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Abstract. We provide a stacky fan description of the total space of
certain split vector bundles, as well as their projectivization, over toric
Deligne-Mumford stacks. We then specialize to the case of Hirzebruch
orbifolds Hab

r obtained by projectivizing O ⊕O(r) over the weighted
projective line P(a, b). Next, we give a combinatorial description of
toric sheaves on Hab

r and investigate their basic properties. With
fixed choice of polarization and a generating sheaf, we describe the
fixed point locus of the moduli scheme of µ-stable torsion free sheaves
of rank 1 and 2 on Hab

r . As an example, we obtain explicit formulas
for generating functions of Euler characteristics of locally free sheaves
of rank 2 on P(1, 2)× P1.
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1 Introduction

There is a nice class of toric vector bundles and projective bundles over toric
varieties. They can be constructed from toric fans and hence are also toric
varieties. This type of bundles has been well studied in [CLS11]. Given a
fan, one can construct the line bundle corresponding to a Cartier divisor by
extending the fan. Consequently, every vector bundle that can be decomposed
into line bundles and its projectivization can be constructed from a fan.

This construction can be naturally generalized to the toric Deligne-Mumford
stacks. Such stacks can be described by a stacky fan as in [BCS05]. In the
first section, we show that certain types of vector bundles can be constructed
from stacky fans. As an application, we first give a general fan description
of the weighted projective stacks. Then we construct projective bundles over
weighted projective lines P(a, b) and describe the Hirzebruch stacks, denoted
by Hab

r . When gcd(a, b) = 1, in which case Hab
r is an orbifold, the stacky fan

can be drawn as below:

x

y

ρ1 = (b, s)

ρ3 = (−a, t)
ρ2 = (0, 1)

ρ4 = (0,−1)

σ1σ2

σ3 σ4

Figure 1

where s, t ∈ Z are chosen so that r = sa + bt. Note that the fiber of the
Hirzebruch surface over P1 is always P1. But this is not true for Hirzebruch
stacks, in which case only the fiber over a non-stacky point is P1.
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Let X be a nonsingular toric variety of dimension d. A. A. Klyachko [Kly90],
M. Perling [Per04] and M. Kool [Koo10] have given a combinatorial description
of T-equivariant coherent sheaves on toric varieties. The idea is that every
toric variety can be covered by affine T-equivariant subvarieties Uσ

∼= Cd,
corresponding to the maximal cones in the fan. Locally, a sheaf is described
by families of vector spaces, called σ-families. Those σ-families agree on the
intersection of cones and satisfy some gluing conditions.
The above idea is generalized to smooth toric Deligne-Mumford stacks first by
A. Gholampour, Y. Jiang and M. Kool in [GJK17]. Such stacks are covered
by open substacks Uσ

∼= [Cd/N(σ)] [BCS05, Proposition 4.1]. Hence locally,
a T-equivariant sheaf corresponds to a module with both X(T)-grading and
X(N(σ))-fine-grading. The local data of such a sheaf consists of families of
vector spaces with fine-gradings, called S-families. To obtain a sheaf globally,
the gluing conditions are imposed. In the case of weighted projective stacks
P(a, b, c), the gluing conditions are given explicitly in [GJK17].
In the second section, we give the gluing conditions for Hirzebruch orbifolds.
To glue the local data for any two substacks Uσi

and Uσi+1 , we pull back the
local data to their stack theoretic intersection. Matching S-families over the
intersection allows us to describe T-equivariant coherent sheaves on Hirzebruch
orbifolds. Then we can study torsion free sheaves and locally free sheaves on
Hab

r and construct the moduli spaces.
In the third section, we investigate some basic properties of Hab

r including
its coarse moduli scheme and modified Hilbert polynomial. From F. Nironi’s
work [Nir08], we know that a modified version of Hilbert polynomial is needed
to define the Gieseker stability for stacks. Let ǫ be the structure morphism
from Hab

r to its coarse moduli scheme H. With fixed polarization L on H and
generating sheaf E on Hab

r , we define the modified Hilbert polynomial for a
sheaf F as

PE(F , T ) = χ(Hab
r ,F ⊗ E∨ ⊗ ǫ∗LT )

and the modified Euler characteristic as

χE(F) = PE(F , 0)

In the last section, we consider the moduli scheme of Gieseker stable and µ-
stable torsion free sheaves of rank 1 and 2 on Hirzebruch orbifolds. Extending
the work of [Koo10], we generalize the characteristic function and match the
GIT stability with Gieseker stability. By lifting the action of the torus T

to the moduli scheme Mµs
PE

[Section 5.1], we can describe explicitly the fixed

point locus (Mµs
PE

)T by the GIT quotient Mµs
~χ with gauge-fixed characteristic

function ~χ similar to [Koo10, Theorem 4.15].
In the case of rank 1, it leads to the counting of partitions, which generalizes
L. Göttsche’s result for nonsingular projective surface in [Göt90]. In the case
of higher rank, we express the relation between generating functions of the
moduli space of µ-stable torsion free and locally free sheaves [Section 5.2], which
generalizes L. Göttsche’s result for Hirzebruch surfaces in [Göt99].
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Theorem 1.1. Suppose gcd(a, b) = 1. Let PE be a choice of modified Hilbert
polynomial of a reflexive sheaf of rank R on Hab

r and χE be the modified Euler
characteristic. Then

∑

χE∈Z

e(MHab
r
(R, c1, χE))q

χE =
∞∏

k=1

∑
χE∈Z e(M

vb
Hab

r
(R, c1, χE))q

χE

(1− q−ak)2R(1− q−bk)2R
.

We compute the generating function Hvb
c1 (q) :=

∑
e(Mvb

Hab
r
(2, c1, χE))q

χE for

locally free sheaves over Hirzebruch orbifolds Hab
r with fixed generating sheaf E

and polarization L given in [Section 4.4]. Especially when r = 0, we obtain an
expression for the orbifold P(a, b)×P1, which is parallel to M. Kool’s result for
P1 × P1 [Koo10, Corollary 2.3.4].

Theorem 1.2. Suppose gcd(a, b) = 1. Let f = (n2 + 1)(m + C) where C =
a+ b+ ab− 1. Let p = gcd(b, r) = b and q = gcd(a, r) = a as r = 0. Then for
fixed first Chern class c1(F) = m

a x + ny where c1(Dρ1) = x, c1(Dρ2) = y, Dρi

is the divisor corresponding to the ray ρi, the generating function Hvb
c1 (q) for

the orbifold P(a, b)× P1 is

(
−
∑

C1

+
∑

C4

+
∑

C5

+2
∑

C6

)
qf−

1
2 ji +

(
2
∑

C2

+2
∑

C3

)
qf−

1
4 ij+

1
4 jk−

1
4 kl−

1
4 li

where

C1 = {(i, j, k, l) ∈ Z4 : 2 | m+ i, 2 | n+ j, 2 | j − l, 2b | i− k, 2a | i+ k, i = pqj,

− j < l < j,−pqj < k < pqj},

C2 = {(i, j, k, l) ∈ Z4 : 2 | m+ i, 2 | n+ j, 2 | j − l, 2b | i− k, 2a | i+ k,

− i < k < pql < i,−pqj < k, l < j},

C3 = {(i, j, k, l) ∈ Z4 : 2 | m+ i, 2 | n+ j, 2 | j − l, 2a | i− k, 2b | i+ k,

− i < k < pql < i,−pqj < k, l < j},

C4 = {(i, j, k) ∈ Z3 : 2 | m+ i, 2 | n+ j, 2 | j + k, b | i,−
i

pq
< k <

i

pq
< j},

C5 = {(i, j, k) ∈ Z3 : 2 | m+ i, 2 | n+ j, 2 | j + k, a | i,−
i

pq
< k <

i

pq
< j},

C6 = {(i, j, k) ∈ Z3 : 2 | m+ i, 2 | n+ j, 2a | i+ k, 2b | i− k,

− pqj < k < pqj < i}.

Moreover, in the case of a = 1, b = 2, we can get more explicit expressions
[Proposition 5.12].

Remark 1.3. In the case where gcd(a, b) = d 6= 1, our method still works,
but we need to make the following modifications. Firstly, the inertia stack
IHab

r will have more than one 2-dimensional components, which will cause a
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slight change in the modified Euler characteristic. Secondly, the stacky fan in
Figure 1 is changed and b, −a are replaced by b

d and −a
d (1.3.2). Hence we

need to set p = gcd( bd , r) and q = gcd(ad , r).

Acknowledgement

The author would like to thank his advisor, Dr. Amin Gholampour, for his
encouragement and invaluable guidance throughout this research.

2 Toric stacks

In this section, we will briefly review various definitions of stacky fans and their
associated toric Deligne-Mumford stacks. Toric stacks were first introduced in
[BCS05] and later in [FMN10]. The theory was further generalized in [GS15]
which encompasses all the notions of toric stacks before. In this paper, we will
refer to [BCS05] the notation of toric stacks most of the time, but use [GS15]
when constructing the vector bundles.

Definition 2.1. A stacky fan [BCS05] is a triple (N,Σ, β : Zn → N) where

• N is a finitely generated abelian group of rank d, not necessarily free.

• Σ is a rational simplicial fan in NQ := N ⊗Z Q with n rays, denoted by
ρ1, ..., ρn.

• β : Zn → N is a homomorphism with finite cokernel such that β(ei)⊗1 ∈
NQ is on the ray ρi for 1 ≤ i ≤ n.

Given a stacky fan, the way to construct its corresponding toric stack [ZΣ/Gβ ]
is as follows:
The variety ZΣ is defined as Cn − V (JΣ) where JΣ = 〈

∏
ρi 6⊂σ zi |σ ∈ Σ〉 is

a reduced monomial ideal. Suppose N is of rank d, then there exists a free

resolution 0 → Zr Q
−→ Zd+r → N → 0 of N . Let the matrix B : Zn →

Zd+r be a lift of the map β : Zn → N . Define the dual group DG(β) =
(Zn+r)⋆/Im([BQ]⋆), where (−)⋆ is the dual HomZ(−,Z). Let β∨ : (Zn)⋆ →
DG(β) be the composition of the inclusion map (Zn)⋆ → (Zn+r)⋆ and the
quotient map (Zn+r)⋆ → DG(β). By applying the functor HomZ(−,C∗) to β∨,
we get a homomorphism Gβ := HomZ(DG(β),C

∗) → (C∗)n which leaves ZΣ

invariant.
The quotient stack [ZΣ/Gβ ] is called the toric Deligne-Mumford stack associ-
ated to the stacky fan Σ.

Definition 2.2. A (non-strict) stacky fan [GS15] is a pair (Σ, β : L → N),
where Σ is a fan on the lattice L and N is a finitely generated abelian group.

Remark 2.3. Since the fan is defined on L instead of N , we are allowed to
assume that β is of not finite cokernel. Interested readers can read [GS15] for
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more details. In our paper, we will only consider β with the finite cokernel, in
which case the construction of Gβ in [GS15] essentially agrees with [BCS05].

Remark 2.4. The stacky fan defined in Definition 2.1 is a special case of
Definition 2.2. When N is free, the toric stack arising from such a stacky
fan is called a fantastack in [GS15]. When N is not free, the toric stack can be
realized as a closed substack of a fantastack, called the non-strict fantastack.

Let β : L = Zn → N = Zd be a homomorphism with the finite cokernel as in
Definition 2.1. Given a cone σ ∈ Σ in N , set σ̂ = cone ({ei|ρi ∈ σ}) where

{ei}ni=1 is the standard basis for L. Define Σ̂ in L as the fan generated by
all the cones σ̂. Then the stack defined by a triple (N,Σ, β : L → N) [GS15]

is same as the stack defined by a pair (Σ̂, β : L → N) [GS15]. Conversely,

if the rays of Σ̂ in L are ei, the image of Σ̂ under β is a stacky fan Σ in N .
Since these two definitions agree in the case of the fantastack, we will use them
interchangeably when constructing vector bundles.

2.1 Weighted Projective Stack

Let w1, w2, ..., wn+1 ∈ Z>0. The weighted projective stack P(w1, ..., wn+1) is
the quotient stack [Cn+1 − {0}/C∗] where µ ∈ C∗ acts by µ(x1, ..., xn+1) =
(µw1x1, ..., µ

wn+1xn+1). We will give a general description of the stacky fan for
the weighted projective stack. Firstly, we assume gcd(w1, ..., wn+1) = 1, which
means P(w1, ..., wn+1) is an orbifold and the lattice N is free.

Proposition 2.5. Let gcd(wi, ..., wn+1) = λi for 1 ≤ i ≤ n. Suppose λ1 = 1.
Define the map β : Zn+1 → Zn by the following n× (n+ 1) matrix B:




λ2
λ1

b12 · · · b1,i−1 b1i b1,i+1 · · · b1,n−1 b1n b1,n+1

...
. . .

...

0 0 · · ·
λi
λi−1

bi−1,i bi−1,i+1 · · · bi−1,n−1 bi−1,n bi−1,n+1

...
. . .

...

0 0 · · · 0 0 0 · · ·
λn
λn−1

bn−1,n bn−1,n+1

0 0 · · · 0 0 0 · · · 0
wn+1

λn
−
wn

λn




where bij are chosen so that

λi+1

λi
wi +

n+1∑

j=i+1

bijwj = 0 for 1 ≤ i ≤ n− 1, (1.1.1)

0 ≤ b1i, b2i, · · · , bii <
λi+1

λi
for 2 ≤ i ≤ n− 1.
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Each column represents a ray in the fan Σ. The maximal cones of the fan are
given by any n rays. Then the triple (Zn,Σ, β) corresponds to the weighted
projective orbifold P(w1, ..., wn+1).

Note that the choice is not unique.

Proof. The triple induces P(w1, ..., wn+1) if the following two statements are
true:

• DG(β) = Z.

• β∨ : Zn+1 → Z is given by
[
w1 w2 ... wn+1

]
.

If DG(β) = Zn+1/Im(B⋆) ∼= Z, then
[
w1 w2 ... wn+1

]
spans the integer

null space of the matrix B because bij are chosen to satisfy (1.1.1). Let Bi

denote the minor of B by removing the ith column. If we can show that

gcd(det(B1), ..., det(Bn+1)) = 1, then there exists a matrix

[
b

B

]
with determi-

nant 1. Hence Zn+1/Im(B⋆) = Z.

When i = n, n + 1, we obtain two diagonal matrices and det(Bn+1) =
wn+1, det(Bn) = −wn. For 1 ≤ i ≤ n − 1, we compute by induction that
det(Bi) = (−1)n+1−iwi. Denote by

Ci =




bi,i+1 · · · bi,n−1 bi,n bi,n+1

λi+2

λi+1
· · · bi+1,n−1 bi+1,n bi+1,n+1

. . .
...

0 · · ·
λn
λn−1

bn−1,n bn−1,n+1

0 · · · 0
wn+1

λn
−
wn

λn




the bottom-right (n − i + 1) × (n − i + 1) submatrix of B, then det(Bi) =
λi · det(Ci).

For i = n − 1, because gcd(wn, wn+1) = λn and λn−1|wn−1, integers bn−1,n

and bn−1,n+1 can be chosen so that

det(Cn−1) = −bn−1,n
wn

λn
− bn−1,n+1

wn+1

λn
=
wn−1

λn−1
.

Suppose integers bi,i+1, ..., bi,n+1 are chosen so that

det(Ci) = (−1)n−i
n+1∑

j=i+1

bi,j
wj

λi+1
= (−1)n+1−iwi

λi
,
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then we can expand the matrix Ci−1 by the first column and get

det(Ci−1) = bi−1,i det(Ci)−
λi+1

λi
det(C′

i)

= (−1)n+1−ibi−1,i
wi

λi
− (−1)n−iλi+1

λi

n+1∑

j=i+1

bi−1,j
wj

λi+1

= (−1)n−iwi−1

λi−1
,

where C′
i is the submatrix of Ci−1 by removing the first column and the second

row.

Now we get det(Bi) = (−1)n−iwi and gcd(det(B1), ..., det(Bn+1)) = 1.

If bji ≥
λi+1

λi
or bji < 0, then we can left multiply an elementary matrix and

the integer null space will be unchanged.

Example 2.6. Consider the stack P(1, 2, 4, 8). Since gcd(2, 4, 8) = 2,
gcd(4, 8) = 4, the matrix for β : Z4 → Z3 will be



2 a b c
0 2 d e
0 0 2 −1




such that 4 + 4d + 8e = 0, 2 + 2a+ 4b + 8c = 0. One of the solutions for this
system is as follows: 


2 1 1 −1
0 2 1 −1
0 0 2 −1


 .

When λ1 6= 1, the lattice N is not free and can be identified as Zn ⊕ Z/λ1Z.
In this case, P(w1, ..., wn+1) is a µλ1 -banded gerbe over P(w1

λ1
, ..., wn+1

λ1
), which

is isomorphic to the root stack λ1

√
O

P(
w1
λ1

,...,
wn+1

λ1
)(1)/P(

w1

λ1
, ..., wn+1

λ1
).

Proposition 2.7. Choose c1, ..., cn+1 so that
∑n+1

i=1 ci
wi

λ1
≡ 1 mod λ1. Set

c = ([c1], ..., [cn+1]) where [ci] is the class of ci modulo λ1. Let B′ the matrix
corresponding to P(w1

λ1
, ..., wn+1

λ1
) as in Proposition 2.5. Define the map β :

Zn+1 → Zn ⊕ Z/λ1Z by B =

[
B′

c

]
. Then the triple (Zn,Σ, β) corresponds to

the weighted projective stack P(w1, ..., wn+1).

Proof. The [BQ] matrix as in [BCS05] is given by

[
B′

0

c λ1

]
. Since

∑n+1
i=1 ci

wi

λ1
≡ 1 mod λ1, the vector

[
w1 w2 · · · wn+1 ∗

]
spans the in-

teger null space of the matrix [BQ].
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2.2 Vector Bundles

In [CLS11], it mentions a class of toric morphisms that have a nice local struc-
ture. This can be naturally generalized to the morphisms of fantastacks.
Let N1, N2 be free abelian groups. Denote the bases of Zn1 and Zn2 by
{e1, ..., en1} and {en1+1, ..., en1+n2}. By abuse of notation, we also assume the
basis of Zn1+n2 is {e1, ..., en1 , en1+1, ..., en1+n2}. Consider the exact sequence
of the fantastacks given by a commutative diagram

0 Zn1 Zn1 ⊕ Zn2 Zn2 0

0 N1 N1 ⊕N2 N2 0

(Id,0)

β1

pr2

β β2

f pr2

g

(1.2.1)

such that the rows are exact and the column morphisms are of the finite cok-
ernel. Suppose there exists a splitting morphism g satisfying the following
conditions:

1. A is a rkN1 × rkN2 integer matrix such that

β(ei) =





f(β1(ei)) =

[
β1(ei)

0

]
if 1 ≤ i ≤ n1

g(β2(ei)) =

[
Aβ2(ei)
β2(ei)

]
if n1 + 1 ≤ i ≤ n1 + n2.

2. Given cones σ1 ∈ Σ1 and σ2 ∈ Σ2, the sum σ1 + σ2 lies in Σ, and every
cone of Σ arises this way.

Then we say (Σ, β : Zn1+n2 → N1⊕N2) is globally split by (Σ1, β1 : Zn1 → N1)
and (Σ2, β2 : Zn2 → N2).

Theorem 2.8. If (Σ, β : Zn1+n2 → N1⊕N2) is globally split by (Σ1, β1 : Zn1 →
N1) and (Σ2, β2 : Zn2 → N2), then XΣ,β

∼= XΣ1,β1 ×XΣ2,β2 .

Proof. Denote the matrices for β1 and β2 by

B1 =
[
β1(e1) β1(e2) · · · β1(en1)

]
,

B2 =
[
β2(en1+1) β2(en1+2) · · · β2(en1+n2)

]
.

The matrix for β is given by B =

[
B1 AB2

0 B2

]
. It is not hard to show that

DG(β) ∼= DG(β1) ⊕DG(β2) and β∨ ∼= β∨
1 ⊕ β∨

2 , which implies α ∼= α1 × α2,
where α, α1 and α2 are obtained by applying HomZ(−,C∗) to β∨, β∨

1 , β
∨
2 .

It remains to show ZΣ = ZΣ1 ×ZΣ2 . The C-valued points of ZΣ are z ∈ Cn1+n2

such that the cone generated by the set {ρi : zi = 0}, where ρi is the cone
generated by bi in NQ, belongs to Σ. Since every cone of Σ is the sum of cones
in Σ1 and Σ2, the C-valued points of ZΣ are exactly the product of C-valued
points of ZΣ1 and ZΣ2 .
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Example 2.9. Consider the following exact sequence of fantastacks

1
(0, 1)

(1, 0) 1

0 Z1 Z2 Z1 0

0 Z1 Z2 Z1 0.

1


1 2

0 2


 2

It can be shown that XΣ,β = [C2/µ2] ∼= C× [C/µ2] = XΣ1,β1 ×XΣ2,β2 .

Remark 2.10. The above exact sequence of fantastacks can be better under-
stood if we draw the corresponding stacky fans defined in [BCS05]. The mor-
phism from the middle stacky fan to the right can be viewed as the projection
of rays from the lattice Z2 to Z,

(0, 1)
(2, 2)

projection
−−−−−−→

2

which is compatible with XΣ,β → XΣ2,β2 induced from the projection onto the
second coordinate.

Remark 2.11. The morphism of stacky fans below corresponds to a morphism
of stacks XΣ,β → [C1/µ2]. Indeed, XΣ,β is a line bundle over [C1/µ2] whose
fiber over the stacky point corresponds to the non-trivial representation of µ2.
Hence the stacky fan of XΣ,β is not globally split.

(0, 1) (2, 1)
projection
−−−−−−→

2

With the above theorem and examples in mind, we can generalize [CLS11,
Definition 3.3.18].

Definition 2.12. Given an exact sequence like (1.2.1), we say (Σ, β : Zn1+n2 →
N1 ⊕ N2) is (locally) split by (Σ1, β1 : Zn1 → N1) and (Σ2, β2 : Zn2 → N2) if
there exists a morphism g : N2 → N1⊕N2 satisfying the following conditions:

1. For every maximal cone σj ∈ Σ2, there exists an rkN1 × rkN2 integer
matrix Aj such that

β(ei) =





f(β1(ei)) =

[
β1(ei)

0

]
if 1 ≤ i ≤ n1

g(β2(ei)) =

[
Ajβ2(ei)
β2(ei)

]
if ei ∈ σj .

2. Given cones σ1 ∈ Σ1 and σ2 ∈ Σ2, the sum σ1 + σ2 lies in Σ, and every
cone of Σ arises this way.
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Remark 2.13. The map g here essentially gives the bijection σ′ → σ̂ for the
case of toric varieties in [CLS11, Definition 3.3.18].

Theorem 2.14. If (Σ, β : Zn1+n2 → N1 ⊕ N2) is (locally) split by (Σ1, β1 :
Zn1 → N1) and (Σ2, β2 : Zn2 → N2), then φ : XΣ,β → XΣ2,β2 is a locally trivial
fiber bundle with fiber XΣ1,β1 , i.e., XΣ2,β2 has a cover by affine open substacks
U satisfying φ−1(U) ∼= XΣ1,β1 × U .

Proof. The proof is similar to that of [CLS11, Theorem 3.3.19].

Therefore, if the stacky fan of a vector bundle is locally split, then for every
stacky point of the base, the representation of the stabilizer group at that point
on the fiber is trivial.
Note that the above theorem can be generalized to the case where N1 and N2

are not free.

Example 2.15. Consider the following morphism of stacky fans:

(1, 1)
(0, 1)(−2, 2)

projection
−−−−−−→

−2 1

The induced morphism φ : XΣ,β → P(2, 1) corresponds to a line bundle such
that its fan is locally split. But it cannot be written globally as the product
of one-dimensional toric stacks. Indeed, it represents OP(2,1)(−4) by the next
theorem.

For a vector bundle over a stack, the fiber over a stacky point might correspond
to a non-trivial representation of the stabilizer group. In this case, the corre-
sponding stacky fan is not locally split. To include this type of stacky vector
bundles, we generalize [CLS11, Sec. 7.3] to the case of toric stacks.
Let’s assume N is free. Given a triple (N,Σ, β : Zn → N), we define the new

stacky fan (N × Z, Σ̃, β̃ : Zn+1 → N × Z) as follows:

1. β̃(ei) = (β(ei),−ai) for 1 ≤ i ≤ n.

2. β̃(en+1) = (0, 1).

3. Given σ ∈ Σ, set σ̃ = Cone
(
(0, 1), β̃(ei)⊗ 1 |β(ei)⊗ 1 ∈ σ(1)

)
∈ NQ ×

Q, and let Σ̃ be the set consisting of σ̃ for all σ ∈ Σ and their faces.

The natural projection Zn+1 → Zn is compatible with Σ̃ and Σ. Therefore it
gives a toric morphism π : XΣ̃,β̃ → XΣ,β .

Theorem 2.16. Denote by Dρi
the divisor corresponding to the ray ρi. Then

π : XΣ̃,β̃ → XΣ,β is a line bundle whose sheaf of sections is

OXΣ,β
(D) = OXΣ,β

(
∑

i

aiDρi
).
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Recall that the category of locally free sheaves on [Z/G] is equivalent to that
of G-linearized locally free sheaves on Z. Without considering the equivariant
structure, these G-linearized invertible sheaves are all isomorphic to the trivial
sheaf OZ . By the construction of a toric stack, G can be thought of as a
subgroup of (C∗)n. Each g = (λ1, ..., λn) ∈ G induces an isomorphism OZ →
g∗OZ sending 1 to λi. The sheaf OΣ,β(Dρi

) has a G-invariant global section zi
such that g∗zi = λizi. [BH06]

Proof of Theorem 1.17. We will use the definition of stacky fan from [GS15].
Given a triple (N,Σ, β : Zn → N), we can construct the corresponding

fan Σ̂ in Zn, which corresponds to a toric variety ZΣ̂. Then by [CLS11],

we can construct a new fan Σ̂′ ∈ Qn × Q. Given σ̂ ∈ Σ̂, set σ̂′ =
Cone ((0, 1), (ei,−ai)|ei ∈ σ̂) and let Σ̂′ be the set consisting of cones σ̂′ for

all σ̂ ∈ Σ̂ and their faces. By [CLS11, Proposition 7.3.1], π : ZΣ̂′ → ZΣ̂ is a
line bundle whose sheaf of sections is OZΣ̂

(
∑

i aiDei) where Dei is the divisor

corresponding to the ray generated by ei in Σ̂.
It suffices to show that the Gβ-linearizion of this bundle exists and the action

of Gβ on ZΣ can be lifted . Define β̂′ : Zn × Z → N × Z by the following
matrices [

β(e1) · · · β(en) 0

0 · · · 0 1

]
.

Then Gβ̂′
∼= Gβ and its action on the line bundle is compatible with the action

of Gβ on ZΣ. The toric stack XΣ̂′,β̂′ defined by the stacky fan (Σ̂′, β̂′ : Zn×Z →

N × Z) induces the above line bundle.

However, the rays of Σ̂′ do not form a standard basis. Hence XΣ̂′,β̂′ is not a
fantastack and it is not a stacky fan defined in Definition 2.1.
Consider the morphism of stacky fans given by the following commutative
diagram:

Σ̃ Σ̂′

Zn × Z Zn × Z

N × Z N × Z

α

β̃:=β̂′◦α β̂′

∼=

where α is defined by the matrix
[

In 0

−a1 −a2 · · · −an 1

]

and In is the n × n identity matrix. Let σ̃ = Cone
(
ei|α(ei) ∈ Σ̂′

)
. The

morphism satisfies the conditions mentioned in [GS15, Theorem B.3]. Thus

XΣ̃,β̃ → XΣ̂′,β̂′ is an isomorphism and XΣ̃,β̃ is a fantastack. The matrix of β̃ is
given by [

β(e1) · · · β(en) 0

−a1 · · · −an 1

]
.
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Example 2.17. Consider the morphism of stacky fans as follows:

(1, 1)

(0, 1)

(−2, 1) projection
−−−−−−→

−2 1

Then φ : XΣ,β → P(2, 1) is a line bundle whose sheaf of sections is OP(2,1)(−3)
and its fan is not locally split.

Again this theorem can be generalized to the case where N is not free.

2.3 Projective Bundles

Consider the locally free sheave E = OXΣ,β
(D0) ⊕ · · · ⊕ OXΣ,β

(Dr) given by
the cartier divisors Di =

∑n
j=1 aijDρj

for 0 ≤ i ≤ r, then P(E) → XΣ,β is a
projective bundle.
Assume N is free. Given a triple (N,Σ, β : Zn → N), we define the new stacky

fan (N × Zr, Σ̃, β̃ : Zn+r+1 → N × Zr) as follows:

1. β̃(ej) = (β(ej), a1j − a0j , · · · , arj − a0j) for 1 ≤ j ≤ n.

2. β̃(en+1+i) = (0, ei) ∈ N×Zr for 0 ≤ i ≤ r, where e0 = −e1−...−er ∈ Zr.

3. Given σ ∈ Σ, set σ̃i = Cone
(
β̃(ej)⊗ 1|β(ej)⊗ 1 ∈ σ(1)

)
+

Cone ((0, e0), ..., (0, ei−1), (0, ei+1), ..., (0, er)) and let Σ̃ be the set
consisting of cones σ̃i for all σ ∈ Σ, 1 ≤ i ≤ r and their faces.

Then the natural projection of the fan Σ̃ induces a toric morphism π : XΣ̃,β̃ →
XΣ,β .

Theorem 2.18. XΣ̃,β̃ is the projective bundle P(E).

Proof. The proof is similar to that of [CLS11, Theorem 7.3.3].

Suppose gcd(a, b) = 1, then by Propostion 2.5, the fan of P(a, b) is given by
β(e1) = b and β(e2) = −a . Suppose r = sa+ tb, then consider

E = OP(a,b) ⊕OP(a,b)(sDe1 + tDe2)

where Dei is the divisor corresponding to the ray generated by β(ei). Hence

β̃ : Z4 → Z2 is given by

β̃(e1) = (b, s), β̃(e2) = (−a, t),

β̃(e3) = (0,−1), β̃(e4) = (0, 1).
(1.3.1)

If gcd(a, b) = d 6= 1 and c1
a
d + c2

b
d ≡ 1 mod d, then by Proposition 2.7, the

fan of P(a, b) is given by β′ : Z2 → Z⊕ Z/dZ such that

β′(e1) = (
b

d
, c1 mod d), β′(e2) = (−

a

d
, c2 mod d).
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x

y

ρ1 = (b, s)

ρ3 = (−a, t)
ρ2 = (0, 1)

ρ4 = (0,−1)

σ1σ2

σ3 σ4

Figure 2

Suppose d | r and r = sa + tb, then for E = OP(a,b) ⊕ OP(a,b)(sDe1 + tDe2),

β̃ : Z4 → Z2 ⊕ Z/dZ is given by

β̃(e1) = (
b

d
, s, c1 mod d), β̃(e2) = (−

a

d
, t, c2 mod d),

β̃(e3) = (0,−1, 0), β̃(e4) = (0, 1, 0).
(1.3.2)

Definition 2.19. The Hirzebruch stack Hab
r is defined as

Hab
r = P(OP(a,b) ⊕OP(a,b)(r))

and its fan is given by (1.3.1) when gcd(a, b) = 1 and by (1.3.2) when gcd(a, b) =
d 6= 1.

From now on, to simplify the notation, we assume gcd(a, b) = 11. In this case,
the matrix for β : Z4 → Z2 is given by

B =

[
b 0 −a 0
s 1 t −1

]
(1.3.3)

where r = sa + bt. The stacky fan can be drawn as in Figure 2 and Hab
r is

called the Hirzebruch orbifold.

3 Sheaves on Hirzebruch Orbifolds

The Hirzebruch orbifold can be covered by open substacks of the form [C2/H ]
where H is a finite abelian group and the actions of H and the torus T ∼= (C∗)2

commute. Hence, to describe a T-equivariant sheaf on the Hirzebruch Orbifold,
we define it locally over each substack and then glue each part together.
Let the character group X(T) ∼= Z2 be written additively and mi be the basis
dual to the generators of rays of ρi. For m ∈ X(T), we denote by χ(m) : T →
C∗ the actual character viewed as a function.

1Our method still works without this assumption.
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LetT act linearly on C2. The action is given by t·xi = χ(mi)(t)(xi). Given aT-
equivariant sheaf F on [C2/H ], the corresponding module can be decomposed
into X(T)-graded weight spaces:

H0(C2,F) =
⊕

m∈X(T)

F (m).

Suppose H acts by h ·xi = χ(ni)(h)(xi), then F (m) can be further decomposed
into X(H)-graded weight spaces:

F (m) =
⊕

n∈X(H)

F (m)n.

Hence the category of T-equivariant sheaves on [C2/H ], by [GJK17], is equiv-
alent to the category of stacky S-families. A object F̂ in this category consists
of the following data:

• A collection of vector spaces {F (m)n}m∈X(T),n∈X(H).

• A collection of linear maps

{χi(m) : F (m) → F (m+mi)}i=1,2,m∈X(T).

induced by multiplication by xi satisfying

χi(m) : F (m)n → F (m+mi)n+ni
, χj(m+mi)·χi(m) = χi(m+mj)·χj(m)

for i, j = 1, 2, m ∈ X(T) and n ∈ X(H).

3.1 Open Affine Covers

Let Nσi
be the subgroup of N ∼= Z2 generated by the rays of σi and N(σi) be

the quotient group N/Nσi
. By [BCS05], each 2-dimensional cone σi defines an

open substack Ui
∼= [C2/N(σi)]. One can show that

U1
∼= U4

∼= [C2/(Z/bZ)], U2
∼= U3

∼= [C2/(Z/aZ)]

and they form an open cover of Hab
r .

The integer null space of the matrix B (1.3.3) is spanned by
[
a 0 b r

]
and[

0 1 0 1
]
. Hence (τ, λ) ∈ Gβ

∼= (C∗)2 acts on ZΣ = Spec C[x, y, z, w] −
V (xy, yz, zw,wx) by

(τ, λ) : (x, y, z, w) → (τax, λy, τbz, τrλw)

and Hab
r = [ZΣ/Gβ].

Let β1 be the morphism given by the first two columns of the matrix B. It
induces a stacky fan with two rays and the corresponding toric stack [Z1/G1]
is exactly [C2/(Z/bZ)]. Consider the open subvariety U1 of ZΣ defined as the
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complement of the vanishing locus of the monomial zw. There is a natural
closed embedding φ1 : Z1 → U1 given by

φ1(Z1) = C2 × 1 = {(x, y, 1, 1)} ∈ C2 × (C∗)2 ∼= U1.

By [BCS05], an element g ∈ Gβ belongs to G1 if and only if φ1(Z1) · g ∩
φ1(Z1) 6= ∅. In this case,

τb = 1, τrλ = 1 =⇒ λ = τ−r.

Let µb be the group of bth roots of unity, then

U1
∼= [C2/µb], τ ∈ µb : (x, y) → (τax, τ−ry).

Similarly, one can show that

U2
∼= [C2/µa], τ ∈ µa : (y, z) → (τ−ry, τbz),

U3
∼= [C2/µa], τ ∈ µa : (z, w) → (τbz, τrw),

U4
∼= [C2/µb], τ ∈ µb : (w, x) → (τrw, τax).

Consider the morphism φ̃i : Ui →֒ Hab
r induced by Zi

φi
−→ Ui →֒ ZΣ. We can

compute stack theoretic intersections via the fiber product of Ui and Uj over
Hab

r .

U12 := U1 ×Hab
r

U2 [spec C[x, y]/µb]

[spec C[y, z]/µa] Hab
r

φ̃1

φ̃2

By calculating the fiber product of the corresponding groupoids [ALR07], one
can show that

U12
∼= [C× C∗/µb × µa], (µ, ν) ∈ µb × µa : (y, τ) → (µ−ry, νµ−1τ).

Similarly, the fiber products of other open substacks are given as follows:

U23
∼= [C×C∗×µa/µa×µa], (µ, ν) ∈ µa×µa : (z, λ, τ)→ (µbz, µrλ, νµ−1τ).

U34
∼= [C× C∗/µa×µb], (µ, ν) ∈ µa×µb : (w, τ) → (µrw, νµ−1τ).

U41
∼= [C×C∗×µb/µb×µb], (µ, ν) ∈ µb×µb : (x, λ, τ)→ (µax, ν−rλ, νµ−1τ).

Actually U23 can be further simplified. Consider the groupoid morphism

(ψ1×ψ0, ψ0) : (µa×C×C∗
→→C×C∗) −→ (µa×µa×C×C∗×µa →→C×C∗×µa)

defined by
ψ1(µ) = (µ, µ), ψ0(z, λ) = (z, λ, 1).

One can show that it is a Morita equivalence and hence

U23
∼= [C× C∗/µa], µ ∈ µa : (z, λ) → (µbz, µrλ).
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Similarly,

U41
∼= [C× C∗/µb], µ ∈ µb : (x, λ) → (µax, µ−rλ).

The open immersions φ̃ij : Uij = [Zij/Gij ] →֒ Ui = [Zi/Gi] and φ̃ji : Uij →֒ Uj

are induced from φij : Zij → Zi and φji : Zji = Zij → Zj .

φ12 : (y, τ) → (τ−a, y) φ21 : (y, τ) → (yτ−r, τb).
φ23 : (z, λ) → (λ−1, z) φ32 : (z, λ) → (z, λ).
φ34 : (w, τ) → (τ−b, w) φ43 : (w, τ) → (τrw, τa).
φ41 : (x, λ) → (λ−1, x) φ14 : (x, λ) → (x, λ).

To find X(T )-grading on each open substack Ui, we need to determine how the
torus T is embedded in Hab

r . One can show that

U1234 := U12 ×Hab
r

U34
∼= [(C∗)2/µb × µa]

(µ, µ′) ∈ µb × µa : (α, β) → (µ(µ′)−1α, µ−rβ).

Hence if gcd(a, b) = 1, then U1234
∼= (C∗)2. Suppose (C∗)2 acts on itself by

multiplication, then we can extend this action to the orbifold Hab
r by requiring

all the open immersions to be T-equivariant.
For example, from the following commutative diagram

Z1234 Z12
∼= C× C∗ Z1 = spec C[x, y] Z2 = spec C[y, z]

(α, β) (β, α−1) (αa, β) (βαr , α−b)

(t1α, t2β) (t2β, t
−1
1 α−1) (ta1α

a, t2y) (t2βt
r
1α

r , t−b
1 α−b)

(0,1)(1,0) (−1,0)(0,1) (0,1)(a,0) (−b,0)(r,1)

we see that T-weights are (0, 1) and (−1, 0) on Z12, (a, 0) and (0, 1) on Z1,
(r, 1) and (−b, 0) on Z2.
Similarly, one can show that T-weights are given by the following tables:

T-weights on Zi

U1 (a, 0), (0, 1)
U2 (r, 1), (−b, 0)
U3 (−b, 0), (−r,−1)
U4 (0,−1), (a, 0)

T-weights on Zij

U12 (0, 1), (−1, 0)
U23 (−b, 0), (−r,−1)
U34 (−r,−1), (1, 0)
U41 (a, 0), (0, 1)

3.2 Gluing Conditions

To describe T-equivariant torsion free sheaves on Hab
r , we first determine the

stacky S-family F̂i of the sheaf Fi on each open Ui. Then we pull back those
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families to the intersection Uij and match them for all i, j. This allows us to
glue those sheaves Fi to get a sheaf F on Hab

r . Note that this gluing approach
follows closely the work of [GJK17].
Let’s first compute the family F̂1,12, which is the pullback of F̂1.
Given a torus action t · xi = χ(mi)(t)(xi), the associated box BT [GJK17] is
defined as the subset of X(T) of elements of the form

∑
i qimi with 0 ≤ qi < 1.

By the above table, the T-weights on U1 are (a, 0) and (0, 1). Hence q1 = k
a

for 0 ≤ k ≤ a− 1 and q2 = 0. Note that the box BT of U1 can also be viewed
as [0, a− 1]× 0 and the size of this box is a.
For the stacky S-family F̂1, denote by

(k/a,0)F1(l1, l2)

the vector space whose T-weight is (k/a+ l1)(a, 0) + (0 + l2)(0, 1).
Consider the inclusion U12 →֒ U1 induced from

C× C∗ → C2, φ12 : (y, τ) → (τ−a, y) = (x, y).

We first restrict the sheaf F1 to Im(φ12) ∼= C∗ ×C and then pull it back along
the morphism φ12.
The sheaf F is torsion free, hence the vector spaces (k/a,0)F1(l1, l2) stabilize for
l1 ≫ 0, l2 fixed. It means that they are isomorphic for l1 ≫ 0 [Koo11]. We
denote this limit by

(k/a,0)F1(∞, l2).

The sheaf F1|C∗×C corresponds to a S-family Ĝ1 and

(k/a,0)G(l1, l2) = (k/a,0)F1(∞, l2)

is independent of l1 because G1 is a C[x±, y]-module and multiplication by x
induces an isomorphism of vector spaces.
Pulling back the family Ĝ1 to Z12 along the étale morphism φ12, we get a
C[τ±, y]-module. An element of F̂1,12 at the weight (k/a+l1)(a, 0)+(0+l2)(0, 1)
can be uniquely written as ⊕

0≤k′≤a−1

vk′ ⊗ τk
′−k

where vk′ ∈ (k′/a,0)G1(l1, l2), since the T-weight of τ is (−1, 0) on U12.
Next, we set the fine-grading on the limit space (k/a,0)F1(∞, l2) by

(k/a,0)F1(∞, l2)m = (k/a,0)G1(0, l2)m.

Thus the fine-grading of S-family Ĝ1 for any l1 will be

(k/a,0)G1(l1, l2)m = (k/a,0)G1(0, l2)m−al1 ⊗ µ̂al1
b .

Here ⊗µ̂b means tensoring with the 1-dimensional representation of the group
µb of weight 1 ∈ Z/bZ.
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Since the µb × µa-weight of τ is (−1, 1) on U12, the S-family of F̂1,12 at the
T-weight (k/a+ l1)(a, 0) + (0 + l2)(0, 1) with the fine grading is

⊕

0≤k′≤a−1
m∈Z/bZ

(k′/a,0)G1(l1, l2)m ⊗ µ̂k−k′

b ⊗ µ̂k′−k
a

=
⊕

0≤k′≤a−1
m∈Z/bZ

(k′/a,0)F1(∞, l2)m ⊗ µ̂k−k′+al1
b ⊗ µ̂k′−k

a .

Similarly, one can show that the S-family of F̂2,12 at the T-weight
(0 + l1)(r,−r) + (j/b+ l2)(−b, 0) is

⊕

0≤j′≤b−1
n∈Z/aZ

(0,j′/b)F2(l1,∞)n ⊗ µ̂j−j′

a ⊗ µ̂j′−j+bl2
b .

Since multiplication by τ is an isomorphism, the S-family F̂1,12 is determined
by its elements at the weight (0/a+0)(a, 0)+ (0+ l)(0, 1) = (0, l) for all l ∈ Z.
Therefore it suffices to compute the S-family F̂1,12 at the above weight, which
is given by ⊕

0≤k′≤a−1
m∈Z/bZ

(k′/a,0)F1(∞, l2)m ⊗ µ̂−k′

b ⊗ µ̂k′

a .

Similarly, we only compute the S-family F̂2,12 at the weight (0 + l)(r, 1) +
(0/b+ 0)(−b, 0) = (lr, l), which is given by

⊕

0≤j′≤b−1
n∈Z/aZ

(0,j′/b)F2(l,∞)n ⊗ µ̂−j′

a ⊗ µ̂j′

b .

We can’t equate them since they are at different weights. To jump from the
weight (lr, l) to (0, l), we multiply the second family by τ lr as the T-weight of
τ is (−1, 0). As a result, the fine grading is changed to

⊕

0≤j′≤b−1
n∈Z/aZ

(0,j′/b)F2(l,∞)n ⊗ µ̂−j′+lr
a ⊗ µ̂j′−lr

b .

Hence the gluing conditions on the substack U12 are given by:

⊕

0≤k≤a−1
m∈Z/bZ

(k/a,0)F1(∞, l)m ⊗ µ̂−k
b ⊗ µ̂k

a
∼=
⊕

0≤j≤b−1
n∈Z/aZ

(0,j/b)F2(l,∞)n ⊗ µ̂−j+lr
a ⊗ µ̂j−lr

b

for all l ∈ Z. Here ⊗µ̂k
b means tensoring with the 1-dimensional representation

of the group µb of weight k ∈ Z/bZ and ⊗µ̂j
a means tensoring with the 1-

dimensional representation of the group µa of weight j ∈ Z/aZ.

Similarly, we can get gluing conditions for other substacks.
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Proposition 3.1. The category of T-equivariant torsion free sheaves on the
Hirzebruch orbifold Hab

r is equivalent to the category of finite [Per04, Definition
5.10] stacky S-families {F̂i}i=1,2,3,4 on Ui satisfying the gluing conditions given
by the following equalities of µa × µb representations:
⊕

0≤k≤a−1
m∈Z/bZ

(k/a,0)F1(∞, l)m ⊗ µ̂−k
b ⊗ µ̂k

a
∼=
⊕

0≤j≤b−1
n∈Z/aZ

(0,j/b)F2(l,∞)n ⊗ µ̂−j+lr
a ⊗ µ̂j−lr

b

⊕

m∈Z/aZ

(0,j′/b)F2(∞, l)m ∼=
⊕

n∈Z/aZ

(j′/b,0)F3(l,∞)n

⊕

0≤j≤b−1
m∈Z/aZ

(j/b,0)F3(∞, l)m ⊗ µ̂−j
a ⊗ µ̂j

b
∼=
⊕

0≤k≤a−1
n∈Z/bZ

(0,k/a)F4(l,∞)n ⊗ µ̂−k−lr
b ⊗ µ̂k+lr

a

⊕

m∈Z/bZ

(0,k′/a)F4(∞, l)m ∼=
⊕

n∈Z/bZ

(k′/a,0)F1(l,∞)n

for all l ∈ Z, j′ ∈ Z/aZ, k′ ∈ Z/bZ and similar gluing conditions between the
corresponding inclusions.

3.3 Examples

In this section, we will give some examples of torsion free toric sheaves of rank
1 and 2 on Hab

r .

Example 3.2. Let F be a torsion free sheaf of rank 1 on the Hirzebruch surface
H11

r . Then the gluing conditions are

(0,0)F1(∞, l) = (0,0)F2(l,∞), (0,0)F2(∞, l) = (0,0)F3(l,∞),

(0,0)F3(∞, l) = (0,0)F4(l,∞), (0,0)F4(∞, l) = (0,0)F1(l,∞).

On each chart, (0,0)F̂i can be described as follows:

F̂1

•

(A1, A2)

C

F̂2

•

(A2, A3)

C

F̂3

•

(A3, A4)

C

F̂4

•

(A4, A1)

C
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Example 3.3. Let F be a locally free toric sheaf of rank 1 on the Hirzebruch
orbifold Hab

r . The charts U1 and U4 has a box of size a, while the charts U2 and
U3 has a box of size b. Since the rank is 1, the only possible choice for nonzero

bi F̂i is

b1 = (k/a, 0), b2 = (0, j/b), b3 = (j/b, 0), b4 = (0, k/a).

For fixed 0 ≤ j < b and 0 ≤ k < a, The T-weights of the generator on each
chart are given by

U1 : (k/a+A1)(a, 0) +A2(0, 1), U2 : A2(r, 1) + (j/b+A3)(−b, 0),
U3 : (j/b+A3)(−b, 0) +A4(−r,−1), U4 : A4(0,−1) + (k/a+A1)(a, 0).

Set

B1 = k + aA1, B2 = A2, B3 = j + bA3, B4 = A4.

The sheaf F is uniquely determined by Bi. We will show below that the fine
grading is also determined.

Suppose the µb-weight of the generator is m1 on chart U1, then

(k/a,0)F1(A1, A2)m1 =(k/a,0) G1(0, A2)m1−aA1 =(k/a,0) F1(∞, A2)m1−aA1 .

The first equation of the gluing conditions implies that

m1 ≡ k + aA1 + j − rA2 ≡ B1 +B3 − rB2 mod b.

Similarly, one can show that the fine gradings of all the generators are deter-
mined as follows:

B1 +B3 − rB2 mod b on U1, B1 +B3 − rB2 mod a on U2,
B1 +B3 + rB4 mod a on U3, B1 +B3 + rB4 mod b on U4.

Denote by L(B1,B2,B3,B4) the T-equivariant locally free sheaf of rank 1 corre-
sponding to (B1, B2, B3, B4) ∈ Z4.

Proposition 3.4. Let PicT (Hab
r ) be the T-equivariant Picard group of the

Hirzebruch orbifold. Then

(B1, B2, B3, B4) ∈ Z4 7−→ L(B1,B2,B3,B4) ∈ PicT (Hab
r )

is a group isomorphism.

Remark 3.5. The non-equivariant Picard group of the Hirzebruch orbifoldHab
r

is Z⊕ Z and

L(1,0,0,0) = (−1, 0), L(0,0,1,0) = (−1, 0),
L(0,1,0,0) = (0,−1), L(0,0,0,1) = (−r,−1).
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Example 3.6. Let F be a locally free toric sheaf of rank 2 on the Hirzebruch
surface H11

r . On each chart, F̂i can be described by a double filtration of C2:

✤

✤

✤

❴❴❴

F̂1

•

(A1, A2)

C2P1

P2P12

OO

��
∆2

//oo
∆1

✤

✤

✤

✤

✤

❴❴❴

F̂2

•

(A2, A3)

C2P2

P3P23

OO

��

∆3

//oo
∆2

✤

✤

❴❴❴❴❴

F̂3

•

(A3, A4)

C2

P3

P4P34

OO

�� ∆4

//oo
∆3

✤

✤

✤

❴❴

F̂4

•

(A4, A1)

C2P4

P1P41

OO

��
∆1

//oo
∆4

Hence F is fully determined by A1, A2, A3, A4 ∈ Z, ∆1,∆2,∆3,∆4 ∈ Z≥0 and
P1, P2, P3, P4 ⊂ C2, which can also be viewed as a point (P1, P2, P3, P4) ∈ (P1)4.
The label Pij stands for the vector space Pi ∩ Pj .
Generally, for torsion free toric sheaves, the double filtrations may not have
strict corners [Koo10].

F̂1

•

(A1, A2)

C2P1

P2

P ′
OO

��
∆2

//oo
∆1

Example 3.7. Let F be a locally free toric sheaf of rank 2 on the Hirzebruch
orbifold Hab

r . Since the rank is 2, either 1 or 2 box summands are nonempty.
There are 4 possible choices for bi F̂i to be nonzero.

1. biF̂i 6= 0 for b1 = (k/a, 0), b2 = (0, j/b), b3 = (j/b, 0), b4 = (0, k/a).

On each chart, it is described by a double filtration as for H11
r .
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Since we will later work on stable toric sheaves and the decomposable
sheaves are not stable, we would like to classify all the types of indecom-
posable toric sheaves. They are listed below:

(a) ∆i > 0 for all i. Pi’s are mutually distinct.

(b) ∆i′ = 0 for some unique i′ and ∆i > 0 for i 6= i′. Pi′ is omitted and
Pi’s are mutually distinct for i 6= i′.

(c) ∆i > 0 for all i. Only two of Pi’s are same.

2. biF̂i 6= 0 for b1 = (k/a, 0), b2 = (0, j/b), b2 = (0, j′/b), b3 = (j/b, 0), b3 =
(j′/b, 0), b4 = (0, k/a).

Suppose A′
2−A2 = ∆2 ≥ 0 and A′

4−A4 = ∆4 ≥ 0. Denote ∆3 = A′
3−A3.

Sheaves of this type are fully determined by A1, A2, A3, A4, b ∤ ∆3 ∈ Z,
∆1,∆2,∆4 ∈ Z≥0, and P1 6= P2 ⊂ C2. They are decomposable and can
be described as follows:

(k/a,0)F̂1

•

(A1, A2)

C2P2

P1

OO

��
∆2

//oo
∆1

(0,j/b)F̂2

•

(A2, A3)

P1

(0,j′/b)F̂2

•

(A′
2, A

′
3)

P2

(j/b,0)F̂3

•

(A3, A4)

P1

(j′/b,0)F̂3

•

(A′
3, A

′
4)

P2

(0,k/a)F̂4

•

(A4, A1)

C2P1

P2

OO

��
∆1

//oo
∆4

3. biF̂i 6= 0 for b1 = (k/a, 0), b1 = (k′/a, 0), b2 = (0, j/b), b3 = (j/b, 0), b4 =
(0, k/a), b4 = (0, k′/a).

It’s similar to the second case and all the toric sheaves of this type are
decomposable.
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4. Two box summands are nonzero for all the charts.

It can be easily seen that F is decomposable in this case.

4 Hilbert Polynomial

4.1 K-Group

Let K0(H
ab
r ) be the Grothendieck group of coherent sheaves on the Hirze-

bruch orbifold Hab
r . By [BH06], K0(Hab

r )Q is isomorphic to the quotient ring
Q[g±, h±]/I where I is generated by





(1− ga)(1 − gb)(1− h)
(1− ga)(1 − gb)(1− grh)
(1− ga)(1 − h)(1− grh)
(1− gb)(1 − h)(1− grh).

Here g := [(−1, 0)], h := [(0,−1)] are K-group classes of the generators of
Pic(Hab

r ) ∼= Z⊕ Z.
Recall that the T-action on Hab

r has four fixed points corresponding to the
origin of each chart. Denote them by P1, P2, P3, P4.

Proposition 4.1. In K0(Hab
r ), we have

[
OP1 ⊗ µ̂i

b

]
= (1− ga)(1− h)gi,

[
OP2 ⊗ µ̂i

a

]
= (1 − gb)(1− h)gi,[

OP3 ⊗ µ̂i
a

]
= (1− gb)(1− grh)gi,

[
OP4 ⊗ µ̂i

b

]
= (1− ga)(1− grh)gi.

Proof. The sheaf OP1 ⊗ µ̂i
b is described by a S-family where F̂2 = F̂3 = F̂4 = 0

and F̂1 only consists of a single vector space C with µb-weight i at the position
(0, 0).

✤

✤

✤

✤

✤

✤

✤

✤

❴❴❴❴❴❴❴❴

F̂1

•
(0, 0)

(1, 1)

(1, 0)

(0, 1)

C

Using the description of the line bundle introduced in Proposition 3.4, we can
construct the exact sequence:

0 −→ L(a·1,1,0,0) −→ L(a·1,0,0,0) ⊕ L(0,1,0,0) −→ L(0,0,0,0) −→ OP1 −→ 0.

Hence

[OP1 ] = 1 + gah− ga − h = (1− ga)(1− h).
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Since B1 = aA1 = 0, B2 = A2 = 0, the fine grading of OP1 ⊗ µ̂i
b is equal to

B3 mod b on U1. As a result,

[OP1 ⊗ µ̂i
b] = [OP1 ⊗ L(0,0,i,0)] = (1− ga)(1 − h)gi.

The calculation for other charts is similar.

Now let’s consider the general case. Suppose there is a S-family such that
F̂2 = F̂3 = F̂4 = 0 and F̂1 consists of a single space C with µb-grading i
at the position (k/a + A1)(a, 0) + A2(0, 1). Then the corresponding sheaf is
OP1 ⊗ L(k+aA1,A2,i−k−aA1+rA2,0) and its class in K0(Hab

r ) is

(1− ga)(1− h)gi+rA2hA2 = (1 − ga)(1 − h)gi.

As a result, the class of such a sheaf in K0(Hab
r ) only depends on the fine

grading. This is quite useful when we calculate the Hilbert polynomial later.

4.2 Riemann-Roch

Riemann-Roch on Deligne-Mumford stacks was first proved in [Toe99]. Later,
[Edi12] gave a simpler proof based on the equivariant localization theorem. In
our paper, we will follow the notation of inertia stacks used in the appendix of
[Tse10], which is essentially same as [Edi12, Section 4].

Recall from [BCS05] that for each d-dimensional cone in the fan Σ, Box(σ) is
the set of elements v ∈ N ∼= Z2 such that v =

∑
ρi∈σ qibi where bi is the ith

column of the matrix B (1.3.3) and 0 ≤ qi < 1 with qi ∈ Q. Denote by Box(Σ)
the union of Box(σ) for all d-dimensional cones.

Since Hab
r

∼= [Z/G] is a quotient stack, each component of its inertia stack is
isomorphic to [Zg/G] where Zg denotes the locus of points fixed in Z by g.
By [BCS05], the elements v ∈ Box(Σ) are in one-to one correspondence with
elements g ∈ G that fix a point of Z.

Suppose gcd(a, b) = 1. A box element for the stacky fan of the Hirzebruch
orbifold Hab

r can be in Box(ρ1), Box(ρ3) or Box(σi) for 1 ≤ i ≤ 4. Hence to
find all the components of the inertia stack, we classify all the substacks which
correspond to the minimal cones that contain the box elements.

If a box element is on Box(ρ1), then x = 0 and the corresponding stabilizer
g = (τ, λ) must satisfy λ = 1, τb = 1, τrλ = 1. Suppose gcd(r, b) = p, then

g = (e2π
√
−1 l

p , 1), l = 1, ..., p− 1.

Hence the corresponding component of the inertia stack is

Xρ1
∼= [Zg/G] ∼= [C3 − V (yz, zw)/(C∗)2], (τ, λ) : (y, z, w) → (λy, τbz, τrλw).

Let gcd(r, a) = q. We summarize all the components in the table below:
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stabilizer g substack [Zg/G] (τ, λ) ∈ (C∗)2-action

ρ1
(e2π

√
−1 l

p , 1)
l = 1, ..., p− 1

[C3 − V (yz, zw)/(C∗)2] (y, z, w)→(λy, τbz, τrλw)

ρ3
(e2π

√
−1 l

q , 1)
l = 1, ..., q − 1

[C3 − V (xy, wx)/(C∗)2] (x, y, w)→(τax, λy, τrλw)

σ1
(e2π

√
−1 l

b , e−2π
√
−1 sal

b )
b
p ∤ l, l = 1, ..., b− 1

[C2 − V (zw)/(C∗)2] (z, w)→(τbz, τrλw)

σ2
(e2π

√
−1 l

a , e−2π
√
−1 tbl

a )
a
q ∤ l, l = 1, ..., a− 1

[C2 − V (xw)/(C∗)2] (x,w)→(τax, τrλw)

σ3
(e2π

√
−1 l

a , 1)
a
q ∤ l, l = 1, ..., a− 1

[C2 − V (xy)/(C∗)2] (x, y)→(τax, λy)

σ4
(e2π

√
−1 l

b , 1)
b
p ∤ l, l = 1, ..., b− 1

[C2 − V (yz)/(C∗)2] (y, z)→(λy, τbz)

Write IHab
r for the inertia stack of the Hirzebruch orbifoldHab

r . Let π : IHab
r →

Hab
r be the natural projection. Suppose a vector bundle V on IHab

r is de-
composed into a direct sum ⊕ζiVi of eigenbundles with eigenvalue ζi. Let
µ∞ be the group of all roots of unity, then we define ρ(V ) :=

∑
ζi
ζiV

i and

c̃h : K0(Hab
r ) → A∗(IHab

r )⊗ µ∞ as the composition

K0(Hab
r )

π∗
−→ K0(IHab

r )
ρ
−→ K0(IHab

r )⊗ µ∞
ch
−→ A∗(IHab

r )⊗ µ∞.

For a line bundle L on Hab
r , define T̃ d : Pic(Hab

r ) → A∗(IHab
r )⊗ µ∞ as

T̃ d(L) =





Td(π∗L) if the eigenvalue of π∗L is 1
1

ch(1− ζ−1 · π∗L∨)
if the eigenvalue of π∗L is ζ 6= 1.

Then by Riemann-Roch, the Euler characteristic of a coherent sheaf F on Hab
r

is given by

χ(F) =

∫

IHab
r

c̃h(F) · T̃ d(O(Dρ1 )) · T̃ d(O(Dρ2 )) · T̃ d(O(Dρ3 )) · T̃ d(O(Dρ4 ))

where Dρi
is the divisor corresponding to the ray ρi in Figure 2.

Proposition 4.2. Suppose gcd(a, b) = 1. Consider the line bundle (m,n) ∈
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Pic(Hab
r ) (Remark 3.5). The Euler characteristic is given as follows:

χ((m,n)) =
1 + n

2a
+

1 + n

2b
+

(1 + n)m

ab
−
n(n+ 1)r

2ab
+

p−1∑

l=1

ωml
p

1− ω−al
p

n+ 1

b

+

q−1∑

l=1

ωml
q

1− ω−bl
q

n+ 1

a
+

b−1∑

l = 1
b
p

∤ l

ωml
b

1− ω−al
b

(
1− ω

−(n+1)sal
b

1− ω−sal
b

)
1

b

+
a−1∑

l = 1
a
q

∤ l

ωml
a

1− ω−bl
a

(
1− ω

−(n+1)tbl
a

1− ω−tbl
a

)
1

a
.

where p = gcd(b, r), q = gcd(a, r) and ωk = e
2π

√−1
k for k = a, b, p, q. Especially,

χ(OHab
r
) = χ(O(Dρ1 )) = χ(O(Dρ3 )) = 1.

Proof. The only 2-dimensional component of IHab
r is Hab

r itself. By [EM13]
and [CLS11], the orbifold Chow ring is

Q[x, y, z, w]/(xz, yw, bx− az, sx+ y + tz − w) ∼= Q[x, y]/(x2, ay2 + rxy)

and
∫
Hab

r
xy = 1

b .

The 1-dimensional components come from ρ1 and ρ3. By [BCS05], the substack
[Zg/G] for ρ1 is isomorphic to the substack constructed from the quotient
stacky fan Σ/ρ1 [BCS05]. One can show that Z(ρ1) ∼= C2 − V (y, w) and the
action of G(ρ1) ∼= C∗ × µb on Z(ρ1) is given by (λ, ζ)(y, w) = (λy, λζsw).
Hence the Chow ring is Q[y]/(y2) and

∫
Xρ1

y = 1
b .

Similarly, the Chow ring is Q[y]/(y2) for another type of 1-dimensional com-
ponents and

∫
Xρ3

y = 1
a .

There are 4 types of 0-dimensional components induced by σi. Two of
them are isomorphic to Bµb, and others Bµa. The Chow ring is Q and∫
Bµb

1 = 1
b ,
∫
Bµa

1 = 1
a .

Thus IHab
r is the disjoint union of 7 types of components in general. Depending

on the relations among a, b and r, there may be fewer types.

On each type of components, the Chern character of a line bundle c̃h((m,n))
is given by(

1 + (
m

a
x+ ny) +

1

2
(
m

a
x+ ny)2, (1 + ny)ωml

p , (1 + ny)ωml
q ,

ω
(m−nsa)l
b , ω(m−ntb)l

a , ωml
a , ωml

b

)
.

Note that l runs over {1, ..., p− 1} for the 2nd type, {1, ..., q − 1} for the 3rd
type, {1, ..., b − 1; b

p ∤ l} for the 4th and 7th types, {1, ..., a − 1; a
q ∤ l} for the

5th and 6th types.
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One can also show that T̃ d(O(Dρ1 )) · T̃ d(O(Dρ2 )) · T̃ d(O(Dρ3 )) · T̃ d(O(Dρ4 ))
on each type of components is

(
1 + y + (

b

2a
+

r

2a
+

1

2
)x+ (

b

2a
+

1

2
)xy,

1 + y

1− ω−al
p

,
1 + y

1− ω−bl
q

,

1

(1 − ω−al
b )(1− ωsal

b )
,

1

(1− ω−bl
a )(1 − ωtbl

a )
,

1

(1− ω−bl
a )(1− ω−tbl

a )
,

1

(1− ω−al
b )(1 − ω−sal

b )

)
.

Adding all the integrals together, we get the desired result.
To show χ(OHab

r
) = χ(O(Dρ1 )) = χ(O(Dρ3 )) = 1, we repeatedly use the

following two facts:

• If a, p are coprime,

p−1∑

l=1

1

1− ω−al
p

=

p−1∑

l=1

1

1− ωl
p

.

•
1

1− ωl
p

+
1

1− ω−l
p

= 1.

4.3 Coarse Moduli Space

Suppose gcd(a, b)=1. The coarse moduli space of the Hirzebruch orbifold Hab
r

is a toric variety H given by the following fan

x

y

ρ1 = (b/p, s/p)

ρ3 = (−a/q, t/q)
ρ2 = (0, 1)

ρ4 = (0,−1)

σ1σ2

σ3 σ4

where r = sa + bt, p = gcd(b, r) and q = gcd(a, r). Since gcd(a, b) = 1, s
p and

t
q are integers. Let Di be the divisor corresponding to the ray ρi. Then





b

p
D1 ∼

a

q
D3

s

p
D1 +D2 +

t

q
D3 ∼ D4.
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To find the Picard group, we need to determine when a Weil divisor is Cartier.
Suppose D = t1D1 + t2D2 is Cartier. Denote by nρ the primitive generator of
the ray ρ. Then for each σi, there exists mσi

= (xi, yi) such that 〈mσi
, nρ〉 =

−tρ for all ρ ∈ σi(1), where σi(1) denotes the collection of rays of σi [CLS11].
For σ1, it implies 




b

p
x1 +

s

p
y1 = −t1

y1 = −t2

from which we get b
p | −t1 +

s
p t2. By checking each σi, one can show that the

conditions for D to be Cartier are b
p | t1,

ba
pq | t2. Therefore

Pic(H) ∼= {t1
b

p
D1 + t2

ba

pq
D2|t1, t2 ∈ Z} ∼= {t1

b

p
D1 + t4

ba

pq
D4|t1, t4 ∈ Z} ∼= Z2.

The Cartier divisor t1
b
pD1 + t4

ba
pqD4 is ample if and only if for each σi, there

exists mσi
= (xi, yi) such that

{
〈mσi

, nρ〉 = −tρ for all ρ ∈ σi(1)
〈mσi

, nρ〉 > −tρ for all ρ ∈ Σ(1)/σi(1).

One can compute that mσ1 = (−t1, 0),mσ2 = (0, 0),mσ3 = ( bt
pq t4,

ba
pq t4),mσ4 =

(− sa
pq t4 − t1,

ba
pq t4) is a solution.

We get several inequalities which reduce to t1 > 0, t4 > 0. Thus OH(t1
b
pD1 +

t4
ba
pqD4) is ample if and only if t1, t4 > 0.

Consider the ample line bundle L = OH(
b
pD1 + ba

pqD4). By the property of

the root stack [FMN10], ǫ : Hab
r → H is a morphism with divisor multiplicities

(p, 1, q, 1). Hence

ǫ∗L = OHab
r
(bDρ1 +

ba

pq
Dρ4)

∼= (ba(1 +
r

pq
),
ba

pq
) ∈ Pic(Hab

r ).

For any coherent sheaf F on Hab
r , we can then define the Hilbert polynomial

of F with respect to ǫ∗L as

P (F , T ) := χ(F ⊗ ǫ∗LT ).

Proposition 4.3. Suppose gcd(a, b) = 1. Consider the line bundle
(m,n) ∈ Pic(Hab

r ), then

P ((m,n), T ) =

(
bar

2p2q2
+
ba

pq

)
T 2 +

(
a+ b+ 2m+ r

2pq
+ n+ 1+

+

p−1∑

l=1

ωml
p

1− ω−al
p

a

pq
+

q−1∑

l=1

ωml
q

1− ω−bl
q

b

pq

)
T + χ((m,n)).

Proof. To calculate χ((m+ ba(1 + r
pq )T, n+ ba

pqT )), we note that

ω
ba
pq

sa

b = ω
ba
pq

(r−tb)

b = 1, ω
ba
pq

tb
a = ω

ba
pq

(r−sa)
a = 1.

Then the result follows.
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4.4 Modified Hilbert Polynomial

By [OS03] [Nir08], A locally free sheaf E on Hirzebruch orbifold Hab
r is a gen-

erating sheaf if for every geometric point x of Hab
r , the representation Ex of the

stabilizer group at that point contains every irreducible representation.

One can show that E =
⊕ab−1

k=0 (−k, 0) is a generating sheaf, although is not of
minimal rank usually. Let ǫ : Hab

r → H be the structure morphism. Fix the
generating sheaf E as above and the ample invertible sheaf L = O( bpD1+

ba
pqD4).

We define the modified Hilbert polynomial for a sheaf F on the Hirzebruch
orbifold Hab

r as

PE(F , T ) = χ(Hab
r ,F ⊗ E∨ ⊗ ǫ∗LT )

and the modified Euler characteristic as

χE(F) = PE (F , 0).

Proposition 4.4. Suppose gcd(a, b) = 1. Then

PE((m,n), T ) =

(
b2a2r

2p2q2
+
b2a2

pq

)
T 2 +

(
ab

2pq
(a+ b+ r + 2m− 1 + ab)

+ab(n+ 1)
)
T +

1 + n

2
(a+ b+ 2m+ ab− 1− nr).

Proof. To prove the proposition, we note that:

•
ab−1∑

k=0

q−1∑

l=1

ω
(m+k)l
p

1− ω−al
p

=

q−1∑

l=1

∑ab−1
k=0 ω

(m+k)l
p

1− ω−al
p

= 0, since p | ab.

•
ab−1∑

k=0

b−1∑

l = 1
b
p

∤ l

ω
(m+k)l
b

1− ω−al
b

= 0.

Then the result follows.

Proposition 4.5.

PE(
[
OP1 ⊗ µ̂i

b

]
, T ) = PE (

[
OP4 ⊗ µ̂i

b

]
, T ) = a,

PE(
[
OP2 ⊗ µ̂i

a

]
, T ) = PE(

[
OP3 ⊗ µ̂i

a

]
, T ) = b.

Proof. Recall from Proposition 4.1 that [OP1 ⊗ µ̂i
b] = gi + ga+ih− ga+i − gih.

Hence

PE([OP1 ⊗ µ̂i
b], T ) = PE ((−i, 0), T ) + PE((−a− i,−1), T )

− PE((−a− i, 0), T )− PE((−i,−1), T ) = a.

Similarly, we can obtain the other results.
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Generally, if there is a S-family such that F̂2 = F̂3 = F̂4 = 0 and F̂1 consists
of a single space C with µb-weight i at the position (k/a+A1)(a, 0)+A2(0, 1),
then the K-group class of the corresponding sheaf is (1 − ga)(1 − h)gi and
PE(OP1 ⊗ L(k+aA1,A2,i−k−aA1+rA2,0), T ) = a.

Thus the modified Hilbert polynomial of a sheaf corresponding to a single
space C in one chart only depends on the chart itself.

We will now look at the modified Hilbert polynomial of indecomposable locally
free toric sheaves of rank 2 on the Hirzebruch orbifold Hab

r .

Recall that a necessary condition for such a sheaf to be indecomposable is
exactly one nonzero box summand for each chart. In this case, we set

B1 = k + aA1, B2 = A2, B3 = j + bA3, B4 = A4

Λ1 = a∆1,Λ2 = ∆2,Λ3 = b∆3,Λ4 = ∆4
.

A locally free toric sheaf of such kind is entirely determined by B1, B2, B3, B4 ∈
Z, Λ1,Λ2,Λ3,Λ4 ∈ Z≥0 such that a | Λ1, b | Λ3 and P1, P2, P3, P4 ⊂ C2. It is
indecomposable if and only if it satisfies one of the conditions in the first case
of Example 3.7

Proposition 4.6. Let F be a locally free toric sheaf of rank 2 with exactly one
nonzero box summand for each chart. Then the modified Hilbert polynomial
of F is given by

PE ((−B1 −B3 −B4r,−B2 −B4))
+PE ((−B1 − Λ1 −B3 − Λ3 −B4r − Λ4r,−B2 − Λ2 −B4 − Λ4))
− (1− δP1P2)Λ1Λ2 − (1− δP2P3)Λ2Λ3 − (1− δP3P4)Λ3Λ4 − (1 − δP4P1)Λ4Λ1.

where δPiPj
is 1 if Pi = Pj and 0 if Pi 6= Pj.

Proof. We can define another toric sheaf G such that its S-family Ĝ satisfies

dim(bGi(l1, l2)m) = dim(bFi(l1, l2)m)

for all charts. Then according to [GJK17, Lemma 7.7], [F ] = [G] ∈ K0(Hab
r ).

To define the S-family Ĝ, we set

bGi(l1, l2) := bL(B1,B2,B3,B4),i(l1, l2)⊕ bL(B1+Λ1,B2+Λ2,B3+Λ3,B4+Λ4),i(l1, l2)

in the following regions

l1 ≥ Ai +∆i or l2 ≥ Ai+1 +∆i+1,
l1 < Ai +∆i and l2 < Ai+1 +∆i+1, if Pi = Pi+1

for 1 ≤ i ≤ 4. Note that if Pi 6= Pi+1, then a rectangle of size ∆i∆i+1 is
removed. Hence the modified Hilbert polynomial is decreased by ΛiΛi+1.
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5 Moduli Space of Sheaves

5.1 Moduli Functor

Suppose the modified Hilbert polynomial of a pure coherent sheaf F of dimen-
sion d is

PE(F , T ) =
d∑

i=0

αE,i(F)
T i

i!
.

Then the reduced modified Hilbert polynomial is defined as

pE(F , T ) =
PE(F , T )

αE,d(F)

and the slope of F is defined as

µE(F) =
αE,d−1

αE,d
.

Definition 5.1. F is Gieseker-stable if pE(F ′) < pE(F) for every proper sub-
sheaf F ′ ⊂ F [Nir08].

Definition 5.2. F is µ-stable if µE(F ′) < µE(F) for every proper subsheaf
F ′ ⊂ F .

For toric varieties or orbifolds, we only need to check all the equivariant sub-
sheaves for stability. It was proved for Gieseker stability in [Koo11]. For
µ-stability, it was only shown in [Koo11] for equivariant reflexive sheaves and
recently extended to equivariant torsion-free sheaves in [BDGP18].

We can then define a moduli functor Ms
PE , where Ms

PE (S) is the set of equiv-
alent classes of S-flat families of Gieseker stable torsion-free sheaves on the
Hirzebruch orbifold Hab

r with the modified Hilbert polynomial PE . It is shown
in [Nir08] that there exists a quasi-projective scheme Ms

PE that corepresents
Ms

PE and is indeed a coarse moduli space. The closed points of Ms
PE are

therefore in bijection with isomorphism classes of Gieseker stable torsion free
sheaves on Hab

r with the modified Hilbert polynomial PE .

We also define a moduli functor Mµs
PE

⊂ Ms
PE which only consists of µ-stable

locally free shaves. The coarse moduli space is an open subset Mµs
PE

⊂ Ms
PE .

To get similar results of [Koo11, Theorem 4.15], we need to modify the defi-
nition of the characteristic function for Hab

r and match the GIT stability with
the Gieseker stability.

Definition 5.3. Suppose gcd(a, b) = 1. Let F be a torsion free sheaf on
the Hirzebruch orbifold Hab

r . The characteristic function ~χF is defined as the
disjoint union

~χF =

a−1∐

k=0

b−1∐

j=0

(k,j)~χF ,
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where (k,j)~χF : (Z2)4 → Z4 is the characteristic function

(
(k,j)χ

σ1

F (m1), (k,j)χ
σ2

F (m2), (k,j)χ
σ3

F (m3), (k,j)χ
σ4

F (m4)
)

=
(
dimC((k/a,0)F

σ1
m1

), dimC((0,j/b)F
σ2
m2

), dimC((j/b,0)F
σ3
m3

), dimC((0,k/a)F
σ4
m4

)
)
,

restricted to the following box summand

b1 = (k/a, 0), b2 = (0, j/b), b3 = (j/b, 0), b4 = (0, k/a).

Let F be a torsion free sheaf of rank 2, then F is µ-stable if and only if F∗∗

is µ-stable. Since F∗∗ is locally free, indecomposability of F∗∗ implies that
S-family biF̂

∗∗
i 6= 0 for only one box element by Example 3.7. Hence bi F̂i 6= 0

for the same bi. As a result, the characteristic function of a stable sheaf F
must be of the form

~χF = (k,j)~χF .

Denote by Gr(m,n) the Grassmannian of m-dimensional subspaces of Cn. We
define the following ambient quasi-projective variety:

A =

a−1∐

k=0

b−1∐

j=0




4∏

i=1

∏

mi∈Z2

Gr((k,j)χ
σi

F (mi), 2)


 .

Then there is a locally closed subcheme N~χ of A whose closed points are framed
[Koo10] torsion-free S-families with characteristic function ~χ. Consider the
special linear group G = SL(2,C). Then G acts regularly on A leaving N~χ

invariant. For any G-equivariant line bundle L ∈ PicG(N~χ), we can define the
GIT stability with respect to L [Dol03]. Denote by N s

~χ the G-invariant open
subset of GIT stable points. We obtain a geometric quotient π : N s

~χ → Ms
~χ =

N s
~χ/G.

Proposition 5.4. Let ~χ be the characteristic function of a torsion free sheaf
of rank 2 on the Hirzebruch orbifold Hab

r . Let PE be the modified Hilbert poly-
nomial with respect to the ample sheaf L = O( bpD1+

ba
pqD4) and the generating

sheaf E =
⊕ab−1

k=0 (−k, 0). Then there exists an ample equivariant line bundle

L~χ ∈ PicG(N~χ) such that any torsion free sheaf F on Hab
r with characteristic

function ~χ is Gieseker stable if and only if it is GIT stable w.r.t. L~χ.

Proof. If ~χF = (k,j)~χF , then the S-family has exactly one nonzero box sum-
mand for each chart. Hence the double filtrations are similar to the cases of
toric varieties as in [Koo11] and the proof carries over without any difficul-
ties.

Remark 5.5. For locally free sheaves of rank 2, we can also match the µ-
stability with the GIT stability w.r.t some line bundle Lµ

~χ. But in general, the

line bundle Lµ
~χ is different from L~χ. We denote the GIT quotient w.r.t this line

bundle by Mµs
~χ .
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Suppose F is a T-equivariant sheaf on the Hirzebruch orbifold Hab
r . By tensor-

ing a character of T, the equivariant structure is changed, but not the under-
lying sheaf. This degree of freedom can be fixed by requiring B3 = B4 = 0. In
this case, we call ~χF gauge-fixed. Note that our definition is slightly different
from [Koo11] as we choose B3, B4 from σ4, which has the largest index, to make
the calculation easier.
By [Koo11], the Hilbert polynomial of a torsion free toric sheaf on a smooth
toric variety is fully determined by the characteristic function of that sheaf.
The result also applies to the Hirzebruch orbifold Hab

r . Therefore, we can write
XPE for the set of characteristic functions with the modified Hilbert polynomial
PE .
Since the T-action lifts naturally to M s

PE , we get the following two theorems
similar to [Koo11].

Theorem 5.6. For any choice of a generating sheaf E with an equivariant
structure on the Hirzebruch orbifold Hab

r , there is a canonical isomorphism

(Ms
PE )

T ∼=
∐

~χ∈(XPE )gf

Ms
~χ.

Since (geometrically) µ-stability and locally freeness are open properties for
the moduli functor Ms

PE [Koo11] [HL10], we obtain

Theorem 5.7. For any choice of a generating sheaf E with an equivariant
structure on the Hirzebruch orbifold Hab

r , there is a canonical isomorphism

(Mµs
PE

)T ∼=
∐

~χ∈(XPE )gf

Mµs
~χ .

5.2 Generating Functions

Denote the moduli scheme of µ-stable torsion free, resp. locally free, sheaves
of rank R with first Chern class c1 and modified Euler characteristic χE by
MHab

r
(R, c1, χE), resp. Mvb

Hab
r
(R, c1, χE). Our goal is to use the idea of fixed

point loci to compute the following two generating functions:

∑

χE∈Z

e(MHab
r
(R, c1, χE))q

χE ,
∑

χE∈Z

e(Mvb
Hab

r
(R, c1, χE))q

χE

for R = 1, 2 with fixed c1.

5.2.1 Rank 1

Consider µ-stable torsion free toric sheaves of rank 1 on the Hirzebruch orbifold
Hab

r with fixed first Chern class c1 = mx
a +ny where x = c1(Dρ1), y = c1(Dρ2).

Let
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Gc1(q) =
∑

χE∈Z

e(MHab
r
(1, c1, χE))q

χE

be the generating function. Note that e(MHab
r
(1, c1, χE) = e(MHab

r
(1, c1, χE)

T)
by torus localization.

Proposition 5.8.

Gm x
a
+ny(q) = q

1+n
2 (a+b+2m+ab−1−nr)

∞∏

k=1

1

(1− q−ak)2(1− q−bk)2
.

Proof. An equivariant line bundle L(B1,B2,B3,B4) is non-equivariantly trivial if
and only if

B1 +B3 + rB4 = 0;B2 +B4 = 0.

If F is a torsion free toric sheaf of rank 1, then F ⊗ L(B3+B4r,B4,−B3,−B4) is
gauge-fixed. Therefore, we only consider torsion free toric sheaves of rank 1
with reflexive hulls L(B1,B2,0,0).
For fixed c1, the reflexive hull is uniquely determined as L(−m,−n,0,0)

∼= (m,n).
The modified Euler characteristic is given by

χE((m,n)) =
1 + n

2
(a+ b+ 2m+ ab− 1− nr).

For a torsion free toric sheaf F with the reflexive hull L(−m,−n,0,0), the cokernel
sheaf Q of the exact sequence

0 → F → L(−m,−n,0,0) → Q → 0

can be described by young diagrams. By Proposition 4.5, the modified Eu-
ler characteristic of Q increases by a, resp. by b for each cell in the young
diagrams on charts U1 and U4, resp. U2 and U3. Hence the closed points of
MHab

r
(1, c1, χE)

T are in bijection with four partitions (λ1, λ2, λ3, λ4) such that

1 + n

2
(a+ b+ 2m+ ab− 1− nr)− a(#λ1 +#λ4)− b(#λ2 +#λ3) = χE .

Remark 5.9. By Proposition 4.5 and Proposition 4.1, the modified Euler char-
acteristic of Q is independent of the fine grading, whereas the K-group class
is not. Hence we do not need to consider the colored Young diagrams as in
[GJK17].

5.2.2 Rank 2

For a toric surface, there is a nice expression that relates the generating func-
tions of torsion free and locally free sheaves given by [Göt99]. We also derive a
similar relation for the Hirzebruch orbifold Hab

r , which is given in Theorem 1.1.
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Proof of Theorem 0.1. The proof is similar to that of [GJK17, lemma 7.4] ex-
cept in our case the moduli scheme is stratified by the modified Euler charac-
teristics.

Let F be a locally free toric sheaf of rank 2 on the Hirzebruch orbifold Hab
r .

By tensoring with L(B3+rB4,B4,−B3,−B4), we only consider toric sheaves with
B3 = B4 = 0, which are gauge-fixed.
From Example 3.7, we know that there are three types of indecomposable toric
sheaves. Hence, the connected components of the fixed locusMvb

Hab
r
(R, c1, χE)

T

can be explicitly classified as follows:

1. Λi > 0 for all i. Pi’s are mutually distinct. 2

Consider four equivariant line bundles L1, L2, L3, L4 ⊂ F generated by
P1, P2, P3, P4 respectively.

L1 = LB1,B2+Λ2,Λ3,Λ4 , L2 = LB1+Λ1,B2,Λ3,Λ4 ,
L3 = LB1+Λ1,B2+Λ2,0,Λ4 , L4 = LB1+Λ1,B2+Λ2,Λ3,0.

Any rank 1 equivariant subsheaf of F is contained in one of Li and does
not have bigger slope. Hence it suffices to test µE(Li) < µE(F) for all Li.
The stability conditions are given by

Λ1 < pqΛ2 + Λ3 + (r + pq)Λ4, pqΛ2 < Λ1 + Λ3 + (r + pq)Λ4,
Λ3 < Λ1 + pqΛ2 + (r + pq)Λ4, (r + pq)Λ4 < Λ1 + pqΛ2 + Λ3.

Denote by D the set of points (P1, P2, P3, P4) ∈ (P1)4 where P1, P2, P3, P4

are mutually distinct. Then the connected component of the fixed locus
is given by D/SL(2,C) and e(D/SL(2,C)) = e(P1 − {0, 1,∞}) = −1.

2. Λi′ = 0 for some unique i′ and Λi > 0 for i 6= i′. Pi′ is omitted and Pi’s
are mutually distinct for i 6= i′.

Suppose Λ1 is 0, then the above inequalities are reduced to

pqΛ2 < Λ3 + (r + pq)Λ4, Λ3 < pqΛ2 + (r + pq)Λ4,
(r + pq)Λ4 < pqΛ2 + Λ3.

Hence the connected component is D/SL(2,C), where D is the set of
points (P2, P3, P4) ∈ (P1)3 where P2, P3, P4 are mutually distinct, and
e(D/SL(2,C)) = 1.

3. Λi > 0 for all i. Only two of Pi’s are same.

Suppose P1 = P2, P3, P4 are mutually distinct. Then we need to con-
sider line bundles L′

1, L3, L4 where L′
1 = L(B1,B2,Λ3,Λ4)). The stability

conditions are are given by

Λ1 + pqΛ2 < Λ3 + (r + pq)Λ4, Λ3 < Λ1 + pqΛ2 + (r + pq)Λ4,
(r + pq)Λ4 < Λ1 + pqΛ2 + Λ3.

2For notation, see Section 4.4 and Example 3.7
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Similar to the case 2, the topological Euler number of this component
is 1.

Thus there are 11 types of incidence spaces contributing to the generating
function similar to the case of Hirzebruch surface in [Koo15].

Consider locally free toric sheaves of rank 2 with fixed first Chern class c1 =
m
a x + ny where c1(Dρ1) = x, c1(Dρ2) = y. By Proposition 4.6, one can show
that

c1 = −(2B1 + Λ1 + Λ3 + Λ4r)
x

a
− (2B2 + Λ2 + Λ4)y.

Hence

2B1 + Λ1 + Λ3 + Λ4r = −m, 2B2 + Λ2 + Λ4 = −n.

If F is of the first type mentioned above, then the modified Euler characteristic
is given by

PE ((−B1,−B2), 0) + PE ((−B1 − Λ1 − Λ3 − Λ4r,−B2 − Λ2 − Λ4), 0)
−Λ1Λ2 − Λ2Λ3 − Λ3Λ4 − Λ4Λ1

=
1

2
(C − r)n+ C +m+

mn

2
−
n2r

4
−

1

2
(Λ2 + Λ4)(Λ1 +

r

2
Λ2 + Λ3 −

r

2
Λ4)

where C = a+ b+ ab− 1. Similarly, we can obtain the modified Euler charac-
teristics for other types.

Let

H
vb
c1 (q) =

∑
e(Mvb

Hab
r
(2, c1, χE))q

χE

be the generating function. Define f = 1
2 (C − r)n+ C +m+ mn

2 − n2r
4 . Then

H
vb
m
a
x+ny(q) = −

∑

Λ1, Λ2,Λ3, Λ4 ∈ Z>0
a | Λ1, b | Λ3

2 | −m − Λ1 − Λ3 − rΛ4
2 | −n − Λ2 − Λ4

Λ1 < pqΛ2 + Λ3 + (r + pq)Λ4
pqΛ2 < Λ1 + Λ3 + (r + pq)Λ4
Λ3 < Λ1 + pqΛ2 + (r + pq)Λ4
(r + pq)Λ4 < Λ1 + pqΛ2 + Λ3

qf−
1
2 (Λ2+Λ4)(Λ1+

r
2Λ2+Λ3− r

2Λ4)

Documenta Mathematica 25 (2020) 655–699



692 W. Wang

+
∑

Λ1,Λ2,Λ3,Λ4 ∈ Z>0
a | Λ1, b | Λ3

2 | −m − Λ1 − Λ3 − rΛ4
2 | −n − Λ2 − Λ4

Λ1 + Λ3 < pqΛ2 + (r + pq)Λ4
pqΛ2 < Λ1 + Λ3 + (r + pq)Λ4
(r + pq)Λ4 < Λ1 + pqΛ2 + Λ3

qf−
1
2 (Λ2+Λ4)(Λ1+

r
2Λ2+Λ3− r

2Λ4) + 5 similar terms

+
∑

Λ2,Λ3,Λ4 ∈ Z>0
b | Λ3

2 | −m − Λ3 − rΛ4
2 | −n − Λ2 − Λ4

pqΛ2 < Λ3 + (r + pq)Λ4
Λ3 < pqΛ2 + (r + pq)Λ4
(r + pq)Λ4 < pqΛ2 + Λ3

qf−
1
2 (Λ2+Λ4)(

r
2Λ2+Λ3− r

2Λ4) + 3 similar terms.

Note that the first term corresponds to the component of the first type and the
negative sign comes from e(P1 − {0, 1,∞}) = −1. The signs for the remaining
terms are positive because the topological Euler number is 1 for the other com-
ponents. Using proper substitutions, we can simplify this generating function
further.

Proposition 5.10. Suppose gcd(a, b) = 1. Let f = 1
2 (C−r)n+C+m+mn

2 −n2r
4

where C = a+ b+ ab− 1. If r ≥ 0, the generating function H
vb
m
a
x+ny(q) equals

H
vb
m
a
x+ny(q) =

(
−
∑

C1

+
∑

C6

+
∑

C7

+
∑

C8

+
∑

C9

)
qf−

1
2 j(i+

r
2 j)

+

(
∑

C2

+
∑

C3

+
∑

C4

+
∑

C5

)
qf−

1
4 ij+

1
4 jk−

1
4 kl−

1
4 li−

r
4 l

2

where

C1 = {(i, j, k, l) ∈ Z4 : 2 | m+ i, 2 | n+ j, 2 | j − l, 2a | i+ k + r(j − l),

2b | i− k, i = pqj,−j < l < j,−pqj − r(j − l) < k < pqj},

C2 = {(i, j, k, l) ∈ Z4 : 2 | m+ i, 2 | n+ j, 2 | j − l, 2a | i+ k + r(j + l),

2b | i− k, k < pql < i, l < j,−i− r(j + l) < k,−pqj − r(j + l) < k},

C3 = {(i, j, k, l) ∈ Z4 : 2 | m+ i, 2 | n+ j, 2 | j − l, 2b | i+ k + r(j − l),

2a | i− k, k < pql < i, l < j,−i− r(j + l) < k,−pqj − r(j + l) < k},

C4 = {(i, j, k, l) ∈ Z4 : 2 | m+ i, 2 | n+ j, 2 | j − l, 2b | i+ k − r(j − l),

2a | i− k, k < pql < i, l < j,−i+ r(j − l) < k,−pqj < k},

C5 = {(i, j, k, l) ∈ Z4 : 2 | m+ i, 2 | n+ j, 2 | j − l, 2a | i+ k − r(j − l),

2b | i− k, k < pql < i, l < j,−i+ r(j − l) < k,−pqj < k},

C6 = {(i, j, k) ∈ Z3 : 2 | m+ i, 2 | n+ j, 2 | j + k, 2b | 2i+ r(j + k),

−
r

2
(j + k) < i, i < pqj −

i

r + pq
−

rj

r + pq
< k <

i

pq
},

Documenta Mathematica 25 (2020) 655–699



Toric Sheaves on Hirzebruch Orbifolds 693

C7 = {(i, j, k) ∈ Z3 : 2 | m+ i, 2 | n+ j, 2 | j + k, 2a | 2i+ r(j + k),

−
r

2
(j + k) < i, i < pqj −

i

r + pq
−

rj

r + pq
< k <

i

pq
},

C8 = {(i, j, k) ∈ Z3 : 2 | m+ i, 2 | n+ j, 2a | i+ k + 2rj, 2b | i− k,

− pqj − 2rj < k < pqj < i},

C9 = {(i, j, k) ∈ Z3 : 2 | m+ i, 2 | n+ j, 2a | i+ k, 2b | i− k,

− pqj < k < pqj < i},

Proof. Set i = Λ1 + Λ3 − rΛ4, j = Λ2 + Λ4, k = Λ1 − Λ3 − rΛ4, l = Λ2 − Λ4.
The first term is split into two

−
∑

i, j, k, l ∈ Z
2 | m + i, 2 | n + j, 2 | j − l

2b | i − k, 2a | i + k + r(j − l)
pqj ≤ i, −j < l < j

−pqj − r(j − l) < k < pqj

qf−
1
2 j(i+

r
2 j) −

∑

i, j, k, l ∈ Z
2 | m + i, 2 | n + j, 2 | j − l

2b | i − k, 2a | i + k + r(j − l)
i < pqj, −i < pql < i + r(j − l)

−i − r(j − l) < k < i

qf−
1
2 j(i+

r
2 j)

based on whether pqj ≤ i or pqj > i. By same substitutions, the first three
terms can be combined into one. The remaining terms can be obtained by the
following substitution.

Term Substitutions
4th i = Λ1 + Λ3 − rΛ4, j = Λ2 + Λ4, k = Λ1 − Λ3 − rΛ4, l = Λ4 − Λ2

5th i = Λ1 + Λ3 − rΛ4, j = Λ2 + Λ4, k = −Λ1 + Λ3 − rΛ4, l = Λ4 − Λ2

6th i = Λ1 + Λ3 + rΛ4, j = Λ2 + Λ4, k = −Λ1 + Λ3 + rΛ4, l = Λ2 − Λ4

7th i = Λ1 + Λ3 + rΛ4, j = Λ2 + Λ4, k = Λ1 − Λ3 + rΛ4, l = Λ2 − Λ4

8th i = Λ3 − rΛ4, j = Λ2 + Λ4, k = Λ4 − Λ2

9th i = Λ1 + Λ3 − rΛ4, j = Λ4, k = Λ1 − Λ3 − rΛ4

10th i = Λ1 − rΛ4, j = Λ2 + Λ4, k = Λ4 − Λ2

11th i = Λ1 + Λ3, j = Λ2, k = Λ1 − Λ3

If r = 0, the above result yields the Theorem 1.2 for the orbifold P(a, b)× P1.

Remark 5.11. If a = b = 1, the orbifold becomes the variety P1 × P1 and
f = mn

2 +m+n+2. Consider a torsion free sheaf F of rank 2 with c1 = mx+ny
where c1(Dρ1 ) = x, c1(Dρ2) = y. Suppose c2(F) = cxy. One can show that
χ(F) = −c+mn+m+n+2. Hence the above generating function agrees with
the one given in [Koo10, Corollary 2.3.4] when λ = 1. Note that the divisor
D4 in [Koo10] is really D2 in our paper, but D2 ∼ D4 in the case of P1 × P1.

Let (i, j) ∈ Pic(Hab
r ). One can show that tensoring − ⊗ (i, j) preserves

µ-stability. Suppose F is a locally free toric sheaf of rank 2 on the Hirzebruch
orbifold Hab

r with c1(F) = m
a x+ ny. Then

χE(F ⊗ (i, j)) = χE(F) + i(2 + n+ 2j) + j(ab+ a+ b− 1− r +m− nr − rj).
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Let g(i, j) = i(2 + n+ 2j) + j(ab+ a+ b− 1− r+m− nr− rj). We obtain an
isomorphism

Mvb
Hab

r
(2, c1, χE) ∼=Mvb

Hab
r
(2, c1 +

2i

a
x+ 2jy, χE + g(i, j)),

which induces

∑

χE∈Z

e(Mvb
Hab

r
(2, c1 +

2i

a
x+ 2jy, χE))q

χE = qg(i,j)
∑

χE∈Z

e(Mvb
Hab

r
(2, c1, χE))q

χE .

Thus for the Hirzebruch orbifold, the only interesting cases for the generating
functions are (m,n) = (0, 0), (0, 1), (1, 0) and (1, 1).

Proposition 5.12. Consider the orbifold H12
0 , which is P(1, 2) × P1. In this

case, r = 0, a = 1, b = 2, p = 1, q = 2, C = 4. Let c1(F) = mx + ny where
c1(Dρ1 ) = x and c1(Dρ2 ) = y.

1. If (m,n) = (0, 0), then f = 4.

H
vb
0 (q) = −

∞∑

t=1

(2t− 1)2q4−4t2

+

∞∑

t=1

∞∑

u=1

2t∑

p=1

4q4−(4t+4)(t−p+1)−2p−2u q−(2u+2p)p − q−(2u+2p)(2t+1)

1− q−(2u+2p)

+

∞∑

t=1

∞∑

u=1

2t∑

p=1

4q4−(4t+2)(t−p+1) q
−(2u+2p−2)p − q−(2u+2p−2)(2t+1)

1− q−(2u+2p−2)

+

∞∑

t=1

2t∑

p=1

4q4−(4t+4)(t−p+1)−2p q−2p2

− q−(2t+1)(2p)

(1− q−(4t+4−2p))(1− q−2p)

+

∞∑

t=1

2t−1∑

p=1

4q4−2t(2t−2p+1) q−2p2

− q−4pt

(1 − q−(4t−2p))(1− q−2p)

+

∞∑

t=1

2(2t− 1)
q4−4t(t+1)

1− q−4t
+

∞∑

t=1

2(2t− 1)
q4−(4t−2)t

1− q−(4t−2)

+

∞∑

t=1

2(2t− 1)
q4−4t(t+1)

1− q−4t
+

∞∑

t=1

2(2t− 1)
q4−2t(2t+1)

1− q−4t

= 2q2 + 5 +
8

q2
+

18

q4
+O

[
1

q

]5
.
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2. If (m,n) = (1, 0), then f = 5.

H
vb
x (q) =

∞∑

t=1

∞∑

u=1

2t∑

p=1

2q5−(4t+1)(t−p+1) q
−(2u+2p−2)p − q−(2u+2p−2)(2t+1)

1− q−(2u+2p−2)

+
∞∑

t=1

∞∑

u=1

2t∑

p=1

2q5−(4t+2)(t−p+1)+t+u q−(2u+2p−2)p − q−(2u+2p−2)(2t+1)

1− q−(2u+2p−2)

+

∞∑

t=1

∞∑

u=1

2t−1∑

p=1

2q5−(4t−1)(t−p) q
−(2u+2p−2)p − q−2t(2u+2p−2)

1− q−(2u+2p−2)

+

∞∑

t=1

∞∑

u=1

2t∑

p=1

2q5−(4t+2)(t−p+1)−t−u q−(2u+2p−2)p − q−(2u+2p−2)(2t+1)

1− q−(2u+2p−2)

+

∞∑

t=1

2t−1∑

p=1

2q5−(4t+1)(t−p)−2p q−2p2

− q−4pt

(1− q−(4t−2p))(1− q−2p)

+
∞∑

t=1

2t−1∑

p=1

2q5−(4t+1)(t−p)−p q−2p2

− q−4pt

(1− q−(4t−2p))(1 − q−2p)

+

∞∑

t=1

2t−1∑

p=1

2q5−(4t+3)(t−p)−2p q−2p2

− q−4pt

(1− q−(4t−2p))(1− q−2p)

+

∞∑

t=1

2t−1∑

p=1

2q5−(4t+3)(t−p)−3p q−2p2

− q−4pt

(1− q−(4t−2p))(1− q−2p)

+

∞∑

t=1

2t
q5−(4t+1)(t+1)

1− q−(4t+1)
+

∞∑

t=1

2t
q5−(4t−1)t

1− q−(4t−1)
+

∞∑

t=1

4t
q5−(4t+1)t

1− q−2t

= 2q3 + 4q2 + 6q + 8 +
12

q
+

12

q2
+

14

q3
+

20

q4
+O

[
1

q

]5
.

3. If (m,n) = (0, 1), then f = 6.

H
vb
y (q) = −

∞∑

t=1

4t2q6−(2t+1)2

+

∞∑

t=1

∞∑

u=1

2t−1∑

p=1

4q6−2t(2t−2p+1) q
−(2u+2p−2)p − q−2t(2u+2p−2)

1− q−(2u+2p−2)

+

∞∑

t=1

∞∑

u=1

2t−1∑

p=1

4q5−4t(t−p+1)−2u q−(2u+2p)p − q−2t(2u+2p)

1− q−(2u+2p)

+

∞∑

t=1

2t∑

p=1

4q6−(4t+2)(t−p+1) q−2p2

− q−2p(2t+1)

(1− q−(4t+2−2p))(1 − q−2p)
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+

∞∑

t=1

2t−1∑

p=1

4q5−4t(t−p+1) q−2p2

− q−4pt

(1− q−(4t+2−2p))(1− q−2p)

+
∞∑

t=1

(4t− 1)
q6−2t(2t+1)

1− q−4t
+

∞∑

t=1

(4t− 3)
q6−(2t−1)(2t+1)

1− q−(4t−2)

+

∞∑

t=1

2(2t− 1)
q6−2t(2t−1)

1− q−(4t−2)
+

∞∑

t=1

4t
q6−(2t+1)(2t+3)

1− q−(4t+2)

= 2q4 + q3 + 6q2 + q + 9 +
5

q
+

14

q2
+

5

q3
+

17

q4
+O

[
1

q

]5
.

4. If (m,n) = (1, 1), then f =
15

2
.

H
vb
x+y(q) =

∞∑

t=1

∞∑

u=1

2t∑

p=1

2q7−(4t+3)(t−p)−2p q−(2u+2p−2)p − q−(2u+2p−2)(2t+1)

1− q−(2u+2p−2)

+
∞∑

t=1

∞∑

u=1

2t−1∑

p=1

2q7−(4t−1)(t−p+1)−u+p q−(2u+2p−2)p − q−2t(2u+2p−2)

1− q−(2u+2p−2)

+

∞∑

t=1

∞∑

u=1

2t−1∑

p=1

2q8−(4t−1)(t−p)−2p q−(2u+2p−2)p − q−2t(2u+2p−2)

1− q−(2u+2p−2)

+

∞∑

t=1

∞∑

u=1

2t−1∑

p=1

2q7−(4t+1)(t−p)−p+u q−(2u+2p−2)p − q−2t(2u+2p−2)

1− q−(2u+2p−2)

+

∞∑

t=1

2t∑

p=1

2q8−(4t+3)(t−p+1) q−2p2

− q−2p(2t+1)

(1− q−(4t+2−2p))(1− q−2p)

+
∞∑

t=1

2t∑

p=1

2q8−(4t+3)(t−p+1)−p q−2p2

− q−2p(2t+1)

(1− q−(4t+2−2p))(1− q−2p)

+

∞∑

t=1

2t∑

p=1

2q7−(4t+1)(t−p+1) q−2p2

− q−2p(2t+1)

(1− q−(4t+2−2p))(1− q−2p)

+

∞∑

t=1

2t∑

p=1

2q7−(4t+1)(t−p+1)+p q−2p2

− q−2p(2t+1)

(1 − q−(4t+2−2p))(1− q−2p)

+

∞∑

t=1

2t
q

15
2 − 1

2 (2t+1)(4t+1)

1− q−(4t+1)
+

∞∑

t=1

2t
q

15
2 − 1

2 (2t+1)(4t−1)

1− q−(4t−1)

+
∞∑

t=1

2(2t− 1)
q

15
2 − 1

2 (2t−1)(4t+1)

1− q−(4t−2)
+

∞∑

t=1

2(2t− 1)
q

15
2 − 1

2 (2t−1)(4t−1)

1− q−(4t−2)
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= 2q6 + 4q5 + 6q4 + 8q3 + 10q2 + 14 +
14

q
+

18

q2
+

24

q3
+

22

q4
+O

[
1

q

]5
.

Proof. We will show how to rewrite the sums over C2 and C3 in the case of
(m,n) = (0, 0). The calculation of other parts is similar.
The second and third terms can be combined into one

∑

C′
2

4q4−
1
4 ij+

1
4 jk−

1
4 kl−

1
4 li

where

C′
2 = {(i, j, k, l) ∈ Z4 : 2 | i, 2 | j, 2 | l, 2 | k, 4 | i− k,

− i < k < 2l < i,−2j < k, l < j}.

It can be then split into two terms by either i < 2j or 2j ≤ i.

(∑

C′′
2

+
∑

C′′
3

)
4q4−

1
4 ij+

1
4 jk−

1
4kl−

1
4 li

where

C′′
2 ={(i, j, k, l) ∈ Z4 : 2 | i, 2 | j, 2 | l, 2 | k, 4 | i− k,

− 2j < −i < k < 2l < i < 2j},

C′′
3 ={(i, j, k, l) ∈ Z4 : 2 | i, 2 | j, 2 | l, 2 | k, 4 | i− k,

− i < −2j < k < 2l < 2j < i}.

Suppose i = 4t+ 4, then we have the following picture for the case i < 2j.

4t+ 4

i

2t+ 2

i
2

−2t− 2

− i
2

−4t− 4

−i

0

j 2jl2lk

Hence j = 2t+ 2 + 2u, l = 2t+ 2− 2p, k = 4t+ 4− 4p− 4s and

∑

C′′
2

q
1
4 ij−

1
4 jk+

1
4kl+

1
4 li =

∞∑

t=1

∞∑

u=1

2t∑

p=1

2t+1−p∑

s=1

q4t
2+8t−4pt−4p+2up+2p2+4+2s(u+p)

=

∞∑

t=1

∞∑

u=1

2t∑

p=1

q(4t+4)(t−p+1)+2p+2u q(2u+2p)p − q(2u+2p)(2t+1)

1− q2u+2p
.

This is the second term of the generating function in the case of (m,n) = (0, 0).
Suppose i = 4t+ 2, we will obtain the third term. The fourth and fifth terms
come from the case when 2j ≤ i.
Basically, we split the terms by 4 | i or 4 | i+2 when i is even, and by 4 | i+1
or 4 | i+3 when i is odd. Then the result follows from tedious calculation.
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