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Abstract. We consider the Dirac operator on globally hyperbolic
manifolds with timelike boundary and show well-posedness of the
Cauchy initial boundary value problem coupled to MIT-boundary con-
ditions. This is achieved by transforming the problem locally into a
symmetric positive hyperbolic system, proving existence and unique-
ness of weak solutions and then using local methods developed by Lax,
Phillips and Rauch, Massey to show smoothness of the solutions. Our
proof actually works for a slightly more general class of local boundary
conditions.
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1 Introduction

The well-posedness of the Cauchy problem for the Dirac operator on a
Lorentzian manifold pM, gq is a classical problem which has been exhaustively
studied in many contexts. If the underlying background is globally hyperbolic, a
complete answer is known: In [26] it was shown that a fundamental solution for
the Dirac equation can obtained from a fundamental solution of the conformal
wave operator via the Lichnerowicz formula. Since the Cauchy problem for the
conformal wave operator is well-posed [16, 43], it follows that the Cauchy prob-
lem for the Dirac operator is also well-posed. See also [6] for a direct treatment
of Cauchy problems for Dirac operators.
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Even if there exists a plethora of models in physics where globally hyperbolic
spacetimes have been used as a background, there also exist many applications
which require a manifold with non-empty boundary. Indeed, recent develop-
ments in quantum field theory focused their attention on manifolds with time-
like boundary [10, 50], e.g. anti-de Sitter spacetime [19, 20] and BTZ spacetime
[13]. Moreover, experimental setups for studying the Casimir effect enclose
(quantum) fields between walls, which may be mathematically described by
introducing timelike boundaries [24]. Also moving walls in a spatial set-up
correspond to a timelike boundary in the Lorentzian manifold. In these set-
tings, the correspondence between the well-posedness of the conformal wave
operator and the Dirac operator breaks down due to the boundary condition.
Even if the Cauchy problem for the conformal wave operator is proved to be
well-posed for a large class of boundary conditions for stationary spacetimes
[18], it is still not clear how to relate this with the Cauchy problem for the
Dirac operator. In fact, solvability in the Dirac case very much depends on
the boundary condition, e.g. if the Dirichlet boundary condition is applied to
spinors on the boundary, in general there does not exist any smooth solution
to the Dirac equation.

The goal of this paper is to investigate the well-posedness of the Cauchy
problem for the Dirac operator in globally hyperbolic manifolds with time-
like boundary M in the sense of Definition 2.1. Coming from the ’moving
wall’-picture our time function and splitting should by induced from an ex-
terior globally hyperbolic manifold: Let pM, gq be a globally hyperbolic spin
manifold of dimension n` 1. Let N be an n-dimensional Lorentzian submani-
fold of M. We assume additionally that N divides M into two (not empty)
connected components. In Section 2.1 we see that each of these connected com-
ponents is then globally hyperbolic manifolds with timelike boundary and that
every globally hyperbolic manifolds with timelike boundary arises that way.
In particular, there we see that any Cauchy time function t : M Ñ R on M

induces one on the connected component. Thus we can work with the splitting
and time function induced from M in the following: Then Σs :“ t´1psq is a

smooth spacelike Cauchy surface of M and, see Section 2.1, pΣ :“ Σ X N is a
Cauchy surface for N . In particular, tt´1psqusPR gives a foliation by Cauchy
surfaces, and we set Σs :“ t´1psq X M.
We always assume that we fix the spin structure on M. Let SM denote the
spinor bundle over M and SΣ0 the induced spinor bundle over Σ0. Moreover,
let D be the Dirac operator on SM, for details and notation see Section 2.2.

Our main result is a well-posedness theorem for the Dirac operator with MIT-
boundary conditions. The MIT boundary condition is a local boundary con-
dition that was introduced for the first time in [15] in order to reproduce the
confinement of quark in a finite region of space: “Dirac waves” are indeed
reflected on the boundary. Few years later, it was used in the description of
hadronic states like baryons [14] and mesons [40]. More recently, the MIT
boundary condition were employed in [48] for computing the Casimir energy

Documenta Mathematica 25 (2020) 737–765



The Cauchy problem for the Dirac operator 739

in a a three-dimensional rectangular box, in [29] and [32, 33] in order to con-
struct an integral representation for the Dirac propagator in Kerr-Newman and
Kerr Black Hole Geometry respectively, and in [41] for proving the asymptotic
completeness for linear massive Dirac fields on the Schwarzschild Anti-de Sitter
spacetime.

In this paper we obtain

Theorem 1.1. The Cauchy problem for the Dirac operator with MIT-boundary
condition on a globally hyperbolic spin manifold M with timelike boundary BM
is well-posed, i.e., for any f P ΓccpSMq and h P ΓccpSΣ0q there exists a unique
smooth solution ψ with spatially compact support to the mixed initial-boundary
value problem $

’&
’%

Dψ “ f

ψ|Σ0
“ h

pγpnq ´ ıqψ|BM “ 0

(1.1)

which depends continuously on the data pf, hq. Here, γpnq denotes Clifford
multiplication with n the outward unit normal on BM and Γccp.q denotes the
space of sections that are compactly supported in the interior of the underlying
manifold.

For a subclass of stationary spacetimes with timelike boundary admitting a
suitable timelike Killing vector field Theorem 1.1 was already proven in [32].

Remark 1.2. Theorem 1.1 holds under more general local boundary conditions,
namely replacing M “ γpnq´ı by any linear non-invertible map M : ΓpSBMq Ñ
ΓpSBMq with constant kernel dimension and such that Mψ|BM “ 0 and
M

:ψ|BM “ 0, see Remark 3.2 for the definition of the adjoint boundary condi-
tion M

:, both imply
xψ | γpe0qγpnqψyq “ 0 (1.2)

for all q P BM, see also Remark 3.19. Here e0 is the globally defined unit
timelike future pointing vector field defined by (2.1).

As usual, the well-posedness of the Cauchy problem will guarantee the exis-
tence of Green operators for the Dirac operator. In globally hyperbolic spin
manifolds with empty boundary, these operators play a fundamental role in the
quantization of linear field theory [22, 26]. In loc. cit., the quantization of a
free field theory is interpreted as a two-step procedure: The first consists of the
assignment to a physical system of a ˚-algebra of observables which encodes
structural properties such as causality, dynamics and the canonical anticom-
mutation relations. The second step calls for the identification of an algebraic
state, which is a positive, linear and normalized functional on the algebra of ob-
servables. This quantization scheme goes under the name of algebraic quantum
field theory and it is especially well-suited for formulating quantum theories
for Green-hyperbolic operators also on manifold – see e.g. [12, 36] for text-
book, to [5, 8, 28] for recent reviews, and [9, 21, 22, 23, 25, 30, 31] for some
applications.
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Remark 1.3. The Cauchy problem (1.1) is still well-posed in a larger class
of initial data. But then some compatibility condition for f and h on BΣ0 is
needed—see Remark 3.15. In the subclass of stationary spacetimes considered
in [32], as mentioned above, this compatibility condition reduces to the one
therein. Without these compatibility conditions the solution would still exist but
the singularities contained in a neighborhood of BΣ0 would propagate with time
along lightlike geodesics. In case, they hit again the boundary some boundary
phenomena as reflection will occur. For future work it is of course interesting
to obtain an explicit method to construct the corresponding Green operators
and to obtain more information on how singularities behave when hitting the
boundary.

Our strategy to prove the well-posedness of the Cauchy problem is as follows:
Firstly we restrict to a strip of finite time and prove general properties of
smooth solutions as finite propagation of speed and uniqueness in Section 3.2.
Using the theory of symmetric positive hyperbolic systems, see e.g. [35], we
investigate properties of a weak solution in Section 3.3. In Section 3.4 we
localize the problem by introducing suitable coordinates small enough that
we can associate to our Dirac problem a hyperbolic system that fits into the
class considered in [42, 47] and thus provides smoothness of a weak solution.
Then we can use these properties to prove existence of a weak solution in an
arbitrary time strip. With the help of uniqueness we can then easily glue
together solutions on an arbitrary time strip to obtain global ones in Section 4.

Acknowledgements. We would like to thank Claudio Dappiaggi, Nicoló Drago,
Felix Finster, Umberto Lupo, Oliver Petersen and Christian Röken for help-
ful discussions. We are grateful to the referee for useful comments on the
manuscript. Both authors would like to acknowledge the support of the re-
search grant “Geometric boundary value problems for the Dirac operator”
of the Juniorprofessurenprogramm Baden-Württemberg. S.M. was partially
supported within the DFG research training group GRK 1821 “Cohomological
Methods in Geometry”.

2 Preliminaries

For a Lorentzian manifold M, we use the convention that the metric g of M
has signaturep´,`, ¨ ¨ ¨ ,`q.
Globally hyperbolic as in [6, 37] means that the manifold admits a Cauchy
surface, i.e. a hypersurface that is hit exactly once by every inextendable
timelike curve. Moreover, this surface can always be chosen to be smooth and
spacelike, see [11]. Without further mentioning it, we always assume that our
manifolds are orientable and time-orientable. Note that for n` 1 “ 4, the case
relevant for physics, such globally hyperbolic manifolds are automatically spin.
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2.1 Globally Hyperbolic Manifolds with Timelike Boundary

The definition of what should be a globally hyperbolic manifold with timelike
boundary was first proposed by Solis in [49], see also [17].

Definition 2.1. A globally hyperbolic manifold with timelike boundary is an
pn ` 1q-dimensional, oriented, time-oriented Lorentzian manifold pM, gq with
boundary BM such that

(i) the pullback of g respect the natural inclusion ι : BM Ñ M defines a
Lorentzian metric ι˚g on the boundary;

(ii) M is causal, i.e. there are no closed causal curves;

(iii) for every point p, q P M, J`ppq X J´pqq is compact, where J`ppq (resp.
J´ppq) denotes the causal future (resp. past) of p P M .

In [2] Aké, Flores and Sanchez proved that for a globally hyperbolic manifold
with timelike boundary there always exists a Cauchy time function (i.e., a con-
tinuous function M Ñ R which increases strictly on any future-directed causal
curve and whose level sets are Cauchy surfaces, see [7, p. 65]) whose gradient
is tangent to the boundary and obtain the analogue of the usual spacetime
splitting of globally hyperbolic manifolds.

Thinking of the occurrence of manifolds with timelike boundary as described
in the introduction, e.g. ’moving mirrors’, it is more natural for us, to obtain
our manifold as a part of a globally hyperbolic manifold without boundary and
to work with the induced time function. We prove in the following that under
natural assumptions this always leads to a globally hyperbolic manifold with
timelike boundary as defined above and all such manifolds are obtained that
way.

In particular, we will see that we obtain [2, Thm. 1.1] except for the condition
that the gradient of the Cauchy time function is tangent to the boundary. Most
of this can of course be found along the lines of the proofs in [17, 2, 1]. Especially
that every globally hyperbolic manifold with timelike boundary arises that way
is shown in proven in [2, Cor. 5.8]. But for further use we decided to still
formulate the following theorems here.

Theorem 2.2. Let p ĂM, rgq be a globally hyperbolic manifold (without boundary).

Let ι : N ãÑ ĂM be an embedding of a timelike hypersurface such that ĂMzN has

two connected components Mi, i “ 1, 2. Then, Mi “ MiYN Ă ĂM is a globally
hyperbolic manifold with timelike boundary and pN , rg|N q is globally hyperbolic.
Moreover, each globally hyperbolic manifold with timelike boundary arises as a
Mi in a construction as above.

Proof. Property (i) in Definition 2.1 is satisfied since BMi :“ N is timelike
by assumption. Moreover, every closed causal curve in N or M̄i is one in M

and, hence, does not exist. In order to show that property (iii) is satisfied,
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we first show that N and Mi are strongly causal. Notice that, since pĂM, rgq
is globally hyperbolic, it is in particular strongly causal [7, p. 59]. We first
show, that pN , rg|N q is strongly causal as well: Let p P N and let U be an open

neighborhood of p in N . Choose an open neighborhood rU of p in ĂM such that
rU XN “ U . Since ĂM is strongly causal, there is a neighborhood rV Ă rU of p in
ĂM such that any causal curve starting and ending in rV is completely contained
in rU . Let now V :“ rV X N . Then any causal curve in N starting and ending
in V is in particular a causal curve of ĂM starting and ending in rV and hence
completely stays in U “ rU X N . Analogously, we see that pMi, rgq is strongly
causal.

Furthermore, we note that both N and Mi inherit the time-orientation from
ĂM and that N has to be closed since MzN has two connected components.

Let p, q P N . Let JN
˘ p.q denote that causal past/future inside N and J

ĂM
˘ p.q

the ones inside ĂM. Note that JN
˘ ppq Ă J

ĂM
˘ ppq XN . Hence JN

´ ppq XJN
` pqq is a

subset of the compact set J
ĂM

´ ppq X J
ĂM

` pqq X N . This implies that the closure
of JN

´ ppq X JN
` pqq is compact in N . Together with the strong causality of N

[7, Lemma 4.29] implies that JN
´ ppq X JN

` pqq is already compact and, hence,
pN , rg|N q is globally hyperbolic.
We note that [7, Lemma 4.29] has exactly the same proof if we allow the
manifold to have boundary. Hence, the analogue arguments from above imply
that pMi, rgq is globally hyperbolic as well.

Let now pM, gq be a globally hyperbolic manifold with timelike boundary. As
stated before this is [2, Cor. 5.8]. To provide a short-cut let us shortly present
the strategy of the proof: Every Lorentzian manifold pM, gq with boundary
admits an extension to a Lorentzian manifold pM̂ :“ MYBM pBMˆ r0, εqq, ĝq
such that ĝ|M “ g [49, Theorem A.1]. On a given manifold with bound-
ary the set of metrics that make this manifold into a globally hyperbolic one
with timelike boundary is open in the set of Lorentzian metrics in the ’time
cone topology’ (defined by the ă-relation on the space of Lorentzian met-
ric as in [37, Section 6], see also [2, below Def. 2.3]) and hence in the fine
C0-topology: This can be seen exactly along the lines of the proof of Ge-
roch in [37]. Hence, there is a smooth function δ : BM Ñ p0, εq such that
pM1 :“ M YBM tpx, tq | x P BM, 0 ă t ď δpxqu, ĝq is a globally hyperbolic
manifold with timelike boundary. Now we can deform ĝ on a small enough
neighborhood of BM1 to have product structure on this subset of M1zM and
such that the new metric g1 is still globally hyperbolic on M1. The double
pM̂1, ĝ1q of pM1, g1q is then a smooth Lorentzian manifold without boundary
with pM, gq Ă pM̂1, ĝ1q. The double pM̂1, ĝ1q is itself globally hyperbolic since
every causal curve between two points in BM1 Ă M̂1 can be mapped using the
reflection symmetry of the double to a causal curve staying in M1.

Theorem 2.3. Let p ĂM, rgq be a globally hyperbolic manifold (without boundary).

Let ι : N ãÑ ĂM be the embedding of a timelike hypersurface such that ĂMzN
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has two connected components Mi, i “ 1, 2. Let t : ĂM Ñ R be a Cauchy time
function for ĂM . Then, t´1psq X N is a Cauchy surface of N and t´1psq X Mi

one of Mi for all s P R. Moreover, t|N : N Ñ R is a Cauchy time time function
of N .

Proof. From Theorem 2.2 we know that N with its induces metric is globally
hyperbolic.
For any s, the spacelike rΣs :“ t´1psq and the timelikeN automatically intersect

transversally. Hence, if Σs :“ rΣs X N is nonempty, it has to be a submanifold
of ĂM of codimension 2 and a spacelike hypersurface of N . In particular, such
Σs is a Cauchy surface for N : Let γ be a future directed inextendable causal
curve in N . Since N is closed, γ has to be defined on an open interval, say
γ : pa, bq Ñ N . Then, γ is also a future directed causal curve in ĂM. As-

sume that γ is extensible as a future directed causal curve in ĂM, w.l.o.g. let
rγ : pa, bs Ñ ĂM. Since N is closed, rγpbq P N which gives the contradiction.
Hence, JN

´ pΣsq “ t´1p´8, ss X N if Σs is nonempty. At least for some u P R

there has to be a point p P Σu since N is nonempty. The arguments from above
show that any future directed inextendable causal curve γ in N through p is
already a future directed inextendable causal curve in ĂM and, hence, intersects
all rΣs. Thus, Σs is a Cauchy surface of N for all s P R and t|N : N Ñ R is a
Cauchy time time function of N . Analogously one sees that t´1psq X Mi is a
Cauchy surface of Mi.

2.2 Spinorial preliminaries

In the following we always assume that the spin structure is fixed. We denote
by SM the associated spinor bundle, that is in particular a complex vector

bundle with N :“ 2t n`1

2
u-dimensional fibers, denoted by SpM for p P M,

fiberwise endowed with a hermitian product

x¨ | ¨y : SpM ˆ SpM Ñ C

and with a Clifford multiplication γ : TM Ñ EndpSMq that is in particular
fiber-preserving and satisfies for all p P M and u, v P TpM that

γpuqγpvq ` γpvqγpuq “ ´2gpu, vqIdSpM.

We denote the by Γcp¨q, Γccp¨q, Γscp¨q resp. Γp¨q the spaces of compactly sup-
ported, compactly supported in the interior, spacelike compactly supported
resp. smooth sections of a vector bundle. The (classical) Dirac operator
D : ΓpSMq Ñ ΓpSMq is defined as the composition of the connection ∇ on
SM, obtained as a lift of the Levi-Civita connection on TM, and the Clifford
multiplication times ı. Thus, in local coordinates this reads as

D “
nÿ

µ“0

ıεµγpeµq∇eµ
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where peµqµ“0,...,n is a local Lorentzian-orthonormal frame of TM, εµ “
gpeµ, eµq “ ˘1.

We recall that after the choice of the Cauchy time function t the metric on
the globally hyperbolic manifold p ĂM, gq (without boundary) can be written as

g “ g|Σt
´ β2dt2 where β : ĂM Ñ R is a positive smooth function [11]. This

representation we will also use for M̄i Ă ĂM as in Theorem 2.2. Thus, although
the local orthonormal frame eµ in general only exists locally, we have a globally
defined unit timelike vector field

e0 :“ 1

β
Bt (2.1)

that we will use in the following. In particular we have γpe0q´1 “ γpe0q.

2.3 Reformulation as a symmetric positive hyperbolic system

In this section we will formulate the Dirac equation (1.1) locally as a symmetric
positive hyperbolic system. For that we shortly recall the basic definition, for
more details see [34, 35].

For the following definition, let E Ñ M be a real (or complex) vector bundle
with finite rank N endowed with the canonical fiberwise metric x¨ | ¨y :“ x¨ | ¨yRN

(or x¨ | ¨y :“ x¨ | ¨yCN ). Moreover, let us endow ΓccpEq with the L2-scalar product

p¨ | ¨qM :“
ż

M

x¨ | ¨yVolM ,

where VolM denotes the volume element. Moreover, let }.}2
L2pMq :“ p. | .qM.

Definition 2.4. A linear differential operator L : ΓpEq Ñ ΓpEq of first order
is called a symmetric system over M if

(S) the principal symbol σLpξq : Ep Ñ Ep is hermitian with respect to x¨ | ¨y
for every ξ P T ˚

p M and for every p P M.

Additionally, we say that L is positive respectively hyperbolic if it holds:

(P) The bilinear form x pL ` L:q ¨ | ¨y on Ep is positive definite, where L:

denotes the formal adjoint of L with respect to the L2-product on ΓccpEq
and ℜ denotes the real part.

(H) For every future-directed timelike covector τ P T ˚
p M, the bilinear form

xσLpτq ¨ | ¨y is positive definite on Ep.

Let us recall that for a first-order linear operator L : ΓpEq Ñ ΓpEq the principal
symbol σL : T

˚M Ñ EndpEq can be characterized by Lpfuq “ fLu` σLpdfqu
where u P ΓpEq and f P C8pMq. If we choose local coordinates pt, x1, . . . , xnq
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onM, with xi local coordinates on Σt, and a local trivialization of E, any linear
differential operator L : ΓpEq Ñ ΓpEq of first order reads in a point p P M as

L :“ A0ppqBt `
nÿ

j“1

AjppqBxj `Bppq

where the coefficients A0, Aj , B are N ˆ N matrices, with N being the rank
of E, depending smoothly on p P M. In these coordinates, Condition (S) in
Definition 2.4 reduces to

A0 “ A
:
0

and Aj “ A
:
j

for j “ 1, . . . , n. Condition (P) reads as

κ :“ L ` L: “ B `B: ´ Btp
?
gA0q

?
g

´
nÿ

j“1

Bxjp?
gAjq

?
g

ą 0, (2.2)

where g is the absolute value of the determinant of the Lorentzian metric. Con-
dition (H) can be stated as follows: For any future directed, timelike covector
τ “ dt` ř

j αjdx
j ,

σLpτq “ A0 `
nÿ

j“1

αjAj is positive definite.

Remark 2.5. With the above definition, we can immediately notice that the
Dirac operator does not give rise to a symmetric system. Consider for example
the half Minkowski spacetime M 4 :“ R3 ˆ r0,8q endowed with the standard
metric ´dt2 ` dx2 ` dy2 ` dz2. In this setting the Dirac operator reads as

D “ ´ıγpe0qBt ` ıγpe1qBx ` ıγpe2qBy ` ıγpe3qBz

where γpeiq are the Dirac matrices. By straightforward computation, we obtain

• pıγpejqq: “ ıγpejq for j ě 1 while p´ıγpe0qq: “ ıγpe0q which violates
condition (S);

• κ “ 0 and hence condition (P) is violated;

• σDpdtq “ ´ıγpe0q is not positive definite, therefore condition (H) is vio-
lated.

Nonetheless, it still possible to find a fiberwise invertible endomorphism Q P
ΓpEndpSMqq such that Q ˝ D is a symmetric hyperbolic system such that for
any compact subset of M the operator Q˝D`λId is also a positive hyperbolic
system for a suitable λ ą 0 as we will see below.
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Lemma 2.6. Consider a globally hyperbolic spin manifold M with boundary
BM. Let D be the Dirac operator and e0, β as in (2.1). Then for λ P R the
first order differential operator Sλ : ΓpSMq Ñ ΓpSMq defined by

Sλ :“ ıγpe0qβD ` λ Id (2.3)

is a symmetric hyperbolic system and its Cauchy problem
$
’&
’%

SλΨ “ f P ΓcpSMq
Ψ|Σ0

“ h P ΓcpSΣ0q
MΨ|BM “ 0

(2.4)

is equivalent to the Cauchy problem for the Dirac operator
$
’&
’%

Dψ “ f P ΓcpSMq
ψ|Σ0

“ h P ΓcpSΣ0q
Mψ|BM “ 0.

(2.5)

Moreover, for any compact set R Ă M, there exists a λ ą 0 such that Sλ is a
symmetric positive hyperbolic system.

Proof. Since ıγpe0qβD is a symmetric hyperbolic system, see e.g. [45, Chap-
ter 3], Sλ is symmetric and hyperbolic for any λ P R and any positive smooth
function β. Next we verify that the Cauchy problem for Sλ and for D are
equivalent for any λ P R. We set Ψ :“ e´λtψ, which implies h :“ e´λth, and
f :“ ıe´λtβγpe0qf and obtain using (2.1)

SλΨ “ Sλpe´λtψq “ pıγpe0qβD ` λIdqpe´λtψq
“ ıe´λtγpe0qβDψ “ ıe´λtβγpe0qf.

Moreover, since e´λt ‰ 0 for all t P R, we obtain the inverse map pf, hq ÞÑ pf, hq
and we have

MΨ|BM “ eıλtMψ|BM “ 0 if and only if Mψ|BM “ 0.

This gives the equivalence of the two problems.

Let now R Ă M be compact. It remains to check the positivity condition (P)
for Sλ. The operator κ, defined in (2.2) for an arbitrary first order operator,
is a zero order operator. Therefore, for any compact set R, κ|ΓpSRq is bounded
and there exists a suitable λ such that κ is positive definite on R.

Example 2.7. Let us consider the half Minkowski spacetime M 4 and the Dirac
operator

D “ ´ıγpe0qBt ` ıγpe1qBx ` ıγpe2qBy ` ıγpe3qBz
from Remark 2.5. We can see that the operator

Sλ “ ıγpe0qD ` λId “ Bt ´ γpe0qγpe1qBx ´ γpe0qγpe2qBy ´ γpe0qγpe3qBz ` λId
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is a symmetric positive hyperbolic system for any λ ą 0 on account of

`
γpe0qγpeiq

˘: “ γpeiq:γpe0q: “ ´γpeiqγpe0q “ γpe0qγpeiq for i “ 1, 2, 3, and

κ “ Sλ ` S
:
λ “ 2λId4ˆ4 and σSλ

pdtq “ Id4ˆ4.

Remark 2.8. We note that one does not necessarily has to work with symmetric
positive hyperbolic systems but symmetric hyperbolic systems probably would
suffice if one uses a slightly different approach. We decided to require positivity
since we go for a energy inequality as in Lemma 3.1 which is easy to obtain
and enough for our purpose. One probably also can obtain energy inequalities
as in [3, Thm. 5.3] without the positivity. The positivity requirement is also
the reason why we work mostly on time strips and/or compact subsets. But
at the end by uniqueness of solutions we will still obtain a global solution in
Section 4.

3 Local well-posedness of the Cauchy problem

Let D be the Dirac operator on our globally hyperbolic spin manifold with
timelike boundary BM. We denote by T the time strip given by

T :“ t´1pr0, T sq

where T ą 0 and t : M Ñ R is the chosen Cauchy time function (For negative
times see Remark 4.1). Let O be a compact subset of ΣT . Let λ ą 0 be such
that the operator Sλ : ΓpSMq Ñ ΓpSMq defined as in (2.3) is a symmetric
positive hyperbolic system on

R^ :“ J´pOq X T

where J´pOq (resp. J`pOq) denotes the past set (resp. future set), namely
the set of all points that can be reached by past-directed resp. future-directed
causal curves emanating from a point in O, cp. Figure 1. This is always
possible by Lemma 2.6 and since R^ Ă M is compact. For the reason why we
choose R^ as above compare below—especially Theorem 3.20.

In order to show existence of weak solutions and uniqueness of strong solutions
for the Dirac Cauchy problem (2.5), we first shall derive so-called “energy
inequalities”. These estimates have a clear physical consequence as we shall
see in Proposition 3.4: Any solution can propagate with at most speed of light.

3.1 Energy inequalities

We note that our energy inequality (even when considered without boundary)
differs from the one considered in [3, Thm. 5.3], see also Remark 2.8. Such an
energy inequality therein should also be obtainable in our setting, but since our
approach to well-posedness goes over positive symmetric hyperbolic systems the
following inequality serves our purpose.
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O

R^

Σ0

ΣT

n

n

n

n

n

Figure 1: The set R^ “ J´pOq X T .

Lemma 3.1. Let O be a compact subset of ΣT and choose λ such that Sλ is
a symmetric positive hyperbolic system on R^ as above. Then there exists a
constant c ą 0 such that for all Ψ P ΓpST q satisfying Ψ|Σ0

“ 0 and MΨ|BM “ 0
the energy inequality

}Ψ}L2pR^q ď c}SλΨ}L2pR^q (3.1)

holds.

Proof. We first derive the Green formula for Sλ. In a local orthonormal frame
eµ we have Sλ ´ λ “ ř

µ ıγpe0qβıεµγpeµq∇eµ “ ´ ř
µ γpe0qβεµγpeµq∇eµ . In

a point of R^ we obtain using γpe0q: “ γpe0q and pγpe0qγpejqq: “ γpe0qγpejq
that

xpSλ ´ λqΨ,Ψy “ x´
ÿ

µ

βγpe0qεµγpeµq∇eµΨ,Ψy

“xp∇e0 ´
ÿ

j

γpe0qγpejq∇ej qΨ, βΨy

“e0xΨ, βΨy ´ ejxΨ, βγpe0qγpejqΨy ` xΨ,´∇e0pβΨq`
`

ÿ

j

∇ej pβγpe0qγpejqΨqy

“
ÿ

µ

eµxΨ,´βεµγpe0qγpeµqΨy ` xΨ, pS:
λ ´ λqΨy

where S
:
λ is the formal L2-adjoint of Sλ. Let n be the outward normal vector

to BR^, cp. Figure 1. Thus, using Stokes formula and n “ ř
µ εµgpn, eµqeµ we

obtain

pΨ |SλΨqR^ ´ pS:
λΨ |ΨqR^ “ pΨ |βγpe0qγpnqΨqBR^ (3.2)

where p¨ | ¨qBR^ is the induced L2-product on BR^. Subtracting 2pΨ |SλΨqR^ ,
taking the real part and using that Sλ is a symmetric positive system we thus
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obtain

ℜpΨ |βγpe0qγpnqΨqBR^ ´ 2ℜpΨ |SλΨqR^ “ ´pΨ | pSλ ` S:
λqΨqR^

ď ´2cpΨ |ΨqR^ ,
(3.3)

for some c ą 0 and where ℜ denotes the real part. Next, let us decompose the
boundary BR^ as

BR^ “ O Y
´
Σ0 X J´pOq

¯
Y Y ,

where Y :“ BJ´pOq X interiorpT q is the boundary of the light cone inside the
time strip T . The boundary term on Σ0XJ´pOq vanishes by assumption on Ψ.
Hence, we can have non zero boundary contributions only at O and Y . To deal
with these terms, we decompose the boundary Y further as

Y “ pY X BMq \
`
Y zpY X BMq

˘
.

Notice that if BR^ XBM “ H then Y reduces to the boundary of the light cone
J´pOq in the interior of T . Imposing the boundary condition MΨ|BM “ 0, we
have by condition (1.2) that

pΨ |βγpe0qγpnqΨqBM “ 0 .

Therefore, the boundary term on Y X BM vanishes. Hence, (3.3) reduces to

2ℜpΨ |SλΨqR^ ´2cpΨ |ΨqR^ ě ℜpΨ |βγpe0qγpnqΨqO`
` ℜpΨ |βγpe0qγpnqΨqY zpY XBMq.

Let us remark that the right hand side of the latter equation is non negative
definite: Indeed, since O is a spacelike hypersurface, n|O is future directed
timelike and by hyperbolicity of Sλ, x. |βγpe0qγpnq.yq “ x. |σSλ

pn5q.y.q is a
positive inner product for all q P O. By continuity, also the contribution
on Y zpY X BMq is still positive semidefinite since Y zpY X BMq is a lightlike
hypersurface. Hence, together with Inequality (3.3) we obtain

2cpΨ |ΨqR^ ď 2ℜpΨ |SλΨqR^ .

Thus, for all Ψ P ΓpST q with Ψ|Σ0
“ 0 and MΨ|BM “ 0 we have using the

Hlder inequality that

}Ψ}L2pR^q ď c´1}SλΨ}L2pR^q.

We conclude this section by giving an energy inequality for the formal L2-
adjoint of Sλ analogous to (3.1). For any compact subset O1 Ă Σ0, we restrict
to the set R_ defined by

R_ :“ T X J`pO1q . (3.4)

Using the same arguments as in the proof of Lemma 3.1, we can conclude
an analog energy inequality for the adjoint. Before stating this analog, let us
shortly remark on the adjoint boundary condition.
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Remark 3.2. The formal adjoint S:
λ of Sλ is by definition given by

pΦ |SλΨqSM “ pS:
λΦ |ΨqSM

for all Φ P ΓcpSMq and Ψ P ΓcpSMq. Let S˚
λ be the adjoint of Sλ where the

domain of Sλ is given by domSλ :“ tΦ P ΓcpST q | MΦ|BM “ 0,Φ|Σ0
“ 0u.

By the Green identity (3.2) we have

domS˚
λ “

!
Φ P dom pS:

λqmax

ˇ̌
ˇ

ż

pBMXT qYΣT

xΦ |βγpe0qγpnqΨy “ 0 @Ψ P domSλ

)

where dom pS:
λqmax is the maximal domain of S:

λ. Note that
"
Φ P ΓcpST q

ˇ̌
ˇ Φ|ΣT

“ 0,

ż

BMXT

xΦ |βγpe0qγpnqΨy “ 0 @Ψ P domSλ

*

is a core of S˚
λ. We set p1 ´ M

:q : SqpT X BMq Ñ SqpT X BMq to be the
orthogonal projection to

tΦ P SqpT X BMq | xΦ | γpe0qγpnqΨyq “ 0 @Ψ P SqpT X BMq with MΨ “ 0u .
We call M

: the adjoint boundary condition, compare [4, Sect. 7.2] for the
analog notations in the elliptic case. Note that as a matrixM : is not necessarily
the hermitian adjoint of M (M can be multiplied by any invertible complex
operator to obtain the same boundary condition.). Using this notation, we see
that

tΦ P ΓcpST q | Φ|ΣT
“ 0, M

:Φ “ 0u
is a core of S˚

λ.

Note that for M “ γpnq ´ ı being the MIT boundary condition then M
: “ M —

see also Remark 3.19.

Lemma 3.3. Let Φ P ΓpST q satisfying Φ|ΣT
“ 0 and M

:Φ|BM “ 0. Then Φ
satisfies the inequality

}Φ}L2pR_q ď C}S:
λΦ}L2pR_q . (3.5)

3.2 Uniqueness and finite propagation speed

We are now ready to see by standard arguments that if there exists a smooth
solution to the Cauchy problem (2.4), then it propagates with at most speed
of light.

Proposition 3.4 (Finite speed of propagation). Any smooth solution to the
Dirac Cauchy problem (1.1) propagates with at most the speed of light, i.e., its
support is inside the region

V :“
´
J`

`
supp f

˘
Y J`psupp hq

¯
,

see Figure 2.
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supp fsupp fsupp f

supp h

p‚

q‚

V X T

R^

Σ0

ΣT

Figure 2: Finite propagation of speed – V X T .

Proof. For any time strip T , consider any point p outside the region V X T .
Then there exists a λ such that Sλ is a symmetric positive hyperbolic system
on R^ “ T X J´ppq. Let Ψ “ e´λtψ. Then, by Lemma 2.6 Ψ is a solution
to (2.4) with f “ ıe´λtβγpe0qf and h “ e´λth. By Lemma 3.1 and f|R^ ” 0,
h|R^XΣ0

” 0, Ψ vanishes in R^. Hence, Ψ vanishes outside V .
The finite propagation of speed for a smooth solution of the Dirac Cauchy
problem (2.5) then follows by Lemma 2.6.

Proposition 3.5 (Uniqueness). Suppose there exist Ψ,Φ P ΓpST q satisfying
the same Cauchy problem (2.4) for some f P ΓccpSMq and h P ΓccpSΣ0q. Then
Ψ “ Φ. In particular, this also gives uniqueness of smooth solutions for the
Dirac Cauchy problem (2.5).

Proof. Since Ψ and Φ satisfy the same initial-boundary value problem (2.4),
then Ψ ´ Φ P ΓpST q is a solution of (2.4) with f “ 0 and h “ 0. By Propo-
sition 3.4, the supports of Ψ and Φ are contained in R^ for O :“ V X ΣT .
Therefore, we can use Lemma 3.1 to conclude that Ψ ´ Φ is zero.

The uniqueness of the Dirac Cauchy problem (2.5) then follows by Lemma 2.6.

3.3 Weak solutions in a time strip - definition

In the following we will focus on the Cauchy problem (2.4) for h ” 0. This can
be done without loss of generality, since:

Remark 3.6. For any Cauchy problem with any nonzero initial data h P
ΓccpSΣ0q there exists an equivalent Cauchy problem with zero initial data,
namely $

’&
’%

SλΨ “ f

Ψ|Σ0
“ h

MΨ|BM “ 0

ðñ

$
’&
’%

Sλ
rΨ “ rf

rΨ|Σ0
“ 0

MrΨ|BM “ 0

for any f,rf P ΓcpSMq. Here rfpt, xq :“ fpt, xq´λhpxq´ıβγpe0qDh and rΨpt, xq :“
Ψpt, xq ´ hpxq. Note that f P ΓccpSMq if and only if f P ΓccpSMq.
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With the help of the Energy inequality (3.1) we shall prove the existence of
a weak solution for the mixed initial-boundary value problem (2.4) for Sλ as

in (2.3) (for fixed f P ΓccpSMq and h ” 0). To this end, let λ be such that S:
λ

is a symmetric positive hyperbolic system on R_ “ T X J`pO1q for

O1 :“ J´pV X ΣT q X Σ0 with V :“ J`
`
supp f

˘
X T . (3.6)

We denote by

H :“
`
ΓcpST q, p. | .q

T

˘p. | .qT

the L2-completion of ΓcpST q.

Definition 3.7. We call Ψ P H a weak solution to the Cauchy problem (2.4)
restricted to an open subset U of T with f P ΓccpSMq and h ” 0 if the relation

pΦ | fqU “ pS:
λΦ |ΨqU (3.7)

holds for all Φ P ΓcpSUq satisfying M
:Φ|BM “ 0 and Φ|ΣT

” 0.

In order to check that this is the right definition let us give the following remark.

Remark 3.8. Let Ψ be a weak solution as defined above that is even smooth.
Then by testing first only with Φ P ΓccpSUq we immediately obtain with the
Green identity that SλΨ “ f. Using this in (3.7) with the Green identity for
general Φ P ΓcpSUq gives

0 “ pΦ |βγpe0qγpnqΨqpinteriorpT qXBMqYΣ0YΣT
.

The part on ΣT vanishes since ΦΣT
” 0. Moreover, using test functions Φ that

have support near Σ0 resp. BM X interiorpT q one sees as in Remark 3.2 that
ΨΣ0

“ 0 resp. MΨ|BM “ 0.

Remark 3.9. Analogously, one sees that a spinor Ψ P H is a weak solution
to (2.4) restricted to an open subset U of T with h P ΓccpSΣ0q if the relation

pΦ | fqU “ pS:
λΦ |ΨqU ` pΦ |βγpe0qγpnqhqΣ0XU

holds for all Φ P ΓcpSUq satisfying M
:Φ|BM “ 0 and Φ|ΣT

” 0.

3.4 Differentiability of weak solutions

Before examining existence of a weak solution, we want to show that a weak
solution, if it exists, is a strong solution and, in particular, smooth. Since this is
a local question, we use the theory for hyperbolic systems on subsets of Rn`1—
in particular that a weak solution is a (semi-)strong solution, [42, Section 1],
and the regularity estimates for strong solutions in [47, Theorem 3.1]. Since the
definition of strong solution in the sense Lax–Phillips slightly differs with the
one given by Rauch–Massey, we will denote it by semi-strong in the following:
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‚
p

‚ ̺ptq

v

Σp

Σ̺ptq

pBεppq

pBεp̺ptqq

pΣp

pΣ̺ptq

Figure 3: Fermi coordinates on each Cauchy surface.

Definition 3.10. Let U Ă M be a compact subset in M. We say that Ψ P H

is a semi-strong solution of the initial-boundary value problem (2.4) if there
exists a sequence of sections Ψk P W 1,2pΓpSUqq such that MΨk “ 0 on BMXU ,
Ψk “ 0 on Σ0 and

}Ψk ´ Ψ}L2pUq
kÑ8ÝÝÝÑ 0 and }SλΨk ´ f}L2pUq

kÑ8ÝÝÝÑ 0.

The solution is called strong if additionally the sequence Ψk can chosen to be
smooth.

We concentrate on points in the boundary p P BM (the other points will even
be easier since we do not have to care about boundaries) and firstly define
a convenient chart as follows, compare also Figure 3: Let Σp be the Cauchy

surface of M to which p belongs to. For q P BM let pΣq :“ Σq X BM be the
corresponding Cauchy surface in the boundary. Let ̺ : r0, εs Ñ BM be the
timelike geodesic in BM starting at p with velocity v P TpBM where v is a

normalized, future-directed, timelike vector perpendicular to pΣp in BM. Let
pBεp̺ptqq be the ε-ball in Σ̺̂ptq around ̺ptq. On these balls we choose geodesic

normal coordinates pκt : Bn´1
ε p0q Ă R

n´1 Ñ pBεp̺ptqq. Moreover, inside each

Σ̺ptq we choose Fermi coordinates with base pBεp̺ptqq. Thus, we obtain a chart
in Σ̺ptq around ̺ptq as

rκt : Bn´1

ε p0q ˆ r0, εs Ñ Uεp pBεp̺ptqqq :“ tq P Σ̺ptq | distΣ̺ptq
pq, pBεp̺ptqq ď εu

py, zq ÞÑ exp
K,Σ̺ptq

pκtpyq pzq

where exp
K,Σ̺ptq

pκtpyq pzq is the normal exponential map in Σ̺ptq starting at pκtpyq
with velocity perpendicular to pΣ̺ptq “ BΣ̺ptq pointing in the interior and with
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magnitude z. Putting all this together we obtain a chart

κp : r0, εs ˆBn´1

ε p0q ˆ r0, εs Ă R
n`1 Ñ Up :“

ď

tPr0,εs

Uεp pBεp̺ptqqq Ă M

pt, y, z̄q ÞÑ rκtpy, z̄q.

Note that sections of the spinor bundle SUp are now just vector-valued functions
Up Ñ C

N where N is the rank of the spinor bundle.

For more details on the above geometric maps compare e.g. [39]. For us here,
the only purpose of those charts is to specify coordinates such that near the
point p the Cauchy problem is near enough to the Minkowski standard form
and will take the form as in [42, 47]. To see this, let us first consider the model
case of a ‘general half’ of the Minkowski space.

Example 3.11. Let M be the Minkowski space with coordinates x “
px0, . . . , xnq with the standard foliation of Cauchy surfaces. We set t :“ x0,
y “ px1, . . . , xn´1q and z :“ xn. For |a| ă 1, the hypersurface Na :“ tz “ atu
is timelike and Ma “ tz ě atu Ă M is a globally hyperbolic manifold with a
timelike boundary. We use pt :“ t, y, z :“ z ´ atq as new coordinates on Ma.
Then, pt, y, zq ÞÑ pt, y, z` atq is exactly the map κp from above for any p P Na.

Then, together with γpe0q “ γpe0q´1, we have

ıγpe0qD “ Bt ´
n´1ÿ

j“1

γpe0qγpejqBxj ´ γpe0qγpenqBz

“ Bt ´
n´1ÿ

j“1

γpe0qγpejqBxj ´ pγpe0qγpenq ` aqBz.

Thus, Sλ “ ıγpe0qD ` λId, as in Example 2.7, has the form

Sλ “ Bt `
n´1ÿ

j“1

AjpxqBxj `AzpxqBz `Bpxq. (3.8)

with Azpxq “ ´γpe0qγpenq ´ a. Since |a| ă 1, Azpxq is nonsingular on BMa.
Hence, since kerM|q varies smoothly with q P BMa, after restricting to some
cube in Ma we are exactly in the situation considered in [42, 47].

Corollary 3.12. For the Dirac operator D on a globally hyperbolic spin man-
ifold with timelike boundary BM and p P BM, there is a sufficiently small
ε ą 0 such that in the coordinates κp from above there is an invertible operator
E : ΓpUp,C

N q Ñ ΓpUp,C
N q such that ESλ has the form

Bt `
n´1ÿ

j“1

Ajpt̄, y, z̄qBxj `Azpt̄, y, z̄qBz `Bpt̄, y, z̄q
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with Az̄ nonsingular on the boundary. In particular, any weak solution of the
Cauchy problem (2.4) gives rise to a weak solution to the Cauchy problem

$
&
%

xSλ :“ ESλΨ “ f P ΓcpSUpq
Ψ|Vp

“ h P ΓcpSVpq
MΨ|BM “ 0

(3.9)

on Up and vice versa. Here Vp :“ Up X t´1p0q and weak solution of (3.9) is
defined analogously as in Definition 3.7.

Proof. By the choice of the coordinates, the Dirac operator will look in p exactly
as for the Minkowski space computed in Example 3.11 with a “ dtpnpq where

np is the normal at p of Σ̂p in BM and t is the global time function of M. Note
that the role of Na is taken by the tangent plane of BM ãÑ M in p and that
|a| ă βppq´1. Since everything is continuous, we can find a sufficiently small
ε ą 0 such that there is an invertible linear map E : ΓpUp,C

N q Ñ ΓpUp,C
N q

with E|SpM “ 1 and such that ESλ has the required form with Azppq “
´βγpe0qγpenq ´ a.
Moreover, we obtain a weak solution of (3.9) as required by taking the weak
solution of (2.4) where the right handside is given by pE´1f, h, 0q.

Lemma 3.13 (Locally strong solution). A weak solution Ψ of the Cauchy prob-
lem (3.9) is a strong solution on Up.

Proof. The last Corollary tells us that we can apply [42, Section 2] in order to
obtain the existence of a semi-strong solution, i.e., there is a sequence of contin-
uous sections Φk P W 1,2pUp,C

N q withMΦk|BMXUp
“ 0 and }Φk´Ψ}L2pUpq Ñ 0

and } xSλΦk ´ f}L2pUpq Ñ 0. It remains to argue, that we can approximate the
Φk by smooth Ψk still fulfilling the boundary condition and the convergences
from above.
This can be achieved using standard Sobolev theory; we refer to [27] for more
details: First, choose ui P ΓpUp,C

N q, i “ 1, . . . , r, such that for each q P
BM X Up they form a basis of kerM|q and are linearly independent in all
q P Up. Since M depends smoothly on the base point and has constant rank
this is always possible. Choose uj P ΓpUp,C

N q, j “ r ` 1, . . . , N such that
u1pqq, . . . , uN pqq is a basis of CN at each q P Up. A section Φ P W 1,2pUp,C

N q
can now be expressed as Φ “ řN

i“1
aiui for ai : Up Ñ C. We denote by Φ`

the part of Φ spanned by u1 to ur and set Φ´ :“ Φ ´ Φ`. Using the ai as
the new coordinates, we decompose the solution Ψ into Ψ`

k P W 1,2pUp,C
rq

and Ψ´
k P W 1,2pUp,C

N´rq. Thus, there is a sequence Ψ`
k,j P ΓpUp,C

rq that

converges to Ψ`
k in W 1,2 and analogously a smooth sequence Ψ´

k,j converging

to Ψ´
k in W 1,2. Moreover, by definition trΨ`

k “ 0, where tr is the trace map
W 1,2pUp,C

rq Ñ L2pUp X BM,Crq. Thus, Ψ`
k,j can be chosen to be zero on

Up X BM. Thus, Ψk,j “ Ψ`
k,j ` Ψ´

k,j , where we use the embeddings Cr
ãÑ CN

and Cr
ãÑ CN´r from above, are smooth sections fulfilling MΨk,j|UpXBM “ 0.
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Choosing a diagonal sequence we obtain smooth Ψk approximating Ψ as in
Definition 3.10.

Next we want to see whether the strong solution on Up is actually smooth. For
that we would like to use the result [47, Theorem 3.1] by Rauch and Massey.
For p P Σ0 this is immediate. But for p P Σt for t ą 0 the solution might
now touch the boundary and compatibility issues occur. This is expectable
since just assuming f P ΓcpSMq and h P ΓcpSΣ0q (and not as in Theorem 1.1
compactly supported in the interior) is not sufficient to guarantee that the
solution of the Cauchy problem (2.4) is smooth.

3.4.1 Compatibility conditions and smoothness of the solution

To see the appearance of the compatibility issues let us start with the easiest
example:

Example 3.14. Let Ma be the half Minkowski spacetime as described in Ex-
ample 3.11 and consider the Cauchy problem (2.4) SλΨ “ 0, Ψ|t“0 “ h and
MΨ|z“0 “ 0. Assume that M does not depend on t, that is (e.g.) true for MIT
boundary conditions. Suppose that Ψ is k-differentiable. Set G :“ Bt ´ Sλ.
Then it satisfies

0 “ Bk
t

`
MΨ|z“0

˘
|t“0 “

`
MBk

t Ψ|z“0

˘
|t“0 “

`
MGkΨptq|z“0

˘
|t“0 “ M

`
Gkh

˘
|z“0 .

Therefore, any initial data have to satisfy a compatibility condition.

Remark 3.15. In the previous example we massively used that M and G does
not depend on t. In the more general case of Sλ for a Dirac operator on a
globally hyperbolic manifold in the coordinates on Up defined on page 753 this
is in general not the case.
In order to obtain a general compatibility condition on f and h set G “ Bt´ESλ

with E as in Corollary 3.12 and

hk :“
k´1ÿ

j“0

pk ´ 1q!
j!pk ´ 1 ´ jq!

`
Bj
tG

˘
|Vp

hk´1´j ` Bk
t f|Vp

(3.10)

for all k ě 1 with h0 “ h, Vp “ Up XΣ0. Impose that the data h P ΓcpSΣ0q and
f P ΓpSM) satisfy

kÿ

j“1

k!

pk ´ jq! pBj
tMq|Vp

hj´1 “ 0.

Translating this back for our Dirac Cauchy problem (2.5) in the Hamiltonian
form where H :“ Bt ´ ıβγpe0qD

pBt ´ Hqψ “ ıβγpe0qf
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the compatibility condition for h P ΓcpSΣ0q and f P ΓpSMq reduces to

kÿ

j“1

pkq!
j!pk ´ jq!

´
Bj
tM

¯ˇ̌
ˇ
BΣ0

hk´1 “ 0

for all k ě 1 where

hk :“
k´1ÿ

j“0

pk ´ 1q!
j!pk ´ 1 ´ jq! pBj

tHq|BΣ0
hk´1´j ` Bp

t

`
´ ıβγpe0qfq|BΣ0

with h0 “ h.

With the above definitions the following corollary follows directly by localizing
a solution in any set Up defined as above and then applying [47, Theorem 3.1,
see also p. 305].

Corollary 3.16 (Local smooth solution). Let Up as above. Then a strong
solution for the Cauchy problem (2.4) is smooth on Up if and only if h P
ΓcpUp,C

N q and f P ΓpUp,C
N) satisfy

kÿ

j“1

k!

pk ´ jq! pBj
tMq|BΣ0

hk´1 “ 0 (3.11)

with hi as in (3.10).

Remark 3.17. If we choose initial data h and f with compact support in the
interior of Σ0 resp. M, the compatibility condition is automatically satisfied.
Actually for f it is enough to be zero in a neighborhood of BΣ0 Ă M.

Since the compatibility equation (3.11) is an ’if and only if’-criterion for
smoothness, we can use iteratively already obtained smoothness for Up with
tppq ă s to obtain that the initial data on Uq with tppq “ s fulfills the compati-
bility criterion as well. That way we will obtain smoothness on the full time
strip:

Corollary 3.18. A weak solution of the Cauchy problem (3.9) for f P
ΓccpSMq and h P ΓccpSΣ0q in an open subset U of T is smooth. In particular,
there is a smooth solution of the Dirac Cauchy problem (1.1) in U .
The above statement remains true for all f P ΓcpSMq and h P ΓcpSΣ0q fulfilling
(3.11).

Proof. First let p P BM X Σt̂ for some t̂ P r0, T s and let ̺ : r0, t̂s Ñ BM be
a timelike curve with ̺p0q P Σ0 and p “ ̺pt̂q. We fix ε ą 0 such that we
have Fermi coordinates on a ’cube’ U̺ptq around ̺ptq as in Section 3.4 for all

t P r0, t̂s and such that Corollary 3.12 holds for those cubes. This is always
possible since the image of ̺ is compact and everything depends smoothly on
the basepoints.
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For U̺p0q we know that the compatibility condition (3.11) is fulfilled by as-
sumption. Thus, Corollary 3.16 tells us that the weak solution Ψ is smooth in
U̺p0q and that for every a P r0, εs the function ha :“ Ψ|U̺p0qXΣa

as new initial
data h together with the original f still fulfill the compatibility condition. More-
over, Ψ|U̺paq

is still a weak solution to the initial data pha, fq on U̺paq. Thus,
we can again use Corollary 3.16 where Σa now takes the role of Σ0. Iterating
this procedure, we obtain smoothness on all U̺ptq for t P r0, t̂s, i.e. in particular
in p.
For p P MzBM we choose a timelike curve ̺ : r0, t̂s Ñ MzBM with ̺p0q P Σ0

and p “ ̺pT q and proceed as before. It is even easier since we can just use
geodesic normal coordinates in the Cauchy surfaces around each ρptq. The
existence of smooth solutions to the Dirac Cauchy problem (2.5) then follows
by Lemma 2.6.

Remark 3.19. In view of Remark 1.2, we want to comment on the assump-
tions on the boundary condition that we have used up to here. The energy
inequalities (3.1) and (3.5) need that MΨ|BM “ 0 and M

:Ψ|BM “ 0 both imply

xΨ | γpe0qγpnqΨyq “ 0

for all q P BM. Moreover, in order to apply [42] in Lemma 3.13 and [47]
in Corollary 3.16, we additionally use that kerM|q is nonempty and varies
smoothly with q P BM.
The properties collected above are valid for the MIT bag boundary condition
M :“ γpnq ´ ı (and analogously for M :“ γpnq ` ı). Indeed, on account of

xΨ | γpe0qγpnqΨyq “xγpe0qΨ | γpnqΨyq “ x´γpnqγpe0qΨ |Ψyq “
“xγpe0qγpnqΨ |Ψyq “ xΨ | γpe0qγpnqΨyq,

where in the third equality we used gpe0, nq “ 0, we obtain xΨ | γpe0qγpnqΨyq P
R . By using MIT boundary conditions, we have

xΨ | γpe0qγpnqΨyq “ xΨ | γpe0qıΨyq “ xγpe0qΨ | ıΨyq “
“ x´γpe0qıΨ |Ψyq “ x´γpe0qγpnqΨ |Ψyq “
“ ´xΨ | γpe0qγpnqΨyq ,

which implies xΨ | γpe0qγpnqΨyq “ 0 for MΨ “ 0. The rest follows since M “
M

: as we will see in the following: Note that this in particular implies that H
as in Remark 3.15 restricted to a fixed Cauchy surface Σt is essentially self-
adjoint. First we rewrite the boundary condition MΨ “ 0 as

P`Ψ :“ 1

2
pId ` ıγpnqqΨ “ 0

and we set P´Ψ :“ 1

2
pId ´ ıγpnqqΨ “ 0. It is easy to see that

P` ` P´ “ Id P 2

˘ “ P˘ and P`P´ “ P´P`

Documenta Mathematica 25 (2020) 737–765



The Cauchy problem for the Dirac operator 759

and in particular that xP`Ψ |P´Φyq “ 0 for all Ψ,Φ P SqM. This implies that

P`Ψ “ 0 is tantamount to set Ψ “ P´
rΨ for some rΨ. Thus, for Ψ verifying

MΨ “ 0, the condition xΦ | γpe0qγpnqΨyq “ 0 holds if and only if for any rΨ it
is satisfied

0 “ 2xΦ | γpe0qγpnqP´
rΨyq “ xγpe0qΦ | pγpnq ` ıqrΨyq “

“ xp´γpnq ´ ıqγpe0qΨ | rΦyq “ xγpe0qpγpnq ´ ıqΦ | rΨyq ,

which implies MΦ “ pγpnq ´ ıqΦ “ 0 .
Another example is the chirality operator M :“ pId ´ γpnqGq where G is the
restriction to BM of an endomorphism-field of SM which is involutive, unitary,
parallel and anti-commuting with the Clifford multiplication on M, [38, Section
1.5].

3.5 Existence of a weak solution

Up to now we have seen in Corollary 3.18, Proposition 3.4 and Proposition 3.5,
that if there exists a weak solution Ψ of the Cauchy problem (2.4), compare
Definition 3.7, then it is smooth, unique and it vanishes outside V defined
by (3.6). It just remains to prove existence.

Theorem 3.20 (Weak existence). There exists a unique weak solution Ψ P H

to the Cauchy problem (2.4) with f P ΓccpSMq and h ” 0, restricted to T .

Proof. Let U be a compact subset with supp f Ť U and set V :“ J`psupp fqXT

and V 1 :“ J`pUq X T . Let R_pUq :“ T X J`pJ´pU X ΣT q X Σ0q be defined
for any U Ť T . Note that R_ :“ R_pVq Ť R_pV 1q. First we will show that it
is enough to find a Ψ such that

pΦ | fqR_pV 1q “ pS:
Φ |ΨqR_pV 1q (3.12)

for all Φ P ΓcpSW q where W :“ interiorpR_pV 1qq Y pR_pV 1q X BT q satisfying
M :Φ|BM “ 0 and Φ|ΣT

“ 0: Then, by Definition 3.7 Ψ is a weak solution of
(2.4) both restricted to W and restricted to Ŵ :“ interiorpR_q Y pR_ X BT q.
Hence, by Lemma 3.13 and Corollary 3.18 Ψ is a smooth solution onW . Using
Proposition 3.4 we obtain that Ψ|

Ŵ zW “ 0. Hence, we can extend Ψ by zero

outside Ŵ to obtain a weak solution on all of T .

Hence, it remains to find a weak solution on R_pV 1q: By Lemma 3.3 and using
arguments similar to Proposition 3.5, we notice that the kernel of the operator
S

:
λ acting on

domS:
λ :“ tΦ P ΓcpST q | Φ|ΣT

“ 0,M:Φ|BM “ 0u

is trivial. Let now ℓ : S:
λpdomS

:
λq Ñ C be the linear functional defined by

ℓpΘq “ pΦ | fqR_pV 1q
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where Φ satisfies S:
λΦ “ Θ. By the energy inequality (3.5), ℓ is bounded:

ℓpΘq “pΦ | fqR_pV 1q ď }f}L2pR_pV 1qq }Φ}L2pR_pV 1qq

ďc}f}L2pR_pV 1qq}S:
λΦ}L2pR_pV 1qq “ c}f}L2pR_pV 1qq}Θ}L2pR_pV 1qq,

where in the first inequality we used Cauchy-Schwartz inequality. Then ℓ

can be extended to a continuous functional defined on the L2-completion of
S

:
λpdomS

:
λq denoted by H Ă H. Finally, by Riesz representation theorem,

there exists a unique element Ψ P H such that

ℓpΘq “ pΘ |ΨqR_pV 1q .

for all Θ P S
:
λpdomS

:
λq. Thus, we obtain

pΦ | fqR_pV 1q “ ℓpΘq “ pΘ |ΨqR_pV 1q “ pS:
λΦ |ΨqR_pV 1q

for all Φ P domS
:
λ. This concludes our proof.

4 Global well-posedness of Cauchy problem

Up to now we obtained a weak solution in any time strip t´1pr0, T sq in The-
orem 3.20 and showed that it is actually smooth if the initial data are com-
pactly supported in the interior (or more generally fulfill the compatibility
condition (3.11), compare Remark 3.17). We can now easily put everything
together to obtain global well-posedness of the Cauchy problem (1.1)–the only
comment missing is about negative time:

Remark 4.1. When considering (1.1) on t´1pr´T, 0sq for some T ą 0 one
can map this to the problem in forward time by a time reversal: If t ÞÑ ´t,
Bt ÞÑ ´Bt and e0 ÞÑ ´e0. In particular ´dt is then future-directing which makes
σSλ

p´dtq still positive definite. Thus, going again the way via Sλ we obtain a

smooth unique solution of the original Dirac problem (1.1) on all t´1pr´T, 0sq
for all T ą 0.

Proof of Theorem 1.1. Fix h P ΓccpSΣ0q. On account of Theorem 3.20, for
any T P r0,8q there exists a weak solution ΨT to the Cauchy problem (2.4)
in the time strip TT :“ t´1pr0, T sq. Combining Corollary 3.12 with Corol-
lary 3.18, we get in particular that ΨT is smooth in the time strip TT . By
applying Lemma 2.6, we finally obtain a smooth solution ψT to the Dirac
Cauchy problem (1.1) in the time strip TT . By uniqueness of the solution, see
Proposition 3.5, we have ΨT1

|t´1r0,T1s “ ΨT2
|t´1r0,T1s for all T1 ă T2. Hence,

we obtain a smooth solution Ψ of (1.1) on t´1pr0,8qq. By Remark 4.1 we get

analogously a smooth solution rΨ on t´1pp´8, 0sq.
It is left to show that ψ and rΨ glue smoothly at t “ 0. For that let φ be
the solution of Dφ “ f on t´1pr´1, 1sq, φ|Σ´1“t´1p´1q “ rΨ|Σ´1

and Mφ “ 0
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on BM X t´1pr´1, 1sq. By uniqueness we have φ|t´1pr´1,0sq “ rΨ|t´1pr´1,0sq and,

hence, φ|Σ0
“ rΨΣ0

“ ΨΣ0
. Again by uniqueness φ|t´1pr0,1sq “ Ψ|t´1pr0,1sq and,

thus, by smoothness of φ, the solution Ψ and rΨ glue to a smooth solution of
(1.1) on all of M.
For the continuous dependency on the initial data, see below.

We are now in the position to discuss the stability of the Cauchy problem.
Since the proof is independent on the presence of the boundary and it does
rely mostly on functional analytic techniques, we shall omit it and we refer to
[3, Section 5] for further details.

Proposition 4.2. Consider a globally hyperbolic spacetime M with boundary
BM and denote with SM the spinor bundle over M. Moreover, let Γ0pSΣ0q ˆ
Γ0pSMq denote the space of data satisfying the compatibility condition (3.11).
Then the map

Γ0pSΣ0q ˆ Γ0pSMq Ñ ΓscpSMq

which assign to ph, fq a solution Ψ to the Cauchy problem (2.4) is continuous.

A byproduct of the well-posedness of the Cauchy problem is the existence of
Green operators:

Proposition 4.3. The Dirac operator is Green hyperbolic, i.e., there ex-
ist linear maps, called advanced/retarded Green operator, G

˘ : ΓccpSMq Ñ
ΓscpSMq satisfying

(i) G
˘ ˝ D f “ D ˝ G

˘f “ f for all f P ΓccpSMq;

(ii) supp pG˘fq Ă J˘psupp fq for all f P ΓccpSMq,

where J˘ denote the causal future (+) and past (-).

Proof. Let f P ΓccpSMq and choose t0 P R such that supp f Ă J`pΣt0q. By
Theorem 1.1, there exists a unique solution ψpfq to the Cauchy problem

$
’&
’%

Dψ “ f

ψ|Σ0
“ 0

MΨ|BM “ 0.

For f P ΓccpSMq we set G`f :“ ψ and notice that D ˝ G
`f “ Dψ “ f . Note

that by the finite speed of propagation, cf. Proposition 3.4, G`f P ΓscpSMq.
Moreover, G` ˝ Dψ “ G

`f “ ψ which finishes the proof of (i). By Proposi-
tion 3.4, we obtain supp G

`f Ă J`pfq and this conclude the proof of (ii).
The existence of the retarded Green operator G´ is proven analogously.
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