξ : A → A preserving the trace (i.e. tr ◦ ξ = tr)
induces an algebra automorphism of Haff

n (A, z) given by

X±1
i 7→ X±1

i , a 7→ ξ⊗n(a), Tj 7→ Tj , (2.12)

for all 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1, a ∈ A⊗n.
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Lemma 2.9. Suppose that τ : A→ Aop is an isomorphism of symmetric algebras
(i.e. an algebra isomorphism preserving the trace map). Then the map

τ̂ : Haff
n (A, z) → Haff

n (A, z)op, X±1
i 7→ X±1

i , a 7→ τ⊗n(a), Tj 7→ Tj,

for all 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1, a ∈ A⊗n, is an isomorphism of algebras.

Proof. It is straightforward to verify that τ̂ preserves the defining relations
of Haff

n (A, z), once it is noted that τ̂ (ti,i+1) = ti,i+1 (see the proof of [Sav,
Lem. 3.9]). So τ̂ is indeed a homomorphism of algebras. That τ̂ is an isomor-

phism follows from the fact that it has inverse τ̂−1.

Recall that the center of A is

Z(A) :=
{
a ∈ A : ab = (−1)āb̄ba for all b ∈ A

}
.

Lemma 2.10. Let a ∈ Z(A) be invertible and even. Then there exists a unique
algebra automorphism ζa : H

aff
n (A, z) → Haff

n (A, z) given by

a 7→ a, Ti 7→ Ti, Xj 7→ ajXj , X−1
j 7→ a−1

j X−1
j ,

for a ∈ A⊗n, 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n.

Proof. It is straightforward to verify that ζa preserves the defining relations of
Haff

n (A, z). Then, since ζa is invertible with inverse ζa−1 , it is an automor-
phism.

3 Structure theory

In this section we examine the structure theory of quantum affine wreath al-
gebras. In particular, we describe a basis, the center, Jucys–Murphy elements,
and a Mackey Theorem.

3.1 Demazure Operators

Let

Pn = k[X±1
1 , . . . , X±1

n ] and Pn(A) = A⊗n ⊗ Pn. (3.1)

(tensor product of algebras). We will use the notation f, g to denote elements
of Pn(A) and the notation p, q to denote elements of Pn. By abuse of notation,
for f ∈ Pn(A) we will also denote by f its image under the natural homo-
morphism Pn(A) → Haff

n (A, z). In fact, it will follow from Theorem 3.10 that
this homomorphism is injective, allowing us to view Pn(A) as a subalgebra of
Haff

n (A, z).
We consider two different actions of Sn on Pn(A). For w ∈ Sn and f ∈ Pn(A),
we let w(f) denote the action by permuting the Xi and superpermuting the
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factors of A⊗n, i.e. the diagonal action on A⊗n ⊗ Pn. On the other hand, we
let wf denote the action given by

w(a ⊗ p) = a⊗ w(p).

So this action permutes the Xi, but is A⊗n-linear. Of course w(p) = wp for
p ∈ Pn.
For 1 ≤ i ≤ n− 1, we have the Demazure operators

∆i : Pn(A) → Pn(A), ∆i(f) =
f − sif

1−XiX
−1
i+1

. (3.2)

It is straightforward to verify that

∆i(fg) = ∆i(f)g +
sif∆i(g), f, g ∈ Pn(A). (3.3)

In particular,
∆i(fg) = f∆i(g) if sif = f. (3.4)

Lemma 3.1. For f ∈ Pn(A) and 1 ≤ i, j ≤ n− 1, |i− j| > 1, we have

si∆i(f) = XiX
−1
i+1∆i(f), ∆i

(
sif
)
= −∆i(f), ∆i

(
sjf
)
= sj∆i(f), (3.5)

si
(
∆i(f)

)
= −XiX

−1
i+1∆i

(
si(f)

)
, si

(
∆j(f)

)
= ∆j

(
si(f)

)
, (3.6)

∆2
i = ∆i, (3.7)

∆i∆j = ∆j∆i, (3.8)

∆i∆i+1∆i = ∆i+1∆i∆i+1 for 1 ≤ i ≤ n− 2. (3.9)

Proof. The relations (3.5) follow from straightforward computations. To see
the first equation in (3.6), for a ∈ A⊗n, p ∈ Pn, we compute

si
(
∆i(ap)

)
= si(a)

si∆i(p)
(3.5)
= XiX

−1
i+1si(a)∆(p)

(3.5)
= −XiX

−1
i+1si(a)∆(sip)

= −XiX
−1
i+1

si(ap)− si(a)p

1−XiX
−1
i+1

= −XiX
−1
i+1∆i

(
si(ap)

)
.

The second equation in (3.6) is straightforward. To see (3.7), we compute

∆2
i (f) =

∆i(f)−
si∆i(f)

1−XiX
−1
i+1

(3.5)
=

∆i(f)−XiX
−1
i+1∆i(f)

1−XiX
−1
i+1

= ∆i(f).

For (3.8), we compute

∆i∆j(f) =
∆j(f)−

si∆j(f)

1−XiX
−1
i+1

(3.5)
=

∆j(f)−∆j(
sif)

1−XiX
−1
i+1

(3.4)
= ∆j∆i(f).

Finally, to see (3.9), we compute

∆i∆i+1∆i(f) = ∆i∆i+1

(
f − sif

Xi+1 −Xi

Xi+1

)
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= ∆i

(
f − sif

(Xi+1 −Xi)(Xi+2 −Xi+1)
Xi+1Xi+2 −

si+1f − si+1sif

(Xi+2 −Xi)(Xi+2 −Xi+1)
X2

i+2

)

=

(
f − sif

(Xi+1 −Xi)(Xi+2 −Xi+1)
Xi+1Xi+2

−
si+1f − si+1sif

(Xi+2 −Xi)(Xi+2 −Xi+1)
X2

i+2 −
f − sif

(Xi+1 −Xi)(Xi+2 −Xi+1)
XiXi+2

+
sisi+1f − sisi+1sif

(Xi+2 −Xi)(Xi+2 −Xi+1)
X2

i+2

)
Xi+1

Xi+1 −Xi

= (f − sif − si+1f + si+1sif + sisi+1f − sisi+1sif)

·
Xi+1X

2
i+2

(Xi+1 −Xi)(Xi+2 −Xi+1)(Xi+2 −Xi)
.

A similar computation for ∆i+1∆i∆i+1(f) yields the same final expression.

Remark 3.2. The relations (3.7) to (3.9) imply that the ∆i define an action of
the 0-Hecke algebra on Pn(A). Demazure operators first appeared in [Dem74].
Over the ring of integers, (3.7) to (3.9) are proved in [Dem74, Th. 2(a)] and
[Dem74, (18)].

Lemma 3.3. For all f ∈ Pn(A) and 1 ≤ i ≤ n− 1, we have

Tif = si(f)Ti + zti,i+1∆i(f). (3.10)

Proof. It is straightforward to verify by direct computation that (3.10) holds
for f = X±1

j , 1 ≤ j ≤ n. For example,

TiXi
(2.9)
= Xi+1T

−1
i

(2.6)
= Xi+1(Ti − zti,i+1)

= Xi+1Ti − zti,i+1Xi+1 = Xi+1Ti + zti,i+1∆i(Xi).

Then, supposing the result holds for p, q ∈ Pn, we have

Ti(pq) = si(p)Tiq + zti,i+1∆i(p)q

(2.7)
= si(pq)Ti+zti,i+1si(p)∆i(q)+zti,i+1∆i(p)q

(3.3)
= si(pq)Ti+zti,i+1∆i(pq).

Since both sides of (3.10) are k-linear in f and the X±1
j generate Pn as a k-

algebra, the result holds for all p ∈ Pn. Now, for a ∈ A⊗n and p ∈ Pn, we
have

Tiap = si(a)Tip = si(a) (si(p)Ti + zti,i+1∆i(p))
(2.7)
= si(ap)Ti + zti,i+1∆i(ap).

This completes the proof.

Documenta Mathematica 25 (2020) 425–456



434 D. Rosso, A. Savage

Lemma 3.4. Suppose f ∈ Pn(A) and w ∈ Sn. In Haff
n (A, z), we have

Twf = w(f)Tw +
∑

u<w

fuTu, fTw = Tww
−1(f) +

∑

u<w

Tuf
′
u, (3.11)

for some fu, f
′
u ∈ Pn(A). Here < denotes the strong Bruhat order on Sn.

Proof. This follows from (3.10) by induction on the length of w.

Lemma 3.5. For k, ℓ ∈ Z, ℓ > 0, we have

∆i

(
Xk

i X
k+ℓ
i+1

)
=

ℓ−1∑

r=0

Xk+r
i Xk+ℓ−r

i+1 = −∆i

(
Xk+ℓ

i Xk
i+1

)
(3.12)

Proof. We have

∆i

(
Xk

i X
k+ℓ
i+1

) (3.4)
= Xk

i X
k
i+1∆i

(
Xℓ

i+1

)

= Xk
i X

k+1
i+1

Xℓ
i+1 −Xℓ

i

Xi+1 −Xi

=

ℓ−1∑

r=0

Xk+r
i Xk+ℓ−r

i+1 .

The second equation in (3.12) then follows from the second equation in (3.5).

Corollary 3.6. For 1 ≤ i ≤ n − 1, we have ∆i(k[X1, . . . , Xn]) ⊆
k[X1, . . . , Xn].

Proof. This follows from (3.12) and the fact that ∆i is linear in the Xj , j 6=
i, i+ 1, by (3.4).

3.2 Basis Theorem

Our next goal is to give explicit bases for the quantum affine wreath algebra
Haff

n (A, z). We do this by constructing a natural faithful representation.

Lemma 3.7. For 1 ≤ i ≤ n− 1 and ℓ > 0,

TiX
ℓ
iTi = Xℓ

i+1 − zti,i+1

ℓ−1∑

k=1

Xk
i X

ℓ−k
i+1 Ti (3.13)

Proof. For 1 ≤ i ≤ n− 1 and ℓ > 0, we have

TiX
ℓ
i Ti

(3.10)
=

(
Xℓ

i+1Ti + zti,i+1∆i

(
Xℓ

i

))
Ti

(3.12)
= Xℓ

i+1T
2
i − zti,i+1

ℓ−1∑

k=0

Xk
i X

ℓ−k
i+1 Ti

(2.4)
= Xℓ

i+1 − zti,i+1

ℓ−1∑

k=1

Xk
i X

ℓ−k
i+1 Ti.
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Proposition 3.8. Let H be the free k-module with basis {Tw : w ∈ Sn}, and
V = Pn(A)⊗H a tensor product of k-modules. Then V is an Haff

n (A, z)-module,
with the action given by f · (g ⊗ Tw) = fg ⊗ Tw and

Ti · (f ⊗ Tw)

=

{
si(f)⊗ Tsiw + zti,i+1∆i(f)⊗ Tw if ℓ(siw) > ℓ(w),

si(f)⊗ Tsiw + zti,i+1X
−1
i+1∆i(Xi+1f)⊗ Tw if ℓ(siw) < ℓ(w),

for f, g ∈ Pn(A), w ∈ Sn. Here ℓ is the length function on Sn.

Proof. We need to check that the action satisfies the defining relations of
Haff

n (A, z). Throughout this proof, a ∈ A⊗n, f, g ∈ Pn(A), w ∈ Sn,
1 ≤ i ≤ n− 1, and 1 ≤ j ≤ n. The relation (2.10) is clearly satisfied.

Relation (2.5): We have

Ti · (a · (f ⊗ Tw)) = Ti · (af ⊗ Tw)

=

{
si(af)⊗ Tsiw + zti,i+1∆i(af)⊗ Tw if ℓ(siw) > ℓ(w),

si(af)⊗ Tsiw + zti,i+1X
−1
i+1∆i(Xi+1af)⊗ Tw if ℓ(siw) < ℓ(w)

(2.7)
= si(a) · (Ti · (f ⊗ Tw)).

Relation (2.8): If j 6= i, i+ 1, then

Ti · (Xj · (f ⊗ Tw)) = Ti · (Xjf ⊗ Tw)

=

{
si(Xjf)⊗ Tsiw + zti,i+1∆i(Xjf)⊗ Tw if ℓ(siw) > ℓ(w),

si(Xjf)⊗ Tsiw + zti,i+1X
−1
i+1∆i(Xi+1Xjf)⊗ Tw if ℓ(siw) < ℓ(w)

(3.4)
= Xj · (Ti · (f ⊗ Tw)).

Relation (2.9): First suppose that ℓ(siw) > ℓ(w). Then

Ti · (Xi · (f ⊗ Tw)) = Ti · (Xif ⊗ Tw)

= si(Xif)⊗ Tsiw + zti,i+1∆i(Xif)⊗ Tw
(3.3)
= Xi+1si(f)⊗ Tsiw + zti,i+1

(
∆i(Xi)f +Xi+1∆i(f)

)
⊗ Tw

= Xi+1si(f)⊗ Tsiw + zti,i+1Xi+1(−f +∆i(f))⊗ Tw

= Xi+1 ·
(
(Ti − zti,i+1) · (f ⊗ Tw)

)

(2.6)
= Xi+1 · (T

−1
i · (f ⊗ Tw)).

On the other hand, if ℓ(siw) < ℓ(w), then

Ti · (Xi · (f ⊗ Tw)) = Ti · (Xif ⊗ Tw)
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= si(Xif)⊗ Tsiw + zti,i+1X
−1
i+1∆i(Xi+1Xif)⊗ Tw

(3.4)
= Xi+1si(f)⊗ Tsiw + zti,i+1Xi∆i(f)⊗ Tw

(3.3)
= Xi+1si(f)⊗ Tsiw + zti,i+1

(
∆i(Xi+1f)−Xi+1f

)
⊗ Tw

= Xi+1 ·
(
(Ti − zti,i+1) · (f ⊗ Tw)

)

(2.6)
= Xi+1 · (T

−1
i · (f ⊗ Tw)).

Relation (2.4): First suppose ℓ(siw) > ℓ(w), so that ℓ(si(siw)) = ℓ(w) <
ℓ(siw). Then, using the fact that si(ti,i+1) = ti,i+1, we have

Ti · (Ti · (f ⊗ Tw))

= Ti ·
(
si(f)⊗ Tsiw + zti,i+1∆i(f)⊗ Tw

)

= f ⊗ Tw + zti,i+1X
−1
i+1∆i

(
Xi+1si(f)

)
⊗ Tsiw

+ zti,i+1si
(
∆i(f)

)
⊗ Tsiw + z2t2i,i+1∆

2
i (f)⊗ Tw

(3.3)
= f ⊗ Tw + zti,i+1

(
si(f) +XiX

−1
i+1∆i

(
si(f)

))
⊗ Tsiw

+ zti,i+1si
(
∆i(f)

)
⊗ Tsiw + z2t2i,i+1∆

2
i (f)⊗ Tw

(3.6)
=

(3.7)
f ⊗ Tw + zti,i+1si(f)⊗ Tsiw + z2t2i,i+1∆i(f)⊗ Tw

= (1 + zti,i+1Ti) · (f ⊗ Tw).

The case ℓ(siw) < ℓ(w) is similar.

Relation (2.2): Let |i − j| > 1, so that sisj = sjsi. In order to handle several
cases simultaneously, we use ε and τ to denote elements of {0, 1} here. Using
(3.4) and (3.6), we have

Ti ·
(
Tj · (f ⊗ Tw)

)

= Ti ·
(
sj(f)⊗ Tsjw + ztj,j+1X

−ε
j+1∆j(X

ε
j+1f)⊗ Tw

)

= (sisj)(f)⊗ Tsisjw + zti,i+1X
−τ
i+1∆i

(
Xτ

i+1sj(f)
)
⊗ Tsjw

+ ztj,j+1si
(
X−ε

j+1∆j(X
ε
j+1f)

)
⊗ Tsiw

+ z2ti,i+1tj,j+1X
−τ
i+1∆i

(
Xτ

i+1X
−ε
j+1∆j(X

ε
j+1)

)
⊗ Tw

= (sjsi)(f)⊗ Tsjsiw + zti,i+1sj
(
X−τ

i+1∆i(X
τ
i+1f)

)
⊗ Tsjw

+ ztj,j+1X
−ε
j+1∆j

(
Xε

j+1si(f)
)
⊗ Tsiw

+ z2ti,i+1tj,j+1X
−ε
j+1∆j

(
Xε

j+1X
−τ
i+1∆i(X

τ
i+1)

)
⊗ Tw

= Tj ·
(
Ti · (f ⊗ Tw)

)
.

Relation (2.3): Verifying (2.3) is the most involved, and it occupies the re-
mainder of the proof. We first show that for 1 ≤ i ≤ n− 2 and 1 ≤ j ≤ n we
have

(TiTi+1Ti − Ti+1TiTi+1)Xj = Xsi,i+2(j)(TiTi+1Ti − Ti+1TiTi+1) (3.14)
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as operators on V . Clearly (3.14) holds for j 6= i, i+1, i+2 because (2.8) holds
for the operators Ti and Xj on V , which we have already checked. Notice also
that (3.10) holds in End(V ) since the proof of that relation depends only on
(2.4), (2.8), and (2.9), which we have already verified.
For j = i, as operators in End(V ) we have

TiTi+1TiXi = TiTi+1Xi+1(Ti − zti,i+1)

= TiXi+2(Ti+1 − zti+1,i+2)(Ti − zti,i+1)

= Xi+2Ti(Ti+1Ti − zti+1,i+2Ti − zTi+1ti,i+1 + z2ti+1,i+2ti,i+1)

= Xi+2(TiTi+1Ti − zTiti+1,i+2Ti − zTiTi+1ti,i+1 + z2Titi+1,i+2ti,i+1)

(2.5)
= Xi+2(TiTi+1Ti − zti,i+2T

2
i − zti+1,i+2TiTi+1 + z2ti,i+2ti,i+1Ti)

(2.4)
= Xi+2(TiTi+1Ti − zti,i+2 − zti+1,i+2TiTi+1)

and

Ti+1TiTi+1Xi = Ti+1TiXiTi+1

= Ti+1Xi+1(Ti − zti,i+1)Ti+1

= Xi+2(Ti+1 − zti+1,i+2)(TiTi+1 − zti,i+1Ti+1)

=
Xi+2(Ti+1TiTi+1 − zTi+1ti,i+1Ti+1 − zti+1,i+2TiTi+1

+ z2ti+1,i+2ti,i+1Ti+1)

(2.5)
= Xi+2(Ti+1TiTi+1 − zti,i+2T

2
i+1 − zti+1,i+2TiTi+1 + z2ti+1,i+2ti,i+1Ti+1)

(2.4)
= Xi+2(Ti+1TiTi+1 − z2ti,i+2ti+1,i+2Ti+1 − zti,i+2

− zti+1,i+2TiTi+1 + z2ti+1,i+2ti,i+1Ti+1)

(2.7)
= Xi+2(Ti+1TiTi+1 − zti,i+2 − zti+1,i+2TiTi+1).

So (3.14) holds for j = i. The cases j = i + 1, i + 2 are similar. Notice that
(3.14) also implies

X−1
si,i+2(j)

(TiTi+1Ti − Ti+1TiTi+1) = (TiTi+1Ti − Ti+1TiTi+1)X
−1
j . (3.15)

Then (2.5), (3.14), and (3.15) imply that, as operators on V ,

(TiTi+1Ti−Ti+1TiTi+1)f = si,i+2(f)(TiTi+1Ti−Ti+1TiTi+1) for all f ∈ Pn(A).

Thus, for all f ∈ Pn(A) and w ∈ Sn, we have

(TiTi+1Ti−Ti+1TiTi+1)·(f⊗Tw) = si,i+2(f)·
(
(TiTi+1Ti−Ti+1TiTi+1)·(1⊗Tw)

)
.

Hence, to prove (2.3), it suffices to prove that

(TiTi+1Ti) · (1⊗ Tw) = (Ti+1TiTi+1) · (1⊗ Tw) for w ∈ Sn. (3.16)

Documenta Mathematica 25 (2020) 425–456



438 D. Rosso, A. Savage

For the remainder of the proof, to simplify the notation, we write Tw for
1 ⊗ Tw and we omit · from the notation for the action. We also adopt the
convention that operators are applied in order from right to left. For example,
TiTi+1TiTw = Ti(Ti+1(TiTw)).
It follows immediately from the definition of the action that we have

TjTw =

{
Tsjw if ℓ(sjw) > ℓ(w),

Tsjw + ztj,j+1Tw if ℓ(sjw) < ℓ(w).
(3.17)

We split the proof of (3.16) into the following cases:

(a) ℓ(sisi+1siw) = ℓ(w) + 3,

(b) ℓ(sisi+1siw) = ℓ(w) + 1,

(c) ℓ(sisi+1siw) = ℓ(w)− 1,

(d) ℓ(sisi+1siw) = ℓ(w)− 3.

In case (a), we have

ℓ(w) < ℓ(siw) < ℓ(si+1siw) < ℓ(sisi+1siw) and

ℓ(w) < ℓ(si+1w) < ℓ(sisi+1w) < ℓ(si+1sisi+1w).

Thus
TiTi+1TiTw = Tsisi+1siw = Tsi+1sisi+1w = Ti+1TiTi+1Tw.

In case (b), we have, without loss of generality,

ℓ(w) > ℓ(siw) < ℓ(si+1siw) < ℓ(sisi+1siw) and

ℓ(w) < ℓ(si+1w) < ℓ(sisi+1w) > ℓ(si+1sisi+1w).

(The other possibility is obtained by interchanging i and i+ 1.) Then we have
a reduced word w = siv and so

TiTi+1TiTw = TiTi+1TiTiTv
(2.4)
= zTiTi+1ti,i+1TiTv + TiTi+1Tv

(2.7)
= zti+1,i+2Tsisi+1siv + Tsisi+1v

and

Ti+1TiTi+1Tw = Ti+1Tsisi+1siv = Ti+1Tsi+1sisi+1v

= Ti+1Ti+1Tsisi+1v
(2.4)
= zti+1,i+2Tsi+1sisi+1v + Tsisi+1v.

So (3.16) holds.
In case (c), we have, without loss of generality,

ℓ(w) > ℓ(siw) > ℓ(si+1siw) < ℓ(sisi+1siw) and
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ℓ(w) < ℓ(si+1w) < ℓ(sisi+1w) > ℓ(si+1sisi+1w).

(The other possibility is obtained by interchanging i and i+ 1.) Then we have
a reduced word w = sisi+1v and so

TiTi+1TiTw = TiTi+1TiTiTi+1Tv
(2.4)
= zTiTi+1ti,i+1TiTi+1Tv + TiTi+1Ti+1Tv

(2.7)
=

(2.4)
zti+1,i+2TiTsi+1sisi+1v + zTiti+1,i+2Ti+1Tv + Tsiv

(2.7)
= zti+1,i+2TiTiTi+1TiTv + zti,i+2Tsisi+1v + Tsiv

(2.4)
= z2ti+1,i+2ti,i+1Tsisi+1siv + zti+1,i+2Tsi+1siv + zti,i+2Tsisi+1v + Tsiv

and

Ti+1TiTi+1Tw = Ti+1TiTsi+1sisi+1v

= Ti+1TiTsisi+1siv

= Ti+1TiTiTi+1TiTv
(2.4)
= zTi+1ti,i+1TiTi+1TiTv + Ti+1Ti+1TiTv

(2.5)
=

(2.4)
zti,i+2Ti+1Ti+1TiTi+1Tv + zti+1,i+2Tsi+1siv + Tsiv

(2.4)
= z2ti,i+2ti+1,i+2Tsi+1sisi+1v + zti,i+2Tsisi+1v + zti+1,i+2Tsi+1siv + Tsiv

(2.7)
= z2ti+1,i+2ti,i+1Tsisi+1siv + zti+1,i+2Tsi+1siv + zti,i+2Tsisi+1v + Tsiv.

So (3.16) holds.
The case (d) is similar and so will be omitted.

Remark 3.9. Notice that if p ∈ k[X1, . . . , Xn], then X−1
i+1∆i(Xi+1p) ∈

k[X1, . . . , Xn] by (3.12). Then, also using Corollary 3.6, it is easy to see
that if we take V+ ( V to be the space obtained by replacing Pn(A) with
k[X1, . . . , Xn]⊗A in Proposition 3.8, then V+ is invariant under the action of
Haff

n,+(A, z).

Theorem 3.10 (Basis Theorem for Haff
n (A, z)). The map

V = Pn(A)⊗H → Haff
n (A, z), f ⊗ Tw 7→ fTw,

is an isomorphism of Haff
n (A, z)-modules.

Proof. Let D be a basis of Pn(A), and let

B1 = {f ⊗ Tw : f ∈ D, w ∈ Sn} ⊆ V,

B2 = {fTw : f ∈ D, w ∈ Sn} ⊆ Haff
n (A, z).
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Then B1 is a basis of V . It follows from Lemma 3.3 that B2 spans Haff
n (A, z).

Furthermore, we have that (fTw) · (1 ⊗ T1) = f ⊗ Tw, and so the elements
of B2 are linearly independent, hence a basis. Since V is a cyclic module
generated by 1⊗Te, there is anH

aff
n (A, z)-module homomorphismHaff

n (A, z) →
V , determined by 1 7→ 1⊗Te. This map sends fTw ∈ B2 to f ⊗Tw ∈ B2, hence
it is an isomorphism because it gives a bijection of k-bases.

For λ = (λ1, . . . , λn) ∈ Zn, we let Xλ = Xλ1

1 · · ·Xλn
n . Recall that B is a k-basis

for A.

Corollary 3.11. The sets

{aXλTw : a ∈ B⊗n, λ ∈ Zn, w ∈ Sn} and

{TwaX
λ : a ∈ B⊗n, λ ∈ Zn, w ∈ Sn}

are k-bases for Haff
n (A, z).

Proof. It follows immediately from Theorem 3.10 that the first set is a basis.
The fact that the second set is also a basis follows from (3.11) by induction on
the length of w.

Corollary 3.12. The sets

{aXλTw : a ∈ B⊗n, λ ∈ Nn, w ∈ Sn} and

{TwaX
λ : a ∈ B⊗n, λ ∈ Nn, w ∈ Sn}

are k-bases for Haff
n,+(A, z).

Proof. This uses the same reasoning as Corollary 3.11, due to Remark 3.9.

Remark 3.13. For the case of the affine Hecke algebras (see Example 2.6),
Corollary 3.11 recovers a result of Lusztig [Lus89, Prop. 3.7]. For affine
Yokonuma–Hecke algebras (see Example 2.7), it was proved in [CPd16, Th. 4.4].

3.3 Description of the center

We now compute the center of quantum affine wreath algebras. By (2.10), we
have that Pn(Z(A)) = Z(A)⊗n ⊗ Pn is a subalgebra of Pn(A).

Lemma 3.14. The centralizer of Pn in Haff
n (A, z) is equal to Pn(A).

Proof. By (2.10), it is clear that elements of Pn(A) commute with elements of
Pn. Now let α =

∑
w∈Sn

fwTw ∈ Haff
n (A, z), where fw ∈ Pn(A) for all w ∈ Sn.

Let v ∈ Sn be a maximal element in the strong Bruhat order such that fv 6= 0.
Suppose v 6= 1, and let 1 ≤ i ≤ n such that v(i) 6= i. Then, by (3.11) we have

Xiα− αXi = (Xi −Xv(i))fvTv +
∑

u�v

guTu,

for some gu ∈ Pn(A). Thus, by Theorem 3.10, α does not centralize Xi; hence
the result.
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Lemma 3.15. The centralizer of Pn(A) in Haff
n (A, z) is equal to Pn(Z(A)).

Proof. The centralizer of Pn(A) inside H
aff
n (A, z) is contained in the centralizer

of Pn, which by Lemma 3.14 is equal to Pn(A). Hence the centralizer of Pn(A)
is equal to the center Z(Pn(A)). Using (2.10), we have

Z(Pn(A)) = Z
(
A⊗n ⊗ Pn

)
= Z(A⊗n)⊗ Z(Pn) = Z(A)⊗n ⊗ Pn = Pn(Z(A)),

where we use the fact that Z(A⊗n) = Z(A)⊗n since A is free over k.

For any subset Y ⊆ Pn(A), we define

Y Sn = {f ∈ Y : w(f) = f for all w ∈ Sn}.

Theorem 3.16. We have Z
(
Haff

n (A, z)
)
= Pn(Z(A))

Sn .

Proof. Suppose f ∈ Z(Haff
n (A, z)) ⊆ Pn(Z(A)). For 1 ≤ i ≤ n − 1, (3.11)

implies that

Tif = si(f)Ti + g for some g ∈ Pn(A).

Then

f = TifT
−1
i =

(
si(f)Ti + g

)
T−1
i

(2.6)
= si(f) + g(Ti − zti,i+1) = si(f) + gTi − zgti,i+1.

By Corollary 3.11, we have g = 0; hence f = si(f). Since this is true for all
1 ≤ i ≤ n− 1, it follows that f ∈ Pn(Z(A))

Sn .

Now suppose f ∈ Pn(Z(A))
Sn . For each 1 ≤ i ≤ n − 1 and a ∈ Z(A)⊗n, we

have

ti,i+1a = ati,i+1
(2.7)
= ti,i+1si(a).

It follows that ti,i+1
sif = ti,i+1si(f), and so

ti,i+1∆i(f) = ti,i+1
f − sif

1−XiX
−1
i+1

= ti,i+1
f − si(f)

1−XiX
−1
i+1

= 0.

Thus, by (3.10), we have Tif = fTi for all 1 ≤ i ≤ n − 1. Since f clearly
commutes with all elements of Pn(A), we have f ∈ Z

(
Haff

n (A, z)
)
.

Remark 3.17. For affine Hecke algebras (see Example 2.6), Theorem 3.16
recovers a well-known description of the center (see [Lus89, Prop. 3.11]). For
affine Yokonuma–Hecke algebras (see Example 2.7), it recovers [CW, Th. 2.7].

Proposition 3.18. Suppose A′ is a maximal commutative subalgebra of A.
Then Pn(A

′) is a maximal commutative subalgebra of Haff
n (A, z).
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Proof. Suppose α ∈ Haff
n (A, z) commutes with all elements of Pn(A

′). By
Lemma 3.14, we have α ∈ Pn(A). Thus α =

∑
λ∈Zn aλX

λ, for some aλ ∈ A⊗n.
Then, for all b ∈ (A′)⊗n, we have

bα = αb =⇒
∑

λ∈Zn

baλX
λ =

∑

λ∈Zn

aλbX
λ.

Thus, by Corollary 3.11, baλ = aλb for all λ. Since A′ is a maximal com-
mutative subalgebra of A, this implies that aλ ∈ (A′)⊗n for all λ. Hence
α ∈ Pn(A

′).

3.4 Jucys–Murphy elements

Define the Jucys–Murphy elements in Hn(A, z) by

J1 = 1, Ji = Ti−1Ji−1Ti−1 = Ti−1 · · ·T2T
2
1 T2 · · ·Ti−1, 2 ≤ i ≤ n.

(3.18)
These elements generalize the well-known Jucys–Murphy elements in the
Iwahori–Hecke algebra, as well as the Jucys–Murphy elements of the
Yokonuma–Hecke algebra introduced in [CPd14, (2.14)].

Proposition 3.19. There is a surjective algebra homomorphism Haff
n (A, z) →

Hn(A, z) defined by

Xi 7→ Ji, a 7→ a, Tw 7→ Tw, 1 ≤ i ≤ n, a ∈ A⊗n, w ∈ Sn.

Proof. We need to check that this maps preserves the relations (2.8) to (2.10),
in addition to the facts that XiXj = XjXi and that Xi is invertible for 1 ≤
i, j ≤ n. Clearly Ji is invertible for all 1 ≤ i ≤ n because Tk is invertible for
all 1 ≤ k ≤ n. Also, (2.9) follows from the definition of Ji. Relation (2.10) is
satisfied because of (2.5), while the fact that JiJj = JjJi for all 1 ≤ i, j ≤ n,
in addition to relation (2.8), follows from repeated use of (2.2) and (2.3).

3.5 Mackey Theorem

For a composition µ = (µ1, . . . , µr) of n, let

Sµ = Sµ1
× · · · × Sµr

⊆ Sn

denote the corresponding Young subgroup. We then define the parabolic sub-
algebra Hµ(A, z) ⊆ Hn(A, z) to be the subalgebra generated by A⊗n and
{Tw : w ∈ Sµ}. We also define Haff

µ (A, z) ⊆ Haff
n (A, z) to be the subalge-

bra generated by Hµ(A, z) and Pn. So we have an isomorphism of algebras

Haff
µ (A, z) ∼= Haff

µ1
(A, z)⊗ · · · ⊗Haff

µr
(A, z),

and a parity-preserving isomorphism of k-modules

Haff
µ (A, z) ∼= Pn ⊗Hµ(A, z).
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Let Dµ,ν denote the set of minimal length (Sµ, Sν)-double coset representatives
in Sn. By [DJ86, Lem. 1.6(ii)], for π ∈ Dµ,ν , Sµ∩πSνπ

−1 and π−1Sµπ∩Sν are
Young subgroups of Sn; hence we can define compositions µ∩πν and π−1µ∩ν
by

Sµ ∩ πSνπ
−1 = Sµ∩πν and π−1Sµπ ∩ Sν = Sπ−1µ∩ν .

Furthermore, the map w 7→ π−1wπ restricts to a length preserving isomorphism

Sµ∩πν → Sπ−1µ∩ν

which, due to the length-preserving property, induces an isomorphism of alge-
bras

Hµ∩πν(A, z) → Hπ−1µ∩ν(A, z),

a 7→ π−1(a), Tw 7→ Tπ−1wπ, a ∈ A⊗n, w ∈ Sn.

It is easy to verify that, for π ∈ Dµ,ν and si ∈ Sµ∩πν , we have π−1(i + 1) =
π−1(i) + 1, and hence π−1siπ = sπ−1(i). Thus, for each π ∈ Dµ,ν , we have an
algebra isomorphism

ϕπ−1 : Haff
µ∩πν(A, z) → Haff

π−1µ∩ν(A, z),

ϕπ−1(Tw) = Tπ−1wπ, ϕπ−1(f) = π−1(f), w ∈ Sµ∩πν , f ∈ Pn(A).

If N is a left Haff
π−1µ∩ν

(A, z)-module, we denote by πN the left Haff
µ∩πν(A, z)-

module with action given by

α · v = ϕπ−1(α)v, α ∈ Haff
µ∩πν , v ∈ πN = N.

The inclusion Haff
µ (A, z) ⊆ Haff

n (A, z) gives induction and restriction functors

Resnµ : H
aff
n (A, z)-mod → Haff

µ (A, z)-mod,

Indnµ : H
aff
µ (A, z)-mod → Haff

n (A, z)-mod.

Theorem 3.20 (Mackey Theorem for Haff
n (A, z)). Suppose that M is an

Haff
n (A, z)-module. Then Resnµ Ind

n
ν M admits a filtration with subquotients

evenly isomorphic to
Indµµ∩πν

π(
Resνπ−1µ∩ν M

)
,

one for each π ∈ Dµ,ν . Furthermore, the subquotients can be taken in any
order refining the strong Bruhat order on Dµ,ν . In particular, Indµµ∩ν Res

ν
µ∩ν M

appears as a submodule.

Proof. The proof is essentially the same as the proofs of [Kle05, Thm 3.5.2]
and [Kle05, Thm 14.5.2]; hence it will be omitted.

4 Cyclotomic quotients

In this final section we define cyclotomic quotients of the quantum affine wreath
algebras and prove some of their key properties. These quotients are natural
analogues of cyclotomic quotients of affine Hecke algebras (see Example 2.6).
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4.1 Definitions

Identifying A with A ⊗ 1⊗n−1, we can naturally view P1(A) = A[X1] as a
subalgebra of Pn(A). Let

f ∈ Z(A)0[X1]

be a monic polynomial of degree d in X1 with coefficients in Z(A)0, the even
part of the center of A. We write

f = Xd
1 + a(d−1)X

d−1
1 + · · ·+ a(1)X1 + a(0), (4.1)

with a(i) ∈ Z(A)0. We assume that a(0) is invertible.
We define the corresponding quantum cyclotomic wreath algebra to be

Hf
n(A, z) := Haff

n (A, z)/〈f〉,

where 〈f〉 denotes the two-sided ideal in Haff
n (A, z) generated by f . We call d

the level of Hf
n(A, z). Since f ∈ Haff

n,+(A, z) ⊆ Haff
n (A, z), we can also define

Hf
n,+(A, z) := Haff

n,+(A, z)/〈f〉+,

where 〈f〉+ denotes the two-sided ideal in Haff
n,+(A, z) generated by f .

Let f1 := f and, for 2 ≤ i ≤ n, define

fi := Ti−1 · · ·T2T1f1T1T2 · · ·Ti−1. (4.2)

It follows immediately that

fi commutes with all elements of A⊗n for all 1 ≤ i ≤ n. (4.3)

Lemma 4.1. For 1 ≤ i ≤ n− 1, we have

fi −Xd
i ∈ Hi(A, z) +

d−1∑

e=1

k[X1, . . . , Xi−1]≤d−eX
e
iHi(A, z).

where k[X1, . . . , Xi−1]≤d−e denotes the space of polynomials of degree less than
or equal to d− e.

Proof. We prove this by induction. For i = 1, the result is immediate. Now
assuming the result true for all 1 ≤ j ≤ i, we have

fi+1 −Xd
i+1

(3.13)
= Ti(fi −Xd

i )Ti − zti,i+1

d−1∑

k=1

Xk
i X

d−k
i+1 Ti

∈ TiHi(A, z)Ti + Ti

d−1∑

e=1

k[X1, . . . , Xi−1]≤d−eX
e
iHi(A, z)Ti

− z

d−1∑

k=1

Xk
i X

d−k
i+1 ti,i+1Ti
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⊆ Hi+1(A, z) +
d−1∑

e=1

k[X1, . . . , Xi]≤d−eX
e
i+1Hi+1(A, z),

where, for the final inclusion, we used (3.13).

Consider the algebra homomorphism given by the composition

η : Haff
n,+(A, z) →֒ Haff

n (A, z) ։ Hf
n(A, z), (4.4)

where the first map is the natural inclusion and the second is the projection.

Lemma 4.2. The map η is surjective.

Proof. Notice that

X−1
1 = a−1

(0)X
−1
1 f − a−1

(0)

(
Xd−1

1 + a(d−1)X
d−2
1 + · · ·+ a(2)X1 + a(1)

)
,

and so

η
(
−a−1

(0)

(
Xd−1

1 + a(d−1)X
d−2
1 + · · ·+ a(2)X1 + a(1)

))
= X−1

1 ∈ Hf
n(A, z).

It then follows by induction that X−1
i+1 = T−1

i X−1
i T−1

i ∈ η
(
Haff

n,+(A, z)
)
for all

1 ≤ i ≤ n− 1, which gives the result.

Lemma 4.3. We have

Hn(A, z)fHn(A, z) =
∑

1≤i≤n
w∈Sn

A⊗nfiTw =

n∑

i=1

fiHn(A, z).

Proof. We have

Hn(A, z)fHn(A, z) =
∑

v∈Sn

Hn(A, z)fA
⊗nTv

=
∑

v∈Sn

Hn(A, z)fTv (by (4.3))

=

n∑

i=1

∑

x,v∈Sn

x(1)=1

A⊗nTi−1 · · ·T1TxfTv

=

n∑

i=1

∑

x,v∈Sn

x(1)=1

A⊗nTi−1 · · ·T1fTxTv

=

n∑

i=1

∑

v∈Sn

A⊗nTi−1 · · ·T1fTv
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=

n∑

i=1

∑

u∈Sn

A⊗nTi−1 · · ·T1fT1 · · ·Ti−1Tu

=

n∑

i=1

∑

u∈Sn

A⊗nfiTu,

where the sixth equality follows from the fact that the Tj are invertible. The
final equality in the statement of the lemma then follows from (4.3).

Lemma 4.4. For all 1 ≤ i ≤ n, we have

(
Hn(A, z)fHn(A, z)

)
∩
(
XiH

aff
n,+(A, z)

)
= 0.

Proof. By Lemma 4.3, any element of the intersection is of the form

∑

j,w

aj,wfjTw ∈ XiH
aff
n,+(A, z)

for some aj,w ∈ A⊗n. It follows from Corollary 3.11 and Lemma 4.1 that
aj,w = 0 whenever j 6= i. Then, by (3.13), the constant term (i.e. the term of
degree zero in the Xj) of

∑
w ai,wfiTw, which must equal zero, is

0 =
∑

w

ai,wTi−1 · · ·T1a(0)T1 · · ·Ti−1Tw

(2.5)
= Ti−1 · · ·T1T1 · · ·Ti−1

∑

w

ai,ws1,i(a(0))Tw.

Since the Tj are invertible, as is a(0), it follows from Corollary 3.11 that ai,w = 0
for all w ∈ Sn.

Proposition 4.5. The map η induces an isomorphism

Hf
n,+(A, z)

∼= Hf
n(A, z).

Proof. We need to show that 〈f〉+ = η−1(〈f〉), which is to say that

〈f〉 ∩Haff
n,+(A, z) = 〈f〉+.

Clearly 〈f〉+ ⊆ 〈f〉 ∩Haff
n,+(A, z); so we need to show the other inclusion.

Define a partial order on Zn by λ ≤ µ if λi ≤ µi for all 1 ≤ i ≤ n. Using
Lemma 3.4 and (2.5), any element of the form



∑

λ∈Zn

w∈Sn

aλ,wX
λTw


 f



∑

µ∈Zn

v∈Sn

bµ,vX
µTv


 =

∑

λ,µ,w,v

aλ,wX
λTwbµ,vX

µfTv
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can be written in the form
∑

λ,w,v cλ,w,vX
λTwfTv. Thus, it suffices to show

that if ∑

λ,w,v

cλ,w,vX
λTwfTv ∈ Haff

n,+(A, z), (4.5)

then λ ≥ 0 whenever cλ,w,v 6= 0 for some w, v ∈ Sn.
Take a minimal element λ = (λ1, . . . , λn) appearing in (4.5) with cλ,w,v 6= 0.
Suppose, towards a contradiction, that λi < 0 for some 1 ≤ i ≤ n. Since
f ∈ A[X1], by Lemma 3.3 and Corollary 3.6 we have

TwfTv ∈ k[X1, . . . , Xn]Hn(A, z)

for all w, v. Thus, by Corollary 3.11 and the minimality of λ, we must have

Xλ
∑

w,v

cλ,w,vTwfTv ∈ Haff
n,+(A, z).

Since λi < 0, Corollary 3.11 implies that
∑

w,v cλ,w,vTwfTv ∈ XiH
aff
n,+(A, z).

But this is impossible by Lemma 4.4.

4.2 Basis Theorem

We now prove a basis theorem for Hf
n,+(A, z), which also gives a basis theorem

for Hf
n(A, z) in light of Proposition 4.5. We follow the methods of [Kle05, §7.5]

and [Sav, §6.3].
For I = {i1 < · · · < ik} ⊆ {1, . . . , n}, let

fI = fi1fi2 · · · fik ∈ Haff
n,+(A, z).

We also define

Ωn := {(λ, I) : I ⊆ {1, . . . , n}, λ ∈ Nn, λi < d whenever i /∈ I},

Ω+
n := {(λ, I) ∈ Ωn : I 6= ∅}.

Lemma 4.6. We have that Haff
n,+(A, z) is a free right Hn(A, z)-module with basis

{XλfI : (λ, I) ∈ Ωn}.

Proof. Consider the lexicographic ordering ≺ on Nn. Define a function

γ : Ωn → Nn, γ(λ, I) = (γ1, . . . , γn), where γi =

{
λi if i 6∈ I,

λi + d if i ∈ I.

Using induction on n and Lemma 4.1, we see that, for all (λ, I) ∈ Ωn,

XλfI −Xγ(λ,I) ∈
∑

µ≺λ

XµHn(A, z). (4.6)

Now, γ : Ωn → Nn is a bijection and, by Corollary 3.12, {Xλ : λ ∈ Nn} is
a basis for Haff

n,+(A, z) as a right Hn(A, z)-module. Thus the lemma follows
from (4.6).
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Lemma 4.7. We have that fn commutes with all elements of Hn−1(A, z).

Proof. It follows from the definition (4.2) of fn and from the relations (2.3),
(2.8), and (4.3) that fn commutes with Ti, 1 ≤ i ≤ n − 2, and a ∈ A⊗(n−1).

Lemma 4.8. We have 〈f〉+ =
∑n

i=1 k[X1, . . . , Xn]fiHn(A, z).

Proof. We have

〈f〉+ = Haff
n,+(A, z)fk[X1, . . . , Xn]Hn(A, z)

= Haff
n,+(A, z)k[X1, . . . , Xn]fHn(A, z)

= Haff
n,+(A, z)fHn(A, z)

= k[X1, . . . , Xn]Hn(A, z)fHn(A, z)

=

n∑

i=1

∑

w∈Sn

k[X1, . . . , Xn]A
⊗nfiTw (by Lemma 4.3)

(4.3)
=

n∑

i=1

∑

w∈Sn

k[X1, . . . , Xn]fiA
⊗nTw

=

n∑

i=1

k[X1, . . . , Xn]fiHn(A, z).

Lemma 4.9. For d > 0, we have 〈f〉+ =
∑

(λ,I)∈Ω+
n
XλfIHn(A, z).

Proof. We prove this by induction on n. When n = 1, the statement is obvious.
Now suppose that n > 1, and define 〈f〉′+ := Haff

n−1,+(A, z)fH
aff
n−1,+(A, z). By

the induction hypothesis we have

〈f〉′+ =
∑

(λ′,I′)∈Ω+

n−1

Xλ′

fI′Hn−1(A, z). (4.7)

Let J =
∑

(λ,I)∈Ω+
n
XλfIHn(A, z). Clearly J ⊆ 〈f〉+, and so we need to show

that 〈f〉+ ⊆ J . By Lemma 4.8, it is enough to show that XλfiHn(A, z) ⊆ J
for all λ ∈ Nn and 1 ≤ i ≤ n. Consider first the case i = n and write
Xλ = Xλn

n Xµ, where µ = (λ1, . . . , λn−1) ∈ Nn−1. Expanding Xµ in terms of
the basis of Haff

n−1,+(A, z) of Lemma 4.6, we see that

XλfnHn(A, z) ⊆
∑

(λ′,I′)∈Ωn−1

Xλn
n Xλ′

fI′Hn−1(A, z)fnHn(A, z) ⊆ J, (4.8)

where the second inclusion follows from Lemma 4.7.
Now consider XλfiHn(A, z), with 1 ≤ i < n. As above, we write Xλ =
Xλn

n Xµ, where µ ∈ Nn−1. By the induction hypothesis, we have

XλfiHn(A, z) = Xλn
n XµfiHn(A, z) ⊆

∑

(λ′,I′)∈Ω+

n−1

Xλn
n Xλ′

fI′Hn(A, z).
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Now we show by induction on λn that Xλn
n Xλ′

fI′Hn(A, z) ∈ J for all (λ′, I ′) ∈
Ω+

n−1. This follows immediately from the definition of Ω+
n−1 when λn < d. If

λn ≥ d, by Lemma 4.1 we have

Xλn
n Xλ′

fI′Hn(A, z) = Xλn−d
n Xλ′

fI′Xd
nHn(A, z)

∈ Xλn−d
n Xλ′

fI′fnHn(A, z) +

d−1∑

e=0

Xλn−d+e
n 〈f〉′+Hn(A, z).

By the definition of J , we have Xλn−d
n Xλ′

fI′fnHn(A, z) ∈ J . Now, by (4.7),
for 0 ≤ e < d, we have

Xλn−d+e
n 〈f〉′+Hn(A, z) ⊆

∑

(λ′,I′)∈Ω+

n−1

Xλn−d+e
n Xλ′

fI′Hn(A, z).

Since 0 ≤ λn − d + e < λn, each term in the above sum is contained in J by
the induction hypothesis, which concludes the proof.

Theorem 4.10 (Basis theorem for cyclotomic quotients). The canonical images
of the elements

{Xλ
aTw : λ ∈ Nn, λi < d ∀ i, a ∈ B⊗n, w ∈ Sn}

form a basis of Hf
n,+(A, z) and of Hf

n(A, z).

Proof. By Lemmas 4.6 and 4.9, the elements {XλfI : (λ, I) ∈ Ω+
n } form a basis

for 〈f〉+ as a Hn(A, z)-right module. Thus Lemma 4.6 implies that

{Xλ : λ ∈ Nn, λi < d, ∀ i}

is a basis for a complement to 〈f〉+ inside Haff
n,+, viewed as a right Hn(A, z)-

module.

Remark 4.11. In the setting of affine Hecke algebras (see Example 2.6), The-
orem 4.10 recovers [AK94, Th. 3.10]. For affine Yokonuma–Hecke algebras (see
Example 2.7), it was proved in [CPd16, Th. 4.4].

Corollary 4.12. Every level one quantum cyclotomic wreath algebra is iso-
morphic to Hn(A, z).

Proof. If f = X1 − 1, then the map Haff
n (A, z) ։ Hf

n(A, z)
∼= Hn(A, z) is

exactly the map of Proposition 3.19. In general f = X1 + a with a ∈ Z(A)
even and invertible. So the result follows by applying the automorphism ζ−a

of Lemma 2.10.
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4.3 Cyclotomic Mackey Theorem

Theorem 4.10 implies that the subalgebra of Hf
n+1(A, z) generated by

X1, . . . , Xn, A
⊗n ⊗ 1 and T1, . . . , Tn−1 is isomorphic to Hf

n(A, z). Thus we
can define induction and restriction functors

f Indn+1
n : Hf

n(A, z)-mod → Hf
n+1(A, z)-mod,

f Resn+1
n : Hf

n+1(A, z)-mod → Hf
n(A, z)-mod.

Let Π: Hf
n(A, z)-mod → Hf

n(A, z)-mod denote the functor that reverses the
parity of the elements of a module.

Proposition 4.13. Recall that d = deg f .

(a) We have that Hf
n+1(A, z) is a free right Hf

n(A, z)-module with basis

{Xr
j ajTj · · ·Tn : 0 ≤ r < d, a ∈ B, 1 ≤ j ≤ n+ 1}.

(b) We have a decomposition of (Hf
n(A, z), H

f
n(A, z))-bimodules

Hf
n+1(A, z) = Hf

n(A, z)TnH
f
n(A, z)⊕

⊕

0≤r<d, a∈B

Xr
n+1an+1H

f
n(A, z).

(c) For 0 ≤ r ≤ d and homogeneous a ∈ A, we have parity-preserving iso-
morphisms of (Hf

n (A, z), H
f
n(A, z))-bimodules

Hf
n(A, z)TnH

f
n(A, z)

∼= Hf
n(A, z)⊗H

f
n−1

(A,z) H
f
n(A, z) and

Xr
n+1an+1H

f
n(A, z)

∼= ΠāHf
n(A, z).

Proof. The proof is almost identical to the proof of [Kle05, Lemma 7.6.1] and
so will be omitted.

Theorem 4.14 (Cyclotomic Mackey Theorem). For all n ∈ N+, we have a
natural isomorphism of functors

f Resn+1
n

f Indn+1
n

∼= id⊕d dim(A0) ⊕Π⊕ddim(A1) ⊕ f Indnn−1
f Resnn−1 .

Proof. This follows from Proposition 4.13.

Remark 4.15. Proposition 4.13 is the key ingredient in showing that the quan-
tum Frobenius Heisenberg categories of [BSW] act on categories of modules for
quantum cyclotomic wreath algebras. It corresponds to the inversion relation
in the quantum Frobenius Heisenberg categories.
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4.4 Symmetric algebra structure

By Theorem 4.10, we can define a k-linear map

trnf : H
f
n(A, z) → k, Xλ

aTw 7→ δλ,0δw,1tr(a), (4.9)

where tr(a) = tr⊗n(a) is the natural trace map on the tensor product algebra
A⊗n (here, on the right-hand side, tr is the trace map on A).

Theorem 4.16. The cyclotomic quotient Hf
n(A, z) is a symmetric algebra with

trace map trnf .

Proof. Consider the total order on Nn given by λ < µ if and only if

λn = µn, . . . , λi+1 = µi+1 and λi < µi for some 1 ≤ i ≤ n.

For the remainder of this proof,

• λ and µ will denote elements of Nn such that λi, µi < d for all i,

• a and b will denote elements of B⊗n, and

• u, v, w will denote elements of Sn.

We must verify that the basis given in Theorem 4.10 has a left dual basis with
respect to trnf . By (3.11), we have

trnf (X
−λ

a
∨Tw−1Xµ

bTv)

= trnf

(
Xw−1(µ)−λ

a
∨w−1(b)Tw−1Tv +

∑

u<w−1

fuTuTv

)
(4.10)

for some fu ∈ Pn(A).
By Theorem 3.10, the equation (3.17) holds in Haff

n (A, z). It follows that

Tw−1Tw ∈ T1 +
∑

v 6=1

Pn(A)Tv and Tw−1Tu ∈
∑

v 6=1

Pn(A)Tv if w < u.

The second equation above also implies that

TuTv ∈
∑

v′ 6=1

Pn(A)Tv′ whenever u < v−1,

since u < v−1 =⇒ u−1 < v. Thus, it follows from (4.10) and Lemma 4.1 that
trnf (X

−λ
a
∨Tw−1Xλ

aTw) = 1 and that

trnf (X
−λ

a
∨Tw−1Xµ

bTv) = 0

whenever

• w < v, or
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• w = v and λ < µ, or

• w = v, λ = µ, and a 6= b.

Thus we can find a left dual basis to the basis given in Theorem 4.10 by inverting
a unitriangular matrix.

It remains to prove that the trace map trnf is symmetric. Let ψ denote the
Nakayama automorphism corresponding to trnf (see Remark 2.8). So we want
to show that ψ is the identity automorphism. It follows from (2.5) and (2.10)
that

trnf (bX
λ
aTw) = δλ,0δw,1tr(ba)

= (−1)āb̄δλ,0δw,1tr(ab) = (−1)āb̄trnf (X
λ
aTwb).

So ψ(b) = b.

If λ 6= 0, we have (noting that ∆i preserves polynomial degree)

trnf (TiX
λ
aTw)

(3.10)
= trnf

(
Xsi(λ)si(a)TiTw + zti,i+1a∆i(X

λ)Tw

)

= 0 = trnf (X
λ
aTwTi).

We also have

trnf (TiaTw) = trnf (si(a)TiTw)

(3.17)
=

{
trnf (si(a)Tsiw) if ℓ(siw) > ℓ(w),

trnf (si(a)Tsiw + zti,i+1Tw) if ℓ(siw) < ℓ(w)

=

{
0 if w 6= si,

tr(si(a)) = tr(a) if w = si.

Similarly,

trnf (aTwTi) =

{
0 if w 6= si,

tr(a) if w = si.

Thus ψ(Ti) = Ti.

Now, if ψ(Xi) = Xi for some 1 ≤ i ≤ n− 1, then

ψ(Xi+1)
(2.9)
= ψ(TiXiTi) = ψ(Ti)ψ(Xi)ψ(Ti) = TiXiTi

(2.9)
= Xi+1.

Therefore, it remains to show that ψ(X1) = X1. That is, we need to show

trnf (X1X
λ
aTw) = trnf (X

λ
aTwX1) for all λ, a, w. (4.11)

It follows from (2.8) and (2.10) that (4.11) holds when w(1) = 1.
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Now suppose w = s1v for some v ∈ Sn with v(1) = 1. Then

trnf (X
λ
aTwX1) = trnf (X

λ
aT1TvX1)

(2.8)
= trnf (X

λ
aT1X1Tv)

(2.9)
=

(2.5)
trnf (X

λX2T
−1
1 s1(a)Tv).

(4.12)

It is clear that (4.12) is equal to zero unless λ2 = d− 1 and λ3 = · · · = λn = 0,
which we assume from now on. Now, for m > 1, we have

T1X
m
1

(3.10)
= Xm

2 T1 − zt1,2

m∑

r=1

Xm−r
1 Xr

2

(2.6)
= Xm

2 T
−1
1 − zt1,2

m−1∑

r=1

Xm−r
1 Xr

2 .

(4.13)
Using (4.1), this gives

Xd
2T

−1
1 = −

d−1∑

m=0

T1a(m)X
m
1 + zt1,2

d−1∑

r=1

Xd−r
1 Xr

2 .

Therefore, from (4.9) and (4.12), we have

trnf (X
λ
aTwX1) = −z

d−1∑

m=0

trnf (X
λ1

1 T1a(m)X
m
1 s1(a)Tv)

(4.13)
= −z

d−1∑

m=0

trnf (X
λ1

1 s1(a(m))X
m
2 aT1Tv) = 0.

(4.14)

Now we consider the general case where w(1) 6= 1. Then we can write a reduced
expression w = w1s1w2, where w1(1) = w2(1) = 1. Then, for all g ∈ Pn(A),
we have

trnf (gTwX1) = trnf (gTw1
T1Tw2

X1)

(3.11)
= trnf (Tw1

w−1(g)T1Tw2
X1) +

∑

u<w1

trnf (TufuT1Tw2
X1)

= trnf (w
−1(g)T1Tw2

X1Tw1
) +

∑

u<w1

trnf (fuT1Tw2
X1Tu)

(2.8)
= trnf (w

−1(g)T1Tw2
Tw1

X1) +
∑

u<w1

trnf (fuT1Tw2
TuX1) (4.15)

for some fu ∈ Pn(A), where, in the third equality, we used the fact that ψ(Tv) =
Tv for all v ∈ Sn and, in the fourth equality, we have used the fact that u(1) = 1
whenever u < w1. Now, since w2(1) = 1 and u(1) = 1 for all u ≤ w1, we have
that

Tw2
Tu ∈

∑

v:v(1)=1

Pn(A)Tv for all u ≤ w1.

Thus, it follows from (2.5) and (4.14) that (4.15) is equal to zero. Since
trnf (X1gTw1

T1Tw2
) = 0, we are done.
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Remark 4.17. For affine Hecke algebras (see Example 2.6), Theorem 4.16
was proved in [MM98, Th. 5.1]. For affine Yokonuma–Hecke algebras (see
Example 2.7), it was proved in [CPd16, Th. 7.1].

4.5 Frobenius extension structure

Let
An+1 := 1⊗n ⊗A = Spank{an+1 : a ∈ A} ⊆ A⊗(n+1).

By Proposition 4.13(b), we have a decomposition of (Hf
n(A, z), H

f
n(A, z))-

bimodules

Hf
n+1(A, z) = An+1H

f
n(A, z)⊕

d−1⊕

r=1

Xr
n+1An+1H

f
n(A, z)⊕Hf

n(A, z)TnH
f
n(A, z).

(4.16)
Define the partial trace map

trfn+1 : H
f
n+1(A, z) → Hf

n(A, z)

to be the homomorphism of (Hf
n (A, z), H

f
n(A, z))-bimodules given by the pro-

jection onto the first summand in (4.16) followed by the map

An+1H
f
n(A, z) → Hf

n(A, z), an+1α 7→ trA(a)α, a ∈ A, α ∈ Hf
n(A, z).

It follows that

trn+1
f = trf1 ◦ trf2 ◦ · · · ◦ trfn+1 = trnf ◦ trfn+1.

Proposition 4.18. The quantum cyclotomic wreath algebra Hf
n+1(A, z) is a

Frobenius extension of Hf
n(A, z) with trace map trfn+1.

Proof. Since Hf
n(A, z) ⊆ Hf

n+1(A, z) are both symmetric algebras, it follows

from [PS16, Cor. 7.4] that Hf
n+1(A, z) is a Frobenius extension of Hf

n(A, z)
with trace map

α 7→
∑

β∈Y

trn+1
f (β∨α)β,

where Y is a basis of Hf
n(A, z). (Note that β∨ denotes the right dual of β in

[PS16], whereas it denotes the left dual in the current paper.) Since

∑

β∈Y

trn+1
f (β∨α)β =

∑

β∈Y

trnf

(
trfn+1(β

∨α)
)
β

=
∑

β∈Y

trnf

(
β∨trfn+1(α)

)
β = trfn+1(α),

the result follows.

It follows from Proposition 4.18 that the functors f Indn+1
n and f Resn+1

n are
both left and right adjoint to each other. Indeed, induction is always left adjoint
to restriction. It is also right adjoint to restriction precisely when the larger
algebra is a Frobenius extension of the smaller.
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