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Abstract. We consider the general circumstance of an Azumaya
algebra A of degree n over a locally ringed topos (X,OX) where the
latter carries a (possibly trivial) involution, denoted λ. This general-
izes the usual notion of involutions of Azumaya algebras over schemes
with involution, which in turn generalizes the notion of involutions of
central simple algebras. We provide a criterion to determine whether
two Azumaya algebras with involutions extending λ are locally isomor-
phic, describe the equivalence classes obtained by this relation, and
settle the question of when an Azumaya algebra A is Brauer equiv-
alent to an algebra carrying an involution extending λ, by giving a
cohomological condition. We remark that these results are novel even
in the case of schemes, since we allow ramified, non-trivial involutions
of the base object. We observe that, if the cohomological condition is
satisfied, then A is Brauer equivalent to an Azumaya algebra of degree
2n carrying an involution. By comparison with the case of topological
spaces, we show that the integer 2n is minimal, even in the case of a
nonsingular affine variety X with a fixed-point free involution. As an
incidental step, we show that if R is a commutative ring with involu-
tion for which the fixed ring S is local, then either R is local or R/S
is a quadratic étale extension of rings.
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1 Introduction

1.1 Motivation

Let A be a central simple algebra over a field K and let τ : A → A be an
involution, i.e., an anti-automorphism satisfying aττ = a for all a ∈ A. Recall
that τ can be of the first kind or of the second kind, depending on whether τ
restricts to the identity on the centre K or not. We further say that τ is a
λ-involution where λ = τ |K .
Central simple algebras and their involutions play a major role in the theory
of classical algebraic groups, and also in Galois cohomology. For example,
letting F denote the fixed field of λ : K → K, it is well known that the
absolutely simple adjoint classical algebraic groups over F are all given as the
neutral connected component of projective unitary groups of algebras with
involution (A, τ) as above, where K varies (here we also allow K = F × F
with the switch involution), see [KMRT98, §26]. In fact, all simple algebraic
groups of types A, B, C, D, excluding D4, can be described by means of
central simple algebras with involution. Involutions of central simple algebras
also arise naturally in representation theory, either since group algebras admit
a canonical involution, or in the context of orthogonal, unitary, or symplectic
representations, see, for instance, [Rie01].
Azumaya algebras are generalizations of central simple algebras in which the
base field is replaced with a ring, or more generally, a scheme. As with central
simple algebras, Azumaya algebras and their involutions are important in the
study of classical reductive group schemes, as well as in étale cohomology and
in the representation theory of finite groups over rings; see [Knu91].
Suppose that K/F is a quadratic Galois extension of fields and let λ denote the
non-trivial F -automorphism of K. A theorem of Albert, Riehm and Scharlau,
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[KMRT98, Thm. 3.1(2)], asserts that a central simple K-algebra A admits a
λ-involution if and only if [A], the Brauer class of A, lies in the kernel of the
corestriction map coresK/F : Br(K) → Br(F ). Saltman [Sal78, Thm. 3.1b]
later showed that if K/F is replaced with a quadratic Galois extension of rings
R/S, then the class [A] lies in the kernel of coresR/S : Br(R) → Br(S) if and
only if some representative A′ ∈ [A] admits a λ-involution. Here, in distinction
to the case of fields, an arbitrary representative may not posses an involution.
However, a later proof by Knus, Parimala and Srinivas [KPS90, Thm. 4.2],
which applies to Azumaya algebras over schemes, implies that one can take
A′ ∈ [A] such that degA′ = 2degA.

The aforementioned results all have counterparts for involutions of the first
kind in which the condition coresR/S [A] = 0 is replaced by 2[A] = 0.

In this article, we generalize this theory to more general sites and more general
involutions. We have two purposes in doing so. The first, our initial motivation,
is to demonstrate that the upper bound in Saltman’s theorem, degA′ ≤ 2 degA
guaranteed by [KPS90, Thm. 4.2], cannot be improved in general for involutions
of the second kind. The statement in the case of involutions of the first kind
was established in [AFW19]. Our general approach here is similar to [AFW19],
[AW14c] and related works. That is, the desired example is constructed by
approximating a suitable classifying space, and topological obstruction theory
is used to show that it has the required properties. In contrast with [AFW19]
and [AW14c], the obstruction is obtained by means of equivariant homotopy
theory.

We therefore introduce and study involutions of the second kind of Azumaya
algebras on topological spaces. In fact, we develop the necessary foundations
in the generality of connected locally ringed topoi with involution, and show
that Saltman’s theorem holds in this setting. In doing so, we stumbled into
our second purpose, which we now explain.

Any involution of a field is either trivial or comes from a quadratic Galois
extension, which is why the classical theory sees a dichotomy into involutions
of the first or second kind. For a ring, the analogous involutions are the trivial
involutions or those arising as the non-trivial automorphism of a quadratic
étale extension R/S. Geometrically, these correspond to extreme cases where
one has either a trivial action of the cyclic group C2 = {1, λ} on a scheme,
or where the action is scheme-theoretically free. One may also view the free
case as corresponding to an unramified map π : X → X/C2. This dichotomy
has been preserved in the literature on involutions of Azumaya algebras over
schemes, say for instance [KPS90] and [Knu91], by considering only trivial or
unramified involutions of the base ring.

There are, of course, involutions λ : R → R which are neither trivial nor
wholly unramified. For instance, one may encounter involutions of varieties
that are generically free but fix a nonempty closed subscheme. Alternatively,
there are involutions of nonreduced rings that restrict to trivial involutions of
the reduction—these are geometrically ramified everywhere, but nonetheless
non-trivial.
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Our second purpose therefore became developing the theory of λ-involutions
on Azumaya algebras with minimal assumptions on λ. We establish a general-
ization of Saltman’s theorem, and present a classification of λ-involutions into
types, generalizing the classification of involutions of central simple algebras as
orthogonal, symplectic—both of the first kind—or unitary—of the second.
In more detail, given a field K of characteristic not 2 and an involution λ :
K → K, recall that two degree-n central simple K-algebras with involutions
extending λ are of the same type if they become isomorphic after base change
to a separable closure of the fixed field of λ. This definition extends naturally
to the case of a general connected ring R in which 2 is a unit by replacing “a
separable closure” by an étale extension of S, the fixed ring of λ : R → R.
It is natural to ask how many types are obtained in this manner, and how
to distinguish them effectively. In the classically-considered cases of trivial or
unramified involutions on R, the situation is known to be similar to case of
fields: When R = S, there are at most two types — the orthogonal, which
occurs for all n, and the symplectic, which occurs only for even n. When R/S
is quadratic étale, only one type, called the unitary type, occurs for all n.
We describe the types for arbitrary λ : R → R and give a cohomological
criterion to determine when two involutions are of the same type. This criterion
implies in particular that the type of an Azumaya algebra with involution (A, τ)
is determined entirely by the restriction of (A, τ) to the ramification locus of
SpecR → SpecS. More than two types may occur. With this new subtlety,
one can further ask, in the context of Saltman’s theorem, what are the types
of λ-involutions which can be exhibited on representatives of a given Brauer
class in BrR. Our generalization of Saltman’s theorem answers this question.
To demonstrate some of the ideas above, let us consider a field k of charac-
teristic different from 2 and the ring R := k[x, x−1] of Laurent polynomials
with the involution λ : x 7→ x−1. The fixed ring is S := k[x + x−1]. The
map SpecR → SpecS is ramified at two points, x = 1 and x = −1, and un-
ramified elsewhere. Our results show that there are 4 types of λ-involution for
even-degree algebras and 1 type in odd degrees. Furthermore, the type of a λ-
involution is determined by the types — orthogonal or symplectic — obtained
by specializing to x = 1 and x = −1. For example, consider the λ-involution
of Mat2×2(R) given by

τ :

[

a(x) b(x)
c(x) d(x)

]

7→
[

d(x−1) x−1b(x−1)
xc(x−1) a(x−1)

]

. (1.1)

Evaluating at x = 1, the involution of (1.1) becomes orthogonal, whereas
evaluating at x = −1 makes it symplectic. Our generalization of Saltman’s
theorem implies that if α ∈ BrR is represented by an Azumaya R-algebra
admitting a λ-involution, then each of the 4 types of λ-involutions is the type
of a λ-involution of some representative of α.
It seems likely that our results on types could be used to extend the theory
of involutive Brauer groups, intiated in [PS92] (see also [VV98]), to schemes
carrying ramified involutions. We hope to address this in subsequent work.
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We finally note that from the point of view of group schemes, the study of
λ-involutions of Azumaya algebras in the case where is λ neither trivial nor
unramified amounts to studying certain group schemes over SpecR which are
generically reductive but degenerate on a closed subscheme. Specifically, the
projective unitary group of an Azumaya algebra with a λ-involution is gener-
ically of type A and degenerates to types B, C or D on the connected com-
ponents of the branch locus of SpecR → SpecS. The study of degenerations
of reductive groups have proved useful in many instances. Recent examples
include [APS15] and [BFF17], but this manifests even more in the works of
Bruhat and Tits on reductive groups over henselian discretely valued fields
[BT72], [BT84], [BT87]. Broadly speaking, degenerations of reductive groups
are encountered naturally when one attempts to extend a group scheme defined
on a generic point of an integral scheme to the entire scheme, a process which
is often considered in number theory.

1.2 Outline

Following is a detailed account of the contents of this paper, mostly in the order
of presentation. While the majority of this work applies to schemes without
assuming 2 is invertible, we make this assumption here in order to avoid certain
technicalities.

Section 2 is devoted to technical preliminaries, largely to do with non-abelian
cohomology in the context of Gorthendieck topoi.

Let X be a scheme and let λ : X → X be an involution. Our first concern is
to specify an appropriate quotient of X by the group C2 = {1, λ}. There is an
evident choice when X = SpecR with R a ring, since one can take the quotient
to be SpecS, where S is the fixed ring of λ : R → R. However, at the level of
generality that we consider, there is often more than one plausible option. For
instance, if the action of λ is not free, then [X/C2], a Deligne–Mumford stack,
might serve just as well as the scheme or algebraic space X/C2. The difference
between these alternatives becomes particularly striking when C2 acts trivially
on X — the quotient X → X/C2 = X can be regarded as a degenerate case
of a double covering, ramified everywhere, whereas X → [X/C2] is a C2-Galois
covering, ramified nowhere. From the point of view of the first quotient, all
involutions will appear to be of the first kind, whereas with respect to the
second quotient, all involutions will appear to be of the second kind.
We are therefore led to conclude that a chosen quotient π : X → Y , in addition
to X and λ, is necessary in order to discuss involutions in a way consistent
with what is already done in the cases where λ is an involution of a ring.
We require a quotient to satisfy certain axioms, presented in Subsection 4.3,
and prove that they are satisfied in a number of important examples, notably
when the categorical quotient X/C2 exists in the category of schemes and is
a good quotient. Such quotients exist for instance if X is affine or projective,
see Theorem 4.35. Thereafter in the development of the theory, we are usu-
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ally agnostic about the quotient chosen. In examples, we often return to the
motivating case of a good quotient.

Consider, therefore, a good quotient π : X → Y = X/C2. It is technically easier
to work on Y than onX . Specifically, by virtue of our Theorem 4.28, there is an
equivalence between Azumaya algebras with λ-involution onX on the one hand
and Azumaya algebras with π∗λ-involution over the sheaf of rings R := π∗(OX)
on the other. We therefore study Azumaya algebras over R. While Y does not
carry an involution, the ring sheaf R has an involution, namely, π∗λ, which we
abbreviate to λ. A difficulty that we encounter here is that the sheaf of rings R
is not a local ring object on Y , but rather a sheaf of rings with involution, the
fixed subsheaf of which is the local ring object (π∗OX)C2 = OY . We devote
considerable work to the study of commutative rings with involutions whose
fixed subrings are local in Section 3, and conclude in Theorem 3.16 that any
such ring is a semilocal ring, so that the sheaf R may be viewed as making Y
a “semilocally ringed” space.

In Section 5, we introduce and study types of λ-involutions. Specifically, we
define two Azumaya R-algebras with a λ-involution, (A, τ) and (B, σ), to be
of the same type if some matrix algebra over (A, τ) is Yét-locally isomorphic to
some matrix algebra over (B, σ). We show in Theorem 5.17 and Corollary 5.18
that the collection of types forms a 2-torsion group whose product rule is com-
patible with tensor products, and when degA = degB, the involutions τ and σ
have the same type if and only if (A, τ) and (B, σ) are Yét-locally isomorphic,
without the need to pass to matrix algebras. Thus, the definition given here
agrees with the definition in Subsection 1.1. We then turn to the problem of
calculating the group of types in specific cases.

Let W ⊂ Y denote the branch locus of π : X → Y . Then, away from W , the
C2-action on V = X − π−1(W ) is unramified, hence there is only one possible
type of λ-involution on A|V , viz. unitary, and all involutions on A|V are locally
isomorphic to the involution Matn×n(R)→ Matn×n(R) given by applying the
involution λ to each entry in the matrix and then taking the transpose, i.e.,
M 7→ (Mλ)tr. In contrast, over a connected component Z1 of Z := π−1(W ),
regarded as a reduced closed subscheme of X , the involution λ restricts to
the identity (Proposition 4.47), and so λ-involutions of A|Z1

fall into one of
two types — orthogonal or symplectic. This suggests that the types of λ-
involutions over X should be in bijection with H0(Z, µ2), where µ2 := {1,−1}
and 1 and −1 represent orthogonal and symplectic involutions respectively, and
that two λ-involutions are of the same type if and only if they are of the same
type when restricted to each connected component of Z. We prove the second
statement in Theorem 5.37 and establish the first under the assumption that
that Y is noetherian and regular in Corollary 6.23. We do not know whether
the first statement holds in general. Determining the type of a given involution
of a given algebra, τ : A → A, can now be carried out by considering the
rank of the sheaf of τ -symmetric elements on the various components of W ;
see [KMRT98, Prp. 2.6].
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In Section 6, we turn to the question of when a Brauer class α = [A] ∈ Br(X)
contains an algebra A′ possessing a λ-involution. Saltman [Sal78, Thm. 3.1]
gave necessary and sufficient conditions for this when λ is trivial or unramified.
Specifically, A is Brauer equivalent to such an algebra if 2[A] = 0 ∈ Br(X),
in the case of a trivial action, or if coresX/Y [A] = 0 ∈ Br(Y ), in the case of
an unramified action. We unify these two results, and generalize to the cases
that are neither trivial nor unramified, by defining a transfer map transf :
Br(X) → H2

ét(Y,Gm), and deducing in Theorem 6.10 that A is equivalent to
an algebra admitting a λ-involution of type t if and only if transf([A]) = Φ(t),
where Φ(t) ∈ H2(Y,Gm) is a cohomology class depending on the type. In
both extreme cases of trivial and unramified actions, and in fact whenever
Y is a nonsingular variety, Φ(t) is necessarily 0. Moreover, in the case of a
trivial action, transf([A]) = 2[A], and in the unramified case, transf([A]) =
coresX/Y [A], so we recover Saltman’s theorem as a special case. We also show
that if A is equivalent to an algebra with involution, then such an algebra can
be constructed to have degree twice that of A, thus extending the analogous
result of [KPS90, Thms. 4.1, 4.2]. We do not, however, follow [Sal78] and
[KPS90] in considering the corestriction algebra of A, taking instead a purely
cohomological approach. In fact, it is not clear whether a corestriction algebra
of A can be defined in a meaningful way when λ : X → X is ramified. This
problem was considered in [APS15, §5], where some positive results are given,
and we leave its pursuit in the current level of generality to a future work.

Section 7 gives a number of examples of the workings out of the previous theory.
In particular, we give examples of schemes X with involutions λ : X → X that
are neither unramified nor trivial, along with a classification of the various
types of λ-involutions of Azumaya algebras, e.g., Examples 7.6 and 7.7.

While this overview has so far been written in the language of schemes, the ma-
jority of the results are established in the setting of locally ringed Grothendieck
topoi, of which the étale ringed topos of a scheme is a special case. The ad-
vantage of this generality is that all the results above also apply, essentially
verbatim, to Azumaya algebras with involution over a topological C2-space, or
to Azumaya algebras with involutions on algebraic stacks. The applicability
of our results in the context of other sites associated with schemes, e.g., the
Zariski site, the fppf site, the Nisnevich site and some large sites, is discussed
in Subsection 4.4.
Comparison of Azumaya algebras over schemes with topological Azumaya alge-
bras has proved useful in the past, for instance in [AW14c], [AW15]. Having the
previous theory available also in the topological context, we consider a finite
type, regular C-algebra R with an unramified involution λ and compare the
theory of Azumaya R-algebras with involutions restricting to λ on the centre
with the theory of topological Azumaya algebras with involution on the com-
plex manifold (SpecR)an. This is carried out in Subsection 4.2, specifically in
Example 4.17.
By such comparison, we produce an example of an Azumaya algebra A of
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degree n, over a ring R with an unramified involution λ, having the property
that A is Brauer equivalent to an algebra A′ with λ-involution, but the least
degree of such an A′ is 2n, Theorem 9.8; the bound 2n is the lowest possible
by [KPS90, §4], which guarantees the existence of A′ of degree 2n in general.
An analogous example in the case where λ is assumed to be trivial was given
in [AFW19]. The method of proof, which is carried out in Sections 8 and 9, is
by using existing study of bundles with involution as a branch of equivariant
homotopy theory, [May96]. In particular, we can find universal examples of
topological Azumaya algebras with involution, which are valuable sources of
counterexamples.

In an appendix, we give a proof that the stalks of the sheaf of continuous,
complex-valued functions on a topological space X satisfy Hensel’s lemma.
This is used here and there in the body of the paper to treat this case at the
same time as étale sites of schemes.
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2 Preliminaries

This section recalls necessary facts and sets notation for the sequel. Through-
out, X denotes a Grothendieck topos. We reserve the term “ring” for com-
mutative unital rings, whereas algebras are assumed unital but not necessarily
commutative.

2.1 Generalities on Topoi

Recall that a Grothendieck topos is a category that is equivalent to the category
of set-valued sheaves over a small site, or equivalently, a category satisfying
Giraud’s axioms; see [Gir71, Chap. 0]. In this paper we shall be particularly
interested in the following examples:

(i) X = Sh(Xét), the category of sheaves over the small étale site of a scheme
X .
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(ii) X = Sh(X), the category of sheaves on a topological space X .

We will occasionally consider other sites associated with a scheme X . In par-
ticular, XZar and Xfppf will denote the small Zariski and small fppf sites of X ,
respectively.

The topos of sheaves over a singleton topological space, which is nothing but
the category of sets, will be denoted pt.

We note that every topos X can be regarded as a site relative to its canonical
topology. In this case, a collection of morphisms {Ui → V }i∈I is a covering of V
if and only if it is jointly surjective, and every sheaf over X is representable,
so that X ∼= Sh(X). This allows us to define objects of X by specifying the
sheaf that they represent, and to define morphisms between objects by defining
them on sections.

The symbols ∅X and ∗X will be used for the initial and final objects of X,
respectively. When X = Sh(X) for a site X , the sheaf ∅X assigns an empty set
to every non-initial object of X , and ∗X is the sheaf assigning a singleton to
every object in X . The subscript X will dropped when it may be understood
from the context.

For every pair of objects A,U of X the U -sections of A are

A(U) := HomX(U,A)

and the global sections of A are H0(X, A) = ΓA = ΓXA := A(∗). We will write
AU = A× U , and will regard AU as an object of the slice category X/U .

By a group G in X we will mean a group object in X. In this case, the U -
sections G(U) form a group for all objects U of X. Similar conventions will
apply to abelian groups, rings, G-objects, and so on.

If R is a ring object in some topos, then µ2,R will denote the object of square-
roots of 1 in R, that is, the object given sectionwise by µ2,R(U) = {x ∈ R(U) :
x2 = 1}. The bald notation µ2 will denote the constant sheaf {+1,−1}.

2.2 Torsors

Definition 2.1. Let X be a site and let G be a sheaf of groups on X . A
(right) G-torsor is a sheaf P on X equipped with a right action P × G → P
such that P is locally isomorphic to G as a right G-object.

Equivalently, and intrinsically to the topos X := Sh(X), a (right) G-torsor is
an object P of X equipped with a (right) G-action m : P ×G→ P such that
the unique morphism P → ∗ is an epimorphism and such that the morphism

P ×G π1×m−→ P × P is an isomorphism. See [Gir71, Déf. III.1.4.1] where more
general torsors over objects S of X are defined; our definition is that of torsors
over the terminal object.

The equivalence of the two definitions of “torsor” is given by [Gir71,
Prop. III.1.7.3].
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The category of G-torsors, with G-equivariant isomorphisms as morphisms, will
be denoted

Tors(X, G).

A G-torsor P is trivial if P ∼= G as right G-objects, and an object U is said
to trivialize P if PU ∼= GU as GU -objects. The latter holds precisely when
P (U) 6= ∅.
Recall that if P is aG-torsor andX is a left G-object inX, then P×GX denotes
the quotient of P×X by the equivalence relation P×G×X → (P×X)×(P×X)
given by (p, g, x) 7→ ((pg, x), (p, gx)) on sections. We shall sometimes denote
P ×G X by PX and call it the P -twist of X . We remark that X and PX
are locally isomorphic in the sense that there exists a covering U → ∗ in X

such that XU
∼= PXU — take any U such that GU ∼= PU . If X posses some

additional structure, for instance if X is an abelian group, and G respects
this structure, then PX also posses the same structure and the isomorphism
XU
∼= PXU respects the additional structure. The general theory outlined here

is established precisely in [Gir71, Chap. III].

Remark 2.2. There is another plausible definition of “torsor” on a site X ,
particularly when the topology is subcanonical and when the category X has
finite products—i.e., X is a standard site. That is, one modifies the definition
in 2.1 by requiring the objects G and P to be objects of the site X . These
are the representable torsors as distinct from the sheaf torsors defined above.
We will not consider the question of representability in this paper beyond the
following remark: Suppose X is a scheme and G is a group scheme over X .
Then G represents a group sheaf on the big flat site of X , also denoted G. If
G → X is affine, then all sheaf G-torsors are representable by an X-scheme
[Mil80, Thm. III.4.3].

2.3 Cohomology of Abelian Groups

The functor H0 sending an abelian group A in X to its global sections is left
exact. The i-th right derived functor of H0 is denoted Hi(X, A), as usual. If X
is clear from the context, we shall simply write Hi(A). When X = Sh(Xét)
for a scheme X , we write Hi(X, A) as Hiét(X,A), and likewise for other sites
associated with X .
In the sequel, we shall make repeated use of Verdier’s Theorem, quoted below,
which provides a description of cohomology classes in terms of hypercoverings.
We recall some details, and in doing so, we set notation. One may additionally
consult [deJ17, Tag 01FX], [DHI04] or [AGV72b, Exp. V.7].

Let ∆ denote the category having {{0, . . . , n} |n = 0, 1, 2, . . .} as its objects
and the non-decreasing functions as its morphisms. Recall that a simplicial
object in X is a contravariant functor U• : ∆ → X. For every 0 ≤ i ≤ n,
we write Un = U•({0, . . . , n}) and set dni = U•(δ

n
i ) and sni = U•(σ

n
i ), where

δni : {0, . . . , n−1} → {0, . . . , n} is the non-decreasing monomorphism whose im-
age does not include i and σni : {0, . . . , n+1} → {0, . . . , n} is the non-decreasing
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epimorphism for which i has two preimages. We shall write di, si instead of
dni , s

n
i when n is clear from the context. Since the morphisms {σni , δni }i,n gen-

erate ∆, in order to specify a simplicial object U• in X, it is enough to specify
objects {Un}n≥0 and morphisms sni : Un → Un+1, d

n
i : Un → Un−1 for all

0 ≤ i ≤ n. Of course, the morphisms {sni , dni }i,n have to satisfy certain rela-
tions, which can be found in [May92], for instance.
For n ≥ 0, let ∆≤n denote the full subcategory of ∆ whose objects are
{{0}, . . . , {0, . . . , n}}. The restriction functor U• 7→ U≤n : Fun(∆op,X) →
Fun(∆op

≤n,X) admits a right adjoint called the n-th coskeleton and denoted
coskn. We also write coskn(U•) for coskn(U≤n). The simplicial object U• is
called a hypercovering (of the terminal object) if U0 → ∗ is a covering and
for all n ≥ 0, the map Un+1 → coskn(U•)n+1 induced by the adjunction
is a covering. For example, when n = 0, the latter condition means that
(d10, d

1
1) : U1 → U0 × U0 is a covering.

Hypercoverings form a category in the obvious manner, morphisms being nat-
ural transformations.

Example 2.3. Let U → ∗ be a morphism in X. Define Un = U × · · · × U
(n+1 times), let dni : Un → Un−1 be the projection omitting the i-th copy of U
and let sni : Un → Un+1 be given by (u0, . . . , un) 7→ (u0, . . . , ui, ui, . . . , un) on
sections. These data determine a simplicial object U• which is a hypercovering
if U → ∗ is a covering. In this case, the map Un+1 → coskn(U•)n+1 is an
isomorphism for all n. The hypercovering U• is called the Čech hypercovering
associated to U . If U• is an arbitrary hypercovering, then cosk0(U•) is the Čech
hypercovering associated to U0.

The following lemma is fundamental.

Lemma 2.4 ([deJ17, Tag 01GJ] or [AGV72b, Thm. V.7.3.2]). Let U• be a hy-
percovering and let V → Un be a covering. Then there exists a hypercovering
morphism U ′

• → U• such that U ′
n → Un factors through V → Un.

Let A be an abelian group object of X. With any hypercovering U• in X

we associate a cochain complex C•(U•, A) defined by Cn(U•, A) = A(Un) for
n ≥ 0 and Cn(U•, A) = 0 otherwise. The coboundary map dn : Cn(U•, A) →
Cn+1(U•, A) is given by dn(a) =

∑n+1
i=0 (−1)id∗i (a), as usual; here d∗i = (dn+1

i )∗ :
A(Un) → A(Un+1) is the map induced by dn+1

i : Un+1 → Un. The cocycles,
coboundaries, and cohomology groups of the complex are denoted Zn(U•, A),
Bn(U•, A) and Hn(U•, A). Any morphism of hypercoverings U ′

• → U• induces
a morphism Hn(U•, A)→ Hn(U ′

•, A) in the obvious manner.

Theorem 2.5 (Verdier [AGV72b, Thm. V.7.4.1]). Let X be a topos and A an
abelian group object in X. The functors

A 7→ Hn(X, A) and A 7→ colim
U•

Hn(U•, A)

from the category of abelian groups in X to the category of abelian groups are
naturally isomorphic. Here, the colimit is taken over the category of hypercov-
erings.
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Remark 2.6. If we were to take the colimit in the theorem over the category of
the Čech hypercoverings, then the result would be the Čech cohomology of A.
Consequently, the Čech cohomology and the derived-functor cohomology agree
when every hypercovering admits a map from a Čech hypercovering. This is
known to be the case whenX = Sh(X) for a paracompact Hausdorff topological
spaceX [God73, Thm. 5.10.1], orX = Sh(Xét) for a noetherian schemeX such
that any finite subset of X is contained in an open affine subscheme [Art71, §4].
A short exact sequence of abelian groups 1 → A′ → A → A′′ → 1 in X gives
rise to a long exact sequence of cohomology groups. By the second proof of
[deJ17, Tag 01H0], quoted as Theorem 2.5 here, the connecting homomorphism
δn : Hn(A′′) → Hn+1(A′) can be described as follows: Let α′′ ∈ Hn(A′′)
be a cohomology class represented by a cocycle a′′ ∈ Zn(U•, A

′′) for some
hypercovering U•. Since A → A′′ is an epimorphism, we can find a covering
V → Un such that a′′ ∈ A′′(Un) is the image of some a ∈ A(V ). By Lemma 2.4
there exists a morphism of hypercoverings V• → U• such that Vn → Un factors
through V → Un. We replace a with its image in A(Vn). One easily checks
that the image of dn(a) ∈ Cn+1(V•, A) in both Cn+1(V•, A

′′) and Cn+2(V•, A)
is 0, and hence dn(a) ∈ Zn+1(V•, A

′). Now, δn(α′′) is the cohomology class
determined by dn(a) ∈ Zn+1(V•, A

′).

2.4 Cohomology of Non-Abelian Groups

For a group object G of X, not necessary abelian, we define the pointed set
H1(X, G) by hypercoverings. Given a hypercovering U• in X, let Z1(U•, G) be
the set of elements g ∈ G(U1) satisfying

d∗2g · d∗0g · d∗1g−1 = 1 (2.1)

in G(U2); here d
∗
i = (d2i )

∗ : G(U1) → G(U2) is induced by d2i : U2 → U1. Two
elements g, g′ ∈ Z1(U•, G) are said to be cohomologous, denoted g ∼ g′, if
there exists x ∈ G(U0) such that g = d∗1x · g′ · d∗0x−1. We define the pointed set
H1(U•, G) to be Z1(U•, G)/∼ with the equivalence class of 1G(U1) as a distin-
guished element. A morphism of hypercoverings U ′

• → U• induces a morphism
of pointed sets H1(U•, G)→ H1(U ′

•, G). Now, following the literature, we define

H1(X, G) := colim
U•

H1(U•, G),

where the colimit is taken over the category of all hypercoverings in X. We
note that some texts take the colimit over the category of Čech hypercoverings,
see Example 2.3, but this makes no difference thanks to the following lemma.

Lemma 2.7. Let U• be a hypercovering. Then the maps Z1(cosk0(U•), G) →
Z1(U•, G) and H1(cosk0(U•), G) → H1(U•, G), induced by the canonical mor-
phism U• → cosk0(U•), are isomorphisms.

Proof. The proof shall require various facts about coskeleta. We refer the
reader to [deJ17, Tag 0AMA] or any equivalent source for proofs.
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Recall from Example 2.3 that cosk0(U•) is nothing but the Čech hypercovering
associated to U0. Since U• is a hypercovering, (d0, d1) : U1 → cosk0(U•)1 =
U0 × U0 is a covering, and hence the induced map G(U0 × U0) → G(U1)
is injective. Since the map Z1(cosk0(U•), G) → Z1(U•, G) is a restric-
tion of the latter, it is also injective. This implies that if two cocycles in
Z1(cosk0(U•), G) become cohomologous in Z1(U•, G), then they are also coho-
mologous in Z1(cosk0(U•), G), so H1(cosk0(U•), G) → H1(U•, G) is injective.
It is therefore enough to show that Z1(cosk0(U•), G)→ Z1(U•, G) is surjective.

We first observe that the canonical map Z1(cosk1(U•), G) → Z1(U•, G) is an
isomorphism. This follows from the fact that cosk1(U•)1 = U1 and U2 →
cosk1(U•)2 is a covering, hence (2.1) is satisfied in G(U2) if and only if it is
satisfied inG(cosk1(U•)2). Since cosk0(cosk1(U•)) = cosk0(U•), we may replace
U• with cosk1(U•). In this case, the construction of cosk1 implies that U2 is
characterized by

U2(X) = {(e01, e02, e12,v0, v1, v2) ∈ U1(X)3 × U0(X)3 :

d0eij = vj and d1eij = vi for all legal i, j} .

for all objects X of X. The maps d0, d1, d2 : U2 → U1 are then given by
taking the e12-part, e02-part, and e01-part, respectively. Geometrically, U2 is
the object of simplicial morphisms from the boundary of the 2-simplex to U•.

Let g ∈ Z1(U•, G) ⊆ G(U1). We claim that g descends along (d0, d1) to
g′ ∈ G(U0 × U0). Write V = U1 ×U0×U0

U1 and let π1, π2 denote the first and
second projections from V onto U1. We need to show that π∗

1g = π∗
2g in G(V ).

For an object X , the X-sections of V can be described by

V (X) = {(e01, e′01, v0, v1) ∈ X(U1)
2 ×X(U0)

2 : d0(e01) = d0(e
′
01) = v1,

d1(e01) = d1(e
′
01) = v0} .

Define Ψ : V → U2 by

Ψ(e01, e
′
01, v0, v1) = (e01, e

′
01, s0v1, v0, v1, v1)

on sections. One readily checks that d0Ψ = s0d0π1 = d0s1π1, d1Ψ = π2 and
d2Ψ = π1. Now, applying Ψ∗ : G(U2) → G(V ) to (2.1), we arrive at the
equation π∗

1g · π∗
1d

∗
0s

∗
1g · π∗

2g
−1 = 1 in G(V ), and applying s∗1 : G(U2)→ G(U1)

to (2.1), we find that g ·s∗1d∗0g ·g−1 = 1 in G(U1). Both equations taken together
imply that π∗

1g = π∗
2g in G(V ), hence our claim follows.

To finish the proof, it is enough to show that g′ is a 1-cocycle. This will
follow from the fact that g is a 1-cocycle if we show that the canonical
map U2 → cosk0(U•)2 = U3

0 is a covering. The latter map is given by
(e01, e02, e12, v0, v1, v2) 7→ (v0, v1, v2) on sections. Since (d0, d1) : U1 → U0

is a covering, for every pair of vertices v0, v1 ∈ U0(X), there exists a covering
X ′ → X and an edge e01 ∈ U1(X

′) satisfying d0e01 = v1, d1e01 = v0. This
easily implies that U2 → U3

0 is locally surjective, finishing the proof.
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The following proposition summarizes the main properties of H1(X, G). As
before, we shall suppress X, writing H1(G), when it is clear form the context.

Proposition 2.8. Let 1 → G′ → G → G′′ → 1 be a short exact sequence of
groups in X.

(i) H1(G) = H1(X, G) is naturally isomorphic to the set of isomorphism
classes of G-torsors; the distinguished element of H1(G) corresponds to
the isomorphism class of the trivial torsor.

(ii) There is a long exact sequence of pointed sets

1→ H0(G′)→ H0(G)→ H0(G′′)
δ1−→ H1(G′)→ H1(G)→ H1(G′′) .

This exact sequence is functorial in 1 → G′ → G → G′′ → 1, i.e., a
morphism from it to another short exact sequence of groups gives rise a
morphism between the corresponding long exact sequences.

(iii) When G′ is central in G, one can extend the exact sequence of (ii) with
an additional morphism δ2 : H1(G′′)→ H2(G′), which is again functorial
in 1→ G′ → G→ G′′ → 1.

(iv) When G′, G,G′′ are abelian, the exact sequence of (iii) is canonically iso-
morphic to the truncation of the usual long exact sequence of cohomology
groups associated to 1 → G′ → G → G′′ → 1. In particular, H1(G)
defined here is naturally isomorphic to H1(G) defined in 2.3 and regarded
as a pointed set with distinguished element 1.

The proposition is well known, but Giraud [Gir71, IV, 4.2.7.4, 4.2.10] is the only
source we are aware of that treats all parts in the generality that we require.
Since the treatment in [Gir71] is somewhat obscure, and since we shall need
the definition of the maps δ1 and δ2 in the sequel, we include an outline of
the proof here. Note that it is easier to prove (i) using the definition of H1(G)
via Čech hypercoverings, while it is easier to prove (iii) using the definition of
H1(G) via arbitrary hypercoverings, and these definitions are equivalent thanks
to Lemma 2.7.

Proof (sketch). (i) Let P be a G-torsor. Choose a covering U0 → ∗X such that
P (U0) 6= ∅ and fix some x ∈ P (U0). Form the Čech hypercovering U• associated
to U0. Then there exists a unique g ∈ G(U1) such that d∗1x · g = d∗0x in P (U1).
We leave it to the reader to check that g ∈ Z1(U•, G) and the construction
P 7→ g induces a well-defined map from the isomorphism classes of Tors(G) to
H1(G) taking the trivial G-torsor to the special element of H1(G).

In the other direction, let α ∈ H1(G). By Lemma 2.7, α is represented by
some g ∈ Z1(U•, G) where U• is a Čech hypercovering. Define P to be the
object of X characterized by P (V ) = {x ∈ G(U0 × V ) : gV · d∗0x = d∗1x}; here,
d∗i : G(U0 × V )→ G(U1 × V ) is induced by di × id : U1 × V → U0 × V . There
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is a right G-action on P given by (x, h) 7→ x · hU0
on sections. We leave it to

the reader to check that P is indeed a G-torsor, and the assignment α 7→ P
defines an inverse to the map of the previous paragraph. In particular, note
that P → ∗X is a covering because g ∈ G(U0); use the fact that U• is a Čech
hypercovering.

(ii) Define δ1 : H0(G′′) → H1(G′) as follows: Let g′′ ∈ H0(G′′). There is a
covering U0 → ∗ such that g′′ lifts to some g ∈ G(U0). One easily checks that
g′ := d∗0g ·d∗1g−1 ∈ G(U1) lies in Z

1(G′, U•) where U• is the Čech hypercovering
associated to U0. We define δ1g′′ to be the cohomology class represented by
g′, and leave it to the reader to check that this is well-defined. All other maps
in the sequence are defined in the obvious manner and the exactness is easy to
check.

(iii) Define δ2 : H1(G′′) → H2(G′) as follows: Let α ∈ H1(G′′) be represented
by g′′ ∈ Z1(U•, G

′′) where U• is a hypercovering. There is a covering V → U1

such that g′′ lifts to some g ∈ G(V ). By Lemma 2.4, there is a morphism of
hypercoverings U ′

• → U• such that U ′
1 → U1 factors through V → U1. We

replace g with its image in G(U ′
1). Let g′ := d∗2g · d∗0g · d∗1g−1 ∈ G(U ′

1). It is
easy to check that g′ lies in G′(U ′

1) and defines a 2-cocycle of G′ relative to U ′
•.

We define δ2α to be the cohomology class represented by g′ ∈ Z2(U ′
•, G

′), and
leave it to the reader to check that this is well-defined. The exactness of the
sequence at H1(G′′) is straightforward to check.

(iv) Verdier’s Theorem gives rise to an obvious isomorphism between H1(G) as
defined here and H1(G) as defined in 2.3. It is immediate from the definitions
that this isomorphism also induces an isomorphism between the long exact
sequences; see the proofs of (ii), (iii) and the comment at the end of 2.3.

2.5 Azumaya Algebras

Let R be a ring object of X and let n be a positive integer. Recall that an
AzumayaR-algebra of degree n is an R-algebraA inX that is locally isomorphic
to Mn×n(R), i.e., there exists a covering U → ∗ such that AU ∼= Mn×n(RU )
as RU -algebras. The Azumaya R-algebras of degree n together with R-algebra
isomorphisms form a category which we denote by

Azn(X, R) .

If A′ is another Azumaya R-algebra, we let HomR-alg(A,A
′) denote the subob-

ject of the internal mapping object (A′)A of X consisting of R-algebra homo-
morphisms. We define the group object AutR-alg(A) similarly.

Remark 2.9. We have defined here Azumaya algebras of constant degree only.
When X is connected, these are all the Azumaya algebras, but in general, one
has to allow the degree n to take values in the global sections of the sheaf N
of positive integers on X. For any such n one can define Mn×n(R) and the
definition of Azumaya algebras of degree n extends verbatim. We ignore this
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technicality, both for the sake of simplicity, and also since it is unnecessary for
connected topoi, which are the topoi of interest to us.

Let OX be a ring object in X. Recall that X is locally ringed by OX, or OX

is a local ring object in X, if for any object U in X and {ri}i∈I ⊆ OX(U)
with OX(U) =

∑

i riOX(U), there exists a covering {Ui → U}i∈I such that
ri ∈ OX(Ui)

× for all i ∈ I. In fact, one can take Ui = ∅X for almost all i.
We remark that the condition should also hold when I = ∅, which implies that
OX(U) cannot be the zero ring when U ≇ ∅X. When X has enough points,
the condition is equivalent to saying that for every point i : pt → X, the ring
i∗OX is local (the zero ring is not considered local).
Suppose that OX is a local ring object. Then the group homomorphism
GLn(OX) → AutOX-alg(Mn×n(OX)) given by a 7→ [x 7→ axa−1] on sec-
tions is surjective, [Gir71, V.§4]. This induces an isomorphism PGLn(OX) :=
GLn(OX)/O×

X
→ AutOX-alg(Mn×n(OX)), which will be used to freely identify

the source and target in the sequel. The following proposition is well estab-
lished, again see [Gir71, V.§4].

Proposition 2.10. If OX is a local ring object, then there is an equivalence of
categories

Tors(X,PGLn(OX))
∼−→ Azn(X,OX)

given by the functors

P 7→ P ×PGLn(OX) Mn×n(OX) and A 7→ HomOX-alg(Mn×n(OX), A).

The proposition holds for any ring object OX of X if one replaces the group
object PGLn(OX) with AutOX-alg(Mn×n(OX)).

We continue to assume that OX is a local ring object. By Proposition 2.8(iii),
the short exact sequence 1→ O×

X
→ GLn(OX)→ PGLn(OX)→ 1 gives rise to

a pointed set map H1(PGLn(OX)) → H2(O×
X
); here, H∗(−) = H∗(X,−). As

usual, the Brauer group of OX is

Br(X,OX) = Br(OX) :=
⋃

n∈N

im
(

H1(PGLn(OX))→ H2(O×
X
)
)

the addition being that inherited from the group H2(O×
X
). Since Azumaya

OX-algebras correspond to PGLn(OX)-torsors, which are in turn classified by
H1(X,PGLn(OX)), any Azumaya OX-algebra A gives rise to an element in
Br(OX), denoted [A] and called the Brauer class of A. By writing A′ ∈ [A]
or saying that A′ is Brauer equivalent to A, we mean that A′ is an Azumaya
OX-algebra with [A′] = [A]. For more details, see [Gro68b] or [Gir71, Chap. V,
§4].
Example 2.11. Let X be a topological space, let X = Sh(X) and let OX be the
sheaf of continuous functions from X to C, denoted C(X,C). Then Azumaya
OX-algebra are topological Azumaya algebras over X as studied in [AW14a].
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Example 2.12. An Azumaya algebra A of degree n over a scheme X is a sheaf of
OX -algebras that is locally, in the étale topology, isomorphic as an OX -algebra
to Matn×n(OX), [Gro68b, Para. 1.2]

Example 2.13. Let R be a ring. An Azumaya R-algebra of degree n is an R-
algebra A for which there exists a faithfully flat étale R-algebra R′ such that
A ⊗R R′ ∼= Mn×n(R

′) as R′-algebras. This is equivalent to the definition of
Example 2.12 in the case where X = SpecR by [Gro68b, Thm. 5.1, Cor. 5.2].
Consult [Knu91, III.§5] for other equivalent definitions and cf. Remark 2.9.

3 Rings with Involution

In this section we collect a number of results regarding involutions of rings that
will be needed later in the paper. The main result is Theorem 3.16, which gives
the structure of those rings with involution (R, λ) for which the fixed ring of λ
is local. It is shown that in this case, R is a local ring in its own right, or R is
a quadratic étale algebra over the fixed ring of λ. In particular, the ring R is
semilocal.

Throughout, involutions will be written exponentially and the Jacobson radical
of a ring R will be denoted Jac(R).

3.1 Quadratic Étale Algebras

Definition 3.1. Let S be a ring. A commutative S-algebra R is said to
be finite étale of rank n if R is a locally free S-module of rank n, and the
multiplication map µ : R ⊗S R → R may be split as a morphism of R ⊗S R-
modules, where R is regarded as an R ⊗S R-algebra via µ. Finite étale S-
algebras of rank 2 will be called quadratic étale algebras.

Remark 3.2. One common definition of étale for commutative S-algebras is
that R should be flat over S, of finite presentation as an S-algebra, and un-
ramified in the sense that ΩR/S , the module of Kähler differentials, vanishes.
This is the definition in [Gro67, Sec. 17.6] in the affine case. Our finite étale
algebras of rank n are precisely the étale algebras which are locally free of
rank n.

Indeed, if R is locally free of rank n over S, then R is also finitely presented
and flat as an S-module [deJ17, Tag 00NX], and hence of finite presentation
as an R-algebra [Gro64, Prop. 1.4.7]. Furthermore, µ : R ⊗S R → R admits a
splitting ψ if and only if the R⊗S R-ideal kerµ is generated by an idempotent,
namely 1−ψ(1R). For finitely generated S-algebras R, the existence of such an
idempotent is equivalent to saying R is unramified over S by [deJ17, Tag 02FL].

Example 3.3. Let f ∈ S[x] be a monic polynomial of degree n. It is well known
that S[x]/(f) is a finite étale S-algebra of rank n if and only if the discriminant
of f is invertible in S. In particular, S[x]/(x2 + αx + β) is a quadratic étale
S-algebra if and only if α2 − 4β ∈ S×.
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Every quadratic étale S-algebra R admits a canonical S-linear involution λ
given by rλ = TrR/S(r) − r, see [Knu91, I.§1.3.6]. The fixed ring of λ is S
and λ is the only S-automorphism of R with this property. Moreover, when S
is connected, it is the only non-trivial S-automorphism of R.

Proposition 3.4. Let S be a local ring with maximal ideal m and residue
field k, let R be a quadratic étale S-algebra, and let λ be the unique non-trivial
S-automorphism of R. Then:

(i) Jac(R) = Rm

(ii) R := R/Rm is either a separable quadratic field extension of k, or R ∼=
k × k. The automorphism that λ induces on R is the unique non-trivial
k-automorphism of R.

(iii) (“Hilbert 90”) For every r ∈ R× with rλr = 1, there exists a ∈ R× such
that r = a−1aλ.

Proof. It is clear that R is a quadratic étale k-algebra, and hence a product
of separable field extensions of k [DI71, Thm. II.2.5]. This implies the first
assertion of (ii) as well as Jac(R) ⊆ Rm. The inclusion Rm ⊆ Jac(R) holds
because R is a finite S-module [Rei75, Thm. 6.15], so we have proved (i). The
last assertion of (ii) follows from the fact that λ is given by x 7→ TrR/S(x)− x.
Let r denote the image of r ∈ R in R. To prove (iii), we first claim that there

is x ∈ R with x+xλr ∈ R×
. This is easy to see if R = k×k. Otherwise, R is a

field and such x exists unless x = −xλr for all x ∈ R. The latter forces r = −1
(take x = 1) and λR = idR, which is impossible by (ii), so x exists.
Let x ∈ R be a lift of x. Then t := x + xλr is a lift of x + xλr, which implies
t ∈ R× by (i). Since rλ = r−1, it is the case that tλr = t, and so r = aλa−1

with a = t−1.

3.2 Quadratic Étale Algebras in Topoi

Our definition of a “quadratic étale algebra” extends directly to the case
where S is a local ring object in a topos X.

Definition 3.5. Given a ring object S in a topos X, we say an S-algebra R
is a finite étale S-algebra of rank n if R is a locally free S-module of rank n
such that the multiplication map µ : R⊗S R→ R may be split as a morphism
of R ⊗S R-algebras. Finite étale S-algebras of rank 2 will be called quadratic
étale algebras.

We alert the reader that if R is a quadratic étale S-algebra, then it is not true in
general that R(U) is a quadratic étale S(U)-algebra for all objects U of X. In
fact R(U) may not be locally free of rank 2 over S(U). Rather, one can always
find a covering V → U such that R(V ) is a quadratic étale S(V )-algebra;
for instance, one may take any V → U such that RV is a free SV -module of
rank 2. We further note that in general there is no covering U → ∗ such that
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RU ∼= SU × SU as SU -algebras, e.g. let X = pt (the topos of sets) and take S
and R to be Q and Q[

√
2] respectively. While µ : R ⊗S R → R is easily seen

to be split, there is no covering U → ∗ such that RU ∼= SU × SU .
As one might expect, being a finite étale algebra of rank n is a local property
in that it may be tested on a covering.

Lemma 3.6. Let S be a ring in X, let R be an S-algebra and let U → ∗ be a
covering. Then R is a finite étale S-algebra of rank n if and only if RU is a
finite étale SU -algebra of rank n in X/U .

Proof. Write M = R ⊗S R. The only non-trivial thing to check is that if the
multiplication map µU : MU → RU admits a splitting ψ : RU → MU in X/U ,
then so does µ : M → R in X. Let π1, π2 : U × U → U denote the first and
second projections, and let π∗

i ψ : RU×U → MU×U denote the pullback of ψ
along πi. We claim that µU×U :MU×U → RU×U admits at most one splitting.
Provided this holds, we must have π∗

1ψ = π∗
2ψ and so ψ descends to a map

ψ0 : R→M splitting µ as required.
The claim can be verified on the level of sections, namely, it is enough to check
that any ring surjection µ : A→ B admits at most one A-linear splitting. If ψ
is such a splitting and e = ψ(1B), then ψ(1B · α) = αe for all α ∈ A, so ψ
is determined by the idempotent e. It is easy to check that (1 − e)A = kerµ
and that e is the only idempotent with this property, hence e is determined
by µ.

Example 3.7. Let π : X → Y be a quadratic étale morphism of schemes. That
is, π is affine and Y can be covered by open affine subschemes {Ui}i such that
the ring map corresponding to π : π−1(Ui) → Ui is quadratic étale for all i.
Then π∗OX is a quadratic étale OY -algebra in both Sh(Yét) and Sh(YZar); this
can be checked using Lemma 3.6.

Example 3.8. Let π : X → Y be a double covering of topological spaces and
let C(X,C) and C(Y,C) denote the sheaves of continuous C-values functions on
X and Y , respectively. Then π∗C(X,C) is a quadratic étale C(Y,C)-algebra in
Sh(Y ); again this can be checked with Lemma 3.6.

3.3 Rings with Involution

Throughout, R is an ordinary commutative ring, λ : R → R is an involution,
and S is the fixed ring of λ. The purpose of this section is twofold. First, we
show that the locus of primes p ∈ SpecS such that Rp is a quadratic étale over
Sp is open in SpecS. Second, we study the structure of R when S is local,
showing, in particular, that R is quadratic étale over S, or R is local.
There are two pitfalls in the study of R over S. First of all, R may not be finite
over S.

Example 3.9. Let I be any set, let R be the commutative C-algebra freely
generated by {xi}i∈I , and let λ : R → R be the C-linear involution sending
each xi to −xi. Then the fixed ring of λ is S = C[xixj | i, j ∈ I]. Let m =
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〈xixj | i, j ∈ I〉. Since R/mR ∼= C[xi | i ∈ I]/〈xixj | i, j ∈ I〉 and S/m ∼= C, it
follows that R cannot be generated by fewer than |I| elements as an S-algebra.
Thus, when I is infinite, R is not finite over S. The same applies to the S/m-
algebra R/mR, even though S/m is noetherian. We further note that when
1 < |I| < ℵ0, the ring R is a smooth affine C-algebra, but S is singular.

Second, the formation of fixed rings may not commute with extension of scalars.
That is, if S′ is a commutative S-algebra, then S′ need not be the subring of
λ-fixed elements in R′ := R⊗S S′. In fact, S′ → R′ is a priori not one-to-one.
Nevertheless, S′ → R′ restricts to an isomorphism S′ → {r ∈ R′ : r = rλ}
if S′ is flat over S, or 2 ∈ S×. To see this, consider the exact sequence of

S-modules 0 → S → R
idS−λ−−−−→ R. The statement amounts to showing that it

remains exact after tensoring with S′. This is clear if S′ is flat, and if 2 ∈ S×,
then it follows because S → R is split by r 7→ 1

2 (r + rλ).

Remark 3.10. Voight [Voi11b, Corollary 3.2] showed that if R is locally free
of rank at least 3 over S and 2 is not a zerodivisor in S, then R decomposes
as S ⊕ M where M is an ideal of R such that M2 = 0 and λ|M = −idM .
Voight calls such (commutative) rings with involution exceptional. This shows
that if λ : R → R is not exceptional then either R is not locally free over S,
or rankS R ≤ 2. The case R = C[xi | i ∈ I]/〈xixj | i, j ∈ I〉 and S = C

featuring in Example 3.9 is an example of an exceptional ring with involution,
and essentially the only one if S = C.

Having warned the reader of these pitfalls, we return to the main topic of the
section, which is the study of R over S.

Lemma 3.11. Assume that there exists r ∈ R with r − rλ ∈ R×. Then R is a
quadratic étale S-algebra.

Proof. For a ∈ R, write ta = a+ aλ and na = aλa, and observe that ta, na ∈ S
and a2 − taa+ na = 0.
Suppose that R = S[r]. Since r2 − trr + nr = 0, it follows that R = S + Sr.
Furthermore, if αr ∈ S for α ∈ S, then 0 = (αr)− (αr)λ = α(r− rλ), so α = 0
because r−rλ ∈ R×. It follows that the S-algebra map S[x]/(x2−trx+nr)→ R
sending x to r is an isomorphism. Since t2r−4nr = (r−rλ)2 ∈ S×, we conclude
that R is a quadratic étale S-algebra.
We now show that R = S[r]. Write u = r − rλ = 2r − tr ∈ S[r] and a = u−1r.
One verifies that a = n−1

u (nr − r2), so that a ∈ S[r]. Since uλ = −u, we
have a + aλ = u−1r − u−1rλ = u−1u = 1. Let b ∈ R and b′ = b − a(b + bλ).
Straightforward computation shows that b′λ = −b′, hence (u−1b′)λ = u−1b′

and u−1b′ ∈ S. It follows that b′ ∈ uS ⊆ S[r] and thus, b = b′ + a(b + bλ) ∈
S[r] + aS = S[r].

Lemma 3.12. Suppose that S is local and R is a quadratic étale S-algebra.
Then there exists r ∈ R such that r − rλ ∈ R×.

Proof. Let m be the maximal ideal of S. By Proposition 3.4(i), we may replace
R with R/mR. The claim then follows easily from Proposition 3.4(ii).
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Corollary 3.13. The set of prime ideals p ∈ SpecS such that Rp is a
quadratic étale Sp-algebra is open in SpecS. Equivalently for every p ∈ SpecS
such that Rp is a quadratic étale Sp-algebra, there exists s ∈ S − p such that
Rs is a quadratic étale Ss-algebra.

Proof. By Lemma 3.12, there exists r ∈ Rp with r − rλ ∈ R×
p . We can find

s1 ∈ S − p and a, b ∈ R such that r = as−1
1 and r − rλ = bs−1

1 in Rp. Since
bs−1

1 ∈ R×
p , we can find s2 ∈ S − p such that bs−1

1 is invertible in Rs1s2 . Now
take s = s1s2 and apply Lemma 3.11 to Rs with r = as−1

1 .

Remark 3.14. Corollary 3.13 is well known when R is locally free of finite rank
over S; see, for instance, [deJ17, Tag 0C3J].

We momentarily consider an arbitrary finite group acting on R.

Proposition 3.15. Let G be a finite group acting on a ring R and let S be the
subring of elements fixed under G. If S is local then the maximal ideals of R
form a single G-orbit. In particular, R is semilocal.

Proof. Let m denote the maximal ideal of S and, for the sake of contradiction,
suppose p and q are maximal ideals of R lying in distinct G-orbits. Let p′ =
⋂

g∈G g(p) and q′ =
⋂

g∈G g(q). Since g(p) + h(q) = R for all g, h ∈ G, we
have p′ + q′ = R. Using the Chinese Remainder Theorem, choose r ∈ q′ such
that r ≡ 1 mod p′. Replacing r with

∏

g∈G g(r), we may assume that r ∈ S.
Since p′ ∩ S and q′ ∩ S are both contained in m, this means that r lies both in
(1 + p′) ∩ S ⊆ 1 +m and in q′ ∩ S ⊆ m, which is absurd.

We derive the main result of this section by specializing Proposition 3.15 to
the case of a group with 2 elements.

Theorem 3.16. Suppose R is a ring and λ : R→ R is an involution with fixed
ring S such that S is local. Let R denote R/Jac(R) and λ the restriction of λ
to R.

(i) If λ 6= id, then R is a quadratic étale algebra over S.

(ii) If λ = id, then R is a local ring that is not quadratic étale over S.

In either case, R is semilocal.

Proof. Let M be a maximal ideal of R. Taking G = {1, λ} in Proposition 3.15,
we see that the maximal ideals of R are {M,Mλ}. We consider the cases
M 6= Mλ and M = Mλ separately.
Suppose that M 6= Mλ. By the Chinese Remainder Theorem, R = R/(M ∩
Mλ) ∼= R/M × R/Mλ, and under this isomorphism, λ acts by sending (a +
M, b +Mλ) to (bλ +M, aλ +Mλ). This implies that λ 6= id, so we are in the
situation of (i). Furthermore, by taking a = 1 and b = 0, we see that there

exists r ∈ R such that r − rλ ∈ R×
, or equivalently, r − rλ ∈ R×. Thus, by

Lemma 3.11, R is quadratic étale over S.
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Suppose now that M = Mλ. Then R is local and R = R/M is a field. If λ 6= id,

then there exists r ∈ R with r − rλ ∈ R×
and again we find that R is quadratic

étale over S. On the other hand, if λ = id, then R cannot be quadratic étale
over S by Proposition 3.4(ii).
We have verified (i) and (ii) in both cases, so the proof is complete.

Notation 3.17. A henselian ring is a local ring in which Hensel’s lemma,
[Eis95, Thm. 7.3], holds. A strictly henselian ring is a henselian ring for which
the residue field is separably closed.

Lemma 3.18. Let G be a finite group acting on a ring R and let S be the subring
of R fixed under G. If S is local with maximal ideal m, then mR ⊆ Jac(R). In
particular, mR ∩ S = m.

Proof. Let a ∈ m. To prove mR ⊆ Jac(R), we need to show that aR ⊆ Jac(R),
or equivalently, that 1 + aR consists of invertible elements. Let b ∈ R and let
{g1, . . . , gn} denote the distinct elements of G. Then

∏

g∈G

g(1 + ab) = 1 + σ1(g1b, . . . , gnb)a+ σ2(g1b, . . . , gnb)a
2 + . . .

where σi denotes the i-th elementary symmetric polynomial on n letters. Since
a ∈ m, and since σi(g1b, . . . , gnb) is invariant under G, the right hand side lies
in 1 +m ⊆ S×. Thus, 1 + ab ∈ R×.

Corollary 3.19. Let R be a ring, let λ : R → R be an involution, and let S
denote the fixed ring of λ. Suppose that S is a strictly henselian ring with
maximal ideal m. Then R is a finite product of strictly henselian rings.

Proof. By Theorem 3.16, either R is a quadratic étale S-algebra, or R is local.
In the former case, R is finite over S, and the lemma follows from [deJ17,
Tag 04GH] so we assume R is local. Write M for the maximal ideal of R, k for
its residue field, and denote by r 7→ r the surjection R→ k.
Observe first that R is integral over S since for all r ∈ R, we have r2 − (rλ +
r)r + rλr = 0 and rλ + r, rλr ∈ S. This implies that k is algebraic over the
residue field of S, which is separably closed, hence k is separably closed.
Now, let f ∈ R[x] be a monic polynomial such that f ∈ k[x] has a simple root
η ∈ k. We will show that f has root y ∈ R with y = η. Let a0, . . . , an−1 ∈ R
be the coefficients of f and let b ∈ R be any element with b = η. Since R is
integral over S, there is a finite S-subalgebraR0 ⊆ R containing a0, . . . , an−1, b.
By [deJ17, Tag 04GH], R0 is a product of henselian rings. Since R has no
non-trivial idempotents, this means R0 is a henselian ring. Write M0 for the
maximal ideal of R0 and k0 = R0/M0. Since R0 is finite over S, there is a
natural number n such that Mn

0 ⊆ mR0 ⊆ M0 by [Rei75, Thm. 6.15]. This
implies that (RM0)

n = RMn
0 ⊆ Rm and the latter is a proper ideal of R, by

Lemma 3.18. Therefore, RM0 ⊆M and we have a well-defined homomorphism
of fields k0 → k given by x+M0 7→ x+M. Since a0, . . . , an−1, b ∈ R0, we have
f ∈ k0[x] and η ∈ k0. As R0 is a henselian ring, there is y ∈ R0 with f(y) = 0
and y +M0 = η. This completes the proof.

Documenta Mathematica 25 (2020) 527–633

https://stacks.math.columbia.edu/tag/04GH
https://stacks.math.columbia.edu/tag/04GH


Involutions of Azumaya Algebras 549

4 Ringed Topoi with Involution

Unless indicated otherwise, throughout this section, (X,OX) denotes a locally
ringed topos. Our interest is in the following examples:

1. X = Sh(Xét) for a scheme X , and OX is the structure sheaf of X which
sends (U → X) to Γ(U,OU ).

2. X = Sh(X) for a topological space X , and OX is the sheaf of continuous
C-valued functions, denoted C(X,C).

We write the cyclic group with two elements as C2 and, when applicable, the
non-trivial element of C2 will always be denoted λ.

When there is no risk of confusion, we shall refer to X as a ringed topos, in
which case the ring object is understood to be OX.

4.1 Involutions of Ringed Topoi

Definition 4.1. Suppose X is a topos. An involution of X consists of an
equivalence of categories Λ : X → X and a natural isomorphism ν : Λ2 ⇒ id
satisfying the coherence condition that νΛX = ΛνX for all objects X of X.

The natural isomorphism ν will generally be suppressed from the notation.

Definition 4.2. Suppose (X,OX) is a ringed topos. An involution of (X,OX)
consists of an involution (Λ, ν) of X and an isomorphism λ of ring objects
λ : OX → ΛOX such that Λλ ◦ λ = ν−1

OX
.

Suppressing ν from the last equation, we say Λλ ◦ λ = id.

Remark 4.3. (i) The functor Λ is left adjoint to itself with the unit and counit
of the adjunction being ν−1 and ν, respectively. Thus, if we write Λ∗ = Λ∗ = Λ,
then the adjoint pair (Λ∗,Λ∗) defines a geometric automorphism of X. More-
over, (Λ∗,Λ∗, λ

−1 : Λ∗OX → OX) defines an automorphism of the ringed topos
(X,OX).

(ii) Topoi and ringed topoi form 2-categories in which there is a notion of a
weak C2-action. An involution of a topos, resp. ringed topos, as defined here
induces such a weak C2-action in which the non-trivial element λ acts as the
morphism Λ = (Λ∗,Λ∗), resp. (Λ

∗,Λ∗, λ
−1), and the trivial element acts as

the identity. It can be checked that all C2-actions with the latter property
arise in this manner. Since an arbitrary weak C2-action is equivalent to one in
which 1 acts as the identity, specifying an involution is essentially the same as
specifying a weak C2-action.

Notation 4.4. Henceforth, when there is no risk of confusion, involutions of
ringed topoi will always be denoted (Λ, ν, λ). In fact, we shall often abbreviate
the triple (Λ, ν, λ) to λ.
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It is convenient to think of Λ, ν as the “geometric data” of the involution and of
λ as the “arithmetic data” of the involution. The following are the motivating
examples.

Example 4.5. Let X be a scheme and let σ : X → X be an involution. The
direct image functor Λ := σ∗ defines an involution of X := Sh(Xét); the
suppressed natural isomorphism ν : Λ2 ⇒ id is the identity. Let OX be the
structure sheaf of X on Xét. The involution of X gives rise to an isomorphism
λ : OX → ΛOX as follows: For an étale morphism U → X , define Uσ → X via
the pullback diagram

Uσ //

σU

��

X

σ

��
U // X

By definition, ΛOX(U → X) = σ∗OX(U → X) = OX(Uσ → X) =
Γ(Uσ,OUσ ), and we define λU→X : Γ(U,OU ) = OX(U → X) → ΛOX(U →
X) = Γ(Uσ,OUσ ) to be the isomorphism induced by σU . It is easy to check that
Λλ ◦λ = id and so (Λ, ν, λ) is an involution of (X,OX). When X = SpecR for
a ring R and σ is induced by an involution of R, we can recover that involution
from λ : OX → ΛOX by taking global sections.

The small étale site Xét can be replaced by other sites, for instance the site
Xfppf .

Example 4.6. Let X be topological space with a continuous involution σ : X →
X . Write X = Sh(X) and let OX = C(X,C), the ring sheaf of continuous
functions into C. Then the direct image functor Λ := σ∗ defines an involution
of X; the isomorphism ν : Λ2 ⇒ id is the identity.

In particular, (ΛOX)(U) = OX(σU) = C(σU,C). Let λ : OX → ΛOX be given
sectionwise by precomposition with σ, namely

λU : C(U,C)→ C(σU,C),

φ 7→ φ ◦ σ.

Then (Λ, ν, λ) is an involution of (X,OX).

Example 4.7. LetX be any topos, let R be a ring object in X and let λ : R→ R
be an involution. Then (idX, ν := id, λ) is an involution of (X, R).

Definition 4.8. The trivial involution of (X,OX) is (Λ, ν, λ) = (idX, id, idOX
).

Any other involution (Λ, ν, λ) of (X,OX) will be said to be weakly trivial if it
is equivalent to the trivial involution of (X,OX) in the following sense: There
exists a natural isomorphism θ : Λ⇒ id such that θOX

= λ−1 and θX ◦ θΛX =
νX for all objects X in X.

Example 4.9. The involution of Example 4.5 (resp. Example 4.6) is trivial if
and only if σ : X → X is the identity.
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Let (Λ, ν, λ) be an involution of (X,OX) and let M be an OX-module. Then
ΛM carries a ΛOX-module structure. We shall always regard ΛM as an OX-
module by using the morphism λ : OX → ΛOX, that is, by twisting the
structure.
Using the equality Λλ ◦ λ = ν−1

OX
, one easily checks that νM : ΛΛM →M is an

isomorphism of OX-modules, which we suppress from the notation henceforth.
Notice that contrary to the case of λ-twisting of modules over ordinary rings,
it is not in general true that M can be identified with its λ-twist as an abelian
group object in X. For instance, in the context of Example 4.5, suppose that
X = SpecR and σ exchanges two maximal ideals m1,m2 ⊳R, and let M1, M2

denote the quasicoherent OX-modules corresponding to the R-modules R/m1

and R/m2, respectively. Then M2 = ΛM1, but M1 is not isomorphic to M2

as abelian group objects in X because M1 is supported at {m1} while M2 is
supported at {m2}.
If A is an OX-algebra, then ΛA, besides being an OX-module, carries an OX-
algebra structure. Letting Aop denote the opposite algebra of A, we have
Λ(ΛAop)op = A up to the suppressed natural isomorphism νA.

Definition 4.10. A λ-involution on an OX-algebra A is a morphism of OX-
algebras τ : A→ ΛAop such that Λτ ◦ τ = idA. In this case, (A, τ) is called an
OX-algebra with a λ-involution. If A is an Azumaya algebra, it will be called
an Azumaya algebra with λ-involution.
If (A, τ) and (A′, τ ′) are OX-algebras with λ-involutions, then a morphism
from (A, τ) to (A′, τ ′) is a morphism of OX-algebras φ : A → A′ such that
τ ′ ◦ φ = Λφ ◦ τ .

Notice that applying Λ to both sides of Λτ ◦ τ = idA gives τ ◦ Λτ = idΛA.

Notation 4.11. The category where the objects are degree-n Azumaya
OX-algebras with λ-involutions and where the morphisms are isomorphisms
of OX-algebras with λ-involutions shall be denoted Azn(X,OX, λ), or just
Azn(OX, λ).

Given a ring with involution (R, λ) and anR-algebraA, it is reasonable to define
a λ-involution of A to be an involution τ : A → A satisfying (ra)τ = rλaτ for
all r ∈ R, a ∈ A. Following Gille [Gil09, §1], this can be generalized to the
context of schemes: Given a scheme X , an involution σ : X → X , and an OX -
algebra A ∈ Sh(XZar), then a σ-involution of A is an OX -algebra morphism
τ : A → σ∗A

op such that σ∗τ ◦ τ = idA. We reconcile these elementary
definitions with Definition 4.10 in the following example.

Example 4.12. Let (R, λ) be a ring with involution, let X = SpecR and write
σ : X → X for the involution induced by λ. Abusing the notation, let (Λ, ν, λ)
denote the involution induced by σ on the étale ringed topos (X,OX) of X ,
see Example 4.5.
Every R-module M gives rise to an OX-module, also denoted M , the sections
of which are given by M(SpecR′ → SpecR) = M ⊗R R′ for any (SpecR′ →
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SpecR) in Xét. In fact, this defines an equivalence of categories between R-
modules and quasicoherent OX-modules [deJ17, Tag 03DX]. Straightforward
computation shows that the OX-module ΛM corresponds toMλ, the R-module
obtained from M by twisting via λ.

Now let A be an R-algebra and let τ : A → A be an involution satisfying
(ra)τ = rλaτ for all r ∈ R, a ∈ A. Realizing A as an OX-algebra in X, the
algebra ΛAop corresponds to the R-algebra (Aλ)op, and so the involution τ
induces a λ-involution A → ΛAop, also denoted τ . By taking global sections,
we see that all λ-involutions of the OX-algebra A are obtained in this manner.

Likewise, if X is a scheme, σ : X → X is an involution, and A is a quasicoherent
OX -algebra in Sh(XZar), then the λ-involutions of the OX-algebra associated
to A in X = Sh(Xét) (see [deJ17, Tag 03DU]) are in one-to-one correspondence
with the σ-involutions of A in the sense of Gille [Gil09, §1]. The quasicoherence
assumption applies in particular when A is an Azumaya algebra over X .

Example 4.13. Let λ = (Λ, ν, λ) be an involution of (X,OX) and let n be a
natural number. Then Mn×n(OX) admits a λ-involution given by (αij)i,j 7→
(αλji)i,j on sections and denoted λtr. If the sections αij lie in OX(U), then the

sections αλji lie in (ΛOX)(U).

4.2 Morphisms

We now give the general definition of a morphism of ringed topoi with involu-
tion. Only very few examples of these will be considered in the sequel.

Recall that a geometric morphism of topoi f : X→ X′ consists of two functors
f∗ : X → X′, f∗ : X′ → X together with an adjunction between f∗ and
f∗ and such that f∗ commutes with finite limits. We shall usually denote
the unit and counit natural transformations associated to the adjunction by
η(f) : idX′ ⇒ f∗f

∗ and ε(f) : f∗f∗ ⇒ idX, dropping the superscript f when
there is no risk of confusion. If (X,O) and (X′,O′) are ringed topoi, then a
morphism f : (X,O) → (X′,O′) consists of a geometric morphism of topoi
f : X → X′ together with a ring homomorphism f# : O′ → f∗O, which then
corresponds to a ring homomorphism f# : f∗O′ → O via the adjunction.

Now let (X,O) and (X′,O′) be ringed topoi with involutions (Λ, ν, λ) and
(Λ′, ν′, λ′), respectively. Regarding Λ and Λ′ as geometric automorphisms of X
and X′, see Remark 4.3, a morphism of ringed topoi with involution (X,O)→
(X′,O′) should intuitively consist of a morphism of ringed topoi f such that
f ◦Λ is “equivalent” to Λ′ ◦ f . The specifications of this equivalence, which we
now give, are somewhat technical.

Definition 4.14. With the previous notation, a morphism of ringed topoi
with involution (X,O) → (X′,O′) consists of a morphism of ringed topoi f :
(X,O) → (X′,O′) together with natural isomorphisms α∗ : f∗Λ ⇒ Λ′f∗ and
α∗ : f∗Λ′ ⇒ Λf∗ satisfying the following coherence conditions for all objects
X in X and X ′ in X′:
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(1) The following diagram, the columns of which are induced by α∗ and α∗

and the rows of which are induced by the relevant adjunctions, commutes.

HomX(Λf∗X ′, X) //

��

HomX′(X ′, f∗ΛX)

��
HomX(f∗Λ′X ′, X) // HomX′(X ′,Λ′f∗X)

(2) f∗νX = ν′f∗X ◦ Λ′α∗,X ◦ α∗,ΛX

(3) Λ′f# ◦ λ′ = α∗,O ◦ f∗λ ◦ f#
(4) f∗ν′X′ = νf∗X′ ◦ Λα∗

X′ ◦ α∗
Λ′X′

(5) λ ◦ f# = Λf# ◦ α∗
O′ ◦ f∗λ′

We say that f is strict when α∗ = id and α∗ = id, so that f∗Λ = Λ′f∗ and
Λf∗ = f∗Λ′.
We call f an equivalence when f∗ is an equivalence of categories and f# is an
isomorphism, in which case the same holds for f∗ and f#.

Remark 4.15. Yoneda’s lemma and condition (1) imply that α∗ and α∗ deter-
mine each other. Explicitly, this is given as

α∗
X′ = ε

(f)
Λf∗X′ ◦ f∗ν′f∗Λf∗X′ ◦ f∗Λ′α∗,Λf∗X′ ◦ f∗Λ′f∗ν

−1
f∗X′ ◦ f∗Λ′ηX′ .

Furthermore, provided (1) holds, conditions (2) and (4) are equivalent, and so
are (3) and (5). Thus, in practice, it is enough to either specify α∗ : f∗Λ⇒ Λ′f∗
and verify (2) and (3), or specify α∗ : f∗Λ′ ⇒ Λf∗ and verify (4) and (5).

In accordance with Remark 4.3, we will sometimes call morphisms of ringed
topoi with involution C2-equivariant morphisms.
We will usually suppress α∗ and α∗ in computations, identifying f∗Λ with Λ′f∗
and Λf∗ with f∗Λ′. The coherence conditions guarantee that this will not
cause inconsistency or ambiguity.

Example 4.16. Let (Λ, ν, λ) be a weakly trivial involution of (X,O) and let
(Λ′, ν′, λ′) be the trivial involution on (X,O), see Definition 4.8. Then there is
θ : Λ⇒ id such that θO = λ−1 and θX ◦ θΛX = νX for all X in X, and one can
readily verify that (f, α∗, α

∗) := (id(X,O), θ, θ
−1) defines an equivalence from

(X,O,Λ, ν, λ) to (X,O,Λ′, ν′, λ′), and that every such equivalence is of this
form.
More generally, if (Λ, ν, λ) is arbitrary and there exists an equivalence (f, α∗, α

∗)
from (X,O,Λ, ν, λ) to a ringed topos with a trivial involution, then (Λ, ν, λ) is
weakly trivial in the sense of Definition 4.8; take θX = εX ◦ f∗α∗,X ◦ ε−1

ΛX .

If f : (X1,O1,Λ1, ν1, λ1) → (X2,O2,Λ2, ν2, λ2) is a morphism of ringed topoi
with involution, and if A is an Azumaya O2-algebra with a λ2-involution τ ,
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then f∗A ⊗f∗O2
O1 is an Azumaya algebra on (X1,O1) with a λ1-involution

given by f∗τ ⊗ λ1. This induces transfer functors

Azn(O2)→ Azn(O1) and Azn(O2, λ2)→ Azn(O1, λ1) .

We shall need a particular instance of these transfer maps later.

Example 4.17. If X is a complex variety with involution λ : X → X , then
the étale ringed topos of X , denoted Xét, becomes a locally ringed topos with
involution, as in Example 4.5. On the other hand, one may form the topological
space X(C), equipped with the analytic topology, which then has an associated
site and consequently an associated toposXtop. One may endow the toposXtop

with several different local ring objects depending on the kind of geometry one
wishes to carry out. There is the sheaf H of holomorphic functions, as set out
in [Gro60], and there is also the sheaf C of continuous C-valued functions.
We claim that (Xtop, C) is a locally ringed topos and that there is a “realization”
morphism (Xtop, C) → (Xét,OX) of ringed topoi with involution. An outline
of the argument follows.
For every complex variety U , there is a unique, functorially-defined analytic
topology on U(C); this is established in [GR71, Exp. XII]. The functor U 7→
U(C) preserves finite limits. Moreover, if {Ui → X}i∈I is an étale covering
of X , then the family of maps {Ui(C)→ X(C)}i∈I is a jointly surjective family
of local homeomorphisms, and may therefore be refined by a jointly surjective
family {Vi → X(C)}i∈I′ of open inclusions. Since families of this form generate
the usual Grothendieck topology on the topological space X(C), it follows that
there is a morphism of sites f : (X(C), top)→ Xét, and therefore a morphism of
topoi, [AGV72a, III.1 and IV.4.9.4]. Complex realization may be applied to A1

C
,

the representing object for OX , to obtain C, the representing object for C which
is the local ring object on X(C). Therefore, f is a morphism of locally ringed
topoi. It is routine to verify that since the involution on X becomes the obvious
involution on X(C) after realization, the morphism f : Xtop → Xét extends to
a strict morphism of locally ringed topoi with involution. In this instance, all
the “coherence” natural isomorphisms appearing are, in fact, identities.

4.3 Quotients by an Involution

Let λ = (Λ, ν, λ) be an involution of a locally ringed topos X. We would like
to consider a quotient of X by the action of λ, or equivalently, by the (weak)
C2-action it induces. In general, however, it is difficult to define a specific
quotient topos in a geometrically reasonable way. For example, if (X,OX) =
(Sh(Xét),OX) for a scheme X admitting a C2-action, then the étale ringed
topoi of both the geometric quotient X/C2, if exists, and the stack [X/C2] may
a priori serve as reasonable quotients of X.
We therefore ignore the problem of constructing or specifying a quotient of a
locally ringed topos with involution and instead enumerate the properties that
such a quotient should possess, declaring any locally ringed topos possessing
these properties to be satisfactory.
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To be precise, we ask for a locally ringed topos Y, endowed with the trivial
involution, together with a C2-equivariant morphism π : X→ Y which satisfy
certain axioms. Recall from Subsection 4.2 that the data of π consists of a
geometric morphism of topoi π = (π∗, π∗) : X→ Y, a ring homomorphism π# :
OY → π∗OX (or equivalently, π# : π∗OY → OX) and natural transformations
α∗ : π∗Λ ⇒ π∗, α

∗ : π∗ ⇒ Λπ∗ satisfying the relations of Definition 4.14. We
will often suppress α∗ and α∗, identifying π∗Λ with π∗ and Λπ∗ with π∗. In
fact, in many of our examples, α∗ and α∗ will both be the identity.

Definition 4.18. Let (X,OX) be a locally ringed topos with involution λ =
(Λ, ν, λ), let (Y,OY) be a locally ringed topos with a trivial involution, and
let π : (X,OX)→ (Y,OY) be a C2-equivariant morphism of ringed topoi. We
say that π is an exact quotient (of (X,OX) by the given C2-action) if

(E1) π# : OY → π∗OX is the equalizer of π∗λ : π∗OX → π∗ΛOX = π∗OX and
the identity map idπ∗OX

,

(E2) π∗ preserves epimorphisms.

Remark 4.19. An exact quotient is in particular a morphism of locally ringed
topoi, i.e., a morphism of ringed topoi π : X → Y satisfying the additional
condition that O×

Y
→ OY is the pullback of π∗O×

X
→ π∗OX along π#. Indeed,

given V ∈ Y, the V -sections of the pullback consist of pairs (x, y) ∈ π∗O×
X
(V )×

OY(V ) with π#y = x in π∗OX(V ). By (E1), we have π∗λ(x) = x in π∗OX(V ).
Since x ∈ π∗O×

X
(V ) = π∗OX(V )×, this means that π∗λ(x

−1) = x−1. Thus,
again by (E1), there exists unique y′ ∈ OY(V ) with π#y

′ = x−1. In particular,
π#(yy

′) = xx−1 = 1 in π∗OX(V ). Since OY is a subobject of π∗OX via π#
(again, by (E1)), this means that yy′ = 1 in OY(V ), so y ∈ OY(V )× = O×

Y
(V ).

As x = π#y, it follows that (x, y) is the image of a (necessarily unique) V -
section of O×

Y
under the natural map O×

Y
→ π∗O×

X
×π∗OX

OY, as required.

The name “exact” comes from condition (E2), which implies in particular that
π∗ preserves exact sequences of groups. We shall see below that this condition
is critical for transferring cohomological data from X to Y. Condition (E1)
informally means that OY behaves as one would expect from the subring of
OX fixed by λ — such an object cannot be defined in X because the source
and target of λ are not, in general, canonically isomorphic.

To motivate Definition 4.18, we now give two fundamental examples of exact
quotients. However, in order not to digress, we postpone the proof of their
exactness to Subsection 4.4, where further examples and non-examples are
exhibited.

Example 4.20. Let X be a scheme and let λ : X → X be an involution. A
morphism of schemes π : X → Y is called a good quotient of X relative to
the action of C2 = {1, λ} if π is affine, C2-invariant, and π# : OY → π∗OX
defines an isomorphism of OY with (π∗OX)C2 . By [GR71, Prp. V.1.3] and
the going-up theorem, these conditions imply that π is universally surjective
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and so this agrees with the more general definition in [deJ17, Tag 04AB]. A
good C2-quotient of X exists if and only if every C2-orbit in X is contained
in an affine open subscheme, in which case it is also a categorical quotient in
the category of schemes, hence unique up to isomorphism [GR71, Prps. V.1.3,
V.1.8].
Let (X,OX) = (Sh(Xét),OX), and let λ = (Λ, ν, λ) be the involution of
(X,OX) induced by λ : X → X , see Example 4.5. Given a good C2-quotient,
π : X → Y , we define an exact quotient π : (X,OX)→ (Y,OY) relative to λ by
taking (Y,OY) = (Sh(Yét),OY ), letting π = (π∗, π∗) : Sh(Xét)→ Sh(Yét) and
defining π# : OY → π∗OX to be the canonical extension of π# : OY → π∗OX
in Sh(XZar) to the corresponding ring objects in Sh(Xét). The suppressed
natural transformations α∗ and α∗ are both the identity.

Example 4.21. Let X be a Hausdorff topological space, let λ : X → X be a
continuous involution, let Y = X/{1, λ} and let π : X → Y be the quotient
map. Let (X,OX) = (Sh(X), C(X,C)) and let λ = (Λ, ν, λ) be the involu-
tion induced by λ : X → X , see Example 4.6. We define an exact quotient
π : (X,OX) → (Y,OY) relative to λ by taking (Y,OY) = (Sh(Y ), C(Y,C)),
letting π = (π∗, π∗) : Sh(X) → Sh(Y ) be the geometric morphism induced
by π : X → Y , and defining π# : C(Y,C) → π∗C(X,C) to be the morphism
sending a section f ∈ C(U,C) to f ◦ π ∈ C(π−1(U),C) = π∗C(X,C)(U). Again,
the suppressed natural transformations α∗ and α∗ are both the identity.

We also record the following trivial example.

Example 4.22. Suppose that the involution λ = (Λ, ν, λ) on (X,OX) is weakly
trivial, namely, there is a natural isomorphism θ : Λ⇒ id such that θX ◦θΛX =
νX , and λ = θ−1

OX
. Then the identity morphism id : (X,OX) → (X,OX)

defines an exact quotient upon taking α∗ = θ and α∗ = θ−1. We call it the
trivial quotient of (X,OX).
More generally, an arbitrary exact C2-quotient π : X → Y will be called
trivial when π is an equivalence of ringed topoi with involution. As noted in
Example 4.16, such a quotient can only exist when the involution ofX is weakly
trivial.

We shall see below (Remark 4.51) that a locally ringed topos with involution
may admit several non-equivalent exact quotients.

We turn to establish some properties of exact quotients that will arise in the
sequel. The most crucial of these will be the fact that when π : X → Y is
an exact C2-quotient, π∗ induces an equivalence between the Azumaya OX-
algebras and the Azumaya π∗OX-algebras, and similarly for Azumaya algebras
with a λ-involution.

The following theorem is a consequence of condition (E2).

Theorem 4.23. Let π : X → Y be a geometric morphism of topoi such that
π∗ preserves epimorphisms, and let G be a group in X. Then:

(i) π∗ induces an equivalence of categories Tors(X, G)→ Tors(Y, π∗G).
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(ii) There is a canonical isomorphism Hi(Y, π∗G) ∼= Hi(X, G) when i = 0, 1,
and for all i ≥ 0 when G is abelian. For i = 0, this is the canonical iso-
morphism H0(Y, π∗G) = H0(X, G). For i = 1, this isomorphism agrees
with the one induced by (i) and Proposition 2.8(i).

(iii) If 0 → G′ → G → G′′ → 0 is a short exact sequence of abelian groups
then the isomorphism of (ii) gives rise to an isomorphism between the
cohomology long exact sequence of G′ → G → G′′ and the cohomology
long exact sequence of π∗G

′ → π∗G → π∗G
′′. The same holds for the

truncated long exact sequence of parts (ii) and (iii) of Proposition 2.8
when G′, G,G′′ are not assumed to be abelian.

Proof. (i) We treat the topos as a site in its own canonical topology. In this
language, [Gir71, Chap. V, Sect. 3.1.1.1] says that π∗ induces an equivalence
Tors(X, G)Y → Tors(Y, π∗G), where the source is the category of G-torsors
P for which there exists a covering U → ∗Y such that Pπ∗U

∼= Gπ∗U . We
claim that this applies to all G-torsors, and so π∗ induces an equivalence
Tors(X, G)→ Tors(Y, π∗G).

Since a G-torsor P is trivialized by itself, it is also trivialized by any object
mapping to P , for instance by π∗π∗P . It is therefore sufficient to show that
the map π∗P → ∗Y is an epimorphism. Since P → ∗X is an epimorphism, our
assumption implies that π∗P → π∗(∗X) = ∗Y is also an epimorphism, so the
claim is verified.

(ii) Suppose first that G is abelian. The fact that π∗ is exact implies that the
family of functors {G 7→ Hi(Y, π∗G)}i≥0 from abelian groups in X to abelian
groups forms a δ-functor. Thus, the universality of derived functors implies that
the canonical isomorphism H0(X, G)

∼−→ H0(Y, π∗G) gives rise to a unique nat-
ural transformation Hi(X, G)→ Hi(Y, π∗G) for any abelian G. Since π∗ takes
injective abelian groups to injective abelian groups, {G 7→ Hi(Y, π∗G)}i≥0

is an effaceable δ-functor, hence universal. Applying the universality of the
latter to the natural isomorphism H0(Y, π∗G)

∼−→ H0(X, G) implies that
Hi(X, G)→ Hi(Y, π∗G) is an isomorphism.

We note that if we use Verdier’s Theorem, see Subsection 2.3, to describe
Hi(X, G) and Hi(Y, π∗G), then the isomorphism is given by sending the coho-
mology class represented by g ∈ Zi(U•, G) to the cohomology class represented
by π∗g ∈ Zi(π∗U•, π∗G). Notice that π∗U•, which is just π∗ ◦ U• : ∆ → Y,
is a hypercovering since π∗ preserves epimorphisms and commutes with coskn
for all n. This isomorphism coincides with the one in the previous paragraph
because they coincide on the 0-th cohomology.

When i = 1, the map we have just described is defined for an arbitrary groupG,
and we take it to be the canonical morphism H1(X, G) → H1(Y, π∗G). The
construction in the proof of Proposition 2.8(i) implies that this map agrees
with the one induced by (i) and Proposition 2.8(i), and thus H1(X, G) →
H1(Y, π∗G) is an isomorphism.
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(iii) In the abelian case, this follows from the argument given in (ii), which
shows that {G 7→ Hi(X, G)}i≥0 and {G 7→ Hi(Y, π∗G)}i≥0 are isomorphic δ-
functors. In the nonabelian case, this follows from the proof of Proposition 2.8,
parts (ii) and (iii).

Remark 4.24. When π : X → Y is a geometric morphism of topoi, with
no further assumptions, one still has natural transformations Hi(Y, π∗G) →
Hi(X, G) for all G abelian and i ≥ 0, or G non-abelian and i = 0, 1, and if π∗
preserves epimorphisms, they coincide with the inverses of the isomorphisms of
Theorem 4.23. In the abelian case, the construction is given as follows: Using
the exactness of π∗, one finds that the canonical map H0(Y, A)→ H0(X, π∗A)
gives rise to natural transformations Hi(Y, A)→ Hi(X, π∗A). Taking A = π∗G
and composing with the map Hi(X, π∗π∗G)→ Hi(X, G), induced by the counit
π∗π∗G → G, one obtains a natural transformation Hi(Y, π∗G) → Hi(X, G).
This map can be written explicitly on the level of cocycles, using Verdier’s
Theorem, and be adapted to the non-abelian case when i = 0, 1.

Henceforth, let π : X → Y be an exact quotient relative to an involution
λ = (Λ, ν, λ) on X. We write

R = π∗OX and S = OY

for brevity, and, abusing the notation, we let λ : R→ R denote the involution
π∗λ : π∗OX → π∗ΛOX.
We shall use the following lemma freely to identify π∗ GLn(OX) with GLn(R)
and π∗ PGLn(OX) with PGLn(R).

Lemma 4.25. For all n ∈ N, there are canonical isomorphisms π∗Mn×n(OX) ∼=
Mn×n(R), π∗ GLn(OX) ∼= GLn(R) and π∗ PGLn(OX) ∼= PGLn(R).

Proof. Let U ∈ Y. Thanks to the adjunction between π∗ and π∗, we have a nat-
ural isomorphism π∗Mn×n(OX)(U) ∼= Mn×n(OX)(π∗U) = Mn×n(OX(π∗U)) ∼=
Mn×n(π∗OX(U)). This establishes the first isomorphism.
The second isomorphism is obtained in the same manner.
The last isomorphism is deduced from the following ladder of short exact se-
quences

1 // R× //

∼=

��

GLn(R) //

∼=

��

PGLn(R) //

∼=

��

1

1 // π∗(O×
X
) // π∗(GLn(OX)) // π∗ PGLn(OX) // 1.

Here, the left and middle isomorphisms follow from the previous paragraph,
and the bottom row is exact since π∗ preserves epimorphisms.

We shall use the following lemma to identify PGLn(R) withAutR-alg(Mn×n(R))
henceforth.
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Lemma 4.26. The canonical group homomorphism PGLn(R) →
AutR-alg(Mn×n(R)) is an isomorphism.

The lemma would follow immediately from the discussion in Subsection 2.5 if R
were a local ring object, but this is not the case in general. Using Theorem 3.16,
we shall see that R functions as a “semilocal” ring object and therefore the
isomorphism still holds.

Proof. We need to show that for all U ∈ Y, any RU -automorphism ψ of
Mn×n(RU ) becomes an inner automorphism after passing to a covering V → U .
Let p ∈ SpecS(U). Then B := S(U)p is the λ-fixed subring of A := R(U)p.
By Theorem 3.16, A is semilocal. It is then well known that ψA is an inner au-
tomorphism, [Knu91, III.§5.2]. Write ψA(x) = apxa

−1
p for some ap ∈ GLn(A).

There exists fp ∈ S(U) − p such that ap is the image of an element in
GLn(R(U)fp), also denoted ap, and such that ψR(U)fp

agrees with x 7→ apxa
−1
p

on Mn×n(R(U)fp), e.g. if they agree on an R(U)-basis of Mn×n(R(U)). Since
S = OY is a local ring object, and since S(U) =

∑

p∈SpecS(U) S(U)fp, there

exists a covering {Vp → U}p such that fp ∈ S(Vp)
×. By construction,

R(U) → R(Vp) factors through R(U)fp , and thus ψ is inner on Vp for all
p, as required.

Lemma 4.27. Let π : X → Y be a geometric morphism of topoi such that π∗
preserves epimorphisms. Then π∗ preserves quotients by equivalence relations.
In particular, for any group object G, any G-torsor P , and any G-set X, there
is a canonical isomorphism π∗(P ×G X) ∼= π∗P ×π∗G π∗X.

Proof. Recall that in a toposX, any equivalence relationQ→ A×A is effective,
meaning that Q = A ×B A for some epimorphism A → B—in fact, A → B
must be isomorphic to A→ A/Q.
Since π∗ preserves epimorphisms and limits, this means that π∗(A/Q) is canon-
ically isomorphic to π∗A/π∗Q.

We now come to the main result of this section, which allows passage from
Azumaya algebras in the locally ringed topos (X,OX) to Azumaya algebras in
the ringed topos (Y, R).

Theorem 4.28. Suppose X is a locally ringed topos with involution λ =
(Λ, ν, λ), and that π : X→ Y is an exact quotient relative to λ. Let R = π∗OX

and n ∈ N. Then the following categories are equivalent:

(a) Azn(X,OX), the category of Azumaya OX-algebras of degree n.

(b) Tors(X,PGLn(OX)), the category of PGLn(OX)-torsors on X.

(c) Azn(Y, R), the category of Azumaya R-algebras of degree n.

(d) Tors(Y,PGLn(R)), the category of PGLn(R)-torsors on Y.
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The equivalence between (a) and (b), resp. (c) and (d), is the one given in
Proposition 2.10, and the equivalence between (a) and (c), resp. (b) and (d), is
given by applying π∗.

In the context of Example 4.20, where our exact quotient is induced from a
good C2-quotient of schemes π : X → Y , the theorem says that every Azumaya
algebra A over X admits an étale covering U of Y (not of X) such that A
becomes a matrix algebra after base change toX×Y U , and every automorphism
ψ of A admits an étale covering V of Y (again, not of X) such that ψ becomes
an inner automorphism after passing to X×Y V . Theorem 4.28 can be regarded
as a generalization of this fact.

Proof. The equivalence between (a) and (b), resp. (c) and (d), is Proposi-
tion 2.10; here we identified PGLn(R) with AutR(Mn×n(R)) as in Lemma 4.26.
The equivalence between (b) and (d) is Theorem 4.23(i), together with the iso-
morphism π∗ PGLn(OX) ∼= PGLn(R) of Lemma 4.25. It now follows from
Lemma 4.27 that the induced equivalence between (a) and (c) is given by ap-
plying π∗.

Remark 4.29. The exact quotient π : X→ Y gives rise to a morphism of ringed
topoi with involution π̂ : (X,OX) → (Y, R) by setting π̂# : R → π∗OX to be
the identity. The induced transfer functor Azn(R) → Azn(OX) is then an
inverse to the equivalence π∗ : Azn(OX)→ Azn(R).

Remark 4.30. As phrased, Theorem 4.28 addresses Azumaya OX-algebras of
constant degree n only. These constitute all Azumaya algebras when X is
connected, but not in general. If we replace n with a global section of the
constant sheaf N on X, then Theorem 4.28 still holds, provided that n is fixed
by Λ : H0(X,N)→ H0(X,ΛN) = H0(X,N), in which case n can be understood
as an element of H0(Y,N). Since Theorem 4.28 is used throughout, we tacitly
assume henceforth that all Azumaya OX-algebras have degrees that are fixed
under Λ. This makes little difference in practice, because any Azumaya OX-
algebra is Brauer equivalent to another Azumaya OX-algebra of degree which
is fixed by Λ.

We define an involution on the ringed topos (Y, R) by setting Λ = idY, ν = id
and λ(Y,R) = π∗λ(X,OX). Since π∗ preserves products, for any OX-algebra A,
we have π∗ΛA

op = Λπ∗A
op as R-algebras. However, we alert the reader that

while Λπ∗A
op = π∗A

op as noncommutative rings, the R-algebra structure of
Λπ∗A

op is obtained from the R-algebra structure of π∗A
op by twisting via

λ : R→ ΛR = R, as explained in Subsection 4.1. Theorem 4.28 now implies:

Corollary 4.31. For all n ∈ N, the functor π∗ induces an equivalence between
Azn(OX, λ), the category of degree-n Azumaya OX-algebras with λ-involution,
and Azn(R, λ), the category of degree-n Azumaya R-algebras with λ-involution.

At this point we conclude that results proved so far allow one to shift freely
between (X,OX) and (Y, R), at least when Azumaya algebras, possibly with
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a λ-involution, are concerned. Of these two contexts, we shall work most often
in the second, since this is technically easier. That said, the starting point
is always a locally ringed topos (X,OX) with involution λ = (Λ, ν, λ), and
the choice of the corresponding Y, R and λ(Y,R) is not in general uniquely
determined by the initial data.

4.4 Examples of Exact Quotients

We now turn to providing various examples of exact C2-quotients. In particular,
we will prove that Examples 4.20 and 4.21 are exact C2-quotients. It will also be
shown that any locally ringed topos with involution admits an exact quotient.

Of the two conditions of Definition 4.18, condition (E2) is harder to establish.
The following lemma is our main tool in proving it.

Lemma 4.32. Let X, Y be topoi and let π : X→ Y be a geometric morphism.
Suppose that Y has a conservative family of points {pi : pt→ Y}i∈I with the
property that for each i ∈ I, there exists a set of points {jn : pt → X}n∈Ni

such that the functors U 7→ p∗i π∗U and U 7→ ∏

n∈Ni
j∗nU from X to pt are

isomorphic. Then π∗ preserves epimorphisms.

Proof. If pi : pt → Y is a point as in the lemma, then p∗i π∗ preserves epi-
morphisms because each j∗n does. By assumption, a morphism ψ in Y is an
epimorphism if and only if p∗iψ is an epimorphism for any pi : pt → Y as in
the statement, so π∗ preserves epimorphisms.

Informally, a geometric morphism satisfying the conditions of Lemma 4.32 can
be regarded as having “discrete fibres”. It can also be thought of as a gener-
alization of a finite morphism in algebraic geometry, thanks to the following
corollary.

Corollary 4.33. Let π : X → Y be a finite morphism of schemes. Then the
direct image functor π∗ : Sh(Xét)→ Sh(Yét) preserves epimorphisms.

This arises in the proof that the higher direct images vanish for cohomology
with abelian coefficients, [deJ17, Tag 03QN]. We have included a proof here in
order to present a modification later.

Proof. Recall ([AGV72b, Exp. VIII, §3–4]) that the points of Sh(Yét) are con-
structed as follows: Given y ∈ Y , choose a cofiltered system of étale neighbour-
hoods {(Uα, uα)→ (Y, y)}α such that limα Uα = SpecB, where B is a strictly
henselian ring, necessarily isomorphic to the strict henselization of OY,y. Then
the functor i∗ : F 7→ colimα F (Uα) from Sh(Yét) to pt and its right adjoint i∗
define a point i : pt → Sh(Yét), and these points form a conservative family,
[AGV72b, Thm. VIII.3.5].
Let i : pt→ Sh(Yét) be such a point and write Vα = Uα×YX . For all sheaves F
on Xét, we have i∗π∗F = colimα F (Vα). Note that limα Vα = limUα ×Y X =
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SpecB ×Y X . Since π is finite, SpecB ×Y X = SpecA where A is a finite
B-algebra.
By [deJ17, Tag 04GH], A =

∏t
n=1An where each An is a henselian ring. Since

the residue field of each An is finite over the separably closed residue field of B,
each An is strictly henselian. Letting e1, . . . , et be the primitive idempotents
of A, we may assume, by appropriately thinning the family {Uα → Y }α, that
e1, . . . , et are defined as compatible global sections on each Vα. This allows
us to write Vα as

⊔

n Vn,α such that limα Vn,α = SpecAn for all n. Let xn
and vn,α denote the images of the closed point of SpecAn in X and Vn,α,
respectively, and let jn : pt→ Sh(Xét) denote the point corresponding to the
filtered system {(Vn,α, vn,α) → (X, xn)}α. Since we can commute a directed
colimit past a finite limit, we have shown that

i∗π∗F = colim
α

F (Vα) = colim
α

∏

n

F (Vn,α) =
∏

n

j∗nF ,

and the result now follows from Lemma 4.32.

Corollary 4.34. Let π : X → Y be a continuous morphism of topological
spaces such that:

(1) For any y ∈ Y and any open neighbourhood U ⊇ π−1(y), there exists an
open neighbourhood V of y such that π−1(V ) ⊆ U .

(2) For any y ∈ Y , the fibre π−1(y) is finite and, letting x1, . . . , xt ∈ X
denote the points lying over y, there exist disjoint open sets {Ui}ti=1 such
that xi ∈ Ui.

Then π∗ : Sh(X)→ Sh(Y ) preserves epimorphisms.

The hypotheses are satisfied when π : X → Y is a finite covering space map of
Hausdorff spaces, or a closed embedding of Hausdorff spaces, for instance.
It is also easy to see that condition (1) is equivalent to π being closed, and
condition (2) is equivalent to π having finite fibres and being separated in the
sense that the image of the diagonal map X → X ×Y X is closed.

Proof. Again, we use Lemma 4.32. For Sh(Y ), the points are induced by
inclusion maps i : {y} → Y as y rages over Y , [MLM92, Chap. VII, §5]. Fix such
an inclusion, let x1, . . . , xt denote the points in π−1(y), and let jn : {xn} → X
denote the inclusion maps. The corresponding morphisms on the topoi of
sheaves will be denoted by the same letters.
By definition, for any sheaf F on X , we have

i∗π∗F = colim
U∋y

F(π−1(U))

with the colimit taken over all open neighbourhoods of y. Using condition (2),
choose disjoint open neighbourhoods {Vn}tn=1 with xn ∈ Vn. Condition (1)
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implies that the family {Vn ∩ π−1(U) |U is an open neighbourhood of y} is a
basis of open neighbourhoods of xn, hence

colim
U∋y

F(π−1(U)) =
t
∏

n=1

colim
U∋y

F(π−1(U) ∩ Vn) =
t
∏

n=1

j∗nF .

It follows that i∗π∗ =
∏t
n=1 j

∗
n, so the proof is complete.

Theorem 4.35. Suppose that

(i) X is a scheme, λ : X → X is an involution, π : X → Y is a good
quotient relative to {1, λ}, (X,OX) = (Sh(Xét),OX) and (Y,OY) =
(Sh(Yét),OY ) (Example 4.20), or

(ii) X is a Hausdorff topological space, λ : X → X is an involution,
Y = X/{1, λ} and π : X → Y is the quotient map, (X,OX) =
(Sh(X), C(X,C)) and (Y,OY) = (Sh(Y ), C(Y,C)) (Example 4.21).

Then the morphism π : (X,OX)→ (Y,OY) induced by π : X → Y is an exact
quotient relative to the involution induced by λ.

Proof. (i) The fact that π∗ : Sh(Xét) → Sh(Yét) preserves epimorphisms is
shown as in the proof of Corollary 4.33, except one has to replace [deJ17,
Tag 04GH] by Corollary 3.19. Checking that OY is the coequalizer of λ, id :
π∗OX → π∗OX, amounts to showing that for any étale morphism U → Y ,
H0(U,OU ) is the fixed ring of λ in H0(U ×Y X,OU×YX). In fact, it is enough
to check this after base changing to an open affine covering {Yi → Y }, so we
may assume that U → Y factors as U → Y0 → Y with Y0 open and affine. Write
Y0 = SpecB and U = SpecB′. Since X → Y is affine, we may further write
Y0×Y X = SpecA. The assumption that X → Y is a good quotient relative to

{1, λ} implies that the sequence of B-modules 0→ B → A
a 7→a−aλ−−−−−−→ A is exact.

Since B′ is flat over B, the sequence 0 → B′ → A⊗B B′ a 7→a−aλ−−−−−−→ A ⊗B B′

is exact, and hence B′ = H0(U,OU ) is the fixed ring of λ in A ⊗B B′ =
H0(U ×Y X,OU×YX).

(ii) Conditions (1) and (2) of Corollary 4.34 are easily seen to hold, hence π∗
preserves epimorphisms. It remains to show that OY is the equalizer of π∗OX
under the action of C2 = {1, λ}. To this end, let U ⊆ Y be an open set. The
C2-action on X restricts to an action on π−1(U) and π−1(U)/C2 = U . In
particular, OY (U) = C(U,C) is in natural bijection with the set of functions in
π∗OX(U) = OX(π−1(U)) = C(π−1(U),C) that are fixed under the C2-action.
This means that OY is the fixed subsheaf of π∗OX under the action of C2.

Remark 4.36. The proofs of Theorem 4.35(i) and Corollary 4.33 can be modified
to work for the Nisnevich site of a scheme — simply replace étale neighbour-
hoods by Nisnevich neighbourhoods and strictly henselian rings by henselian
rings. Disregarding set-theoretic problems, the large étale and Nisnevich sites
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can be handled similarly, using suitable conservative families of points, pro-

vided one assumes in Theorem 4.35(i) that OY → π∗OX λ−id−−−→ π∗OX splits
in the middle, which is the case when 2 ∈ O×

X . This assumption guarantees
that the sequence remains exact after base-change to any Y -scheme U , not
necessarily flat.
Likewise, the proofs Theorem 4.35(ii) and Corollary 4.34 can be modified to
work for the large site of a topological space.

The next examples bring several situations where condition (E1) of Defini-
tion 4.18 is satisfied while condition (E2) is not. They also show that some of
the assumptions made in Theorem 4.35 cannot be removed in general.

Example 4.37. LetR be a strictly henselian discrete valuation ring with fraction
field K. Let X denote the scheme obtained by gluing two copies of Y := SpecR
along SpecK, and let λ : X → X denote the involution exchanging these two
copies. The morphism π : X → Y which restricts to the identity on each of the
copies of SpecR is a geometric quotient relative to C2 = {1, λ} in the sense of
[deJ17, Tag 04AD], namely, OY = (π∗OX)C2 , Y = X/C2 as topological spaces,
and the latter property holds after base change. In particular, π : X → Y is
the C2-quotient of X in the category of schemes. However, the induced C2-
equivariant morphism π : (Sh(Xét),OX) → (Sh(Yét),OY ) is not an exact
quotient, the reason being that π∗ does not preserve epimorphisms.
To see this, fix a non-trivial abelian group A, which will be regarded as a
constant sheaf on the appropriate space, and let i, j : SpecR → X denote the
inclusions of the two copies of SpecR in X . Since i is an open immersion, we
can form the extension-by-0 functor i! : Sh((SpecR)ét) → Sh(Xét), which is
left adjoint to i∗. Let F = i!i

∗A ⊕ j!j∗A. The counit maps ε(i) : i!i
∗A → A

and ε(j) : j!j
∗A → A give rise to a morphism ψ : F → A given by (x ⊕ y) 7→

(ε(i)x + ε(j)y) on sections. This morphism is surjective, as can be easily seen
by checking the stalks. However π∗ψ : π∗F → π∗A is not surjective, as can be
seen by noting that π∗F (Y ) = 0, π∗A(Y ) = A 6= 0, and any étale covering of Y
has a section, because R is strictly henselian.
This example does not stand in contradiction to Theorem 4.35(i) because π :
X → Y is not affine, and hence not a good quotient.

Example 4.38. Let X be an infinite set endowed with the cofinite topology,
let λ : X → X be an involution acting freely on X , and let π : X → Y =
X/C2 be the quotient map. Then the induced C2-equivariant morphism π :
(Sh(X), C(X,C))→ (Sh(Y ), C(Y,C)) is not an exact C2-quotient, because π∗
fails to preserve epimorphisms. This is shown as in Example 4.37, except here
one chooses x ∈ X and uses the open embeddings i : X − {x} → X and
j : X − {λ(x)} → X . We conclude that in Theorem 4.35(ii), the assumption
that X is Hausdorff in cannot be removed in general, even when λ acts freely
on X .

Example 4.39. Let R be a principal ideal domain admitting exactly two max-
imal ideals, a and b. Suppose that there exists an involution λ : R → R
exchanging a and b, and moreover, that the fixed ring of λ, denoted S, is a
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discrete valuation ring. Let X = SpecR, Y = SpecS and let π : X → Y
be the morphism adjoint to the inclusion S → R. Then π : X → Y is a
good quotient relative to λ : X → X , but the induced C2-equivariant mor-
phism π : (Sh(XZar),OX) → (Sh(YZar),OY ) is not an exact quotient, be-
cause, yet again, π∗ does not preserve epimorphisms. Again, this is checked
as in Example 4.37 by using the open embeddings i : SpecRa → SpecR and
j : SpecRb → SpecR. This shows that we cannot, in general, replace the étale
site with the Zariski site in Theorem 4.35(i), even when π : X → Y is quadratic
étale.

Remark 4.40. Let X be a scheme, let λ : X → X be an involution and let
π : X → Y be a good quotient relative to {1, λ}. Then the associated morphism
of fppf topoi π : (Sh(Xfppf),OX) → (Sh(Yfppf),OY ) is not exact in general,
even when π is an fppf morphism.

For example, let k be a field characteristic 6= 2, and considerX = Spec k[ε | ε2 =
0], Y = Spec k and the k-involution λ sending ε to −ε. Then x 7→ x2 : OX →
OX is surjective as morphism in Sh(Xfppf), but its pushforward to Sh(Yfppf)
is not, because ε is not in the image of x 7→ x2 : A[ε | ε2 = 0] → A[ε | ε2 = 0]
for all commutative k-algebras A.

Nevertheless, when π : X → Y is finite and locally free, Theorem 4.28 and
Corollary 4.31 still hold, the reason being that PGLn(OX) and PGLn(R) =
π∗ PGLn(OX) are both represented by smooth affine group schemes overX (use
[BLR90, Prop. 7.6.5(h)]), and hence their étale and fppf cohomologies coincide
[Gro68c, Thm. 11.7, Rmk. 11.8(3)]. As a result, some theorems in the next
sections, e.g. Theorems 5.17 and 6.10, also hold in the context of fppf ringed
topoi associated to a finite locally free good C2-quotient of schemes π : X → Y .

We finish with demonstrating that every locally ringed topos X with involution
λ = (Λ, ν, λ) admits a canonical exact quotient, sometimes called the “homo-
topy fixed points”, as in [Mer17, Section 2]. We denote this exact quotient by
π : X→ [X/C2].

As the notation suggests, when (X,OX) = (Sh(Xét),OX) for a scheme X , the
ringed topos [X/C2] will be equivalent to the étale ringed topos of the Deligne–
Mumford stack [X/C2]. Indeed, the objects of [X/C2] will be C2-equivariant
sheaves, the data of which are equivalent to specifying a sheaf on the étale site
of [X/C2]; this is explained for coherent sheaves in [Vis89, Example 7.21], but
the principle works for set-valued sheaves (in the sense of [deJ17, Tag 06TN])
as well.

Construction 4.41. Define the category [X/C2] as follows: The objects of
[X/C2] consist of pairs (U, τ), where U is an object of X and τ : U → ΛU is
a morphism satisfying Λτ ◦ τ = idU . In other words, the objects of [X/C2]
are objects of X equipped with an involution, or a C2-action. Morphisms in
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[X/C2] are defined as commuting squares

U
τ //

f

��

ΛU

Λf

��
U ′ τ ′

// ΛU ′.

Define π∗ : [X/C2] → X to be the forgetful functor (U, τ) 7→ U , and define
π∗ : X → [X/C2] to be the functor sending U to (U × ΛU, τU ) where τU :
U×ΛU → Λ(U×ΛU) = ΛU×U is the interchange morphism. For a morphism
φ : U → V in X, let π∗φ = φ × Λφ. The functor π∗ is easily seen to be left
adjoint to π∗ with the unit and counit of the adjunction given by u 7→ (u, τu) :
(U, τ) → π∗π

∗(U, τ) = (U × ΛU, τU ) and (v, v′) 7→ v : π∗π∗V = V × ΛV → V
on the level of sections (in X).

For objects V in X and (U, τ) in [X/C2], let α∗,V denote the interchange
morphism (ΛV × V, τΛV ) → (V × ΛV, τV ) and let α∗

(U,τ) denote τ : U → ΛU .
Then α∗ is a natural isomorphism π∗Λ⇒ π∗ and α∗ is a natural isomorphism
π∗ ⇒ Λπ∗. We alert the reader that these natural isomorphisms are in general
not the identity transformations, even when the involution λ is trivial.

Define the ring object O[X/C2] in [X/C2] to be (OX, λ) with the obvious ring
structure. Finally, define π# : O[X/C2] → π∗OX to be (OX, λ) → (OX ×
ΛOX, τOX

), where the underlying morphism OX → OX × ΛOX is given by
x 7→ (x, xλ) on sections.

Proposition 4.42. In Construction 4.41, the following hold:

(i) [X/C2] is a Grothendieck topos.

(ii) π := (π∗, π∗) : X→ [X/C2] is an essential geometric morphism of topoi.

(iii) A family of morphisms {(Ui, τi) → (U, τ)}i∈I in [X/C2] is a covering if
and only if {Ui → U}i∈I is a covering in X.

(iv) O[X/C2] is a local ring object in [X/C2].

(v) (π∗, π∗, π#, α
∗, α∗) defines an exact quotient π : (X,OX) →

([X/C2],O[X/C2]) relative to λ.

Proof. We first introduce the functor π! : X → [X/C2] given by sending an
object U to (U ⊔ ΛU, σU ) where σU : U ⊔ ΛU → Λ(U ⊔ ΛU) = ΛU ⊔ U is the
interchange morphism. It is routine to check that π! is left adjoint to π∗; the
unit map is the canonical embedding V → π∗π!V = V ⊔ ΛV and the counit
map is the map π!π

∗(U, τ) = (U ⊔ΛU, σU )→ (U, τ) restricting to idU on U and
to τ−1 on ΛU . The existence of adjoints implies formally that π∗ is continuous
and cocontinuous, and that π∗ and π! preserve epimorphisms. We now turn to
the proof itself.
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(i) We verify Giruad’s axioms for [X/C2]. Briefly, if {Gi}i∈I is a set of gen-
erators for X, then {π!Gi}i∈I is a set of generators for [X/C2]. Indeed,
let f, g : U → V be distinct morphisms in [X/C2]. Since π∗ is faithful,
π∗f, π∗g : π∗U → π∗V are distinct in X, hence there exist i ∈ I and
h : Gi → π∗U → π∗V such that π∗f ◦ h 6= π∗g ◦ h. By the adjunction
between π! and π

∗, the morphism h corresponds to a morphism h′ : π!Gi → U
in [X/C2] such that f ◦ h′ 6= g ◦ h′, as required.
That sums are disjoint and equivalence relations are effective in [X/C2] can
be checked with the help of the forgetful functor π∗ and the fact that these
properties hold in X. Finally, the existence of colimits and the fact that they
commute with fiber products can be checked directly.

(ii) This is immediate from the adjunctions between π!, π
∗ and π∗ noted above.

(iii) We may replace {(Ui, τi)}i∈I with their disjoint union, denoted (U ′, τ ′), to
assume that I consists of a single element. We need to show that U ′ → U is an
epimorphism in X if and only if (U ′, τ ′)→ (U, τ) is an epimorphism in [X/C2].
The “if” part follows from the fact that π∗ preserves epimorphisms, being a
left adjoint. To see the converse, it is enough to show that the composition

π!U
′ = π!π

∗(U ′, τ ′)
counit−−−−→ (U ′, τ ′) → (U, τ) is an epimorphism. Let (V, σ) ∈

[X/C2]. Then Hom[X/C2](π!U
′, (V, σ)) ∼= HomX(U ′, π∗(V, σ)) = HomX(U ′, V ),

and under this isomorphism the map

Hom[X/C2]((U, τ), (V, σ))→ Hom[X/C2](π!U
′, (V, σ))

is the composition Hom[X/C2]((U, τ), (V, σ)) →֒ HomX(U, V )→ HomX(U ′, V ),
which is injective since U ′ → U an epimorphism. Thus, (U ′, τ ′)→ (U, τ) is an
epimorphism.

(iv) Let {ri}i∈I be (U, τ)-sections of (OX, λ) generating the unit ideal. Then
{π∗ri}i∈I generate the unit ideal in OX(U), and hence there exists a covering
{αi : Ui → U}i∈I such that ri ∈ OX(Ui)

× for all i. (We remark that OX(∅) is
the 0-ring, in which the unique element is invertible; it is possible that some of
the Ui called for in this covering are initial objects.)

Fix i ∈ I. The adjunction between π! and π∗ gives rise to a morphism βi :
π!Ui → (U, τ), adjoint to αi : Ui → U = π∗(U, τ), and an isomorphism of
rings OX(Ui) = HomX(Ui,OX) ∼= Hom[X/C2](π!Ui, (OX, λ)) = O[X/C2](π!Ui).
Unfolding the definitions, one finds that under this isomorphism, ri|π!Ui

= ri ◦
βi ∈ O[X/C2](π!Ui) corresponds to π

∗ri|Ui
= π∗ri◦αi, which is invertible. Thus,

ri is invertible in O[X/C2](π!Ui). By (iii), the collection {βi : π!Ui → (U, τ)}i∈I
is a covering, so we have shown that [X/C2] is locally ringed by O[X/C2].

(v) One checks that π∗λ : π∗OX → π∗OX is the morphism

(OX × ΛOX, τOX
)

(x,y) 7→(yλ,xλ)−−−−−−−−−→ (OX × ΛOX, τOX
),
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and so O[X/C2] is the equalizer of id, π∗λ : π∗OX → π∗OX. That π∗ preserves
epimorphisms can be checked directly using the definitions and (iii). The veri-
fication of the coherence conditions in Definition 4.14 is routine.

4.5 Ramification

Let X be a locally ringed topos with an involution λ = (Λ, ν, λ), and let π :
X→ Y be an exact quotient, see Definition 4.18. For brevity, write

R = π∗OX and S = OY .

As in Subsection 4.3, we write π∗λ : R→ π∗ΛOX = R as λ. The automorphism
λ : R→ R is an involution the fixed ring of which is S.

Definition 4.43. Let V be an object of Y. We say that π is unramified
(relative to λ) along V if RV is a quadratic étale SV -algebra in Y/V , see
Subsection 3.2. Otherwise, π is said to be ramified along V .
The morphism π is said to be unramified if it is unramified along ∗Y, and
ramified otherwise. It is everywhere ramified if π is ramified along every non-
initial object of Y.

We alert the reader that, contrary to the common use of the term “ramifica-
tion”, we consider trivial C2-quotients as everywhere ramified.

Example 4.44. Suppose (X,OX) is given a weakly trivial involution and π is
the trivial C2-quotient, namely, the identity map id : (X,OX) → (X,OX)
(Example 4.22). Then π is everywhere ramified. Indeed, in this case R = S =
OX and and λ = idR. Since OX is a local ring object, for any V ≇ ∅ in X, the
ring OX(V ) is nonzero, and so RV cannot be locally free of rank 2 over SV .

For any object V of Y, define U(V ) to be a singleton if π is unramified along V ,
and an empty set otherwise. It follows from Lemma 3.6 that V 7→ U(V ) defines
a sheaf (the action of U on morphisms in Y is uniquely determined), which is
then represented by an object ofY, denoted U = Uπ. We call U the unbranched
locus of π. It is a subobject of ∗Y. Clearly, π is unramified if and only if U = ∗Y,
and π is everywhere ramified if and only if U = ∅Y.
The following propositions give a more concrete description of the unbranched
locus when π : X → Y is induced by a C2-quotient of schemes or topological
spaces, see Examples 4.20 and 4.21.

Proposition 4.45. In the situation of Example 4.20, i.e., when π : X → Y

is obtained from a good C2-quotient of schemes π : X → Y by taking étale
ringed topoi, the unbranched locus of π, defined above, is represented by an
open subscheme U ⊆ Y . The latter can be defined in any of the following
equivalent ways:

(a) U is the largest open subset of Y such that πU : π−1(U)→ U is quadratic
étale.
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(b) The (Zariski) points of U are those points y ∈ Y such that X ×Y
SpecOY,y → SpecOY,y is quadratic étale.

(c) The (Zariski) points of U are those points y ∈ Y such that X ×Y
SpecOsh

Y,y → SpecOsh
Y,y is quadratic étale; here, Osh

Y,y is the strict
henselization of OY,y.

(d) The (Zariski) points of Y − U are those points y ∈ Y such that the set
π−1(y) is a singleton {x}, and λ induces the identity on k(x).

Consequently, π : X → Y is unramified if and only if π : X → Y is quadratic
étale.

Proof. By virtue of Lemma 3.6, if V → Y is an étale morphism having image U
in Y , then πV : X×Y V → V is quadratic étale if and only if πU : π−1(U)→ U
is quadratic étale. It follows that there exists a maximal open subset U of Y
with the property that πU is quadratic étale, and any V → X as above factors
through the inclusion U ⊆ X . We also let U denote the sheaf it represents in
Y = Sh(Yét).
Since U is a subobject of ∗Y, the set U(V ) is a singleton or empty for all
V ∈ Y. To show that U is the unbranched locus of π : X → Y, it is enough
to show that π is unramified along an object V of Y if and only if there exists
a morphism V → U . For any such V , we can find a covering {Vi → V }i with
each Vi represented by some (Ṽi → Y ) in Yét. By Lemma 3.6, π unramified
along V if and only if π is unramified along each Vi. Furthermore, if for each
i ∈ I there is a morphism Vi → U (in Y), then these morphisms must patch to
a morphism V → U , because U(Vi×V Vj) is a singleton. It is therefore enough
to show that π is unramified along Vi if and only if there exists a morphism
Ṽi → U in Yét. The latter holds precisely when im(Ṽi → Y ) ⊆ U , and so the
claim follows from the definition of U .
We finish by showing that the different characterizations of U are equivalent.
The equivalence of (a) and (b) follows from Corollary 3.13, and the equivalence
of (b) and (d) follows from Theorem 3.16. That the condition in (b) implies
the condition in (c) is clear. It remains to prove the converse. Since Osh

Y,y is
faithfully flat over OY,y, this is a consequence of Lemma 3.6 applied to the fpqc
site of SpecOY,y.

Proposition 4.46. In the situation of Example 4.21, i.e., when π : X→ Y is
induced by a C2-quotient of Hausdorff topological spaces π : X → Y = X/C2,
the unbranched locus is represented by an open subset U ⊆ Y . Specifically,
U = {x ∈ X : xλ 6= x}/C2. Consequently, π : X → Y is unramified if and
only if C2 acts freely on X.

Proof. This is similar to the previous proof and is left to the reader.

We refer to the situations of Examples 4.20 and 4.21 as the scheme-theoretic
case and topological case, respectively. In both cases, we define the branch locus
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of π to be the complement W := Y − U , where U is as in Proposition 4.45
or Proposition 4.46. The ramification locus of π is Z := π−1(W ). In the
scheme-theoretic case, we also endowW and Z with the reduced induced closed
subscheme structure.

Notice that in the topological case, πU : π−1(U) → U is a double covering,
while πW : π−1(W ) → W is a homeomorphism. With slight modification, a
similar statement holds for schemes.

Proposition 4.47. In the notation of Proposition 4.45, let W = U − Y , and
regard W and π−1(W ) as reduced closed subschemes of Y and X, respectively.
Then:

(i) πU : π−1(U)→ U is quadratic étale.

(ii) λ : X → X restricts to the identity morphism on π−1(W ).

(iii) π|π−1(W ) : π
−1(W ) → W is a homeomorphism, and when 2 is invertible

on Y , it is an isomorphism of schemes.

Proof. (i) This immediate from condition (a) in Proposition 4.45.

(ii) Condition (d) of Proposition 4.45 implies that λ fixes the (Zariski) points
of π−1(W ). Let f be a (Zariski) section of Oπ−1(W ) and let S ⊆ π−1(W ) be

the largest open subset on which f − fλ is invertible. Let s ∈ S. Then f − fλ
is invertible in k(s), which is impossible by condition (d) of Proposition 4.45.
Thus, S = ∅. Since π−1(W ) is reduced, we conclude that f − fλ = 0.

(iii) It is enough to prove the claim after restricting to an open affine covering
of Y , so assume X = SpecA, Y = SpecB,W = SpecB/I with I a radical ideal
of B, and π−1(W ) = SpecA/

√
IA, where

√
IA denotes the radical of IA. The

morphism π|π−1(W ) : π−1(W ) → W is adjoint to the evident homomorphism

B/I → A/
√
IA, and λ : X → X induces an involution λ : A→ A having fixed

ring B.

We know that π : π−1(W ) → W is continuous and it is a set bijection
since its set-theoretic fibers consist of singletons by condition (d) of Propo-
sition 4.45. Thus, proving that π|π−1(W ) is a homeomorphism amounts to

checking that it is closed. Since any a ∈ A satisfies a2− (aλ+ a)a+ (aλa) = 0,
the morphism SpecA/

√
IA → SpecB/I is integral, and therefore closed by

[deJ17, Tag 01WM].

Suppose now that 2 ∈ B×. We need to show that B/I → A/
√
IA is bijective.

Let a ∈ A. By virtue of (ii), λ induces the identity involution on A/
√
IA, and

thus a ≡ 1
2 (a + aλ) mod

√
IA. Since a + aλ ∈ B, we have established the

surjectivity of B/I → A/
√
IA. Next, write J = ker(B/I → A/

√
AI). Since

SpecA/
√
AI → SpecB/I is bijective, J is contained in every prime ideal of

B/I, and since B/I is reduced, J = 0.
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Remark 4.48. (i) In Proposition 4.47(iii), it is in general necessary to assume
that 2 is invertible in order to conclude that π : π−1(W ) → W is an isomor-
phism. Consider, for example, a DVR S with 2 6= 0 having a non-perfect
residue field K of characteristic 2, let α ∈ S× be an element such that its
image in K is not a square, let R = S[x |x2 = α], and let λ : R → R be the
S-involution sending x to −x. Taking X = SpecR and Y = SpecS, the set W
consists of the closed point y of Y , but the induced map k(y)→ k(π−1(y)) not
an isomorphism.

(ii) Let π : X → Y be a good C2-quotient of schemes which is everywhere
ramified, and suppose 2 is invertible on Y . Then Proposition 4.47 implies
that the induced morphism π : Xred → Yred is an isomorphism. However, in
general, and in contrast to Proposition 4.46, it can happen that π : X → Y is
not an isomorphism. For example, take X = SpecC[ε]/(ε2) and let λ be the
C-involution taking ε to −ε.
Remark 4.49. For a general exact C2-quotient π : X → Y with unbranched
locus U , it is possible to define the “branch topos” W of π as the full subcat-
egory of Y consisting of objects W such that the projection U ×W → U is an
isomorphism. In the situation of Examples 4.20 and 4.21, this turns out to give
the topos of sheaves over the set-theoretic or scheme-theoretic branch locus of
π : X → Y defined above. We omit the details as they will not be needed in
this work.

We finish with showing that the exact quotient of Construction 4.41 is unrami-
fied. Thus, any locally ringed topos with involution admits an unramified exact
quotient. When X is the étale ringed topos of a scheme X , this generalizes the
well-known fact that the morphism from X to its quotient stack [X/C2] is
quadratic étale.

Proposition 4.50. The exact quotient π : X → [X/C2] of Construction 4.41
is unramified.

Proof. Recall from Construction 4.41 that S = (OX, λ) and R = (OX ×
ΛOX, τOX

), where τOX
is the interchange involution, and the morphism π# :

S → R is given by x 7→ (x, xλ) on sections (in X). We shall make use of
π! : X → [X/C2], the left adjoint of π∗ constructed in the proof of Proposi-
tion 4.42.

Write D := π!(∗X) = (∗ ⊔ Λ∗, σ∗) and observe that the unique map D →
(∗X, id) = ∗[X/C2] is a covering by Proposition 4.42(iii). By Lemma 3.6, it is
enough to show that RD is a quadratic étale SD-algebra. In fact, we will show
that RD ∼= SD × SD.
We first observe that the slice category [X/C2]/D is equivalent to X; the
equivalence is given by mapping (U, τ) → D in [X/C2]/D to ∗ ×(∗⊔Λ∗) U ,
and by π! in the other direction. Now, consider RD and SD as sheaves on
O[X/C2]/D. Then R′ = RD ◦ π! and S′ = SD ◦ π! are sheaves of rings on the
equivalent topos X. Since π! is left adjoint to π∗, for all objects V of X, we
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have natural isomorphisms of rings

R′(V ) = R(π!V ) = Hom[X/C2](π!V, (OX × ΛOX, τOX
)) ∼= OX(V )× ΛOX(V )

S′(V ) = S(π!V ) = Hom[X/C2](π!V, (OX, λ)) ∼= OX(V )

and under these isomorphisms, the embedding S′ → R′ induced by π# : S → R
is given by x 7→ (x, xλ) on sections. From this it follows that R′ ∼= S′ × S′ as
S′-algebras, and hence RD ∼= SD × SD as SD-algebras.

Remark 4.51. Propositions 4.45 and 4.46 provide plenty of examples where a
locally ringed topos with involution admits a ramified exact quotient. How-
ever, Proposition 4.50 shows that these examples also admit unramified exact
quotients. It follows that exact quotients are not unique in general.

5 Classifying Involutions into Types

The purpose of this section is to classify involutions of Azumaya algebras into
types in such a way which generalizes the familiar classification of involutions
of central simple algebras over fields as orthogonal, symplectic or unitary.
Throughout, X denotes a locally ringed topos with an involution λ = (Λ, ν, λ)
and π : X → Y is an exact quotient relative to λ, see Definition 4.18. For
brevity, we write

R = π∗OX and S = OY,

and, abusing the notation, denote the involution π∗λ : R → R by λ. The-
orem 4.28 and Corollary 4.31 imply that Azumaya OX-algebras with a λ-
involution are equivalent to Azumaya R-algebras with a λ-involution, and the
latter are easier to work with.
In fact, most of the results of this section can be phrased with no direct reference
to X or the quotient map π, assuming only a locally ringed topos (Y, S), an
S-algebra R, and an involution λ : R→ R having fixed ring S.
We remind the reader that Azumaya OX-algebras are always assumed to have
a degree which is fixed by Λ, see Remark 4.30. This is automatic when X is
connected.

5.1 Types of Involutions

Suppose K is a field and λ : K → K is an involution, the fixed subfield of
which is F . Classically, when λ = idK , the λ-involutions of central simple
K-algebras are divided into two types, orthogonal and symplectic, whereas in
the case λ 6= idK , they are simply called unitary; see [KMRT98, §2]. This
classification satisfies the following two properties:

(i) If (A, τ) and (A′, τ ′) are central simple K-algebras with λ-involutions
such that degA = degA′, then τ and τ ′ are of the same type if and only
if (A, τ) and (A′, τ ′) become isomorphic as algebras with involution over
an algebraic closure of F .

Documenta Mathematica 25 (2020) 527–633



Involutions of Azumaya Algebras 573

(ii) If (A, τ) is a central simple K-algebra with λ-involution, then τ has the
same type as τtr : Mn×n(A)→ Mn×n(A) given by (aij)i,j 7→ (aτji)i,j .

Of these two properties, it is mainly the first that motivates the classification
into types. The second property should not be disregarded as it guarantees, at
least when 2 ∈ K×, that involutions adjoint to symmetric bilinear forms (resp.
alternating bilinear forms, hermitian forms) of arbitrary rank all have the same
type, see [KMRT98, §4].
Our aim in this section is to partition the λ-involutions of Azumaya R-algebras
into equivalence classes, called types, so that properties analogous to (i) and
(ii) hold. To this end, we simply take the minimal equivalence relation forced
by the “if” part of condition (i) and condition (ii).

Definition 5.1. Let (A, τ), (A′, τ ′) be two Azumaya R-algebras with a λ-
involution. Let τtr denote the involution τ ⊗λtr of Mn×n(A) ∼= A⊗Mn×n(R).
On sections, it is given by (aij)i,j 7→ (aτji)i,j .
We say that τ and τ ′ are of the same λ-type or type if there exist n, n′ ∈ N and
a covering U → ∗ in Y such that

(Mn×n(AU ), τU tr) ∼= (Mn′×n′(A′
U ), τ

′
U tr)

as RU -algebras with involution.
Being of the same λ-type is an equivalence relation. The equivalence classes
will be called λ-types or just types, and the type of τ will be denoted

t(τ) or t(A, τ) .

The set of all λ-types will be denoted Typ(λ). Tensor product of Azumaya
algebras with involution endows Typ(λ) with a monoid structure. We write
the neutral element, represented by (R, λ), as 1.

We shall shortly see that our definition gives the familiar types in the case of
fields, as well as in a number of other cases. It is no longer clear whether two
involutions of the same degree and type are locally isomorphic, however, and
the majority of this section will be dedicated to showing that this is indeed
the case under mild assumptions. Another drawback of the definition is that
it is not clear how to enumerate the types it yields, and nor does it provide
a way to test whether two involutions are of the same type. These problems
will also be addressed, especially in the situation of Theorem 4.35, namely, in
cases induced by a good C2-quotient of schemes on which 2 is invertible, or by
a C2-quotient of Hausdorff topological spaces.

Remark 5.2. Let (A, τ), (A′, τ ′) be two Azumaya OX-algebras in X with a
λ-involution. Using Corollary 4.31, we say that τ and τ ′ have the same λ-type
(relative to π) when the same holds after applying π∗. The equivalence class of
(A, τ) is denoted tπ(τ) or tπ(A, τ) and the monoid of types is denoted Typπ(λ).
We warn the reader that the λ-type of a λ-involution of an Azumaya OX-
algebra depends on the choice of the quotient π : X → Y, which is why we
include π in the notation.
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For instance, we shall see below in Theorem 5.21 that in the case where X is
given the trivial involution and X is connected, then under mild assumptions,
taking π to be the trivial exact quotient id : X → X results in two λ-types,
whereas taking π to be the exact quotient X → [X/C2] of Construction 4.41
results in only one λ-type.

Example 5.3. (i) Let X be a connected scheme on which 2 is invertible, let
λ : X → X be the trivial involution and let Y := X/C2 = X . Consider the
exact quotient obtained from π : X → Y by taking étale ringed topoi, see
Example 4.20. In this case, X = Y = Sh(Xét), R = S = OX and λ = idR.
Thus, an Azumaya R-algebra with a λ-involution is simply an Azumaya OX -
algebra with an involution of the first kind on X . It is well known that there are
two λ-types: orthogonal and symplectic. The orthogonal type is represented by
(R, idR) and the symplectic type is represented by (M2×2(R), sp), where sp is
given by x 7→ h2x

trh−1
2 on sections and h2 = [ 0 1

−1 0 ]. Moreover, every Azumaya
R-algebra of degree n with an involution of the first kind is locally isomorphic
either to (Mn(R), tr) or to (Mn(R), sp), where in the latter case n = 2m and sp
is given sectionwise by x 7→ hnx

trh−1
n with hn = [ 0 Im

−Im 0 ]; see [Knu91, III.§8.5]
or [PS92, §1.1]. In this case, Typ(λ) is isomorphic to the group {±1}.

(ii) Let π : X → Y be a quadratic étale morphism, and let λ : X → Y denote
the canonical Y -involution of X . Again, let π : X → Y denote the exact
quotient obtained from π : X → Y by taking étale ringed topoi. In this case,
R = π∗OX is quadratic étale over S = OY , and λ-involutions are known as
unitary involutions. There is only one type in this situation, and moreover,
any Azumaya R-algebra of degree n with a λ-involution is locally isomorphic
to (Mn(R), λtr); these well-known facts can be found in [PS92, §1.2] without
proof, but they follow from the results in the sequel. We were unable to find a
source providing complete proofs.

Example 5.4. Let K be a perfect field of characteristic 2, and consider the case
of the trivial involution on K. As in Example 5.3(i), this corresponds to taking
X = Y = Sh((SpecK)ét), R = S = OSpecK and λ = id. Azumaya R-algebras
with a λ-involution are therefore central simple K-algebras with an involution
of the first kind. There are again two types in this case, again called orthogonal
and symplectic, but Typ(λ) is isomorphic to the multiplicative monoid {0, 1}
with 0 corresponding to the symplectic type; see [KMRT98, §2]. This shows
that the theory in characteristic 2 is substantially different from that in other
characteristics.
The assumption that K is perfect can be dropped if one replaces the étale site
with the fppf site (consult Remark 4.40).

5.2 Coarse types

In Subsection 5.1, we defined the type of a λ-involution of an Azumaya R-
algebra in terms of the entire class of algebras and not as an intrinsic invariant
of the involution. We now introduce another invariant of λ-involutions, called

Documenta Mathematica 25 (2020) 527–633



Involutions of Azumaya Algebras 575

the coarse type, which, while in general coarser than the type, will enjoy an
intrinsic definition. It will turn out that under mild assumptions the invariants
are equivalent, and this will be used to address the questions raised in Subsec-
tion 5.1. Apart from that, coarse types will also be needed in proving the main
results of Section 6.

We begin by defining the abelian group object N of Y via the exact sequence

1→ N → R× x 7→xλx−−−−−→ S× (5.1)

and the abelian group object T of Y via the short exact sequence

1→ R×/S× x 7→xλx−1

−−−−−−→ N → T → 1 . (5.2)

The group N should be regarded as the group of elements of λ-norm 1. We
call the global sections of T coarse λ-types and write

cTyp(λ) = H0(T ) .

The following example and propositions give some hints about the structure
of T .

Example 5.5. If the involution of X is trivial and the quotient map is the
identity, then N = µ2,R and the map x 7→ x−1xλ : R×/S× → N is trivial,
hence T = µ2,R and cTyp(λ) = H0(µ2,R) = {x ∈ H0(R) : x2 = 1}.

Proposition 5.6. If π is unramified along an object U of Y, see Subsection
4.5, then TU = 1 in Y/U . In particular, when π is unramified, T = 1 and
cTyp(λ) = {1}.

When Y has enough points, it is possible to argue at stalks, and therefore
the proposition follows from our version of Hilbert’s Theorem 90, Proposi-
tion 3.4(iii). The following argument applies even without the assumption of
enough points.

Proof. We must show that for all objects U of Y and all r ∈ R(U) satisfying
rλr = 1, there is a covering V → U and a ∈ R×(V ) such that a−1aλ = r in
R(V ).
Refining U if necessary, we may assume that R(U) is a quadratic étale S(U)-
algebra, see Subsection 3.2. By Proposition 3.4(iii), for all p ∈ SpecS(U), there
is ap ∈ R(U)×p such that a−1

p aλp = r. For each p, choose some fp ∈ S(U) − p

such that ap is the image of an element in R(U)×fp , also denoted ap, which

satisfies a−1
p aλp = r in S(U)fp . The set {fp}p is not contained in any proper

ideal of S(U) and therefore generates the unit ideal. Since S is a local ring
object, there exists a covering {Up → U}p∈SpecS(U) such that the image of fp
is invertible in S(Up) for all p. Now take V =

⊔

p Up and a to be the image of
(ap)p in R(V ) =

∏

pR(Up).
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Proposition 5.7. T is a 2-torsion abelian sheaf.

Proof. Let U be an object of Y and t ∈ T (U). By passing to a covering of U ,
we may assume that t is the image of some r ∈ N(U). Since rλr = 1, we have
r2 = (r−1)λ(r−1)−1, and thus t2 = 1 in T (U).

Let n = degA. Using Lemma 4.26, we shall freely identify the group PGLn(R)
with AutR-alg(Mn×n(R)). We denote by

−λtr

the automorphism of GLn(R) given by x 7→ (x−1)λtr on sections. This auto-
morphism induces an automorphism on PGLn(R), which is also denoted −λtr.
We need the following lemma.

Lemma 5.8. Let g be a section of PGLn(R) = AutR-alg(Mn×n(R)) =
AutR-alg(ΛMn×n(R)

op) and view λtr as an R-algebra isomorphism Mn×n(R)→
ΛMn×n(R)

op. Then g ◦ λtr = λtr ◦ g−λtr.
Proof. Suppose g ∈ PGLn(R)(U) for some object U of X. It is enough to prove
the equality after passing to a covering V → U . We may therefore assume that
g is inner, and the lemma follows by computation.

Construction 5.9. Let (A, τ) be a degree-n Azumaya R-algebra with a λ-
involution. We now construct an element

ct(τ) ∈ cTyp(λ) = H0(T )

and call it the coarse λ-type of τ . This construction, which is concluded in
Definition 5.11, will play a major role in the sequel.
Choose a covering U → ∗Y such that there exists an isomorphism of RU -
algebras ψ : AU

∼−→ Mn×n(RU ). The isomorphism ψ gives rise to a λU -
involution

σ = ψ ◦ τU ◦ ψ−1 : Mn×n(RU )→ Mn×n(RU ) .

From σ and the involution λtr, we construct

g := λtr ◦ σ ∈ AutRU -alg(Mn×n(RU )) = PGLn(R)(U) .

By Lemma 5.8, we have id = σ ◦σ = λtr◦g ◦λtr◦g = λtr◦λtr◦g−λtr ◦g, hence
g−λtrg = 1. Replacing U by a covering U ′ → U if necessary, we may assume
that g ∈ PGLn(R)(U) lifts to a section

h ∈ GLn(R)(U) .

From g−λtrg = 1, we get

ε := h−λtrh ∈ R×(U) . (5.3)

Note that ελtrε = ελtrh−λtrh = h−λtrελtrh = h−λtr(hλtrh−1)h = 1, hence
ε ∈ N(U). Let ε be the image of ε in T (U).
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Lemma 5.10. The section ε ∈ T (U) determines a global section of T . It is
independent of the choices made in Construction 5.9.

Proof. Let U• denote the Čech hypercovering associated to U—for the defini-
tion see Example 2.3. In particular, U0 = U , U1 = U ×U and d0, d1 : U1 → U0

are given by di(u0, u1) = u1−i on sections. Proving that ε determines a global
section of T amounts to showing that there exists a covering V → U1 = U ×U
and β ∈ R×(V ) such that d∗1ε

−1 · d∗0ε = β−1βλ holds in R×(V ).

For i ∈ {0, 1}, let ψi denote the pullback of ψ : AU → Mn×n(RU ) along
di : U1 → U0 = U . Define σi : Mn×n(RU1

)→ Mn×n(RU1
) similarly. Let

a := ψ1 ◦ ψ−1
0 : Mn×n(RU1

)→ Mn×n(RU1
).

and regard a as an element of PGLn(R)(U1). The fact that ψ−1
i σiψi = τU1

for
i = 0, 1 implies that σ1 ◦ a = a ◦ σ0. Therefore, using Lemma 5.8, we get

d∗1g · a = λtr ◦ σ1 ◦ a = λtr ◦ a ◦ σ0 = a−λtr ◦ λtr ◦ σ0 = a−λtr · d∗0g ,

or equivalently, a−λtr · d∗0g · a−1 · d∗1g−1 = 1 in PGLn(R)(U1).

There exists a covering V → U1 such that the image of a in PGLn(R)(V ), lifts
to

b ∈ GLn(R)(V ) .

The relation a−λtr · d∗0g · a−1 · d∗1g−1 = 1 now implies that

β := b−λtr · d∗0h · b−1 · d∗1h−1 ∈ R×(V ) . (5.4)

Using (5.3) and (5.4) we get

β−1βλ = β−1(b−λtr · d∗0h · b−1 · d∗1h−1)λtr

= β−1 · d∗1h−λtr · b−λtr · d∗0hλtr · b−1

= d∗1h
−λtr · (b−λtr · d∗0h · b−1 · d∗1h−1)−1 · b−λtr · d∗0hλtr · b−1

= d∗1h
−λtr · d∗1h · b · d∗0h−1 · bλtr · b−λtr · d∗0hλtr · b−1 = d∗1ε · d∗0ε−1

in GLn(R)(V ). This establishes the first part of the lemma.

Let t denote the global section determined by ε. The construction of t involves
choosing U , ψ and h ∈ GLn(U) above. Suppose that t′ ∈ H0(T ) was obtained
by replacing these choices with U ′, ψ′ and h′ ∈ GLn(U

′). We need to show
that t = t′.

Define g′, σ′, ε′ as above using U ′, ψ′, h′ in place of U , ψ, h. It is clear that
refining the covering U → ∗ does not affect t. Therefore, refining U → ∗ and
U ′ → ∗ to U × U ′ → ∗, we may assume that U = U ′. Write ψ′ = u◦ψ with u ∈
AutRU

(Mn×n(RU )) = PGLn(R)(U). Then σ′ = ψ′◦τU ◦ψ′−1 = u◦σ◦u−1, and
using Lemma 5.8, we get g′ = λtr ◦ σ′ = u−λtrgu−1. Refining U → ∗ further,
if necessary, we may assume that u lifts to v ∈ GLn(R)(U). The relation
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g′ = u−λtrgu−1 implies that there is α ∈ R×
U such that h′ = α−1v−λtrhv−1.

Thus,

ε′ = h′−λtrh′ = (α−1v−λtrhv−1)−λtrα−1v−λtrhv−1

= αλvh−λtrvλtrα−1v−λtrhv−1 = αλα−1ε

and ε = ε′ in T (U). This completes the proof.

Definition 5.11. Let (A, τ) be an Azumaya R-algebra with a λ-involution.
The coarse λ-type or coarse type of τ is the global section of T determined by
ε ∈ T (U) constructed above. It shall be denoted ct(τ) or ct(A, τ).

Remark 5.12. In accordance with Remark 5.2, we shall write the coarse type of
a λ-involution τ of an Azumaya OX-algebra, defined to be ct(π∗τ), as ctπ(τ).

Proposition 5.13. Let (A, τ), (A′, τ ′) be Azumaya R-algebras with λ-
involutions. Then:

(i) ct(A, τ) = ct(Mm×m(A), τtr) for all m.

(ii) ct(τ ⊗R τ ′) = ct(τ) · ct(τ ′) in H0(T ).

(iii) If there is a covering V → ∗ such that (AV , τV ) ∼= (A′
V , τ

′
V ), then ct(τ) =

ct(τ ′).

Consequently, the map t(τ) 7→ ct(τ) : Typ(λ) → cTyp(λ) is a well-defined
morphism of monoids.

Proof. Write n = degA and n′ = degA′. Define U,ψ, g, σ, h, ε as in Construc-
tion 5.9, and analogously, define U ′, ψ′, g′, σ′, h′, ε′ using (A′, τ ′) in place of
(A, τ).

(i) The isomorphism ψ : AU → Mn×n(RU ) gives rise to an isomorphism

ψm : Mm×m(A)U → Mm×m(Mn×n(RU )) = Mnm×nm(RU ).

Let σm = ψm ◦ τtr ◦ ψ−1
m , let gm := λtr ◦ σm and let hm = (h ⊕ · · · ⊕ h) ∈

GLnm(R)(U). Straightforward computation shows that the image of hm in
PGLnm(R)(U) is gm. This means that εm := h−λtrm hm coincides with ε =
h−λtrh in N(U), and thus ct(A, τ) = ct(Mm×m(A), τtr).

(ii) Consider ψ̃ = ψ ⊗ ψ′ : AU ⊗ A′
U → Mn×n(RU ) ⊗ Mn′×n′(RU ) =

Mnn′×nn′(RU ), let σ̃ = ψ̃ ◦ (τ ⊗ τ ′) ◦ ψ̃−1 = σ⊗ σ′, and let g̃ = λtr ◦ σ̃ = g⊗ g′.
Define h̃ := h ⊗ h′ ∈ GLnn′(R)(U). Then h̃ maps onto g̃, and we have
h̃−λtrh̃ = (h−λtrh)⊗ (h′−λtrh′), which means ct(τ ⊗R τ ′) = ct(τ) · ct(τ ′).

(iii) Fix an isomorphism η : (A′
V , τ

′
V ) → (AV , τV ) and, in the construction of

ct(τ), choose a covering U → ∗ factoring through V → ∗. Taking U ′ = U and
ψ′ := ψ ◦ ηU : A′

U → Mn×n(R) in the construction of ct(A′, τ ′), we find that

σ′ = ψ′τ ′Uψ
′−1 = ψηUτ

′
Uη

−1
U ψ−1 = ψτψ−1 = σ ,

so ct(τ) = ct(τ ′).
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Remark 5.14. There are examples where Typ(λ) → cTyp(λ) is not injective.
For example, by Proposition 5.7, the image of Typ(λ)→ cTyp(λ) is a subgroup,
so this map is not injective when Typ(λ) is not a group, e.g. Example 5.4.

Definition 5.15. An abelian group object G of Y is said to have square roots
locally if the the squaring map x 7→ x2 : G → G is an epimorphism. That
is, for any object U of Y and x ∈ G(U), there exists a covering V → U and
y ∈ G(V ) such that y2 = x.

Example 5.16. If Y is the topos of a topological space with the ring sheaf of
continuous functions into C or the étale ringed topos of a scheme on which 2
is invertible, then the group O×

Y
has square roots locally. Indeed, this holds at

the stalks, because the stalks of OY are strictly henselian rings in which 2 is
invertible—this is well known in the case of an étale ringed topos of a scheme,
or proved in Appendix A in the case of a topological space. Furthermore,
if Y is the fppf ringed topos of an arbitrary scheme Y , then O×

Y
has square

roots locally, because any U -section has a square root over a degree-2 finite flat
covering of U .

The main result of this section is the following theorem, which shows that
under mild assumptions, λ-involutions of Azumaya algebras of the same degree
having the same coarse type are locally isomorphic. As a consequence, an
analogue of the desired property (i) from Section 5.1 holds under the same
assumptions. The theorem holds in particular when π : X→ Y is induced by
a good C2-quotient of schemes on which 2 is invertible (see Example 4.20), or
by a C2-quotient of Hausdorff topological spaces (see Example 4.21).

Theorem 5.17. Let X be a locally ringed topos with involution λ, let π : X→ Y

be an exact quotient relative to λ, and write R = π∗OX and S = OY. Suppose
that S× has square roots locally and at least one of the following conditions
holds:

(1) 2 ∈ S×.

(2) π : X→ Y is unramified.

(3) n is odd.

Suppose (A, τ) and (A′, τ ′) are two degree-n Azumaya R-algebras with λ-
involutions. Then the following are equivalent:

(a) (A, τ) and (A′, τ ′) are locally isomorphic as R-algebras with involution.

(b) (A, τ) and (A′, τ ′) have the same type.

(c) (A, τ) and (A′, τ ′) have the same coarse type.

Proof. Statement (b) is implied by (a) by virtue of the definition of “type”,
Definition 5.1. Then the implication of (c) by (b) is Proposition 5.13. The
final implication, that of (a) by (c), is somewhat technical and it is given by
Proposition 5.32 below.
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Corollary 5.18. Suppose the assumptions of Theorem 5.17 hold and 2 ∈ S×.
Then the map t(τ) 7→ ct(τ) : Typ(λ)→ cTyp(λ) is injective.

Proof. Suppose ct(A, τ) = ct(A′, τ ′) and write n = degA, n′ = degA′. By
Proposition 5.13, we may replace (A, τ) with (Mn′×n′(A), τtr) and (A′, τ ′) with
(Mn×n(A

′), τ ′tr), and assume that degA = degA′. Now, by Theorem 5.17,
(A, τ) is locally isomorphic to (A′, τ ′) as an R-algebra with involution, and a
fortiori it has the same type.

Corollary 5.19. With the assumptions of Corollary 5.18, Typ(λ) is a 2-
torsion group.

Proof. We know cTyp(λ) is a 2-torsion group by Proposition 5.7, and Typ(λ)
is a submonoid by Corollary 5.18.

Remark 5.20. We do not know whether the assumptions of Corollary 5.18 imply
that the map Typ(λ)→ cTyp(λ) is surjective. A more extensive discussion of
this and some positive results will be given in Subsection 6.4.

The following theorem shows that the properties exhibited in Example 5.3
extend to our general setting under some assumptions.

Theorem 5.21. With the assumptions of Theorem 5.17, the following hold:

(i) If 2 ∈ S× and π : X → Y is a trivial quotient (Example 4.22), then
Typ(λ) is isomorphic to the group H0(µ2,R).

(ii) If π : X→ Y is unramified, then Typ(λ) = {1}.

(iii) Let (A, τ) be an Azumaya R-algebra with a λ-involution. If degA is odd,
then t(τ) = 1.

We deduce Theorem 5.21 mostly as a corollary of Theorem 5.17.

Proof. (i) This follows from Theorem 5.17 and Example 5.5 if we show that for
every ε ∈ H0(µ2,R) = H0(T ), there is an involution of coarse type ε. To see that,
let h = [ 0 ε1 0 ] and take τ : M2×2(R) → M2×2(R) defined by x 7→ (hxh−1)λtr.
That ct(τ) = ε follows by applying Construction 5.9 with U = ∗ and h, ε just
defined.
(ii) This follows from Theorem 5.17 and Proposition 5.6.
(iii) It is enough to show that ct(τ) = 1 whenever degA = 2m+ 1. Define U ,
h and ε as in Construction 5.9. From (5.3), we have h = εhλtr. Taking the
determinant of both sides yields deth = ε2m+1(det h)λ. Since ελ = ε−1, this
implies that ε = β−1βλ for β = εm deth−1. This means that ε, the image of ε
in T (U), is trivial, so ct(τ) = 1.

We note that part (i) applies in the case where π : X → Y is induced by a
scheme X on which 2 is invertible endowed with the trivial involution λ = id :
X → X ; see Example 5.3(i).
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Part (ii) applies to the case where π : X→ Y is induced by a quadratic étale
morphism of schemes π : X → Y where X is given the canonical Y -involution;
see Example 5.3(ii).

Our last application of Theorem 5.17 provides a concrete realization of the first
cohomology set of the projective unitary group of an Azumaya R-algebra with
a λ-involution (A, τ). As usual, the unitary group of (A, τ) is the group object
U(A, τ) in Y whose V -sections are {a ∈ A(V ) : aτa = 1}, and the projective
unitary group of (A, τ) is the quotient

PU(A, τ) = U(A, τ)/N

where N , the group of λ-norm 1 elements in R defined above.
If (A′, τ ′) is another Azumaya R-algebra with a λ-involution such that degA =
degA′, we further define HomR((A, τ), (A

′, τ ′)) to be the sheaf of R-linear
isomorphisms from (A, τ) to (A′, τ ′), and AutR(A, τ) to be the group sheaf of
R-linear automorphisms of (A, τ).

Lemma 5.22. Suppose S× has square roots locally. Let (A, τ) be a degree-n
Azumaya R-algebra with a λ-involution. Then the map U(A, τ)→ AutR(A, τ)
sending a section x to conjugation by x is an epimorphism with kernel N .
Consequently, it induces an isomorphism PU(A, τ) ∼= AutR(A, τ).
Proof. That the kernel is N follows easily from the fact that the centre of A is
R. We turn to proving that the map is an epimorphism.
Let V ∈ Y and ψ ∈ AutR(A, τ)(V ) = AutRV

(AV , τV ). By replacing V with
a suitable covering, we may assume that AV = Mn×n(RV ) and that ψV ∈
PGLn(R)(V ) is given sectionwise by ψV (x) = hxh−1 for some h ∈ GLn(R)(V ).
Since ψV ◦ τV = τV ◦ ψV , for any section x ∈ A(V ), we have hxτh−1 =
(h−1)τxτhτ , and thus hτh ∈ R×(V ). In fact, since (hτh)λ = hτh, we have
hτh ∈ S×(V ). By assumption, we can replace V with a suitable covering to
assume that there is α ∈ S×(V ) with α2 = hτh. Replacing h with hα−1 yields
hhτ = 1. We have therefore shown that over a covering of V , ψ lifts to a section
of U(A, τ).

Corollary 5.23. With the assumptions of Theorem 5.17, let (A, τ)
be a degree-n Azumaya R-algebra with a λ-involution and identify
AutR(A, τ) with PU(A, τ) as in Lemma 5.22. Then the functor (A′, τ ′) 7→
HomR((A, τ), (A

′, τ ′)) defines an equivalence between the full subcategory of
Azn(Y, R, λ) consisting of R-algebras with a λ-involution of the same type
as τ and Tors(Y,PU(A, τ)). Consequently, H1(Y,PU(A, τ)) is in canon-
ical bijection with isomorphism classes of the aforementioned algebras with
involution.

Proof. Theorem 5.17 implies that an R-algebra with a λ-involution (A′, τ ′) is
locally isomorphic to (A, τ) if and only if A is Azumaya of degree n and τ is of
the same type as τ ′. With this fact at hand, the equivalence is standard; see
[Gir71, V.§4]. The last statement follows from Proposition 2.8(i).
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Many of the previous results require that 2 ∈ S×. Indeed, our arguments
build on using the coarse type, which is too coarse if 2 is not invertible—see
Remark 5.14. Nevertheless, we ask:

Question 5.24. Does the equivalence between (a) and (b) in Theorem 5.17 hold
without assuming any of the conditions (1), (2), (3)?

A particularly interesting case is the morphism of fppf ringed topoi associated
to a finite locally free good C2-quotient π : X → Y , where X is a scheme on
which 2 is not invertible (consult Remark 4.40).

5.3 Proof of Theorem 5.17

In this subsection we complete the proof of Theorem 5.17 by showing that
condition (c) implies condition (a). This result is given as Proposition 5.32
below. The reader can skip this subsection without loss of continuity.

In the following lemmas, unless otherwise specified, A will be a ring, λ : A→ A
an involution, and B will be the fixed ring of λ. We will write A for A/Jac(A),
and λ : A → A for the involution induced on A by λ. Let ε ∈ {±1} and let
h ∈ GLn(A) be an (ε, λtr)-hermitian matrix, which is to say

h = εhλtr.

Let H : An ×An → A be the (ε, λ)-hermitian form associated to h; it is given
by h(x, y) = xλtrhy where x, y ∈ An are written as column vectors. Let H
denote the reduction of H to A.

Lemma 5.25. Assume B is local. If λ 6= idA, or ε 6= −1 in A, or n is odd, then
there exists v ∈ GLn(A) such that vλtrhv is a diagonal matrix.

Proof. Proving the lemma is equivalent to showing that H is diagonalizable,
i.e., has an orthogonal basis.
We first claim that H has an orthogonal basis. This is well known when A is
a field; see [Sch85, Thm. 7.6.3] for the case where λ 6= id or ε 6= −1 in A, and
[Alb38, Thm. 6] for the case where λ = idA, ε = −1 in A and n is odd. We
note in passing that the second case can occur only when the characteristic of
A is 2. If A is not a field, then Theorem 3.16 and Proposition 3.4(ii) imply
that A ∼= k × k, where k is the residue field of B, and λ acts by interchanging
the two copies of k. In this case H is hyperbolic and the easy proof is left to
the reader.
We now claim that any nondegenerate (ε, λ)-hermitian form H whose reduction
H admits a diagonalization is diagonalizable, thus proving the lemma. Let
{x1, . . . , xn} ⊆ A

n
be an orthogonal basis forH and let x1 ∈ An be an arbitrary

lift of x1. Then H(x1, x1) ∈ A× and hence An = x1A ⊕ x⊥1 . Write P = x⊥1
and H1 = H |P×P . The A-module P is free because A is semilocal and P is
projective of constant A-rank n − 1. Furthermore, since P =

∑n
i=2 xiA, the

form H1 is diagonalizable by construction. We finish by applying induction
to H1.
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Lemma 5.26. Assume B is local, and suppose λ = idA, that ε = −1 and that
2 ∈ A×. Then there exists v ∈ GLn(A) such that vλtrhv is a direct sum of 2×2
matrices in [ 0 1

−1 0 ] + M2×2(Jac(A)). In particular, n is even.

Proof. We need to show that An admits a basis {x1, y1, x2, y2, . . . } such
that xiA + yiA is orthogonal to xjA + yjA whenever i 6= j and such that

[
H(xi,xi) H(xi,yi)
H(yi,xi) H(yi,yi)

] ∈ [ 0 1
−1 0 ] + M2×2(Jac(A))).

By Theorem 3.16, the assumption λ = idA implies that A is local, hence A
is a field of characteristic different from 2 and H is a nondegenerate alter-
nating bilinear form. This means that n must be even. Choose a nonzero
x ∈ A

n
. Since H is nondegenerate, there is y such that H(x, y) = 1. Since

H is alternating, we also have H(y, x) = −1 and H(x, x) = H(y, y) = 0.
Let x, y ∈ An be lifts of x and y. The previous equations imply that

M := [H(x,x) H(x,y)
H(y,x) H(y,y) ] ∈ [ 0 1

−1 0 ] + M2×2(Jac(A)). In particular, M is invertible,

and so An = (xA⊕ yA)⊕ {x, y}⊥. We proceed by induction on the restriction
of H to {x, y}⊥.

Lemma 5.27. Assume B is local and 2 ∈ B×. Then Jac(A)2 ⊆ Jac(B)A.

Proof. Write m = Jac(B) and let x, y ∈ Jac(A). Then xλ + x, xλx ∈ Jac(A) ∩
B ⊆ m. The equality x2 − (xλ + x)x + (xλx) = 0 implies x2 ∈ mA. Likewise,
y2, (x+ y)2 ∈ mA. We finish by noting that xy = 1

2 ((x+ y)2 − x2 − y2).
In the following lemmas, given a ringA and a ∈ A, we write A[√a] to denote the
ring A[T ]/(T 2− a) and let

√
a denote the image of T in A[

√
a]. By induction,

we define A[
√
a1,
√
a2, . . . ] = A[

√
a1][
√
a2, . . . ] ∼= A[T1, T2, . . . ]/(T

2
1 − a1, T 2

2 −
a2, . . . ). If λ : A → A is an involution with fixed ring B and a ∈ B, then λ
extends to A[

√
a] by setting (

√
a)λ =

√
a, and the fixed ring of λ : A[

√
a] →

A[
√
a] is B[

√
a].

Lemma 5.28. Assume B is local and suppose λ = idA, that ε = −1 and 2 ∈
A×. Suppose that h lies in [ 0 1

−1 0 ] + M2×2(Jac(A)). Then there are s, t ∈ B×,

f1, . . . , fr ∈ B[
√
s,
√
t] and vi ∈ GL2(A[

√
s,
√
t]fi) (i = 1, . . . , r) such that

∑

i fiB[
√
s,
√
t] = B[

√
s,
√
t] and vλtri hvi = [ 0 1

−1 0 ] in A[
√
s,
√
t]fi for all i.

Proof. Again, by Theorem 3.16, A is local. We write m = Jac(B), M = Jac(A)
and let {x, y} denote the standard A-basis of A2. Once s, t ∈ S and f1, . . . , fr ∈
B[
√
s,
√
t] above have been chosen, we need to show that for all i, there are

x̃, ỹ ∈ A[√s,
√
t]2fi such that

[H(x̃,x̃) H(x̃,ỹ)
H(ỹ,x̃) H(ỹ,ỹ)

]

= [ 0 1
−1 0 ].

Our assumption on h implies that H(x, y) ∈ 1 + Jac(A) ⊆ A×. Replacing
y with H(x, y)−1y, we may assume that H(x, y) = 1 and so H(y, x) = −1.
We further write α = H(x, x) and β = H(y, y). Since h = −hλtr, we have
αλ = −α and βλ = −β, and since λ = idA, it follows that α, β ∈M and hence
α2, β2 ∈ B ∩M ⊆ m.
Observe that the polynomial p(x) = −2x2 + (2− 2α)x+ α ∈ A[x] has discrim-
inant

s := (2− 2α)2 − 4(−2α) = 4 + 4α2
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and that s ∈ 4+m ⊆ B×. The roots of p(x) in A[
√
s] are c1 = 1

4 (
√
s+2− 2α)

and c2 = 1
4 (−
√
s+ 2− 2α) and we note that

16(cλ1c1 + cλ2 c2) = (
√
s+ 2)2 − 4α2 + (

√
s− 2)2 − 4α2 = 16 ∈ B× . (5.5)

We repeat this construction with β in place of α, denoting the elements corre-
sponding to s, c1, c2 by t, d1, d2.
Fix a maximal ideal p ⊳ B[

√
s,
√
t] and write B′ := B[

√
s,
√
t]p, A

′ :=
A[
√
s,
√
t]p, m

′ = Jac(B′) and M′ = Jac(A′).
It is clear that B′ is local. We claim that A′ is also local and MA′ ⊆ M′.
Indeed, by [Rei75, Thm. 6.15], we have mB[

√
s,
√
t] ⊆ Jac(B[

√
s,
√
t]) ⊆ p, and

hence mB′ ⊆ pp = m′, which in turn implies mA′ ⊆ m′A′. By Lemma 3.18,
we have m′A′ ⊆ M′, and by Lemma 5.27, M2 ⊆ mA. Using the last three
inclusions, we get (MA′)2 = M2A′ ⊆ mA′ ⊆ m′A′ ⊆ M′, and since M′ is
semiprime, MA′ ⊆ M′. The latter implies that A′ → A′/M′ factors through
A′/MA′ ∼= A⊗BB′, and hence the specialization of λ to A′/M′ is the identity.
Since B′ is flat over B, the local ring B′ is the fixed ring of λ : A′ → A′ and
Theorem 3.16 implies that A′ is local.
Now, the inclusion MA′ ⊆ M′ implies α, β ∈ M′. By equation (5.5), there is
i ∈ {1, 2} such that cλi ci ∈ B′×, and hence ci ∈ A′×. In the same way, there is
j ∈ {1, 2} such that dj ∈ A′×.
Working in A′, we have

c−1
i + (c−1

i )λ =
4

±√s+ 2− 2α
+

4

±√s+ 2 + 2α
(5.6)

=
8(±√s+ 2)

(±√s+ 2)2 − 4α2

=
8(±√s+ 2)

s± 4
√
s+ 4− 4α2

=
8(±√s+ 2)

±4√s+ 8
= 2

and likewise for dj . Write u = c−1
i − 1. Since α(c−1

i )2 + (2 − 2α)c−1
i − 2 =

c−2
i p(ci) = 0, we have

αu2 + 2u− α = 0 , (5.7)

and since α ∈M′, this implies u ∈M′. We further have uλ = −u by (5.6). In
the same way, writing w = d−1

j − 1, we have βw2 + 2w − β = 0, w ∈ M′ and

wλ = −w. Let x̃ = (1 + u)x+ (1− w)y. Then, using (5.7), we get

H(x̃, x̃) = (1 + u)λ(1 + u)α+ (1 + u)λ(1− w)− (1− w)λ(1 + u)

+ (1 − w)λ(1− w)β
= (1− u2)α+ (1− u)(1− w) − (1 + w)(1 + u) + (1 − w2)β

= α− αu2 − 2u+ β − βw2 − 2w = 0.
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Likewise, ỹ := (1 − u)x − (1 + w)y satisfies H(ỹ, ỹ) = 0. Since u,w ∈ M′ =
Jac(A′), the vectors x̃, ỹ span A′2. Since H is nondegenerate, this forces

H(x̃, ỹ) ∈ A′×. Replacing ỹ with H(x̃, ỹ)−1ỹ, we find that
[H(x̃,x̃) H(x̃,ỹ)
H(ỹ,x̃) H(ỹ,ỹ)

]

=

[ 0 1
−1 0 ].

Finally, for every maximal ideal p⊳B[
√
s,
√
t], choose fp ∈ B[

√
t,
√
s]− p such

that the coefficients of x̃, ỹ constructed above are defined in B[
√
t,
√
s]fp and

such that the identity
[H(x̃,x̃) H(x̃,ỹ)
H(ỹ,x̃) H(ỹ,ỹ)

]

= [ 0 1
−1 0 ] holds in B[

√
s,
√
t]fp . Then

∑

p fpB[
√
s,
√
t] = B[

√
s,
√
t]. Since B[

√
s,
√
t] is a finite algebra over a local

ring, it has only finitely many maximal ideals. The result follows.

Lemma 5.29. Maintaining the assumptions made at the beginning of this sub-
section, suppose that h′ ∈ GLn(A) is another (ε, λtr)-hermitian matrix. Sup-
pose further we are given a prime ideal p ∈ SpecB, units s1, . . . , sℓ ∈ B×

p ,
elements f1, . . . , fr ∈ Bp[

√
s1, . . . ,

√
sℓ] and vi ∈ GLn(Ap[

√
s1, . . . ,

√
sℓ]fi)

(i = 1, . . . , r) such that f1, . . . , fr generate the unit ideal in Bp[
√
s1, . . . ,

√
sℓ]

and such that vλtri hvi = h′ for all 1 ≤ i ≤ r. Then there is b ∈ B− p for which
the previous condition holds upon replacing Bp, Ap with Bb, Ab.

Proof. There is b ∈ B such that s1, . . . , sℓ are in the image of B×
b → B×

p . We
may replace B, p with Bb, pb and assume s1, . . . , sℓ ∈ B× henceforth.
Write B′ = B[

√
s1, . . . ,

√
sℓ] and A

′ = A[
√
s1, . . . ,

√
sℓ], and choose g1, . . . , gr ∈

B′
p such that

∑

i figi = 1. Then there is b ∈ B−p such that f1, . . . , fr, g1, . . . , gr
are images of elements in B′

b, also denoted f1, . . . , fr, g1, . . . , gr, and such that
∑

i gifi = 1 in B′
b. Again, we replace B, p with Bb, pb and assume f1, . . . , fr ∈

B′.
Fix 1 ≤ i ≤ r. There are v′i ∈ Mn×n(A

′), b ∈ B − p and m ∈ N ∪ {0} such
that vi = v′ib

−1f−m
i in Mn×n((A

′
p)fi). Since vλtri hvi = h′, we have v′λtri hv′i =

b2f2m
i h′ in Mn×n((A

′
p)fi), and hence there is k ∈ N ∪ 0 such that fki v

′λtr
i hv′i =

b2f2m+k
i h′ in Mn×n(A

′
p). This in turn implies that there is b′ ∈ B−p such that

b′fki v
′λtr
i hv′i = b′b2f2m+k

i h′ in Mn×n(A
′). Replacing B, p with Bbb′ , pbb′ , we

may assume b, b′ ∈ B×. Let ṽi = v′ib
−1f−m

i ∈ Mn×n(A
′
fi
). Then the image of ṽi

in Mn×n((A
′
p)fi) is vi and the equality b′fki v

′λtr
i hv′i = b′b2f2m+k

i h′ implies that

ṽλtri hṽi = h′ in Mn×n(A
′
fi
). Taking determinants, we see that ṽi ∈ GLn(A

′
fi
).

The lemma follows by applying the previous paragraph to all 1 ≤ i ≤ r.

We now return to the context of ringed topoi.

Lemma 5.30. Assume 2 ∈ S×, and let U ∈ Y, ε ∈ N(U) and t = ε ∈ T (U).
Then:

(i) There is a covering {Vi → U}i=1,2 of U such that 1 + ε ∈ R×(V1) and
1− ε ∈ R×(V2).

(ii) There exists a covering {Vi → U}i=1,2 of U such that t|V1
= 1 and

t|V2
= −1. Equivalently, there exists a covering {Vi → U}i=1,2 of U and

βi ∈ R(Vi) (i = 1, 2) such that β−1
1 βλ1 = ε|V1

and −β−1
2 βλ2 = ε|V2

.
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Proof. (i) We note that this statement requires proof because R is not a local
ring object in general. Observe that ε−1(1 ± ε)2 = ελ ± 2 + ε and hence
ε−1(1 ± ε)2 ∈ S(U). Since ε−1(1 + ε)2 − ε−1(1 − ε)2 = 4 and S is a local
ring object, the assumption 2 ∈ S× implies that there exists a covering {Vi →
U}i=1,2 of U such that ε−1(1 + ε)2 ∈ S×(V1) and ε−1(1− ε)2 ∈ S×(V2). It
follows that 1 + ε ∈ R×(V1) and 1− ε ∈ R×(V2).

(ii) Choose a covering {Vi → U}i=1,2 as in (i) and let β1 = ε−1(1 + ε)|V1
,

β2 = ε−1(1−ε)|V2
. Since ελ = ε−1, we have βλ1 ε

−1 = β1, and hence β−1
1 βλ1 = ε.

Likewise, β−1
2 βλ2 = −ε.

The following lemma is known when π : X → Y is unramified or trivial, i.e.,
when R is a quadratic étale S-algebra or R = S. The ramified situation that
we consider appears not to have been considered before in the literature.

Lemma 5.31. Let U ∈ Y, let ε ∈ N(U), and let h, h′ ∈ GLn(R)(U) be two
(ε, λtr)-hermitian matrices, i.e., h = εhλtr and h′ = εh′λtr. Assume S× has
square roots locally and that 2 ∈ S×, or π is unramified, or n is odd. Then
there exists a covering V → U and v ∈ GLn(R)(V ) such that vλtrhv = h′ in
GLn(R)(V ).

Proof. Suppose first that 2 ∈ S×. Let {Vi → U}i=1,2 and β1, β2 be as in
Lemma 5.30(ii). We may replace h, h′, U with (βih, βih

′, Vi)i=1,2 and assume
that ε ∈ {±1} henceforth.
We claim that it is enough to show that for all p ∈ SpecS(U), there
are s1, . . . , sℓ ∈ S(U)×p , f1, . . . , fr ∈ S(U)p[

√
s1, . . . ,

√
sℓ] and vj ∈

GLn(R(U)p[
√
s1, . . . ,

√
sℓ]fj ) (j = 1, . . . , r) such that f1, . . . , fr generate the

unit ideal in S(U)p[
√
s1, . . . ,

√
sℓ] and vλtrj hvj = h′. If this holds, then

Lemma 5.29 implies that for all p, we can find bp ∈ S(U)− p such that the pre-
vious condition holds upon replacing S(U)p, R(U)p with S(U)bp , R(U)bp . Since
∑

p bpS(U) = S(U) and S is a local ring object, there is a covering {Vp → U}p
such that bp ∈ S(Vp)×. Fix some p and let bp, s1, . . . , sℓ, f1, . . . , fr, v1, . . . , vr
be as above. By construction, the images of s1, . . . , sℓ in S(Vp) are invert-
ible in S(Vp). Since S× has square roots locally, we can replace Vp with a
suitable covering such that s1, . . . , sℓ have square roots in S(Vp). In particu-
lar, S(U) → S(Vp) factors through S(U) → S(U)bp [

√
s1, . . . ,

√
sℓ]. Applying

the fact that S is a local ring object again, we see that there is a covering
{Vp,i → Vp}ri=1 such that the image of fi in S(Vp,i) is invertible. It follows
that R(U) → R(Vp,i) factors through R(U)bp [

√
s1, . . . , ssℓ ]fi and hence there

is vp,i ∈ GLn(R(Vp,i)) — the image of vi — such that vλtrp,i hvp,i = h′. Finally,
let V =

⊔

p,i Vp,i and take v = (vp,i)p,i ∈ GLn(R(V )) =
∏

p,iGLn(R(Vp,i)).
Let p ∈ SpecS(U). We now prove the existence of s1, . . . , sℓ, f1, . . . , fr and
v1, . . . , vr above. Write B = S(U)p and A = R(U)p. Then B is local and it is
the fixed ring of λ : A→ A. We write A = A/Jac(A) and let λ : A→ A denote
the involution induced by λ.
Suppose ε = 1 or λ 6= id. By Lemma 5.25, we may assume that h and h′

are diagonal, say h = diag(α1, . . . , αn) and h′ ∈ diag(α′
1, . . . , α

′
n). Since h
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and h′ are (ε, λtr)-hermitian, we have (α−1
i α′

i)
λ = α−1

i εα′
iε

−1 = α−1
i α′

i, hence
α−1
i α′

i ∈ B× for all i. Writing si = α−1
i α′

i and v = diag(
√
s1, . . . ,

√
sn) ∈

GLn(A[
√
s1, . . . ,

√
sn]), we have vλtrhv = h′, as required (take f1 = 1).

Suppose now that ε = −1 and λ = id. Applying Lemma 5.26 to h and h′,
we may assume that h and h′ are direct sums of 2 × 2 matrices in [ 0 1

−1 0 ] +
M2×2(Jac(A)), say h = h1 ⊕ · · · ⊕ hm, h′ = hm+1 ⊕ · · · ⊕ hn with m = n/2.
Applying Lemma 5.28 to hj , we obtain sj , tj ∈ B×, fj1, . . . , fjrj ∈ B[

√
sj ,
√
tj ],

and vji ∈ GL2(A[
√
sj ,
√
tj ]fji ) such that vλtrji hjvji = [ 0 1

−1 0 ].

Let B′ = B[
√
s1,
√
t1, . . . ,

√
sn,
√
tn], A

′ = A[
√
s1,
√
t1, . . . ,

√
sn,
√
tn] and re-

gard {fji}j,i as elements ofB′. For every tuple I = (i1, . . . , in) ∈
∏

j{1, . . . , rj},
let fI =

∏

j fjij , vI = v1i1 ⊕ · · · ⊕ vmim and v′I = v(m+1)im+1
⊕ · · · ⊕ vnin ,

where vI , v
′
I are regarded as elements of GLn(A

′
fI
). Then

∑

I fIB
′ =

∏

j(
∑rj
i=1 fjiB

′) = B′ and (vIv
′−1
I )λtrh(vIv

′−1
I ) = h′, which is what we want.

This establishes the lemma when 2 ∈ S×.
To prove the remaining cases, we observe that when π is unramified, or n is
odd, the use of Lemmas 5.26, 5.28 and 5.30 can be avoided, and hence the
assumption 2 ∈ S× is unnecessary.
When π is unramified, we apply Proposition 5.6 instead of Lemma 5.30(ii) and
assume ε = 1 hereafter. Since in this case A is a quadratic étale B-algebra,
Proposition 3.4(ii) implies that λ 6= id, and so the case λ = id does not occur.
Suppose now that n is odd, say n = 2m+ 1. Taking the determinant of both
sides of h = εhλtr yields deth = ε2m+1(deth)λ. Since ελ = ε−1, this implies
that ε = β−1βλ for β = εm(deth)λ. Replacing h, h′ with βh, βh′, we may
assume ε = 1. Since n is odd, we can now apply Lemma 5.25 even when λ = id
and finish the proof without using Lemmas 5.26, 5.28 or 5.30.

We can finally complete the proof of Theorem 5.17.

Proposition 5.32. Let n be a positive integer. Suppose S× has square roots
locally and at least one of the following holds:

(1) 2 ∈ S×.

(2) π : X→ Y is unramified.

(3) n is odd.

Let (A, τ) and (A′, τ ′) be two degree-n Azumaya R-algebras with λ-involutions
having the same coarse type. Then (A, τ) and (A′, τ ′) are locally isomorphic as
R-algebras with involution.

Proof. Following the construction of ct(A, τ) in 5.2, define U , ψ, σ, g, h and
ε = h−λtrh ∈ N(U) so that ε ∈ T (U) induces ct(A, τ) ∈ H0(T ). Repeating
the construction with (A′, τ ′) in place of (A, τ), we define U ′, ψ′, σ′, g′, h′, ε′

analogously. By refining both U and U ′, we may assume U = U ′.
Since ct(A, τ) = ct(A′, τ ′), ε and ε′ determine the same section in T (U). Thus,
there exists a covering V → U and β ∈ R(V ) such that ε′ = β−1βλε. Replacing
U with V , and h′ with βh′, we may assume that ε′ = ε.
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Now, by Lemma 5.31, there exists a covering V → U and v ∈ GLn(R(V )) such
that vλtrhv = h′. Again, replace U with V . Letting u denote the image of v in
PGLn(R)(U), we deduce gu = u−λtrg′. Unfolding the construction in 5.2, one
finds that τU = ψ−1◦σ◦ψ = ψ−1◦λtr◦g◦ψ, and likewise τ ′U = ψ′−1◦λtr◦g′◦ψ′.
Let θ := ψ−1 ◦u ◦ψ′ : A′

U → AU . Then θ is an isomorphism of R-algebras, and
since gu = u−λtrg′, we have

θ ◦ τ ′U = ψ−1 ◦ u ◦ ψ′ ◦ ψ′−1 ◦ λtr ◦ g′ ◦ ψ′

= ψ−1 ◦ λtr ◦ u−λtrg′ ◦ ψ′

= ψ−1 ◦ λtr ◦ gu ◦ ψ′

= ψ−1 ◦ λtr ◦ g ◦ ψ ◦ ψ−1 ◦ u ◦ ψ′ = τU ◦ θ .

Thus, θ defines an isomorphism of algebras with involution (A′
U , τ

′
U )

∼−→
(AU , τU ).

5.4 Determining types in specific cases

Under mild assumptions, Theorem 5.17 provides a cohomological criterion to
determine whether two λ-involutions of Azumaya algebras have the same type,
and Corollary 5.18 embeds the possible λ-types in cTyp(λ) = H0(T ). We finish
this section by making this criterion and the realization of the types even more
explicit in case the exact quotient π : X → Y is induced by a C2-quotient of
schemes or topological spaces.

Notation 5.33. Throughout, we assume one of the following:

(1) X is a scheme on which 2 is invertible, λ : X → X is an involution and
π : X → Y is a good quotient relative to C2 = {1, λ}, see Example 4.20.

(2) X is a Hausdorff topological space, λ : X → X is a continuous involution,
and π : X → Y = X/{1, λ} is the quotient map.

We will usually treat both cases simultaneously, but when there is need to
distinguish them, we shall address them as the scheme-theoretic case and the
topological case, respectively.
In the scheme-theoretic case, the terms sheaf, cohomology and covering should
be understood as étale sheaf, étale cohomology and étale covering, whereas in
the topological case, they retain their ordinary meaning relative to the relevant
topological space. Furthermore, in the topological case, OX stands for C(X,C),
the sheaf of continuous functions into C, and likewise for all topological spaces.
As in Subsection 5.2, write S = OY and R = π∗OX , and define N to be
the kernel of the λ-norm x 7→ xλx : R× → S× and T to be the cokernel of
x 7→ x−1xλ : R× → N . By means of Theorem 4.35, the results of the previous
subsections can be applied, essentially verbatim, to Azumaya OX -algebras with
λ-involution.
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Recall from Propositions 4.45 and 4.46 that there is a maximal open subscheme,
resp. subset, U ⊆ Y such that πU : π−1(U)→ U is unramified, i.e., a quadratic
étale morphism or a double covering of topological spaces. We write

W = Y − U and Z = π−1(W ) .

Then W and Z are the branch locus and the ramification locus of π : X →
Y , respectively. We endow Z and W with the subspace topologies. In the
scheme-theoretic case, we further endow them with the reduced induced closed
subscheme structures in X and Y , respectively. Recall from Proposition 4.47
and the preceding comment that π induces an isomorphism of schemes, resp.
topological spaces, Z → W , and λ restricts to the identity map on Z. In
particular, W = Z/C2.
Recall that µ2,OW

denotes the sheaf of square roots of 1 in OW ; we abbreviate
this sheaf as µ2,W . Since 2 is invertible in OW , the sheaf µ2,W is just the
constant sheaf {±1}. Similar notation applies to Z.

Let (A, τ) be an Azumaya OX -algebra with λ-involution and let z ∈ Z be
a point of the the ramification locus. Propositions 4.45 and 4.46 imply that
λ(z) = z and the specialization of λ to k(z), denoted λk(z), is the identity.
Thus, the specialization of (A, τ) to k(z), denoted (Ak(z), τk(z)), is a central
simple k(z)-algebra with an involution of the first kind.

Lemma 5.34. With the above notation, the function fτ : Z → {1,−1} deter-
mined by

fτ (z) =

{

1 if τk(z) is orthogonal

−1 if τk(z) is symplectic

is locally constant, and therefore determines a global section fτ ∈ H0(Z, µ2,Z).

Proof. We may assume that degA is constant; otherwise, decompose X into a
disjoint union of components on which this holds and work componentwise.
Let (AZ , τZ) denote the base change of (A, τ) from X to Z, namely

(i∗A, i∗τ) ⊗i∗OX
(OZ , λ#Z = idOZ

), where i : Z → X denotes the inclusion
map. For any point z ∈ Z, the type of τ at k(z) may be calculated relative
to (AZ , τZ). We may therefore replace X and (A, τ) with Z and (AZ , τZ) to
assume that Z = X and λ : X → X is the trivial involution.
Let A+ = ker(idA − τ) and A− = ker(idA + τ). That is, A+ and A− are
the sheaves of τ -symmetric and τ -antisymmetric elements in A. Since λ = id,
both A+ and A− are OX -modules, and since 2 is invertible on X , the sequence

0→ A− →֒ A
id+τ−−−→ A+ → 0 is split exact. Consequently, the sequence remains

exact after base changing to k(z) for all z ∈ X , and so we may identify (A+)k(z)
with the τk(z)-symmetric elements of Ak(z).

It is well known [KMRT98, §2A] that dim(A+)k(z) equals
1
2n(n+1) when τk(z)

is orthogonal and 1
2n(n − 1) when τk(z) is symplectic. Since A+ is an OX -

summand of A, it is locally free. Thus, the rank of A+ is locally constant, and
a fortiori so is fτ .
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We will prove, after a number of lemmas, that the element fτ determines the
type of τ . In the course of the proof, we shall see that the sheaf T introduced
in Subsection 5.2 is nothing but the pushforward to Y of the sheaf µ2,W on W .

Lemma 5.35. Consider a commutative diagram

X ′ u //

π′

��

X

π

��
Y ′ v // Y

in which π : X ′ → Y ′ is a good C2-quotient of schemes, resp. a C2-quotient of
Hausdorff topological spaces, and u is C2-equivariant. Let λ′ denote the involu-
tion of X ′ and let S′, R′, N ′, T ′ denote the sheaves corresponding to S,R,N, T
and constructed with π′ : X ′ → Y ′ in place of π : X → Y . Then:

(i) There are commutative squares of ring sheaves on Y and Y ′, respectively:

v∗R
′ π∗u∗OX′ R

π∗u#oo

v∗S
′

v∗π
′

#

OO

S
v#oo

π#

OO R′ v∗Roo

S′

π′

#

OO

v∗S
v#oo

v∗π#

OO

Here, the horizontal arrows of the right square are the adjoints of the
horizontal arrows of the left square relative to the adjuntion between v∗

and v∗. Furthermore, in both squares, the top horizontal arrows are mor-
phisms of rings with involution.

(ii) The left square of (i) induces morphisms N → v∗N
′, T → v∗T

′ and
H0(T ) → H0(T ′). Furthermore, if (A, τ) is an Azumaya OX -algebra
with a λ-involution and (A′, τ ′) denotes the base change of (A, τ) to X ′,
namely (u∗A, u∗τ)⊗u∗OX

(OX′ , λ′), then the image of ctπ(τ) ∈ H0(T ) in
H0(T ′) is ctπ′(τ ′).

Proof. Part (i) and the first sentence of (ii) are straightforward from the defi-
nitions. We turn to prove the last statement of (ii).
We first claim that

(π′
∗A

′, π′
∗τ

′) ∼= (v∗π∗A, v
∗π∗τ)⊗v∗R (R′, λ′) . (5.8)

To see this, observe that the relevant counit maps induce a ring homomorphism

π′∗(v∗π∗A⊗v∗RR′) = π′∗v∗π∗A⊗π′∗v∗π∗OX
π′∗π′

∗OX′

= u∗π∗π∗A⊗u∗π∗π∗OX
π′∗π′

∗OX′ → u∗A⊗u∗OX
OX′ = A′

which respects the relevant involutions. This morphism is adjoint to a mor-
phism

v∗π∗A⊗v∗R R′ → π′
∗A

′ (5.9)
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which we claim to be the desired isomorphism. This is easy to see when A =
Mn×n(OX). In general, by Theorem 4.28, there exists a covering U → Y such
that A becomes a matrix algebra after pulling back to XU . Thus, (v

∗π∗A⊗v∗R
R′)Y ′

U
→ (π′

∗A
′)Y ′

U
is an isomorphism, and we conclude that so does (5.9).

With (5.8) at hand, let U,ψ, σ, g, h, ε be as in Construction 5.9, applied to
(A, τ). We may assume that U is represented by a covering of Y , denoted
U → Y . Let U ′ → Y ′ be the pullback of U → Y along v : Y ′ → Y ,
which corresponds to the sheaf v∗U in Y′. Let ψ′ = v∗ψ ⊗v∗RU

idR′

U′
and

let σ′ = ψ′τ ′ψ′−1 = v∗σ ⊗v∗R λ′. The right square of (i) induces canonical
maps v∗ PGLn(R) = PGLn(v

∗R) → PGLn(R
′), v∗ GLn(R) = GLn(v

∗R) →
GLn(R

′) and v∗N → N ′ (notice that v∗ is exact). Let g′ be the image of
v∗g ∈ v∗ PGLn(R)(U

′) in PGLn(R
′)(U ′), and define h′ ∈ GLn(R

′)(U ′) and
ε′ ∈ N ′(U ′) similarly. It is easy to check that we can apply Construction 5.9 to
(A′, τ ′) using U ′, ψ′, σ′, g′, h′, ε′. Consequently, the image of ε′ in T ′(U ′) agrees
with the image of v∗ε, which is exactly what we need to prove.

Endowing Z with the trivial involution, we can apply Lemma 5.35 with the
square

Z � � i //

π′

��

X

π

��
W � � j // Y

(5.10)

where π′ is the restriction of π to Z. By Example 5.5, the sheaf T ′ is just µ2,W

and hence Lemma 5.35(ii) gives rise to a morphism

Ψ : T → j∗µ2,W .

Lemma 5.36. Ψ : T → j∗µ2,W is an isomorphism of abelian sheaves on Y .

Proof. To show that Ψ is an isomorphism, it is enough to check the stalks.
The topos-theoretic points of Y are recalled in the proofs of Corollaries 4.33
and 4.34; they are in correspondence with the set-theoretic points of Y .

Let p : pt → Y be a point, corresponding to y ∈ Y . Since p∗ is exact,
p∗N is the kernel of x 7→ xλx : p∗R× → p∗R× and p∗T is the cokernel of
x 7→ x−1xλ : p∗R× → p∗N .

Suppose that y /∈ W . Then, since j : W → Y is a closed embedding,
p∗j∗µ2,W = 0. On the other hand, since π is unramified at y, it is unram-
ified at a neighborhood of y and hence p∗T = 0 by Proposition 5.6. Thus,
p∗Ψ : p∗T → p∗j∗µ2,W is an isomorphism.

Suppose henceforth that y ∈W . Then π is ramified at y. We claim that p∗R is
local and λ induces the identity map on its residue field. This is evident from the
definitions in the topological case, see Proposition 4.46. In the scheme-theoertic
case, this follows from condition (c) in Proposition 4.45 and Theorem 3.16 after
noting that Spec p∗R = X ×Y SpecOsh

Y,y.
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Now, we have p∗j∗µ2,W = {±1}. With the notation of Lemma 5.35, applied to
the square (5.10), the morphismN → j∗N

′ is just a restriction of the morphism
R → j∗R

′ = j∗OW . This implies that the images of −1, 1 ∈ p∗N in p∗T are
mapped under p∗Ψ to −1, 1 ∈ p∗j∗µ2,W , respectively, so p∗Ψ is surjective.
To finish, we show that p∗T consists of at most 2 elements. Every t ∈ p∗T
is represented by some ε ∈ p∗N . Since 2 ∈ p∗R× and p∗R is local, either
1 + ε or 1 − ε is invertible. Suppose β := 1 + ε ∈ p∗R×. Since ελ = ε−1, we
have εβλ = β, or rather, ε = (β−1)λβ, which implies t = 1. Similarly, when
1−ε ∈ p∗R×, we find that t = −1. It follows that p∗T = {1,−1} and the proof
is complete.

We finally prove the main result of this subsection.

Theorem 5.37. With Notation 5.33, Let (A, τ) and (A′, τ ′) be Azumaya OX-
algebras with λ-involutions, and let fτ , fτ ′ ∈ H0(Z, µ2,Z) be as in Lemma 5.34.
Then:

(i) τ and τ ′ have the same type if and only if fτ = f ′
τ .

(ii) There is a group isomorphism Φ : H0(T ) → H0(Z, µ2,Z) such that
Φ(ctπ(τ)) = fτ for all (A, τ).

Remark 5.38. We do not know whether every f ∈ H0(Z, µ2,Z) arises as fτ for
some (A, τ), see Remark 5.20.

Proof. By Theorem 5.17 and Example 5.16, in order prove (i), it is enough to
prove that ctπ(τ) = ctπ(τ

′), and this follows if we prove (ii).
Apply Lemma 5.35 and its notation to the square (5.10). The lemma gives rise
to a morphism of sheaves T → j∗T

′ = j∗µ2,W , which is an isomorphism by
Lemma 5.36. This in turn induces an isomorphism

H0(Y, T )→ H0(Y, j∗T
′) = H0(W,T ′) ,

such that ctπ(A, τ) is mapped to ctπ′(AZ , τZ), where (AZ , τZ) denotes the base
change of (A, τ) to Z. Since π′ : Z → W is an isomorphism, this gives rise to
an isomorphism

H0(Y, T )→ H0(W,T ′) = H0(W,µ2,W ) ∼= H0(Z, µ2,Z) ,

which we take to be Φ. It remains to show that Φ(ctπ(A, τ)) = fτ .
Since fτZ = fτ , and since the image of ctπ(A, τ) in H0(T ′) is ctπ′(AZ , τZ), it
is enough to show that the image of ctπ′(AZ , τZ) ∈ H0(W,T ′) in H0(Z, µ2,Z)
is fτZ . To this end, we replace π : X → Y and (A, τ) with π′ : Z → W and
(AZ , τZ). Now, λ is the trivial involution and we may assume that Y = X and
π is the identity map. The map H0(W,T ′) → H0(Z, µ2,Z) is just the identity
map H0(X,µ2,X) → H0(X,µ2,X), see Example 5.5, and the proof reduces to
showing that ct(τ) = fτ .
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Let x ∈ X , and let U, σ, h, ε be as in Construction 5.9, applied to (A, τ). We
may assume that the sheaf U in Y = X is represented by a covering U → X .
Since λ is the trivial involution, ε ∈ N(U) = µ2,X(U), and since µ2,X is
the constant sheaf {±1} on X , there is a covering U1 ⊔ U−1 → U such that
ε|U−1

= −1 and ε|U1
= 1.

There is c ∈ {±1} and u ∈ Uc such that x is the image of u under Uc → X .
It is immediate from the definition of t := ct(τ) that t(x) = c. Let k(u)
denote the residue field of u. By construction, (AUc

, τUc
) ∼= (Mn×n(OX), σ),

where σ is given sectionwise by x 7→ (hxh−1)tr and chtr = h. Thus, τUc
is

orthogonal when c = 1 and symplectic when c = −1. The same applies to
τk(u) : Ak(u) → Ak(u). Since (Ak(u), τk(u)) = (Ak(x), τk(x)) ⊗k(x) (k(u), id), it
follows that τk(x) : Ak(x) → Ak(x) is orthogonal when t(x) = 1 and symplectic
when t(x) = −1. This means t = fτ , so we are done.

6 Brauer Classes Supporting an Involution

6.1 Introduction

Let K be a field and let λ : K → K be an involution with fixed field F .
The central simple K-algebras admitting a λ-involution were characterized by
Albert, Riehm and Scharlau, see for instance [KMRT98, Thm. 3.1], who proved:

Theorem. Let A be a central simple K-algebra. Then:

(i) (Albert) When λ = id, A admits a λ-involution if and only if 2[A] = 0 in
Br(K).

(ii) (Albert–Riehm–Scharlau) When λ 6= id, A admits a λ-involution if and
only if [coresK/F (A)] = 0 in Br(F ).

Here, coresK/F (A) is the corestriction algebra of A, whose definition we recall
below.

The Albert–Riehm–Scharlau Theorem does not, in general, hold if we replaceK
with an arbitrary ring. However, in [Sal78], Saltman showed that the Brauer
classes admitting a representative with a λ-involution can still be characterized
similarly.

Theorem (Saltman [Sal78, Thm. 3.1]). Let R be a ring, let λ : R → R be an
involution and let S be the fixed ring of λ. Let A be an Azumaya R-algebra.
Then:

(i) When λ = id, there exists A′ ∈ [A] such that A′ admits a λ-involution if
and only if 2[A] = 0 in Br(R).

(ii) When R is quadratic étale over S, there exists A′ ∈ [A] such that A′

admits a λ-involution if and only if [coresR/S(A)] = 0 in Br(S).
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A later proof by Knus, Parimala and Srinivas [KPS90, Thms. 4.1, 4.2] applies
in the generality of schemes and also implies that the representative A′ can be
chosen such that degA′ = 2degA.

In this section, we extend Saltman’s theorem to locally ringed topoi with in-
volution. We note that our generalization implies in particular that Salman’s
theorem applies to topological Azumaya algebras. Furthermore, while Salt-
man’s theorem assumes that λ = id, or R is quadratic étale over the fixed ring
of λ, our result will apply without any restriction on the involution. Finally,
we also characterize the possible types, or more precisely, coarse types, of the
involutions of the various representatives A′ ∈ [A].

Notation 6.1. Throughout this section, let X be a locally ringed topos with
ring object OX and involution λ = (Λ, ν, λ), and let π : X → Y be an exact
quotient relative to λ, see 4.3. Recall that such quotients arise, for instance,
from C2-quotients of schemes or Hausdorff topological spaces as explained in
Examples 4.20 and 4.21. In such cases, we shall work with the original schemes,
resp. topological spaces, denoted X and Y , rather than the associated ringed
topoi.
As in Section 5, we write S = OY and R = π∗OX.
We sometimes omit bases when evaluating cohomology; the base will always
be clear from the context. If A is an abelian group in X, we shall freely
identify Hi(X, A), written Hi(A), with Hi(Y, π∗A), written Hi(π∗A), using
Theorem 4.23.

6.2 The Cohomological Transfer Map

The corestriction map considered in the aforementioned theorems of Albert–
Riehm–Scharlau and Saltman is a special case of the cohomological transfer
map, which will feature in our generalization of Saltman’s theorem.

Definition 6.2. The cohomological λ-transfer map transfλ : H2(X,O×
X
) →

H2(Y,O×
Y
) is the composite of the isomorphism H2(X,O×

X
)

∼−→ H2(Y, π∗O×
X
)

induced by π∗, see Theorem 4.23, and the morphism H2(Y, π∗O×
X
) →

H2(Y,O×
Y
) induced by the λ-norm map x 7→ xλx : π∗O×

X
→ O×

Y
. When

no confusion can arise, we shall omit λ, simply writing transf for transfλ, and
calling it the transfer map.

Example 6.3. If the involution λ of X is weakly trivial and π : X → Y is the
trivial quotient, see Example 4.22, then the λ-norm is the squaring map x 7→
x2 : π∗O×

X
→ π∗O×

X
= O×

Y
, and so transfλ : H2(O×

X
) → H2(O×

Y
) ∼= H2(O×

X
) is

multiplication by 2.

Example 6.4. Let π : X → Y be a quadratic étale morphism of schemes,
and let λ : X → X be the canonical Y -involution of X , given sectionwise
by xλ = TrX/Y (x) − x. We consider the exact quotient obtained from π and
λ by taking étale ringed topoi, see Example 4.20. In this case, the transfer
map transfλ : H2

ét(X,O×
X) → H2

ét(Y,O×
Y ) is, by definition, the corestriction
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map coresX/Y : H2
ét(X,O×

X) → H2
ét(Y,O×

Y ). Moreover, coresX/Y restricts to a
map coresX/Y : Br(X)→ Br(Y ) which can be described explicitly on the level
of Azumaya algebras: Let A be an Azumaya OX -algebra. The corestriction
algebra coresX/Y (A) is an Azumaya OY -algebra defined as the OY -subalgebra
of π∗(A ⊗OX

λ∗A) fixed by the exchange automorphism, given by x ⊗ y 7→
y ⊗ x on sections. The map coresX/Y : Br(X) → Br(Y ) is then given by
[A] 7→ [coresX/Y (A)], see [KPS90, p. 68] (the diagram on that page contains a
misprint, on the right column, both ‘S’s should be ‘R’s).

Remark 6.5. In contrast to the situation in Examples 6.3 and 6.4, we do not
know whether

transfλ : H2(X,O×
X
)→ H2(Y,O×

Y
)

restricts to a map between the Brauer groups Br(X,OX)→ Br(Y,OY), even in
the cases induced by a good C2-quotient of schemes π : X → Y . Some positive
results appear in [APS15, Lem. 5.1, Rmk. 5.2]. Also, when R is locally free
of rank 2 over S, Ferrand [Fer98] constructs a universal norm functor taking
R-algebras to S-algebras, which coincides with coresR/S when R is quadratic
étale over S, but it is a priori not clear whether it takes Azumaya R-algebras
to Azumaya S-algebras in general. We hope to address this problem in a
subsequent work.

We further note that without assuming that π is unramified, the construction
of Example 6.4 may produce an algebra which is not Azumaya. For example, it
can be checked directly that coresR/S(M2×2(R)) is not Azumaya over S when
S = C, R = C[x]/(x2), and λ : R→ R is the C-involution taking x to −x.
Example 6.6. In the case where X is a Hausdorff topological space with a free
C2-action and π : X → Y := X/C2 is the corresponding 2-sheeted covering,
the construction

transf : H2(X,S1) ∼= H2(X,O×
X)→ H2(Y,O×

Y )
∼= H2(Y, S1)

is a special case of the usual transfer map for a 2-sheeted cover. This can be
proved by considering transf on the level of 2-cocycles. See also [Pia84, Sec. 3.3]
and note that π∗ takes O×

Y , the sheaf of nonvanishing continuous complex-
valued functions on Y , to OX on X.

Remark 6.7. There is a notion of transfer for ramified covers X → X/G where
G is a finite group, in particular, when G = C2. This may be found in [AP10].
It seems likely, that map transfλ given here is a special case of that construction,
but we do not pursue this further.

6.3 Brauer Classes Supporting a λ-Involution

In this subsection, we characterize those Brauer classes in Br(X,OX) admit-
ting a representative with a λ-involution, thus generalizing Saltman’s theorem
[Sal78, Thm. 3.1].
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We remind the reader that the notational conventions of Notation 6.1 are still
in effect. In particular, S := OY is a local ring object in Y and R := π∗OX is
a commutative S-algebra with involution λ such that the fixed ring of λ is S.

As in Subsection 5.2, we define N to be the kernel of the λ-norm x 7→ xλx :
R× → S× and let T be the quotient of N by the image of the map x 7→ xλx−1 :
R× → N . Recall that cTyp(λ) := H0(T ) is the group of coarse λ-types and
there is a map (A, τ) 7→ ctπ(A, τ) ∈ H0(T ) associating an Azumaya OX-algebra
with a λ-involution to its coarse type, see Subsection 5.2.

The short exact sequence 1 → R×/S× x 7→xλx−1

−−−−−−→ N → T → 1 induces the
connecting homomorphism

δ0 : H0(T )→ H1(R×/S×)

and the short exact sequence 1 → S× → R× → R×/S× → 1 induces a con-
necting homomorphism

δ1 : H1(R×/S×)→ H2(S×).

Notation 6.8. We denote the composite morphism δ1 ◦ δ0 by Φ,

Φ : cTyp(λ) = H0(T )→ H2(S×).

Proposition 6.9. The map Φ is the 0-map in the following cases:

(i) When π : X→ Y is a trivial quotient (Example 4.22), i.e., R = S.

(ii) When π is everywhere ramified (Definition 4.43), 2 ∈ S× and S× has
square roots locally.

(iii) When π is unramified (Definition 4.43), i.e., R is a quadratic étale S-
algebra.

(iv) When π : X → Y is a good C2-quotient of schemes, Y is noetherian and
regular, and π is unramified at the generic points of Y ; the corresponding
exact quotient is obtained by taking étale ringed topoi as in Example 4.20.

Proof. (i) In this case, R×/S× is trivial. As Φ factors through H1(R×/S×) = 0,
the result follows.

(ii) We claim that squaring induces an automorphism of R×/S×, and hence
of the group H1(R×/S×). Since H0(T ) is a 2-torsion group (Proposition 5.7),
this forces δ0 : H0(T )→ H1(R×/S×) to vanish, implying Φ vanishes as well.

We show the surjectivity of x 7→ x2 : R×/S× → R×/S× by checking that R×

has square roots locally. Let U be an object of Y and r ∈ R×(U). Since S×

has square roots locally, there a covering V → U and s ∈ S×(V ) such that
rλr = s2. Replacing r with rs−1 and U with V , we may assume rλr = 1. Now,
by Lemma 5.30, there is a covering {Vi → U}i=1,2 and βi ∈ R×(Vi) such that
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r = β−1
1 βλ1 in R×(V1) and r = −β−1

2 βλ2 in R×(V2). We may refine V2 → V to
assume that there is a ∈ S×(V2) such that −βλ2β2 = a2 and get r = a2β−2

2 .
Similarly, we refine V1 to find a square root of r in R×(V1) and conclude that r
has a square root on V1 ⊔ V2.
Next, let K denote the kernel of x 7→ x2 : R×/S× → R×/S×. A section of K is
represented by some a ∈ R×(U) such that a2 ∈ S×(U), or rather, a2 = (aλ)2.
Since (a − aλ)2 + (a + aλ)2 = 4a2 ∈ S×(U) and (a − aλ)2, (a + aλ)2 ∈ S(U),
and since S is a local ring object, there is a covering {Ui → U}i=1,2 such that
a − aλ ∈ R×(U1) and a + aλ ∈ R×(U2). By virtue of Lemma 3.11, RU1

is
a quadratic étale over SU1

, so our assumption that π is everywhere ramified
forces U1 = ∅. Thus, U2 → U is a covering, implying that a+ aλ is invertible
in R(U). Since (a + aλ)(a − aλ) = a2 − (aλ)2 = 0, we must have a − aλ = 0,
so a ∈ S×(U). It follows that a represents the 1-section in R×/S×, and thus
K = 0.

(iii) In this case, a version of Hilbert’s Theorem 90 applies in the form of
Proposition 5.6, and H0(Y, T ) = 0. A fortiori, Φ is 0.

(iv) We may assume that Y is connected and therefore integral, otherwise we
may work component by component.

Let ξ : SpecK → Y denote the generic point of Y . Since ξ is flat,
πξ : Xξ → SpecK is a good C2-quotient relative to the action induced by
λ; denote the sheaves corresponding to S,R,N, T by S′, R′, N ′, T ′. We now
apply Lemma 5.35 to the square

Xξ
ξπ //

πξ

��

X

π

��
SpecK

ξ // Y

which gives rise to maps ξ∗N → N ′, ξ∗T → T ′, adjoint to the maps in
the lemma. The exactness of ξ∗ together with the natural homomorphism
H∗(Y,−)→ H∗(K, ξ∗(−)) now give rise to a commutative diagram

H0
ét(Y, T )

��

Φ // H2
ét(Y,O×

Y )

��
H0

ét(K,T
′)

Φξ // H2
ét(K,O×

SpecK)

By [Gro68a, Cor. 1.8], the right vertical morphism is injective (here we need Y
to be regular), and by (iii), Φξ = 0. Therefore, Φ = 0.

We are now ready to state our generalization of Saltman’s theorem. Whereas
Saltman’s original proof [Sal78] and the later proof by Knus, Parimala and
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Srinivas [KPS90] make use of the corestriction of an Azumaya algebra, we
cannot employ this construction, as demonstrated in Remark 6.5. Rather, our
proof is purely cohomological, phrased in the language set in Subsections 2.3
and 2.4. We remind the reader of our standing assumption from Remark 4.30
that the degrees of all Azumaya OX-algebras considered are fixed under Λ,
which is automatic when X is connected.

Theorem 6.10. Let X be a locally ringed topos with involution λ, let π : X→ Y

be an exact quotient relative to λ, and consider the map transfλ : Br(X,OX)→
H2(Y,O×

Y
) of Definition 6.2 and the map Φ : cTyp(λ) = H0(T )→ H2(Y,O×

Y
)

of Notation 6.8. Let A be an Azumaya OX-algebra of degree n, and let t ∈
H0(T ). Then there exists A′ ∈ [A] admitting a λ-involution of coarse type t if
and only if transf([A]) = Φ(t) in H2(Y,O×

Y
). The algebra A′ can be chosen

such that degA′ = 2n.

We recover Saltman’s original theorem [Sal78, Thm. 3.1] and the improvement
of Knus, Parimala and Sinivas [KPS90, Thms. 4.1, 4.2] from Theorem 6.10 by
taking π : X → Y to be the exact quotient associated to a good C2-quotient
of schemes π : X → Y such that π is an isomorphism or quadratic étale, see
Example 4.20. In this case, Φ = 0 by Proposition 6.9, and the transfer map
coincides with multiplication by 2 when π = id, or with the corestriction map
when π is quadratic étale, as demonstrated in Examples 6.3 and 6.4.
The relation between the type and the coarse type of an involution, as well as
the question of when two involutions of the same type are locally isomorphic,
had been studied extensively in Subsections 5.2 and 5.4.

Proof. Thanks to Theorems 4.23 and 4.28, we may replace A with π∗A and
work with R-algebras, rather than OX-algebras. We abuse the notation and
denote the map H2(R×)→ H2(S×) induced by x 7→ xλx : R× → S× as transfλ.

Suppose first that there exists [A′] ∈ A admitting a λ-involution τ of coarse
type t. We may replace A with A′. We now invoke all the notation of Con-
struction 5.9 and the proof of Lemma 5.10 through which t is constructed from
(A, τ). Specifically:

• U → ∗Y is a covering such that there exists an isomorphism of RU -
algebras ψ : AU → Mn×n(RU ),

• σ := ψ ◦ τU ◦ ψ−1 is an involution of Mn×n(RU ),

• g := λtr ◦ σ is an element of PGLn(R)(U),

• h ∈ GLn(R)(U) is a lift of g (refine U if necessary),

• ε := h−λtrh is an element of N(U), embedded diagonally in GLn(R)(U),

• U• is the Čech hypercovering corresponding to U → ∗, see Example 2.3,

• a = ψ1 ◦ ψ−1
0 ∈ PGLn(R)(U1), where ψi is the pullback of ψ along

di : U1 → U0,
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• b is a lift of a to GLn(R)(V ), where V → U1 is some covering,

• β := b−λtr · d∗0h · b−1 · d∗1h−1 is an element R×(V ), embedded diagonally
in GLn(R)(V ),

• t = ct(τ) is the image of ε in T (U); it descends to a global section of T
since d∗1ε · d∗0ε−1 = β−1βλ.

By Lemma 2.4, there is a hypercovering morphism V• → U• such that V1 → U1

factors through V → U1. We replace V with V1.
Recall from Theorem 4.28 that A corresponds to a PGLn(R)-torsor, which in
turn corresponds to a cohomology class in H1(PGLn(R)). We claim that a
is a 1-cocycle in Z1(U•,PGLn(R)) which represents this cohomology class.
Indeed, the PGLn(R)-torsor corresponding to a is P := AutR(Mn×n(R), A),
and ψ−1 ∈ P (U) = P (U0) by construction. By the isomorphism given in
the proof of Proposition 2.8(i), the cohomology class corresponding to P is
represented by d∗1(ψ

−1)−1 · d∗0(ψ−1) = ψ1 ◦ ψ−1
0 = a.

Consider the short exact sequence 1 → R× → GLn(R) → PGLn(R) → 1 and
its associated 7-term cohomology exact sequence, see Proposition 2.8(iii). It
follows from the definition of δ2 : H1(PGLn(R)) → H2(R×), see the proof of
Proposition 2.8(iii), that [A] = δ2(a) ∈ H2(R×) is represented by

α := d∗2b · d∗0b · d∗1b−1 ∈ Z2(V•, R
×) . (6.1)

and thus, transf([A]) is represented by αλα ∈ Z2(V•, S
×).

On the other hand, by the definition of δ0 : H0(T ) → H1(R×/S×), see the
beginning of this subsection and the end of 2.3, δ0(t) is represented by the image
of β−1 ∈ R×(V1) in (R×/S×)(V1), since d

∗
0ε·d∗1ε−1 = (β−1)λβ. Likewise, by the

definition of δ1 : H1(R×/S×)→ H2(S×), the class Φ(t) = δ1δ0(t) is represented
by d∗0β

−1 · d∗1β · d∗2β−1 ∈ Z2(V•, S
×).

In order to show that transf([A]) = Φ(t), we check that αλα = d∗0β
−1 · d∗1β ·

d∗2β
−1 in S×(V2). For the computation, we shall make use of d∗0d

∗
0 = d∗1d

∗
0,

d∗0d
∗
1 = d∗2d

∗
0, d

∗
1d

∗
1 = d∗2d

∗
1 and the fact that if xyz is central in a group G, then

xyz = zxy = yzx.

d∗0β
−1 · d∗1β · d∗2β−1

= d∗0β
−1(d∗1b

−λtr · d∗1d∗0h · d∗1b−1 · d∗1d∗1h−1) · (d∗2d∗1h · d∗2b · d∗2d∗0h−1 · d∗2bλtr)
= d∗1b

−λtr · d∗1d∗0h · d∗1b−1 · d∗2b · d∗2d∗0h−1 · (d∗0β−1) · d∗2bλtr

= d∗1b
−λtr · d∗1d∗0h · d∗1b−1 · d∗2b · d∗2d∗0h−1

· (d∗0d∗1h · d∗0b · d∗0d∗0h−1 · d∗0bλtr) · d∗2bλtr

= d∗1b
−λtr · d∗1d∗0h · (d∗1b−1 · d∗2b · d∗0b) · d∗0d∗0h−1 · d∗0bλtr · d∗2bλtr

= d∗1b
−λtr · d∗1d∗0h · α · d∗0d∗0h−1 · d∗0bλtr · d∗2bλtr

= (d∗2b · d∗0b · d∗1b−1)λtr · α
= αλα
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This completes the proof of the “only if” statement.

Suppose now that transf([A]) = Φ(t). Define U → ∗, U•, a, b, V• and α as
before. Using Lemma 2.4 twice, we can refine V• to assume that t lifts to some
ε ∈ N(V0) and there is β ∈ R×(V1) such that

d∗0ε · d∗1ε−1 = (β−1)λβ (6.2)

in N(V1). As explained above, transf([A]) is represented by αλα ∈ Z2(V•, S
×)

and Φ(t) is represented by d∗0β
−1 · d∗1β · d∗2β−1. The assumption Φ(t) =

transf([A]) therefore means that, after refining V•, there exists γ ∈ S×(V1)
such that

d∗0γ · d∗1γ−1 · d∗2γ · d∗0β−1 · d∗1β · d∗2β−1 = αλα .

We replace β with βγ−1 ∈ R×(V1), which does not affect (6.2) and allows us
to assume

d∗0β
−1 · d∗1β · d∗2β−1 = αλα . (6.3)

Writing in block form, define the 2n× 2n matrices

h =

[

0 1
ε 0

]

∈ GL2n(R)(V0) and b′ =

[

b 0
0 β−1b−λtr

]

∈ GL2n(R)(V1)

and let σ : M2n×2n(RV0
) → M2n×2n(RV0

) be the involution given by
x 7→ (hxh−1)λtr = h−λtrxhλtr on sections. Also, let a′ be the image of
b′ in PGL2n(R)(V1), namely, a′ ∈ PGL2n(R)(V1) is the automorphism of
M2n×2n(RV1

) given by x 7→ b′xb′−1 on sections.
We first observe that a′ ∈ Z1(V•,PGL2n(R)). Indeed, working in GL2n(R)(V2)
and using (6.1) and (6.3), we find that

d∗2b
′ · d∗0b′ · d∗1b′−1 =

[

α 0
0 (d∗0β · d∗2β · d∗1β−1)−1α−λtr

]

=

[

α 0
0 α

]

∈ R×(V1) .

(6.4)
Let Ṽ• denote the Čech hypercovering associated to V0 → ∗, see Exam-
ple 2.3. By Lemma 2.7, a′ ∈ Z1(V•,PGL2n(R)) descends uniquely to a co-
cycle ã′ ∈ Z1(Ṽ•,PGL2n(R)). The Čech 1-cocycle ã′ defines descent data for
M2n×2n(RV0

) along V0 → ∗, giving rise to an Azumaya R-algebra A′ of degree
2n and an isomorphism ψ : A′

V0
→ M2n×2n(RV0

) such that ã′ = ψ1◦ψ−1
0 , where

ψi is the pullback of ψ along di : Ṽ1 → Ṽ0 = V0. Note that by construction, a′

represents the class in H1(PGL2n(R)) corresponding to A′, hence (6.4) implies
that [A′] = α = [A].
We now claim that σ descends to an involution τ : A′ → A′. Letting σi denote
the pullback of σ along di : V1 → V0, and noting that (d0, d1) : V1 → V0×V0 is
a covering, see Subsection 2.3, this amounts to showing that σ1a

′ = a′σ0. To
see this, we first note that (6.2) and ελε = 1 imply that

b′−λtr · d∗0h · b′−1 · d∗1h−1 =

[

β 0
0 βλ · d∗0ε · d∗1ε−1

]

=

[

β 0
0 β

]

,
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or equivalently,
b′−1 · d∗1h−1 = β · d∗0h−1 · b′λtr.

Using this, for any section x of M2n×2n(RV1
), we have

σ1(a
′(x)) = d∗1h

−λtr(b′xb′−1)λtrd∗1h
λtr = (b′−1d∗1h

−1)λtrx(b′−1d∗1h
−1)−λtr

= (β · d∗0h−1 · b′λtr)λtrx(β · d∗0h−1 · b′λtr)−λtr = a′(σ0(x)) ,

which is what we want.
We finish by checking that ct(τ) = t. To see this, apply Construction 5.9
to (A′, τ) using U := V0, ψ, σ and h defined above and note that h−λtrh =
[ ε 0
0 ε ].

We now specialize Theorem 6.10 to Azumaya algebras over schemes and over
topological spaces.
It is worth recalling at this point that in the situation of a good C2-quotients
of schemes π : X → Y such that 2 is invertible on Y (Example 4.20), or a C2-
quotient of Hausdorff topological spaces π : X → Y (Examples 4.21), the sheaf
T is isomorphic to i∗µ2,W , where i : W → Y is the embedding of the branch
locus of π in Y . Under this isomorphism, the coarse type of an involution
τ : A → A is the unique global section f ∈ H0(W,µ2,W ) = C(W, {±1}) such
that f(w) = 1 if τk(π−1(w)) : Ak(π−1(w)) → Ak(π−1(w)) is orthogonal, and f(w) =
−1 if τk(π−1(w)) : Ak(π−1(w)) → Ak(π−1(w)) is symplectic, for all w ∈ W ; see
Subsection 5.4. Furthermore, in these situations, two λ-involutions of the same
coarse type have the same type, and they are locally isomorphic if the degrees
of their underlying Azumaya algebras agree; this follows from Theorem 5.17
and Corollary 5.18.

Corollary 6.11. Let X be a scheme, let λ : X → X be an involution and let
π : X → Y be a good quotient relative to C2 := {1, λ}. Let A be an Azumaya
OX-algebra and let t ∈ cTyp(λ) be a coarse type. Then there exists A′ ∈ [A]
admitting a λ-involution of coarse type t if and only if Φ(t) = transfλ([A]) in
H2

ét(Y,O×
Y ). The algebra A′ can be chosen such that degA′ = 2degA.

Proof. This is a special case of Theorem 6.10. See Example 4.20 and Theo-
rem 4.35.

Corollary 6.12. In the situation of Corollary 6.11, suppose that

(1) λ = id, or

(2) π : X → Y is quadratic étale, or

(3) Y is noetherian and regular, and π is unramified at the generic points
of Y .

Then there exists A′ ∈ [A] admitting a λ-involution if and only if transfλ([A]) =
0. In this case, A′ can be chosen to have a λ-involution of any prescribed
coarse type (or any prescribed type, when 2 is invertible on Y ) and to satisfy
degA′ = 2degA.
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Proof. This follows from Corollary 6.11 and Propositions 6.9 and 4.45.

Corollary 6.13. Let X be a Hausdorff topological space, let λ : X → X be a
continuous involution, and let π denote the quotient map X → Y := X/{1, λ}.
Let A be an Azumaya OX-algebra and let t ∈ cTyp(λ) be a coarse type. Then
there exists A′ ∈ [A] admitting a λ-involution of coarse type t if and only if
Φ(t) = transfλ([A]) in H2

ét(Y,O×
Y ). The algebra A′ can be chosen such that

degA′ = 2degA.

Proof. This is a special case of Theorem 6.10, see Examples 4.21 and Theo-
rem 4.35.

Corollary 6.14. In the situation of Corollary 6.13, if λ = id, or λ acts
freely on X, then there exists A′ ∈ [A] admitting a λ-involution if and only if
transfλ([A]) = 0. In this case A′ can be chosen to have a λ-involution of any
prescribed type and to satisfy degA′ = 2degA.

Proof. This follows from Corollary 6.13 and Propositions 6.9 and 4.46.

Remark 6.15. Let R be a connected semilocal ring, and let λ : R → R be an
involution with fixed ring S. When R = S or R is quadratic étale over S,
it was observed by Saltman [Sal78, Thm. 4.4] that an Azumaya R-algebra A
that is Brauer equivalent to an algebra with a λ-involution already possesses a
λ-involution. Otherwise said, in this special situation, we can choose A′ = A
in Corollary 6.11.
We do not know whether this statement continues to hold if the assumption that
R = S or R is quadratic étale over S is dropped. In this case, the fact that R is
semilocal implies that two Azumaya algebras of the same degree are isomorphic
[OS71]. With this in hand, Corollary 6.11 implies that if A is equivalent to an
AzumayaR-algebra admitting a λ-involution, then M2×2(A) has a λ-involution.
The problem therefore reduces to the question of whether the existence of a
λ-involution on M2×2(A) implies the existence of a λ-involution on A. The
same question was asked for arbitrary non-commutative semilocal rings A in
[Fir15, §12], where it was also shown that counterexamples, if any exist, are
restricted. In particular, returning to the case of Azumaya algebras, it follows
from [Fir15, Thm. 7.3] that if degA is even, then A does possess a λ-involution
when M2×2(A) has one.

6.4 The Kernel of the Transfer Map

We continue to use R, S, N , T defined in Subsection 6.3.
Saltman’s theorem can also be regarded as a result characterizing the kernel
of the transfer map in terms of existence of certain involutions. We now use
Theorem 6.10 to generalize this particular aspect, namely, describing the kernel
of transfλ : Br(X,OX) → H2(Y,O×

Y
) in terms of the involutions that the

Brauer classes support. For that purpose, we introduce the following families
of λ-involutions.
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Definition 6.16. Let A be an Azumaya OX-algebra. A λ-involution τ : A→
ΛA is called semiordinary if there exists a split Azumaya OX-algebra A′ and
a λ-involution τ ′ : A′ → ΛA′ such that (π∗A, π∗τ) and (π∗A

′, π∗τ
′) are locally

isomorphic. If A′ can moreover be chosen to be Mn×n(OX) and there is a ∈
H0(A′) such that τ ′ is given by x 7→ (axa−1)λtr on sections, we say that τ is
ordinary.
When τ is not semiordinary, we shall say it is extraordinary.

Theorem 6.17. With notation as in Theorem 6.10, let A be an Azumaya OX-
algebra of degree n. Then the following conditions are equivalent:

(a) transfλ([A]) = 0,

(b) there exists A′ ∈ [A] admitting a semiordinary λ-involution,

(c) there exists A′ ∈ [A] admitting an ordinary λ-involution.

In (b), the algebra A′ can be chosen to satisfy degA′ = 2degA and to have
a semiordinary involution of any prescribed coarse type in ker(Φ : H0(T ) →
H2(S×)). In (c), the algebra A′ can be chosen to satisfy degA′ = 2degA and
to have an ordinary involution of any prescribed coarse type in im(H0(N) →
H0(T )).

We shall see below (Corollary 6.22) that in the situation of a scheme on
which 2 is invertible and a trivial involution, or a quadratic étale covering
of schemes with its canonical involution, all λ-involutions are ordinary. Thus,
Theorem 6.17 recovers Saltman’s Theorem when 2 is invertible.
More generally, it will turn out that under mild assumptions, all involutions
are ordinary when π : X→ Y is unramified or everywhere ramified.

Proof. As in the proof of Theorem 6.10, we switch to Azumaya R-algebras by
applying π∗.
(c) =⇒ (b) is clear.
(b) =⇒ (a): Suppose A′ ∈ [A] admits a semiordinary involution τ and let (B, θ)
be a split Azumaya R-algebra with a λ-involution that is locally isomorphic to
(A′, τ). Then by Theorem 6.10 and Proposition 5.13, transfλ([A]) = Φ(ct(τ)) =
Φ(ct(θ)) = transfλ([B]) = 0.
(a) =⇒ (c): Let t ∈ im(H0(N) → H0(T )). Then t is the image of some
ε ∈ H0(N). We revisit the proof of the “if” part in Theorem 6.10 and apply
it with our t and ε to obtain an Azumaya R-algebra with involution (A′, τ)
such that A′ ∈ [A], degA′ = 2n, ct(τ) = t and (A′

V0
, τV0

) is isomorphic to

(M2n×2n(RV0
), σ) with σ being given by x 7→ ([ 0 1

ε 0 ]x[
0 1
ε 0 ]

−1)λtr on sections.
Since ε ∈ H0(N), the involution σ descends to an involution on M2n×2n(R),
defined by the same formula as σ, hence τ is ordinary.

It remains to show that we can chooseA′ to have a semiordinary involution with
a prescribed coarse type t ∈ kerΦ. Let V → ∗ be a covering such that t lifts
to some ε ∈ N(V ). Again, we apply the proof of the “if” part of Theorem 6.10
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with t, ε and A to obtain an Azumaya R-algebra with involution (A′, τ) satisfy-
ing A′ ∈ [A] and ct(τ) = t. We then reapply the proof with Mn×n(R) in place
of A to obtain another Azumaya R-algebra with involution (A′

1, τ1) such that
A′

1 is split and ct(τ1) = t. By construction, after suitable refinement of V → ∗,
both (A′

V , τV ) and (A′
1,V , τ1,V ) are isomorphic to (M2n×2n(RV ), σ), where is σ

given by x 7→ ([ 0 1
ε 0 ]x[

0 1
ε 0 ]

−1)λtr on sections. Consequently, (A′, τ) and (A′
1, τ1)

are locally isomorphic and therefore τ is semiordinary.

We now shift our attention from the involutions τ to the coarse types t.

Definition 6.18. Let t ∈ H0(T ) be a coarse λ-type. We say that t is realizable
if there exists some Azumaya OX-algebra A and some λ-involution τ : A→ ΛA
with coarse type t. We also say that t is realizable in degree n when A can
be chosen so that n = degA. When τ can be chosen to be ordinary, resp.
semiordinary, we call t ordinary, resp. semiordinary.

The following theorem characterizes the realizable, semiordinary, and ordinary
coarse types in cohomological terms.

Theorem 6.19. With notation as in Theorem 6.10, let t ∈ H0(T ) be coarse type
and let δ0 : H0(T )→ H1(R×/S×), δ1 : H1(R×/S×)→ H2(S×) and Φ = δ1 ◦ δ0
be as in Subsection 6.3. Then:

(i) t is realizable if and only if Φ(t) ∈ im(transfλ : Br(X,OX) →
H2(Y,O×

Y
)).

(ii) t is semiordinary if and only if Φ(t) = 0.

(iii) t is ordinary if and only if δ0(t) = 0, or equivalently t ∈ im(H0(N) →
H0(T )).

When (ii) or (iii) hold, t is realizable in degree 2, and hence in all even degrees.

Proof. (i) This follows form Theorem 6.10.

(ii) The “only if” part follows from Theorems 6.17 and 6.10. The “if” part and
the assertion that t can be realized in degree 2 follow by applying Theorem 6.17
with A = R.

(iii) Suppose t is ordinary, say t = ct(Mn(R), τ) with τ given by x 7→
(hxh−1)λtr on sections. Then we can apply Construction 5.9 by with U = ∗,
ψ = id, and h as above, resulting in ε ∈ H0(N), which then maps onto
t ∈ H0(T ).

The reverse implication follows by applying Theorem 6.17 with A = R.

Corollary 6.20. With the notation of Theorem 6.10, suppose O×
Y

has square
roots locally, and assume further that 2 ∈ O×

Y
or π : X → Y is unramified.

Let (A, τ) be an Azumaya OX-algebra with a λ-involution. Then τ is ordinary,
resp. semiordinary, if and only if its coarse type is.
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Proof. The “only if” part is clear, so we turn to the “if” part. We replace (A, τ)
with (π∗A, π∗τ), see Theorem 4.28 and Corollary 4.31, and write t = ct(τ). In
case Y is not connected, we express ∗Y as

⊔

n∈N
Yn such that AYn

has degree
n, and work with each component separately. We may therefore assume that
n := degA is constant.
By Theorem 5.17, it is enough to find an Azumaya R-algebra A′ with an
ordinary, resp. semiordinary, involution τ ′ such that degA = degA′ and ct(τ) =
ct(τ ′). If n is odd, then t = 1 by Theorem 5.21(iii), and we can take (A′, τ ′) =
(Mn×n(R), λtr). Otherwise, n = 2m, and applying Theorem 6.17 to Mm×m(R)
yields an algebra with an ordinary, resp. semiordinary, involution (A′, τ ′) such
that ct(τ ′) = ct(τ) and degA′ = degA; here we used parts (ii) and (iii) of
Theorem 6.19.

Corollary 6.21. With the notation of Theorem 6.10, suppose that

(1) π : X→ Y is a trivial quotient (Example 4.22), or

(2) π : X → Y is everywhere ramified, 2 ∈ O×
Y

and O×
Y

has square roots
locally, or

(3) π : X→ Y is unramified.

Then all coarse λ-types are realizable and ordinary.

Proof. It follows from the proof of Proposition 6.9 that in all three cases, δ0 :
H0(T )→ H0(R×/S×) is the 0 map. Now apply Theorem 6.19(iii).

Corollary 6.22. With the notation of Theorem 6.10, suppose that O×
Y

has
square roots locally and moreover

(1) π : X→ Y is everywhere ramified and 2 ∈ O×
Y
, or

(2) π : X→ Y is unramified.

Then all λ-involutions are ordinary.

Proof. This follows from Corollaries 6.20 and 6.21.

Corollary 6.23. Let X be a scheme, let λ : X → X be an involution, and let
π : X → Y be a good quotient relative to {1, λ}. Assume Y is noetherian and
regular, and π is quadratic étale on the generic points of Y . Then all coarse
λ-types are realizable and semiordinary. If moreover 2 is invertible on Y , then
all λ-involutions are semiordinary.

Proof. The first assertion follows from Proposition 6.9(iv) and Theo-
rem 6.19(ii). The second assertion then follows from Corollary 6.20.

We conclude this section with two problems, both of which are open both in the
context of varieties over fields of characteristic different from 2 with (ramified)
involutions and in the context of topological spaces with (non-free) C2-actions.
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Problem 6.24. Is there an element t ∈ cTyp(λ) = H0(T ) that is not the coarse
type of any Azumaya algebra with λ-involution?

Problem 6.25. Is there an Azumaya algebra A with a λ-involution τ that is
extraordinary (i.e. not semiordinary)?

By Theorem 5.37, the first problem can be phrased as follows: Suppse that X
is a scheme with involution λ admitting a good quotient relative to {1, λ}, or X
is a Hausdorff topological space with involution λ. Let Z be the locus of points
where λ ramifies and let Z = Z−1 ⊔ Z1 be a partition of Z into two closed
subsets. Is it always possible to find an Azumaya algebra A over X admitting
a λ-involution τ such that the specialization of τ to k(z) is orthogonal if z ∈ Z1

and symplectic if z ∈ Z−1?

7 Examples and Applications

Example 7.1. Fix an exact quotient π : (X,OX) → (Y,OY) and write R =
π∗OX, S = OY. We assume that S× has square roots locally and 2 ∈ S×.
This assumption allows us to drop the distinction between types and coarse
types for the most part (Corollary 5.18). As in the previous section, we use
the notation N for the kernel the λ-norm map x 7→ xλx : R× → S×, and T for
the quotient of N by the image of the map R× → N given by r 7→ r−1rλ. The
coarse types are then H0(Y, T ).
Suppose t is an ordinary coarse type. By Theorem 6.19, this is equivalent
to saying there exists some ε in H0(Y, N) mapping to t under the map
H0(Y, N) → H0(Y, T ). Such an ε can always be found if H1(Y, R×/S×)
vanishes, for instance.
Let n be a natural number. Consider the matrix

h = h2n(ε) =

[

0 In
εIn 0

]

.

It is immediate that εhλtr = h. This equality implies that the map τε :
Mat2n×2n(R)→ Mat2n×2n(R) given on sections by

M 7→ (h2n(ε)M h2n(ε)
−1)λtr.

is a λ-involution. The (coarse) type of τ is easily seen to be t, the image of ε
in H0(T ). This follows from Construction 5.9.
In this case, any algebra of degree 2n with involution of coarse type t is locally
isomorphic to (Mat2n×2n(R), τ), by Theorem 5.17. Thanks to Corollary 5.23,
we may therefore place such algebras in bijective correspondence with G-torsors
on Y where G = PU(Mat2n×2n(R), τε) ∼= AutR(Mat2n×2n(R), τε).

Example 7.2. As a special case of the previous example, we describe the Azu-
maya algebras with symplectic involution on a scheme or topological space
with trivial involution. See Theorem 4.35 for the specific hypotheses on the
underlying geometric object, and note that we assume 2 is invertible.
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In this case, π = id, R = S, and N = µ2,R. By Theorem 5.21(i), the group
of coarse types is H0(µ2,R), which is just {1,−1} when X is connected. We
consider the (coarse) type −1, called the symplectic type.
Any Azumaya algebra with involution having this type is of even degree, 2n,
by Theorem 5.21(iii), and is locally isomorphic to the split degree-2n algebra
with symplectic involution

sp :M 7→ (h2n(−1)Mh2n(−1)−1)tr.

The unitary group of (M2n×2n(R), sp) is the familiar symplectic group
Sp2n(R), and it follows from Lemma 5.22 that the automorphism group of
(M2n×2n(R), sp) is

PSp2n(R) := Spn(R)/µ2,R .

In particular, as noted in Corollary 5.23, the set of isomorphism classes of
degree-2nAzumaya algebras with symplectic involution is in canonical bijection
with

H1(X,PSp2n(R)).

Since the symplectic type is ordinary, by Theorem 6.17 and Example 6.3, we
derive the well known fact that an Azumaya algebra A on X is Brauer equiva-
lent to one having a symplectic involution if and only if the Brauer class of A
is 2-torsion.

Example 7.3. Fix an exact quotient π : X → Y with ring objects OX, and
let R = π∗OX and S = OY. Let n be a natural number and assume that
the hypotheses of Theorem 5.17 hold, namely S× has square roots locally, and
either 2 ∈ S×, or π is unramified, or n is odd. We consider the trivial type, 1.
This is the type of the involution

M 7→Mλtr

on the split algebra Matn×n(R).
Any algebra with involution of the trivial type is locally isomorphic to this
one, and therefore, as summarized in Corollary 5.23, these are classified by G
torsors where G = AutR(Mn×n(R), λtr) ∼= PU(Mn×n(R), λtr). We write the
latter group as

PUn(R, λ)

and call it the projective unitary group of rank n for the involution λ. In
accordance with this notation, the unitary group of (Mn×n(R), λtr) will be
denoted Un(R, λ).

Example 7.4. Consider the case of a scheme or a topological space X with
trivial involution, as in the case of Example 7.2. The theory of Azumaya
algebras with involution of type 1 can be established along the same lines as
that of type −1. These algebras are called orthogonal. The automorphism
group of (M2n×2n(R), tr) is the quotient group O2n(R)/µ2,R, which we denote
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by PO2n(R), the projective orthogonal group. This is special notation for the
group PU2n(R, id) of Example 7.3.

Again, by reference to Theorem 6.17 and Example 6.3, an algebra is Brauer
equivalent to one having involution of this type if and only if the Brauer class
is 2-torsion.

Example 7.5. In this example we discuss unitary involutions. As a special
case of Example 7.3, we consider the case of an unramified double covering
π : X → Y of schemes or topological spaces. Again, we refer to Theorem 4.35
for the specific hypotheses on the underlying geometric object.

In this case, the ring object R is a quadratic étale extension of S, see Proposi-
tions 4.45 and 4.46. Since π is unramified, Theorem 5.21(ii) implies that there
is only one type of involution on Azumaya algebras, the trivial one, which is
called unitary in this context. In particular, we are in a special case of Exam-
ple 7.3.

The structure of the groups Un(R, λ) and PUn(R, λ) = Un(R, λ)/N depends
on the nature of λ, so a complete description in the abstract is not possible.
We can, however, find an étale, resp. open, covering U → Y such that RU ∼=
SU × SU . After specializing to U , the algebra Mn×n(R) becomes Mn×n(S) ×
Mn×n(S) and the involution λtr becomes the involution given sectionwise by
(x, y) 7→ (ytr, xtr). From this, one verifies that Un(R, λ)U ∼= GLn(S)U and
PUn(R, λ)U ∼= PGLn(S)U . Consequently, for a general degree-n Azumaya R-
algebra with involution (A, τ), the groups U(A, τ) and PU(A, τ) are locally
isomorphic to GLn(S) and PGLn(S), respectively.

This agrees with the well established fact that projective unitary group schemes
of unitary involutions are of type A.

Example 7.6. In another instance of Example 7.1, we can produce an example
of an Azumaya algebra with an involution that mixes the various classical types.
This example also featured in the introduction.

We work with étale sheaves and étale cohomology throughout, see Exam-
ple 4.20. Let k be an algebraically closed field and let X = Spec k[x, x−1]
with the k-linear involution λ sending x to x−1. A good quotient of X by this
involution exists, and is given by Y = Spec k[y] where y = x+ x−1.

Here, the ring object R is the ring k[x, x−1] viewed as a sheaf of rings on Y ,
and the ring object S is the structure sheaf of Y . The sheaf N is the sheaf of
norm-1 elements in R, where the norm map sends a Laurent polynomial p(x)
to p(x)p(x−1). Both the Picard and the Brauer groups of X and Y vanish, so
that we can calculate H1(Y,R×/S×) = 0. The following sequence is therefore
exact

1→ H0(Y,R×/S×)
ψ−→ H0(Y,N)→ H0(Y, T )→ 1.

Explicitly, we calculate that H0(Y,R×/S×) consists of classes of monomials xi

for i ∈ Z, and H0(Y,N) consists of monomials of the form ±xi for i ∈ Z, but
ψ maps the class of xi to xi/x−i = x2i. Therefore, the group of (coarse) types
is isomorphic to the Klein 4-group: H0(Y, T ) = {1,−1, x,−x}.
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Since H1(Y,R×/S×) = 0, we are in the circumstance of Example 7.1 which
provides models for each of the four types on even-degree split algebras. For
instance, on Mat2×2(R), we have the involution given by conjugating by [ 0 1

x 0 ]
and then applying λtr, explicitly

[

a(x) b(x)
c(x) d(x)

]

7→
[

d(x−1) x−1b(x−1)
xc(x−1) a(x−1)

]

.

Away from the fixed locus of λ : X → X , namely, the points x = 1 and x = −1,
this involution is unitary, whereas at x = 1 it specializes to be orthogonal and
at x = −1 to be symplectic.
More generally, it follows from Theorem 5.37 that the type of any Azumaya X-
algebra with involution (A, τ) is determined by the types seen upon specializing
to x = 1 and x = −1.
Example 7.7. We now demonstrate that there exist involutions that are not
locally isomorphic to involutions of the form exhibited in Example 7.1. Specif-
ically, we will show that there are involutions which are not ordinary in the
sense of Definition 6.16.
We consider a complex hyperelliptic curve X of genus g and a double covering
X → Y =: P1

C
. Explicitly: Let a1, . . . , a2g+1 be distinct complex numbers, and

let
X0 = SpecC[x, y]/(y2 −

∏

i

(x− ai)).

We complete X0 by gluing it to X1 := SpecC[u, v]/(v2 − u∏i(1 − aiu)) by
mapping (x, y) to (u, v) := ( 1x ,

y
xg+1 ), and denote the resulting smooth complete

curve by X . View Y = P1
C
as the gluing of Y0 := SpecC[x] to Y1 := SpecC[u]

via (x : 1)↔ (1 : u−1). Projection onto the x or u coordinate induces a double
covering π : X → Y with ramification at the points (a1 : 0), . . . , (a2g+1 : 0) and
(0 : 1). The map λ : X → X given by (x, y) 7→ (x,−y), resp. (u, v) 7→ (u,−v),
on the charts is an involution and π is a good quotient relative to C2 := {1, λ}.
Indeed, working with the affine covering Y = Y0 ∪ Y1, we see that C[x] is the
fixed ring of

λ# :
C[x, y]

(y2 −∏

i(x− ai))
→ C[x, y]

(y2 −∏

i(x − ai))
, x 7→ x, y 7→ −y,

and similarly on the other chart.
By Corollary 6.23, all coarse λ-types in H0(T ) are realizable and semiordinary.
Since the branch locus of π consists of 2g+2 points, it follows from Theorem 5.37
that there are 22g+2 λ-types. Theorem 6.19 also says that the number of
ordinary types is the cardinality of the image of the map H0(N) → H0(T ),
where N is the sheaf of sections of λ-norm 1 in R := π∗OX . Let ε ∈ H0(N).
Then ε ∈ H0(Y, π∗OX) = H0(X,OX). Since X is a complete complex curve,
the global sections of the structure sheaf are constant functions, meaning that
ε ∈ C×. Since ελε = 1, it follows that H0(N) = {±1}. The images of 1,−1 ∈
H0(N) in H0(T ) are therefore the ordinary types. Thus, of the 22g+2 possible
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coarse types, only 2 are ordinary, and the remaining 22g+2 − 2 are merely
semiordinary.

We remark that we have reached the latter conclusion without actually con-
structing Azumaya algebras with involution realizing any of the non-ordinary
types. A construction is given in the proof of Theorem 6.19, and it can be
made explicit in our setting with further work.

This example can also be carried with the affine models X0 and Y0. One
can check directly that H0(X0,O×

X0
) = C× and thus it is still the case that

H0(Y,N) = {±1}. Since the ramification point (0 : 1) ∈ P1
C
= Y was removed,

in this case, there are 22g+1 coarse types, all semiordinary, of which only 2 are
ordinary.

Example 7.8. A surprising source of examples comes from Clifford algebras of
quadratic forms with simple degeneration. We refer the reader to [ABB14, §1]
or [APS15, §1] for all relevant definitions.
Let Y be a scheme on which 2 is invertible and let (E, q, L) be a line-bundle-
valued quadratic space of even rank n over Y ; when L = OY and Y = SpecS,
these data merely amount to specifying a quadratic space of rank n over the
ring S. According to [APS15, Dfn. 1.9], q is said to have simple degeneration if
for every y ∈ Y , the specialization of q to k(y) is a quadratic form whose radical
has dimension at most 1. In this case, it shown in [APS15, Prp. 1.11] that the
even Clifford algebraC0(q), which is a sheaf ofOY -algebras, is Azumaya over its
centre Z(q). Furthermore, the sheaf Z(q) corresponds to a flat double covering
π : X → Y , which ramifies at the points y ∈ Y where qk(y) is degenerate. As
such, π is a good quotient relative to the involution λ : X → X induced by
the involution of Z(q) given by x 7→ TrZ(q)/OY

(x)−x on sections. Abusing the
notation, we realize C0(q) as an Azumaya algebra over X .

Suppose q has simple degeneration. We moreover assume that Y is integral,
regular and noetherian with generic point ξ and that qk(ξ) is nondegenerate,
although it is likely that these assumptions are unnecessary. The algebra C0(q)
has a canonical involution τ0, see [Aue11, §1.8], and by applying [KMRT98,
Prp. 8.4] to C0(qk(ξ)), we see that τ0 is of the first kind when n ≡ 0 (mod 4)
and a λ-involution when n ≡ 2 (mod 4). Nonetheless, in the case n ≡ 0
(mod 4), we have transfλ([C0(q)]) = 0 because transfλ([C0(qk(ξ))]) = 0 by
[KMRT98, Thm. 9.12], and Br(Y )→ Br(k(ξ)) is injective by [Gro68a, Cor. 1.8]
(or [AG60, Thm. 7.2] in the affine case). It therefore follows from Theorem 6.10
that there exists A′ ∈ [C0(q)] with degA′ = 2degC0(q) = 2n that admits a
λ-involution. We expect that the choice of A′ and its involution can be done
canonically in q, and with no restrictions on Y .

With the observations just made, it is possible that our work could facilitate
the study of Clifford invariants of non-regular quadratic forms, e.g. in [Voi11a],
[ABB14], [APS15].
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8 Topology and Classifying Spaces

The remainder of this paper is concerned with constructing a quadratic étale
map of complex varieties X → Y and an Azumaya algebra A over over X such
that A is Brauer equivalent to an algebra A′ with a λ-involution, λ being the
non-trivial Y -automorphism of X , but such that the smallest degree of any
such A′ is 2 degA.

We recall that in this particular case, a Brauer equivalent algebra of degree
2 degA admitting a λ-involution is guaranteed to exist by a theorem of Knus,
Parimala and Srinivas [KPS90, Thm. 4.2]; this has been generalized in Theo-
rem 6.10. An analogous example in which λ : X → X is the trivial involution
was exhibited in [AFW19].

The example, which is constructed in Section 9, will be obtained by means of
topological obstruction theory, similarly to the methods of [AW14c], [AFW19]
and related works. That is, the desired properties of A above will be verified by
establishing them for the topological Azumaya algebra A(C) over the complex-
ification X(C), whereas the latter will be done by means of certain homotopy
invariants.

This section is foundational, describing in part an approach to topological
Azumaya algebras with involution via equivariant homotopy theory. The
main points are that Azumaya algebras with involution correspond to prin-
cipal PGLn(C)-bundles with involution—a fact that is true even outside the
topological context, but that we have not emphasized until now—, that there
are equivariant classifying spaces for such bundles, and that their theory is
tractable if one restricts to considering spaces X on which the C2-action is
trivial or free.

8.1 Preliminaries

In this section and the next, all topological spaces will be tacitly assumed to
have a number of desirable properties. All spaces appearing will be assumed
to be compactly generated, Hausdorff, paracompact and locally contractible.

Throughout, we work in the category of C2-topological spaces and C2-
equivariant maps. There are two notions of homotopy one can consider for
maps in this setting, the fine, in which homotopies are themselves required
to be C2-equivariant, and the coarse, where non-equivariant homotopies are
allowed. These two notions each have model structures appropriate to them,
the fine and the coarse. In the fine model structure, the weak equivalences are
the equivariant maps f : X → Y inducing weak equivalences on fixed point
sets f : XG → Y G where G is either the group C2 or the subgroup {1}. In
the coarse structure, it is required only that f : X → Y be a weak equivalence
when the C2-action is disregarded, that is, only the subgroup {1} is considered.
The identity functor is a left Quillen functor from the coarse to the fine. This
is a synthesis of the theory of [DK84] with [Elm83].
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Notation 8.1. The notation [X,Y ] is used to denote the set of maps between
two (possibly unpointed) objects X and Y in a homotopy category. The nota-
tion [X,Y ]C2

will be used to denote the set of maps between X and Y in the
fine C2-equivariant homotopy category, whereas [X,Y ]C2-coarse will be used for
the coarse structure.

Remark 8.2. In the case of the coarse model structure, the cofibrant objects in-
clude the C2-CW-complexes with free C2-action, and if X is a C2-CW-complex,
then the construction X × EC2 → X furnishes a cofibrant replacement of X .

All spaces are fibrant in both the coarse and the fine model structures, which
implies the following standard result.

Proposition 8.3. If X is a free C2-CW-complex and Y is a C2-space, then
there is a natural bijection

[X,Y ]C2
←→ [X,Y ]C2-coarse.

It is well known that C2-equivariant homotopy theory in the coarse sense is
equivalent to homotopy theory carried out over the base space BC2. We re-
fer to [Shu08, Sec. 8] for a sophisticated general account of this equivalence.
Specifically, the Borel construction X 7→ X ×C2 EC2 and the relative map-
ping space Y 7→ MapBC2

(EC2, Y ) form a Quillen equivalence between C2-
equivariant spaces with the coarse structure, and spaces over BC2, endowed
with what [Shu08] calls the “mixed” structure on spaces over BC2.

Proposition 8.4. Suppose X and Y are C2-spaces with X being a C2-CW-
complex. Then the Borel construction (·) ×C2 EC2 gives rise to a natural bi-
jection
{

coarse C2-homotopy classes
of maps X → Y

}

∼=
{

homotopy classes of BC2-maps
X ×C2 EC2 → Y ×C2 EC2

}

.

8.2 Equivariant Bundles and Classifying Spaces

There is a general theory of equivariant bundles and classifying spaces, more
general indeed than what is required in this paper. All examples we consider
are of the following form:

Definition 8.5. Suppose we are given a topological C2-group G, or equiv-
alently, a topological group G equipped with an involutary automorphism
τ : G → G. A principal G-bundle with a τ-involution, or just principal G-
bundle with involution, on a C2-space X is a map π : E → X in C2-spaces such
that:

1. π : E → X is a principal G-bundle,

2. the actions of C2 and of G on E are compatible, in the sense that if
c ∈ C2, g ∈ G and e ∈ E, then

c · (e · g) = (c · e) · (c · g).
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Remark 8.6. This concept admits an equivalent definition. Any G-bundle E,
equivariant or not, may be pulled back along the involution λ of X , in order
to form λ∗E → X . One may then twist the the G-action on λ∗E by changing
the structure group along τ : G → G, forming E∗ := G ×τ λ∗E. This may
be identified with λ∗E as a topological space over X , but with a different G-
action. The definition of principal G-bundle with involution given above is
equivalent to asking that π : E → X be a principal G-bundle together with a
G-bundle morphism f of order 2 from π : E → X to π : E∗ → X . On the
underlying spaces, f must be an isomorphism of order 2 of E over X , which is
equivalent to a C2-action on E making π : E → X equivariant. The fact that
f : E → E∗ is an isomorphism of principal G-bundles is exactly the relation
c · (e · g) = (c · e) · (c · g) above.
Because the automorphism τ : G→ G is not assumed to be trivial, this notion
is more general than the most basic notion of ‘equivariant principal G-bundle’,
but at the same time, because the sequence

1→ G→ G⋊ C2 → C2 → 1

is split, it is less general than the most general case considered in [May90].
One may construct a C2-equivariant classifying space for C2-equivariant prin-
cipal G-bundles, as in [May90, Thm. 5]. We will take the time to explain the
procedure, since some of the details will be important later 1

Notation 8.7. The notation EG→ BG will be used for a construction of the
classifying space of a topological group G, functorial in G.

By functoriality, if G admits a C2-action, then EG→ BG admits a C2-action.
While the ordinary homotopy type of EG → BG is well defined, irrespective
of the model we choose, the C2-equivariant type is not. The construction
EC2

G→ BC2
G outlined below is a specific choice of such a type.

Start with EG → BG. Now consider the space of continuous functions
C(EC2, EG). It is endowed with both a G-action, induced directly by the
G-action on EG, and by a C2-action given by conjugation of the map. The
two actions together induce an action of G⋊ C2 on C(EC2, EG), which is con-
tractible, and consequently a C2-action on C(EC2, EG)/G, which is a model
for BG. The resulting map

C(EC2, EG)→ C(EC2, EG)/G

is a map of C2-spaces, and will be denoted

EC2
G→ BC2

G.

1We remark that in our case, the group called Γ in [May90] is a semidirect product, so
EG× EC2, with an appropriate Γ-action, is a model for EΓ. This allows us to replace the
space of sections of EC2 → EΓ by the space of maps EC2 → EG, an argument that appears
in [GMM17, Sec. 5, p. 21].
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We remark that in [May90] and other sources, May and coauthors denote these
spaces E(G;G⋊ C2) and B(G;G⋊ C2).
Furthermore, the map EC2 → ∗ induces a map EG = C(∗, EG) →
C(EC2, EG) = EC2

G. This map is G ⋊ C2-equivariant, and induces a C2-
equivariant commutative square

EG
∼ //

��

EC2
G

��
BG

∼ // BC2
G,

(8.1)

in which the horizontal maps are coarse, but not necessarily fine, C2-weak
equivalences. The map EC2

G → BC2
G is a classifying space for principal

G-bundles with involution.

Proposition 8.8. If X is a C2-CW-complex, then there is a natural bijection
between [X,BC2

G]C2
and the set of isomorphism classes of principal G-bundles

with involution on X.

We refer to [May90, Thm. 5] for the proof.

Proposition 8.9. If X is a free C2-CW-complex, then the following are nat-
urally isomorphic

(a) [X,BC2
G]C2

,

(b) [X,BC2
G]C2-coarse,

(c) [X,BG]C2
,

(d) [X,BG]C2-coarse,

(e) The set of isomorphism classes of principal G bundles with involution on
X.

Proof. The equivalences all follow from Propositions 8.3, 8.8 and Diagram (8.1).

Remark 8.10. Proposition 8.9 means that if one is willing to restrict one’s
attention to spaces with free C2-action, then the construction of EC2

G→ BC2
G

from EG → BG is not necessary. The C2-action given by the functoriality of
the construction of BG is sufficient.

Remark 8.11. Let G be a topological group. One may give G × G the C2-
action which interchanges the two factors. Then the resulting classifying space
BG × BG also admits this action. In this instance, the space BC2

(G × G) is
C2-equivalent to BG×BG with the interchange action, which may be verified
by testing on C2-fixed points, for instance.
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The construction of taking a space Y and producing Y × Y with the C2-action
interchanging the factors is right adjoint to the forgetful functor. Suppose X
is a C2-space, then

[X,BG] ∼= [X,BG×BG]C2
(8.2)

where the set on the left is the set of maps in the nonequivariant homotopy
category.

8.3 The Case of PGLn-bundles

For the rest of this section, we write GLn, PGLn etc. for the Lie group of
complex points, GLn(C), PGLn(C) and so on.
We now specify C2-actions on groups that will appear in the sequel. There is
a C2-action on GLn in which the non-trivial element acts via A 7→ A−tr, the
transpose-inverse. This passes to certain subquotients of GLn, and we will use
it as the C2-action on the groups µn, C

×, SLn and PGLn, all viewed either as
subgroups or as quotients of GLn. Specifically, we write −tr : PGLn → PGLn
for the outer automorphism A 7→ A−tr.
There is also a C2-action on GLn×GLn given by interchanging the factors and
then applying the transpose-inverse, so that the induced involution is

(A,B) 7→ (B−tr, A−tr) .

This will be used for certain subquotients of this group, including µn × µn,
C× × C×, SLn× SLn and PGLn×PGLn.
There is a diagonal inclusion GLn → GLn×GLn, given by A 7→ (A,A). It is
C2-equivariant, and induces similar maps for the aforementioned subquotients
of GLn.
One may form C2-equivariant classifying spaces for the groups named above, as
outlined in Subsection 8.2. Among the possibilities, two are particularly useful
to us: BC2

PGLn and BC2
(PGLn×PGLn).

Proposition 8.12. Let X be a C2-CW-complex with corresponding involution
λ, and let n be a natural number. Then the following sets are in natural bijective
correspondence:

(a) Isomorphism classes of degree-n topological Azumaya algebras with λ-
involution on X,

(b) Isomorphism classes of principal PGLn-bundles with involution on X,

(c) [X,BC2
PGLn]C2

.

Proof. There is a well-known bijection between Azumaya algebras of degree n
on X and principal PGLn-bundles, since PGLn(C) is the automorphism group
of M := Matn×n(C) as a C-algebra, see Subsection 2.5. Let A be an Azumaya
algebra of degree n on X and P the associated principal PGLn-bundle.
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The functor of taking opposite algebras on Azumaya algebras corresponds to
the functor of change of group along −tr : PGLn → PGLn of principal PGLn-
bundles; this can be seen at the level of clutching functions. Indeed, note that
m 7→ mtr : Matn×n(C) → Matn×n(C)

op is a C-algebra isomorphism. If one
chooses coordinates for A on two open sets of X on which it trivializes, then
the clutching function f : Matn×n(C) × (U1 ∩ U2) → Matn×n(C) × (U1 ∩ U2)
given by m 7→ xmx−1, for some x : (U1∩U2)→ PGLn(C). For the same choice
of coordinates over both U1 and U2, the clutching function fop of the opposite
algebra is given by mtr 7→ (xmx−1)tr = x−trmtrxtr.

Therefore, the data of an isomorphism of A→ Aop of order 2 over the involution
λ : X → X is equivalent to an order-2 self-map of the associated principal
PGLn-bundle, P → P ∗ over X , where P ∗ denotes the principal PGLn-bundle

P ∗ := PGLn×−trλ
∗P.

As explained in Remark 8.6, this is equivalent to the definition of principal
PGLn-bundle with involution in Definition 8.5; thus establishing the equiva-
lence of (a) and (b).

The equivalence between (b) and (c) is an application of Proposition 8.8.

The space BC2
(PGLn×PGLn), by similar methods, is seen to classify ordered

pairs of PGLn-bundles on a C2-space X , such that the one is obtained from the
other by twisting relative to the involutions of X and PGLn. But the category
of such ordered pairs is identical to the category of ordinary PGLn-bundles on
the space X , forgetting the C2-action.

This last fact also manifests itself algebraically via Remark 8.11 in the following
way: Suppose G is a subgroup of GLn closed under taking transposes, or a
quotient of GLn by such a subgroup, let (G×G,α) denote the product group
with the involution (A,B) 7→ (B−tr, A−tr), and let (G×G, i) denote the product
group with the involution exchanging A and B. Then (A,B) 7→ (A,B−tr) is a
C2-equivariant isomorphism between these two groups with involution.

We will apply the classifying space theory developed above in the two extreme
cases where the C2-action on X is trivial and when it is free.

8.4 Trivial Action

Suppose X is equipped with a trivial C2-action. Then principal PGLn-bundles
with involution on X are classified by [X,BC2

PGLn]C2
= [X, (BC2

PGLn)
C2 ].

Proposition 8.13. Let n be a positive integer. Then the fixed locus
(BC2

PGLn)
C2 is homeomorphic to

(i) B POn ⊔B PSpn if n is even;

(ii) B POn if n is odd.
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Proof. We may calculate the fixed-point-sets of BC2
(PGLn) by means of

[May90, Thm. 7]. We explain the application of this theorem in the current
case.
If A ∈ PGLn is a matrix such that AA−tr = In, then (A,−tr) ∈ Γ :=
PGLn⋊C2 generates a subgroup that maps isomorphically onto C2 and in-
tersects PGLn trivially. Denote by PGL(A,−tr)

n the commutant of (A,−tr)
in PGLn, i.e., the subgroup of PGLn consisting of elements X such that
X−tr = A−1XA. We write A ∼ A′ if (A,−tr) and (A′,−tr) are conjugate
under PGLn, or equivalently, if there exists X ∈ PGLn such that XAXtr = A′.
Then the theorem asserts that

(BC2
PGLn)

C2 =
⊔

A

B(PGL(A,−tr))

as A runs over equivalence classes of elements A ∈ PGLn satisfying A−trA = In.
When n is even, say n = 2m, there are two such equivalence classes, namely
the class of In and the class of h2m(−1), in the notation of Example 7.1, as can
be calculated directly. The fixed points under the action are those matrices
for which B−tr = B in the first case and B−tr = h2m(−1)Bh2m(−1)−1 in the
second, which is to say, the subgroups of orthogonal and of symplectic matrices
respectively. We therefore deduce

(BC2
PGLn)

C2 = B POn ⊔B PSpn .

When n is odd, the argument is much the same, but only B POn occurs.

Remark 8.14. By Theorem 5.37, we know that there are two types of involutions
on Azumaya algebras over connected topological spaces with trivial action, the
symplectic and orthogonal. By means of Examples 7.2 and 7.4, we know that
the orthogonal and symplectic Azumaya algebras with involution are equivalent
to principal bundles for the groups POn and PSpn, the latter when n is even.
Proposition 8.13 has recovered these observations via equivariant homotopy
theory.

8.5 Free Action

Now we address the case where the action of C2 on X is free. In this case, the
quotient map X → Y := X/C2 is a two-sheeted covering space map.

Proposition 8.15. Let X be a free C2-CW-complex, with C2 acting by the
involution λ, and let Y = X/C2. Consider Y as a space over BC2, or alterna-
tively, as a space equipped with a distinguished class α ∈ H1(Y,C2). There are
natural bijections between the following:

(a) Isomorphism classes of degree-n topological Azumaya algebras over X
equipped with a λ-involution.

(b) [X,B PGLn]C2
.
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(c) [Y,B(PGLn⋊C2)]BC2
.

(d) Elements of the preimage of α under H1(Y,PGLn⋊C2)→ H1(Y,C2).

Proof. Propositions 8.12 and 8.9 give the bijection between (a) and (b), and
Proposition 8.4 gives a bijection between (b) and (c). The one-to-one corre-
spondence between (c) and (d) is standard.

We continue to assume that X is a free C2-CW-complex and let Y = X/C2.
We would like to have a classifying-space-level understanding of the cohomo-
logical transfer map transfX/Y : H2(X,Gm) → H2(Y,Gm) considered in Sub-
section 6.2.
To that end, let µ denote the discrete group µn or the topological group C×.
We endow µ with the involution a 7→ a−1, give µ × µ the involution (a, b) 7→
(b−1, a−1), and let µtriv denote µ with the trivial action.
The map µ × µ → µtriv defined by (a, b) 7→ ab−1 is C2-equivariant, and its
kernel consists of pairs of the form (a, a), which is the image of the diagonal
map µ → µ × µ. That is, there is a C2-equivariant short exact sequence of
C2-groups

1→ µ→ µ× µ→ µtriv → 1

and therefore, a sequence ofC2-equivariant maps in which any three consecutive
terms form a homotopy fibre sequence:

µ→ µ× µ→ µtriv → Bµ→ B(µ× µ)→ Bµtriv → B2µ→ · · · .
Any such homotopy fibre sequence is a homotopy fibre sequence in the C2-
equivariant coarse structure. These constructions are plainly natural with re-
spect to inclusion of subgroups of C×.
Now, if X is a free C2-CW-complex, then thanks to Proposition 8.9, one arrives
at a long exact sequence of abelian groups

· · · → [X,Biµ]C2
→ [X,Biµ×Biµ]C2

→ [X,Biµtriv]C2
→ · · · . (8.3)

Since µ×µ with this action is isomorphic to µ×µ with the interchange action, it
follows that [X,Biµ×Biµ]C2

∼= [X,Biµ] = Hi(X,µ). Moreover, [X,Biµtriv]C2

is simply [Y,Biµ] = Hi(Y, µ).
Therefore, the sequence of (8.3) reduces in this case to

· · · → [X,Biµ]C2
→ Hi(X,µ)

transf−−−−→ Hi(Y, µ)→ · · · . (8.4)

When µ = C× and i = 2, the map denoted transf agrees with the transfer map
defined in Subsection 6.2. Indeed, we know that the transfer map in Section 6
agrees with the ordinary transfer map for a 2-sheeted covering in the case at
hand, Example 6.6. It suffices therefore to show that the map transf in (8.4)
is the usual transfer map for a 2-sheeted cover. The trivial case X = Y × C2

is elementary. The general case where π : X → Y is merely locally trivial
can be deduced from the trivial case by viewing Hi(Y, µ) and Hi(X,µ) as Čech
cohomology groups and calculating each using covers U of Y and π−1U of X
where U trivializes the double cover π.
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Proposition 8.16. Let µ be µn or C×, given the involution z 7→ z−1. Let X be
a space with free C2-action, let Y = X/C2, and let ξ : X → Biµ be an equivari-
ant map, representing a cohomology class ξ ∈ Hi(X,µ). Then transfX/Y ξ = 0.

Proof. Since ξ : X → Bnµ is equivariant, and the action on X is free, ξ lies in
the image of [X,Bnµ]C2

in [X,Bnµ] = Hn(X,µ). Thus, the result follows from
the exact sequence (8.4).

9 Examples with no Involutions of the Second Kind

We finally construct the example promised at the beginning of Section 8.

Throughout, the notation xZ means a free cyclic group, written additively,
with a named generator x. Recall that for a topological space X , the sheaf
cohomology group H2(X,C×) := H2(X, C(X,C×)) is isomorphic to the singular
cohomology group H3(X,Z), see [AFW19, §2.1], for instance. We shall use the
latter group for the most part.

9.1 A Cohomological Obstruction

In all cases, the groups appearing in this subsection are the complex points of
linear algebraic groups. In the interest of brevity, the relevant linear algebraic
group, e.g. SLn, will be written in place of the group itself, e.g. SLn(C).

Unless otherwise specified, groups appearing will be endowed with a C2-action.
For the groups SLn, the action is that sending A to A−tr, which restricts to
the action r 7→ r−1 on the central subgroup µn. For the groups SLn× SLn, the
action is that given by (A,B) 7→ (B−tr, A−tr), and similarly for µn × µn. The
maps SLn → SLn× SLn and µn → µn × µn are given by diagonal inclusions.

Embed µn →֒ SLn× SLn via r 7→ (rIn, rIn), and let Qn denote the group
obtained as the quotient of SLn× SLn by the image of µn.

In the following diagram, the horizontal arrows of the first two rows are C2-
equivariant. This induces C2-actions on the groups in the third row so that all
arrows become C2-equivariant.
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1

��

1

��

1

��
µn

��

µn //

��

µn × µn

��
SLn

��

// SLn× SLn

��

SLn× SLn

��
PGLn //

��

Qn //

��

PGLn×PGLn

��
1 1 1.

Figure 1: A Diagram of C2 Groups.

Each of the groups appearing above is equipped with a C2-action, and conse-
quently each may be extended to a semidirect product with C2, and equivariant
classifying spaces of the form BC2

G may be constructed as in Subsection 8.2.
Since we will consider equivariant maps with free C2-action on the source, by
Proposition 8.9, we may use any functorial model of BG with its functorially-
induced C2-action instead.

Proposition 9.1. The C2-action on PGLn induces an action on
H∗(B PGLn,Z). In low degrees, this action is summarized by Table 1.

i Hi(B PGLn,Z) Action
0 Z trivial
1 0 -
2 0 -
3 αZ/n α 7→ −α
4 c̃2Z trivial

Table 1: The C2-action on H∗(B PGLn,Z).

Proof. The compatible C2-actions on the terms of the exact sequence 1→ µn →
SLn → PGLn → 1 induce an action on the fibre sequence B SLn → B PGLn →
B2µn, and therefore an action of C2 on the associated Serre spectral sequence,
which is illustrated in Figure 2.
The action on αZ/n is the same as the action of C2 on µn = Z/n itself,
which is the sign action. The action on H4(SLn,Z) = Zc2 is calculated by
identifying H∗(SLn,Z) as a subquotient of H

∗(BTn,Z), where Tn is the maximal
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Figure 2: A portion of the Serre spectral sequence in cohomology associated to
B SLn → B PGLn → B2µn. Here, ǫ is 2 if n is even and is 1 otherwise.

torus of diagonal matrices in GLn. Specifically, H∗(BTn,Z) = Z[θ1, . . . , θn],
where the C2-action on θi is θi 7→ −θi. Then the class c2 in question may be
identified with the image of the second elementary symmetric function in the
θi in H∗(BTn,Z)/(

∑n
i=1 θi). It follows the action of C2 on c2 is trivial.

We know from [AW14b, Proposition 4.4] that the illustrated d5 differential is
surjective. Writing c̃2 for ǫnc2, it follows easily that the cohomology of B PGLn
takes the stated form, and carries the stated C2-action.

Proposition 9.2. Fix a natural number n, and let ǫ = gcd(n, 2). Let S be the
subgroup of c′2Z⊕ c′′2Z consisting of terms ac′2 + bc′′2 where a+ b ≡ 0 (mod ǫn).
The low-degree cohomology of BQn, along with its C2-action, is summarized
by Table 2. Moreover, the comparison map from Hi(BQn,Z) to Hi(B SLn,Z)

i Hi(BQn,Z) Action
0 Z trivial
1 0 -
2 0 -
3 αZ/n α 7→ −α
4 S ac′2 + bc′′2 7→ bc′2 + ac′′2

Table 2: The C2-action on H∗(BQn,Z).

is the evident identification map when i ≤ 3. When i = 4, it is given by
ac′2 + bc′′2 7→ a+b

ǫn c̃2.

Proof. There is a fibre sequence B(SLn× SLn) → BQn → B2µn. A portion
of the associated Serre spectral sequence is shown in Figure 3. There is a
comparison map of spectral sequences from this one to that of Figure 2. The
map identifies the bottom row of the two E2-pages, and sends c′2, c

′′
2 both to c2.

It is compatible with the C2-actions. The claimed results except the C2-action
on H4(BQn,Z) all follow from the comparison map and the values in Table 1.
As for the action on H4(BQn,Z), as in the proof of Proposition 9.1, this can
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Zc′2 ⊕ Zc′′2

d5

((❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘

0

0

0

Z 0 0 αZ/n 0 κZ/(ǫn)

Figure 3: A portion of the Serre spectral sequence in cohomology associated to
B(SLn× SLn)→ BQn → B2µn.

be deduced from the action on H∗(B(Tn × Tn),Z) = Z[θ′1, . . . , θ
′
n, θ

′′
1 , . . . , θ

′′
n],

which is given by θ′i 7→ −θ′′i and θ′′i 7→ −θ′i.

Remark 9.3. From Figures 2 and 3, we deduce that the maps B PGLn →
B2µn and BQn → B2µn induced by Figure 1 both represent generators of
the groups H2(B PGLn,Z/n) ∼= Z/n and H2(BQn,Z/n) ∼= Z/n, respectively.
Moreover, the image of the former class under the Bockstein map is a generator
of H3(B PGLn,Z), which is nothing but the tautological Brauer class α of
B PGLn. That is, if r : X → B PGLn is the classifying map for a PGLn-bundle,
or equivalently, a degree-n topological Azumaya algebra, then the Brauer class
of that algebra is r∗(α).

Our purpose in introducing the group Qn is to construct a group which is as
close to PGLn×PGLn (with the interchange action) as possible, but for which
the transfer of all classes in H2(BQn,Z/n) vanish.

Proposition 9.4. Let Qn be as constructed above. Give the space BQn ×
EC2 the diagonal C2-action. Then the transfer map, H2(BQn ×EC2,Z/n)→
H2(BQn ×C2 EC2,Z/n), considered at the end of Subsection 8.5, vanishes.

The space BQn×EC2 is weakly equivalent to BQn, but carries a free C2-action.

Proof. The action of C2 on BQn × EC2 is free. As noted in Remark 9.3,
one generator α of H2(Qn × EC2;Z/n) ∼= H2(Qn;Z/n) is given by the map
BQn → B2µn arising from the short exact sequence defining Qn. This map is
C2-equivariant when µn, and therefore B2µn, is given the standard involution,
and therefore the result follows from Proposition 8.16.

Proposition 9.5. Let n be an even positive integer, and let a be an odd positive
integer. Suppose f : X → BQn is a C2-equivariant map and a 6-equivalence.
Then there is no C2-equivariant map g : X → B PGLan inducing a surjection
on H3( · ,Z).
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Proof. For the sake of contradiction, suppose that g exists.
By Remark 9.3, the composition

X → BQn → B2µn → B2C× = B3Z,

induced by f and the inclusion µn → C×, represents a generator ξ of
H3(X,Z) = H3(BQn,Z) = Z/n. As a result, there is t ∈ Z such that the
composition

X
g−→ B PGLan → B2µan → B2C× = B3Z

represents t·ξ. Consequently, the mapX → BQn → B2µn fits into a homotopy-
commutative square

X //

g

��

B2µn

s

��
B PGLan // B2µan

in which s is the composition of B2µn → B2µan and the map B2µan → B2µan
induced by x 7→ xt : µan → µan. We extend this square into a homotopy
commutative diagram

F //

��✤
✤

✤
X //

g

��

B2µn

s

��
B SLan // B PGLan // B2µan

where both rows are homotopy fibre sequences, so F is the homotopy fibre of
X → B2µn. Strictly speaking, we carry this out in the (fine) C2-equivariant
model structure on topological spaces, using the dual of [Hov99, Prop. 6.3.5]
to deduce the existence of the dashed arrow in that category, so that it may
be assumed to be C2-equivariant. Moreover, the space F appearing in this
argument has the appropriate non-equivariant homotopy type, since the functor
forgetting the C2-action is a right Quillen functor, and therefore preserves fibre
sequences.
Each of the two fibre sequences is associated to a Serre spectral sequence in
cohomology. In the case of the lower row, the E2-page is represented in Fig-
ure 2, whereas in the case of the upper row, since X is 6-equivalent to BQn,
it is isomorphic on the E2-page to the spectral sequence represented in Fig-
ure 3. There is an induced map between these spectral sequences, and this
map restricts to the following on the E∗,0

2 -line:

Z 0 0 Z/(an)

����

0 κZ/(2an)

����✤
✤

✤
. . .

Z 0 0 Z/(n) 0 κZ/(2n) . . .

.
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We know the map on H5( · ,Z) is surjective, because in each case, the group is
generated by a class κ for which 2κ is β(ι2), obtained by taking the canonical
class ι in H2(B2µn,Z/n), resp. H2(B2µan,Z/an), squaring it, and applying
the Bockstein map with image H5(·,Z). This may be deduced from [Car54], or
from the Serre spectral sequence associated to the path-loop fibration Bµn →
∗ → B2µn.
Since the map g∗ of spectral sequences is compatible with the C2-action, it
induces the following commutative square

c2Z
d5 //

g∗

��

κZ/(2an)

g∗

��
c′2Z⊕ c′′2Z

d5 // κZ/(2n).

in which all arrows are C2-equivariant. Furthermore, the proofs of Proposi-
tions 9.1 and 9.2 imply that both horizontal maps are surjective, that C2 acts
trivially on c2Z, κZ/(2an) and κZ/(2n), and that the non-trivial element of C2

interchanges c′2 and c′′2 . Now, g
∗(c2) lies in the C2-fixed subgroup of c′2Z⊕ c′′2Z,

which is to say g∗(c2) = mc′2 +mc′′2 for some integer m. Then d5(g
∗(c2)) is 2m

times a generator of κZ/(2n), and hence not a generator of κZ/(2n). On the
other hand, g∗(d5(c2)) is a generator of Z/(2n) by the previous paragraph, a
contradiction.

9.2 An Algebraic Counterexample

In this section, we consider complex algebraic varieties. In particular, all alge-
braic groups are complex algebraic groups. Cohomology is understood to be
étale cohomology in the context of varieties and singular cohomology in the
context of topological spaces.
A C2-action on a variety X is free if there exists a C2-torsor X → Y . In this
case, Y coincides with categorical quotient X/C2 in the category of varieties.
Furthermore, if C2 acts freely on X , then it also acts freely on X(C). The
converse holds when X is affine or projective, see Example 4.20 and Proposi-
tion 4.45, but not in general.

Fix an even positive integer n. We define the complex algebraic group Qn by
means of the short exact sequence

1→ µn
x 7→(x,x)−−−−−→ SLn× SLn → Qn → 1

so that Qn(C) is the group Qn considered in the previous subsection. There is
a natural map H1( · , Qn)→ H2( · , µn). Composing with the map H2( · , µn)→
H2( · ,Gm) induced by the inclusion µn → Gm allows us to associate with every
Qn-torsor P → X an n-torsion class in H2(X,Gm). This association is natural,
and is, in particular, compatible with complex realization.
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The first projection π1 : SLn× SLn → SLn induces a group homomorphism
π1 : Qn → PGLn (it is not C2-equivariant). Using this map, we associate to
every Qn-torsor P a PGLn-torsor, namely, P ×Qn PGLn.

Lemma 9.6. With the previous notation, let P → X be a Qn-torsor, let α be its
associated class in H2(X,Gm), and let S → X be its associated PGLn-torsor.
Then α is the image of S under the canonical map H1(X,PGLn)→ H2(X,Gm).
In particular, α ∈ Br(X).

Proof. This follows by considering the following morphism of short exact se-
quences and the induced morphism between the associated cohomology exact
sequences.

µn //
� _

��

SLn× SLn //

π1

��

Qn

π1

��
Gm // GLn // PGLn

Note that the vertical maps are not necessarily C2-equivariant.

Proposition 9.7. Maintaining the previous notation, there exists a smooth
affine complex variety X with free C2-action, a Qn-torsor P → X and a map
f : X(C)→ BQn(C) such that the following hold:

(i) The map f : X(C)→ BQn(C) is C2-equivariant and a 6-equivalence.

(ii) The homotopy class of f corresponds to the principal Qn(C)-bundle
P (C)→ X(C).

(iii) The Brauer class α ∈ Br(X) ⊆ H2(X,Gm) associated with P → X has
trivial image under transf : H2(X,Gm)→ H2(X/C2,Gm).

For later reference, and in keeping with the previous parts of this paper, we
denote X/C2 by Y .

Proof. As in Subsection 9.1, the group Qn is an affine algebraic group equipped
with an algebraic C2-action. Consequently, the split exact extension Γ in

1→ Qn → Γ→ C2 → 1

is also an affine algebraic group, [Mol77, Ex. 2.15 (c)].
Therefore it is possible to follow [Tot99] and construct affine spaces V on which
Γ acts and such that V becomes a Γ-torsor after removing a locus, Z, of arbi-
trarily large codimension. In particular, V − Z is a Qn-torsor. Choose V so
that Z has (complex) codimension at least 4.
Let P = (V − Z) and X = (V − Z)/Qn, and note that both P and X carry
C2-actions. The C2-action on X is free since V −Z is a Γ-torsor. Moreover, one
checks directly that P (C)→ X(C) is a principal Qn(C)-bundle with involution,
see Definition 8.5. Since C2 acts freely on X(C), Proposition 8.9 implies that
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this principal bundle is represented by a map f : X(C) → BQn(C), which
satisfies conditions (i) and (ii).
By means of the equivariant Jouanolou device, [Hoy17, Prop. 2.20], we may
assume that X is a smooth affine variety with these properties.
Let α ∈ Br(X) denote the Brauer class associated with P → X . It remains to
show that transfX/Y (α) = 0 in Br(Y ), where Y = X/C2.
To that end, let ξ be the image of P under H1(X,Q) → H2(X,µn), and sim-
ilarly define ξ(C) as the image of P (C) under the analogous map in singular
cohomology. It is enough to check that transf(ξ) ∈ H2(Y, µn) vanishes. There
is a commutative diagram

H2
ét(X,µn)

transf //

��

∼=
tt❥❥❥❥

❥❥
❥

Hét(Y, µn)

��

∼=
uu❥❥❥❥

❥❥
❥

H2(X(C),Z/n) //

��

H2(Y (C),Z/n)

��

H2
ét(X,Gm)

//

tt❥❥❥❥
❥❥
❥

H2
ét(Y,Gm)

uu❥❥❥❥
❥❥
❥

H3(X(C),Z) // H3(Y (C),Z)

where each map from left to right is a transfer map, each map from back
to front is a complex-realization map, and the maps from top to bottom are
induced by the inclusion µn → Gm. The two indicated maps are isomorphism
by Artin’s theorem. We also remark that H2( · ,C×) ∼= H3( · ,Z), where the
first group is understood as sheaf cohomology with coefficients in the sheaf of
nonvanishing continuous complex-valued functions. Now, the transfer of ξ(C) ∈
H2(X(C),Z/n) is easily seen to be 0 by comparison with H2(BQn×EC2,Z/n),
where it is known to vanish by Proposition 9.4. This completes the proof.

Theorem 9.8. For any even integer n, there exists a quadratic étale map
X → Y of smooth affine complex varieties and an Azumaya algebra A of degree
n over X such that:

(i) The period and index of α = [A] are both n.

(ii) transfX/Y (α) = 0 in Br(Y ).

(iii) The degree of any Azumaya algebra Brauer equivalent to A and admitting
a λ-involution is divisible by 2n—here λ denotes the non-trivial involution
of X over Y .

In particular, we see that the minimal degree of an Azumaya algebra Brauer
equivalent to A and supporting a λ-involution is at least 2n. This bound is
sharp by Theorem 6.10.

Proof. Construct P → X as in Proposition 9.7, and let A be the Azu-
maya algebra corresponding to the PGLn-torsor associated to P by means

Documenta Mathematica 25 (2020) 527–633



Involutions of Azumaya Algebras 627

of π1 : Qn → PGLn. The Azumaya algebra A has degree n, and the com-
plex reaization of its Brauer class is a generator of H3(X(C),Z) ∼= Z/n, since
the map BQn(C) → B PGLn(C) induces an isomorphism on H3(·,Z), see Re-
mark 9.3 and the proof of Proposition 9.2. In particular, the period and index
of α must both be n.

Let a be an odd integer and suppose A were equivalent to an Azumaya algebra
of degree an carrying a λ-involution. Then, by Proposition 8.12, the complex
realization of this algebra would correspond to a topological PGLan(C)-bundle
with involution. By Proposition 8.9, there would be a C2-equivariant map
g : X(C) → B PGLan(C) such that α ∈ Br(X(C)) was the image of the
canonical Brauer class in H3(B PGLan(C),Z), and therefore g would induce a
surjection in H3(·,Z), since the image of g∗ would contain α. This is forbidden
by Proposition 9.5.

Question 9.9. Does Theorem 9.8 hold when n is odd?

A The Stalks of The Ring of Continuous Complex Functions

Let X be a topological space; we work throughout on the small site of X . Let
O denote the sheaf of continuous C-valued functions on X .

Let p be a point of X and consider p∗O. It is a local ring with maximal ideal
denoted m. An element f ∈ p∗O is the germ of a continuous C-valued function
at p, and the class f̄ ∈ p∗O/m ∼= C is the complex number f(p).

Proposition A.1. The local ring p∗O is strictly henselian.

Proof. It suffices to prove the ring is a henselian ring as the residue field is C.

Consider Rn := Cn as the space of ordered sets of roots of a degree-n monic
polynomial. There is a permutation action of the symmetric group Σn on Rn,
and there is a homeomorphismRn/Σn → Cn, where the map takes (α1, . . . , αn)
to the coefficients of the polynomial

∏n
i=1(t− αi), [BM83].

We embed Σn−1 ⊂ Σn as the permutations fixing the first element, and form
Rn/Σn−1.

The space Rn/Σn−1 = C×Rn−1/Σn−1 represents monic polynomials of degree
n and a distinguished ‘first’ root, (t − α1)q(t). There is a closed subset Γ ⊂
Rn/Σn−1, the locus where q(α1) = 0. Then Rn/Σn−1 − Γ ⊂ Rn/Σn−1 is
an open subset representing the set of monic, degree-n polynomials having a
distinguished ‘first’ root which is not repeated. Since quotient maps of spaces
given by finite group actions are open maps, in the following diagram, every
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map appearing is an open map:

C×Rn−1/Σn−1 − Γ

��
π

''

C×Rn−1/Σn−1

��

Rnoo

ww♦♦♦
♦♦
♦♦
♦♦
♦♦
♦♦

Rn/Σn.

We denote the composite map C×Rn−1/Σn−1 −Γ→ Rn/Σn by π. It sends a
pair (α1, q(t)), for which q(α1) 6= 0, to (t− α1)q(t).
Let (α1, q(t)) ∈ C × Rn−1/Σn−1 − Γ be such a pair. We claim that there
exists an open neighbourhood V of (α1, q(t)) such that π|V : V → Rn/Σn is a
homeomorphism onto its image. Choose an open neighbourhood of (α1, q(t)) ∈
C × Rn−1/Σn−1 of the form V = B(α1; ǫ) × B(q(t); ǫ), being the product of
an ǫ-ball around α1 and around q(t), where ǫ is sufficiently small that none of
the polynomials in B(q(t); ǫ) has any of the complex numbers in B(α1; ǫ) as
roots. It is immediate that π is injective when restricted to this open set in
C × Rn−1/Σn−1 − Γ. Since π is an open map, π|V is a homeomorphism onto
its image, establishing the claim.

Suppose we are given a polynomial h(t) ∈ p∗O[t]. Suppose further that a
non-repeated root, ᾱ1, of h̄(t) is given, where h̄(t) is the reduction of h(t) to
(p∗O/m)[t] = C[t]. We can write q̄(t) = h̄(t)/(t− ᾱ1) in C[t]. Note that we do
not yet assert that q̄(t) and ᾱ1 are the reductions of any specific elements in
p∗O[t] or p∗O. To prove that the ring is Henselian, we must find an element
α1 lifting ᾱ1 and satisfying h(α1) = 0.
The germ h(t) has an extension to an open neighbourhood U ∋ p.
We have the data of a diagram

p

��

(ᾱ1 ,̄q) // C× Rn−1/Σn−1 − Γ

π

��
U

h // R/Σn.

Around the image of (ᾱ1, q̄) in C×Rn−1/Σn−1 − Γ we can find an open set V
such that π|V : V → R/Σn is a homeomorphism onto the image,W . ThenW is
an open set in R/Σn containing ᾱ1q̄ = h̄. Since h(p) = h̄, the preimage h−1(W )
is an open subset of U containing p. Since π|V : V →W is a homeomorphism,
we may lift the map

p

��

(α1,q) // C×Rn−1/Σn−1 − Γ

π

��
h−1(W )

66♠
♠

♠
♠

♠
♠

h // R/Σn
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as indicated.
That is to say, there is a neighbourhood, h−1(W ), of p such that the fac-
torization h̄(t) = (t − ᾱ1)q̄(t) can be extended on h−1(W ) to a factorization
h(t) = (t − α1)q(t). In particular, the class of α1 in p∗O is a root of the
polynomial h(t) extending ᾱ1. This proves Hensel’s lemma for p∗O.
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