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Abstract. We consider N -body Schrödinger operators with N ≥ 3
quantum particles interacting via short-range potentials in dimension
d ≥ 3, where the essential spectrum coincides with the half line [0,∞).
We give the asymptotic behaviour of eigenfunctions corresponding
to the eigenvalue at the threshold of the essential spectrum under
the condition that the eigenfunctions are not orthogonal to the sum
of the pair interactions. This condition is fulfilled when zero is the
smallest eigenvalue and the pair interactions are negative. We also
give examples of systems when this condition is not met.
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1 Introduction

Consider the N -particle Schrödinger operator

HN = −
N
∑

i=1

1

2mi

∆xi
+

∑

1≤i<j≤N

Vij(xij), xij = xi − xj (1.1)

with real valued pair interactions Vij(xij) tending to zero as |xij | → ∞ and
denote by H0 the Hamiltonian after separation of the center of mass motion.
By the HVZ-Theorem the essential spectrum of H0 is given by

σess(H0) = [µ,∞) for some µ ≤ 0. (1.2)

It is well known that if H0 has an eigenvalue E < µ, then the correspond-
ing eigenfunctions decay exponentially [1]. However, at the threshold µ the
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situation changes fundamentally. Here the behaviour of the potentials Vij at
infinity can cause quite different decay behaviour of solutions corresponding to
the eigenvalue equation, which is important for many different physical phe-
nomena, e.g. [10, 11]. It is known, that in case of Coulomb interactions and
some other long-range potentials, such threshold eigenfunctions may have a
sub-exponential decay rate, see [7, 8, 9, 6].

In this work we focus on the case of short-range potentials and the case µ = 0.
The threshold µ = 0 in combination with short-range interactions is a partic-
ularly interesting case from many perspectives. For example, such zero-energy
solutions are strong related to the so-called Efimov effect [18, 14] and their de-
cay properties are crucial for its existence and non-existence [16]. In the context
of the critical coupling constant threshold, see [11], D.K. Gridnev studied N -
body systems in dimension three for a certain class of short-range potentials
[4, 5], where the subsystems do not have resonances or bound states E ≤ 0.
Based on the analysis of integral equations for the solution of the Schrödinger
equation, it was shown that for such systems zero is an eigenvalue. However,
in order to study decay rates of the corresponding eigenfunctions, the method
of such integral equations faces many difficulties. Note that the configuration
space of the system of N three-dimensional particles has dimension 3(N − 1)
and the fundamental solution of the Laplace operator in this space decays as
c|x|−(3(N−1)−2). Heuristically, by the Green function formalism this should
lead to the same asymptotic behaviour of the corresponding zero energy bound
state. However, even if every potential Vij tends to zero at infinity, the sum of
potentials in (1.1) does not necessarily have to. Even for compactly supported
potentials this is not the case. This makes the implementation of the method
of integral equations very difficult.

In the recent paper [3] S. Vugalter and the authors of this work considered
systems of N ≥ 3 particles in dimension d ≥ 3. Using a purely variational
approach it was shown that in case of short-range potentials such zero-energy
bound states satisfy

(1 + |x|)αϕ0 ∈ L2 for any α <
d(N − 1)

2
− 2. (1.3)

Choosing the constant α sufficiently close to it’s right bound leads to an esti-
mate from below of the same decay rate as the fundamental solution. However,
it does not provide an upper estimate, which leaves open the question whether
this estimate from below is close to optimal and whether it can vary for different
classes of short-range potentials. In this work we answer this question by pro-
viding an explicit formula for the asympotitics of eigenfunctions corresponding
to the eigenvalue zero, which gives an upper estimate of (1.3).

Note that both the method of integral equations and the variational approach
in [3] are not sufficient in themselves to determine the decay rate of ϕ0. But if
we combine the two methods, it yields the asymptotic behaviour of ϕ0. In [3]
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estimate (1.3) was deduced from

∇ (|x|αϕ0) ∈ L2 for any 0 ≤ α <
d(N − 1)

2
− 1. (1.4)

We will use it as an a priori estimate, which allows us to take advantage of the
decay of Vij(xij) in the direction xij . This way we can derive the asymptotic
behaviour of ϕ0 by studying its integral representation corresponding to the
zero eigenvalue equation. Our proof is also an example how to obtain a two-
sided estimate from a one-sided estimate.

2 Notation and Main Result

We consider a system ofN ≥ 3 particles in dimension d ≥ 3 with massesmi > 0
and position vectors xi ∈ R

d, i = 1, . . . , N . Such a system is described by the
Hamiltonian HN in (1.1), where we assume that the potentials Vij satisfy

|Vij(xij)| ≤ c|xij |−2−ν , xij ∈ R
d, |xij | ≥ A (2.1)

for some constants c, ν, A > 0 and we allow singularities of the type











Vij ∈ L2
loc(R

d), if d = 3,

Vij ∈ L
p
loc(R

d) for some p > 2, if d = 4,

Vij ∈ L
d
2

loc(R
d), if d ≥ 5.

(2.2)

Under these assumptions on the potentials the operator HN is essentially self-
adjoint on L2(RdN ). Following [13], we define the space R0 of relative motion
of the system as

R0 =

{

x = (x1, . . . , xN ) ∈ R
dN :

N
∑

i=1

mixi = 0

}

(2.3)

and the scalar product

〈x, x̃〉1 =

N
∑

i=1

mi〈xi, x̃i〉, |x|21 = 〈x, x〉1. (2.4)

After the separation of the center of mass motion the Hamiltonian is given by

H0 = −∆0 + V (x), (2.5)

where ∆0 is the Laplace Beltrami operator on L2(R0) and the potential V
is given by V (x) =

∑

1≤i<j≤N Vij(xij). Our main assumption is that for all
sufficiently small ε > 0 we have that

σess (−(1− ε)∆0 + V ) = [0,∞). (2.6)
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This is in particular the situation where for any subsystem the corresponding
Hamiltonian does not have resonances or eigenvalues at the bottom of the
essential spectrum. However, the Hamiltonian H0 of the whole system might
have eigenvalues E ≤ 0.
For a fixed pair of particles i 6= j and k 6= i, j we set

Rij = {x = (x1, . . . , xN ) ∈ R0 : mixi +mjxj = 0, xk = 0} (2.7)

and R⊥
ij = R0 ⊖Rij . Let Pij and P⊥

ij be the projections in R0 with respect to

the scalar product 〈·, ·〉1 onto Rij and R⊥
ij , respectively. For x ∈ R0 we denote

qij = Pijx and ξij = P⊥
ij x. (2.8)

Note that for any 1 ≤ i < j ≤ N it holds

|qij |1 =

√
mimj√
mi +mj

|xij |, (2.9)

which together with (2.1) implies

|Vij(xij)| ≤ C|qij |−2−ν
1 for some C > 0 and all |xij | ≥ A. (2.10)

Our main result is the following

Theorem 2.1. Assume that H0 satisfies the conditions (2.1), (2.2) and (2.6).
Suppose that ϕ0 is an eigenfunction of H0 corresponding to the eigenvalue zero.
Then the following assertions hold.

(i) For all 1 ≤ i < j ≤ N we have

Vij(xij)ϕ0(x) ∈ L1(R0). (2.11)

(ii) Let β = d(N − 1)− 2 and denote by |Sβ−1| the volume of the unit sphere
in R

β. Further, let

C0 = − 1

(β − 2)|Sβ−1|

ˆ

R0

∑

1≤i<j≤N

Vij(xij)ϕ0(x) dx. (2.12)

Then the function ϕ0 has the following asymptotics

ϕ0(x) =
C0

|x|β1
+ g(x) as |x|1 → ∞, (2.13)

where the remainder g belongs to Lp(R0) for any p satisfying

β + 2

β + γ∗

1+γ∗

< p <
β + 2

β
with γ∗ = min

{

d

2
− 1, ν

}

. (2.14)
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Remark 2.2. The most interesting question regarding the asymptotics (2.13)
is whether the constant C0 is zero or not. It turns out, that both cases are
possible.

(i) The case of one-particle Schrödinger operators is not part of this work.
However, the following example shows what can be expected in case
of multi-particle Schrödinger operators. Let d = 5 and consider the
Schrödinger operator −∆+V in L2(R5), where the potential V is spheri-
cally symmetric, bounded and compactly supported. Let zero be an eigen-
value with ϕ0 being a spherically symmetric eigenfunction. For arguments
outside of the support of V one can easily show that ϕ0 decays like c|x|−3

with c 6= 0, which is the same decay rate as that of the fundamental solu-
tion of the Laplace operator. Hence, we have 〈V, ϕ0〉 6= 0. On the other
hand, if ϕ0 is a function of angular momentum l ≥ 1, then we always
have 〈V, ϕ0〉 = 0. We emphasize that zero does not necessarily have to be
the ground state in both cases.

(ii) Now we return to multi-particle systems and show that both cases can
occur here as well. Consider the case of N ≥ 3 particles in dimension
d ≥ 3 with the corresponding Hamiltonian H0. Assume that zero is a
ground state of H0, then the corresponding eigenfunction ϕ0 can be chosen
to be strictly positive. Hence, if every potential Vij satisfies Vij(x) ≤ 0,
then we have C0 6= 0. In this case the leading term (1 + |x|1)−β belongs
to Lq(R0), only if q > β+2

β
.

(iii) Consider a system of N ≥ 3 identical bosons in dimension d ≥ 3 and as-
sume that the interactions are non-positive. If zero is a ground state,
then according to remark (ii) the zero-energy ground state decays as

C0|x|−d(N−1)+2
1 .

(iv) Consider a system of N ≥ 3 particles in dimension d ≥ 3, which contains
at least K ≥ 3 identical fermions. If ϕ0 is a zero energy bound state of the
system, then ϕ0 is orthogonal to all functions symmetric with respect to
permutations of each pair of fermions. This implies C0 = 0. Therefore,
in this case by (2.13) the eigenfunction ϕ0 always decays at least as fast
as C|x|−γ

1 , where γ > d(N − 1)− 2.

(v) Assume that the potentials Vij are spherically symmetric. Then the oper-
ator H0 is invariant under the action of the group SO(d), where d ≥ 3 is
the dimension of the corresponding particles. Consider the operator H0

on a subspace of functions transformed according to a fixed irreducible
representation of degree l = 0, 1, . . . of the group SO(d). Assume that
ϕ0 is a zero energy bound state of H0 with rotational symmetry of de-
gree l ≥ 1. Then, due to the orthogonality of functions corresponding to
different irreducible representations, we have C0 = 0.
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(vi) The relation (2.13) shows that the decay rate of ϕ0 does not depend on the
potentials as long as the pair interactions are short-range and C0 6= 0. At
the same time, since |x|21 =

∑N
i=1mi|xi|2, the decay of ϕ0(x) depends on

the respective direction of x, as long as the masses mi are not all equal.

Proof of Theorem 2.1. Wewill split the proof of the theorem into several propo-
sitions. The key argument of the proof is the following proposition, proved by
S. Vugalter and the authors in [3].

Proposition 2.3 (A priori estimate). The function ϕ0 satisfies

∇0 (|x|α1ϕ0) ∈ L2(R0) for any 0 ≤ α <
d(N − 1)

2
− 1. (2.15)

For convenience of the reader we give the proof in the Appendix. To get
the asymptotics (2.13) of ϕ0 we will consider its integral representation as a
convolution with the fundamental solution

ϕ0(x) =
−1

(β − 2)|Sβ−1|

ˆ

R0

|x− y|−β
1 V (y)ϕ0(y) dy. (2.16)

The statement of assertion (i) of Theorem 2.1 is a special case of the following

Proposition 2.4 (The r.h.s. of (2.16) is well defined). For all 1 ≤ i <

j ≤ N and any 0 < γ < γ∗ we have

(1 + |x|1)γVij(xij)ϕ0(x) ∈ L1(R0). (2.17)

Proof. By Proposition 2.3, together with |∇qij | ≤ |∇0| and Hardy’s inequality
in the space H1(Rij) we have

(1 + |qij |1)−1
(1 + |x|1)α ϕ0 ∈ L2(R0). (2.18)

Note that this non-symmetric estimate is crucial for the further proof. In fact,
using the Hardy inequality in x instead of qij at this point would not be enough
for us.
For any fixed 0 < γ < γ∗ we write

(1 + |x|1)γ Vij(xij)ϕ0(x) = (1 + |qij |1)−1 (1 + |x|1)α ϕ0(x) · f(x), (2.19)

where

f(x) := (1 + |x|1)−α+γ (1 + |qij |1) Vij(xij). (2.20)

In view of (2.18) to prove Proposition 2.4 it suffices to show that f belongs to
L2(R0). Note that by definition of Rij and R⊥

ij we have

L2(R0) = L2(Rij)⊗ L2(R⊥
ij). (2.21)
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Hence, we decompose the function f as

f(x) = f(x)χ{|xij |<A} + f(x)χ{|xij |≥A} (2.22)

and estimate the functions f(x)χ{|xij |<A} and f(x)χ{|xij |≥A} separately, start-
ing with the function f(x)χ{|xij |<A}.
Due to (2.9) and assumption (2.2) we obviously have

(1 + |qij |1)Vij(xij)χ{|xij |<A} ∈ L2(Rij). (2.23)

Therefore, in order to show f(x)χ{|xij |<A} ∈ L2(R0) we only need to prove that

the function (1 + |x|1)−α+γ
belongs to L2(R⊥

ij). Since dim(R⊥
ij) = d(N − 2),

we have

(1 + |ξij |1)−α+γ ∈ L2(R⊥
ij) if and only if α− γ >

d(N − 2)

2
. (2.24)

Recall that γ < γ∗, which in particular implies that γ < d
2 − 1. Therefore, the

condition in (2.24) is satisfied if we choose α close enough to d(N−1)−2
2 . Hence,

by the use of (1 + |x|1)−1 ≤ (1 + |ξij |1)−1 we have (1 + |x|1)−α+γ ∈ L2(R⊥
ij)

and therefore
f(x)χ{|xij |<A} ∈ L2(R0). (2.25)

In order to prove that the function f(x)χ{|xij |≥A} belongs to the space

L2(R0) = L2(Rij)⊗ L2(R⊥
ij), we show that it can be estimated as

|f(x)χ{|xij |≥A}| ≤ |f1(qij)| · |f2(ξij)|, (2.26)

where f1 ∈ L2(Rij) and f2 ∈ L2(R⊥
ij). Here, we will use the assumption

that the potential Vij(xij) decays faster than |qij |−2
1 as |xij | → ∞. Recall that

dim(Rij) = d and dim(R⊥
ij) = d(N−2), which implies that for any 0 < ε < ν−γ

we have
f1(qij) := (1 + |qij |1)−

d
2
−ε ∈ L2(Rij) (2.27)

and

f2(ξij) := (1 + |ξij |1)−α+γ−ν+ε+ d
2
−1 ∈ L2(R⊥

ij). (2.28)

Note that we can always assume ν < d
2 − 1. By the use of |qij |1, |ξij |1 ≤ |x|1

we get

(1 + |x|1)−α+γ ≤ (1 + |ξij |1)−α+γ−ν+ε+d
2
−1

(1 + |qij |1)1−
d
2
+ν−ε

. (2.29)

This, together with (2.10) yields

|f(x)χ{|xij |≥A}| ≤ C|f1(qij)| · |f2(ξij)| (2.30)

and therefore f(x)χ{|xij |≥A} ∈ L2(R0), which completes the proof of Proposi-
tion 2.4.
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Now we turn to the proof of statement (ii) of Theorem 2.1. Since

H0ϕ0 = (−∆0 + V )ϕ0 = 0 (2.31)

and due to Proposition 2.4 V ϕ0 ∈ L1(R0), we can apply Theorem 6.21 in [12]
to conclude

ϕ0(x) =
−1

(β − 2)|Sβ−1|

ˆ

R0

|x− y|−β
1 V (y)ϕ0(y) dy. (2.32)

We derive the asymptotics (2.13) by studying the integral representation of ϕ0

in (2.32). We will see that only certain regions contribute to the leading term
of ϕ0. We write

ϕ0(x) =
−1

(β − 2)|Sβ−1| (I1(x) + I2(x)) , (2.33)

where

I1(x) =

ˆ

{|x−y|1≤1}

|x− y|−β
1 V (y)ϕ0(y) dy,

I2(x) =

ˆ

{|x−y|1>1}

|x− y|−β
1 V (y)ϕ0(y) dy.

(2.34)

First we show that the function I1 belongs to the remainder g in (2.13).

Proposition 2.5 (Remainder term of the asymptotics). The function
I1 is an element of Lp(R0) for all 1 ≤ p < β+2

β
.

Proof. Due to dim(R0) = d(N − 1) and β = d(N − 1)− 2 we have

|x|−β
1 χ{|x|1≤1} ∈ Lp(R0) for all 1 ≤ p <

β + 2

β
. (2.35)

By Proposition 2.4 we have V ϕ0 ∈ L1(R0), which together with Young’s in-
equality yields the claim of Proposition 2.5.

Now we show that only a part of I2 gives the leading term in (2.13). Let
η = 1

1+γ∗
. For x ∈ R0 we define

Ω1(x) = {y ∈ R0 : |x− y|1 > 1, |y|1 > |x|η1} ,
Ω2(x) = {y ∈ R0 : |x− y|1 > 1, |y|1 ≤ |x|η1}

(2.36)

and

I2,k(x) =

ˆ

Ωk(x)

|x− y|−β
1 V (y)ϕ0(y) dy, k = 1, 2. (2.37)

At first we prove that the function I2,1 belongs to the remainder g in (2.13).
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Proposition 2.6 (Remainder term of the asymptotics). Let I2,1 be
given by (2.36) and (2.37), then we have

I2,1 ∈ Lp(R0) for all
β + 2

β + γ∗

1+γ∗

< p <
β + 2

β
. (2.38)

Proof. Let γ < γ∗. By the use of |y|1 > |x|η1 for y ∈ Ω1(x) we get

|I2,1(x)| ≤

ˆ

Ω1(x)

|x− y|−β
1 |V (y)ϕ0(y)| dy

≤ (1 + |x|η1)
−γ

ˆ

Ω1(x)

|x− y|−β
1 (1 + |y|1)γ |V (y)ϕ0(y)| dy

= (1 + |x|η1)
−γ
Ĩ2,1(x).

(2.39)

We show that for any fixed p satisfying (2.38) we find a constant γ < γ∗,
such that the function on the r.h.s. of (2.39) belongs to Lp(R0). Note that
γ∗

1+γ∗
= ηγ∗, which for γ sufficiently close to γ∗ implies

p >
β + 2

β + ηγ
. (2.40)

By Proposition 2.4 and Young’s inequality we have

Ĩ2,1(x) =

ˆ

Ω1(x)

|x− y|−β
1 (1 + |y|1)γ |V (y)ϕ0(y)| dy ∈ Ls(R0) (2.41)

with s > d(N−1)
d(N−1)−2 . Now we apply Hölder’s inequality to the r.h.s. of (2.39).

For this purpose we fix s and define

t1 =
s

s− p
≥ 1 and t2 =

s

p
≥ 1 with

1

t1
+

1

t2
= 1. (2.42)

Then we formally get

ˆ

R0

|Ĩ2,1(x)|p
(1 + |x|η1)

γp dx ≤
(
ˆ

R0

(1 + |x|η1)
−γpt1dx

)
1

t1

(
ˆ

R0

|Ĩ2,1(x)|pt2 dx
)

1

t2

. (2.43)

Since pt2 = s and Ĩ2,1 ∈ Ls(R0), the second integral on the r.h.s of (2.43) is
finite. Due to dim(R0) = d(N − 1), to prove the finiteness of the first integral
on the r.h.s of (2.43) it suffices to show that ηγpt1 > d(N − 1). By definition
of t1 this is equivalent to

ηγsp > d(N − 1)(s− p) ⇔ p(ηγs+ d(N − 1)) > d(N − 1)s

⇔ 1

p
<

ηγ

d(N − 1)
+

1

s
.

(2.44)
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Since p > d(N−1)
d(N−1)−2+γη

, we see that the condition in (2.44) is fulfilled if s is

chosen sufficiently close to d(N−1)
d(N−1)−2 . It remains to use β = d(N − 1) − 2 to

complete the proof.

Now we finally show that I2,2, yields the leading term of ϕ0 in (2.13).

Proposition 2.7 (Leading term of the asymptotics). Let I2,2 be given
by (2.37), then we have

I2,2(x) = |x|−β
1

ˆ

Ω2(x)

V (y)ϕ0(y) dy + h(x) as |x|1 → ∞, (2.45)

where

h ∈ Lp(R0) for all p >
β + 2

β + γ∗

1+γ∗

. (2.46)

Proof. For y ∈ Ω2(x) we have (cf. [2])

|x|−1
1

(

1− |x|η−1
1

)

≤ |x− y|−1
1 ≤ |x|−1

1

(

1 + c|x|η−1
1

)

(2.47)

for some c > 0. We apply this inequality to the positive and the negative part
of the integrand in the definition of I2,2 separately. Let

(V ϕ0)+(x) = max {V (x)ϕ0(x), 0} , (V ϕ0)− = −(V ϕ0 − (V ϕ0)+), (2.48)

then we have

|x|−β
1

(

1− |x|η−1
1

)β
ˆ

Ω2(x)

(

V ϕ0

)

±
(y) dy ≤

ˆ

Ω2(x)

(

V ϕ0

)

±
(y)

|x− y|β1
dy (2.49)

and
ˆ

Ω2(x)

(

V ϕ0

)

±
(y)

|x− y|β1
dy ≤ |x|−β

1

(

1 + c|x|η−1
1

)β
ˆ

Ω2(x)

(

V ϕ0

)

±
(y) dy. (2.50)

Since dim(R0) = d(N − 1) we conclude from (2.49) and (2.50) that there exist
functions

h± ∈ Lp(R0), p >
d(N − 1)

d(N − 1)− 2 + 1− η
, (2.51)

such that for sufficiently large |x|1 it holds

ˆ

Ω2(x)

(

V ϕ0

)

±
(y)

|x− y|β1
dy = |x|−β

1

ˆ

Ω2(x)

(V ϕ0(y))± dy + h±(x). (2.52)

Hence, we obtain

I2,2(x) = |x|−β
1

ˆ

Ω2(x)

V (y)ϕ0(y) dy + h(x) as |x|1 → ∞, (2.53)

where h = h+ −h− belongs to Lp(R0) for p given in (2.51). Note that we have

1− η = γ∗

1+γ∗
and β = d(N − 1)− 2. This concludes the proof.
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By combining Propositions 2.5, 2.6 and 2.7 we get

ϕ0(x) =
−|x|−β

1

(β − 2)|Sβ−1|

ˆ

Ω2(x)

V (y)ϕ0(y) dy + g(x) as |x|1 → ∞ (2.54)

with

g ∈ Lp(R0) for
β + 2

β + γ
1+γ

< p <
β + 2

β
. (2.55)

Note that the integral on the r.h.s of (2.54) is over the set Ω2(x), in contrast to
(2.13), where the integral is over the whole space R0. Therefore, to complete
the proof of Theorem 2.1 it remains to show that

|x|−β
1

ˆ

R0\Ω2(x)

V (y)ϕ0(y) dy (2.56)

does not contribute to the leading term in the asymptotic estimate of ϕ0. Due
to Proposition 2.4 it is easy to see that for any γ < γ∗ we have

∣

∣

∣

ˆ

R0\Ω2(x)

V (y)ϕ0(y) dy
∣

∣

∣
≤ C (1 + |x|1)−ηγ

(2.57)

for |x|1 sufficiently large. This implies

|x|−β
1

ˆ

R0\Ω2(x)

V (y)ϕ0(y) dy ∈ Lp(R0) for p >
β + 2

β + γ
1+γ

. (2.58)

Choosing γ < γ∗ sufficiently close to γ∗ and combining (2.54) and (2.58) com-
pletes the proof of the theorem.
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A Proof of Proposition 2.3

The proof of Proposition 2.3 is based on Theorem A.1, which is a special case
of a result of S. Vugalter and the authors of this work, see [3].
Consider the Schrödinger operator

h = −∆+ V, (A.1)
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acting in L2(Rd) with d ≥ 3. Assume that the potential V is relatively form-
bounded with relative bound less than one and denote by

q[ϕ] = ‖∇ϕ‖2 + 〈V ϕ, ϕ〉 (A.2)

the quadratic form of h with form domain H1(Rd).

Theorem A.1. Assume there exist constants γ0, b > 0 and α0 > 1, such that
for any function ϕ ∈ H1(Rd) with supp (ϕ) ⊂ {x ∈ R

d : |x| ≥ b} it holds

q[ϕ]− γ0‖∇ϕ‖2 − α2
0〈|x|−2ϕ, ϕ〉 ≥ 0. (A.3)

If zero is an eigenvalue of h, then a corresponding eigenfunction ϕ0 ∈ H1(Rd)
satisfies

∇(|x|α0ϕ0) ∈ L2(Rd) and (1 + |x|)α0−1 ∈ L2(Rd). (A.4)

Proof. Since ϕ0 is an eigenfunction corresponding to the eigenvalue zero, it
holds

〈∇ϕ0,∇ψ〉+ 〈V ϕ0, ψ〉 = 0 (A.5)

for every function ψ ∈ H1(Rd). For any ε > 0 and R > 0 we define the function

Gε(x) =
|x|α0

1 + ε|x|α0

χR(x), (A.6)

where χR is a C∞ cutoff function satisfying

χR(x) =

{

0, |x| ≤ R

1, |x| ≥ 2R.
(A.7)

By setting ψ = G2
εϕ0 we obtain

〈∇ϕ0,∇
(

G2
εϕ0

)

〉+ 〈V ϕ0, G
2
εϕ0〉 = 0. (A.8)

Note that

Re〈∇ϕ0,∇(G2
εϕ0)〉 = Re〈∇(ϕ0Gε),∇(ϕ0Gε)〉 − Re〈ϕ0∇Gε, ϕ0∇Gε〉. (A.9)

Furthermore, for |x| > 2R we can estimate

|∇Gε| =
α0|x|α0−1

(1 + ε|x|α0)2
≤ α0|x|−1|Gε| (A.10)

and for |x| ∈ [R, 2R] the function |∇Gε| is uniformly bounded in ε. Therefore,
by (A.8) and (A.9) we have

‖∇(ϕ0Gε)‖2 + 〈V Gεϕ0, Gεϕ0〉 − α2
0

ˆ

{|x|>2R}

|Gεϕ0|2
|x|2 dx ≤ C, (A.11)
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where C > 0 does not depend on ε > 0. Since Gεϕ0 is supported outside the
ball with radius R > 0, for any R > b it satisfies (A.3). Hence, we conclude

γ0

2
‖∇(Gεϕ0)‖2 ≤ C. (A.12)

Taking ε→ 0 yields ‖∇ (|x|α0ϕ0) ‖ <∞, which together with Hardy’s inequal-
ity completes the proof.

Proof of Proposition 2.3. The complete proof can be found in [3]. We will only
give a sketch of the proof.
By the assumptions (2.2) and (2.1) on the pair interaction Vij , together with
Theorem A.1, to prove Proposition 2.3 we only need to show that there exist
constants γ0 > 0 and b > 0, such that

(1− γ0)‖∇0ϕ‖2 + 〈V ϕ, ϕ〉 − α2
0‖|x|−1

1 ϕ‖ ≥ 0 (A.13)

holds for any 0 ≤ α0 <
d(N−1)−2

2 and any function ϕ ∈ H1(R0) with
supϕ ⊂ {x ∈ R0 : |x|1 ≥ b}. Inequalities of this type are often used in geomet-
ric methods for many-particle Hamiltonians with short-range potentials, which
usually play an essential role in proving the finiteness of the discrete spectrum,
see for example [16, 19, 17]. In particular, in case γ0 = 0 and 0 ≤ α0 <

1
4

inequality (A.13) is a simpliefied form of the inequality proved in a different
context in the work [17] of S. Vugalter and G. Zhislin, see the proof of Theorem
I on page 56. Following the same approach as in [15] we make a partition of
the unity of the configuartion space R0, corresponding to different breakings
of the system into different clusters. By doing so we can systematically sepa-
rate cones, corresponding to where particles belonging to the same cluster in a
breaking are close to each other and the other clusters are far away. In contrast
to the situation in [17], the assumption (2.6) allows us to compensate the term
−α2

0|x|−1
1 in such cones with a small part of the kinetic energy by applying the

Poincaré-Friedrichs inequality instead of Hardy’s inequality as in [17]. Outside
of all cones, where all particles are far away from each other, using assump-
tion (2.1) on the potentials and Hardy’s inequality yields (A.13). By applying
Theorem A.1 we conclude the proof.
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