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1 Introduction

In this article we will study exact functors F : A → B between (suitably en-
hanced) triangulated categories which admit both a left adjoint L and a right
adjoint R. Using the unit η and counit ε of adjunction F ⊣ R, one can associate
two natural endofunctors to F, namely the cotwist C and the twist T, which fit
into the triangles:

C→ idA
η
−→ RF and FR

ε
−→ idB → T.

These endofunctors are ubiquitous in nature because:

“adjoint functors arise everywhere”. (Saunders Mac Lane)

In this paper, we will focus on the two most fundamental cases for the cotwist:

(i) C = 0, which is equivalent to F being fully faithful;
we call a fully faithful functor with both adjoints exceptional ;

(ii) C is an autoequivalence, in which case we call F spherelike.

At this point, we want to offer up an extension to Mac Lane’s famous slogan
above with the following imperative, which will act as our guiding principle
throughout:

“if a functor admits both adjoints then compare them!”

In particular, for the two fundamental cases described above, we have canonical
natural transformations between R and L, namely:

(i) ϕ : R→ RFL
∼
←− L, if F is exceptional;

(ii) ϕ : R→ RFL→ CL[1], if F is spherelike.

Thus, a natural comparison question is whether ϕ is an isomorphism in either
case? If ϕ is an isomorphism then we recover the well-established notions of F
being:

(i) exceptionally Frobenius in the exceptional case;

(ii) spherical (or quasi-Frobenius) in the spherelike case.
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However, if ϕ is not an isomorphism then one can complete ϕ to a triangle of
functors and use the cocones to measure how far away F is from being (quasi-)
Frobenius:

(i) if F is exceptional then we have a triangle P→ R→ L,
and we call Frb(F) := ker P ⊂ B the Frobenius codomain of F;

(ii) if F is spherelike then we have a triangle Q→ R→ CL[1],
and we call Sph(F) := kerQ ⊂ B the spherical codomain of F.

Theorem A. Let F : A → B be an exceptional or spherelike functor and let
BF be the Frobenius or spherical codomain, respectively. Then imF ⊂ BF and
the corestriction F|BF : A→ BF is exceptionally Frobenius or spherical, respec-
tively. Moreover, BF is the maximal full triangulated subcategory of B with this
property.

This theorem is the main result of Section 3.2 and Section 4.2, respectively.
There is a local version of these codomains for objects FA ∈ B, where A ∈ A

is some object in the source category. For simplicity, we assume that A and B

admit Serre functors SA and SB, respectively. The local statements are as
follows:

(i) if F is exceptional then P→ R→ L becomes FSA → SBF→ TSBF,
and we call Frb(F, A) := ⊥TSBFA the Frobenius neighbourhood of FA ∈ B;

(ii) if F is spherelike then Q→ R→ CL[1] becomes
FSAC

−1[−1]→ SBF→ QrSA,
and we call Sph(F, A) := ⊥QrSAA the spherical neighbourhood of FA ∈ B.

Here we denote by Qr the right adjoint of Q.

Theorem B. Let F : A → B be an exceptional or spherelike functor and let
BFA be the Frobenius or spherical neighbourhood of FA ∈ B, for some A ∈ A.
Then, inside BFA, the Serre dual of FA is given by FSAA or FSAC

−1[−1]A,
respectively. Moreover, BFA is the maximal full triangulated subcategory of B
with this property.

This theorem is proven in Section 3.3 and Section 4.3. These neighbourhoods
can be put into a set, which is ordered by inclusion, thus yielding the Frobenius
or spherical poset of an exceptional or spherelike functor, respectively.
The symmetrical nature of C and T means that we could also consider the
fundamental cases of when T is zero or T is an equivalence. The dual nature of
these constructions might lead us to name the corresponding functors coexcep-
tional and cospherelike, respectively, and it is easy to see how we would obtain
analogous results to that of Theorem A and Theorem B.
We illustrate the theory by several examples. On the exceptional side, we
study exceptional functors coming from projective bundles and blowups. We
highlight Proposition 3.5.5 of blowing up a P

1 on a threefold π : BlP1(X)→ X .
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There we can determine the Frobenius poset of the exceptional functor π∗: it
encodes the poset of thick subcategories of Db(P1). Additionally, we show that
in case of hypersurfaces of degree n in P

2n−1, the linkage class appears actually
as the triangle associated to an exceptional functor. On the spherelike side, we
obtain a wealth of examples by Theorem 4.4.3: the composition of a spherical
functor F1 and an exceptional functor F2 gives a spherelike functor F2F1 and its
spherical neighbourhoods can be expressed as Frobenius neighbourhoods of F1.
Currently, this is the only way we know how to build spherelike functors. It
would be interesting to find examples which are not of this shape.

This article grew out of an attempt to generalise the notion of spherelike ob-
jects, as introduced in [HKP16, HKP19], to spherelike functors; see Section 4.5
for a detailed comparison. Whilst building up the theory, we realised that
central statements and examples in loc. cit. are about embedding spheri-
cal objects by an exceptional functor, and thus they are actually statements
about Frobenius neighbourhoods rather than spherical neighbourhoods; see
Proposition 4.5.3 and the examples thereafter.

Conventions

Throughout, all categories will be triangulated and linear over an algebraically
closed field k. In particular, all subcategories will be triangulated. Addition-
ally, we will often implicitly assume that the triangulated categories admit an
enhancement, in order to speak about triangles of functors. The shift functor
will be denoted by [1] and all triangles will be exact. We write A→ B → C for
an (exact) triangle, suppressing the degree increasing map C → A[1]. Finally,
all functors will be exact. In particular, we will denote derived functors with
the same symbol as its (non-exact) counterpart on the abelian level. For exam-
ple, for a proper morphism π : X → Y , we write π∗ : D

b(X) → Db(Y ) for the
derived pushforward. Dualisation over k is given by ( )∨ := Hom( ,k) and
we use Hom∗(A,B) to mean the graded k-vector space

⊕
iHom

∗(A,B[i])[−i],
which can also be considered as a complex with zero differential in Db(k-mod).

Acknowledgements

We thank Greg Stevenson for illuminating discussions. We are also grateful to
Pieter Belmans, Andreas Krug, Sasha Kuznetsov, and Theo Raedschelders for
many helpful comments.

2 Preliminaries

In this section, we collect some standard facts as well as detailing the termi-
nology and notation that we will use throughout the article.
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2.1 Generating triangulated subcategories

Recall that all categories are assumed to be triangulated, unless stated other-
wise.

Definition 2.1.1. A subcategory C of A is called thick if it is full and closed
under direct summands, i.e. if C ⊕ C′ ∈ C then C,C′ ∈ C as well.
For an arbitrary family F of objects in A, the thick closure of F is the smallest
thick subcategory of A containing F and will be denoted by thick(F).

Definition 2.1.2. Let F be an arbitrary family of objects in A. Then the right
orthogonal of F is

F
⊥ := {A ∈ A | Hom∗(F,A) = 0 for all F ∈ F}.

Likewise, the left orthogonal of F is

⊥
F := {A ∈ A | Hom∗(A,F ) = 0 for all F ∈ F}.

Remark 2.1.3. The full subcategory of A with objects in F⊥ is automatically
triangulated and thick. The same holds true for ⊥F. For this reason, we will in
the following identify F⊥ and ⊥F with the corresponding (full) subcategories
of A.

Definition 2.1.4. An object A of A is said to be:

• a weak generator of A if A⊥ = 0;

• a classical generator of A if A = thick(A).

Remark 2.1.5. Note that if A is a direct sum of exceptional objects, then both
notions of weak and classical generator are equivalent. A classical generator is
always a weak generator, but the converse implication does not hold in general.

Example 2.1.6. If X is a smooth projective variety and L a very ample line
bundle, then A = OX ⊕ L ⊕ · · · ⊕ L⊗ dim(X) is a classical generator of Db(X),
see [Orl09, Thm. 4].

Definition 2.1.7. A pair of full subcategories (A,B) of a triangulated cate-
gory D is said to be a semiorthogonal decomposition if

• Hom∗(B,A) = 0 for all A ∈ A and B ∈ B;

• for all D ∈ D there is an exact triangle

DB → D → DA

with DA ∈ A and DB ∈ B.

We denote a semiorthogonal decomposition by D = 〈A,B〉.
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The following statements about semiorthogonal decompositions are standard
and can be found, for example, in [Bon89] or [Kuz15].

Proposition 2.1.8. If D = 〈A,B〉 is a semiorthogonal decomposition then the
assignments D 7→ DA and D 7→ DB are functorial in D and define left and
right adjoints to the inclusions A→ D and B→ D, respectively. Moreover, we
have A = B⊥ and B = ⊥A.

Definition 2.1.9. Let A be a full subcategory of D. Then A is called

• right admissible if the inclusion functor A →֒ B has a right adjoint;

• left admissible if the inclusion functor admits a left adjoint;

• admissible if it is both left and right admissible.

Proposition 2.1.10. Let A be a left admissible subcategory of D. Then ⊥A is
right admissible and D = 〈A,⊥A〉 is a semiorthogonal decomposition.

We can iterate the definition of semiorthogonal decompositions.

Definition 2.1.11. A sequence (A1, . . . ,An) of full subcategories in D is called
semiorthogonal decomposition if An is right admissible inD and 〈A1, . . . ,An−1〉
is a semiorthogonal decomposition of A⊥

n . In this case, we write D =
〈A1, . . . ,An〉.

Remark 2.1.12. By this definition, D decomposes into a nested semiorthogonal
decomposition:

D = 〈A1, . . . ,An〉 = 〈〈. . . 〈A1,A2〉, . . .〉,An〉.

Actually, one can check that the order of the nesting does not matter, since we
have Ai =

⊥〈A1, . . . ,Ai−1〉 ∩ 〈Ai+1, . . . ,An〉
⊥. Moreover, note that A1 is left

admissible in D (and An right admissible), whereas for the terms in between
we cannot make a general statement about left or right admissibility in D.

Remark 2.1.13. For a semiorthogonal decomposition D = 〈A1, . . . ,An〉, it is
often assumed in the literature that all Ai are admissible in D, and the defini-
tion we gave above is sometimes called a weak semiorthogonal decomposition.
In the presence of a Serre functor of D, a left or right admissible subcategory
of D is automatically admissible. A particular consequence of this is that all
terms of a (weak) semiorthogonal decomposition become admissible. That is,
if we have the luxury of Serre functors then there is no difference between the
two notions.

2.2 Serre duality

We recall some basic facts about Serre duality, all of which can be found, for
example, in [BK89] or [Huy06].

Documenta Mathematica 25 (2020) 483–525



Frobenius & Spherical Codomains & Neighbourhoods 489

Definition 2.2.1. Let A be an object in a triangulated category A. An object
SA ∈ A is called a Serre dual of A if it represents the functor Hom(A, )∨.
Moreover, A is called d-Calabi-Yau if A[d] is a Serre dual for A.
We say that S : A→ A is a Serre functor of A if S is an equivalence and SA is
a Serre dual for all A ∈ A, i.e. there is an isomorphism

Hom(A,B) ∼= Hom(B, SA)∨

which is natural in A,B ∈ A. Finally, if S = [d] for some d ∈ Z, then we say
that A is a d-Calabi-Yau category.

Proposition 2.2.2. Let A be a right admissible subcategory of B, and SB be a
Serre functor of B. If ir : B→ A is the right adjoint of the inclusion i : A→ B

then irSBi is a Serre functor of A.

Proposition 2.2.3. Let F : A→ B be a functor between categories that admit
Serre functors SA and SB, respectively. If L ⊣ F then F ⊣ SALS

−1
B

. Similarly,
if F ⊣ R then S−1

A
RSB ⊣ F.

2.3 Kernel, image and (co)restriction

Definition 2.3.1. Let F : A → B be a functor. The kernel of F is the full
subcategory:

ker F = {A ∈ A | F(A) = 0} ⊂ A.

The (essential) image of F is the subset:

im F = {B ∈ B | B ∼= F(A) for some A ∈ A} ⊂ B.

Remark 2.3.2. Note that ker F is automatically triangulated. Moreover, the
kernel ker F is a thick subcategory of A. Actually this generalises the notion
of orthogonals of objects, as A⊥ = kerHom∗(A, ). On the other hand, if F is
full, then the full subcategory of B with objects im F will be triangulated. For
general (exact) F this might not be true.

Definition 2.3.3. Let F : A → B a functor. If we have a full subcategory
A′ ⊂ A then the restriction of F to A′ is the functor:

F|A′ : A′ → B,

which does the same as F on objects and morphisms.
Similarly, if we have a full subcategory B′ ⊂ B such that imF ⊂ B′ then the
corestriction of F to B′ is the functor:

F|B
′

: A→ B
′,

which also does the same as F on objects and morphisms.
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2.4 Functors with both adjoints

Definition 2.4.1. If F : A → B is an exact functor between triangulated cat-
egories with left adjoint L and right adjoint R then we can use Fourier–Mukai
kernels, bimodules or dg-enhancements, to define the twist T and cotwist C

of F by the following triangles:

FR
εR−→ idB

αR−→ T
βR
−→ FR[1] and C

δR−→ idA
ηR
−→ RF

γR
−→ C[1],

where ηR and εR are the unit and counit of adjunction, respectively. Similarly,
the dual twist T′ and dual cotwist C′ are defined by the adjoint triangles:

T′ δL−→ idB
ηL
−→ FL

γL
−→ T′[1] and LF

εL−→ idA
αL−→ C′ βL

−→ LF[1],

where ηL and εL are again the unit and counit of adjunction, respectively.

Remark 2.4.2. Note that the dual twist T′ and dual cotwist C′ are cotwist
and twist of the left adjoint (and there is a dual statement involving the right
adjoint).
For the construction of these triangles and the fact that they behave well under
adjunction, we refer the reader to [CW10] or [AL17].

Remark 2.4.3. If we have more than one functor present in an argument, such
as a composition F2 ◦ F1 : A → B → C, then we will use η1 and η2 for the
unit morphisms associated to F1 and F2, respectively. In particular, η1 will be
used to denote either ηR1 : id → R1F1 or ηL1 : id→ F1L1. Since these maps are
taking place on different categories, this should not cause confusion.

Lemma 2.4.4 ([Add16, §2.3] or [Mea16, Lem. 1.4]). We have natural isomor-
phisms:

TF[−1] ≃ FC[1] RT[−1] ≃ CR[1] FC′[−1] ≃ T′F[1] C′L[−1] ≃ LT′[1].

3 Exceptional functors

3.1 Definition and examples

We start with the central notion of this section.

Definition 3.1.1. We say that a functor F : A→ B is exceptional if it is fully
faithful and admits both adjoints. If, in addition, there is an isomorphism
R ≃ L between the adjoints of F, then we say that F is exceptionally Frobenius.

Remark 3.1.2. Note that an exceptional functor is essentially the inclusion of
an admissible subcategory.
Recall [Huy06, Cor. 1.23] that if L ⊣ F ⊣ R then F being fully faithful is
equivalent to ηR : idA

∼
−→ RF and εL : LF

∼
−→ idA being isomorphisms.
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Remark 3.1.3. A functor F is called Frobenius, if there is an isomorphism
R ≃ L between the adjoints of F. Note that F need not to be fully faithful.
As an example consider F = ( ) ⊗ E : Db(X) → Db(X) with E any object in
Db(X) where X is smooth and projective. Then the adjoints of F are R = L =
Hom(E, ), but F will not be fully faithful in general.

Lemma 3.1.4. If F is exceptional then we have natural isomorphisms:

LηL : L
∼
−→ LFL RεR : RFR

∼
−→ R ηLF : F

∼
−→ FLF εRF : FRF

∼
−→ F.

Proof. Consider the triangle identity:

C′L[−1]

L LFL LT′[1]

L.

LηL

εLL

Since F is fully faithful we know that εL : LF
∼
−→ idA and hence C′ = 0. In

particular, we have LT′[1] ≃ C′L[−1] = 0 which implies LηL : L → LFL is an
isomorphism. That is, even though ηL : idB → FL is not an isomorphism, it
becomes an isomorphism after applying L on the left, or F on the right. The
other isomorphisms follow from similar arguments.

Remark 3.1.5. Note that as soon as idA and RF are naturally isomorphic, then
ηR is already an isomorphism (and analoguously for εL); see [Joh02, Lem. 1.1.1].

Lemma 3.1.6. Let F : A → B be an exceptional functor. Then the canonical
maps:

ϕ : R
RηL
−−→ RFL

η−1
R

L
−−−→ L and ψ : R

ε−1
L

R
−−−→ LFR

LεR−−→ L.

are equal.

Proof. The claim can be reformulated to show that the following diagram com-
mutes:

LFR L

R RFL.

LεR

εLR ≀ ηRL≀

RηL

Since F is fully faithful, the statement follows by the commutativity of the
following diagram:

FLFR FL

FR FRFL.

FLεR

FεLR ≀ FηRL≀

FRηL
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By Lemma 3.1.4, the maps F
ηLF
−−→ FLF and FLF

FεL−−→ F are inverse to each other,

and the same holds for F
FηR
−−→ FRF and FRF

εRF−−→ F. Extending the previous
diagram by these isomorphisms we get:

FLFR FL

FR FRFL

FLFR FL

FLεR

FεLR (∗) FηRL

FRηL
ηLFR εRFL

FLεR

The triangles on both sides commute by the remark above, whereas the bot-
tom square commutes as the units and counits act on separate variables. To
conclude that (∗) is commutative, we note that εRFL is an isomorphism and

εRFL ◦ FRηL ◦ FεLR = FLεR ◦ ηLFR ◦ FεLR = εRFL ◦ FηRL ◦ FLεR

which finishes the proof. For convenience of the reader we depict this chain:

= =

Proposition 3.1.7. Let F : A→ B be an exceptionally Frobenius functor. Then
the canonical map

ϕ : R
RηL
−−→ RFL

η−1
R

L
−−−→ L

is an isomorphism.

Proof. Since F is fully faithful, ηR is an isomorphism and so it is sufficient to
show that RηL : R → RFL is an isomorphism. If we suppose the isomorphism
between R and L is given by α : R

∼
−→ L, then we can form the commutative

diagram:

R RFL

L LFL,

RηL

α ≀ αFL≀

LηL

∼

which commutes because the arrows act on separate variables. In particular,
we have RηL = (αFL)−1 ◦LηL◦α, which is an isomorphism by Lemma 3.1.4.

Example 3.1.8. Let A ∈ A be an exceptional object, i.e. Hom∗(A,A) ≃ k. As-
sume that A admits an anti-Serre dual S−1A and A is proper, i.e. Hom∗(A,A′)
and Hom∗(A′, A) are finite-dimensional (graded) vector spaces for all A′ ∈ A.
Then the functor

F = FA : Db(k-mod)→ A, V • 7→ V • ⊗A
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is exceptional. Its adjoints are R = RA = Hom∗(A, ) and L = LA =
Hom∗(S−1A, ) = Hom∗( , A)∨.

Example 3.1.9. The inclusion of an admissible subcategory is, by definition,
a fully faithful functor with both adjoints, hence exceptional. Moreover, any
exceptional functor F : A → B factors into an equivalence A → im F and an
inclusion of an admissible subcategory imF →֒ B.
As a special instance of this type, consider a cubic fourfold Y ⊂ P

5. Then
AY = 〈O,O(1),O(2)〉⊥ ⊂ Db(Y ) is called the Kuznetsov component, [Kuz10].
The category AY is 2-Calabi–Yau in the sense that it has a Serre functor given
by SAY

= [2] and, because of this, AY is often referred to as a noncommutative
K3 surface.

In Section 3.4 and Section 3.5 we will discuss in detail exceptional functors
coming from projective bundles and smooth blowups.

Proposition 3.1.10 (e.g. [Kuz15, Lem. 2.3]). Let F : A→ B be an exceptional
functor. Then there are semiorthogonal decompostions:

B = 〈ker R, imF〉 = 〈im F, ker L〉

where the decompositions are given by twist and dual twist, respectively:

FR→ id→ T, T′ → id→ FL.

In particular, T projects onto ker R and induces an equivalence ker L → ker R,
whereas T′ projects onto ker L and gives an equivalence ker R→ ker L.

Remark 3.1.11. We point out that the twist T coincides with the left muta-
tion functor Lim F through imF. Similarly, the dual twist functor is the right
mutation functor Rim F through imF. See [Kuz07, §2.2] or [Bon89] for more
details on this.
We note that even though im F is admissible, ker L and ker R are in general only
right and left admissible, respectively.

3.2 Frobenius codomains

Lemma 3.2.1. If F : A→ B is an exceptional functor then the cocone P of the
canonical map ϕ : R → L is isomorphic to RT′ and LT[−1]. In particular, we
have triangles:

P ≃ RT′ → R
ϕ
−→ L and R

ψ
−→ L→ LT ≃ P[1]. (1)

Proof. Taking cones in Lemma 3.1.6 gives a commutative diagram of triangles:

LFR L LT

R RFL RT′[1],

LεR

εLR ≀ ηRL ≀ ≀

RηL

from which the statements follow.
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Definition 3.2.2. Let F : A → B be an exceptional functor. Then we call
Frb(F) := ker RT′ the Frobenius codomain of F and F|Frb(F) the Frobenius core-
striction of F.

Theorem 3.2.3. Let F : A→ B be an exceptional functor. Then im F ⊂ Frb(F)
and the corestriction F|Frb(F) : A → Frb(F) is exceptionally Frobenius. Further-
more, if C is a full subcategory of B such that im F ⊂ C and F|C : A → C is
exceptionally Frobenius, then C ⊂ Frb(F). That is, Frb(F) is the maximal full
subcategory on which F becomes exceptionally Frobenius.

Proof. Since F is fully faithful, the cotwist C and its dual C′ are both zero.
Therefore, by Lemma 2.4.4, we see that PF := RT′F ≃ RFC′[−2] = 0. In
particular, we have im F ⊂ ker P =: Frb(F) and the corestriction F1 := F|Frb(F)

makes sense.
Next we show that F1 is Frobenius, that is, its adjoints are naturally isomorphic.
If F2 : ker P → B denotes the inclusion then we have a natural isomorphism of
functors F ≃ F2F1 and the adjoints of F1 are given by R1 ≃ RF2 and L1 ≃ LF2.
We claim that we have a commutative diagram of triangles:

RT′F2 RF2 RFLF2

R1T
′
1 R1 R1F1L1.

≀

RηF2

≀ ≀

R1η1

For commutativity of the right square, we apply R to the compatibility condi-
tion:

Hom(LF2, LF2) Hom(F2,FLF2) idLF2 ηF2

Hom(L1, L1) idL1

Hom(id,F1L1) Hom(F2,F2F1L1) η1 F2η1.

∼

≀

≀

≀

∼

Therefore, we get an induced isomorphism R1T
′
1 ≃ RT′F2 = 0 as F2 : ker RT

′ →
B. In particular, this yields an isomorphism R1η1 : R1

∼
−→ R1F1L1 and hence

a composite isomorphism R1 ≃ R1F1L1 ≃ L1, since F1 is fully faithful, i.e.
idA

∼
−→ R1F1. So F1 is exceptionally Frobenius.

For maximality, we let F̃1 := F|C : A → C be a corestriction of F where C

contains imF. If F̃2 : C→ B denotes the fully faithful embedding then a similar
argument as above shows that we have

Hom(RF̃2,RFLF̃2)
∼
−→ Hom(R̃1, R̃1F̃1L̃1), RηF̃2 7→ R̃1η̃1

Moreover, if F̃1 is exceptionally Frobenius then R̃1η̃1 is an isomorphism by
Proposition 3.1.7, and hence im F̃2 is contained in ker P = ker RT′.
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Remark 3.2.4. An exceptional functor F : A → B is Frobenius if and only if
Frb(F) = B.

Actually, the structure of the Frobenius codomain is quite simple.

Theorem 3.2.5. Let F : A→ B be an exceptional functor. Then the Frobenius
codomain decomposes into

Frb(F) = im F⊕ (ker R ∩ ker L).

Proof. Since ker R = im F⊥ and ker L = ⊥imF, we see that ker R∩ker L and im F

are mutually orthogonal. Hence imF⊕ (ker R ∩ ker L) is a subcategory of B.

Now we check the inclusion “⊇”. We have checked already in the proof of
Theorem 3.2.3 that imF ⊂ Frb(F). Similarly, if B ∈ ker R ∩ ker L then the
natural triangle P→ R→ L shows that B ∈ ker P, giving ker R∩ker L ⊂ Frb(F).

We turn to the converse inclusion “⊆”. If B ∈ Frb(F) = ker P ⊂ B, then we
can use the semiorthogonal decomposition B = 〈im F, ker L〉 to break the object
B ∈ B up via the triangle associated to the dual twist: T′B → B → FLB.
Notice that FLB ∈ imF ⊂ ker P and B ∈ ker P together imply that T′B ∈
ker P. Moreover, by Proposition 3.1.10 we have T′B ∈ ker L and so we see
that T′B ∈ ker P ∩ ker L. Finally, the triangle P → R → L gives an equality
ker P ∩ ker L = ker R ∩ ker L and hence we see that T′B ∈ ker R ∩ ker L, which
completes the proof.

Remark 3.2.6. The easiest example where the Frobenius codomain is strictly
bigger than the image of F is the inclusion of a direct summand F : A →֒ A⊕B.
Here both adjoints are the same with kernel B. In particular, Frb(F) = A⊕B.

This behaviour is not pathological but rather the rule; see Section 3.4 and
Section 3.5 for more details.

3.3 Frobenius neighbourhoods

We can introduce a local analogue of the Frobenius codomain for objects.

Definition 3.3.1. Let F : A → B be an exceptional functor and A ∈ A. The
Frobenius neighbourhood of FA ∈ B is

Frb(F, A) := {B ∈ B | Hom∗(A,RT′B) = 0}.

The Frobenius codomain is connected to the Frobenius neighbourhoods in the
following way.

Proposition 3.3.2. Let F : A→ B be an exceptional functor. Then

Frb(F) =
⋂

A∈A

Frb(F, A).
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Proof. We compute that

Frb(F) := ker RT′ = {B ∈ B | RT′B = 0}

= {B ∈ B | Hom∗(A,RT′B) = 0, ∀A ∈ A} (by Yoneda)

=
⋂

A∈A

{B ∈ B | Hom∗(A,RT′B) = 0} =
⋂

A∈A

Frb(F, A).

Proposition 3.3.3. Let F : A→ B be an exceptional functor and A ∈ A. Then
Frb(F, A) is the maximal full subcategory of B such that ϕ : R→ L induces

Hom∗(A,R|Frb(F,A)( ))
∼
−→Hom∗(A, L|Frb(F,A)( )).

Proof. First we check that FA lies inside Frb(F, A). Indeed, Hom∗(A,RT′FA)
vanishes as im F ⊂ ker RT′ by Theorem 3.2.3.
Applying Hom∗(A, ) to the triangle RT′ → R → L from Lemma 3.2.1 yields
the triangle

Hom∗(A,RT′( ))→ Hom∗(A,R( ))
ϕ∗

−−→ Hom∗(A, L( )). (2)

Plugging B ∈ Frb(F, A) into this triangle shows that

Hom∗(A,R|Frb(F,A)( ))
∼
−→Hom∗(A, L|Frb(F,A)( )).

Let C be a full triangulated subcategory containing im F. We show that if

Hom∗(A,R|C( ))
∼
−→Hom∗(A, L|C( ))

then C ⊂ Frb(F, A), which means that Frb(F, A) is maximal. Let C ∈ C

and plug it into (2). By assumption Hom∗(A,R(C))
∼
−→Hom∗(A, L(C)), so

Hom∗(A,RT′(C)) = 0. Consequently C ∈ Frb(F, A).

Remark 3.3.4. Note that this proposition fits nicely with Theorem 3.2.3: For
B ∈

⋂
A∈A

Frb(F, A) we get an isomorphism Hom∗(A,RB)
∼
−→Hom∗(A, LB)

functorial in A, which yields, by Yoneda, RB
∼
−→LB for B ∈

⋂
A∈A

Frb(F, A) =
Frb(F).

The following statement is our workhorse when computing the Frobenius
codomains and neighbourhoods in examples.

Theorem 3.3.5. Let F : A→ B be an exceptional functor. Then for A ∈ A,

Frb(F, A) = 〈im F, ker L ∩ ker Hom∗(A,R( ))〉 = 〈im F, ker L ∩ (FA)⊥〉.

is a semiorthogonal decomposition.

Proof. Plugging B ∈ B into the triangle (2) yields:

Hom∗(A,RT′B)→ Hom∗(A,RB)→ Hom∗(A, LB).
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So for B ∈ ⊥im F = ker L, we get Hom∗(A,RT′B) ∼= Hom∗(A,RB). Therefore,
by the definition of Frb(F, A) we get

⊥im F ∩ Frb(F, A) = ker L ∩ ker Hom∗(A,RT′( )) = ker L ∩ kerHom∗(A,R( )).

Now let B ∈ Frb(F, A). As an object in B = 〈im F,⊥im F〉, there is a the
decomposition triangle T′B → B → FLB. Since FLB ∈ im F ⊂ Frb(F, A) by
Proposition 3.3.3, T′B ∈ Frb(F, A) holds as well. So by the paragraph above
T′B ∈ ker L ∩ ker Hom∗(A,R( )), which concludes the proof.

3.3.1 In presence of Serre functors

Even if both A and B admit Serre functors, the Frobenius neighbourhood
Frb(F, A) of an object will not have a Serre functor in general. Therefore we
need the local notion of a Serre dual of an object, see Definition 2.2.1.

Theorem 3.3.6. Let F : A → B be an exceptional functor. If A and B admit
Serre functors, then there is the natural triangle:

FSA → SBF→ TSBF.

In particular, we have Frb(F) = ⊥imTSBF and Frb(F, A) = ⊥TSBFA for A ∈ A.

Proof. This is a consequence of Lemma 3.2.1. Recall that S−1
B

TSB ⊣ T′ ⊣ T.
In particular, we can manipulate the first triangle there as follows:

RT′ → R→ L ⇐⇒ RT′ → R→ S−1
A

RSB (as L ≃ S−1
A

RSB)

⇐⇒ S−1
B

TSBF← F← S−1
B

FSA (taking left adjoints)

⇐⇒ TSBF← SBF← FSA (applying SB).

From these manipulations we get that ker RT′ = im (S−1
B

TSBF)
⊥ = ⊥imTSBF,

using Serre duality. The same reasoning for objects completes the proof:

Hom∗(A,RT′( )) = Hom∗(S−1
B

TSBFA, ) = Hom∗( ,TSBFA)
∨.

Remark 3.3.7. From the last triangle in the proof of Theorem 3.3.6 we get

Hom∗(A,RT′B) = Hom∗(B,TSBFA)
∨

which vanishes as soon as B ∈ Frb(F, A). So we get from FSAA → SBFA →
TSBFA that for B ∈ Frb(F, A) holds functorially:

Hom∗
Frb(F,A)(B,FSAA) = Hom∗

B(B,FSAA)

∼= Hom∗
B(B, SBFA)

∼= Hom∗
B(FA,B)∨

= Hom∗
Frb(F,A)(FA,B)∨.

This means that FSAA is a Serre dual of FA in Frb(F, A).
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Corollary 3.3.8. Let F : A → B be an exceptional functor and A ∈ A. As-
sume that A and B admit Serre functors. Then Frb(F, A) is the maximal full
subcategory of B such that FSAA is a Serre dual of FA.

In particular, if A is a d-Calabi-Yau object in A, then Frb(F, A) is the maximal
full subcategory of B where FA is d-Calabi-Yau. Therefore, we call in such a
case Frb(F, A) the Calabi-Yau neighbourhood of FA in B.

Proof. This follows by combining Proposition 3.3.3 and Remark 3.3.7.

Remark 3.3.9. In the situation of a Calabi-Yau object A in Corollary 3.3.8, the
Calabi-Yau neighbourhood Frb(F, A) only depends on A being a d-Calabi-Yau
object somewhere. More precisely, if F̃ : Ã→ B is another exceptional functor
and Ã ∈ Ã a d-Calabi-Yau object such that F̃ Ã ∼= FA, then Frb(F̃ , Ã) =
Frb(F, A).

To see this note that for B := FSAA ∼= FA[d] ∼= F̃ Ã[d] ∼= F̃SÃÃ, both Frb(F, A)
and Frb(F̃ , Ã) are maximal with the property that B is a Serre dual of FA.

3.3.2 Dual Frobenius neighbourhoods

For completeness, we mention that we could have started this subsection also
using LT instead of RT′. In this case, the key steps are

(i) The definition of a dual Frobenius neighbourhood of A under F is then

Frb∨(F, A) = {B ∈ B | Hom∗(LTB,A) = 0}.

(ii) Proposition 3.3.3 can be extended by

Hom∗(R|Frb∨(F,A)( ), A)∨
∼
−→Hom∗(L|Frb∨(F,A)( ), A)∨.

(iii) In the presence of Serre functors, we get that FS−1
A
A is an anti-Serre dual

of FA inside Frb∨(F, A), i.e. corepresents Hom∗( , A)∨. Moreover, one can
check that Frb∨(F, A) = Frb(F, S−1

A
A). In particular, if A is a Calabi-Yau

object, then Frb(F, A) = Frb∨(F, A).

(iv) Finally, Theorem 3.3.5 can be extended by

Frb∨(F, A) = 〈ker R ∩ ker Hom∗(L( ), A), im F〉 = 〈ker R ∩ ⊥FA, im F〉.

In particular, in presence of Serre functors, we arrive at

Frb(F, A) = Frb∨(F, SAA) = 〈ker R ∩
⊥FSAA, im F〉.

We leave the proofs as an exercise to the reader.
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3.3.3 Frobenius poset

Inspired by the notion of a spherical poset of [HKP19, §2], we arrive at the
following definition.

Definition 3.3.10. Let F : A→ B be an exceptional functor. Then

P(F) := {Frb(F, A) | A ∈ A}

is partially ordered by inclusion, which we call the Frobenius poset of F.

We collect here some general statements on the structure of such a poset.

Lemma 3.3.11. Let F : A → B be an exceptional functor. Then Frb(F, 0) = B

is the maximal element of the Frobenius poset P(F).

Proof. Note that Frb(F, 0) = {B ∈ B | Hom∗(0,RT′B) = 0} = B.

Remark 3.3.12. In many examples, Frb(F) is the minimal element of the Frobe-
nius poset, see Section 3.4 and Section 3.5.
In general, if A ∈ A is a weak generator, then Frb(F) = Frb(F, A). In particular,
Frb(F) is the minimal element of the poset. To see this note thatB ∈ Frb(F, A) if
Hom∗(A,PB) = 0, which in turn implies that PB = 0 as A is a weak generator,
hence B ∈ ker P = Frb(F). Actually, in this argument it is only important
that A is a weak generator for imP.

Lemma 3.3.13. Let F : A → B be an exceptional functor. Then for A,A′ ∈ A

holds Frb(F, A⊕A′) = Frb(F, A) ∩ Frb(F, A′).

Proof. The statement holds by definition of the Frobenius neighbourhood, since
Hom∗(A⊕A′,RT′B) ∼= Hom∗(A,RT′B)⊕ Hom∗(A′,RT′B).

In Definition 3.5.3 we introduce the related notion of a Frobenius lattice, which
is inspired by the lattice of thick subcategories of a given triangulated category.

3.4 Example: projective bundles

Let X be some projective variety and E a vector bundle on X of rank n + 1.
Consider the projective bundle q : P(E)→ X and denote by Oq(k) the relative
twisting line bundles. By [Orl92, Lem. 2.5 & Thm. 2.6] the functor

Φk := q∗( )⊗ Oq(k) : D
b(X)→ Db(P(E))

is fully faithful for any k ∈ Z and there is a semiorthogonal decomposition:

Db(P(E)) = 〈Φ0(D
b(X)),Φ1(D

b(X)), . . . ,Φn(D
b(X)〉.

In particular, we have that q∗ = Φ0 : D
b(X) → Db(P(E)) is an exceptional

functor.
The following is just the specialisation of Theorem 3.2.5 and Theorem 3.3.5 to
the case of a projective bundle.
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Proposition 3.4.1. Let q : P(E) → X be a P
n-bundle. Then the Frobenius

codomain of q∗ is

Frb(q∗) = q∗Db(X)⊕ ker q∗ ∩ ker q!

whereas the Frobenius neighbourhood for A ∈ Db(X) is

Frb(q∗, A) = 〈q∗Db(X), ker q! ∩ (q∗A)⊥〉.

For projective bundles of low rank we can say more.

Proposition 3.4.2. Let q : P(E) → X be a P
1-bundle. Then we find that

Frb(q∗) = q∗Db(X) and

Frb(q∗, A) = q∗Db(X)

for A a weak generator of Db(X).

Proof. The first part follows from the second one using Proposition 3.3.2:

Frb(q∗) =
⋂

A∈Db(X)

Frb(q∗, A).

Note that there is even a strong generator of Db(X) by Example 2.1.6.
For the second part, let A be a weak generator of Db(X), i.e. Hom∗(A,B) = 0
implies that B = 0. The Frobenius neighbourhood of A is

Frb(q∗, A) = 〈q∗Db(X), (q∗Db(X)⊗ Oq(1)) ∩ (q∗A)⊥〉.

For B ∈ Db(X), we find that

Hom∗(q∗A, q∗B ⊗ Oq(1)) = Hom∗(A,B ⊗ q∗Oq(1)) = Hom∗(A,B ⊗ E
∨).

In particular, if q∗B ⊗Oq(1) ∈ q
∗A⊥, then B ⊗ E∨ = 0 using that A is a weak

generator. Since E∨ is a vector bundle (and therefore faithfully flat), B⊗E∨ = 0
implies B = 0.

We consider the easiest class of P1-bundles: Hirzebruch surfaces. In the follow-
ing we denote by Db

U (X), where U ⊂ X , the subcategory of objects in Db(X)
supported on U .

Proposition 3.4.3. Let q : P(O⊕ O(r))→ P
1. Then we find that

Frb(q∗,OnP ) = 〈q
∗Db(P1), q∗Db

P1\{P}(P
1)⊗ Oq(1)〉,

Frb(q∗,O(j)) =

{
q∗Db(P1) if r 6= 0;

〈q∗Db(P1), q∗O(j − 1)⊗ Oq(1)〉 if r = 0.

In particular, Frb(q∗,OnP ) is neither left nor right admissible.
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As (up to shift) the objects OnP and O(j) are all indecomposable objects of
Db(P1), see also Proposition 3.5.4, we obtain a description of all Frobenius
neighbourhoods using Lemma 3.3.13.

Proof. For the first part, note that for A ∈ Db(P1)

Frb(q∗, A) = 〈q∗Db(P1), (q∗Db(P1)⊗ Oq(1)) ∩ q
∗A⊥〉

For the intersection, we compute for B ∈ Db(P1) similarly as in the proof above
that

Hom∗(q∗A, q∗B ⊗ Oq(1)) = Hom∗(A⊕A⊗ O(r), B).

In particular for A = OnP we find that

Hom∗(q∗OnP , q
∗B ⊗ Oq(1)) = Hom∗(OnP , B)⊕2 = 0

if and only if B ∈ Db
P1\{P}(P

1) for support reasons. For A = O(j) note that

A ⊕A ⊗ O(r) is a weak generator of Db(P1) if r 6= 0. Finally, in the case that
r = 0, the right orthogonal of A inside Db(P1) is generated by O(j − 1).
To see the statement about the non-admissibility of Frb(q∗,OnP ), note that
its (left or right) admissibility would be equivalent to the admissibility of
Db

P1\{P}(P
1) inside Db(P1). But the admissible subcategories of Db(P1) are

only 0, 〈O(k)〉 and Db(P1). This can be seen by extracting the admissible
subcategories among all thick subcategories; see for example Proposition 3.5.4
below.

Remark 3.4.4. Let q : P(E) → C be a projective bundle of rank r over a
smooth projective curve C. Then we have the semiorthogonal decomposition

Db(P(E)) = 〈q∗Db(C), q∗Db(X)⊗ Oq(1), . . . , q
∗Db(C)⊗ Oq(r)〉

Under the projection Db(P(E)) → q∗Db(X) ⊗ Oq(1) ≃ Db(C) we obtain an

induced map of posets P̂(q∗) → Pthick(C). Using similar arguments as in the
proof of Proposition 3.4.3, we see that the image of this map contains at least
all thick subcategories 〈OP | P ∈ V 〉 with V an arbitrary subset of closed points
in C.

We conclude this section with a qualitative statement about P2-bundles.

Proposition 3.4.5. Let q : P(E) → X be a P
2-bundle. Then the Frobenius

codomain of q∗ is neither left nor right admissible in Db(P(E)).

Proof. Recall that by [BvdB03] a left or right admissible subcategory in Db(X)
(with X smooth and projective) is automatically saturated, hence admissible.
Therefore, it is sufficent to show that Frb(q∗) is not admissible.
Assume the contrary, so there is a semiorthogonal decomposition Db(P(E)) =
〈Frb(q∗),⊥Frb(q∗)〉 We can apply [Kuz11, Thm. 5.6], as Frb(q∗) is linear over
the base X . Indeed, by the projection formula q∗(B⊗ q

∗A) ≃ q∗B⊗A and the
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same for q!, so B ∈ ker q∗ ∩ ker q! implies B ⊗ q∗A ∈ ker q∗ ∩ ker q!. Hence we
get a semiorthogonal decomposition of a fibre, which turns out to be

Db(P2) = 〈Frb(p∗),⊥Frb(p∗)〉

where p : P2 → Spec(k). Note that Frb(p∗) = 〈O〉 ⊕⊥O∩O⊥. In particular, we
conclude that ⊥O ∩ O⊥ is admissible in Db(P2). But this contradicts [Bon13,
§1.2].

Proposition 3.4.6. Let q : P(E) → X be a P
n-bundle with n ≥ 2. Then

ker q! ∩ ker q∗ is non-zero.

Proof. We start with the relative Euler sequence:

0→ Ωq → q∗E∨ ⊗ Oq(−1)→ Oq → 0

taking its symmetric square and twisting by Oq(3) gives

0→ Sym2Ωq(3)→ q∗(Sym2
E
∨)⊗ Oq(1)→ q∗E∨ ⊗ Oq(2)→ 0

From this it is obvious that Sym2Ωq(3) lies in

ker q! = 〈q
∗Db(X)⊗ Oq(1), . . . , q

∗Db(X)⊗ Oq(n)〉.

We claim that Sym2Ωq(3) lies also in ker q∗. We apply q∗ to the short exact
sequence and get the triangle

q∗Sym
2Ωq(3)→ Sym2

E
∨ ⊗ q∗Oq(1)

ϕ
−→ E

∨ ⊗ q∗Oq(2)

using the projection formula. We claim that the map ϕ is an isomorphism, and
therefore q∗Sym

2Ωq(3) = 0. First note that Riq∗Oq(j) = 0 for i, j > 0, so ϕ is a
morphism of vector bundles. Restricting to an arbitrary fibre x ∈ X , ϕ⊗ k(x)
becomes an isomorphism

Sym2HomPn(O(1),O(2))⊗H0(Pn,O(1))→ HomPn(O(1),O(2))⊗H0(Pn,O(2)).

Hence ϕ is an isomorphism of vector bundles (its kernel is a vector bundle
of rank dim ker (ϕ ⊗ k(x)) = 0; if its cokernel would be non-zero, we have
coker(ϕ⊗ k(x)) 6= 0 for x ∈ Supp(coker(ϕ)), a contradiction to ϕ⊗ k(x) being
an isomorphism for all x). Therefore Sym2Ωq(3) ∈ ker q! ∩ ker q∗.

Remark 3.4.7. We conjecture that for q : Pn → pt, the category ker q! ∩ ker q∗
is non-admissible in Db(Pn) for all n ≥ 2. Unfortunately, the result of [Bon13,
§1.2] about non-admissibility of ⊥OP2 ∩ O⊥

P2 is based on tilting and the fact
that End(OP2(1) ⊕ OP2(2)) is a hereditary algebra, which does not hold for
End(OPn(1)⊕ · · · ⊕ OPn(n)) as soon as n > 2.
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3.5 Example: blowups

Let π : X̃ → X be the blowup of a smooth projective variety X in a smooth
closed subvariety Z of codimension c ≥ 2, where the exceptional divisor E =
P(Nj) is the projectivisation of the rank c normal bundle Nj := NZ/X on Z:

E X̃

Z X.

i

q π

j

Recall that the canonical bundle of X̃ is given by:

ωX̃ = π∗ωX ⊗ OX̃((c− 1)E),

and the restriction of the line bundle OX̃(E) is negative on the fibres of q. That
is, we have:

OE(E) = i∗OX̃(E) = Oq(−1).

For all k ∈ Z, Orlov [Orl92, Ass. 4.2 & Thm. 4.3] shows that the functor:

Ψk := i∗(q
∗( )⊗ Oq(k)) : D

b(Z)→ Db(X̃)

is fully faithful and we have a semiorthogonal decomposition:

Db(X̃) = 〈π∗Db(X),Ψ0(D
b(Z)),Ψ1(D

b(Z)), . . . ,Ψc−2(D
b(Z))〉. (3)

As in Section 3.4, we will not discuss the Frobenius codomains and neighbour-
hoods in general. We focus on cases where the center Z has low codimension.

Proposition 3.5.1. Let π : X̃ → X be the blowup in a smooth center Z of
codimension 2. Then for A ∈ Db(X), the Frobenius neighbourhood under π∗ is

Frb(π∗, A) = 〈π∗Db(X), i∗q
∗Db(Z) ∩ (π∗A)⊥〉

In particular, we have two extremes:

Frb(π∗, A) =

{
Db(X̃) if and only if j∗A = 0;

π∗Db(X) if and only if j∗A is a weak generator of Db(Z).

Finally, the Frobenius codomain is Frb(π∗) = π∗Db(X).

Proof. The Frobenius neighbourhood for a general A under π∗ is of the stated
shape by combining (3) with Theorem 3.3.5.
For general A ∈ Db(X) and B ∈ Db(Z) we compute

Hom∗(π∗A, i∗q
∗B) = Hom∗(A, π∗i∗q

∗B) = Hom∗(A, j∗q∗q
∗B) =

= Hom∗(j∗A,B)
(4)
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using adjunctions, fully faithfulness of q∗ and π ◦ i = j ◦ q.

If j∗A is a weak generator of Db(Z), then the vanishing of (4) implies B = 0.
So for such an A, we get that i∗q

∗Db(Z) ∩ π∗A⊥ = 0 and hence Frb(π∗, A) =
q∗Db(X).
Whereas if j∗A = 0, then there is no restriction on B ∈ Db(Z) and we get
Frb(π∗, A) = Db(X̃) in this case.

Note that if we choose a strong generator A of Db(X) as in Example 2.1.6 using
a very ample line bundle, then j∗A will be a strong generator of Db(Z). So by
Proposition 3.3.2, we obtain the statement about Frb(π∗).

Example 3.5.2. Let π : X̃ → X be the blowup in a point P . Then the above
proposition exhausts all possible cases and we find:

Frb(π∗, A) =

{
Db(X̃) if P 6∈ Supp(A);

π∗Db(X) if P ∈ Supp(A).

Besides blowing up a point, in the following, we obtain a full description of the
Frobenius poset also when blowing up a P

1 on a threefold.
Here, a lattice derived from the Frobenius poset will be useful. Recall that a
lattice is a poset such that any two of its elements have a unique supremum and
infimum. The infimum exists already in the Frobenius poset: by Lemma 3.3.13
it is the intersection Frb(F, A)∩Frb(F, A′) = Frb(F, A⊕A′). A supremum does
not exist in general.

Definition 3.5.3. Let F : A → B be an exceptional functor. Then the Frobe-
nius lattice P̂(F) is the minimal lattice containing P(F) and closed under

• union Frb(F, A) ∪ Frb(F, A′) := thick(Frb(F, A),Frb(F, A′));

• and arbitrary intersections.

This definition is inspired by the lattice of thick subcategories of a triangulated
category. We always have a natural inclusion P(F) ⊆ P̂(F).

We also need the description of the lattice of thick subcategories of Db(P1),
which will be denote by Pthick(P

1).

Proposition 3.5.4. The indecomposable objects in Db(P1) are, up to shift,
structure sheaves of (fat) closed points OnP and the line bundles O(k) = OP1(k).
Moreover, the thick subcategories of Db(P1) are 0, 〈OP1(k)〉, Db(P1) and 〈OP |
P ∈ V 〉 with V any subset of closed points in P

1.

Proof. See for example [KS19, §4.1] for details, where k is not necessarily al-
gebraically closed.

Proposition 3.5.5. Let π : X̃ → X be the blowup of a threefold in a smooth
rational curve C. For A ∈ Db(X), its Frobenius neighbourhood Frb(π∗, A) is
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one of the following

Db(X̃) = 〈π∗Db(X), i∗q
∗Db(C)〉 if j∗A = 0;

〈π∗Db(X), i∗q
∗〈OP | ∀i P 6= Pi〉〉 if j∗A ∼=

⊕
i OniPi

[li];
〈π∗Db(X), i∗q

∗OC(k − 1)〉 if j∗A ∼=
⊕

i O(k)[li];
〈π∗Db(X)〉 if j∗A is a weak generator of Db(P1).

Moreover, the Frobenius lattice P̂(π∗) is isomorphic to Pthick(P
1).

Proof. By Proposition 3.5.4, j∗A ∈ Db(C) ∼= Db(P1) is a direct sum of shifts of
(fat) closed points OnP and line bundles OC(k). Note that by [Orl09, Thm. 4],
OC(k) ⊕ OC(k

′) with k 6= k′ is a weak generator of Db(C), and therefore also
OC(k)⊕OnP . Hence Proposition 3.5.1 implies that j∗A fits into one of the cases
listed in the statement. Now using that Frb(π∗, A) = 〈π∗Db(X), i∗q

∗Db(C) ∩
(π∗A)⊥〉 and (4) yield the claimed shapes of the Frobenius neighbourhoods. To
see this, note that thick(OnP ) = 〈OP 〉 whose orthogonal is 〈OQ | Q 6= P 〉; and
that thick(j∗A) = 〈OC(k)〉 for j

∗A a direct sum of shifts of a single line bundle
OC(k).
By Proposition 3.5.1 the minimal and maximal Frobenius neighbourhoods are
attained. To obtain the second one in the list, take A =

⊕
OPi

for a finite
collection of closed points in C ⊂ X . Then j∗A is a direct sum of shifts of
those skyscraper sheaves.
For the remaining case, let j∗A be a direct sum of shifts of a single line bundle
OC(k). As j∗ commutes with ⊗ and Hom (and therefore j∗(A∨) = (j∗A)∨),
there is a minimal non-negative integer k0 such that we obtain all OC(mk0)
with m ∈ Z by j∗. In fact, k0 is positive, take for example j∗A for A an ample
line bundle on X .
Using the projection Db(X̃) = 〈π∗Db(X), i∗q

∗Db(C)〉 → i∗q
∗Db(C) ∼= Db(P1),

P(π∗) becomes in a natural way a subposet of Pthick(P
1). Its image consists of

the thick subcategories 0, 〈OP1(mk0)〉, 〈OP | P ∈ V 〉 and Db(P1), where m ∈ Z

and V is any subset of closed points of P1 with finite, non-empty complement.
By passing from P(π∗) to P̂(π∗), V can be an arbitrary subset. Note that we do
not only use arbitrary intersections here, but also unions: otherwise the thick
subcategory 〈OP | P closed point of P1〉 would not be an element of P̂(π∗).

If k0 = 1, then the lattices P̂(π∗) and Pthick(P
1) are isomorphic under this

projection, but even for k0 > 1, they are isomorphic as abstract lattices.

Remark 3.5.6. In the proof of Proposition 3.5.5, it seems that we cannot
expect that we can obtain all OC(k) using pullbacks j∗A with A ∈ Db(X).
So even though P(π∗) encodes the lattice Pthick(C), it might be that it also
remembers something about the embedding C →֒ X .
Let π : X̃ → X be the blowup of a smooth projective variety of
dim(X) ≥ 3 in C ∼= P

1. Then using the projection Db(X̃) =
〈π∗Db(X), i∗q

∗Db(C), . . . , i∗q
∗Db(C) ⊗ Oq(dim(X) − 3)〉 → i∗q

∗Db(C) ∼=
Db(P1), we obtain by the same arguments as in the proof of Proposition 3.5.5

a surjection P̂(π∗)→ Pthick(P
1).
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Remark 3.5.7. In Proposition 3.4.3, for the P
1-bundle q : P(O ⊕ O(r)) → P

1,

we also obtain a natural map of lattices P̂(q∗) → Pthick(P
1). This map is

injective and only for r = 0 an isomorphism.

Example 3.5.8. We consider the standard flip of C1
∼= P

1 inside a threefold
X1, see [Huy06, §11.3]:

E

X̃

C1 X1 X2 C2

i

q1 q2

π1 π2

j1 j2

As X̃ is the blowup of C1 →֒ X1 and also of the flipped C2 →֒ X2, we have

Db(X̃) = 〈π∗
1D

b(X1), i∗q
∗
1D

b(C1)〉 = 〈π
∗
1D

b(X1),OE(k, 0),OE(k + 1, 0)〉

= 〈π∗
2D

b(X2), i∗q
∗
2D

b(C2)〉 = 〈π
∗
2D

b(X2),OE(0, l),OE(0, l+ 1)〉

where k, l ∈ Z arbitrary. Here we use the semiorthogonal decomposition coming
from the blowup X̃ → X and the standard exceptional sequence for Db(P1).
Moreover, we can compare both P(π∗

1) and P(π∗
2), as they consist of thick

subcategories of Db(X̃). Using the list of Proposition 3.5.5, one can check that
the only common element, besides Db(X̃), is

O
⊥
E = 〈π∗

1D
b(X1),OE(−1, 0)〉 = Frb(π∗

1 ,OX1)

= 〈π∗
2D

b(X2),OE(0,−1)〉 = Frb(π∗
2 ,OX2).

Summing up, we get that

P(π∗
1) ∩ P(π∗

2) = {O
⊥
E ⊂ Db(X̃)}.

Note that O⊥
E ∈ P(π∗

1)∩P(π
∗
2) is the minimal (geometric) subcategory of Db(X̃)

containing both π∗
1D

b(X1) and π
∗
2D

b(X2). To see this, consider the thick sub-
category C of Db(X̃) generated by both. Projecting C onto i∗q

∗
l D

b(Cl) ≃ Db(P1)
for l = 1, 2, shows that C can be written as a Frobenius neighbourhood, in par-
ticular, C ∈ P(π∗

1) ∩ P(π∗
2). So O⊥

E is a minimal noncommutative resolution of
X1 and X2.

We conclude this section with a rough statement about the Frobenius codomain
in case that the codimension of the center is bigger than 2.

Proposition 3.5.9. Let π : X̃ → X be the blowup in a smooth center Z of
codimension c > 2. Then the Frobenius codomain of π∗ is Frb(π∗) = π∗Db(X)⊕
ker π∗ ∩ ker π!. Moreover, ker π∗ ∩ kerπ! is non-zero.
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Proof. The shape Frb(π∗) = π∗Db(X) ⊕ kerπ∗ ∩ ker π! follows directly from
Theorem 3.2.5. We claim that for k = 1, . . . , c−2 the objects i∗Ω

k
q (k) lie inside

ker π∗ ∩ ker π!.

First we have a closer look at Ωkq (k). Taking wedge powers of the relative Euler
sequence:

0→ Ωq → q∗N∨ ⊗ Oq(−1)→ Oq → 0,

and twisting by Oq(m), produces the short exact sequence:

0→ Ωkq (m)→ q∗
∧k

N
∨ ⊗ Oq(m− k)→ Ωk−1

q (m)→ 0. (5)

Now, pushing this forward along q, and using projection formula on the middle
term, yields a triangle:

q∗(Ω
k
q (m))→

∧k
N

∨ ⊗ q∗(Oq(m− k))→ q∗(Ω
k−1
q (m)).

In particular, for all 0 ≤ m < k ≤ c− 1, which implies 1 − c ≤ m− k < 0, we
have q∗(Oq(m− k)) = 0 and so we see that

q∗(Ω
k
q (m)) = 0 for all 1 ≤ m ≤ k. (6)

Indeed, if k = c−1 then Ωc−1
q (m) = ωq(m) = Oq(m−c) and q∗(Oq(m−c)) = 0

in the given range. The other cases follow by induction.

Next we apply i∗ to (5) which yields the triangle

i∗Ω
k
q (m)→ i∗

(
q∗

∧k
N

∨ ⊗ Oq(m− k)

)
→ i∗Ω

k−1
q (m).

So by another induction, we conclude that

i∗Ω
k
q (k) ∈ kerπ! = 〈Ψ0(D

b(Z)),Ψ1(D
b(Z)), . . . ,Ψc−2(D

b(Z))〉.

for k = 1, . . . , c− 2, as Ψk = i∗(q
∗( )⊗ Oq(k)). Finally by (6) we find that

π∗i∗Ω
k
q (k) = j∗q∗Ω

k
q(k) = 0

so i∗Ω
k
q (k) ∈ kerπ∗, as well.

Remark 3.5.10. The objects i∗Ω
k
q (k) inside ker π∗ ∩ kerπ! are not exceptional

(one might be mislead by the fact that in case of a projective bundle the Ωkq(k)
form a full exceptional sequence).

Nevertheless, we conjecture that i∗Ω
k
q (k) with k = 1, . . . , c−2 generate ker π∗∩

ker π! and that ker π∗ ∩ ker π! is not admissible in Db(X̃).

Documenta Mathematica 25 (2020) 483–525



508 A. Hochenegger, C. Meachan

3.6 Example: linkage class

Let Y be a hypersurface of degree n in P := P
2n−1 with n ≥ 3, given by

the inclusion j : Y →֒ P. It is well-known that there is a semi-orthogonal
decomposition:

Db(Y ) = 〈AY ,OY ,OY (1), . . . ,OY (n− 1)〉 ,

see for example [Kuz04, §4] or [KMM10, Thm 2.13]. Moreover, AY is a con-
nected (2n− 4)-Calabi-Yau category, i.e. the Serre functor SAY

is just a shift
by 2n− 4. For more background in the case n = 3, see the article [Kuz10].

Proposition 3.6.1 ([Huy06, Cor. 11.4], [KM09, §3], [KMM10, Rem. 5.2]).
Let B ∈ Db(Y ) be an object. Then there is a morphism e = eB : B → B ⊗
OY (−Y )[2], called the linkage class of B ∈ Db(Y ), which fits functorially into
the triangle

j∗j∗B → B
eB−−−→ B ⊗ OY (−n)[2],

where the arrow j∗j∗B → B is the counit of adjunction.

Let now i : AY → Db(Y ) be the inclusion coming from the semi-orthogonal
decomposition. Note that for the exceptional functor i, the canonical triangle
of Theorem 3.3.6 is

iSAY
A→ SY iA→ TSY iA,

where T denotes the twist functor associated to i. Using that SAY
= [2n− 4]

and SY = ( )⊗OY (−n)[2n−2], the triangle becomes (after shift and rotation):

T(iA⊗ OY (−n))[1]→ iA
w
−→ iA⊗ OY (−n)[2]. (7)

Proposition 3.6.2. For A ∈ AY , the linkage class eiA and w coincide. In
particular, j∗j∗iA ∼= T(iA⊗OY (−n))[1] and so the Frobenius neighbourhood of
A in Db(Y ) is given by

Frb(i, A) = ⊥(j∗j∗A) .

Proof. By [KMM10, Prop. 5.8], eiA induces an isomorphism

Hom∗(iA′, iA)
∼
−→ Hom∗(iA′, iA⊗ OY (−n)[2])

which is functorial in A ∈ AY by [KM09, Prop. 3.1]. In particular for A′ = A,
we get that idiA is mapped to eiA. As w is defined by adjunction, it is the image
of idiA, as well.
The second part follows now directly from Theorem 3.3.6, noting that orthog-
onals are independent of shifts.

Remark 3.6.3. The linkage class is defined for all B ∈ Db(Y ). One can extend
the definition of w as in (7) to any B ∈ Db(Y ) by first projecting onto AY

using iℓ : Db(Y )→ AY .
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Question 3.6.4. The linkage class exists in much greater generality, namely
for any inclusion j : Y →֒M as a locally complete intersection, see [KM09, §3].
Can the analogous triangle of Proposition 3.6.1 always be realised using some
exceptional functor F : AY → Db(Y )?
By Proposition 3.6.2 and Theorem 3.2.5, AY has to be contained in ⊥im (j∗j∗).

4 Spherelike functors

4.1 Definition and examples

Definition 4.1.1. Let F : A → B be a functor with both adjoints. If the
cotwist C is an autoequivalence of A then we say that F is spherelike.
If additionally, R and CL[1] are isomorphic, then we say that F is spherical.

Both conditions on a functor F to be spherical imply that R and L only differ
by an autoequivalence. This property is also known as quasi-Frobenius. There
is always a natural way to compare R and CL[1], namely by the canonical map

ϕ := γRL ◦ RηL : R→ RFL→ CL[1]

The dual version to ϕ is the canonical map

ψ := εLR ◦ LβR : LT[−1]→ LFR→ R.

Proposition 4.1.2 ([Mea16, Prop. A.2]). If F : A → B is spherical, in par-
ticular there is some isomorphism R ≃ CL[1], then also the canonical map
ϕ : R→ CL[1] is an isomorphism.

Theorem 4.1.3 ([AL17, Thm. 1.1]). Let F : A → B be a functor with both
adjoints. If F satisfies two of the following four conditions then F satisfies all
four of them:

(i) the cotwist C is an autoequivalence of A,

(ii) the canonical map ϕ : R→ CL[1] is an isomorphism,

(iii) the twist T is an autoequivalence of B,

(iv) the canonical map ψ : LT[−1]→ R is an isomorphism.

In particular, such an F is spherical.

The theorem above shows that one can define spherical functors in at least(
4
2

)
different ways. However, we stick to the (classical) definition because in

most applications, the spherical functor F : A → B starts from a small source
category with simple cotwist C and produces an interesting autoequivalence T

of the target category.

Theorem 4.1.4 ([Seg18, Thm. 2.10]). Let T be an autoequivalence of B. Then
there is a category A and a spherical functor F : A→ B with twist T.
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Example 4.1.5. Let A ∈ A be an object. Then A is

• d-spherelike if Hom∗(A,A) ∼= k[t]/t2 with deg t = d;

• d-Calabi-Yau if A[d] is a Serre dual of A;

• d-spherical if A is d-spherelike and d-Calabi-Yau.

If A is spherelike, proper and admits an anti-Serre dual S−1A then the functor

F = FA : Db(k-mod)→ A, V • 7→ V • ⊗A

is spherelike with adjoints R = RA = Hom∗(A, ) and L = LA =
Hom∗(S−1A, ) = Hom∗( , A)∨. To see this, by the triangle C → id → RF

one can conclude that C = [−d− 1] is an autoequivalence. With this, one can
check that an isomorphism R ∼= CL[1] translates into a d-Calabi-Yau property
of A, in which case A is spherical.

4.2 Spherical codomains

Recall that if F : A→ B is a functor with both adjoints then we have canonical
maps ϕ : R→ CL[1] and ψ : LT[−1]→ R. Using ϕ, we can measure the difference
between R and CL[1] with the triangle:

Q→ R
ϕ
−→ CL[1]. (8)

and dually there is the triangle involving ψ:

LT[−1]
ψ
−→ R→ Q′.

Definition 4.2.1. If F is spherelike then we call Sph(F) := ker Q the spherical
codomain of F and F|Sph(F) the spherical corestriction of F.

Remark 4.2.2. In particular, a spherelike functor F is spherical if and only if
Q ≃ 0, which is equivalent to ker Q = B.

Theorem 4.2.3. Let F : A → B be a spherelike functor. Then imF ⊂ Sph(F)
and the corestriction F|Sph(F) : A→ Sph(F) is spherical. Furthermore, if C is a
full subcategory of B such that im F ⊂ C and the corestriction F|C : A → C is
spherical then C ⊂ Sph(F). That is, Sph(F) is the maximal full subcategory on
which F becomes spherical.

Note that in particular, as F|Sph(F) is spherical, its twist is an autoequivalence
of Sph(F).

Proof. First, we show that imF ⊂ Sph(F). Precompose (8) with F to get the
triangle:

QF→ RF
ϕF
−−→ CLF[1].
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Now, [Mea16, Lemma A.1] shows that the second map is an isomorphism which
is equivalent to QF ≃ 0. Therefore, im F ⊂ ker Q =: Sph(F) and F : A → B

naturally corestricts to a functor F1 := F|Sph(F) : A→ Sph(F).
Next we show that F1 is spherelike, that is, the cotwist C1 is an autoequivalence.
If F2 : kerQ→ B denotes the inclusion then we have a natural isomorphism of
functors F ≃ F2F1 and the right adjoint of F1 is given by R1 ≃ RF2. That is,
we have natural isomorphisms RF ≃ RF2F1 ≃ R1F1 and the composition RF ≃
R1F1 is compatible with both unit morphisms. Indeed, because F2 : kerQ→ B

is fully faithful, we have the following commutative diagram:

Hom(F,F) Hom(idA,RF) idF η

Hom(F2F1,F2F1) idF2F

Hom(F1,F1) Hom(idA,R1F1) idF1 η1

≀

≀

≀

Therefore, we have a commutative diagram of triangles:

C idA RF

C1 idA R1F1

η

≀

η1

Since the second and third vertical maps are isomorphisms, we can conclude
that the first vertical map is also an isomorphism. The cotwist of F is an
autoequivalence by assumption and so it follows that the cotwist of F1 is an
autoequivalence as well.
It remains to show that the canonical map ϕ1 : R1 → C1L1[1] is an isomorphism.
This also follows from the compatibility of units. Indeed, the same argument as
above shows that we have natural isomorphisms R1F1L1 ≃ RF2F1LF2 ≃ RFLF2

which are compatible with the units:

R1 R1F1L1 C1L1[1]

RF2 RFLF2 CLFF2[1].

R1ηL1

≀

γR1L1

≀ ≀

RηLF2 γRLF2

In particular, since F2 : kerQ → B is faithful, we see that ϕ1 : R1 → C1L[1]
coincides with ϕ : R → CL[1] on the subcategory ker Q, that is, ϕ1 = ϕF2.
Moreover, since ϕ is an isomorphism on ker Q it follows that ϕ1 is as well.
For maximality, we let F1 := F|C : A→ C be a corestriction of F. If F̃2 : C→ B

denotes the fully faithful embedding then a similar argument as above shows
that we have ϕ̃1 = ϕF̃2. Moreover, if F1 is spherical then ϕ̃1(B) = ϕ(F̃2(B)) is
an isomorphism for all B ∈ C which is equivalent to Q(F̃2(B)) = 0. Therefore,
we see that C ⊂ ker Q =: Sph(F).
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Remark 4.2.4. Instead of using the triangle Q → R → CL[1], we could have
started this section also with the triangle LT[−1] → R → Q′. By the same
line of arguments as in Theorem 4.2.3, we arrive at the statement that the
corestriction F|ker Q

′

is spherical, since ψ : LT[−1]→ R becomes an isomorphism
on ker Q′. Moreover, ker Q′ is maximal with this property. By Theorem 4.1.3,
we also have an isomorphism ϕ : R → CL[1] on kerQ′, so by the maximality
property of both kernels we arrive at ker Q′ = Sph(F) = ker Q.

4.3 Spherical neighbourhoods

In close analogy to Section 3.3, we can also look at spherical neighbourhoods
of objects under spherelike functors.

Definition 4.3.1. Let F : A → B be a spherelike functor and A ∈ A. The
spherical neighbourhood of A under F is

Sph(F, A) := {B ∈ B | Hom∗(A,QB) = 0}.

Remark 4.3.2. To avoid confusion, we stress that in general FA will not be a
spherical object inside its spherical neighbourhood Frb(F, A). In order that FA
can be a spherical object inside Frb(F, A) it is necessary that FA is a spherelike
object in B.

Remark 4.3.3. The spherical codomain of F is again the intersection of the
spherical neighbourhoods of the objects in A by Yoneda:

Sph(F) = ker Q =
⋂

A∈A

Sph(F, A).

If A ∈ A is a weak generator, then we also find that Sph(F) = Sph(F, A). To
see this note that B ∈ Sph(F, A) if Hom∗(A,QB) = 0, which in turn implies
that QB = 0 as A is a weak generator, hence B ∈ kerQ = Sph(F). Here we
only use that A is a weak generator for imQ.

Proposition 4.3.4. If F : A → B is a spherelike functor and A ∈ A then
Sph(F, A) is the maximal full subcategory of B such that

Hom∗(A,R|Sph(F,A)( )) ≃ Hom∗(A,CL|Sph(F,A)( ))[−1].

Proof. The proof of this statement is very similar to Proposition 3.3.3. Indeed,
the triangle to use is:

Hom∗(A,Q( ))→ Hom∗(A,R( ))→ Hom∗(A,CL( ))[−1].

4.3.1 In presence of Serre functors

We specialise to the case that A and B admit Serre functors.
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Theorem 4.3.5. Let F : A → B be a spherelike functor. If A and B admit
Serre functors, then there is a natural triangle

FSAC
−1[−1]→ SBF→ QrSA

where Qr is the right adjoint of Q. In particular, we obtain Sph(F, A) =
⊥QrSAA for A ∈ A and that FSAC

−1A[−1] is a Serre dual for FA inside
Sph(F, A).

Proof. Taking right adjoints of Q → R → CL[1] gives FC−1[−1] → Rr → Qr.
Here we use that Rr = SBFS

−1
A

, in particular Qr also exists. We continue our
calculation

Q→ R→ CL[1] ⇐⇒ FC−1[−1]→ SBFS
−1
A
→ Qr (taking right adjoints)

⇐⇒ FSAC
−1[−1]→ SBF→ QrSA (precomposing with SA)

In the last step we used that Serre functors commute with autoequivalences.
For A ∈ A we have

Hom∗(A,Q( )) = Hom∗(Q( ), SA(A))
∨ = Hom∗( ,QrSA(A))

∨,

so Sph(F, A) = ker Hom∗(A,Q( )) = ⊥QrSA(A). With the same reasoning as
in Remark 3.3.7 we complete the proof.

Remark 4.3.6. Let F : A→ B be a spherelike functor. Note that if SAC
−1A =

A[d] for some d, then Sph(F, A) is the maximal full subcategory of B where FA
is d-Calabi-Yau. In such a case, we call Sph(F, A) the Calabi-Yau neighbourhood
of FA in B.

4.3.2 Dual spherical neighbourhoods

If we use the triangle Q′ → LT[−1]→ R instead then we arrive at the following
definition and statements:

(i) Sph∨(F, A) := {B ∈ B : Hom∗(Q′, A)∨ = 0},

(ii) Hom∗(LT|Sph∨(F,A), A)
∨[−1]

∼
−→ Hom∗(R|Sph∨(F,A), A)

∨),

(iii) Sph∨(F, A) = (Q′ℓS−1
A
A)⊥ and the anti-Serre dual of FA is FS−1

A
CA[1].

4.4 They go together

Most of our examples will be a composition of a spherical functor with an
exceptional one.

Proposition 4.4.1. Suppose F1 : A→ B and F2 : B→ C are functors with both
adjoints L1,R1 and L2,R2, as usual, and let Ti and Ci be the twist and cotwist
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associated to Fi for i = 1, 2. If we consider the composition F = F2 ◦F1 : A→ C

together with its twist T and cotwist C then we have the following triangles:

C1 → C→ R1C2F1 and F2T1R2 → T→ T2.

In particular, if F2 is exceptional, then there is an isomorphism C1 ≃ C. So
in this case, if F1 is exceptional or spherelike then also F is exceptional or
spherelike, respectively.

Proof. Naturality of units and counits together with the octahedral axiom pro-
vides us with the following commutative diagrams of triangles:

C1 C R1C2F1 FR F2R2 F2T1R2

C1 idA R1F1 FR idC T

RF R1R2F2F1 T2 T2.

Now observe that if F2 is exceptional then C2 = 0, and hence C ≃ C1.

Proposition 4.4.2. Let F1 : A → B be a functor with both adjoints and
F2 : B→ C be an exceptional functor. Then there is the triangle

R1P2 → Q→ Q1L2.

In particular, we get QF2 ≃ Q1 and R1P2 ≃ QT′
2, and consequently

F2(ker Q1) ⊂ kerQ.

Proof. We start with the following diagram of triangles, which compares Q =
QF and Q1 = QF1 :

Q R1R2 = R CL[1]

Q1L2 R1L2 C1L1L2[1]

R1ϕ2 (∗) cL[1]≀

where c : C → C1 is the isomorphism of Proposition 4.4.1 as F2 is exceptional.
We focus on the square (∗), which we expand a bit:

R1R2 R1R2F2F1L1L2 CL[1]

R1R2F2L2 R1F1L1R2F2L2

R1L2 R1F1L1L2 C1L1L2[1]

R1R2ηL

R1R2ηL2 R1η
−1
R2

F1L1ηR2L2≀

γRL

cL[1]≀

≀R1η
−1
R2

L2 R1F1L1η
−1
R2

L2≀

R1ηL1L2 γR1L1L2
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Here the left diagram commutes as it is the composition of adjoints, see [Mac71,
Thm. IV.8.1]. The commutativity of the right diagram follows from the octahe-
dron axiom as in the left diagram in the proof of Proposition 4.4.1. This shows
that the square (∗) commutes, so with another application of the octahedron
axiom we arrive at

R1P2 R1R2T
′
2

Q R1R2 = R CL[1]

Q1L2 R1L2 C1L1L2[1]

Now precompose the obtained triangle with F2:

R1P2F2 → QF2 → Q1L2F2.

As R1P2F2 ≃ RT′
2F2 ≃ RF2C

′
2[−2] = 0, we get therefore QF2 ≃ Q1L2F2 ≃ Q1

as F2 is exceptional. Similarly precomposing with T′
2 yields the triangle:

R1P2T
′
2 → QT′

2 → Q1L2T
′
2

As Q1L2T
′
2 ≃ Q1C

′
2L2[−2] = 0, we hence get QT′

2 ≃ R1P2T
′
2 ≃ RT′

2
2 ≃ RT′

2.

Finally note that F2(ker Q1) = {F2B | Q1(B) = 0}, hence for such an F2B
holds QF2B = Q1B = 0, as well.

Theorem 4.4.3. Let F1 : A → B be a spherical functor and F2 : B → C be
an exceptional functor. Then the spherical codomain of the spherelike functor
F = F2F1 has the semiorthogonal decomposition

Sph(F) = 〈im F2, ker L2 ∩ ker R〉

and for A in A its spherical neighbourhood is

Sph(F, A) = 〈im F2, ker L2 ∩ FA⊥〉 = Frb(F2,F1A)

Proof. By assumption F1 is spherical, so Q1 = 0. Therefore the triangle of
Proposition 4.4.2 becomes an isomorphism R1P2

∼
−→ Q. In particular, we get

Sph(F) = kerQ = ker R1P2
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and unraveling this with Yoneda and using Theorem 3.3.5

ker R1P2 = {C ∈ C | ∀A ∈ A : Hom∗(A,R1P2C) = 0}

= {C ∈ C | ∀A ∈ A : Hom∗(F1A,P2C) = 0}

=
⋂

A∈A

{C ∈ C | Hom∗(F1A,P2C) = 0}

=
⋂

B∈im F1

{C ∈ C | Hom∗(B,P2C) = 0}

=
⋂

B∈im F1

Frb(F2, B)

=
⋂

B∈im F1

〈im F2, ker L2 ∩ F2B
⊥〉

= 〈im F2, ker L2 ∩
⋂

B∈im F1

F2B
⊥〉

= 〈im F2, ker L2 ∩ im F⊥〉

= 〈im F2, ker L2 ∩ ker R〉.

Implicit in this chain of equalities we have

Sph(F, A) = Frb(F2,F1A) = 〈imF2, ker L2 ∩ FA⊥〉.

Remark 4.4.4. Similar to the the case of exceptional functors, we can also
define the spherical poset Q(F) of a spherelike functor F:

Q(F) := {Sph(F, A) | A ∈ A}.

ordered by inclusion.
The proposition above shows that if F = F2F1 with F1 spherical and F2 excep-
tional, then we have an inclusion of posets:

Q(F) ⊆ P(F2).

Example 4.4.5. Let C = 〈B,⊥B〉 be a semiorthogonal decomposition and let
T1 : B→ B be an autoequivalence. Then by [Seg18], there is a spherical functor
F1 : A→ B with T1 as its associated twist.
By Proposition 4.4.1, the composition F : A → C of F1 with F2 : B → C is a
spherelike functor, whose twist T restricts to T1 on B and the identity on ⊥

B.

4.5 Comparison to spherical subcategories

This article generalises results from [HKP16, HKP19, HP20] about spherical
subcategories. In this section we show how these results fit into the language
of exceptional and spherelike functors.
We first recall the central notions and results from [HKP16]. To simplify some
arguments, we will assume that D has a Serre functor. Given a d-spherelike
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object A in a triangulated category D, then there is a canonical map A →
SDA[−d] which can be completed to the asphericity triangle

A→ SDA[−d]→ QA. (9)

The spherical subcategory of A in D is then

DA := ⊥QA

and the main result is the following.

Proposition 4.5.1 ([HKP16, Thm. 4.4 & 4.6]). The spherical subcategory DA

is the maximal full triangulated subcategory of D where A is d-spherical.

To translate this result, note that a d-spherelike A defines the spherelike functor
FA : Db(k-mod)→ D, see Example 4.1.5.

Proposition 4.5.2. The spherical subcategory DA of A and the spherical
codomain Sph(FA) of FA coincide.

Proof. We set A := Db(k-mod) and F := FA : A→ D. This proposition follows
already from maximality, see [HKP16, Thm. 4.6] and Theorem 4.2.3. We show
here a bit more, namely that the triangle

FSAC
−1[−1]→ SDF→ QrSA

of Theorem 4.3.5 is essentially the asphericity triangle (9). Note that SA = idA
and C = [−d− 1], so the triangle simplifies to

F[d]→ SDF→ Qr.

Now applying this triangle to the (strong) generator k ∈ A, we get after shifting
with [−d]:

A→ SDA[−d]→ QrA[−d]

since Fk = A. In particular, we conclude that QA ∼= QrA[−d]. Hence we get
that

DA = ⊥QA = ⊥QrA =
⋂

V ∈A

⊥QrFV =
⋂

V ∈A

Sph(F, V ) = Sph(F).

The next proposition is about comparing [HKP16, Thm. 4.7] and
Theorem 4.4.3.

Proposition 4.5.3. Let A ∈ C be a spherical object, and ι : C → D be an
exceptional functor. Then

DιA = 〈(ιC)⊥ ∩ ⊥ιA, ιC〉 = Frb(ι, A).
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Proof. The first equality is just the statement of [HKP16, Thm. 4.7]. By
Proposition 4.5.2, we obtain that DιA = Sph(ιFA) where FA : Db(k-mod) →
C,k 7→ A. As Db(k-mod) are just graded vector spaces, we get

Sph(ιFA) = Sph(ιFA,k) = Frb(ι,FAk) = Frb(ι, A)

where we use Theorem 4.4.3 in the middle.

Remark 4.5.4. Most examples of spherelike objects in [HKP16, HKP19] are
of the shape: spherical object A ∈ C embbeded by an exceptional functor
ι : C → D. So the spherical subcategory of ιA in D is actually the Frobenius
neighbourhood of A under ι. In particular, the spherical subcategory of ιA be-
comes part of the Frobenius poset of ι, which sometimes has a richer structure.

4.5.1 Geometric examples

Example 4.5.5 ([HKP16, §5.3]). Let π : X → C be a ruled surface, where C
is a smooth, projective curve. There is a section C0 ⊂ X , which allows us to
write X = PC(V ) with V := π∗OX(C0). Then for a spherical object S ∈ Db(C)
we obtain

Dπ∗S = 〈π∗(⊥(S ⊗ V ))⊗ OX(−C0), π
∗Db(C)〉.

In particular for the sperical S = OP with P ∈ C a point, we get

Dπ∗OP
= 〈π∗Db

U (C)⊗ OX(−C0), π
∗Db(C)〉

where Db
U (C) is the subcategory of objects of Db(C) supported on U = C\{P}.

Since Dπ∗S = Frb(π∗, S) by Proposition 4.5.3, there is no need to restrict only
to spherelike objects. Hence this example becomes a special case of the Frobe-
nius neighbourhoods calculated in Section 3.4, see Remark 3.4.4 there.

Example 4.5.6 ([HKP16, §5.2]). Let π : X̃ → X be the blowup of a smooth
projective variety in a point P . [HKP16, Prop. 5.2] states that if S ∈ Db(X) is
spherical with P ∈ Supp(S) then Db(X)π∗S = π∗Db(X).
In light of the calculation in Section 3.5, this turns out to be wrong as soon as
dim(X) > 2: in this case,

Db(X)π∗S = Frb(π∗, S) ⊃ Frb(π∗) = π∗Db(X)⊕ ker π∗ ∩ kerπ!

where ker π∗ ∩ ker π! is non-zero for dim(X) > 2, see Proposition 3.5.9. In
the proof of [HKP16, Prop. 5.2], it was shown that the OE(−k) do not lie
inside Db(X)π∗S for k = 1, . . . , codimX(Z) − 1, where E is the exceptional
divisor. But this does not imply that the subcategory generated by these
objects has non-zero intersection with Db(X)π∗S . Only in the case of a single
exceptional object (that is, if X is a surface) such a conclusion is true. For
higher dimensional X , the proof of Proposition 3.5.9 shows that i∗Ω

k
q (k) ∈

Db(X)π∗S for k = 1, . . . , codimX(Z)− 2. Therefore, [HKP16, Prop. 5.2] is only
valid for blowing up a point on a surface.
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Unfortunately, the mistake in the proof has consequences for [HKP16, Cor.
5.3 & Prop. 5.5] about iterated blowups. It turns out that the statements
there are even wrong for iterated blowups on surfaces, the reason is again that
the orthogonal of π∗Db(X) is generated by more than one object. This prob-
lem appears already when blowing up twice, see [HP20, Prop. 5.5]. Again, even
though the proposition there is about the pullback of a spherical object, it can
be easily generalised to the following statement about Frobenius neighbour-
hoods.

Example 4.5.7 (c.f. [HP20, Prop. 5.5]). Let X be a smooth projective surface.
Let π : X̃ → X be the composition of a blowup in a point P and a second
blowup in a point on the exceptional divisor of the first blowup. Then the
exceptional locus of π consists of a (−2)-curve C and a (−1)-curve E which
meet transversally in a point. For A ∈ Db(X), the Frobenius neighbourhood
under π∗ is then given by

Frb(π∗, A) =

{
Db(X̃) if P 6∈ Supp(A);

π∗Db(X)⊕ 〈OC(−1)〉 if P ∈ Supp(A).

Note that 〈OC(−1)〉 ⊂ Db(X̃) is not admissible, as OC(−1) is spherical.

Remark 4.5.8. In [KPS18, §5.5], Calabi–Yau neighbourhoods are introduced
as a generalisation of spherical subcategories. We believe that with a suitable
exceptional functor, they can be written as Frobenius neighbourhoods. In par-
ticular, the Calabi–Yau property there does not seem necessary. For example,
we think that in [KPS18, Prop. 5.15], Y can be any projective variety with
rational Gorenstein singularities and there is no need for a trivial canonical
bundle.

4.5.2 Algebraic examples

In [HKP19], some examples from representation theory of finite dimensional
algebras are treated. There, two constructions are presented – insertion and
tacking – which attaches to an algebra Λ a quiver Γ without oriented loops,
yielding a new algebra Λ′ and an exceptional functor

 : Db(Λ-mod)→ Db(Λ′-mod).

As in the geometric examples, the spherical subcategory of A is computed in
Db(Λ′-mod), where A is spherical in Db(Λ-mod). Since the spherical subcate-
gory is actually a Frobenius neighbourhood, we can consider arbitrary objects
A.

Example 4.5.9 (c.f. [HKP19, Thm. 3.12 & 3.18]). Let Λ′ be an algebra which
is obtained from Λ by tacking on or insertion of a quiver Γ without oriented
cycles. Then there is a simple module S in Λ′-mod such that the Frobenius
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neighbourhood of A ∈ Db(Λ-mod) under  is

Frb(F, A) =

{
Db(Λ′-mod) if Hom∗(S, A) = 0;

Db(Λ-mod)⊕ C if Hom∗(S, A) = 0,

where C ∼= Db(kΓ′-mod) and Γ′ ⊂ Γ is a subquiver where a single vertex
(corresponding to S) is removed.

Remark 4.5.10. The problematic argument of Example 4.5.6 makes no prob-
lems here, as only a single exceptional object (namely S) is removed.
We want to highlight that as the simple module S is exceptional, we obtain in
particular that Frb() = Db(Λ-mod) ⊕ C is admissible in Db(Λ′-mod). This is
in contrast to geometric examples, where the Frobenius codomain tends to be
non-admissible.

4.5.3 Posets

Remark 4.5.11. In [HKP19, §2], the notion of a spherical poset of D is intro-
duced: it is defined as the poset

{DA | A ∈ D spherelike}.

In contrast, we define the spherical poset in Remark 4.4.4 as the poset of spher-
ical neighbourhoods under a fixed spherelike functor. So these two posets will
be very different in general and we sincerely hope that this does not cause
confusion.

We want to highlight the last remark by an example.

Example 4.5.12. By [Zub97, LNSZ19], there are exceptional line bundles
L1, . . . , L10 on a generic Enriques surface X , which are mutually orthogonal,
that is Hom∗(Li, Lj) = 0 for i 6= j. This induces a semiorthogonal decomposi-
tion

Db(X) = 〈AX , L1, . . . , L10〉.

By Serre duality, there is a morphism Li → SXLi unique up to scalars, which
we extend to a triangle

Si → Li → SXLi.

By [LNSZ19, Lem. 3.6 & Prop. 3.7], these Si are 3-spherical objects inside
AX and any 3-spherical object inside AX is isomorphic to a shift of an Si.
Additionally, it was observed in the proof of [LNSZ19, Prop. 3.7] that Si fits
into the triangle

Si → SXSi[−3]→ SXLi ⊕ SXLi[−3]

which is the asphericity triangle of Si. Therefore the spherical subcategory of
Si is

⊥SXLi = L⊥
i = 〈AX , Lj | j 6= i〉. In particular, the spherical poset in the

sense of [HKP19] of Db(X) contains

{〈AX , Lj | j 6= i〉}
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where any two elements are not comparable.
For a spherelike object Si the spherical poset of the corresponding spherelike
functor Fi : D

b(k)→ Db(X) consists of just two elements:

{〈AX , Lj | j 6= i〉, Db(X)},

where the maximal element is obtained by the zero object, and the minimal
one by any non-zero object in Db(k).
The richest structure, we obtain by looking at the exceptional functor ι : AX →
Db(X). The above discussion shows now that Frb(ι, Si) = 〈AX , Lj | j 6= i〉.
Using that the Li are mutually orthogonal, one can check that therefore the
Frobenius poset is

P(ι) = {〈AX , Lj ∈ J〉 | J ⊂ {1, . . . , n}}.

4.6 Examples

In [KS15], a functor was called spherelike for the first time:

Example 4.6.1. Let X be an Enriques surface and π : X̃ → X its canonical
cover, so X̃ is an K3 surface. Note that π∗ : D

b(X̃) → Db(X) is a spherical
functor, whose cotwist is τ∗ with τ the deck transformation. Let X [n] be the
Hilbert scheme of n points on X . As OX is exceptional, the Fourier-Mukai
transform F : Db(X) → Db(X [n]) associated to the universal ideal sheaf is an
exceptional functor.
It was observed in [KS15, Rem. 3.7], that the composition Fπ∗ should be called
spherelike functor. And indeed, by Proposition 4.4.1, Fπ∗ is a spherelike functor
as the composition of a spherical and exceptional functor. By Theorem 4.4.3,
we find that

Sph(Fπ∗, A) = Frb(F, π∗A)

In particular, as π∗ is essentially surjective, we obtain that

Sph(Fπ∗) = Frb(F) = imF⊕ (ker R⊕ ker L)

where R and L are the adjoints of F.

Question 4.6.2. Are there meaningful spherelike functors which are not the
composition of a spherical and an exceptional functor?

Obviously, the answer to this question depends on the taste of the reader, as
the following example shows.

Example 4.6.3. Let S be a bielliptic surface. Then its structure sheaf OS
is a (properly) 1-spherelike object in Db(S). By [KO15, Prop. 4.1], Db(S)
admits no nontrivial semiorthogonal decomposition. In particular, the spherical
subcategory of OS is not admissible.
Note that a spherical object in the derived category of a d-dimensional variety
is automatically d-Calabi–Yau. In contrast, OS is a 1-spherelike object in the
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derived category of surface. It would be interesting to know, whether the
cotwist of a spherical functor between categories of geometric origin is always
of a specific shape.

We end with two examples of spherelike objects from [HP20]. The first is still
given by the inclusion of a spherical object via an exceptional functor into
some bigger category. The second one is not of this kind, but to us, the second
example seems rather a numerical accident than a meaningful example.

Example 4.6.4. Let X be a surface containing three rational curves B,E,C
with the following dual intersection graph: -3 -1 -2 , so B2 = −3, E2 = −1
and C2 = −2. Then OB+E+C is not the pullback of some spherical object using
some birational morphism π : X → Y . Still, C is a (−2)-curve, so OC(−1) is
spherical, and actually OB+E+C = TOC(−1)(OB+E), see [HP20, Prop. 4.6].
So after applying this autoequivalence, OB+E becomes contractible to a (−2)-
curve. In particular, denoting by πE : X → Y the contraction of E, we obtain
an exceptional functor

F : TOC(−1)(π
∗Db(Y ))→ Db(X) = 〈TO(−1)(OE(−1)),TOC(−1)(π

∗Db(Y ))〉

and OB+E+C becomes the image of a spherical object under this F.

Example 4.6.5. Let X be a surface containing five rational curves

B,C1, C2, E1, E2 with the following dual intersection graph:

-3

-2 -2 -1 -1 ,
where B2 = −3, C2

i = −2 and E2
i = −1. Consider the divisor

D = 2B + C1 + C2 + E1 + E2. Then OD is a spherelike divisor and it
seems that it does not arise as the image of any spherical object under an
exceptional functor. See [HP20, Ex. 5.11] for further discussion.
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