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1 Introduction

Recall that the classical Serre problem on projective modules asks if any pro-
jective module over a polynomial ring R = k[x1, . . . , xn] over a field k is free.
This problem was positively settled by D. Quillen [20] and A. Suslin [31], and
its solution played an important role in the development of algebraic K-theory.
We also refer the reader to the textbook [12] for a comprehensive account on
the problem, its history and the subsequent solution.
After the original Serre problem had been solved, numerous analogous questions
drew the attention of specialists (see e. g. [32, 33, 1, 36, 12, 25, 26]). For
example, A. Suslin formulated and solved the so-called K1-analogue of Serre’s
problem. This result asserts that the functor K1(n,R) = GLn(R)/En(R) has
the property K1(n, k[x1, . . . xn]) = K1(n, k) = k× for all fields k and n ≥
3 see [32, Corollary 7.11]. Suslin’s results were subsequently generalized to
K1-functors modeled on other linear groups (see the definition below). For
example, for even-dimensional orthogonal groups the corresponding result was
obtained by A. Suslin and V. Kopeiko in [33], while for more general types
of Chevalley groups of rank ≥ 2 this is a result of E. Abe, see [1]. Recently
A. Stavrova has obtained probably the most general results in this direction:
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she solved the analogue of Serre problem for the functor KG
1 modeled on an

arbitary isotropic reductive group scheme G of isotropic rank ≥ 2 over a field
(see [25, Theorem 1.2]) and also generalized Abe’s result to Dedekind domains
of arithmetic type (see [26, Corollary 1.2]).
Recall that to every irreducible root system Φ and a commutative ring R one
can associate two groups: the simply-connected Chevalley group Gsc(Φ, R) (see
e. g. [27, § 3] or [39]) and the Steinberg group St(Φ, R) (see Section 2.1 for the
definition). There is a well-defined homomorphism π : St(Φ, R) → Gsc(Φ, R)
sending each generator xα(ξ) to the elementary root unipotent tα(ξ). The cok-
ernel and the kernel of this homomorphism are denoted K1(Φ, R) and K2(Φ, R),
respectively. The latter groups are functorial in R. The functors K1(Φ,−) and
K2(Φ,−) are called the K1 and K2-functors modeled on the Chevalley group
Gsc(Φ,−), see [29].
It turns out that an assertion similar to the Serre problem also holds for the
functor K2. More precisely, in [36] M. Tulenbaev demonstrated an “early stabil-
ity theorem” from which the isomorphism K2(Aℓ, k[x1, . . . xn]) ∼= K2(Aℓ, k) =
KM

2 (k) follows for ℓ ≥ 4. Notice that K2(Aℓ, R) here is just another notation
for the unstable linear functor K2(ℓ+ 1, R).
While numerous results on the K1-analogue of Serre’s problem have appeared
in the literature since [32] (see e. g. [33, 1, 25, 26]), little progress has been
made on the K2-analogue. It has been conjectured by M. Wendt, see [41,
Vermutung 6.22] that a K2-analogue of the Serre problem holds for K2(Φ,−)
for all Φ of rank ≥ 3, however this conjecture still remains open for Φ different
from Aℓ, ℓ ≥ 4.
In [14, 13] the authors have shown that the Steinberg groups St(Φ, R) satisfy
the Quillen–Suslin local-global principle provided Φ has rank ≥ 3 and is either
simply-laced or has type Cℓ. The local-global principle is one of the ingredients
needed in the proof of the K2-analogue of the Serre problem for Chevalley
groups. The aim of the present article is to make yet another step towards the
solution of the problem, namely to prove an analogue of Horrocks theorem [9]
for Steinberg groups of type Dℓ.
Our main result is, thus, the following theorem, which is the orthogonal ana-
logue of [36, Theorem 5.1] and the K2-analogue of [33, Theorem 6.8] (cf. also
with [12, Theorem VI.5.2] and [25, Theorem 1.1]).

Theorem 1 (Horrocks theorem for orthogonal K2). Let A be a commutative
ring in which 2 is invertible. Then for any ℓ ≥ 7 the following commutative
square is a pullback square in which all homomorphisms are injective:

KO2(2ℓ, A) KO2(2ℓ, A[X ])

KO2(2ℓ, A[X
−1]) KO2(2ℓ, A[X,X−1]).

Moreover, the same assertion holds if one replaces the functor KO2(2ℓ,−) with
K2(Dℓ,−) or St(Dℓ,−).
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In the above statement KO2(2ℓ,−) denotes the unstable orthogonal K2-functor
(see Section 2.3). Notice also that in the special case when A = k is a field the
assertion of the above theorem is a consequence of the results of U. Rehmann
and J. Hurrelbrink (see Lemma 2.4 below).
The proof of Theorem 1 goes as follows. We notice that it suffices to prove
the St(Dℓ,−)-variant of the theorem. Moreover, the proof of the injectivity
of j− : St(Dℓ, A[X

−1]) → St(Dℓ, A[X,X−1]) turns out to be the hardest part.
After invoking the local-global principle [14, Theorem 2] the proof reduces to
the special case when A is local. Now if M is the maximal ideal of A, the proof
of the injectivity of j− comes down to proving the injectivity of the following
two homomorphisms:

St(Dℓ, A[X
−1]) St(Dℓ, B) St(Dℓ, R),

j−
B jR

where B = A[X−1] + M [X ] and R = A[X,X−1]. The injectivity of jR
is obtained in Theorem 2. This step of the proof relies on the theory of
relative central extensions developed by J.-L. Loday in [15]. According to
this theory, the relative Steinberg group St(Φ, R, I) is a central extension of
Ker(St(Φ, R) → St(Φ, R/I)) by a certain subgroup, which we denote C(Φ, R, I).
It turns out that a simple diagram chasing argument combined with a certain
lifting property of relative Steinberg groups (see Lemma 3.3) reduces the sought
injectivity of jR to the surjectivity of the map

C(Dℓ, B,M [X,X−1]) → C(Dℓ, R,M [X,X−1]).

This surjectivity is then obtained as a corollary of Panin’s stability theo-
rem for orthogonal K-theory and the Bass Fundamental Theorem for higher
Grothendieck–Witt groups (these groups include the stable orthogonal K-
groups as a special case, see (3.1)). This is the only step of our proof which
invokes the assumption that 2 is invertible.
Finally, the injectivity of the homomorphism j−B is obtained in Theorem 3,
which is a direct generalization of [36, Proposition 4.3]. This part of the proof
is obtained in somewhat greater generality and is applicable to all simply-laced
root systems Φ containing a subsystem of type A4. The main idea of the proof
of Theorem 3 is to express the underlying set of St(Φ, B) as an explicit quo-
tient of the Cartesian product of three other groups, one of which is precisely
St(Φ, A[X−1]), see (5.14). This can be considered as some sort of a decompo-
sition for St(Φ, B). The technique of such decompositions probably dates back
to [34]. The proof of Theorem 3 is based on a number of preparatory state-
ments. One of these is a certain presentation theorem for Steinberg groups over
graded rings similar to the results of U. Rehmann, C. Soulé and M. Tulenbaev,
see Proposition 5.3 (cf. [21, Satz 2],[22, Theorem 2],[36, Lemma 3.3]).
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2 Preliminaries

If x and y are elements of a group G then [x, y] denotes the left-normed commu-
tator xyx−1y−1. We denote by xy (resp. yx) the element y−1xy (resp. yxy−1).
Throughout the paper we make use of the following commutator identities:

[x, yz]y = [y−1, x] · [x, z], (2.1)

[xy, z] = x[y, z] · [x, z], (2.2)

[x, yz] = [x, y] · y[x, z], (2.3)

[[x, y], z] = x
(
y[x−1, [y−1, z]] · z[y, [z−1, x−1]]

)
. (2.4)

Recall also from [22, Lemma 3.1.1] that

[x, z] = 1 implies [x, [y, z]] = [[x, y], yz]. (2.5)

2.1 Steinberg groups

Let Φ be a reduced and irreducible root system of rank ℓ ≥ 2 and R be a
commutative ring with 1. Recall that in this case the Steinberg group St(Φ, R)
can be defined by means of generators xα(s) and relations:

xα(s) · xα(t) = xα(s+ t), α ∈ Φ, s, t ∈ R; (2.6)

[xα(s), xβ(t)] =
∏

xiα+jβ

(
Nα,βij s

itj
)
, α, β ∈ Φ, α 6= −β, s, t ∈ R. (2.7)

The indices i, j appearing in the right-hand side of the above relation range
over all positive natural numbers such that iα+ jβ ∈ Φ. The constants Nαβij

appearing in the right-hand side of (2.7) are integers which can only take
values±1,±2,±3, they are called the structure constants of the Chevalley group
Gsc(Φ, R). Several different methods of computing signs of these constants have
been proposed in the literature, see e. g. [38], [39, § 9].

For an additive subgroup A ⊆ R and α ∈ Φ we denote by Xα(A) the corre-
sponding root subgroup of St(Φ, R), i. e. the subgroup generated by all xα(a),
a ∈ A.

Whenever we speak of the Steinberg group St(Ψ, R) parametrized by a root
subsystem Ψ ⊂ Φ we imply that the choice of structure constants for St(Ψ, R)
is compatible with that for St(Φ, R) (i. e. the mapping xα(ξ) 7→ xα(ξ) yields a
group homomorphism St(Ψ, R) → St(Φ, R)).
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In this paper we will be mostly interested in the case when the Dynkin diagram
of Φ is simply-laced, i. e. does not contain double bonds. In this case the defining
relations of St(Φ, R) have the following simpler form:

xα(a) · xα(b) = xα(a+ b), (R1)

[xα(a), xβ(b)] = xα+β(Nαβ · ab), for α+ β ∈ Φ, (R2)

[xα(a), xβ(b)] = 1, for α+ β 6∈ Φ ∪ 0. (R3)

In the above formulae a, b ∈ R and the integers Nα,β = Nα,β,1,1 = ±1 are
the structure constants of the Lie algebra of type Φ. Although there is still
some degree of freedom in their choice, they always must satisfy the relations,
indicated in the following lemma (cf. [39, § 14]).

Lemma 2.1. Suppose Φ is simply laced and α, β are roots of Φ such that α+β ∈
Φ, then the following identities hold for the structure constants:

Nα,β = −Nβ,α = −N−α,−β = Nβ,−α−β = N−α−β,α. (2.8)

If, moreover, γ ∈ Φ is such that α, β, γ form a basis of a root subsystem of type
A3 then one has

Nβ,γ ·Nα,β+γ = Nα+β,γ ·Nα,β. (2.9)

In our calculations below we repeatedly use identities (2.8) without explicit
reference.
For α ∈ Φ and s ∈ R× we define certain elements wα(s), hα(s) of St(Φ, R) (the
latter ones are sometimes called semisimple root elements):

wα(s) = xα(s) · x−α(−s−1) · xα(s),

hα(s) = wα(s) · wα(−1).

Recall from [16, Lemma 5.2] that the following relations hold for semisimple
root elements:

hα(t)xβ(u) = xβ(t
〈β,α〉u), (2.10)

hα(t)hβ(u) = hβ(t
〈β,α〉 · u) · hβ(t

〈β,α〉)−1, (2.11)

hα(t)
−1 = h−α(t). (2.12)

In the above formulae 〈β, α〉 denotes the integer 2(β,α)
(α,α) (we denote by (-, -) the

inner product on the euclidean space R
ℓ containing Φ).

2.2 K2-groups and symbols

In our calculations we use two families of explicit elements of K2(Φ, R) called
Steinberg and Dennis–Stein symbols. Notice that our notational conventions for
symbols follow [6] and not more modern textbooks such as [42] (cf. with Def-
inition III.5.11 ibid.). Notice also that the operation on K2(Φ, R) is always
written multiplicatively.
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Recall that Steinberg symbols are defined for arbitrary s, t ∈ R× as follows:

{s, t}α = hα(st) · h
−1
α (s) · h−1

α (t). (2.13)

In turn, Dennis–Stein symbols are defined for arbitrary a, b ∈ R satisfying
1 + ab ∈ R×:

〈a, b〉α = x−α

(
−b

1+ab

)
· xα(a) · x−α(b) · xα

(
−a

1+ab

)
· h−1

α (1 + ab). (2.14)

Dennis–Stein symbol 〈a, b〉α can be expressed through Steinberg symbols in the
special case when either a or b is an invertible element of R. More specifically,
the following formulae hold (cf. [6, p. 250]).

〈a, b〉α = {−a, 1+ab}α for a, 1+ab ∈ R×, {s, t}α =
〈
−s, 1−t

s

〉
α

for s, t ∈ R×.
(2.15)

Steinberg and Dennis–Stein symbols depend only on the length of α, in par-
ticular they do not depend on α if Φ is simply-laced. If Φ happens to be
nonsymplectic, i. e. Φ 6= A1,B2,C≥3, Steinberg symbols are antisymmetric and
bimultiplicative, i. e. they satisfy the following identities:

{u, st} = {u, s}{u, t}, {u, v} = {v, u}−1. (2.16)

For these and other properties of symbols we refer the reader to [6]. From (2.16)
it follows that

{u, v}−1 = {u−1, v} = {u, v−1}. (2.17)

Recall that the classical Matsumoto theorem (see [16, Theorem 5.10]) allows one
to compute the group K2(Φ, R) in the special case when R = k is a field. Using
the modern language of Milnor–Witt K-theory (see [17]) it can be formulated
as follows:

K2(Φ, k) =

{
KMW

2 (k) if Φ is symplectic,

KM
2 (k) otherwise.

In the following lemma we recall the computation of the group K2(Φ, R) in the
case R = k[X,X−1].

Lemma 2.2 (Hurrelbrink–Morita–Rehmann). Let Φ be a reduced irreducible
root system of type 6= G2 and k be an arbitrary field. Then there is a split exact
sequence of abelian groups

0 K2(Φ, k) K2(Φ, k[X,X−1]) H(Φ, k) 0, in which

H(Φ, k) =

{
KMW

1 (k) if Φ is symplectic,
K1(k) ∼= k× otherwise.

Proof. Let us first consider the case of nonsymplectic Φ, in which one can find
a long root α ∈ Φ in such a way that there is a commutative diagram of abelian
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groups

k× K2(Φ, k[X,X−1]) K2(Φ, k(X))

KM
2 (k(X)),

{−,X}

h

∼=

in which h = {−, X}α and the vertical map is an isomorphism by Matsumoto’s
theorem. Notice that the diagonal map is split by the obvious residue homomor-
phism and therefore is injective. This, in turn, implies that h is also injective.
The assertion of the lemma now follows from [10, Satz 3] which asserts that for
a nonsymplectic Φ one has K2(Φ, k[X,X−1]) = Im(h)⊕K2(Φ, k).
Consider now the case when Φ is symplectic. In this case the assertion of the
lemma is just a reformulation of [18, Theorem B], which asserts that for ℓ ≥ 1
one has K2(Cℓ, k[X,X−1]) ∼= K2(Cℓ, k)⊕P (k), where P (k) is the set k××I2(k)
with the group structure given by

(u, y) · (v, z) = (uv, y + z − 〈〈u, v〉〉).

Here I2(k) stands for the second power of the fundamental ideal I(k) in the
Witt ring W (k) of k. Recall from [17] that KMW

1 (k) is isomorphic to the
pullback of the diagram:

KMW
1 (k) I(k)

K1(k) I(k)/I2(k),

in other words, it consists of pairs [u, x] such that x− 〈〈u〉〉 ∈ I2(k). It is easy
to verify that the map [u, x] 7→ (u, 〈〈u〉〉−x) defines an isomorphism of KMW

1 (k)
and P (k).

Remark 2.3. It is possible to give a different proof of the above lemma in the
case Φ = Cℓ for ℓ ≥ 5 under the additional assumption that the characteristic
of k is not 2. Indeed, we have the following chain of isomorphisms:

K2(C∞, k[X,X−1]) ∼= GW2
2(k[X,X−1]) ∼=

∼= GW2
2(k)⊕GW1

1(k)
∼= KMW

2 (k)⊕KMW
1 (k), (2.18)

in which the first two isomorphisms are obtained from (3.1) and Theorem 3.1
and the last one follows from [3, Lemma 4.1.1] and Matsumoto’s theorem. It
remains to invoke the stability theorem [19, Theorem 9.4] to obtain the assertion
in the unstable case.

Lemma 2.4. For Φ 6= G2 the homomorphism St(Φ, k[X ]) → St(Φ, k[X,X−1])
is injective. Moreover, the intersection of the images of St(Φ, k[X ]) and
St(Φ, k[X−1]) inside St(Φ, k[X,X−1]) coincides with the image of St(Φ, k).
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Proof. The first assertion follows from the commutative diagram

K2(Φ, k)

K2(Φ, k[X ]) K2(Φ, k[X,X−1])

∼=

and the injectivity of its diagonal arrows. Indeed, the left arrow is an iso-
morphism by the Korollar of [21, Satz 1] and the right arrow is split injective
by Lemma 2.2.
Let us verify the second assertion. Let g be an element of the intersection of
St(Φ, k[X ]) and St(Φ, k[X−1]) inside St(Φ, k[X,X−1]). Clearly, the image of g
in Gsc(Φ, k[X,X−1]) lies in Gsc(Φ, k), therefore there exists g0 ∈ St(Φ, k) such
that gg−1

0 ∈ K2(Φ, k[X ]) = K2(Φ, k). Thus, we conclude that g ∈ St(Φ, k).

2.3 Relative Steinberg groups and unstable K-groups

In this subsection we recall the definitions and basic facts pertaining to the
theory of relative central extensions developed by J.-L. Loday in [15]. The main
goal of this subsection is to show that Loday’s theory can be applied to unstable
Steinberg groups, and that the resulting relative unstable Steinberg groups have
many of the properties of their stable counterparts. Some of the results of this
subsection have been briefly mentioned in [24] (cf. e. g. Corollaries 3–4).
Recall that the category of (commutative) pairs Pairs is defined as follows. Its
objects are pairs (R, I), in which R is a commutative ring with 1 and I is a
(not necessarily proper) ideal of R. A morphism of pairs f : (R, I) → (R′, I ′)
is, by definition, a (unit-preserving) ring homomorphism f : R → R′ such that
f(I) ⊆ I ′. Notice that the mapping (R, I) 7→ (R → R/I) defines a functor
from Pairs to the morphism category CRings→. If (R, I) is such that R is a
local ring with maximal ideal I, we call such pair a local pair.
There is an obvious fully faithful embedding CRings → Pairs sending R to
(R,R). For a given functor S : CRings → Groups a relativization of S is any

functor S̃ : Pairs → Groups extending S in the obvious sense. Relativization
of a functor is not unique.
Recall that the double ring DR,I of a pair (R, I) is, by definition, the pullback
ring R ×R/I R. In other words, it is the ring consisting of pairs of elements
of R congruent modulo I. Denote by p0, p1,∆ the two obvious projections and

the diagonal map DR,I R. It is clear that p0∆ = p1∆ = idR.

Let S : CRings → Groups be a functor. Set Gi = Ker(S(pi)) and define Lo-
day’s relativization S(R, I) as G0/[G0, G1]. The homomorphism S(p1) induces
a natural transformation S(R, I) → S(R). We denote this map by µ = µR,I

and its kernel by CS(R, I):

1 CS(R, I) S(R, I) S(R) S(R/I) 1.
µ

(2.19)
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Definition 2.5. By definition, the relative Steinberg group St(Φ, R, I) is the
result of application of Loday’s relativization to the functor St(Φ,−). Notice
that St(Φ, R, I) is a central extension of Ker(St(Φ, R) → St(Φ, R/I)) by the
abelian group CSt(Φ,−)(R, I). For shortness we rename the latter group to
C(Φ, R, I).

Our next goal is to obtain a homological interpretation of the group C(Φ, R, I).
In order to do this, we need to recall some additional notation and terminology.
First of all, recall that a central extension of a group G is a surjective homo-
morphism G̃ → G, whose kernel is contained in the center of G̃. A morphism of
central extensions is a homomorphism G̃ → G̃′ over G. A central extension is
said to be universal if it is an initial object of the category of central extensions
of G.
Recall that a crossed module is a triple (M,N, µ) consisting of the following
data:

(1) a group N acting on itself by left conjugation (i. e. nn′ = nn′n−1).

(2) a group M with a left action of N (we call such a group an N -group and
use the notation nm to denote the image of an element m ∈ M under the
action of n ∈ N);

(3) a homomorphism µ : M → N preserving the action of N and satisfying
Peiffer identity µ(m)m′ = mm′m−1.

It can be shown that the image of µ is always a normal subgroup of N and
that the kernel of µ, which we denote by L, is always contained in the center
of M .
Let ν : N ։ Q be a surjective homomorphism. A relative central extension of
ν is, by definition, a crossed module (M,N, µ) such that the cokernel of µ is ν:

1 L M N Q 1
µ ν (2.20)

A morphism (M,µ) → (M ′, µ′) of two relative central extensions of ν is, by
definition, an N -group homomorphism f : M → M ′ such that µ′f = µ. A
relative central extension is said to be universal if it is an initial object of the
category of relative central extensions of ν.
It turns out that the set Ext(Q,N ;L) of isomorphism classes of relative cen-
tral extensions of ν by an abelian group L can be classified by means of a
certain cohomological invariant called characteristic class. More precisely, [15,
Théorème 1] asserts that there is a well-defined bijection ξ : Ext(Q,N ;L) →
H3(Q,N ;L).

For the rest of this subsection S
π
−→ P ⊆ G is a triple of group-valued functors

on the category of commutative rings satisfying the following assumptions:

(A1) G(DR,I) ∼= G(R)×G(R/I) G(R).
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(A2) For every pair (R, I) the coequalizer of S(p0), S(p1) is precisely S(R) →
S(R/I).

(A3) P (R) is a normal subgroup of G(R).

(A4) The homomorphism πR : S(R) → P (R) is a universal central extension
for all R. In particular, S(R) and P (R) are perfect and H2(S(R),Z) = 0.

Lemma 2.6. For every pair (R, I) the homomorphism µ : S(R, I) → S(R) is a
universal relative central extension of ν : S(R) → S(R/I). The group CS(R, I)
is naturally isomorphic to the relative homology group H3(S(R/I), S(R);Z).

Proof. The action of S(R) on S(DR,I) given by gh = S(∆)(g) · h · S(∆)(g)−1

induces an action of S(R) on S(R, I). The homomorphism µ : S(R, I) → S(R)
from (2.19) is an S(R)-homomorphism with respect to this action. From (A1)
and π(Gi) ⊆ Ker(G(pi)) we obtain that G0 ∩ G1 ⊆ Ker(πDR,I

) hence it is a
central subgroup of S(DR,I) by (A4). Thus, we have verified the assumptions
of [15, Proposition 6] which asserts that the homomorphism µ is a universal
relative central extension of the coequalizer ν = coeq(d0, d1). Since ν coincides
with S(R) → S(R/I) by (A2), we have completed the proof of the first assertion
of the lemma.
Set N = S(R), Q = S(R/I), C = H3(Q,N ;Z). Recall from the proof of [15,
Théorème 2] that to every relative central extension (M,µ) of ν with kernel L
one can associate a homomorphism of abelian groups C → L. This homomor-
phism is obtained from the characteristic class ξ(M,µ) via the isomorphism
H3(Q,N ;L) ∼= Hom(C,L) of the universal coefficients theorem for cohomol-
ogy (for this isomorphism we need the vanishing of H2(Q,N ;Z), which is a
consequence of (A4)).
In the special case M = S(R, I) this construction produces a homomorphism
C → CS(R, I) whose naturality in (R, I) follows from [15, Proposition 3]. This
homomorphism is an isomorphism by [15, Théorème 2].

We retain our notation for the functors S, P and G. For i ≥ 1 we define the
unstable Quillen K-functors KG,P

i via

KG,P
i (R) = πi(BG(R)+P (R)). (2.21)

It is not hard to obtain the following concrete description of these functors in
the cases i = 1, 2, 3.

Lemma 2.7. There are natural isomorphisms

(1) KG,P
1 (R) ∼= G(R)/P (R);

(2) KG,P
2 (R) ∼= Ker(S(R) → G(R));

(3) KG,P
3 (R) ∼= H3(S(R),Z).
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Proof. The first claim is obvious, the other claims follow from (A3) and (A4)
using the standard properties of the plus-construction, see [42, § IV.1] (cf. Ex-
ercises 1.8–1.9 ibid.)

We denote by O2n(R) and EO2n(R) the orthogonal group of rank n over a ring
R and its elementary subgroup, respectively (see e. g. [33] for the definition of
these groups). Now set Gn = O2n(−), Pn = EO2n(−), Sn = St(Dℓ,−). The
triple (Gn, Pn, Sn) plays a key role in the present paper.

We need to introduce more notation. Denote by G̃n the Chevalley group
Gsc(Dn,−) = Spin(2n,−) and by P̃n its elementary subfunctor E(Dn,−) =
Epin(2n,−).

It is clear that both Gn and G̃n satisfy (A1) and that Sn satisfies (A2). It is

well known that Pn (resp. P̃n) is a normal subgroup of Gn (resp. G̃n) for n ≥ 3

(see [33],[35]). Thus, (A3) is satisfied for Pn and P̃n.

By [27, Corollary 5.4] the group Sn is centrally closed for n ≥ 5, in other words
every central extension of Sn splits. On the other hand, [14, Theorem 1] shows

that K2(Dℓ, R) = Ker(Sn → G̃n) is a central subgroup of Sn for n ≥ 4.

Recall from p. 189 of [4] that for n ≥ 3 there is an exact sequence

1 µ2(R) P̃n(R) Pn(R) 1, (2.22)

in which the group µ2(R) = {a ∈ R× | a2 = 1} is a central subgroup of P̃n(R).
Now by [30, § 7(v)] the group KO2(2n,R) = Ker(Sn → Gn) is also central in

Sn. Thus, we see that Sn is a universal central extension of both Pn and P̃n

for n ≥ 5.

We have checked that both triples (Gn, Pn, Sn) and (G̃n, P̃n, Sn) satisfy the
requirements (A1)–(A4) for n ≥ 5. In the sequel we use the notation KOi(2n,R)

as a shorthand for KGn,Pn

i (R).

Notice that the groups KO2(2n,R) and K2(Dn, R) are related via the exact
sequence

1 K2(Dn, R) KO2(2n,R) µ2(R) 1,

which is obtained from (2.22) and the snake lemma (cf. also with [4, Corol-
lary 4.3.5]). On the other hand, from Lemma 2.7 it follows that KO3(2n,R) ∼=

KG̃n,P̃n

3 .

We conclude this subsection with the following stability result (see [19, Theo-
rem 9.4]).

Theorem 2.8 (Panin). Let R be either a field, principal ideal domain or a
Dedekind domain. Set a = 1, 2 or 3 in each of these three cases, respectively.
Then the stability map KOi(2n,R) → KOi(2(n+ 1), R) is an epimorphism for
n ≥ b and an isomorphism for n ≥ b+ 1, where b = max(2i, a+ i− 1).
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3 An injectivity theorem for Steinberg groups

We start this section by recalling basic notation and facts pertaining to the
theory of higher Grothendieck–Witt groups. Recall that this theory, developed
by M. Schlichting, is a modern broad generalization of the classical hermitian
K-theory of rings. We refer the reader to [7, § 2] and [3, § 2] for an introduction
to Grothendieck–Witt groups.
For our purposes it suffices to restrict attention to the affine case, in which the

Grothendieck–Witt groups GW
[k]
i (R) for i ≥ 1, [k] ∈ Z/4Z can be considered

simply as a shorthand for the following 4 groups:

GW
[k]
i (R) =






KOi(R), k = 0
Ui(R), k = 1
KSpi(R), k = 2

−1Ui(R), k = 3.

(3.1)

Here KOi(R) denotes the usual orthogonal K-group defined via (2.21) with
G(R) = O∞(R) and P (R) = [G(R), G(R)]. Replacing the stable orthogonal
group with the stable symplectic group one can also define the symplectic K-
groups KSpi(R). We refer the reader to [11] for the definition and properties
of the groups ±1Ui(R). We will not use these definitions directly.
The following result, which is a special case of [23, Theorem 9.13] of M. Schlicht-
ing, plays a key role in the proof of Theorem 2.

Theorem 3.1 (Bass Fundamental Theorem). Suppose that R is a regular ring
such that 2 ∈ R×, then for any i ≥ 1, k ∈ Z/4Z there is a natural split exact
sequence of abelian groups

0 GW
[k]
i (R) GW

[k]
i (R[X,X−1]) GW

[k−1]
i−1 (R) 0.

We will need only the special case k = 0 of the above theorem, in which it turns
into an earlier result of J. Hornbostel, see [8, Corollary 5.3].
For the rest of this section let us fix the following notation. Let A be an
arbitrary commutative local ring with maximal ideal M and residue field k.
Denote by B the subring A[X−1] +M [X ] of the ring R = A[X,X−1] and by I
the ideal M [X,X−1] of R (it is clear that I is also an ideal of B).

Lemma 3.2. Assume additionally that the residue field k is of characteristic 6= 2.
Then the canonical homomorphism f : C(Dℓ, B, I) → C(Dℓ, R, I) is surjective
for ℓ ≥ 7.

Proof. Writing the starting portion of the homology long exact sequence for
the homomorphism St(Dℓ, R) → St(Dℓ, R/I) and using the isomorphisms
of Lemma 2.6 and Lemma 2.7 we obtain the following commutative diagram:

KO3(2ℓ, B) KO3(2ℓ, k[X
−1]) C(Dℓ, B, I)

KO3(2ℓ, R) KO3(2ℓ, k[X,X−1]) C(Dℓ, R, I).

f ′ f
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By Theorem 2.8 the homomorphism f ′ can be identified with the canonical map

GW
[0]
3 (k[X−1]) → GW

[0]
3 (k[X,X−1]). By Theorem 3.1 GW

[0]
3 (k[X,X−1]) ∼=

GW
[0]
3 (k)⊕GW

[3]
2 (k), but since the group GW

[3]
2 (k) is trivial by [7, Lemma 2.2],

the homomorphism f ′ (and hence f) is surjective.

We will also need the following property of relative Steinberg groups which is
a special case of a more general property discussed in [14, § 2].

Lemma 3.3. Let Φ be a simply-laced root system of rank ≥ 3, Consider the
following commutative square of canonical homomorphisms.

St(Φ, B, I) St(Φ, B)

St(Φ, R, I) St(Φ, R)

µB

µR

t

Then there exists a diagonal homomorphism t which makes the diagram com-
mute.

Proof. Notice that R is isomorphic to the principal localisation of B at X and
that I is uniquely X-divisible in the sense of [14, § 4]. Thus, in the special case
Φ = A3 the assertion of the lemma follows from [14, Theorem 3]. In the general
case the assertion of the lemma is a corollary of amalgamation theorem [24,
Theorem 9].

Theorem 2. Suppose that 2 ∈ A×. Then for ℓ ≥ 7 the canonical homomor-
phism St(Dℓ, B) → St(Dℓ, R) is injective.

Proof. Consider the following commutative diagram with exact rows obtained
from (2.19):

C(Dℓ, B, I) St(Dℓ, B, I) St(Dℓ, B) St(Dℓ, k[X
−1])

C(Dℓ, R, I) St(Dℓ, R, I) St(Dℓ, R) St(Dℓ, k[X,X−1]).

λB

f

µB

g

νB

h i

λR µR

t

νR

The lifting t in the above diagram is obtained from Lemma 3.3. Let a be
an element of Ker(h). Since i is injective by Lemma 2.4, the element a also
lies in Ker(νB) and hence comes from some b ∈ St(Dℓ, B, I) via µB. Since
g(b) ∈ Ker(µR) there exists some c ∈ C(Dℓ, R, I) such that λR(c) = g(b).
By Lemma 3.2, f is surjective, therefore c = f(d) for some d ∈ C(Dℓ, R, I).
The required assertion now follows from the following calculation:

1 = µBλB(d) = tgλB(d) = tλRf(d) = t(g(b)) = µB(b) = a.
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4 Elementary calculations in relative Steinberg groups

Throughout this section Φ denotes an irreducible root system of rank ≥ 2, R a
commutative ring, and I, J denote a pair of ideals of R. Unless stated otherwise
we assume Φ to be simply laced.
We denote by St(Φ, R, I) the kernel of the homomorphism St(Φ, R) →
St(Φ, R/I). This group coincides with the image in St(Φ, R) of the relative
group St(Φ, R, I) defined in Section 2.3.

4.1 Generators of relative Steinberg groups

Denote by St(Φ, I) the subgroup of St(Φ, R) generated as a group by all root
subgroups Xα(I), α ∈ Φ. It is clear that St(Φ, R, I) contains St(Φ, I) and,
in fact, is its normal closure. We also denote by H(Φ, R, I) the subgroup of
St(Φ, R, I) generated by the semisimple root elements hα(u) and symbols {u, v},
u ∈ (1 + I)×, v ∈ R×, α ∈ Φ.
For s ∈ I, ξ ∈ R, t ∈ J we define the following two families of elements of
St(Φ, R, I)

zα(s, ξ) = xα(s)
x−α(ξ), (4.1)

cα(s, t) = [xα(s), x−α(t)]. (4.2)

Lemma 4.1. Let Φ be a simply laced root system. The elements zα(s, ξ) satisfy
the following relations for all ξ, η ∈ R, s ∈ I:

(1) zα(s, ξ)
x−α(η) = zα(s, ξ + η);

(2) zβ(s, ξ)
xα(η) = xα(−sξη) · xα+β(Nβ,α · sη) · zβ(s, ξ) if α+ β ∈ Φ;

(3) zβ(s, ξ)
xα(η) = xα(sξη) · xα−β(Nβ,−α · sξ2η) · zβ(s, ξ) if α− β ∈ Φ;

(4) zβ(s, ξ)
xα(η) = zβ(s, ξ) if α ⊥ β;

(5) If α+ β ∈ Φ then

zα+β(sη, ξ) = xα(ǫs) · x−β(−sξ) · xβ(sξη
2) · xα+β(sη)·

· zα(−ǫs,−ǫξη) · x−α(−ǫsξ2η2) · x−α−β(−sξ2η) · z−β(sξ,−η),

where ǫ = Nα,β.

Proof. The first four assertions are contained in [24, Lemma 9], so it remains to
verify the last assertion. Notice that by (R3) the elements xβ(η) and x−α(ǫsη)
commute with each other, therefore from (R2)–(R3) we obtain that

zα+β(sη, ξ) = [xα(ǫs)
x−α−β(ξ), xβ(η)

x−α−β(ξ)] =

= [xα(ǫs)x−β(−sξ), xβ(η)x−α(ǫξη)] =

= xα(ǫs) · x−β(−sξ) · zα(−ǫs,−ǫξη)xβ(−η) · z−β(sξ,−η)x−α(−ǫξη),

and the required assertion follows from (2).
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Let us mention an immediate application of Lemma 4.1. First of all, recall
the following two results which give two different generating sets for the group
St(Φ, R, I) (notice that both results apply to general irreducible Φ of rank ≥ 2,
i. e. not necessarily simply-laced ones).

Theorem 4.2 (Stein–Tits–Vaserstein). The group St(Φ, R, I) is generated (as
an abstract group) by elements zα(s, ξ), α ∈ Φ, s ∈ I, ξ ∈ R.

Proof. See e. g. [37, Theorem 2].

Definition 4.3. Recall from [5, Ch. VI, § 1.7] that a root subset S ⊆ Φ is
called closed if α, β ∈ S and α + β ∈ Φ imply α+ β ∈ S. Recall that a closed
root subset S is called parabolic (resp. symmetric, resp. special) if S ∪−S = Φ
(resp. S = −S, resp. S ∩ (−S) = ∅). The special part ΣS of a parabolic subset
S, by definition, consists of all α ∈ S such that −α 6∈ S.

For a subset of roots U ⊆ Φ we denote by Z(U,R, I) the subset of roots
consisting of elements xα(s), s ∈ I, α ∈ Φ and zα(s, ξ), α ∈ U , s ∈ I, ξ ∈ R.

Theorem 4.4 (Stepanov). Let S ⊆ Φ be a parabolic subset of Φ. Then the
group St(Φ, R, I) is generated by the set Z(ΣS , R, I).

Proof. See [24, Lemma 4].

Remark 4.5. We claim that in the simply-laced case the stronger Theorem 4.4
can be deduced from Theorem 4.2 by means of Lemma 4.1. Indeed, consider
the operator d : 2Φ → 2Φ of root subsets, whose value on each U ⊆ Φ is given
by

d(U) = U ∪ ((U − U) ∩ Φ) .

Here (U − U) ∩ Φ denotes the set of all differences of roots from U which are
themselves roots. It is not hard to show that for any parabolic subset S ⊆ Φ
the subset ΣS has the property that dn(ΣS) = Φ for some n > 1 (in fact,
n = 2). It remains to see that Lemma 4.1(5) immediately implies that every
group G containing Z(U,R, I) also contains Z(dU,R, I).

Lemma 4.6. Let Φ be a simply-laced root system. The elements cα(s, t) satisfy
the following relations for all s ∈ I, t ∈ J, ξ ∈ R:

(1) [cβ(s, t), xα(ξ)] = xα(−stξ) · xα+β(Nα,β · s2tξ) if α+ β ∈ Φ;

(2) [cβ(s, t), xα(ξ)] = xα(stξ + s2t2ξ) · xα−β(N−α,β · st2ξ) if α− β ∈ Φ;

(3) [cβ(s, t), xα(ξ)] = 1 if α ⊥ β;

(4) If α+ β ∈ Φ then

cα+β(s, tξ) = [xβ(st), x−β(ξ)]
xα+β(−s)x−α(ǫt) ·cα(ǫsξ,−ǫt)−1 ·x−β(−stξ2),

where ǫ = Nα,β.
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Proof. Notice that (3) is an obvious consequence of (R3). Let us verify the
first two assertions. Suppose that α+ β ∈ Φ. We have that

[cβ(s, t), xα(ξ)] = [xβ(s), x−β(t)] · [x−β(t), xβ(s) · xα+β(Nα,β · sξ)] by (4.2), (R2), (R3)

= xβ(s)[x−β(t), xα+β(Nα,β · sξ)] by (2.3)

= xα(−stξ) · xα+β(Nα,β · s2tξ) by (R2).

Now suppose that α− β ∈ Φ. We have that

[[xβ(s), x−β(t)], xα(ξ)] =
xβ(s)

(
x−β(t)[xβ(−s), [x−β(−t), xα(ξ)]]·

·xα(ξ)[x−β(t), [xα(−ξ), xβ(−s)]]
)
by (2.4)

= xβ(s)·x−β(t)xα (−Nβ,α−β ·Nα,−β · stξ) = xβ(s)·x−β(t)xα(stξ) by (R2),(R3)

= xα(stξ) · xα−β(−Nα,−β · st2ξ)xβ(−s) = xα(stξ + s2t2ξ) · xα−β(N−α,β · st2ξ) by (R2).

Finally, let us prove (4). Suppose that α + β ∈ Φ. The required identity can
be obtained as follows:

[xα+β(s), x−α−β(tξ)] = [xα+β(s), [x−α(−ǫt), x−β(ξ)]] by (R2)

= x−α(−ǫt)
(
xα+β(s)[[xα+β(−s), x−α(ǫt)], x−β(ξ)]·

·x−β(ξ)[[x−β(−ξ), xα+β(s)], x−α(ǫt)]
)
by (2.4)

=
(
xα+β(s)[xβ(st), x−β(ξ)] ·

x−β(ξ)[xα(ǫsξ), x−α(ǫt)]
)x−α(ǫt)

by (R2)

=
(
xα+β(s)[xβ(st), x−β(ξ)] · [xα(ǫsξ), x−α(ǫt) · x−α−β(tξ)]

)x−α(ǫt)

by (R2),(R3)

= [xβ(st), x−β(ξ)]
xα+β(−s)x−α(ǫt) · [x−α(−ǫt), xα(ǫsξ)] · [xα(ǫsξ), x−α−β(tξ)] by (2.1)

= [xβ(st), x−β(ξ)]
xα+β(−s)x−α(ǫt) · cα(ǫsξ,−ǫt)−1 · x−β(−stξ2) by (R2).

4.2 Computation of the kernel of the map of evaluation at 0

Let A be a local ring with maximal ideal M . The aim of this subsection is to
describe a generating set for the kernel of the map ev∗X=0 : St(Φ, A[X ],M [X ]) →
St(Φ, A,M) induced by the ring homomorphism of evaluation at 0. We denote
this kernel by K(A[X ],M [X ]).
It is obvious that K(A[X ],M [X ]) contains the subgroup St(Φ, A[X ], XM [X ]).
It turns out that, although K(A[X ],M [X ]) is generally strictly larger than
St(Φ, A[X ], XM [X ]), it contains very few extra generators, which all can be
explicitly described (see Proposition 4.9 and the corollary that follows it).
It follows from Lemma 4.7 below that K(A[X ],M [X ]) coincides with the
commutator subgroup [St(Φ, A[X ],M [X ]), St(Φ, A[X ], XA[X ])]. Thus, if we re-
place relative Steinberg groups in the statement of Proposition 4.9 with relative
elementary groups, the resulting assertion turns into a special case of a much
more general recent result of N. Vavilov and Z. Zhang (cf. [40, Theorem 1]).
Since ev∗X=0 admits a section, we can consider St(Φ, A,M) and St(Φ,M) as
subgroups of St(Φ, A[X ],M [X ]), moreover, one has

St(Φ, A[X ],M [X ]) = St(Φ, A,M)⋉K(A[X ],M [X ]). (4.3)
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Lemma 4.7. The following decomposition holds:

K(A[X ],M [X ]) = St(Φ, A[X ], XM [X ]) ·
[
St(Φ, XA[X ]), St(Φ, A,M)

]
.

Proof. Let us fix g(X) ∈ K(A[X ],M [X ]). By Theorem 4.2 we can write it as∏
i zαi

(fi(X), ξi(X)) for some fi(X) = fi(0)+Xf ′
i(X) ∈ M [X ], ξi(X) = ξi(0)+

Xξ′i(X) ∈ A[X ]. It is clear that modulo St(Φ, A[X ], XM [X ]) the element g(X)
is congruent to g1(X) =

∏
i zαi

(fi(0), ξi(X)).
Now each factor zαi

(fi(0), ξi(X)) can be written as follows:

zαi
(fi(0), ξi(0))

x−αi
(Xξ′i(X)) = [x−αi

(−Xξ′i(X)), zαi
(fi(0), ξi(0))]·zαi

(fi(0), ξi(0)).

It follows from the formula [g, h]h1 = [h−1
1 , g][g, h−1

1 h] that the subgroup

C0 :=
[
St(Φ, XA[X ]), St(Φ, A,M)

]

is normalized by St(Φ, A,M). Thus, we conclude that g1(X) is congruent to∏
i zαi

(fi(0), ξi(0)) = g(0) = 1 modulo C0, which implies the assertion.

Let S ⊆ Φ be a special root subset (see Definition 4.3). We denote by U(S,M)
the subgroup of St(Φ, A) generated by root subgroupsXα(M) corresponding to
all α ∈ S. We denote by Φ+ (resp. Φ−) the subsets of positive (resp. negative)
roots of Φ with respect to some chosen order on Φ.

Theorem 4.8 (Stein). One has

St(Φ, A,M) = U(Φ+,M) ·H(Φ, A,M) · U(Φ−,M).

Proof. See [28, Theorem 2.4].

Proposition 4.9. The subgroup K(A[X ],M [X ]) is generated as an abstract
group by the subgroup St(Φ, A[X ], XM [X ]) and the elements [xα(m), x−α(Xξ)],
m ∈ M , ξ ∈ A[X ], α ∈ Φ.

Proof. From (2.10) we obtain that H(Φ, A,M) normalizes both St(Φ, XA[X ])
and St(Φ,M) and, moreover, that

[H(Φ, A,M), St(Φ, XA[X ])] ⊆ St(Φ, A[X ], XM [X ]).

Denote by C1 the commutator subgroup [St(Φ, XA[X ]), St(Φ,M)]. It is clear
that for g ∈ St(Φ, XA[X ]), h ∈ H(Φ, A,M), u+ ∈ U(Φ+,M), u− ∈ U(Φ−,M)
one has:

[g, hu+u−] = [g, h] · [hg, h(u+u−)] ∈ St(Φ, A[X ], XM [X ]) · C1.

Since C0 is generated by the above commutators and St(Φ, A[X ], XM [X ]) is a
normal subgroup of St(Φ, A[X ]) we obtain that C0 ⊆ St(Φ, A[X ], XM [X ]) ·C1

and consequently that K(A[X ],M [X ]) = St(Φ, A[X ], XM [X ]) · C1.
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It is clear that modulo St(Φ, A[X ], XM [X ]) the commutator subgroup C1

is generated by elements of the form [xα(m), x−α(Xξ)]g, where m ∈ M ,
ξ ∈ A[X ], g ∈ St(Φ, A[X ]). Thus, it remains to show that commutators
[[xα(m), x−α(Xξ)], g] belong to St(Φ, A[X ], XM [X ]). Since the latter sub-
group is normal it suffices to prove this inclusion in the special case when g is
a member of some generating set for St(Φ, A[X ]). Clearly, the set consisting of
xβ(ξ), ξ ∈ A[X ], β 6= ±α is such a generating set, and in this case the required
inclusions follow from (1)–(3) of Lemma 4.6.

Corollary 4.10. For a local pair (A,M) and arbitrary fixed root γ of an
irreducible simply-laced root system Φ the subgroup K(A[X ],M [X ]) is generated
as a group by St(Φ, A[X ], XM [X ]) and the elements cγ(m,Xη), where m ∈ M ,
η ∈ A[X ].

Proof. Substituting ξ = 1, s = m, t = Xη into Lemma 4.6(4) we obtain
that modulo St(Φ, A[X ], XM [X ]) the element cα+β(m,Xη) is equivalent to
cα(−ǫm,−ǫXη)−1, ǫ = Nα,β. The assertion of the corollary now easily follows
from the irreducibility of Φ.

5 Proof of the main result

The main result of this section is Theorem 3, which is a direct generalization
of [36, Proposition 4.3]. The object playing a key role in its proof is a certain
action of the group G = St(Φ, A[X−1] + M [X ]) on a certain set V , which is
defined in Section 5.4. Later, we will see that V is, in fact, a set-theoretic
G-torsor. To be able to write an explicit formula for this action we need two
major ingredients. The first one is Proposition 5.3, which gives a presentation
of G with much fewer generations and relations than in the original presen-
tation (2.6)-(2.7). The other ingredients are certain subgroups Pα(0), Pα(∗)
of St(Φ, A[X,X−1]) modeled after the nameless groups from [36, Lemma 3.4].
The definition and properties of these groups are given in Sections 5.2–5.3.

Throughout this section we use the following notations and conventions:

• A denotes an arbitarary commutative ring and M is an ideal of A. Start-
ing from subsection 5.2 we also assume that A is local and M is the
maximal ideal of A.

• We denote by R the Laurent polynomial ring A[X,X−1]. We set t = X−1,
so that R = A[X,X−1] = A[t, t−1].

• B denotes the subring A[t] +M [t−1] = A[X−1] +M [X ] of R.

• I denotes the ideal M [X,X−1] of R (it is clear that I is also an ideal of
B).
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5.1 Presentation of Steinberg groups by homogeneous genera-

tors

We consider R = A[t, t−1] as a Z-graded ring in which t has degree 1. This
grading induces the grading on the subring B ⊆ R. For an integer d we denote
by Rd (resp. Bd) the degree d part of the ring R (resp. B). Obviously,
Bd = M · td for d < 0, and Bd = A · td for d ≥ 0. With this notation, B
decomposes as ⊕d∈ZBd as an A-module.
Whenever the coefficient ξ of a Steinberg generator g = xα(ξ) of St(Φ, B)
is a homogeneous element of B, i. e. ξ ∈ Bd for some d ∈ Z, we call the
corresponding generator g homogeneous of degree d. We denote by Sth(Φ, B)
the group given by the set of all homogeneous Steinberg generators modulo the
following set of Steinberg relations between them (below a, a′ ∈ Bd, b ∈ Re and
d, e ∈ Z):

xα(a) · xα(a
′) = xα(a+ a′), (R1d)

[xα(a), xβ(b)] = xα+β(Nα,β · ab), α+ β ∈ Φ, (R2d,e)

[xα(a), xβ(b)] = 1, α− β ∈ Φ, (R3∠d,e)

[xα(a), xβ(b)] = 1, α ⊥ β. (R3⊥d,e)

Remark 5.1. Notice that in the above presentation we omitted the relations
[xα(a), xα(b)] = 1 but it easy to see that they follow from R2e,0, (2.5) and

R3∠d,e. Indeed, after choosing some root β ∈ Φ such that α+β ∈ Φ and setting
ǫ = Nα+β,−β we obtain that

[xα(a), xα(b)] = [xα(a), [xα+β(b), x−β(ǫ)]] = [[xα(a), xα+β(b)],
xα+β(b)x−β(ǫ)] = 1.

It is not hard to show that the map Sth(Φ, B) → St(Φ, B) induced by the
obvious embedding of generators is an isomorphism. Thus, Sth(Φ, B) can be
considered as an alternative presentation of St(Φ, B) by homogeneous genera-
tors.
By the degree of a Steinberg relation we mean the maximum of degrees of
generators that appear in the relation. For example, the degree of every relation
of type R2d,e is max(d, e, d+ e), while the degree of a relation of type R3⊥d,e or

R3∠d,e is max(d, e).

For n ≥ 1 we define the “truncated” Steinberg group St≤n(Φ, B) by means
of the set XΦ

≤n of homogeneous Steinberg generators of degree ≤ n and the

subset RΦ
≤n of the above set of Steinberg relations consisting of all relations

of degree ≤ n. We denote by F (XΦ
≤n) the free group on XΦ

≤n. Notice that

lim
−→

St≤n(Φ, B) = Sth(Φ, B) ∼= St(Φ, B).

The following lemma asserts that most of the relations of type R3⊥d,e of positive

degree in this presentation of St≤n(Φ, B) are superfluous and can be omitted.
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Lemma 5.2. For every simply-laced root system Φ of rank ≥ 3 and every n ≥ 1
one can exclude from the presentation of St≤n(Φ, B) all relations of type R3⊥d,e
whenever max(0, d) + max(0, e) > 1.

Proof. The proof is based on the following observation: every relation R of type
R3⊥d,e of degree ≥ 2 is a consequence of some relation of type R3⊥ of strictly

smaller degree modulo the remaining relations of St≤n(Φ, B), i. e. relations of
type R2 and R3∠ (we use the commutator formulae R2 to reduce the degree of
the monomials appearing in R).
Let us fix some relation R = [xα(at

d), xγ(bt
e)] = 1 of type R3⊥d,e for some

α ⊥ γ. We can find β ∈ Φ forming an obtuse angle with both α and γ (see
e. g. [22, Lemma 3.1.2]). Without loss of generality we may assume e ≥ d and
e > 0. We need to consider two cases.

1. In the case 0 < d ≤ e ≤ n the relation R is a consequence of some relation
of type R3⊥0,e−d:

xα+β+γ(−ǫ1ǫ2 · abt
e) = (5.1)

= [xβ+γ(ǫ1 · bt
e−d), [x−β(t

d), xα+β(−δ1 · a)]] by R2d,0, R2d,e−d

= [[xβ+γ(ǫ1 · bt
e−d), x−β(t

d)], x−β(t
d)xα+β(−δ1 · a)] by (2.5), R3⊥0,e−d

= x−β(t
d)[xγ(−bte), xα+β(−δ1 · a)] by R2e−d,d, R3

∠

d,e

= x−β(t
d)[xβ+γ(ǫ1 · bt

e−d), xα(at
d)] by R2e,0, R2e−d,d

= [xγ(bt
e) · xβ+γ(ǫ1 · bt

e−d), xα(at
d)] by R2e−d,d, R3

∠

d,d

= xγ(bt
e)xα+β+γ(−ǫ1ǫ2 · abt

e) · [xγ(bt
e), xα(at

d)] by (2.2), R2e−d,d

= xα+β+γ(−ǫ1ǫ2 · abt
e) · [xγ(bt

e), xα(at
d)] by R3∠e,e,

where ǫ1 = Nβ,γ, ǫ2 = Nα,β+γ , δ1 = Nα,β and in the 4th equality we
use (2.9).

2. In the case d ≤ 0 ≤ e ≤ n the relation R is a consequence of some relation
of type R3⊥1,d+e−1:

[xα(at
d), xγ(bt

e)] =

= [xα(at
d), [xβ+γ(bt

e−1), x−β(−ǫ1t)]] by R2e−1,1

= [[xα(at
d), xβ+γ(bt

e−1)], xβ+γ(bt
e−1)x−β(−ǫ1t)] by (2.5) and R3∠d,1

= xβ+γ(bt
e−1)[xα+β+γ(ǫ2abt

d+e−1), x−β(−ǫ1t)] by R2d,e−1 and R3∠e−1,d+e−1

= 1 by R3⊥1,d+e−1,

where ǫ1 = Nβ,γ , ǫ2 = Nα,β+γ .

The assertion of the lemma now follows from the above observation by induction
on the degree of R and the fact that by (5.1) the relation R3⊥1,1 is a consequence

of R3⊥0,0.
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The following proposition is the main result of this subsection and also a direct
generalization of [36, Lemma 3.3].

Proposition 5.3. For Φ = A≥4,D≥5,E6,7,8 and n ≥ 1 the homomor-

phism in : St≤n(Φ, B) → St≤n+1(Φ, B), induced by the natural embedding
of generators, is an isomorphism. Consequently, the obvious homomorphism
St≤1(Φ, B) → St(Φ, B) is an isomorphism.

Proof. We need to construct a homomorphism jn which would be the inverse
of in. We start with a homomorphism j̃Φn : F 〈XΦ

≤n+1〉 → St≤n(Φ, B) defined
via

j̃Φn (xα(at
k)) =

{
xα(at

k), k ≤ n;

[xα−β(Nα−β,β · atk−1), xβ(t)], k = n+ 1,

where β is any root of Φ forming a sharp angle with α. A standard argument, cf.
[21, Proposition 1.1] or [22, Proposition 3.2.2], shows that j̃Φn does not depend
on the choice of β.

Set RΦ
n+1 = RΦ

≤n+1 \R
Φ
≤n. It suffices to verify that the image of every relation

R ∈ RΦ
n+1 under j̃Φn is a trivial element of St≤n(Φ, B). In the special case

Φ = A≥4 this has already been demonstrated by Tulenbaev in [36, Lemma 3.3],
so in this case the proof of the proposition is complete. We will deduce the
assertion in the remaining cases Φ = Dℓ,Eℓ from the special case Φ = A4 of
Tulenbaev’s result.

Let R be a relation from RΦ
n+1. By Lemma 5.2 we may assume that R is

not of type R3⊥, therefore the roots α, β appearing in R are contained in a
root subsystem of Φ of type A2. Our assumptions on Φ guarantee that there
exists some root subsystem Ψ of type A4 containing α and β. Consider the
following commutative diagram in which the vertical arrows are induced by
the embedding Ψ ⊆ Φ.

F (XΨ
≤n+1) St≤n(Ψ, B)

F (XΦ
≤n+1) St≤n(Φ, B)

jΨn

jΦn

The relation R lies in the image of the left arrow, therefore it comes from some
relation R′ ∈ RΨ

n+1. The image of R′ in St≤n(Ψ, B) under jΨn is trivial by

Tulenbaev’s result. But this implies that the image of R under j̃Φn is also trivial
and hence that j̃Φn gives rise to the desired map jn.

Remark 5.4. Notice that in the case Φ = Dℓ the pair {αℓ−1, αℓ} of orthogonal
simple roots cannot be embedded into a root subsystem of type A4. This
explains why we needed to exclude relations R3⊥ from the presentation of
St≤n(Φ, B) in the proof of the above proposition.
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Remark 5.5. In the special case M = A, B = A[t, t−1] the assertion of the
above proposition also holds in the cases Φ = A2,A3,D4. This is a conse-
quence of the presentation of D. Allcock applied to the affine untwisted Stein-
berg group St(Φ, A[t, t−1]) ∼= St(Φ̃(1), A). Allcock’s presentation implies that
St(Φ, A[t, t−1]) can be presented using only generators and relations of degree
≤ 1 with respect to both t and t−1, see [2, Corollary 1.3].
In the cases Φ = A3,D4, M 6= A it is still possible to prove the injectivity of in
starting from n ≥ 2 using a variation of the argument of Rehmann–Soulé (cf.
the lower bound for m in 3.2.1 of [22]). However, apparently, it is not possible
to establish the injectivity of i1 in the specified cases using arguments similar
to [22].

5.2 The subgroups Pα(0), Pα(∗), K(α, β) and their properties

Let Φ be a root system and α be an element of Φ. Consider the following
subsets of Φ:

Z+(α) = {β ∈ Φ | 〈α, β〉 > 0}, (5.2)

Z0(α) = {β ∈ Φ | α+ β 6∈ Φ, 〈α, β〉 = 0}, (5.3)

Z(α) = Z0(α) ⊔ Z+(α). (5.4)

Clearly, Z0(α) (resp. Z+(α)) is a symmetric (resp. special) subset of Φ (see Def-
inition 4.3 for the terminology).
We denote by Zα(A,M) the subgroup of St(Φ, A,M) generated by elements
xβ(m), β ∈ Z+(α) and zγ(m, ζ), γ ∈ Z0(α), where m ∈ M , ζ ∈ A (see the
beginning of Section 4 for the definition of the elements zγ(m, ζ) and the group
St(Φ, A,M)). It is not hard to see that

Zα(A,M) = Im
(
St(Z0(α), A,M) → St(Φ, A,M)

)
⋊ U(Z+(α),M).

In the above formula U(Z+(α),M) denotes the subgroup defined before Theo-
rem 4.8. It is clear, that Zα(A,M) centralizes the root subgroupXα(A) (cf. [27,
984]).
For the rest of this subsection Φ is a simply-laced root system of rank ≥ 3. Let
α be a fixed root of Φ. Notice that in the simply-laced case the assumption
α+β 6∈ Φ in the definition of Z0(α) is superfluous, i. e. Z0(α) = {β ∈ Φ | α ⊥ β}
(cf. [27, Proposition 5.7]).

Remark 5.6. Notice that our assumptions on the rank of Φ guarantee that
Z0(α) is nonempty. In particular, if A is a local ring with maximal ideal M
the group Zα(A,M) contains relative Dennis–Stein symbols 〈a,m〉 for a ∈ A,
m ∈ M . By (2.15) relative Steinberg symbols {a, 1 +m} are also contained in
Zα(A,M) for all a ∈ A×, m ∈ M .

Definition 5.7. Let M be an ideal of a local ring A. Denote by P̃α,M (0)
the subgroup of St(Φ, A[X ],M [X ]) generated by the following 5 families of
elements parameterized by f ∈ M [X ], ξ ∈ A[X ]:
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(P1) zβ(Xf, ξ), β ∈ Φ such that α+ β ∈ Φ or α− β ∈ Φ;

(P2) zβ(f,Xξ), α− β ∈ Φ;

(P3) zβ(f, ξ), β ⊥ α;

(P4) x−α(X
2f);

(P5) xα(f).

We denote by P̃α,M (∗) the subgroup of St(Φ, A[X ],M [X ]) generated by P̃α,M (0)
and the elements x−α(mX), m ∈ M .

Almost always we will be using the above definition in the situation when M
is precisely the maximal ideal of A. The only exception to this is Lemma 5.15
where the above subgroups are also used for M = A.
In the sequel we continue using letters f and ξ to denote elements of M [X ] and
A[X ], respectively.

Remark 5.8. From the above definition it follows that an element zγ(Xf, ξ) is
a generator of type P1 provided γ 6= ±α and γ 6⊥ α. Since xγ(Xf) = zγ(Xf, 0),
it follows that xγ(Xf) is also a generator of type P1. In particular, if β is such
that α + β ∈ Φ then x±(α+β)(Xf) is a generator of type P1 and xα+β(f) is a
generator of type P2.

Lemma 5.9. The subgroup P̃α,M (0) is normal in P̃α,M (∗). Moreover, there is
a short exact sequence of groups, which is split by the map m 7→ x−α(mX) (we
denote by (M,+) the additive group of the ideal M):

1 P̃α,M (0) P̃α,M (∗) (M,+) 1.
pα

Proof. We need to verify that the conjugate by x−α(mX) of every generator g

of P̃α(0) listed in Definition 5.7 belongs to P̃α(0). The assertion is obvious for
the generators of type P3 and P4.
Let β ∈ Φ be such that α − β ∈ Φ and g = zβ(Xf, ξ) be a generator of type
P1. By Lemma 4.1(2) we get that

zβ(Xf, ξ)x−α(mX) = x−α(−mX2fξ) · xβ−α(Nβ,−α ·mX2f) · zβ(Xf, ξ). (5.5)

The expression in the right-hand side is a product of generators of type P4, P1,
P1 (see Remark 5.8). Now consider the case when g = zβ(f,Xξ) is a generator
of type P2 (so that α− β ∈ Φ). Again by Lemma 4.1(2)

zβ(f,Xξ)x−α(mX) = x−α(−mX2fξ) · xβ−α(Nβ,−α ·mXf) · zβ(f,Xξ). (5.6)

It is easy to see that the expression in the right-hand side of (5.6) is a product
of generators of type P4, P1, P2.
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Now let g = zβ(Xf, ξ) be a generator of type P1 in the case α + β ∈ Φ.
By Lemma 4.1(3)

zβ(Xf, ξ)x−α(mX) = x−α(mX2fξ) · x−α−β(Nβ,α ·mX2fξ2) · zβ(Xf, ξ), (5.7)

and the latter expression is a product of generators of type P4, P1, P1.
Finally, let g = xα(f) be a generator of type P5. Substituting s = −ǫf ,
ξ = −ǫm, η = X into the identity of Lemma 4.1(5) and expressing the fifth
factor in the right-hand side of it through other terms we obtain that

gx−α(mX) = zα(f,mX) = xα+β(ǫXf) · xβ(−mX2f) · x−β(mf) · xα(f)·

· zα+β(−ǫXf,−ǫm) · z−β(−mf,−X) · x−α−β(−ǫm2Xf) · x−α(−m2X2f),
(5.8)

where ǫ = Nα,β. It is clear that the latter expression is a product of generators
of type P1, P1, P2, P5, P1, P2, P1, P4.

Remark 5.10. By (4.2) one has cβ(f,Xξ) = xβ(f)·zβ(−f,−Xξ). This implies
that for β ∈ Z+(α) (resp. β ∈ Z0(α)) the element cβ(f,Xξ) is a product of two

generators of type P2 (resp. P3). Thus, the elements cβ(f,Xξ) lie in P̃α,M (0)
for all β ∈ Z(α).

Remark 5.11. It is easy to check that P̃α,M (0) contains the image of Zα(A,M)
under the natural embedding of St(Φ, A,M) →֒ St(Φ, A[X ],M [X ]). In partic-

ular, if M is the maximal ideal of A, the subgroup P̃α,M (0) contains relative
Dennis–Stein and Steinberg symbols. It is also easy to see that the image of
P̃α,M (0) under the homomorphism ev∗X=0 coincides with Zα(A,M).

The following lemma shows that P̃α,M (∗) is sufficiently large.

Lemma 5.12. Suppose that (A,M) is a local pair. Then the subgroup P̃α,M (∗)
contains the subgroup K(A[X ],M [X ]) ≤ St(Φ, A[X ],M [X ]) defined at the be-
ginning of Section 4.2.

Proof. Clearly, P̃α,M (∗) contains the elements xβ(Xf) for all β ∈ Φ and
zβ(Xf, ξ) for β ∈ Φ \ {±α}, f ∈ M [X ], ξ ∈ A[X ], therefore by Theorem 4.4

P̃α,M (∗) contains all of St(Φ, A[X ], XM [X ]). The required assertion now fol-
lows from Corollary 4.10 and Remark 5.10.

Remark 5.13. From the above lemma, (4.3) and Remark 5.11 it follows

that the subgroup P̃α,M (∗) admits decomposition P̃α,M (∗) = Zα(A,M) ⋉
K(A[X ],M [X ]).

Remark 5.14. It follows from Lemma 5.9 and Lemma 5.12 that the value of the
function pα from the statement of Lemma 5.9 on an element g ∈ K(A[X ],M [X ])
can be computed via the following procedure. Start with any presentation of g
as a product of elements zβ(Xf, ξ) for β ∈ Φ and cδ(f,Xξ) for some fixed
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δ ∈ Z0(α). Now pick among these factors those that correspond to the root
β = −α (i. e. pick all factors z−α(Xfi, ξi)). Now pα(g) is precisely the sum of
constant terms of the polynomials fi.

Lemma 5.15. Suppose (A,M) is a local pair. Then for any β ∈ Z(α) and b ∈ A

the subgroups P̃α,M (0) and P̃α,M (∗) are stable under conjugation by xβ(b).

Proof. Notice that both Zα(A,M) and K(A[X ],M [X ]) are stable under the

specified conjugation, which implies the assertion for P̃α,M (∗). To obtain the

assertion for P̃α,M (0) consider the following commutative diagram:

P̃α,M (0) P̃α,M (∗) (M,+)

P̃α,A(0) P̃α,A(∗) (A,+).

pα,M

pα,A

Notice that xβ(b) ∈ P̃α,A(0), therefore for g ∈ P̃α,M (0) one has

pα,M (xβ(b) · g · xβ(−b)) = pα,A(xβ(b) · g · xβ(−b)) = pα,A(g) = 0,

which implies the assertion.

For the rest of this subsection M is the maximal ideal A. We denote by β
another fixed root of Φ forming a sharp angle with α (i. e. 〈α, β〉 = 1). We
denote by Ψ the subsystem of type A2 generated by α and β.

Definition 5.16. Fix a root δ ∈ Φ \ Ψ. Define K̃(α, β) as the sub-
group of St(Φ, A[X ],M [X ]) generated by the following 5 families of elements
parametrized by ξ ∈ A[X ], f ∈ M [X ]:

(K1) zγ(Xf, ξ), for all γ ∈ Φ \Ψ;

(K2) x−α(X
2f), x−β(X

2f);

(K3) xα(Xf), xβ(Xf);

(K4) xα−β(Xf), xβ−α(Xf);

(K5) cδ(f,Xξ).

Proposition 5.17. One has

K(A[X ],M [X ]) = K̃(α, β) ·X−α(M ·X) ·X−β(M ·X).

Proof. It is clear that K(A[X ],M [X ]) ⊇ K̃(α, β) ·X−α(M ·X) ·X−β(M ·X).
Let us prove the reverse inclusion. Fix an element g ∈ K(A[X ],M [X ]). We
need to show that g lies in the specified product of subgroups.
For i = 1, . . . , 5 denote by Gi the set of all generators of type Ki from Defini-
tion 5.16. Notice that Φ \ Ψ contains the parabolic set of roots (Φ \ Ψ) ∩ Φ+.
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Thus, by Theorem 4.4 every element of St(Φ, A[X ], XM [X ]) can be presented
as a product of generators G1 and generators G′ = {xγ(Xf) | γ ∈ Ψ}. In
turn, by Corollary 4.10 one can express g as a product of these generators and
generators G5.
Set G0 = St(Φ, A[X ], X2M [X ]). By Theorem 4.4 K̃(α, β) contains the normal
subgroupG0 therefore it suffices to obtain the required presentation of g modulo
G0. By Lemma 4.1 and Lemma 4.6 the elements of G′ commute with the
elements of G1 and G5 modulo G0, therefore we can rewrite g as g1 · g2, for
some g1 ∈ 〈G1,G5, G0〉 ⊆ K̃(α, β) and g2 ∈ 〈G′〉.
It is clear that xγ1(mX) and xγ2(m

′X) commute modulo G0 whenever γ1 6=
−γ2 for γ1, γ2 ∈ Ψ. On the other hand, for γ ∈ Ψ any commutator
cγ(mX,m′X) is congruent to some generator of G5 modulo G0 (cf. the proof
of Corollary 4.10) and hence commutes with the elements of G′ modulo G0.
Now pick each factor xγ(Xf), γ ∈ {−α,−β} appearing in the presentation
for g2, decompose it as xγ(X

2f ′) · xγ(m
′X) for some f ′ ∈ M [X ], m′ ∈ M and

then move the second factor to the rightmost position within g2 conjugating
all factors along the way. By the previous paragraph only elements of G5

may appear modulo G0 after simplification of these conjugates. Thus, we can
rewrite g2 as g21 · g22, where g21 ∈ 〈G2,G3,G4,G5, G0〉 ⊆ K̃(α, β) and g22 ∈
〈X−α(MX), X−β(MX)〉 = X−α(MX) · X−β(MX). Thus, we have obtained
the desired decomposition for g.

Corollary 5.18. One has K̃(α, β) = K(A[X ],M [X ]) ∩ P̃α,M (0) ∩ P̃β,M (0).

In particular, K̃(α, β) does not depend on the choice of the root δ in Defini-
tion 5.16.

Proof. Denote P̃α,M (0) ∩ P̃β,M (0) ∩ K(A[X ],M [X ]) by K. It is clear that

K̃(α, β) ⊆ K. Let us prove the reverse inclusion. Let g be an element of K.
By Proposition 5.17 g can be presented as g0 · x−α(mX) · x−β(m

′X) for some

g0 ∈ K̃(α, β) and m,m′ ∈ M . From Remark 5.14 we obtain that 0 = pα(g) =

m, 0 = pβ(g) = m′, therefore g = g0 lies in K̃(α, β), as required.

Corollary 5.19. One has P̃α,M (0)∩K(A[X ],M [X ]) = K̃(α, β) ·X−β(M ·X).

Proof. Set L = P̃α,M (0) ∩K(A[X ],M [X ]). The elements of X−β(M ·X) are

generators of type P1 for P̃α,M (0) (cf. Remark 5.8), therefore X−β(M ·X) ⊆ L.

On the other hand, by Corollary 5.18 K̃(α, β) ⊆ L. Thus, we have shown

that K̃(α, β) · X−β(M · X) ⊆ L. The reverse inclusion immediately follows
from Remark 5.14 and Proposition 5.17.

Lemma 5.20. For b ∈ A one has K̃(α, β)xβ−α(b) ⊆ K̃(α, β).

Proof. By Lemma 4.1 the conjugate of a generator g = zγ(Xf, ξ) of type K1
by xβ−α(b) is either g itself or a product of generators of type K4, K1, K1.
By Lemma 4.6 the conjugate of a generator g = cδ(f,Xξ) of type K5 is either
g or a product of generators of type K5, K4, K1.
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Now if g = xγ(Xf), γ ∈ {±α,±β} is a generator of type K2 or K3, the
conjugation by xβ−α(a) either fixes g or transforms it into a product of two
generators of type K2 or K3. Finally, from Remark 5.14 we obtain that
zα−β(Xf, b) ∈ K(A[X ],M [X ]) ∩ P̃α(0) ∩ P̃β(0) = K̃(α, β).

Definition 5.21. Define the subgroups Pα(0), Pα(∗), K(α, β) ≤ St(Φ, R, I)

as the images of the subgroups P̃α,M (0), P̃α,M (∗), K̃(α, β) under the natural
homomorphism j+ : St(Φ, A[X ]) → St(Φ, R).

We need one more technical definition. Denote by Zα,β the subgroup U(Z+(α)\
{α − β},M [X ]) of St(Φ, A[X,X−1]). Recall that this means that Zα,β is the
group generated by all root subgroups Xγ(M [X ]), where γ ∈ Z+(α) \ {α− β}.

Lemma 5.22. The image of K(α, β) under the automorphism of conjugation
by xα(aX

−1) is contained in the subgroup of St(Φ, A[X,X−1]) generated by
K(α, β) and Zα,β.

Proof. We need to verify that the conjugate by xα(aX
−1) of every generator

from Definition 5.16 lies in the specified subgroup. To simplify notation we call
the generators of Zα,β “generators of type Z“.
Let zγ(Xf, ξ) be a generator of type K1 for some γ ∈ Φ \Ψ. In the case γ ⊥ α
this generator commutes with xα(aX

−1) by Lemma 4.1(4). If γ is such that
α+ γ ∈ Φ we obtain from Lemma 4.1(2) that

zγ(Xf, ξ)xα(aX−1) = xα(−afξ) · xα+γ(Nγ,α · af) · zγ(Xf, ξ). (5.9)

On the other hand, if γ is such that α− γ ∈ Φ, we obtain from Lemma 4.1(3)
that

zγ(Xf, ξ)xα(aX
−1) = xα(afξ) · xα−γ(Nγ,−α · afξ2) · zγ(Xf, ξ). (5.10)

By the choice of γ both α + γ and α − γ lie in Z+(α) \ {α − β}, therefore in
both cases the expressions in the right-hand side are products of generators of
type Z, Z, K1.
A similar computation using (1)–(3) of Lemma 4.6 shows that the conjugate of
a generator of type K5 is either the generator itself or a product of generators
of type Z, Z, K5.
Let us verify the assertion for the generators of types K2, K3, K4. By (R3) the
conjugation by xα(aX

−1) fixes root subgroups Xα(X ·M [X ]), Xβ(X ·M [X ]),
Xα−β(X ·M [X ]). Further, from (R2) we obtain that

x−β(X
2f)xα(aX−1) = x−β(X

2f) · xα−β(N−β,α · aXf);

xβ−α(Xf)xα(aX
−1) = xβ−α(Xf) · xβ(Nα,−β · af),

and the expressions in the right-hand side are products of generators of type
K2, K4 and K4, Z, respectively.
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It remains to verify the assertion for the generators x−α(X
2f) of type K2.

By Corollary 5.18 we may assume that the root δ in Definition 5.16 forms a
sharp angle with α, i. e. α − δ ∈ Φ. Substituting s = Xf , η = X , ξ = aX−1

and α = δ − α, β = −δ into Lemma 4.1(5) we obtain that

z−α(X
2f, aX−1) = xδ−α(ǫXf) · xδ(−af) · x−δ(aX

2f) · x−α(X
2f)·

· zδ−α(−ǫXf,−ǫa) · xα−δ(−ǫa2Xf) · xα(−a2f) · zδ(af,−X),

where ǫ = N−δ,α. The first 7 factors in the right-hand side are generators of
type K1, Z, K1, K2, K1, K1, Z. The remaining last factor zδ(af,−X) can be
rewritten as xδ(af) · cδ(−af,X) (cf. Remark 5.10) and hence is a product of
generators of type Z and K5.

Corollary 5.23. The image of K(α, β) under the automorphism of conjuga-
tion by xα(aX

−1) is contained in Pβ(0).

Proof. By Corollary 5.18 and Lemma 5.22 it suffices to show that Zα,β ⊆ Pβ(0).
Let g = xγ(f) be a generator of Zα,β for some γ ∈ Z+(α)\{α−β}. Notice that
γ cannot form an obtuse angle with β, otherwise from 〈β, γ〉 = −1 it follows
that 〈α− β, γ〉 ≥ 2 and hence that γ = α− β, a contradiction. Now if 〈β, γ〉 is
0, 1 or 2, then g is a generator of type P3, P2 or P5 for Pβ(0), respectively.

Lemma 5.24. The subgroup Pα(0) is stable under conjugation by xα(aX
−1) for

arbitrary a ∈ A.

Proof. Intersecting the factors of (4.3) with P̃α,M (0) and invoking Re-
mark 5.11 and Corollary 5.19 we obtain that Pα(0) = j+(Zα(A,M)) ⋉

(K(α, β) ·X−β(M ·X)) . It suffices to show that the image of each of these
three subgroups under the automorphism of conjugation by xα(aX

−1) is con-
tained in Pα(0).
It is clear that the specified conjugation fixes j+(Zα(A,M)). By (R2) and Re-

mark 5.8 X−β(M · X)xα(aX
−1) ⊆ X−β(M · X) · Xα−β(M) ⊆ Pα(0). No-

tice that the generators of Zα,β are generators of type P2 for Pα(0). Thus,

from Lemma 5.22 we get that K(α, β)xα(aX−1) ⊆ 〈K(α, β), Zα,β〉 ⊆ Pα(0).

Lemma 5.25. For a, b ∈ A the image of K(α, β)xα(aX−1) under the automor-
phism of conjugation by xβ−α(b) is contained in Pα(0).

Proof. By Lemmas 5.20, 5.22 it suffices to show that the conjugate g1 of each
generator g = xγ(f), γ ∈ Z+(α) \ {α−β} of Zα,β by xβ−α(b) belongs to Pα(0).
It is clear that g itself is a generator of type P2 for Pα(0), therefore it remains
to consider the case γ 6⊥ β − α.
In the case α−β− γ ∈ Φ we obtain from (R2) that g1 = xβ−α+γ(Nγ,β−α · bf) ·
xγ(f). Notice that 〈α − β − γ, α〉 = 〈α, α〉 − 〈β, α〉 − 〈γ, α〉 ≤ 2 − 1 − 1 = 0,
therefore 〈α − β − γ, α〉 = −1, 0. Thus, g1 is a product of generators of type
P2, P2 or P3, P2.
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Now suppose that the other alternative holds, namely that α − β + γ ∈ Φ.
Since 〈α − β + γ, α〉 = 〈α, α〉 − 〈β, α〉 + 〈γ, α〉 ≥ 2 − 1 + 1 = 2 we obtain that
α− β + γ = α, i. e. β = γ. Thus, by (R3) g1 = xβ(f)

xβ−α(b) = xβ(f).

5.3 The map Sα(a,−) and its properties

Throughout this section (A,M) is a local pair and, as before, α, β are some
fixed roots of Φ forming a sharp angle.
For m ∈ M denote by Pα(m) the coset Pα(0) · x−α(mX). From Lemma 5.9 it
follows that Pα(∗) coincides with the union of all Pα(m), m ∈ M .

Definition 5.26. Define the map Sα(a,−) : Pα(∗) → St(Φ, A[X,X−1]) on each
coset Pα(m) via the following formula:

Sα(a, g) = xα(aX
−1) · g · xα

(
− aX−1

1+am

)
· {X, 1 + am}. (5.11)

Notice that the restriction of the map Sα(a,−) to the subgroup Pα(0) coincides
with the automorphism of left conjugation by xα(aX

−1).
In the sequel we often use the following property of Sα(a,−).

Lemma 5.27. For g1 ∈ Pα(m), g2 ∈ Pα(∗) one has

Sα(a, g1 · g2) = Sα(a, g1) · Sα

(
a

1+am , g2

)
.

Proof. Suppose g2 ∈ Pα(m
′) for some m′ ∈ M , so that g1 · g2 ∈ Pα(m +m′).

The assertion now follows from the definition of Sα(a,−) and (2.16):

Sα(a, g1 · g2) = xα(aX
−1) · g1 · g2 · xα

(
− aX−1

1+am+am′

)
· {X, 1 + am+ am′} =

= xα(aX
−1)g1xα

(
− aX−1

1+am

)
·xα

(
aX−1

1+am

)
g2xα

(
−

a
1+am ·X−1

1 + a
1+am ·m′

)
·{X, (1+am)

(
1 + am′

1+am

)
} =

= Sα(a, g1) · Sα

(
a

1+am , g2

)
.

Lemma 5.28. One has Sα(a, x−α(mX)) = x−α

(
mX

1+am

)
· 〈a,m〉α · hα(1 + am).

Proof. Since Φ is nonsymplectic, we can choose γ ∈ Φ such that 〈α, γ〉 = −1.
Direct computation shows that

xα(aX
−1) · x−α(mX) = hγ(X)(xα(a) · x−α(m)) by (2.10) (5.12)

= hγ(X)
(
x−α

(
m

1+am

)
· 〈a,m〉α · hα(1 + am) · xα

(
a

1+am

))
by (2.14)

= x−α

(
mX

1+am

)
· 〈a,m〉α · hα(X

−1(1 + am)) · h−1
α

(
X−1

)
· xα

(
aX−1

1+am

)
by (2.10), (2.11)

= x−α

(
mX

1+am

)
· 〈a,m〉α · {X−1, 1 + am} · hα(1 + am) · xα

(
aX−1

1+am

)
by (2.13)

= x−α

(
mX

1+am

)
· 〈a,m〉α · hα(1 + am) · xα

(
aX−1

1+am

)
· {1 + am,X} by (2.16), (2.17).
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The assertion of the lemma now follows from the following computation:

Sα(a, x−α(mX)) = xα(aX
−1) · x−α(mX) · xα

(
− aX−1

1+am

)
· {X, 1 + am} by (5.11)

= x−α

(
mX

1+am

)
· 〈a,m〉α · hα(1 + am) · {1 + am,X} · {X, 1 + am} by (5.12)

= x−α

(
mX

1+am

)
· 〈a,m〉α · hα(1 + am) by (2.16).

Corollary 5.29. For g ∈ Pα(m) one has Sα(a, g)·h
−1
α (1+am) ∈ P (α, m

1+am).

Proof. Fix an element g ∈ Pα(m) and write it g = g0 · x−α(mX) for some
g0 ∈ Pα(0). Direct computation shows that

Sα(a, g) · h
−1
α (1 + am) = Sα(a, g0) · Sα(a, x−α(mX)) · h−1

α (1 + am) by Lemma 5.27

= Sα(a, g0) · x−α

(
mX

1+am

)
· 〈a,m〉 by Lemma 5.28.

By Lemma 5.24 and Remark 5.11 the subgroup Pα(0) contains Sα(a, g0) and
the symbol 〈a,m〉. Thus, the expression in the right-hand side of the above

formula lies in Pα

(
m

1+am

)
.

Lemma 5.30. For g ∈ j+(K(A[X ],M [X ])) ∩ Pα(m) ∩ Pβ(m
′) and a ∈ A one

has

Sα(a, g) · h
−1
α (1 + am) · xα−β(−Nα,−β · am′) ∈ Pβ

(
m′

1+am

)
.

Proof. By Proposition 5.17 g can be presented as g0 ·x−α(mX) ·x−β(m
′X) for

some g0 ∈ K(α, β). By Corollary 5.23 the element g1 = Sα(a, g0) lies in Pβ(0).
Since x−β(m

′X) ∈ Pα(0) we get that

Sα(a, g) = g1 · Sα(a, x−α(mX)) · Sα

(
a

1+am , x−β(m
′X)
)
by Lemma 5.27

= g1 · x−α

(
mX

1+am

)
· 〈a,m〉 · hα(1 + am) · x−β(m

′X) · xα−β

(
Nα,−β ·am

′

1+am

)
by Lemma 5.28,(R2)

= g1 · x−α

(
mX

1+am

)
· 〈a,m〉 · x−β

(
m′X
1+am

)
· xα−β (Nα,−β · am′) · hα(1 + am) by (2.10).

The required assertion now follows from Remark 5.14.

Lemma 5.31. For g ∈ j+(K(A[X ],M [X ])) ∩ Pα(m) ∩ Pβ(m
′) and a, b ∈ A the

element

xβ−α(b) · Sα(a, g) · h
−1
α (1 + am) · hβ−α((1 + ǫabm′)−1) · xβ−α(−b(1 + ǫabm′))

belongs to Pα

(
m−ǫbm′

1+am

)
, where ǫ = Nα,−β.

Proof. Set c = 1 + ǫabm′, s0 = 〈a,m〉, s1 = 〈ǫam′,−bc−1〉. Notice that 1 −
ǫabc−1m′ = c−1, therefore by (2.14)

xα−β(ǫam
′) · xβ−α(−bc−1) = xβ−α(−b) · s1 · hα−β(c

−1) · xα−β(ǫacm
′). (5.13)
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Notice that x−β(m
′X) ∈ Pα(0), therefore from the definition of Sα(a,−) we

obtain that

Sα (a, x−β(m
′X) · x−α(mX)) · h−1

α (1 + am) · hβ−α(c
−1) · xβ−α(−bc)

= Sα(a, x−β(m
′X)) · Sα(a, x−α(mX)) · h−1

α (1 + am) · hβ−α(c
−1) · xβ−α(−bc) by Lemma 5.27

= Sα(a, x−β(m
′X)) · x−α

(
mX

1+am

)
· s0 · hβ−α(c

−1) · xβ−α(−bc) by Lemma 5.28

= x−β(m
′X) · xα−β(ǫam

′) · xβ−α(−bc−1) · x−α

(
mX

1+am

)
· s0 · hβ−α(c

−1) by (R2), (R3), (2.10)

= x−β(m
′X) · xβ−α(−b) · s1 · hα−β(c

−1)·

·xα−β (ǫacm
′) · x−α

(
mX

1+am

)
· s0 · hβ−α(c

−1) by (5.13)

= xβ−α(−b) · x−β(m
′X) · x−α(−ǫbm′X) · s1 · xα−β(ǫac

−1m′) · x−α

(
cmX
1+am

)
· s0 by (R2), (2.10), (2.12)

= xβ−α(−b) · x−β(m
′c−1X) · xα−β(ǫac

−1m′) · s1 · s0 · x−α

(
−ǫbm′X + cmX

1+am

)
by (R2).

Denote by h0 the product of all factors in the above formula except the first
and the last one. It is clear that h0 lies in Pα(0). By Proposition 5.17 we can
decompose g as g0 · x−β(m

′X) · x−α(mX) for some g0 ∈ K(α, β), m,m′ ∈ M .
The required assertion now follows from Lemmas 5.25, 5.27 and the above
computation:

xβ−α(b) · Sα(a, g) · h
−1
α (1 + am) · hβ−α(c

−1) · xβ−α(−bc) =

= xβ−α(b) · Sα(a, g0) · xβ−α(−b) · h0 · x−α

(
(m−ǫbm′)X

1+am

)
∈ Pα(

m−ǫbm′

1+am ).

5.4 Construction of a St(Φ, B)-torsor

Throughout this subsection Φ denotes an arbitrary irreducible simply-laced
root system of rank ≥ 3, unless stated otherwise.

Definition 5.32. Denote the subgroup St(Φ, A,M) by G0
M . Consider the

following commutative diagram, in which the homomorphisms i± and j± are
induced by the natural ring homomorphisms A → A[X±] and A[X±] → R:

G0
M St(Φ, A[X ],M [X ])

St(Φ, A) St(Φ, A[X ])

St(Φ, A[X−1],M [X−1]) St(Φ, R, I)

St(Φ, A[X−1]) St(Φ, R).

iM+

iM
−

jM+
i+

i−

j+
jM
−

j−

Denote by G
≥0

M the image of the homomorphism jM+ .

Notice that the homomorphism jM+ iM+ is split by the homomorphism ev∗X=1 of

evaluation at 1, therefore G0
M can be considered as a subgroup of G

≥0

M .
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Denote by V T the quotient of the set of triples

VT = G
≥0

M × St(Φ, A[X−1])× (1 +M)× (5.14)

by the equivalence relation given by (p · j+i+(γ), h, u)T ∼ (p, i−(γ) · h, u)T ,
γ ∈ G0

M . We denote the image of (p, h, u)T in V T by [p, h, u]. V T is precisely
the set upon which M. Tulenbaev in [36, Proposition 4.3] constructs an action
of St(Φ, B).
Sometimes it will be more convenient for us to work with another set V iso-
morphic to V T (this isomorphism will be established below). Denote by V the
subset of

St(Φ, R)× St(Φ, A[X−1])× (1 +M)×

consisting of those triples (g, h, u) for which p(g, h, u) := g · j−(h) · {X,u}

belongs to G
≥0

M .
We let h0 ∈ G0

M act on V on the right by (g, h, u) ·h0 = (g, h · i−(h0), u). Since

G0
M ⊂ G

≥0

M , we see that V ·G0
M ⊆ V .

We denote by V the set of orbits of this action and use the notation (g, [h], u)
for the elements of V . Whenever v1, v2 ∈ V lie in the same G0

M -orbit we use

the notation v1 ∼ v2. We denote by p the function V → G
≥0

M /G0
M sending each

(g, [h], u) ∈ V to the left coset p(g, h, u)G0
M .

The isomorphism between the sets V and V T is given by the following two
maps, which are easily seen to be mutually inverse to each other:

V V T

(g, [h], u)
[
p(g, h, u), h−1, u

]

(p · j−(h) · {u,X}, [h−1], u) [p, h, u].

∼=

(5.15)

The above isomorphism allows us to regard V and V T as the same object,
for elements of which we can interchangeably use either of the two notations,
depending on which of them is more convenient in a given situation. For
example, specifying the action of St(Φ, B) in terms of V leads to much shorter
calculations in Lemmas 5.35–5.38, while the statements of Proposition 5.39
and Lemma 5.41 look more natural when formulated in terms of V T .
Now we are ready to proceed with the construction of the action of St(Φ, B) on
V . We start by defining for α ∈ Φ, a ∈ A a partial function tα(aX

−1) : V 6→ V .
This function is defined for the triples (g, h, u) satisfying p(g, h, u) ∈ Pα(∗) ⊆

G
≥0

M . If p(g, h, u) belongs to Pα(m) for some m ∈ M , then tα(aX
−1) is defined

via the following identity:

tα(aX
−1)(g, h, u) =

(
xα(aX

−1) · g, h · xα

(
− aX−1

1+am

)
, u · (1 + am)

)
. (5.16)

Notice that tα(aX
−1)(g, h, u) ∈ V . Indeed, from Corollary 5.29 we obtain that

p
(
tα(aX

−1)(g, h, u)
)
= Sα(a, p(g, h, u)) ∈ Pα(∗) · h

−1
α (1 + am) ⊆ G

≥0

M .
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Lemma 5.33. Let (A,M) be a local pair. Then for any α ∈ Φ and a ∈ A the
partial function tα(aX

−1) : V 6→ V gives rise to a well-defined total function
Tα(aX

−1) : V → V .

Proof. First of all, let us show that the resulting function is total. Fix v0 =

(g, h, u) ∈ V . Since p(g, h, u) ∈ G
≥0

M there exists g1 ∈ St(Φ, A[X ],M [X ]) such
that j+(g1) = p(g, h, u). Notice that the homomorphism i+ is split by ev∗X=0.
Set h0 = ev∗X=0(g1)

−1, then, clearly, g1 · i+(h0) ∈ K(A[X ],M [X ]) and p(g, h ·
i−(h0), u) = j+(g1) · j−(i−(h0)) = j+(g1 · i+(h0)) ∈ j+(K(A[X ],M [X ])). The
latter subgroup is contained in Pα(∗) by Lemma 5.12. Thus, tα(aX

−1) is
defined on the representative (g, h · i−(h0), u) lying in the same G0

M -orbit as
v0.
Next, let us show that the value of Tα(aX

−1) does not depend on the choice
of representative. Let v1 = (g, h1, u) and v2 = (g, h2, u) be two elements of the
same G0

M -orbit for which both p(v1) and p(v2) belong to Pα(∗). By definition,
h−1
1 h2 = i−(h0), for some h0 ∈ G0

M , moreover, p(v1)
−1 · p(v2) = j−i−(h0) =

j+i+(h0) ∈ Pα(∗). By Remark 5.13 there exists g1 ∈ St(Φ, A[X ],M [X ]) such
that g0 := ev∗X=0(g1) ∈ Zα(A,M) and j+(g1) = j+i+(h0). From the last
equality and the injectivity of the homomorphism Gsc(Φ, A[X ]) → Gsc(Φ, R)
we obtain that the projections of g0, g1 and h0 in Gsc(Φ, R) are equal, which
shows that g0 · h−1

0 ∈ K2(Φ, A,M). It follows from Theorem 4.8 that the
latter subgroup is generated by relative Steinberg symbols {a, 1+m} and hence
by Remark 5.6 it is contained in Zα(A,M). Thus, we have obtained that
h0 ∈ Zα(A,M) and hence that i−(h0) is centralized by Xα(A[X

−1]), which
allows us to conclude that

tα(aX
−1)(v1) =

(
xα(aX

−1) · g, h1 · xα

(
− aX−1

1+am

)
, u · (1 + am)

)
∼

∼
(
xα(aX

−1) · g, h1i−(h0) · xα

(
− aX−1

1+am

)
, u · (1 + am)

)
= tα(aX

−1)(v2).

Our next goal is to define for a + Xf ∈ A + XM [X ] the operator Tα(a +
Xf) : V → V . Let (g, h, u) be an element of V . We define the value of Tα(a+
Xf) on (g, h, u) via the following identity:

Tα(a+Xf) · (g, h, u) = (xα(a+Xf) · g, h · xα(−a), u). (5.17)

Notice that p(Tα(a+Xf) · (g, h, u)) = xα(Xf) · xα(a)p(g, h, u) ∈ G
≥0

M , therefore
the right-hand side of (5.17) lies in V . Notice that for h0 ∈ G0

M one has

Tα(a+Xf) · ((g, h, u) · h0) = (Tα(a+Xf) · (g, h, u)) · xα(a)h0,

therefore (5.17) indeed gives rise to a well-defined map V → V .
Thus far we have specified the action of the generators of the ”truncated” Stein-
berg group St≤1(Φ, B) from Section 5.1 on V using formulae (5.16) and (5.17).
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We need to verify that this action respects the defining relations of the group
St≤1(Φ, B) (notice that ≤ 1 here stands for the degree of relations with respect
to t = X−1). This is accomplished in the series of lemmas below.

Lemma 5.34. The operators Tα satisfy Steinberg relations of type R1d for all
d ≤ 1.

Proof. For d ≤ 0 the assertion immediately follows from (5.17), so let us con-
sider the case d = 1.
Let a and b be elements of A and (g, h, u) be an element of V . By the first part
of the proof of Lemma 5.33 we may assume that p(g, h, u) ∈ Pα(m) for some
m ∈ M . From (5.16) we obtain that

Tα(bX
−1) · Tα(aX

−1)(g, [h], u) =

= Tα(bX
−1) ·

(
xα(aX

−1) · g, [h′] , u · (1 + am)
)
, (5.18)

where h′ = h·xα

(
− aX−1

1+am

)
. Notice that we can not invoke (5.16) for the second

time because the value of the function p on the triple (xα(aX
−1) · g, h′, u ·

(1 + am)) does not belong to Pα(∗).
However, it is very easy to fix this. Indeed, we are free to replace [h] with [h·h0]
for any h0 ∈ G0

M , so in (5.18) we can replace h′ with h′′ = h′ · h−1
α (1 + am).

Now from Corollary 5.29 we obtain that

p(xα(aX
−1)·g, h′′, u·(1+am)) = Sα(a, p(g, h, u))·h

−1
α (1+am) ∈ Pα

(
m

1+am

)
.

Now we can invoke (5.16) once again and can continue (5.18) as follows:

. . . =

(
xα((a+ b)X−1) · g,

[
h′′ · xα

(
−bX−1

1+
bm

1+am

)]
, u · (1 + am) ·

(
1 + bm

1+am

))
. (5.19)

Notice that

[
h′′ · xα

(
−b(1+am)X−1

1+am+bm

)]
=
[
h · xα

(
−aX−1

1+am

)
· xα

(
−bX−1

(1+am)(1+am+bm)

)]
=

=
[
h · xα

(
−(a+b)X−1

1+(a+b)m

)]
.

Thus, the expression in (5.19) coincides with the expression for Tα((a+b)X−1)·
(g, [h], u) given by (5.16).

Lemma 5.35. The operators Tα satisfy Steinberg relations of type R3∠d,1, R3
⊥
d,1

for d ≤ 0.

Proof. We will verify R3∠d,1 and R3⊥d,1 simultaneously. Fix some β ∈ Z(α) =
Z0(α) ⊔ Z+(α).
We need to show that [Tβ(b), Tα(aX

−1)](g, [h], u) = (g, [h], u) for a ∈ A, b ∈
A+XM [X ]. Write b = b0+Xf for some b0 ∈ A, f ∈ M [X ]. As in the proof of

Documenta Mathematica 25 (2020) 767–809



A Horrocks-Type Theorem for KO2 801

the previous lemma, we may assume that p(g, h, u) ∈ Pα(m) for some m ∈ M .
From (5.17)–(5.16) we obtain that
[
Tβ(b), Tα(aX

−1)
]
(g, [h], u) = Tβ(b) · Tα(aX

−1) (g′, [h′], u(1− am)) , (5.20)

where g′ = xβ(−b) · xα(−aX−1) · g, h′ = h · xα

(
aX−1

1−am

)
· xβ(b0).

Notice that by (2.10) [h′] = [h′′], where h′′ = h·xα

(
aX−1

1−am

)
·h−1

α (1−am)·xβ(b0).

From Lemma 5.15 and Corollary 5.29 we obtain that

p(g′, h′′, u(1− am)) = xβ(−Xf) ·
(
Sα(−a, p(g, h, u)) · h−1

α (1 − am)
)xβ(b0)

∈

∈ xβ(−Xf) · Pα(
m

1−am )xβ(b0) ⊆ Pα(
m

1−am).

Thus, we can invoke (5.16)–(5.17) once again and can continue (5.20) as follows:

. . . =
(
[xβ(b), xα(aX

−1)] · g, [h′′ · xα

(
−a(1− am)X−1

)
· xβ(−b0)], u

)
= (g, [h], u) , (5.21)

where in the last equality we use the following computation:

h′′ · xα

(
−a(1− am)X−1

)
· xβ(−b0) =

= h · h−1
α (1− am) ·

[
xα

(
a(1− am)X−1

)
, xβ(b0)

]
= h · h−1

α (1 − am).

The assertion of the lemma now follows from (5.20)–(5.21).

Lemma 5.36. The operators Tα satisfy Steinberg relations of type R2d,1 for
d ≤ −1 .

Proof. Let a ∈ A, f ∈ M [X ] and α, β be a pair of roots forming an obtuse
angle. As before, we may assume that p(g, h, u) ∈ Pα(m) for some m ∈ M .
From (5.16)–(5.17) and the fact that xβ(Xf) ∈ Pα(0) we obtain that

[Tβ(Xf), Tα(aX
−1)] (g, [h], u) =

= Tβ(Xf)·Tα(aX
−1)

(
xβ(−Xf) · xα(−aX−1) · g,

[
h · xα

(
aX−1

1−am

)
· h−1

α (1− am)
]
, u(1− am)

)
=

=

(
[xβ(Xf), xα(aX

−1)] · g,

[
h · xα

(
− aX−1

1−am

)
· h−1

α (1− am) · xα

(
aX−1

1+
am

1−am

)]
, u

)
=

= (xα+β(Nβ,α · af) · g, [h], u) = Tα+β(Nβ,α · af)(g, [h], u).

As in the proof of Lemmas 5.34–5.35, in the above computation we had to add
the factor h−1

α (1 − am) to the second triple, so that we could pass from the
second line to the third one (again, we need to invoke Corollary 5.29 to check
that the value of p on the second triple lies in the coset Pα(

m
1−am)).

Lemma 5.37. The operators Tα(aX
−1) satisfy Steinberg relations R3∠1,1.

Proof. Let a, b ∈ A and α, β be a pair of roots forming a sharp angle. Set
ǫ = Nα,−β. From Proposition 5.17 and the proof of the first part of Lemma 5.33
it follows that

p(g, h, u) ∈ j+ (K(A[X ],M [X ])) ∩ Pα(m) ∩ Pβ(m
′) for some m,m′ ∈ M.
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From (5.16) we obtain that

Tβ(bX
−1) · Tα(aX

−1) (g, [h], u) =

= Tβ(bX
−1)

(
xα(aX

−1) · g,
[
h · xα

(
− aX−1

1+am

)]
, u(1 + am)

)
=

= Tβ(bX
−1)

(
xα(aX

−1) · g, [h′] , u(1 + am)
)
, (5.22)

where h′ = h · xα

(
− aX−1

1+am

)
· h−1

α (1 + am) · xα−β(−ǫam′). Notice that

by Lemma 5.30

p
(
xα(aX

−1) · g, h′, u(1 + am)
)
= Sα(a, p(g, h, u))·h

−1
α (1+am)·xα−β(−ǫam′) ∈ Pβ(

m′

1+am ),

therefore we can invoke (5.16) once again and can continue (5.22) as follows:

. . . =

(
xβ(bX

−1) · xα(aX
−1) · g,

[
h′ · xβ

(
− bX−1

1+
bm′

1+am

)]
, u(1 + am+ bm′)

)
. (5.23)

The second component of the above triple can be simplified using (2.10) as
follows:

[
h · xα

(
− aX−1

1+am

)
· h−1

α (1 + am) · xα−β(−ǫam′) · xβ

(
− bX−1(1+am)

1+am+bm′

)]
=

=
[
h · xα

(
− aX−1

1+am

)
· h−1

α (1 + am) · xα

(
m′abX−1(1+am)

1+am+bm′

)
· xβ

(
− bX−1(1+am)

1+am+bm′

)]
=

=
[
h · xα

(
− aX−1

1+am + m′abX−1

(1+am)(1+am+bm′)

)
· xβ

(
− bX−1

1+am+bm′

)
· h−1

α (1 + am)
]
=

=
[
h · xα

(
− aX−1

1+am+bm′

)
· xβ

(
− bX−1

1+am+bm′

)]
.

Thus, we see that the expression in the right-hand side of (5.23) would remain
unchanged if we swapped (a, α,m) with (b, β,m′). This implies the required
assertion.

Lemma 5.38. The operators Tα satisfy Steinberg relations R20,1.

Proof. Let a, b ∈ A and α, β be a pair of roots such that α + β ∈ Φ. Set
ǫ = Nα,β, c = 1− ǫabm′.

As before, we may assume that

p(g, h, u) ∈ j+ (K(A[X ],M [X ])) ∩ Pα(m) ∩ Pα+β(m
′) for some m,m′ ∈ M .

From (5.16)–(5.17) and (2.10) we obtain that

[Tβ(b), Tα(aX
−1)] (g, [h], u) =

= Tβ(b) · Tα(aX
−1)

(
xβ(−b) · xα(−aX−1) · g, [h · xα

(
aX−1

1−am

)
· xβ(b)], u(1− am)

)
=

= Tβ(b) · Tα(aX
−1)

(
xβ(−b) · xα(−aX−1) · g, [h′], u(1− am)

)
, (5.24)
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where h′ = h ·xα

(
aX−1

1−am

)
·h−1

α (1−am) ·hβ(c
−1) ·xβ(bc). Applying Lemma 5.31

to the pair of roots α, α+ β we obtain that

p
(
xβ(−b) · xα(−aX−1) · g, h′, u(1− am)

)
=

= xβ(−b) ·Sα(−a, p(g, h, u)) ·h−1
α (1−am) ·hβ(c

−1) ·xβ(bc) ∈ Pα

(
m−ǫbm′

1−am

)
.

Thus, we can continue (5.24) using (5.16)–(5.17):

. . . =
(
[xβ(b), xα(aX

−1)] · g, [h′′], uc
)
= Tα+β(−ǫabX−1)(g, [h], u), (5.25)

where the last equality is obtained from (2.10) as follows:

[h′′] =

[
h′ · xα

(
−aX−1

1+
a(m−ǫbm′)

1−am

)
· xβ(−b)

]
=

=
[
h · xα

(
aX−1

1−am

)
· h−1

α (1− am) · hβ(c
−1) · xα+β

(
ǫab(1− am)X−1

)
· xα

(
−a(1−am)X−1

c

)]
=

=
[
h · xα

(
aX−1

1−am

)
· xα+β

(
ǫ·abX−1

c

)
· xα

(
− aX−1

1−am

)
· h−1

α (1− am) · hβ(c
−1)
]
=

=
[
h · xα+β

(
ǫabX−1

1−ǫabm′

)]
.

The assertion of the lemma now follows from (5.24)–(5.25).

Now we are ready to prove the main result of this subsection.

Proposition 5.39. For Φ as in the statement of Proposition 5.3 the operators
Tα defined above specify a well-defined action of St(Φ, B) on V .
This action satisfies the following additional properties.

1. For any h1 ∈ St(Φ, A[X−1]) one has j−B (h1) · [1, h, u] = [1, h1h, u], where
j−B denotes the homomorphism St(Φ, A[X−1]) → St(Φ, B) (we identify V
with V T using the isomorphism (5.15)).

2. If we consider St(Φ, A[X,X−1]) as a set with the left multiplication action
of St(Φ, B) then the map V → St(Φ, A[X,X−1]) given by (g, [h], u) 7→ g
is a map of St(Φ, B)-sets.

Proof. By Lemmas 5.34–5.38 the action of St≤1(Φ, B) on V given by (5.16)–
(5.17) is well-defined (thanks to Lemma 5.2 we do not need to verify that it
satisfies R3⊥1,1). On the other hand, the group St≤1(Φ, B) is isomorphic to
St(Φ, B) by Proposition 5.3 (recall that t = X−1).
The first property can be verified directly using (5.16)–(5.17) and the fact that
St(Φ, A[X−1]) is generated by xα(a) and xα(aX

−1) for α ∈ Φ, a ∈ A. The
second property can be verified in a similar fashion.

For a pair (R, I) denote by E(Φ, R, I) the relative elementary subgroup of
Gsc(Φ, R), i. e. the image of the relative Steinberg group St(Φ, R, I) under
the homomorphism π : St(Φ, R) → Gsc(Φ, R). From the second property of
the above proposition we immediately obtain the following group factorization.
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Corollary 5.40. For Φ as in the statement of Proposition 5.3 one has

E(Φ, A[X−1] +M [X ]) = E(Φ, A[X ],M [X ]) · E(Φ, A[X−1]).

5.5 Proof of Horrocks theorem

Before we proceed with the proof of Theorem 3 let us briefly recall the relevant
notation. As before, A denotes an arbitary local ring with maximal ideal M
and I = M [X,X−1] is an ideal of both the ring R = A[X,X−1] and its subring
B = A[X−1] +M [X ].
Consider the following commutative diagram, in which the map t is obtained
from Lemma 3.3:

St(Φ, A[X ],M [X ]) St(Φ, A[X ])

St(Φ, R, I)

St(Φ, A[X−1]) St(Φ, B) St(Φ, R).

µA[X]

j+

t

j−B jR

(5.26)

Notice that the subgroup G
≥0

M (see Definition 5.32) coincides with the image
of j+µA[X].

Our main goal is to prove that the homomorphism j−B is injective. In order
to achieve this we need to show that St(Φ, B) acts transitively on the first
components of the triples from V T . These first components are parametrized

by cosetsG
≥0

M /G0
M (cf. (5.14)). It is clear from (5.26) that G

≥0

M lies in the image

of jR. To simplify notation we want to identify G
≥0

M with a subgroup of St(Φ, B)
by means of jR. Thus, throughout this section we additionally assume that jR is
injective. This assumption is innocent, since we already know from Theorem 2
that jR is injective under the assumptions of Theorem 1.

Lemma 5.41. For any [p, h, u] ∈ V T and any p1 ∈ G
≥0

M one has

j−1
R (p1) · [p, h, u] = [p1p, h, u].

Proof. By our assumption of the injectivity of jR and the above discussion the
preimage j−1

R (p1) consists of only one element, so the statement of the lemma
is unambiguous.
In view of Theorem 4.2 it suffices to verify the assertion of the lemma for the

generators p1 = zα(f, ξ) of G
≥0

M for all f ∈ M [X ], ξ ∈ A[X ], α ∈ Φ. We
accomplish this by induction on the degree of ξ in X .
Notice that in the base case ξ = a ∈ A the assertion of the lemma is an
immediate consequence of (5.17). Since xβ(X

2f) ∈ Pα(0), an argument similar
to the proof of Lemma 5.34 shows that the assertion of the lemma also holds
for p1 = zα(X

2f, aX−1).
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Now let us verify the induction step. Suppose that the assertion holds for all
p1 = zα(f, ξ) for which ξ has degree ≤ n. Substituting s := fX , η := X−1,
ξ := Xξ into Lemma 4.1(5) we obtain the following equality in St(Φ, B):

zα+β(f,Xξ) = xα(ǫXf) · x−β(−X2fξ) · xβ(ξf) · xα+β(f)·

· zα(−ǫXf,−ǫξ) · x−α(−ǫXξ2f) · x−α−β(−X2fξ2) · z−β(X
2fξ,−X−1),

where ǫ = Nα,β.
From the inductive assumption we obtain that the assertion of the lemma
holds for all the factors in the right-hand side and, therefore, also holds for
p1 = zα(f,Xξ). It is easy to deduce from this that the assertion also holds for
p1 = zα(f,Xξ + a) = xα(−a) · zα(f,Xξ) · xα(a).

Remark 5.42. Although we do not need this for our main result, it can be
noted that V is a left St(Φ, B)-torsor, i. e. the action of St(Φ, B) on V is
both transitive and faithful. The faithfulness follows from the second property
of Proposition 5.39 and our assumption that jR is injective. The transitivity fol-
lows from Lemma 5.41, the first property of Proposition 5.39 and the following
formula, which is a direct consequence of Lemma 5.28 and (5.16)–(5.17):

〈a,m〉−1 · 〈aX−1,mX〉 · [1, 1, 1] = [1, 1, 1 + am].

Theorem 3. Let Φ be a root system of type A≥4,D≥5 or E6,7,8. Assume addi-
tionally that the homomorphism jR : St(Φ, B) → St(Φ, A[X,X−1]) is injective.
Then the homomorphism j− is injective and the following commutative square
is pullback

St(Φ, A) St(Φ, A[X ])

St(Φ, A[X−1]) St(Φ, A[X,X−1]).

j+

j−

Proof. Since j− = jRj
−
B , where j−B is as in Proposition 5.39, it suffices to

show that j−B is injective. Set v0 = [1, 1, 1] ∈ V T and suppose g ∈ Ker(j−B ).
By Proposition 5.39 one has v0 = j−B (g)·v0 = [1, g, 1], therefore by the definition
of V T , g = i−(γ) for some γ ∈ G0

M satisfying j−i−(γ) = j+i+(γ) = 1. Notice
that the homomorphism j+i+ = j−i− is split by the evaluation homomorphism
ev∗X=1 and therefore is injective. Thus, we conclude that g = 1 and that j− is
injective. By symmetry, we also have that j+ is injective (we can swap X with
X−1 in all statements, including the statement of our assumption that jR is
injective).
Now suppose that g+ ∈ St(Φ, A[X ]) and g− ∈ St(Φ, A[X−1]) are such
that j−(g−) = j+(g+). By Lemma 2.4 the image of j+(g+) = j−(g−) in
St(Φ, k[X,X−1]) belongs to St(Φ, k) and therefore coincides with the image in
St(Φ, k) of some g0 ∈ St(Φ, A).
Set h+ = g+ · g−1

0 and h− = g− · g−1
0 . It is clear that

h+ ∈ St(Φ, A[X ],M [X ]), h− ∈ St(Φ, A[X−1],M [X−1])

Documenta Mathematica 25 (2020) 767–809



806 A. Lavrenov, S. Sinchuk

and that j−(h−) = j+(h+).
From Proposition 5.39 and Lemma 5.41 we obtain that

[j+(h+)
−1, h−, 1] = j−1

R (j+(h+)
−1) · [1, h−, 1] =

= j−1
R (j+(h+)

−1 · j−(h−)) · [1, 1, 1] = [1, 1, 1],

therefore, by the definition of V T , h− = i−(γ1), j+(h+) = j+i+(γ1) for some
γ1 ∈ G0

M . Since j+ is injective we obtain that h+ = i+(γ1). Thus, we have
shown that g+ and g− are the images of γ1 · g0 ∈ St(Φ, A) under i+ and i−,
respectively.

Proof of Theorem 1. Notice that the assertions of the theorem for KO2(2ℓ,−)
and K2(Dℓ,−) follow from the assertion for St(Dℓ,−). It is also clear that the
latter assertion follows from Theorem 2 and Theorem 3 in the special case when
A is a local ring.
Now let A be an arbitrary commutative ring and Φ = Dℓ for ℓ ≥ 7. If
g ∈ St(Φ, A[X ]) is such that its image in St(Φ, A[X,X−1]) is trivial, then
so is its image in all localizations St(Φ, AM [X,X−1]), where M ranges over the
maximal ideals of A. We denote by λM (resp. λM,−) the localization homo-
morphism A[X ] → AM [X ] (resp. A[X−1] → AM [X−1]) and by λ∗

M , λ∗
M,− the

corresponding homomorphisms of Steinberg groups. By the previous paragraph
the images λ∗

M (g) in all St(Φ, AM [X ]) are also trivial. Now by the local-global
principle [14, Theorem 2] the element g is trivial as well.
Now suppose that g+ ∈ St(Φ, A[X ]) and g− ∈ St(Φ, A[X−1]) are such that
j+(g+) = j−(g−). Set g0 = ev∗X=0(g+), h+ = g+ · i+(g

−1
0 ), h− = g− · i−(g

−1
0 ).

Notice that h+ ∈ St(Φ, A[X ], XA[X ]), moreover, for every maximal ideal M of
A the image λ∗

M (h+) ∈ St(Φ, AM [X ], XAM [X ]) is trivial by Theorem 3 (since
j+(λ

∗
M (h+)) = j−(λ

∗
M,−(h−))). Thus, again by the local-global principle [14,

Theorem 2] the element h+ is trivial, therefore g+ = i+(g0). Using similar
argument one can show that g− = i−(g

′
0) for some g′0 ∈ St(Φ, A). But g′0 must

coincide with g0 since j+i+ = j−i− is injective.

References

[1] E. Abe, Whitehead groups of Chevalley groups over polynomial rings,
Comm. Alg. 11 (1983), no. 12, 1271–1307.

[2] D. Allcock, Steinberg groups as amalgams, Alg. Number Th. 10 (2016),
no. 8, 1791–1843.

[3] A. Asok and J. Fasel, An explicit KO-degree map and applications, J.
Top. 10 (2017), 268–300.

[4] H. Bass, Clifford algebras and spinor norms over a commutative ring,
Amer. J. Math. 96 (1974), no. 1, 156–206.

Documenta Mathematica 25 (2020) 767–809



A Horrocks-Type Theorem for KO2 807

[5] N. Bourbaki, Groupes et algbres de Lie: Chapitres 4, 5 et 6, Masson,
1981.

[6] R. K. Dennis and M. R. Stein, The functor K2: A survey of computa-
tions and problems, Classical Algebraic K-Theory, and Connections with
Arithmetic, Springer, 1973, pp. 241–303.

[7] J. Fasel, R. Rao, and R. Swan, On stably free modules over affine alge-
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