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1 Introduction

Let k be a field and let Mk be the category of Chow motives with rational
coefficients. For a smooth projective variety X over k, let

h(X) = (X,∆X , 0) ∈ Mk

denote its corresponding Chow motive, as usual. For a given choice of Weil co-
homology H∗ with decomposition H∗(X) =

⊕

Hj(X), there is a fundamental
question as to whether one can find Chow motives representing each degree of
cohomology. More precisely, there is the following conjecture:

Conjecture 1.1 (Chow-Künneth). There exists a direct sum decomposition:

h(X) ∼=
⊕

hi(X) ∈ Mk

such that H∗(hj(X)) = Hj(X) for a choice of Weil cohomology H∗.

Stated differently, the conjecture asks for idempotents

πX,j ∈ EndMk
(h(X)) = CHdim(X)(X ×X)

satisfying the following conditions:
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(a) πj,X ◦ πj′,X = 0 for j 6= j′

(b)
∑

πj,X = ∆X

(c) πj,X∗H
∗(X) = Hj(X).

By setting hj(X) = (X, πj,X , 0), it is straightforward to check that this is
equivalent to the first conjecture. The Chow-Künneth conjecture is known to
hold in several important cases: curves, surfaces ([15]), complete intersections
in Pn ([16] Chapter 6), Abelian varieties ([3]), and modular varieties ([5]),
among others. In the case of an Abelian varieties, one has the following:

Theorem 1.2 (Deninger-Murre, Jannsen). Let A be an Abelian variety of di-
mension g over k.

(a) There exists a unique set of idempotents {πj,A} ∈ CHg(A×A) satisfying
conditions (a), (b) and (c) above and the following relation for all n ∈ Z:

tΓnA
◦ πj,A = nj · πj,A = πj,A ◦ tΓnA

where ΓnA
denotes the graph of multiplication by n on A.

(b) For any other choice of Chow-Künneth idempotents {π′
j,A}, there are iso-

morphisms:

(A, πj,A, 0) ∼= (A, π′
j,A, 0).

Proof. See [3] Theorem 3.1 for (a) and for (b) note that, since πj,A and π′
j,A

have the same action on H∗(A), it follows by [8] Lemma 3.1 (ii) that there
exists a unit u ∈ CHg(A×A) for which π′

j,A = u ◦ πj,A ◦ u−1. There is then a
map of Chow motives:

π′
j,A ◦ u ◦ πj,A : (A, πj,A, 0) → (A, π′

j,A, 0)

whose inverse is πj,A ◦ u−1 ◦ π′
j,A

Remark 1.3. We note more generally that whenever X satisfies Conjecture 1.1
and Conjecture 2.6, the proof of Theorem 1.2 (b) shows that the hj(X) sum-
mands are unique up to some isomorphism.

Our first goal will be to prove Conjecture 1.1 in a new case. Thus, for the
remainder of the paper, let A be an Abelian variety of dimension g and let

i : Θ →֒ A

be a smooth ample divisor on A satisfying the following assumption:

Assumption 1.4. There is some translate of Θ which is a symmetric divisor
on A (i.e., for which ∃x ∈ A(k) such that (−1)∗A[tx(Θ)] = [tx(Θ)] ∈ CH1(A)).
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In this case, there is the Lefschetz hyperplane theorem, which gives isomor-
phisms:

i∗ : Hj(A)
∼=
−→ Hj(Θ) for j < g − 1

i∗ : Hj(Θ)
∼=
−→ Hj+2(A)(1) for j > g − 1.

There is also a surjective map i∗ : Hg−1(Θ) → Hg+1(A)(1) and its kernel:

Definition 1.5. The primal cohomology of Θ is defined to be:

Hg−1
pr (Θ) := ker[i∗ : Hg−1(Θ) → Hg+1(A)(1)].

Since the cohomology of Θ is controlled by that of A (except in the middle de-
gree) and since A possesses a Chow-Künneth decomposition, one would expect
to be able to construct a Chow-Künneth decomposition for Θ. Furthermore,
one would hope to obtain a motivic version of the Lefschetz hyperplane theorem
in the process. This is the content of our main result:

Theorem 1.6. Let k be a field and A an Abelian variety of dimension g

with Chow-Künneth decomposition h(A) ∼=
⊕

hj(A). Further, let Θ
i
−֒→ A be

a smooth ample divisor satisfying Assumption 1.4.

(a) There exists a Chow-Künneth decomposition of Θ :

h(Θ) ∼=

2(g−1)
⊕

j=0

hj(Θ) =

2(g−1)
⊕

j=0

(Θ, πj , 0)

such that there are isomorphisms:

(i) hj(i) := πj,Θ ◦ tΓi ◦ πj,A : hj(A)
∼=
−→ hj(Θ) for j < g − 1

(ii)
t
hj(i) := πj+2,A ◦ Γi ◦ πj,Θ : hj(Θ)

∼=
−→ hj+2(A)(1) for j > g − 1.

(b) For any ample divisor class h ∈ Pic(Θ), the corresponding Lefschetz
correspondence Lh = ∆∗(h) ∈ CHg(Θ × Θ) induces an isomorphism of
Chow motives for j ≤ g − 1:

π2(g−1)−j,Θ ◦ Lg−1−j
h ◦ πj,Θ : hj(Θ)

∼=
−→ h2(g−1)−j(Θ)(g − 1− j).

(c) The map of Chow motives

t
hg−1(i) := πg+1,A ◦ Γi ◦ πg−1,Θ : hg−1(Θ) → hg+1(A)(1)

is a split-surjective map. Moreover, there exists an idempotent p ∈
CHg−1(Θ × Θ) with corresponding motive P = (Θ, p, 0) such that
H∗(P ) = Hg−1

pr (Θ) and such that there is an isomorphism of Chow mo-
tives:

hg−1(Θ) ∼= hg+1(A)(1)⊕ P
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Remark 1.7. (a) The nontrivial part of the proof of Theorem 1.6 is con-
structing idempotents subject to the required conditions. Once this is
done, it becomes a formal exercise to verify these conditions.

(b) Assumption 1.4 is satisfied as soon as k is algebraically closed. In fact,
for any field k, there is some finite extension k ⊂ k′ for which it is
satisfied and, hence, for which the theorem applies. However, it is not
known whether such a decomposition over k′ would descend to k (see, for
instance, [19] Question 1.6). The weaker property of having a Künneth
decomposition, on the other hand, does descend under finite extensions
(see [19] Proposition 1.7).

Whenever a smooth projective variety satisfies the Chow-Künneth Conjecture,
the summands are conjectured to be unique up to isomorphism. Indeed, as
noted in Remark 1.3, this would follow from the finite-dimensionality of the
motive of Θ (i.e., Conjecture 2.6 for Θ). We will review this notion of finite-
dimensionality and highlight its properties in the next section. As an indication
of its desirability, we mention that Bloch’s conjecture for zero cycles on a surface
becomes trivial for surfaces known to be finite-dimensional (see [12]). Thus
far, however, only motives that are summands of motives of Abelian varieties
are known to be finite-dimensional. In particular, we cannot prove the finite-
dimensionality of the motive of Θ nor the unicity of the summands, but we
do note that the summands obtained here are minimal in some sense (see §3.3
below).
Finally, we will explore the complementary motive P of Theorem 1.6 (b), which
represents the primal cohomology of Θ. For this, we will specialize to the case
that k = C and H∗ is singular cohomology with Q-coefficients, where Hodge
theory can be of assistance. We will further simplify matters by specializing to
the case where Θ is a principal polarization. We note, however, that when g ≤ 3
the very general principally polarized Abelian variety is a Jacobian, and Θ is
not smooth in this case. On the other hand, if we take g = 4, Θ is very generally
smooth and the primal cohomology has Hodge level 1. Conjecturally, a motive
over C whose singular cohomology has Hodge level 1 should correspond to an
Abelian variety ([12] Remark 7.12). In this direction, we state the following
result:

Theorem 1.8. Suppose that A is a very general principally polarized Abelian
fourfold over C and let Θ be a divisor corresponding to the principal polariza-
tion. Let Mhom,C denote the category of homological motives over C (using
singular cohomology). Then, there exists an Abelian variety J and an isomor-
phism in Mhom,C:

P ∼= h1(J)(−1).

Moreover, the following are equivalent:

(a) h(Θ) is finite-dimensional in the sense of Kimura,

(b) There is an isomorphism of Chow motives: P ∼= h1(J)(−1) ∈ MC,
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(c) CH0(P ) = 0.

The author does not know of any instance for which any of the equivalent
conditions (a)-(c) above holds. This more modest result should thus be viewed
as an illustration of the intractability of the motive P even in very simple cases.
The plan of the paper will be as follows. In the second section, we will present
some useful lemmas needed for the proof of Theorem 1.6, as well as summarize
the notation to be used. In the third section, we will prove Theorem 1.6. In
the final section, we will analyze the motive P in the case of a very general
principally polarized complex Abelian fourfold and prove Theorem 1.8.
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2 Preliminaries

2.1 Conventions on Chow motives

Throughout this paper, all Chow groups will be taken to have rational coeffi-
cients. We will let Mk denote the category of Chow motives over a field k with
rational coefficients. This is the category whose objects are triples

M = (X, π,m) ∈ Mk,

whereX is a smooth projective variety, π ∈ CHdim(X)(X×X) is an idempotent
with respect to ◦ (as defined in [4] Chapter 16.1) and m ∈ Z. Morphisms in
Mk are given by correspondences:

HomMk
((X, π, n), (X ′, π′, n′)) := π′ ◦ Corn

′−n(X,X ′) ◦ π

= π′ ◦ CHdim(X)+n′−n(X ×X ′) ◦ π.

We have a functor h : Vopp
k → Mk from smooth projective varieties to motives

defined by h(X) = (X,∆X , 0). We also let H∗ denote a Weil cohomology theory
(we refer the reader to [10] for a precise statement of the axioms) and require
the following:

Assumption 2.1. H∗ satisfies the Hard Lefschetz theorem and the Lefschetz
hyperplane theorem.

Remark 2.2. We note that this assumption is satisfied if H∗ is singular coho-
mology (and k = C) or if H∗ is ℓ-adic cohomology (for ℓ 6= char k).

For a motive M = (X, π,m), we will adopt the usual notation:

Hj(M) = π∗H
j+2m(X), CHj(M) = π∗CHj+m(X)
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where the actions of a correspondence (such as π) on H∗ and CH∗ are defined
as in [4] Chapter 16.1. Finally, for any n ∈ Z, we will adopt the usual Tate
twist notation:

M(n) := (X, π,m+ n).

In the final section, we will also consider the category of homological motives
Mhom,C, in which rational equivalence is replaced with homological equivalence
(taking H∗ to be singular cohomology with Q coefficients).

2.2 Kimura Finite-dimensionality

Here we review the definition and properties of Kimura finite-dimensionality
for motives. Recall that the category of Chow motives Mk is a tensor category
with tensor product defined as:

(X, π,m)⊗ (Y, τ, n) := (X × Y, π × τ,m+ n).

There is also an action of the symmetric group

Q[Sn] → EndMk
(M⊗n)

for M ∈ Mk. Since Mk is a pseudo-Abelian category, all idempotents possess
images in Mk. So, for any idempotent in the group algebra Q[Sn], there is a
corresponding motive. In particular, we have

SymnM = Im(πsym)

∧nM = Im(πalt)

for the symmetric and the alternating representation of Sn.

Definition 2.3 (Kimura). A motive M ∈ Mk is said to be oddly finite-
dimensional if SymnM = 0 for n >> 0 and evenly finite-dimensional if
∧nM = 0 for n >> 0. M is said to be finite-dimensional if M = M+ ⊕ M−,
where M+ is evenly finite-dimensional and M− is oddly finite-dimensional.

We have the following properties of finite-dimensional motives:

Theorem 2.4.

(a) The motive of a smooth projective curve is finite-dimensional.

(b) If M,N ∈ Mk are finite-dimensional, then so are M ⊕N and M ⊗N.

(c) If f : M → N is split-surjective and M is finite-dimensional, then so is
N. In particular, if M ⊕N is finite-dimensional, then so are M and N.

(d) Suppose M and N are finite-dimensional and Φ : M → N is a map of
Chow motives such that H∗(Φ) : H∗(M) → H∗(N) is an isomorphism
and such that ∃Ψ ∈ HomMk

(N,M) with H∗(Ψ) = H∗(Φ)−1. Then, Φ is
an isomorphism of Chow motives.
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Proof. Items (a)-(c) are all directly from [12]. Item (a) is Corollary 4.4. The ⊕
part of (b) follows from the isomorphism of Chow motives:

∧n(M1 ⊕M2) ∼=
⊕

m1+m2=n

∧m1M1 ⊗ ∧m2M2

(and the corresponding isomorphism for Sym), while the ⊗ part is Corol-
lary 5.11. Item (c) is Proposition 6.9. Finally, for (d), note by assumption
that the endomorphisms Ψ ◦ Φ ∈ EndMk

(M) and Φ ◦ Ψ ∈ EndMk
(N) induce

automorphisms of H∗(M) and H∗(N). It follows from [8] Lemma 3.1 (iii) that
Ψ◦Φ and Φ◦Ψ are automorphisms of Chow motives. In particular, Φ : M → N
possesses both a left and right inverse in HomMk

(N,M), which means Φ is an
isomorphism of Chow motives.

Remark 2.5. As a consequence of (a) and (b), the motive of any product
of smooth projective curves is finite-dimensional; from (c), so is any variety
dominated by a product of curves (such as Abelian varieties). In [6] it is proved
that varieties of dimension ≤ 3 for which CH0(X)hom is representable by an
Abelian variety have finite-dimensional motive. (This is true, in particular,
if X is a rationally connected threefold.) Other than this, the conjecture below
remains wide open.

Conjecture 2.6 (Kimura, O’Sullivan). Every motive M ∈ Mk is finite-
dimensional.

2.3 Hard Lefschetz and Lefschetz Standard

Suppose that X is a smooth projective variety of dimension d over a field k
and D ∈ CH1(X) is the class of an ample divisor. Let ∆ : X →֒ X×X denote
the diagonal imbedding and let

LD := ∆∗(D) ∈ CHd+1(X ×X) = HomMk
(h(X), h(X)(1))

denote the Lefschetz correspondence of D (as in [13]). The following lemma
then gives a familiar characterization of the action of this correspondence:

Lemma 2.7. (a) For any α ∈ CHj(X) (resp., Hj(X)), we have

LD∗(α) = α ·D ∈ CHj+1(X) (resp., Hj+2(X)(1))

(b) Suppose that i : D →֒ X is a smooth divisor on X. Then,

LD = Γi ◦
tΓi ∈ CHd+1(X ×X),

where Γi denotes the graph of i.
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Proof. For (a), see [13] Lemma 1.1. For (b), we begin by noting the obvious
commutative diagram:

D
∆

−−−−→ D ×D

i





y

i×i





y

X
∆

−−−−→ X ×X

From the functoriality of pushforward ([4] Chapter 1.6), we then have

LD = (∆)∗(D) = (∆)∗(i∗1) = (i× i)∗(∆D) = Γi ◦∆D ◦ tΓi = Γi ◦
tΓi,

where ∆D ∈ CHg−1(Θ × Θ) denotes the class of the diagonal and where the
penultimate step follows from Lemma 2.8 below.

Lemma 2.8 (Liebermann). Let f : X → X ′ and g : Y → Y ′ be morphisms of
smooth projective varieties and α ∈ CH∗(X × Y ). Then,

(f × g)∗(α) = Γg ◦ α ◦ tΓf ∈ CH∗(X ′ × Y ′).

Proof. See [4] Proposition 16.1.1.

Since H∗ satisfies Assumption 2.1, for any ample divisor D ∈ Pic(X), the
Lefschetz correspondence induces an isomorphism:

∪Dd−j : Hj(X)
∼=
−→ H2d−j(X)(d− j) (1)

for j < d. A natural question is then whether the inverse (cohomological)
correspondence is algebraic. More precisely, we have

Conjecture 2.9 (Lefschetz standard conjecture). There exists Λj,D ∈
CHd−j(X ×X) for which

H∗(Λj,D) : H2d+j(X)(j) → H2d−j(X)

is the inverse of (1).

Some cases for which the Lefschetz standard conjecture is known to hold in-
clude: curves, Abelian varieties ([10]), varieties for which the cycle class map is
an isomorphism ([11]), as well as for uniruled threefolds, unirational fourfolds,
the moduli space of stable vector bundles over a smooth projective curve, and
for the Hilbert scheme S[n] of every smooth projective surface (see [1] Corol-
laries 4.3, 7.2 and 7.5 for these latter).
In the case of Abelian varieties, there is in fact a much stronger statement,
given by the following result of Künnemann, which will be indispensable to our
proof in the next section:
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Theorem 2.10 (Motivic Hard Lefschetz). Let A be an Abelian variety of di-
mension g and let Θ ∈ CH1(A) be the class of a symmetric ample divisor and
let LΘ be the associated Lefschetz correspondence. Further, let {πj,A} be the
Chow-Künneth idempotents of Theorem 1.2 (a). Then, there exists

ΛΘ ∈ CHg−1(A×A)

satisfying:

(i) Set πj,A = 0 for all j /∈ {0, 1, ...2g}. Then, we have

LΘ ◦ πj,A = πj+2,A ◦ LΘ, ΛΘ ◦ πj,A = πj−2,A ◦ ΛΘ (2)

(ii) The correspondence π2g−j,A ◦ Lg−j
Θ ◦ πj,A : hj(A) → h2g−j(A)(g − j) is

an isomorphism of Chow motives for j ≤ g; i.e., there are the following
equalities of correspondences

πj,A ◦ Λg−j
Θ ◦ Lg−j

Θ = πj,A = Λg−j
Θ ◦ Lg−j

Θ ◦ πj,A for j < g.

πj,A ◦ Lj−g
Θ ◦ Λj−g

Θ = πj,A = Lj−g
Θ ◦ Λj−g

Θ ◦ πj,A for j > g.
(3)

Proof. For (i), see [13] Theorem 4.1 and for (ii), see Theorem 5.2.

Remark 2.11. (a) It should be noted that the results in [13] actually hold
more generally for the motives of Abelian schemes in the category of rel-
ative Chow motives over a smooth quasi-projective base scheme.

(b) The assumption that the divisor Θ be symmetric; i.e., that

Θ = (−1)∗Θ ∈ CH1(A)

is essential for (i).

2.4 A Shortcut to proving Conjecture 1.1

For convenience, we will state as a lemma a strategy often employed when
finding Chow-Künneth idempotents. The strategy is essentially to construct
idempotents for all but the middle degrees of cohomology and is used to prove
Conjecture 1.1 for surfaces ([15]) and complete intersections in Pn ([16]) among
others. This strategy is particularly well-suited for any variety whose “nontriv-
ial” cohomology is concentrated in the middle degree, as is the case for theta
divisors.

Lemma 2.12. Let X be a smooth projective variety of dimension d. Suppose
there exist correspondences {π0, π1, . . . πd−1, πd+1, . . . π2d} ⊂ CHd(X×X) sat-
isfying:

(i) π2
j = πj
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(ii) πj ◦ πj′ = 0 for j 6= j′

(iii) πj∗H
∗(X) = Hj(X).

Then, Conjecture 1.1 holds for X.

Proof. The conditions of Conjecture 1.1 force the definition:

πd = ∆X −
∑

j 6=d

πj .

It is then a straightforward computation to show that πd is mutually orthogonal
to the remaining idempotents and that (iii) holds for j = d.

3 Proof of Theorem 1.6

3.1 A Reduction and an Important Lemma

It suffices to prove the result in the case that [Θ] ∈ CH1(A) is symmetric.
Indeed, by assumption, there exists x ∈ A(k), such that [tx(Θ)] is symmetric.
The translation morphism tx : A → A then induces an isomorphism between
Θ and tx(Θ). The statement of Theorem 1.6 is then true for Θ if and only if it
is true for tx(Θ).

We can then define the following 2 sets of correspondences below which will be
used in the proofs of both parts of the theorem.

For j < g − 1:

Φj :=
tΓi ◦ πj,A ∈ HomMk

(hj(A), h(Θ))

Ψj := πj,A ◦ Λg−j
Θ ◦ Lg−j−1

Θ ◦ Γi ∈ HomMk
(h(Θ), hj(A))

(4)

For j > g − 1:

Φj := πj+2,A ◦ Γi ∈ HomMk
(h(Θ), hj+2(A)(1))

Ψj :=
tΓi ◦ L

j−g+1
Θ ◦ Λj−g+2

Θ ◦ πj+2,A ∈ HomMk
(hj+2(A)(1), h(Θ))

(5)

The lemma below summarizes their properties:

Lemma 3.1. We have the following relations:

(a) Ψj ◦ Φj′ = 0 for j 6= j′ < g − 1.

(b) Φj ◦Ψj′ = 0 for j 6= j′ > g − 1.

(c) Ψj ◦Ψj′ = 0 for j < g − 1 < j′.

(d) Φj′ ◦ Φj = 0 for j < g − 1 < j′.

(e) Φj ◦ πj,A = Φj for j < g − 1.

(f) πj+2,A ◦ Φj = Φj for j > g − 1.

(g) Ψj ◦ Φj = πj,A for j < g − 1.

(h) Φj ◦Ψj = πj+2,A for j > g − 1.
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Proof. For (a), we compute:

Ψj ◦ Φj′ = πj,A ◦ Λg−j
Θ ◦ Lg−j−1

Θ ◦ Γi ◦
tΓi ◦ πj′,A

= πj,A ◦ Λg−j
Θ ◦ Lg−j

Θ ◦ πj′,A

= πj,A ◦ πj′,A = 0

where the second equality follows by Lemma 2.7 (b) and the third from Theo-
rem 2.10 (ii). The verification of (b) is essentially the same.
For (c), we compute:

Ψj ◦Ψj′ = πj,A ◦ Λg−j
Θ ◦ Lg−j−1

Θ ◦ Γi ◦
tΓi ◦ L

j′−g+1
Θ ◦ Λj′−g+2

Θ ◦ πj′+2,A

= πj,A ◦ Λg−j
Θ ◦ Lg−j

Θ ◦ Lj′−g+1
Θ ◦ Λj′−g+2

Θ ◦ πj′+2,A

= πj,A ◦ Lj′−g+1
Θ ◦ Λj′−g+2

Θ ◦ πj′+2,A

= πj,A ◦ πj′,A ◦ Lj′−g+1
Θ ◦ Λj′−g+2

Θ = 0

where, again, the second equality follows by Lemma 2.7 (b) and the third from
Theorem 2.10 (ii). The fourth equality follows by applying 2.10 (i) repeatedly.
For (d), we have

Φj′ ◦ Φj = πj′+2,A ◦ Γi ◦
tΓi ◦ πj,A

= πj′+2,A ◦ LΘ ◦ πj,A

= πj′+2,A ◦ πj+2,A ◦ LΘ = 0

where the second equality holds by Lemma 2.7 and the third holds by Theorem
2.10 (i).
For (e), we have:

Φj ◦ πj,A = tΓi ◦ πj,A ◦ πj,A = Φj

using the fact that πj,A is an idempotent. The verification of (f) is similar.
For (g), we have

Ψj ◦ Φj = πj,A ◦ Λg−j
Θ ◦ Lg−j−1

Θ ◦ Γi ◦
tΓi ◦ πj,A

= πj,A ◦ Λg−j
Θ ◦ Lg−j

Θ ◦ πj,A = πj,A

where the second equality is Lemma 2.7 and the third by Theorem 2.10 (ii).
The verification of (h) is similar.

3.2 Proof of Theorem 1.6

Proof of Theorem 1.6 (a). For the proof, we will first need to exhibit a set of
correspondences {π0,Θ, π1,Θ, . . . , πg−2,Θ, πg,Θ, . . . π2g−2,Θ} as in Lemma 2.12.
These will give the required Chow-Künneth idempotents. We define these
below:

πj,Θ := Φj ◦Ψj ∈ EndMk
(h(Θ)) for j < g − 1

πj,Θ := Ψj ◦ Φj ∈ EndMk
(h(Θ)) for j > g − 1

(6)
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We will be done with the proof, provided we can verify the following two bullet
points:

• {π0,Θ, π1,Θ, . . . , πg−2,Θ, πg,Θ, . . . π2g−2,Θ} satisfy the conditions Lemma
2.12.

• There are isomorphisms as in (i) and (ii) of Theorem 1.6 (a).

Towards the first bullet point, we first check condition (i) of Lemma 2.12. When
j < g − 1,

π2
j,Θ = Φj ◦ (Ψj ◦ Φj) ◦Ψj = (Φj ◦ πj,A) ◦Ψj = Φj ◦Ψj = πj,Θ

where the second and third equalities hold by Lemma 3.1 (g) and (e), respec-
tively. The verification in the case of j > g − 1 is similar and uses instead
Lemma 3.1 (h) and (f). We can also verify that these correspondences satisfy
condition (ii). Indeed, there are the following 4 cases to consider:

πj,Θ ◦ πj′,Θ = Φj ◦ (Ψj ◦ Φj′ ) ◦Ψj′ = 0 for j 6= j′ < g − 1.

πj,Θ ◦ πj′,Θ = Ψj ◦ (Φj ◦Ψj′) ◦ Φj′ = 0 for j 6= j′ > g − 1.

πj,Θ ◦ πj′,Θ = Φj ◦ (Ψj ◦Ψj′) ◦ Φj′ = 0 for j < g − 1 < j′.

πj′,Θ ◦ πj,Θ = Ψj′ ◦ (Φj′ ◦ Φj) ◦Ψj = 0 for j < g − 1 < j′.

(7)

where the second equality in the above 4 cases holds by Lemma 3.1 (a)-(d),
respectively.
Before checking that condition (iii) of Lemma 2.12 is satisfied, we verify the
second bullet point and construct the isomorphisms in (i) and (ii) of Theorem
1.6 (a). Indeed, for j 6= g − 1 set

hj(Θ) = (Θ, πj,Θ, 0)

and we define:

Φ′
j := πj,Θ ◦ Φj ∈ HomMk

(hj(A), hj(Θ)) for j < g − 1

Φ′
j := Φj ◦ πj,Θ ∈ HomMk

(hj(Θ), hj+2(A)(1)) for j > g − 1
(8)

Lemma 3.2. The correspondences defined in (8) are isomorphisms of Chow
motives. Hence, the motives hj(Θ) satisfy conditions (i) and (ii) of Theorem
1.6 (a).

Proof. We can construct the inverses explicitly:

Ψ′
j := Ψj ◦ πj,Θ ∈ HomMk

(hj(Θ), hj(A)) for j < g − 1

Ψ′
j := πj,Θ ◦Ψj ∈ HomMk

(hj+2(A)(1), hj(Θ)) for j > g − 1
(9)

To check that these are in fact inverses, we need to verify the following:
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(A) Ψ′
j ◦ Φ

′
j = πj,A, Φ

′
j ◦Ψ

′
j = πj,Θ for j < g − 1.

(B) Ψ′
j ◦ Φ

′
j = πj,Θ, Φ

′
j ◦Ψ

′
j = πj+2,A for j > g − 1.

For (A), we verify the first condition:

Ψ′
j ◦ Φ

′
j = Ψj ◦ πj,Θ ◦ πj,Θ ◦ Φj = Ψj ◦ πj,Θ ◦ Φj

= (Ψj ◦Φj) ◦ (Ψj ◦ Φj)

= π2
j,A = πj,A

using the definitions of πj,Θ, the fact that it is an idempotent and Lemma 3.1
(g) for the penultimate equality. For the second condition, we have:

Φ′
j ◦Ψ

′
j = πj,Θ ◦ (Φj ◦Ψj) ◦ πj,Θ = π3

j,Θ = πj,Θ

again using the definition of πj,Θ and the fact that it is an idempotent. The
verification of condition (B) is essentially the same.

This completes the verification of the second bullet point. To finish the proof
of the first bullet point, what remains then is to check that condition (iii) in
Lemma 2.12 holds. To this end, we need to show that πj,Θ acts as the identity

on Hj(Θ) and trivially on Hj′(Θ) for j 6= j′ and any Weil cohomology H∗.
Since πj,Θ ◦ πj′,Θ = 0 for j 6= j′, we are reduced to showing that πj,Θ acts as
the identity on Hj(Θ). We verify this for j < g − 1, since the case of j > g − 1
is similar. Indeed, we have by definition:

H∗(πj,Θ) = H∗(Φj) ◦H
∗(Ψj).

We observe that H∗(Φj) = i∗ : Hj(A) → Hj(Θ) and, by the Lefschetz hyper-
plane theorem, this is an isomorphism. Further, since

Ψj ◦Φj = πj,A

this means H∗(Ψj) : Hj(Θ) → Hj(A) is the inverse of H∗(Φj). This shows
that H∗(πj,Θ) = id|Hj(Θ), as required.

Proof of Theorem 1.6 (b). It follows from Theorem 1.6 (b) and Remark 2.5
that the Chow motive hj(Θ) is finite-dimensional for j 6= g−1. Thus, by Theo-
rem 2.4 (d), it suffices to show that (for some fixed choice of Weil cohomology)

∪hg−1−j = H∗(Lg−1−j
h ) : Hj(Θ) → H2(g−1)−j(Θ)(g − 1− j)

is an isomorphism and its inverse is algebraic (i.e., Conjecture 2.9 is satisfied
for X = Θ (and all j ≤ g)). That the above map is an isomorphism is true
by Assumption 2.1 and that Conjecture 2.9 is satisfied for X = Θ follows from
[10] Prop. 2.12.
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Proof of Theorem 1.6 (c). We first define the following morphism:

Φg−1 := πg+1,A ◦ Γi ∈ HomMk
(h(Θ), hg+1(A)(1))

We would like to show it is split-surjective with right-inverse given by

Ψg−1 := tΓi ◦ ΛΘ ◦ πg+1,A ∈ HomMk
(hg+1(A)(1), h(Θ))

i.e., that Φg−1 ◦Ψg−1 = πg+1,A. Indeed, we see that

Φg−1 ◦Ψg−1 = πg+1,A ◦ Γi ◦
tΓi ◦ ΛΘ ◦ πg+1,A

= πg+1,A ◦ LΘ ◦ ΛΘ ◦ πg+1,A = πg+1,A

where the second equality holds by Lemma 2.7 and the third by Theorem 2.10
(ii). We can then define a correspondence:

π′
g−1,Θ := Φg−1 ◦Ψg−1 ∈ EndMk

(h(Θ)) (10)

A standard calculation then shows that π′
g−1,Θ is an idempotent, which then

gives a Chow motive:
h
g−1
1 (Θ) := (Θ, π′

g−1,Θ, 0)

As in the proof of Theorem 1.6 (c), one check that there is an isomorphism:

Φ′
g−1 := Φg−1 ◦ π

′
g−1,Θ : hg−1

1 (Θ)
∼=
−→ hg+1(A)(1)

whose inverse is

Ψ′
g−1 := π′

g−1,Θ ◦Ψg−1 : hg+1(A)(1) → h
g−1
1 (Θ)

What remains is then to show that hg−1
1 (Θ) is a submotive of

hg−1(Θ) = (Θ, πg−1,Θ, 0)

By the proof of Lemma 2.12, we have the forced definition:

πg−1,Θ := ∆Θ −
∑

j 6=g−1

πj,Θ

So, it suffices to check that π′
g−1,Θ is orthogonal to πj,Θ for j 6= g − 1. This

verification is the same as that of (7) with πj,Θ replaced by π′
g−1,Θ. Indeed, we

have
π′
g−1,Θ = Φg−1 ◦Ψg−1

and the relations (a)-(d) of Lemma 3.1 (used to obtain (7)) still hold when
j = g − 1, given the definition of Φg−1 and Ψg−1.

Thus, hg−1
1 (Θ) ∼= hg+1(A)(1) is a submotive of hg−1(Θ) and we have a direct

sum decomposition:

hg−1(Θ) = h
g−1
1 (Θ)⊕ P ∼= hg+1(A)(1)⊕ P

where P := (Θ, p, 0) and p = πg−1,Θ − π′
g−1,Θ.
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Remark 3.3. It should be noted that a result analogous to Theorem 1.6 (a)
holds for a smooth (symmetric) ample divisor on an Abelian scheme A → S
(where S is a smooth quasi-projective variety) in the category of relative Chow
motives over S (since both Theorems 1.2 and 2.10 hold in the relative context).

3.3 Conjectured unicity of the Chow-Künneth summands

As we note above, the unicity of the Chow-Künneth summands follows if the
smooth projective variety has finite-dimensional Chow motive. While we can-
not prove that the Chow motive of Θ is finite-dimensional, we do note that the
summands hj(Θ) are unique (up to isomorphism) for j 6= g − 1 if one imposes
the (motivic) Lefschetz hyperplane condition as in Theorem 1.6 (a). Addition-
ally, there is the result below, which shows that the summands we obtain above
are minimal in the following sense:

Lemma 3.4. Retain the notation from Theorem 1.6. Also, let {π′
j,Θ} be another

set of idempotents satisfying the conditions of the Chow-Künneth Conjecture.
Denote the corresponding Chow motives by hj(Θ)′ := (Θ, π′

j,Θ, 0). Then, for
each j 6= g−1, there exists a phantom motive Pj ∈ Mk (i.e., one having trivial
cohomological realization) for which

hj(Θ)′ ∼= hj(Θ)⊕ Pj (11)

Proof. We show this for j < g− 1 only (the proof in the case of j > g− 1 being
analogous). By Theorem 1.6 (a), it suffices to show that there is some Pj as
above for which:

hj(Θ)′ ∼= hj(A)⊕ Pj

in Mk. To this end, we observe that the pull-back along Θ →֒ A induces a
morphism of Chow motives Φ′

j : hj(A) → hj(Θ)′ that is an isomorphism on
cohomology by the Lefschetz hyperplane theorem. Then, since the Lefschetz
standard conjecture holds for A and hj(A) is finite-dimensional, it is a standard
argument to show that Φ′

j is split-injective (c.f., the proof of Theorem 1.6 (b)).
This gives (11), as desired.

4 The complementary motive P

In this section, we specialize to the case where A is a principally polarized
Abelian variety over C, whose principal polarization is the class of i : Θ → A.
We would like a case in which a very general Θ is smooth. As noted in the
introduction, a general Abelian variety of dimension ≤ 3 is a Jacobian (and,
hence, Θ fails to be smooth). The next case is then when g = 4, where a
well-known result of Mumford in [14] shows that Θ is very generally smooth.
Moreover, we have the following:

Lemma 4.1. The primal cohomology

H3
pr(Θ,Q) := ker [H3(Θ,Q)

i∗−→ H5(A,Q)(1)]
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is a rational Hodge structure of level 1 and the intermediate Jacobian of this
Hodge structure:

J3
pr(Θ) :=

H3
pr(Θ,C)

F 2H3
pr(Θ,C) +H3

pr(Θ,Z)

is an Abelian variety of dimension 5.

Proof. See §1.3 of [7].

Definition 4.2. For X a smooth projective variety over C, the the coniveau
filtration is the descending filtration on the singular cohomology Hj(X,R) (with
coefficients in a ring R ⊂ C) given by:

N cHj(X,R) :=
∑

ker[Hj(X,R) → Hj(X \ Y,R)]

where the sum ranges over all closed imbeddings of subvarieties Y →֒ X of
codimension ≥ c.

There is then the following well-known generalization of the Hodge conjecture
due to Grothendieck:

Conjecture 4.3 (Generalized Hodge Conjecture, GHC(c, j)). N cHj(X,Q)
is the largest Q-Hodge substructure of level j − 2c in Hj(X,Q).

Now, in the case at hand, we have the following result:

Theorem 4.4 (Izadi-Van Straten, [7]). GHC(1, 3) holds for X = Θ, where
(A,Θ) is very general in the moduli space of principally polarized Abelian va-
rieties of dimension 4; i.e., N1H3(Θ,Q) is the largest Hodge structure of level
1 in H3(Θ,Q).

The following result is perhaps well-known to the experts, but since this precise
version was not found in the literature, we state it here for convenience:

Proposition 4.5. Let X be a smooth complex projective threefold that satisfies
GHC(1, 3). Then, the intermediate algebraic Jacobian

J3(X) :=
N1H3(X,C)

N1H3(X,C) ∩ (F 2H3(X,C) +H3(X,Z))

is an Abelian variety. Moreover, for every rational Hodge structure of level 1,
H ⊂ H3(X,Q), there exists an (isogeny class of an) Abelian variety that
appears in the Poincaré decomposition of J3(X) and an idempotent πH ∈
EndMC

(h(X)) for which:

(a) There is an isomorphism in MC, PH = (X, πH , 0) ∼= h1(A)(−1).

(b) H∗(PH) = πH∗H
∗(X,Q) = H.
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Proof. The statement that the complex torus J3(X) is an Abelian variety fol-
lows from the factN1H3(X,C) is a level 1 Hodge structure and the cup product
induces a polarization on it. Using [17] Theorem 2, there exists an idempotent
π ∈ EndMC

(h(X)) for which:

• There is an isomorphism in MC, φ : (X, π, 0) ∼= h1(J3(X))(−1).

• π∗H
∗(X,Q) = N1H3(X,Q).

In particular, the correspondence φ induces an isomorphism

H∗(φ) : N1H3(X,Q) → H1(J3(X),Q)(−1) (12)

Since X satisfies GHC(1, 3), any H as in the statement of the proposition is
a sub-Hodge structure of N1H3(X,Q). Thus, the image of H under (12) is
a sub-Hodge structure of H1(J3(X),Q)(−1) and so gives an Abelian variety,
AH , whose isogeny class appears in the decomposition of J3(X) and for which
there is an isomorphism

H ∼= H1(AH ,Q)(−1) (13)

induced by (12). Moreover, using [9] Proposition 2.1, there is a fully faithful
functor

h1 : AV opp
C → MC

which sends an Abelian variety A to the Chow Künneth summand h1(A) from
Theorem 1.2. Since AV opp

C is a semi-simple category (using Poincaré irre-
ducibility), there exists a summand PH of the Chow motive (X, π, 0) such
that the isomorphism φ : (X, π, 0) ∼= h1(J3(X))(−1) induces an isomorphism
PH

∼= h1(AH)(−1). Because the isomorphism (13) is also induced by φ, it
follows that H∗(PH) = H , and this proves the result.

Remark 4.6. It is straightforward that the Abelian variety AH in the previous
theorem can be taken to be

HC(1)

F 1HC(1) +HZ(1)

where HC = H ⊗ C and HZ ⊂ H is a choice of lattice.

We now have the following corollary, which gives the first statement in Theorem
1.8:

Corollary 4.7. There is an isomorphism of homological motives, P ∼=
h1(J3

pr(Θ))(−1).

Proof. We take X = Θ and H = H3
pr(Θ,Q) as in Proposition 4.5. Using this

latter, as well as Remark 4.6, there is a summand PH of h(Θ) ∈ MC and an
isomorphism in MC:

PH = (Θ, πH , 0) ∼= h1(J3
pr(Θ))(−1).
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It suffices then to show that P = PH ∈ MC,hom; i.e., that p = πH ∈
EndMC,hom

(h(Θ)). Indeed, p and πH are idempotents such that

p∗H
∗(Θ,Q) = πH∗H

∗(Θ,Q).

Thus, p = πH ∈ EndQ(H
∗(Θ,Q)). Since the Betti realization functor

MC,hom → VecQ is faithful, it follows that p = πH ∈ EndMC,hom
(h(Θ)), as

desired.

Proof of Theorem 1.8. The first statement is precisely Corollary 4.7. We prove
the equivalences below:

For (a) ⇒(b), note that if h(Θ) is finite-dimensional, then so is P by Theorem
2.4 (c). By Lemma 4.7, there is an isomorphism of homological motives, P ∼=
h1(J3

pr(Θ))(−1). Since P and h1(J3
pr(Θ)) are finite-dimensional, it follows from

Theorem 2.4(d) that we have an isomorphism:

P ∼= h1(J3
pr(Θ))(−1) ∈ MC (14)

For (b) ⇒ (c), apply CH3 to (14) to obtain:

CH0(P ) = CH3(P ) ∼= CH3(h1(J3
pr(Θ))(−1)) ∼= CH2(h1(J3

pr(Θ))) = 0

For (c) ⇒ (a), we suppose that CH0(P ) = 0. To show that h(Θ) ∈ MC is
finite-dimensional, it suffices by Theorem 1.6 and Theorem 2.4 to show that P
is finite-dimensional. To this end, note by assumption that we have

p∗CH0(Θ) = 0 (15)

Now, for x ∈ Θ let jx : x×Θ →֒ Θ×Θ and then (15) yields

0 = p∗(x) = π2∗(π
∗
1(x) · p) = π2∗(jx∗j

∗
xp) = j∗xp.

Then, using Voisin’s generalization of the Bloch-Srinivas decomposition-of-the-
diagonal argument ([20] Theorem 3.1), we deduce that there exists some divisor

D
j
−֒→ Θ such that p ∈ CH3(Θ×Θ) is supported on D ×Θ; i.e.,

p ∈ Im{CH1(D ×Θ)
(j×id)∗
−−−−−→ CH2(Θ×Θ)}.

Now, let ǫ : D̃ → D be a desingularization of D. Then, we have

p∗CH2
alg(Θ) ⊂ j∗ǫ∗CH1

alg(D̃)

where CH∗
alg is the group of algebraically trivial cycles (⊗Q). Then, using the

representability of the Picard functor there is a divisor P ∈ CH1(Pic0(D̃)×D̃)
for which

P∗CH0(Pic0(D̃))alg = CH1
alg(D̃).
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In fact, P∗ factors through the Albanese map

CH0(Pic0(D̃))alg → Alb(Pic0(D̃))⊗Q.

Then, using Bertini’s theorem, one obtains a smooth ample curve C
ι
−֒→ Pic0(D̃)

that induces a surjective map on the Albanese. Now, consider the correspon-
dence

Γ := ΓjD◦ǫ ◦ P ◦ Γι ∈ CH2(C ×Θ)

Using the above observations, we deduce that

p∗CH2
alg(Θ) ⊂ Γ∗CH1

alg(C).

That is, p∗CH2
alg(Θ) is representable (see [18] Definition 2.1). Since

p∗CH3
alg(Θ) = 0 by assumption, [18] Theorem 3.4 applies and P decomposes

as
⊕

1(i)⊕ni ⊕ h1(Ji)(−i)

for integers ni and Abelian varieties Ji. In particular, P is finite dimensional,
and this proves (c) ⇒ (a).
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