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Abstract. We construct geometric models for classifying spaces
of linear algebraic groups in G-equivariant motivic homotopy theory,
where G is a tame group scheme. As a consequence, we show that the
equivariant motivic spectrum representing the homotopy K-theory
of G-schemes (which we construct as an E∞-ring) is stable under
arbitrary base change, and we deduce that the homotopy K-theory of
G-schemes satisfies cdh descent.
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1 Introduction

Let K(X) and KB(X) denote the connective and nonconnective K-theory
spectra of a quasi-compact quasi-separated scheme X [TT90]. The homotopy
K-theory spectrum KH(X) was introduced by Weibel in [Wei89]: it is the
geometric realization of the simplicial spectrum KB(∆• ×X), where

∆n = SpecZ[t0, . . . , tn]/(
∑

i ti − 1)

is the standard algebraic n-simplex. There are natural transformations K →
KB → KH , which are equivalences on regular schemes.
Haesemeyer [Hae04] (in characteristic zero) and Cisinski [Cis13] (in general)
proved that homotopyK-theory satisfies descent for Voevodsky’s cdh topology.
This was a key ingredient in the proof of Weibel’s vanishing conjecture for
negative K-theory, established in characteristic zero by Cortiñas, Haesemeyer,
Schlichting, and Weibel [CHSW08], and up to p-torsion in characteristic p > 0
by Kelly [Kel14] (with a simplified proof by Kerz and Strunk [KS17]). More
recently, Kerz, Strunk, and Tamme proved that K-theory satisfies “pro-cdh
descent” and deduced Weibel’s conjecture in complete generality [KST18].
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The goal of this paper is to extend the cdh descent result of Cisinski to a suitable
class of Artin stacks, namely, quotients of schemes by linearizable actions of
linearly reductive algebraic groups. We will introduce a reasonable definition
of the homotopy K-theory spectrum KH(X) for such a stack X, which agrees
with K(X) when X is regular. The “obvious” extension of Weibel’s definition
works well for quotients by finite or diagonalizable groups, but, for reasons we
will explain below, a more complicated definition is preferred in general. Our
main results are summarized in Theorem 1.3 below. In a sequel to this paper,
joint with Amalendu Krishna, we use these results to prove vanishing theorems
for the negative K-theory of tame Artin stacks [HK19].
Let us first introduce some terminology. A morphism of stacks Y → X will be
called quasi-projective if there exists a finitely generated quasi-coherent mod-
ule E over X and a quasi-compact immersion Y →֒ P(E) over X. We say that
a stack X has the resolution property if every finitely generated quasi-coherent
module over X is the quotient of a locally free module of finite rank. Through-
out this paper, we will work over a fixed quasi-compact separated (qcs) base
scheme B, and we will say that a morphism of B-stacks Y → X is N-quasi-

projective if it is quasi-projective Nisnevich-locally on B. We refer to [Hoy17,
§2.7] for the precise definition of a tame group scheme over B. The main
examples of interest are:

• finite locally free groups of order invertible on B;

• groups of multiplicative type;

• reductive groups, if B has characteristic 0 (i.e., there exists B → SpecQ).

Let tqStkB denote the 2-category of finitely presented B-stacks that have the
resolution property, that are global quotient stacks [X/G] for some tame affine
group scheme G, and such that the resulting map [X/G] → BG is N-quasi-
projective.1 For X ∈ tqStkB, we let SchX ⊂ (tqStkB)/X be the full subcat-
egory of N-quasi-projective X-stacks. The Nisnevich (resp. cdh) topology on
SchX is as usual the Grothendieck topology generated by Nisnevich squares
(resp. Nisnevich squares and abstract blowup squares). The Nisnevich and
cdh topologies on tqStkB are generated by the corresponding topologies on the
slices SchX.

Remark 1.1. If B has characteristic zero, the 2-category tqStkB includes all
Artin stacks of finite presentation, with affine stabilizers, and satisfying the
resolution property. Indeed, by a theorem of Gross [Gro17, Theorem 1.1], such
stacks have the form [X/GLn], where X is a quasi-affine GLn-scheme.

1Quasi-projective BG-stacks almost have the resolution property: they admit a schematic
Nisnevich cover whose Čech nerve consists entirely of stacks with the resolution property
[Hoy17, Lemma 3.11]. In particular, the requirement that stacks in tqStkB have the resolution
property is immaterial as far as Nisnevich sheaves are concerned. AllowingBG-stacks that are
only Nisnevich-locally quasi-projective is necessary to dispense with isotriviality conditions
on G when the base B is not geometrically unibranch (see [Hoy17, Remark 2.9]).
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Remark 1.2. The stacks in tqStkB share many features with the “tame Artin
stacks” considered in [AOV08]. There are two essential differences: our stacks
are not required to have finite diagonal, but theirs are not required to have the
resolution property.

Theorem 1.3. Let B be a quasi-compact separated base scheme. There exists

a cdh sheaf of E∞-ring spectra

KH : tqStkopB → CAlg(Sp)

and an E∞-map K → KH with the following properties.

1. If X ∈ tqStkB is regular, the map K(X) → KH(X) is an equivalence.

2. KH is homotopy invariant in the following strong sense: if p : Y → X is

an fpqc torsor under a vector bundle, then p∗ : KH(X) → KH(Y) is an

equivalence.

3. KH satisfies Bott periodicity: for every vector bundle V over X, there is

a canonical equivalence of KH(X)-modules KH(V on X) ≃ KH(X).

4. Suppose that X ∈ SchBG where G is an extension of a finite group scheme

by a Nisnevich-locally diagonalizable group scheme. Then KH(X) is the

geometric realization of the simplicial spectrum KB(∆• × X).

From property (1) and the hypercompleteness of the cdh topology, we imme-
diately deduce:

Corollary 1.4. Suppose that B is noetherian of finite Krull dimension and

that every stack in tqStkB admits a cdh cover by regular stacks, e.g., B is

essentially of finite type over a field of characteristic zero. Then the canonical

map K → KH exhibits KH as the cdh sheafification of K.

The fact that KH is a cdh sheaf means that it is a Nisnevich sheaf and that,
for every cartesian square

W Y

Z X
i

p

in tqStkB such that i is a closed immersion, p is N-projective, and p induces
an isomorphism YrW ≃ Xr Z, the induced square of spectra

KH(X) KH(Z)

KH(Y) KH(W)

is cartesian. For quotients by finite discrete groups, we can improve this result
as follows:
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Theorem 1.5. Let G be a finite discrete group and let

W Y

Z X
i

p

be a cartesian square of locally affine qcs G-schemes over Z[1/|G|], where i is a
closed immersion, p is proper, and p induces an isomorphism Y rW ≃ XrZ.

Then the induced square of spectra

KH([X/G]) KH([Z/G])

KH([Y/G]) KH([W/G])

is cartesian, where KH(X) denotes the geometric realization of the simplicial

spectrum KB(∆• × X).

Remark 1.6. If G is a finite discrete group acting on a qcs scheme X , then
X is a locally affine G-scheme if and only if the coarse moduli space of the
Deligne–Mumford stack [X/G] is a scheme [Ryd13, Remark 4.5].

We make a few comments on homotopy invariance. As we observed in [Hoy17],
most of the interesting properties of homotopy invariant Nisnevich sheaves on
schemes only extend to stacks if homotopy invariance is understood in the
strong sense of property (2) of Theorem 1.3. A typical example of a homo-
topy equivalence in that sense is the quotient map X → X/U where U is a
split unipotent group acting on X; this map is usually not an A1-homotopy
equivalence, not even Nisnevich-locally on the target. This explains why our
definition of KH for general stacks is more complicated than it is for schemes.
Property (4) of Theorem 1.3 is explained by the fact that vector bundle torsors
over such stacks are Nisnevich-locally split.
Properties (1)–(4) of Theorem 1.3 will essentially be enforced by the definition
of the homotopyK-theory presheafKH and foundational results on equivariant
K-theory due to Thomason [Tho87] and Krishna–Ravi [KR18]. The content of
Theorem 1.3 is thus the statement that KH is a cdh sheaf. Its proof uses the
machinery of stable equivariant motivic homotopy theory developed in [Hoy17].
Namely, the fact that KH is a Nisnevich sheaf satisfying properties (2) and
(3) of Theorem 1.3 implies that its restriction to smooth N-quasi-projective
X-stacks is representable by a motivic spectrum KGLX ∈ SH(X). By [Hoy17,
Corollary 6.25], we can then deduce that KH satisfies cdh descent, provided
that the family of motivic spectra {KGLX}X∈tqStkB

is stable under N-quasi-
projective base change. This base change property is thus the heart of the proof.
We will verify it by adapting Morel and Voevodsky’s geometric construction of
classifying spaces [MV99, §4.2] to the equivariant setting.
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Theorem 1.7. For every X ∈ tqStkB, there exists an E∞-algebra KGLX ∈
SH(X) representing the E∞-ring-valued presheaf KH on smooth N-quasi-

projective X-stacks. Moreover, the assignment X 7→ KGLX is a section of

CAlg(SH(−)) over tqStkopB that is cocartesian over N-quasi-projective mor-

phisms. In particular, for f : Y → X N-quasi-projective, f∗(KGLX) ≃ KGLY.

Finally, we will observe that the Borel–Moore homology theory represented
by KGLX on N-quasi-projective X-stacks, for X regular, is the K-theory of
coherent sheaves, also known as G-theory.

Remark 1.8. In the paper [KR18], the authors work over a base field. This
assumption is used via [HR15] to ensure that the ∞-category QCoh(X) of
quasi-coherent sheaves is compactly generated and that the structure sheaf OX

is compact. We claim that this holds for any X ∈ tqStkB. If G is a linearly
reductive affine group scheme, then OBG is compact in QCoh(BG), by [HR15,
Theorem C (3)⇒(1)]. If X is N-quasi-projective over BG, then p : X → BG
is representable, so the functor p∗ : QCoh(BG) → QCoh(X) preserves compact
objects. Hence, locally free modules of finite rank overX are compact, being du-
alizable. Finally, as X has the resolution property, QCoh(X) is generated under
colimits by shifts of locally free modules of finite rank, by [Lur18, Proposition
9.3.3.7, Corollary C.2.1.7, and Corollary 9.1.3.2 (4)]. Thus, we shall freely use
the results of [KR18] over a general qcs base scheme B.

Outline

In §2, we construct geometric models for classifying spaces of linear algebraic
group in equivariant motivic homotopy theory. The main example is a model
for the classifying space of GLn in terms of equivariant Grassmannians.
In §3, we develop some categorical machinery that will be used to equip the
motivic spectrum KGLX with an E∞-ring structure. The results of this section
are not otherwise essential for the proof of Theorem 1.3, but they may be of
independent interest.
In §4, we define homotopy K-theory of tame quotient stacks and prove that it
satisfies properties (1)–(4) of Theorem 1.3.
In §5, we construct the motivic E∞-ring spectra KGLX representing homotopy
K-theory and prove that they are stable under N-quasi-projective base change,
which implies that KH is a cdh sheaf.

Notation and terminology

This paper is a sequel to [Hoy17] and uses many of the definitions and con-
structions introduced there, such as: the notions of homotopy invariance and
Nisnevich excision [Hoy17, Definitions 3.3 and 3.7], the corresponding local-
ization functors Lhtp and LNis, and the combined motivic localization Lmot

[Hoy17, §3.4]; the auxiliary notion of small G-scheme [Hoy17, Definition 3.1];
and the definitions of the stable equivariant motivic homotopy category as a
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symmetric monoidal ∞-category and as an ∞-category of spectrum objects
[Hoy17, §6.1]. A notational difference with op. cit. is that we prefer to work
with stacks rather than G-schemes, so that we write, e.g., SH([X/G]) instead
of SHG(X).

Given X ∈ tqStkB, recall that SchX ⊂ (tqStkB)/X is the full subcategory of
N-quasi-projective X-stacks. Whenever we write X as [X/G], it is understood
that G is a tame affine group scheme and that X ∈ SchBG. If X = [X/G],
SchX differs slightly from the category SchGX from [Hoy17, §3.1], but every
object in either category has a Nisnevich cover whose Čech nerve belongs to
their intersection, so the difference does not matter for our purposes. We let
SmX ⊂ SchX be the full subcategory spanned by the smooth X-stacks. We
denote by QCoh(X)♥ the abelian category of quasi-coherent sheaves on X (it is
the heart of a t-structure on the stable∞-category QCoh(X) from Remark 1.8).
Given E ∈ QCoh(X)♥, we denote by V(E) = Spec(Sym(E)) the associated
vector bundle and by P(E) = Proj(Sym(E)) the associated projective bundle.
Unless otherwise specified, presheaves and sheaves are valued in ∞-groupoids.

2 Geometric models for equivariant classifying spaces

In this section, we fix a base stack S = [S/G] ∈ tqStkB. If Γ is an fppf sheaf of
groups on SchS, we denote by BfppfΓ = Lfppf(∗/Γ) the presheaf of groupoids
classifying Γ-torsors in the fppf topology, which we will often implicitly regard
as a presheaf on SmS (note however that the fppf sheafification must be per-
formed on the larger category SchS). For example, for X ∈ SmS and n ≥ 0,
(BfppfGLn)(X) is the groupoid of vector bundles of rank n on X. When S is
a scheme and Γ is a smooth linear group scheme over S, Morel and Voevod-
sky constructed in [MV99, §4.2] a geometric model for Lmot(BfppfΓ), i.e., they
expressed Lmot(BfppfΓ) as a simple colimit of representables in H(S). In this
section, we generalize their result to arbitrary S ∈ tqStkB.

Let U be an fppf sheaf on SchS with an action of Γ. If X is an fppf sheaf and
π : T → X is a torsor under Γ, we denote by Uπ the π-twisted form of U , i.e.,
the sheaf Lfppf((U × T )/Γ). The Morel–Voevodsky construction is based on
the following tautological lemma:

Lemma 2.1. Let Γ be an fppf sheaf of groups on SchS acting on an fppf sheaf U .

Suppose that, for every X ∈ SmS and every fppf torsor π : T → X under Γ,
Uπ → X is a motivic equivalence on SmS. Then the map

Lfppf(U/Γ) → BfppfΓ

induced by U → ∗ is a motivic equivalence on SmS.

Proof. By universality of colimits, it suffices to show that, for every X ∈ SmS

and every map X → Lfppf(∗/Γ), the projection Lfppf(U/Γ ×∗/Γ X) → X is a
motivic equivalence on SmS. This is exactly the assumption.
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Recall from [Hoy17, Definition 3.1] that a G-scheme X over B is small if there
exists a G-quasi-projective morphism X → U where U is affine, has trivial
G-action, and has the G-resolution property. Every X ∈ tqStkB admits a
schematic Nisnevich cover whose Čech nerve consists entirely of stacks of the
form [X/G] where X is small [Hoy17, Lemma 3.11].

Definition 2.2. A system of vector bundles over S is a diagram of vector
bundles (Vi)i∈I over S, where I is a filtered poset, whose transition maps are
vector bundle inclusions. Such a system is called:

• saturated if, for every i ∈ I, there exists 2i ≥ i such that Vi →֒ V2i is
isomorphic under Vi to (id, 0): Vi →֒ Vi ×S Vi.

• complete if, for every X = [X/G] ∈ SchS with X small and affine, and
for every vector bundle E on X, there exists i ∈ I and a vector bundle
inclusion E →֒ Vi ×S X.2

Note that both properties are preserved by any base change T → S in SchS.
The following example shows that complete saturated systems of vector bundles
always exist.

Example 2.3.

1. If G is finite locally free and p : S → S = [S/G] is the quotient map, then
(V(p∗O

n
S))n≥0 is a complete saturated system of vector bundles over S.

2. Let {Vα}α∈A be a set of representatives of isomorphism classes of vector
bundles over S, let I be the filtered poset of maps A → N with finitely
many nonzero values, and for i ∈ I let Vi =

⊕

α∈A V iα
α . Then (Vi)i∈I ,

with the obvious transition maps, is clearly a saturated system of vector
bundles over S. It is also complete, by Lemma 2.4 below.

Lemma 2.4. Let f : T → S be a quasi-affine morphism. For every vector bundle

V on T, there exists a vector bundle W on S and a vector bundle inclusion

V →֒ W ×S T.

Proof. Let V = V(E). Since f is quasi-affine, f∗f∗(E) → E is an epimorphism.
Since f∗(E) is the union of its finitely generated quasi-coherent submodules
[Hoy17, Lemma 2.10], there exists M ⊂ f∗(E) finitely generated such that
f∗(M) → E is an epimorphism. By the resolution property, we may assume
that M is locally free. Setting W = V(M), we then have a vector bundle
inclusion V →֒ W ×S T, as desired.

Lemma 2.5. Let X = [X/G] ∈ tqStkB with X small and affine, let s : Z →֒ X

be a closed immersion, and let V be a vector bundle on X. Then any section

of V over Z lifts to a section of V over X.

2This is similar to the notion of complete G-universe in equivariant homotopy theory.
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Proof. Let V = V(E). We must show that any map OX → s∗s
∗(E∨) in

QCoh(X)♥ lifts to a map OX → E∨. Since s is a closed immersion, the re-
striction map E∨ → s∗s

∗(E∨) is an epimorphism in QCoh(X)♥. Moreover,
since X is small and affine and G is linearly reductive, OX is projective in
QCoh(X)♥ [Hoy17, Lemma 2.17]. The result follows.

Lemma 2.6. Let (Vi)i∈I be a saturated system of vector bundles over S. For

every i ∈ I, let Ui ⊂ Vi be an open substack such that Vi →֒ Vj maps Ui to Uj

whenever i ≤ j. Suppose that:

1. there exists i ∈ I such that Ui → S has a section;

2. for all i ∈ I, under the isomorphism V2i ≃ V 2
i , (Ui×Vi)∪(Vi×Ui) ⊂ U2i.

Then U∞ = colimi∈I Ui ∈ P(SmS) is motivically contractible.

Proof. By [Hoy17, Proposition 3.16 (2)], it will suffice to show that, for every
X = [X/G] ∈ SmS with X small and affine, the simplicial set Map(A•×X, U∞)
is a contractible Kan complex. Consider a lifting problem

∂∆n Map(A• × X, U∞).

∆n

f

Then f : ∂An
X → U∞ is a morphism from the boundary of the algebraic n-

simplex over X to U∞, and it factors through Ui for some i since ∂An
X is compact

as an object of P(SmS). Increasing i if necessary, we may assume, by (1), that
there exists a section x : S → Ui. By Lemma 2.5, there exists a morphism
g : An

X → Vi lifting f . Choose a closed substack Zi ⊂ Vi complementary to Ui,
so that g−1(Zi) ∩ ∂An

X = ∅. Again by Lemma 2.5, the map

g−1(Zi) ⊔ ∂An
X → S ⊔S

x⊔0
−−→ Vi

admits an extension h : An
X → Vi. Then the morphism (g, h) : An

X → V 2
i misses

Z2
i and hence solves the lifting problem, by (2).

If E is a vector bundle over S, we denote by GL(E) the group S-stack of
linear automorphisms of E. By a subgroup of GL(E) we mean a subfunctor of
its functor of points (valued in group objects in groupoids).

Theorem 2.7. Let E be a vector bundle over S, ∆ ⊂ GL(E) a closed subgroup,

and Γ ⊂ ∆ a subgroup that is flat and finitely presented over S. Let (Vi)i∈I

be a complete saturated system of vector bundles over S. For each i ∈ I, let
Ui ⊂ Hom(E, Vi) be the open substack where the action of ∆ is strictly free,

and let U∞ = colimi∈I Ui. Then the map

Lfppf(U∞/Γ) → BfppfΓ

induced by U∞ → ∗ is a motivic equivalence on SmS.
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Proof. We check that U∞ satisfies the assumption of Lemma 2.1, i.e., that
for any X ∈ SmS and any Γ-torsor π : T → X, the map (U∞)π → X is a
motivic equivalence on SmS. By [Hoy17, Proposition 4.6], we can assume
that X = [X/G] with X small and affine. It then suffices to show that the
saturated system of vector bundles Hom(Eπ , Vi ×S X) over X and the open
substacks (Ui)π satisfy the conditions of Lemma 2.6 with S = X. The second
condition is clear, by definition of Ui. To verify the first condition, we can
assume that ∆ = GL(E). Sections of (Ui)π over X are then vector bundle
inclusions Eπ →֒ Vi×SX. Since (Vi)i∈I is complete, there exist such inclusions
for large enough i.

Remark 2.8. Although this is not always true in the generality of Theorem 2.7,
the fppf quotients Lfppf(Ui/Γ) are often representable by (necessarily smooth)
quasi-projectiveS-stacks, so that the presheaf Lfppf(U∞/Γ) is a filtered colimit
of representables. It is in that sense that Lfppf(U∞/Γ) is a geometric model for
Lmot(BfppfΓ).

Corollary 2.9. Under the assumptions of Theorem 2.7, suppose that the

fppf quotients Lfppf(Ui/Γ) are universally representable by N-quasi-projective

S-stacks. Then, for every N-quasi-projective morphism f : T → S, the map

f∗(BfppfΓ) → Bfppf(f
∗Γ)

in P(SmT) is a motivic equivalence.

Proof. Consider the following commutative square in P(SmT):

f∗Lfppf(U∞/Γ) f∗(BfppfΓ)

Lfppf(f
∗(U∞/Γ)) Bfppf(f

∗Γ).

By Theorem 2.7, the horizontal maps are motivic equivalences. On the other
hand, by assumption, the left vertical arrow is an isomorphism between ind-
representable presheaves on SmT.

Corollary 2.9, applied to Γ = GLn, is all that we will need from this section
in the sequel. In that case, Ui ⊂ Hom(An

S, Vi) is the open substack of vector
bundle inclusions, and Lfppf(Ui/GLn) is universally represented by the Grass-
mannian Grn(Vi). Let us make Theorem 2.7 more explicit in this special case:

Corollary 2.10. Let (Vi)i∈I be a complete saturated system of vector bundles

over S. For any n ≥ 0, the map

colim
i∈I

Grn(Vi) → BfppfGLn

in P(SmS) classifying the tautological bundles is a motivic equivalence.
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3 Periodic E∞-algebras

Let C ∈ CAlg(PrL) be a presentably symmetric monoidal ∞-category, S a set
of objects of C/1, and M a C-module in PrL. For every x ∈ C, we have the
adjunction

x⊗− : M ⇄ M : Hom(x,−).

We say that an object E ∈ M is S-periodic if α∗ : E → Hom(x,E) is an equiv-
alence for every α : x → 1 in S. We denote by PSM ⊂ M the full subcategory
spanned by the S-periodic objects. It is clear that this inclusion is an accessi-
ble localization and hence admits a left adjoint PS , called periodization. Note
that E is S-periodic if and only if it is local with respect to idM ⊗ α for every
M ∈ M and α ∈ S. If M = C, it follows immediately that the localization
functor PS is compatible with the monoidal structure in the sense of [Lur17,
Definition 2.2.1.6], and hence that it can be promoted to a symmetric monoidal
functor [Lur17, Proposition 2.2.1.9]. In particular, for every E∞-algebra A in
C, PSA is also an E∞-algebra in C and A → PSA is an E∞-map.
Let S0 be the set of domains of morphisms in S. Consider the presentably
symmetric monoidal ∞-category C[S−1

0 ] obtained from C by adjoining formal
inverses to elements of S0 (see [Hoy17, §6.1]), which is in particular a C-module.
We have an adjunction

C C[S−1
0 ],

Φ

Ψ

where Φ is symmetric monoidal. It follows that Ψ preserves S-periodic objects.
Hence, the above adjunction induces an adjunction

PSC PS(C[S
−1
0 ]).

PSΦ

Ψ

(3.1)

Proposition 3.2. Let C be a presentably symmetric monoidal ∞-category, S
a set of objects of C/1, and S0 the set of domains of morphisms in S. Then

the adjunction (3.1) is an equivalence of symmetric monoidal ∞-categories.

In particular, every S-periodic E∞-algebra in C lifts uniquely to an S-periodic
E∞-algebra in C[S−1

0 ].

Proof. Indeed, the symmetric monoidal functors PS : C → PSC and PSΦ: C →
PS(C[S

−1
0 ]) satisfy the same universal property, since the former sends every

x ∈ S0 to an invertible object, namely, the unit of PSC.

We would like to understand the periodization functor PS more explicitly. Con-
sider the case where S consists of a single map α : x → 1. Given E ∈ C, it is
tempting to think that PαE is given by the formula

colim
(

E
α

−→ Hom(x,E)
α

−→ Hom(x⊗2, E)
α

−→ · · ·
)

,

at least if we assume that Hom(x,−) preserves filtered colimits (otherwise,
we would naturally consider a transfinite construction). This formula is indeed
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correct if C is a stable ∞-category and α : 1 → 1 is multiplication by an integer,
but not in general. For example, suppose that C is the symmetric monoidal ∞-
category of small stable ∞-categories, and let α be multiplication by a positive
integer on the unit Spfin. Then PαC ⊂ C is the subcategory of zero objects, but
the above colimit with E = Spfin is not zero. The essential difference between
these two cases is the following: in the first case, the cylic permutation of α3 is
homotopic to the identity (because it is the image of an even element in π1 of
the sphere spectrum), but in the second case, no nontrivial permutation of αn is
homotopic to the identity. We will show that there exists an analogous formula
for PS in general, provided that the elements of S are cyclically symmetric in
a suitable sense.
We recall some constructions from [Hoy17, §6.1]. Let X be any set of objects
of C. The filtered simplicial set L(X) is the union over finite subsets F ⊂ X of
the simplicial sets LF , where L is the 1-skeleton of the nerve of the poset N.
We view a vertex of L(X) as a formal tensor product of elements of X . The
C-module StabX(C) of X-spectra is then defined as the limit of a diagram
L(X)op → ModC taking each vertex of L(X) to C and each arrow w → w⊗x to
the functor Hom(x,−). Equivalently, StabX(C) is the ∞-category of cartesian
sections of the cartesian fibration over L(X) classified by L(X)op → Cat∞.
A general section of this cartesian fibration will be called an X-prespectrum

in C; we denote by StablaxX (C) the C-module of X-prespectra. Thus, StabX(C)
is a (left exact) localization of StablaxX (C). The localization functor is called
spectrification and is denoted by Q : StablaxX (C) → StabX(C). If Hom(x,−)
preserves filtered colimits for all x ∈ X , which will be the case in all our
applications, spectrification is given by the familiar formula

Q(E)w = colim
v∈L(X)

Hom(v, Ew⊗v).

In general, one can describe spectrification as follows. For every x ∈ X , consider
the full subcategory Ex ⊂ StablaxX (C) consisting of X-prespectra that are spec-
tra in the x-direction, so that StabX(C) =

⋂

x∈X Ex. Choose a regular cardi-
nal κ such that Hom(x,−) preserves κ-filtered colimits for all x ∈ X , and let shx
be the pointed endofunctor of StablaxX (C) given by shx(E)w = Hom(x,Ew⊗x).
Then the κth iteration shκx of shx lands in Ex. Moreover, any map E → F
with F ∈ Ex factors uniquely through shx(E). It follows that shκx is left adjoint
to the inclusion Ex ⊂ StablaxX (C). The total localization functor Q can now
be written as an appropriate κ-filtered transfinite composition in which each
indecomposable map is an instance of id → shκx for some x ∈ X (see the proof
of [Lur09, Lemma 7.3.2.3]).
To every E ∈ C we can associate a “constant” S0-prespectrum cSE =
(E)w∈L(S0) with structure maps E → Hom(x,E) induced by the maps in S.
Let QS : C → C be the functor defined by

QSE = Ω∞Q(cSE),

where Ω∞ : StabS0(C) → C is evaluation at the initial vertex of L(S0). There
is an obvious natural transformation id → QS . For example, if S consists of a
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single map α : x → 1 and Hom(x,−) preserves filtered colimits, we have

QαE = colim
(

E
α
−→ Hom(x,E)

α
−→ Hom(x⊗2, E) → · · ·

)

.

Lemma 3.3. Let C be a presentably symmetric monoidal ∞-category, S a set

of objects of C/1, and E ∈ C. If QSE is S-periodic, then the map E → QSE
exhibits QSE as the S-periodization of E.

Proof. For x ∈ S0, the functor Hom(x,−) : PSC → PSC is an equivalence of ∞-
categories, since PS(x) is invertible in PSC. Hence, Ω

∞ : PS StabS0(C) → PSC

is an equivalence. Consider the following commutative diagram of C-modules:

C StablaxS0
(C) StabS0(C)

PSC PS StablaxS0
(C) PS StabS0(C) PSC.

Σ∞
lax Q

Ω∞

≃

Σ∞

≃

All the vertical arrows are periodization functors, and the lower composition is
the identity. This diagram shows that

PS(E) = Ω∞PSQ(Σ∞
laxE).

Here, Σ∞
laxE is the free S0-prespectrum (E ⊗ w)w∈L(S0). The obvious map

Σ∞
laxE → cSE is manifestly a termwise PS-equivalence. Since the right ad-

joints to the various evaluation functors StablaxS0
(C) → C preserve S-periodic

objects, termwise PS-equivalences of S0-prespectra are in fact PS-equivalences.
It follows that

PS(E) = Ω∞PSQ(cSE).

All the terms of the S0-spectrum Q(cSE) are equivalent to QSE. Hence, by
the assumption, Q(cSE) is already S-periodic, and we get PSE = QSE, as
desired.

Example 3.4. Let K denote the presheaf of E∞-ring spectra X 7→ K(X) on
qcqs schemes, and let β ∈ K̃1(Gm, 1) be the Bott element, that is, the element
induced by the automorphism t of OGm

, where Gm = SpecZ[t±1]. Let γ be the
composite

(P1 r 0)
∐

Gm

A1 → Σ(Gm/1)
β
−→ K,

where the pushout is taken in presheaves and pointed at 1. By inspecting the
definition [TT90, Definition 6.4], we see that the Bass–Thomason–TrobaughK-
theory spectrumKB is theK-moduleQγK. SinceKB is γ-periodic, Lemma 3.3
implies that KB = PγK. In particular, KB is an E∞-algebra under K. The
same argument applies to K and KB as presheaves on tqStkB (see [KR18, §3.5]
for the definition of KB in this context).
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Let C be a symmetric monoidal ∞-category. An object x ∈ C is called n-
symmetric if the cyclic permutation σn of x⊗n is homotopic to the identity.
We will say that x is symmetric if it is n-symmetric for some n ≥ 2. If C is
presentably symmetric monoidal and X is a set of symmetric objects of C, there
is an equivalence of C-modules C[X−1] ≃ StabX(C) (see [Rob15, Corollary 2.22]
and [Hoy17, §6.1]).
The ∞-category C/1 inherits a symmetric monoidal structure from C such that
the forgetful functor C/1 → C is symmetric monoidal. An n-symmetric object
in C/1 is then a morphism α : x → 1 such that the cyclic permutation σn of
x⊗n is homotopic over 1 to the identity.

Example 3.5. If C is symmetric monoidal, End(1) is an E∞-space under com-
position. In particular, for every α : 1 → 1, the cyclic permutation of n let-
ters induces a self-homotopy σn of αn. Then α is n-symmetric in C/1 if and
only if the homotopy class of σn is in the image of the group homomorphism
π1(End(1), id) → π1(End(1), α

n) induced by End(1) → End(1), β 7→ αn ◦ β.
In particular, if σn vanishes in π1(End(1), α

n), then α is n-symmetric in C/1.

Lemma 3.6. Let C be a symmetric monoidal ∞-category and let α : x → 1 be

a symmetric object in C/1. Let X• be the tower Nop → C/1, k 7→ x⊗k, with

transition maps id⊗ α. Then the transformations

α⊗ id, id⊗ α : X•+1 → X•

are homotopic as maps in Pro(C/1).

Proof. Let σk be the cyclic permutation of x⊗k that moves the first factor to
the end. The map id ⊗ α : x⊗k+1 → x⊗k is then the composite of σ−1

k+1 and

α ⊗ id. Define a new tower X̃• : N
op → C with X̃k = x⊗k and with transition

maps σ−1
k ◦ (id⊗α) ◦ σk+1 : x

⊗k+1 → x⊗k. The permutations σk assemble into

a natural equivalence σ : X̃• → X• such that (id⊗α)◦σ ≃ α⊗ id. The strategy
of the proof is the following: we will construct an equivalence of pro-objects
ζ : X•+1 → X̃•+1 making the diagram

X•+1 X̃•+1 X•+1

X•

ζ σ

α ⊗ id

α ⊗ id

id⊗ α

commute and such that σ ◦ ζ is homotopic to the identity. Let us call π and π̃
the morphisms α⊗ id : X•+1 → X• and α⊗ id : X̃•+1 → X•.

Suppose that α is (n+ 1)-symmetric, and let L be the 1-skeleton of the nerve
of the poset nN ⊂ N. We will then construct ζ as a morphism in Fun(Lop,C),
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and we will prove that π̃ ◦ ζ ≃ π and σ ◦ ζ ≃ id in Fun(Lop,C). The image of
an edge of L by either π or π̃ has the form

x⊗nk+1 x⊗n(k−1)+1

x⊗nk x⊗n(k−1),

α ⊗ id

id⊗ αn

α ⊗ idα ⊗ id ⊗ αn

but π and π̃ differ on the upper triangle. Let σ′
k : x

⊗nk+1 → x⊗nk+1 be the
cyclic permutation σn+1 applied to the n+ 1 factors of x⊗nk+1 that are killed
by the diagonal. Observe that

σnk+1 = (σn(k−1)+1 ⊗ id) ◦ σ′
k. (3.7)

In particular, the transition map x⊗nk+1 → x⊗n(k−1)+1 in X̃•+1 is (id⊗αn)◦σ′
k.

We define ζ : X•+1 → X̃•+1 to be the identity on each vertex of L and the given
homotopy σ′ ≃ id on each edge. Thus, the image by ζ of an edge of L is the
square

· ·

· · ·

id⊗ αn

σ′ id⊗ αn

where untipped lines represent identity morphisms and the triangle is the given
homotopy σ′ ≃ id. The composites π̃ ◦ ζ and σ ◦ ζ are then described by the
following pictures:

· ·

· · ·

· ·

id ⊗ αn

σ′

α ⊗ id α ⊗ id

id ⊗ αn

· ·

· · ·

·

· ·

id ⊗ αn

σ′

σ′

σ

σ ⊗ id

id ⊗ αn

In the first picture, the two diagonal arrows are α⊗ id⊗ αn. The assumption
that the given homotopy σn+1 ≃ id is a homotopy over 1 implies that the
triangle with median σ′ is homotopic rel its boundary to an identity 2-cell,
showing that π̃ ◦ ζ ≃ π.

Using (3.7), we inductively construct homotopies σnk+1 ≃ id for k ≥ 0. The
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pentagon in the second picture is the tensor product











x⊗n(k−1)+1 x⊗n(k−1)+1

x⊗n(k−1)+1 x⊗n(k−1)+1

id

σn(k−1)+1

id

σn(k−1)+1











⊗











x⊗n
1

x⊗n
1

αn

id

αn

id











.

Using the homotopies σn(k−1)+1 ≃ id and σ′
k ≃ id, we obtain for every edge

e : ∆1 → L a homotopy in Fun(∆1,C) between (σ ◦ ζ)e and the identity. By
construction, these homotopies agree on the common vertex of two consecutive
edges of L, and hence they define a homotopy σ ◦ ζ ≃ id, as desired.

Theorem 3.8. Let C be a presentably symmetric monoidal ∞-category and S
a set of symmetric objects of C/1. Then PS ≃ QS. More precisely, for every

E ∈ C, the canonical map E → QSE exhibits QSE as the S-periodization of

E.

Proof. By Lemma 3.3, it suffices to show that QSE is S-periodic, i.e., that
cSQSE is an S0-spectrum. We use the following explicit description of the
spectrification functor Q, from the proof of [Lur09, Lemma 7.3.2.3]. Choose
a regular cardinal κ such that Hom(x,−) preserves κ-filtered colimits for all
x ∈ S0, and choose a bijection f : S0 → λ for some ordinal λ. Then Q =
colimµ<λκ Fµ, where Fµ+1 = shκxFµ if µ = λν + f(x).
Note that each S0-prespectrum Fµ(cSE) is “constant” in the sense that all
its terms and structure maps in a given direction are the same. For any
α : x → 1 and β : y → 1 in S with α 6= β, it is clear that the structure map
of shx(cSE) in the y-direction is β∗. Lemma 3.6 shows that the structure map
of shωx (cSE) in the x-direction is naturally homotopic to α∗ under E. Hence,
we have an equivalence shωx (cSE) ≃ cSΩ

∞shωx (cSE) under cSE. By a straight-
forward transfinite induction, we can identify the towers {Fµ(cSE)}µ≤λκ and
{cSΩ∞Fµ(cSE)}µ≤λκ. In particular, Q(cSE) ≃ cSQSE and cSQSE is an S0-
spectrum.

4 Homotopy K-theory of tame quotient stacks

The homotopy K-theory spectrum KH(X) of a qcqs scheme X is the geo-
metric realization of the simplicial spectrum KB(∆• × X), where KB is the
Bass–Thomason–Trobaugh K-theory. Equivalently,

KH = LA1KB,

where LA1 is the reflection onto the subcategory of A1-homotopy invariant
presheaves (often called the naive A1-localization). There is an alternative
point of view on KH due to Cisinski [Cis13]. An important feature of the
Bass construction is that KB is a Nisnevich sheaf, whereas K is not. It is also
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clear that the naive A1-localization functor LA1 preserves Nisnevich sheaves of
spectra, so that KH is not only A1-invariant but is also a Nisnevich sheaf. The
canonical map K → KH therefore factors through the so-called motivic local-
ization Lmot(K) = LA1LNis(K). But the resulting map Lmot(K) → KH is not
yet an equivalence: instead, it exhibits KH as the periodization of Lmot(K)
with respect to the Bott element β ∈ K̃1(Gm, 1). Our definition of the ho-
motopy K-theory of a stack X is directly analogous to this construction. The
main difficulty is that we now have to deal with several Bott elements: one
for each vector bundle over X. We also have to replace LA1 by the more
complicated homotopy localization Lhtp [Hoy17, §3.2], which, unlike LA1 , need
not preserve Nisnevich sheaves of spectra. Nevertheless, we will see that the
identity KH = LA1KB still holds for quotient stacks [X/G] with G finite or
diagonalizable.
For X ∈ tqStkB, we will denote by KX and KB

X the restrictions of K and KB

to SchX. Let E be a locally free module of finite rank r over X,3 P(E) the
associated projective bundle, and O(1) the universal sheaf on P(E). By the
projective bundle formula [KR18, Theorem 3.6], the functors4

Perf(Y) → Perf(Y×X P(E)), E 7→ E ⊠ O(−i), (4.1)

for Y ∈ SchX and 0 ≤ i ≤ r − 1, induce an equivalence of KX-modules

r−1
∏

i=0

KX ≃ Hom(P(E)+,KX).

Let V+(E) denote the quotient P(E ⊕ OX)/P(E), viewed as a pointed presheaf
on SchX. The right square in the following diagram is then commutative, and
we get an equivalence as indicated:

Hom(V+(E),KX) Hom(P(E⊕ OX)+,KX) Hom(P(E)+,KX)

KX

r
∏

i=0

KX

r−1
∏

i=0

KX.

≃
≃ ≃

prr

(4.2)
This equivalence is a morphism of KX-modules and is therefore determined by
a map βE : V

+(E) → KX. A standard representative of βE by a perfect complex
is given by the Koszul complex of the composition

EP(E⊕O)(−1) →֒ (E ⊕ O)P(E⊕O)(−1) ։ OP(E⊕O), (4.3)

3We do not assume that E has constant rank, so r is a locally constant integer on X.
Formulas involving r must be interpreted accordingly.

4Here, Perf(Y) is the stable ∞-category of perfect complexes over Y, i.e., dualizable
objects in QCoh(Y).
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where the first map is the inclusion of the first summand and the second map
is the tautological epimorphism, tensored with det(E)[r]∨. In particular, the
image of βE in K(P(E⊕ OX)) can be written as

r
∑

i=0

cr−i(E) ⊠ O(−i), where cr−i(E) = (−1)r−i(det(E)∨ ⊗
∧i

E),

and it is trivialized in K(P(E)) via the Koszul complex of the tautological
epimorphism EP(E)(−1) ։ OP(E).

Definition 4.4. A KX-module is called Bott periodic if it is βE-periodic for
every locally free module of finite rank E over X.

In the diagram (4.2), we can replace KX by KB
X [KR18, Theorem 3.12 (3)], and

also by LA1KX or LA1KB
X , as the projective bundle formula obviously persists

after applying the naive A1-localization. As a result, all these KX-modules are
Bott periodic.
We denote by KHX the reflection of KX in the ∞-category of homotopy in-
variant, Nisnevich excisive, and Bott periodic KX-modules. Since motivic lo-
calization and periodization are both compatible with the symmetric monoidal
structure, KHX is an E∞-algebra under KX.

Definition 4.5. The homotopy K-theory of X ∈ tqStkB is the E∞-ring spec-
trum KH(X) = KHX(X).

Property (1) of Theorem 1.3 is clear: if X is regular, K-theory is already a
homotopy invariant Nisnevich sheaf on SmX [Tho87, Theorems 2.7, 4.1, and
5.7], and both Lmot and periodization commute with restriction along SmX →֒
SchX (since right Kan extension preserves the corresponding local objects).
For any N-quasi-projective morphism f : Y → X, let f∗(KHX) denote the
restriction of KHX to SchY. Then f∗(KHX) is the reflection of KY in the ∞-
category of KY-modules that are homotopy invariant, Nisnevich excisive, and
periodic with respect to the maps βf∗(E), where E is a locally free module overX.
In particular, there is a canonical morphism of E∞-algebras f∗(KHX) → KHY.

Proposition 4.6. Let f : Y → X be an N-quasi-projective morphism in

tqStkB. Then the map f∗(KHX) → KHY is an equivalence. In other words,

KHX is the restriction of KH to SchX.

Proposition 4.6 immediately implies properties (2) and (3) of Theorem 1.3, and
also thatKH is a Nisnevich sheaf. Before proving it, we relate the periodization
process in the definition of KHX to the Bass construction, which will also lead
to a proof of property (4).
Consider the map βO : P1/∞ → KX. The image of βO in K0(P

1) is thus
[O(−1)] − [O]. As an element of K̃0(P

1,∞), βO is determined by any choice
of trivialization of O(−1) over ∞; we choose the point (1, 0) in the line [1 : 0].
This trivialization extends to the standard trivialization of O(−1) over P1 r 0,
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which defines a lift of βO to P1/(P1r 0). Moreover, the restriction of the latter
to A1 = P1r∞ ⊂ P1 is nullhomotopic via the standard trivialization of O(−1)
over P1 r∞. Since these two trivializations coincide over 1 ∈ Gm, we obtain
the following commutative diagram of pointed presheaves:

A1/Gm P1/(P1 r 0) P1/∞

Σ(Gm/1) KX.
β

βO (4.7)

The homotopy class of the lower map is the Bott element β ∈ K̃1(Gm, 1) of
Example 3.4 (this identification depends on a choice of orientation of the loop
in Σ(Gm/1): if the left vertical arrow in (4.7) is ∗ ⊔Gm

A1 → ∗ ⊔Gm
∗, we let

the loop go from the first to the second vertex). Recall from Example 3.4 that
γ is the composition of the collapse map (P1 r 0)

∐

Gm
A1 → Σ(Gm/1) and β.

Lemma 4.8. Let E be a KX-module.

1. Suppose that E is A1-invariant. Then E is β-periodic if and only if it is

γ-periodic.

2. Suppose that E is a Zariski sheaf. Then E is βO-periodic if and only if

it is γ-periodic.

Proof. Assertion (1) follows from the fact that (P1r 0)
∐

Gm
A1 → Σ(Gm/1) is

an LA1 -equivalence. By (4.7), we can identify γ with the composition

(P1 r 0)
∐

Gm

A1 → P1/1 ։ P1/(P1 r 0) → KX,

where the first map is a Zariski equivalence. Let φ : P1/1 → P1/∞ be the linear
automorphism of P1 that fixes 0 and exchanges 1 and ∞. Then the square

P1/1 P1/∞

P1/(P1 r 0) KX

φ

βO

commutes up to homotopy, since both compositions classify the same element
in K̃0(P

1, 1). Assertion (2) follows.

Recall from Example 3.4 that KB
X = PγKX. It follows from Lemma 4.8 that

KHX is γ-periodic (as well as β-periodic). Hence, we have morphisms of E∞-
algebras

KX → KB
X → LA1KB

X → KHX.
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By [KR18, Theorem 3.12], KB
X is Nisnevich excisive and Bott periodic, so KB

X

is in fact the reflection of KX in the subcategory of Nisnevich excisive Bott
periodic KX-modules. Similarly, LA1KB

X is the reflection of KX in the subcat-
egory of A1-invariant, Nisnevich excisive, and Bott periodic KX-modules. If
X ∈ SchBG where G is an extension of a finite group scheme by a Nisnevich-
locally diagonalizable group scheme, every A1-invariant Nisnevich sheaf on
SchX is already homotopy invariant [Hoy17, Remark 3.13], and so the map
LA1KB

X → KHX is an equivalence. This proves property (4) of Theorem 1.3.
We observe that the assignment E 7→ βE is a functor from the groupoid of
locally free modules of finite rank over X to the overcategory of KX. This
functoriality comes from (4.1) and the fact that the sheaf O(−i) on P(E), as E
varies in this groupoid, is a cartesian section of the fibered category of quasi-
coherent sheaves. In particular, βE : V

+(E) → KX coequalizes the action of
linear automorphisms of E on V+(E).
Write V0(E) and V+

0 (E) for the pointed presheaves V(E)/(V(E)r 0) and P(E⊕
OX)/(P(E⊕ OX)r 0) on SchX. As in (4.7), we have a zig-zag

V0(E) →֒ V+
0 (E) և V+(E),

where the first map is a Zariski equivalence and the second map is an LA1-
equivalence. The map βE : V

+(E) → KX extends to V+
0 (E) because the mor-

phism (4.3) is an epimorphism away from the zero section, and hence it induces

β′
E
: V0(E) → KX.

Explicitly, β′
E
is represented by the Koszul complex of the tautological mor-

phism EV(E) → OV(E) tensored with det(E)[r]∨, viewed as an object of
Perf(V(E) on X).
Note that the assignment E 7→ V0(E) is right-lax symmetric monoidal, with the
monoidal structure maps V0(E)⊗V0(F) → V0(E⊕F) being Zariski equivalences.
Using the Koszul complex representative of β′

E
and the multiplicative properties

of Koszul complexes, we can promote the assignment E 7→ β′
E
to a right-lax

symmetric monoidal functor from the groupoid of locally free modules of finite
rank over X (under direct sum) to the ∞-category of presheaves of spectra on
SchX over KX. In particular, if E and F are locally free modules of finite rank
over X, we have a commutative square

V0(E) ⊗ V0(F) KX ⊗KX

V0(E⊕ F) KX,

β′
E
⊗ β′

F

β′
E⊕F

where the right vertical map is multiplication.

Proof of Proposition 4.6. We must show that the map f∗(KHX) →
Hom(V+(E), f∗(KHX)) induced by βE is an equivalence for every locally
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free module E over Y. Since f∗(KHX) is a homotopy invariant Nisnevich
sheaf, we can assume that Y → X is quasi-affine [Hoy17, Proposition 4.6]. By
Lemma 2.4, we can then write E as a quotient of f∗(G) for some locally free
module of finite rank G over X. Replacing Y by an appropriate vector bundle
torsor, we can assume that f∗(G) ≃ E ⊕ F for some F. Hence, β′

E⊕F
≃ β′

E
β′
F

acts invertibly on f∗(KHX). In the sequence

f∗(KHX)
β′
E−−→ Hom(V0(E), f

∗(KHX))
β′
F−−→ Hom(V0(E⊕ F), f∗(KHX))

β′
E−−→ Hom(V0(E⊕ F ⊕ E), f∗(KHX)),

the composites β′
F
β′
E

and β′
E
β′
F

are thus both equivalences. It then follows
from the 2-out-of-6 property that all three maps are equivalences.

This concludes the verification of properties (1)–(4) of Theorem 1.3. Finally, we
would like to obtain a more concrete description of KH using Theorem 3.8. In
the following lemma, Sp(PA1,Zar(SchX)) denotes the∞-category of A1-invariant
Zariski sheaves of spectra on SchX.

Lemma 4.9. Let E be a locally free module of finite rank over X.

Then LA1,Zarβ
′
E
: LA1,ZarV0(E) → LA1,ZarKX, viewed as an object of

Sp(PA1,Zar(SchX))/L
A1,ZarKX

, is 3-symmetric.

Proof. Since E 7→ LA1,Zarβ
′
E

is symmetric monoidal, it suffices to show that
LA1σ3 : LA1V0(E

3) → LA1V0(E
3) is homotopic to the identity over LA1KX.

The identity and σ3 are both induced by matrices in SL3(Z) acting on E3, and
any two such matrices are A1-homotopic. Thus, it will suffice to prove the
following statement: for any locally free module of finite rank E over X and
any automorphism φ of p∗(E), where p : A1 × X → X is the projection, the
automorphisms of V0(E) induced by φ0 and φ1 are A1-homotopic over LA1KX.
Since β′

E
is functorial in E, the automorphism φ induces a commutative triangle

V0(p
∗(E)) V0(p

∗(E))

LA1KA1×X

φ

β′
p∗(E) β′

p∗(E)

of presheaves of spectra on SchA1×X. By adjunction, this is equivalent to a
triangle

A1
+ ⊗ V0(E) V0(E)

LA1KX,

β′
E

β′
E

which is an A1-homotopy between φ0 and φ1 over LA1KX, as desired.
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Proposition 4.10. Let X ∈ tqStkB and let E be a KX-module. Then the

canonical map E → Q{βE}LmotE is the universal map to a homotopy invariant,

Nisnevich excisive, and Bott periodic KX-module. In particular,

KHX ≃ Q{βE}LmotKX.

Proof. Combining Lemma 4.9 and Theorem 3.8, we deduce that

P{β′
E
}LmotE ≃ Q{β′

E
}LmotE.

As LmotE is in particular a Zariski sheaf, we can replace β′
E
with βE without

changing either side. Hence, we have

P{βE}LmotE ≃ Q{βE}LmotE.

We conclude by noting that Q{βE} preserves homotopy invariant Nisnevich
sheaves.

In other words, KHX is the Bott spectrification of the motivic localization of
KX.

5 The equivariant motivic K-theory spectrum

In this final section, we prove that KH is a cdh sheaf on tqStkB. By definition
of the cdh topology, this is the case if and only if the restriction of KH to SchX
is a cdh sheaf for every X ∈ tqStkB. Moreover, as we already know that KH
is a Nisnevich sheaf, we can assume without loss of generality that X = [X/G]
with X a small G-scheme. By definition of smallness, we may as well assume
that B has the G-resolution property and that X = BG. Thus, we are now in
the setting of [Hoy17, §6].
Let H•(X) be the pointed motivic homotopy category over X ∈ SchBG, i.e.,
the ∞-category of pointed presheaves on SmX that are homotopy invariant
and Nisnevich excisive. The stable motivic homotopy category over X is by
definition

SH(X) = H•(X)[Sph
−1
BG],

where SphBG is the collection of one-point compactifications V+(E) of vector
bundles over BG (pulled back to X); this forces the invertibility of the one-
point compactifications of all vector bundles over X [Hoy17, Corollary 6.7].
Let Sp(H(X)) be the ∞-category of homotopy invariant Nisnevich sheaves of
spectra on SmX, or equivalently the stabilization of H(X). As a symmetric
monoidal ∞-category, it is H•(X)[(S

1)−1]. Since S1 is invertible in SH(X), we
have

SH(X) ≃ Sp(H(X))[Sph−1
BG].

We also consider “big” variants of these ∞-categories: Sp(H) is the ∞-
category of homotopy invariant Nisnevich sheaves of spectra on SchBG, and
SH = Sp(H)[Sph−1

BG]. These ∞-categories have the following interpretation.
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Any presheaf on SchBG can be restricted to SmX for every X ∈ SchBG; this
gives rise to a section of the cocartesian fibration classified by X 7→ P(SmX),
which sends smooth morphisms to cocartesian edges. It is clear that this con-
struction is an equivalence of ∞-categories between presheaves on SchBG and
such sections. From this we deduce that Sp(H) and SH can be identified with
∞-categories of sections of Sp(H(−)) and SH(−) over Schop

BG that are cocarte-
sian over smooth morphisms.
In §4, we constructed the E∞-algebraKHBG in Sp(H) as a Bott periodic KBG-
module. By Proposition 3.2, there is a unique Bott periodic E∞-algebra KGL
in SH such that Ω∞KGL ≃ KHBG, namely

KGL = P{βE}Σ
∞KHBG.

By Proposition 4.10, we can write KGL more explicitly as an SphBG-spectrum
in Sp(H): it is the image, under the localization functor

QLmot : StablaxSphBG
Sp(P(SchBG)) → StabSphBG

Sp(H) ≃ SH,

of the “constant” SphBG-spectrum c{βE}KBG.

Definition 5.1. For X ∈ SchBG, we denote by KGLX ∈ CAlg(SH(X)) the
restriction of KGL to SmX.

By Proposition 4.6, the motivic spectrum KGLX represents homotopy K-
theory: for Y a smooth N-quasi-projective X-stack, there is a natural equiva-
lence

KH(Y) ≃ MapSp(Σ∞Y+,KGLX),

where MapSp denotes a mapping spectrum in the stable ∞-category SH(X).
We now prove that X 7→ KGLX is a cocartesian section of SH(−) over Schop

BG,
i.e., that for every f : Y → X in SchBG, the restriction map

f∗(KGLX) → KGLY

in SH(Y) is an equivalence. By [Hoy17, Corollary 6.25], this implies that
KH is a cdh sheaf on SchBG and concludes the proof of Theorem 1.3. Since
KGL = QLmotc{βE}KBG, the above restriction map is

f∗(QLmotc{βE}(K|SmX)) → QLmotc{βE}(K|SmY)

The localization functor QLmot is compatible with the base change functor f∗,
as f∗ preserves local objects, so it will suffice to show that the restriction map

f∗(K|SmX) → K|SmY (5.2)

is a motivic equivalence in Sp(P(SmY)).
Sending vector bundles over X to their classes in K-theory induces a map of
grouplike E∞-spaces

Vect(X)+ → Ω∞K(X), (5.3)
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where Vect(X) is the E∞-space of vector bundles over X and (−)+ denotes
group completion. If X = [X/G] with X a small affine G-scheme, it follows
from [Hoy17, Lemma 2.17] that every short exact sequence of vector bundles
over X splits. In that case, the map (5.3) is an equivalence. By [Hoy17,
Proposition 3.16 (2)], it follows that the map

Vect+ → Ω∞K|SmX

is a motivic equivalence in P(SmX). Note also that the inclusion
∐

n≥0

BfppfGLn →֒ Vect

exhibits Vect as the Zariski sheafification of the subgroupoid of vector bundles
of constant rank. By Lemma 5.5 below, it remains a Zariski equivalence after
group completion. We therefore obtain a motivic equivalence

(

∐

n≥0

BfppfGLn

)+

→ Ω∞K|SmX. (5.4)

Lemma 5.5. Let F : C → D be a colimit-preserving functor between presentable

∞-categories. Suppose that finite products distribute over colimits in C and D

and that F preserves finite products. Then, for every E∞-monoid M in C, the

canonical map F (M)+ → F (M+) is an equivalence.

Proof. The assumption on C implies that the ∞-category CMon(C) of E∞-
monoids in C is presentable [Lur17, Corollary 3.2.3.5] and hence that group
completion exists. Since both F and its right adjoint preserve finite products,
they lift to a pair of adjoint functors between CMon(C) and CMon(D), as well
as between the subcategories of grouplike objects. This immediately implies
that F commutes with group completion.

For any f : Y → X in SchBG, the pullback functor f∗ : P(SmX) → P(SmY)
preserves finite products and hence commutes with group completion of E∞-
monoids, by Lemma 5.5. Similarly, since Lmot : P(SmX) → H(X) preserves
finite products [Hoy17, Proposition 3.15], it commutes with group completion
of E∞-monoids. Hence, by (5.4) and Corollary 2.9 (with Γ = GLn), we deduce
that the restriction map

f∗(Ω∞K|SmX) → Ω∞K|SmY

is a motivic equivalence in the∞-category of grouplikeE∞-monoids in P(SmY).
Equivalently, (5.2) is a motivic equivalence in Sp≥0(P(SmY)), whence in
Sp(P(SmY)), as was to be shown.

Remark 5.6. If f : Y → X is a morphism of schemes, it is easy to show that
the map (5.2) is a Zariski equivalence, because BfppfGLn = BZarGLn and GLn

is smooth. The proof of cdh descent in this case does not need the geometric
model for the classifying space of GLn.
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Comments on Theorem 1.5. We discuss the minor modifications needed for the
proof of Theorem 1.5. If X is a locally affine qcs G-schemes such that |G|
is invertible on X , then [X/G] is a qcs tame Deligne–Mumford stack with
coarse moduli scheme. By [KØ12, Corollary 3.8] and a noetherian approxima-
tion argument, nonconnective K-theory is a Nisnevich sheaf on such stacks,
whence also KH (defined as the naive A1-localization of KB). The projec-
tive bundle formula holds for general stacks [KR18, Theorem 3.6]. Hence, the
restriction of KH to the category of smooth quasi-projective G-schemes over
X is a homotopy invariant Nisnevich sheaf as well as a Bott periodic E∞-
algebra. By Proposition 3.2, it deloops uniquely to a Bott periodic E∞-algebra
KGL[X/G] ∈ SH([X/G]). Since [X/G] is Nisnevich-locally of the form [U/G]
with U affine, the proof of Theorem 2.7 and the above arguments go through
(with some simplifications) and show that, for every G-equivariant morphism
f : Y → X with Y a locally affine qcs G-scheme, f∗(KGL[X/G]) ≃ KGL[Y/G].
By [Hoy17, Remark 6.26], we conclude that KH satisfies cdh descent on the
category of locally affine qcs G-schemes.

Comments on Theorem 1.7. Because of the reductions done at the beginning
of this section, we have only proved Theorem 1.7 with tqStkB replaced by the
subcategory of stacks X admitting an N-quasi-projective map X → BUG for
some B-scheme U such that BUG has the resolution property. In fact, SH(X) is
only defined for such X in [Hoy17, §6]. As indicated in loc. cit., however, SH(−)
extends uniquely, by right Kan extension, to a Nisnevich sheaf on tqStkB.
Hence, the section X 7→ KGLX constructed above also extends uniquely to
a section of CAlg(SH(−)) on all of tqStkopB that is cocartesian over N-quasi-
projective morphisms, and Theorem 1.7 holds in the stated generality.

Remark 5.7. Suppose that X ∈ tqStkB is regular noetherian. Then the
Borel–Moore homology theory on SchX represented by KGLX is the K-theory
of coherent sheaves. More precisely, for every quasi-projective morphism
f : Z → X, there is an equivalence of spectra

MapSp(1Z, f
!KGLX) ≃ K(Coh(Z)),

where the left-hand side is a mapping spectrum in SH(Z). To prove this, write
f = p◦ i where i : Z →֒ Y is a closed immersion and p : Y → X is smooth quasi-
projective. By [Hoy17, Theorem 6.18 (2)] and Bott periodicity, p!KGLX ≃
ΣΩpKGLY ≃ KGLY. Let j : U →֒ Y be the open immersion complementary to
i. By [Hoy17, Theorem 6.18 (4)], we have a fiber sequence

i∗i
!KGLY → KGLY → j∗j

∗KGLY

in SH(Y), whence a fiber sequence of spectra

MapSp(1Z, f
!KGLX) → MapSp(1Y,KGLY) → MapSp(1U,KGLU).

Since Y and U are regular, the second map is identified with the restriction
K(Y) → K(U), whose fiber is K(Coh(Z)).

Documenta Mathematica 25 (2020) 457–482



Cdh Descent in Equivariant Homotopy K-Theory 481

References

[AOV08] D. Abramovich, M. Olsson, and A. Vistoli, Tame stacks in positive

characteristic, Ann. I. Fourier 58 (2008), no. 4, pp. 1057–1091.
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