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Abstract. We study the kernel of the “compact motivization” func-
torM c

k,Λ : SHc
Λ(k)→ DM c

Λ(k) (i.e., we try to describe those compact
objects of the Λ-linear version of SH(k) whose associated motives
vanish; here Z ⊂ Λ ⊂ Q). We also investigate the question when the
0-homotopy connectivity of M c

k,Λ(E) ensures the 0-homotopy connec-
tivity of E itself (with respect to the homotopy t-structure tSHΛ for
SHΛ(k)). We prove that the kernel of M c

k,Λ vanishes and the corre-
sponding “homotopy connectivity detection” statement is also valid if
and only if k is a non-orderable field; this is an easy consequence of
similar results of T. Bachmann (who considered the case where the
cohomological 2-dimension of k is finite). Moreover, for an arbitrary k
the kernel in question does not contain any 2-torsion (and the author
also suspects that all its elements are odd torsion unless 1

2 ∈ Λ). Fur-
thermore, if the exponential characteristic of k is invertible in Λ then
this kernel consists exactly of “infinitely effective” (in the sense of Voe-
vodsky’s slice filtration) objects of SHc

Λ(k). The results and methods
of this paper are useful for the study of motivic spectra; they allow
extending certain statements to motivic categories over direct limits
of base fields. In particular, we deduce the tensor invertibility of mo-
tivic spectra of affine quadrics over arbitrary non-orderable fields from
some other results of Bachmann. We also generalize a theorem of A.
Asok.
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0 Introduction

It is well known that for a perfect field k both the (Morel-Voevodsky’s) motivic
stable homotopy category SH(k) and Voevodsky’s motivic category DM(k)
are important for the study of cohomology of k-varieties. The roles of these
categories are somewhat distinct: whereas SH(k) is “closer to the geometry”
of varieties, DM(k) is somewhat easier to deal with. For instance, we know
much more on morphisms in DM(k) than in SH(k); this information yields the
existence of so-called Chow weight structures on DM c(k) ⊂ DM(k) (as shown
in [Bon10] and [Bon11]; below we will mention an interesting application of
this result described in [Bac17]).
Now, there is a connecting functor Mk : SH(k) → DM(k) (that sends the
motivic spectra of smooth varieties into their motives); so it is rather important
to describe the extent to which Mk is conservative. Whereas the “whole” Mk is
never conservative (as demonstrated in Remark 2.1.2(1) below), Theorem 16 of
[Bac18] states that the restrictionM c

k ofMk to compact objects is conservative
whenever k is of finite cohomological 2-dimension.
The current paper grew out of the following observation: this theorem can be
generalized to the case of an arbitrary non-orderable (perfect) k via a simple
“continuity” argument (i.e., if k = lim−→ ki then the conservativity of all M c

ki
implies that for M c

k). We also demonstrate (in Remark 2.1.2(3)) that this
conservativity statement fails whenever k is a formally real field (though we
conjecture that the kernel of M c

k consists of torsion elements only; see Remark
2.1.2(4)); thus we answer the question when M c

k is conservative completely.
Moreover, we extend to arbitrary non-orderable fields the stronger part of
Bachmann’s Theorem 16(b); so we prove that the r-homotopy connectivity
of M c

k(E) (for E ∈ ObjSHc(k)) ensures the r-homotopy connectivity of E
itself (here r-homotopy connectivity means belonging to the thom ≥ r+ 1-part
for the corresponding homotopy t-structure). Lemma 19 of ibid. also gives
a similar result for E that is a 2-torsion compact motivic spectrum over an
arbitrary perfect k.
Though these continuity arguments are rather simple, the author believes that
the results described above are quite useful. To illustrate their utility, we
(easily) deduce a certain generalization of Theorem 2.2.1 of [Aso17].1 So, we
extend this theorem (in Proposition 2.3.5) to the case of an arbitrary non-
orderable perfect base field (and to a not necessarily proper X/k). Moreover,
(for the sake of generality; in this proposition as well as in the central results
of this paper) we actually consider the Λ-linear versions of the statements
described above, where Λ is an arbitrary (unital) coefficient subring of Q. For
a smooth proper X this corresponds to studying the conditions ensuring that
X contains a 0-cycle whose degree is invertible in Λ and that the kernel of
the degree homomorphism Chow0(XL) → Z is killed by − ⊗Z Λ for any field

1The formulations of ibid. along with that of [Bac18] indicate that that the “continuity”
arguments applied in this paper are new to a significant part of specialists in the motivic
homotopy theory.
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Infinite Effectivity of Motivic Spectra 813

extension L/k (see Remark 2.3.6(2)); hence the case Λ 6= Z may be quite
interesting as well.
This Λ-linear setting has some more advantages. In particular, we describe an
argument deducing our central Theorem 2.3.1(i) from the “slice-convergence”
results of [Lev13] (avoiding the usage of the more complicated results of
[Bac18]); yet for this argument we have to assume that the characteristic p
of k is invertible in Λ whenever it is positive. However, it appears that the
most interesting cases are Λ = Z and Λ = Z[ 1

p ] (for p > 0).
Another application of our results (that generalizes one more statement for-
mulated by Bachmann and requires a coefficient ring containing 1

p if p > 0)
is the following one: a cone of the “structure morphism” Σ∞T,Λ(A+) → S0

Λ is
⊗-invertible in SHΛ whenever k is non-orderable, A is the (affine) zero set of
φ−a for φ that is a non-zero quadratic form, 0 6= a ∈ k, p is distinct from 2 and
is invertible in Λ if it is positive. We deduce this statement from Theorem 33
of [Bac17].
Now we describe the most original result of this paper (at least, it appears not
to be formulated in the literature in any form). We prove that an object E
of SHc

Λ(k) belongs to SHeff
Λ (k)(r) (to the rth level of the Λ-linearized version

of the Voevodsky’s slice filtration; we also say that the objects of SHeff
Λ (k)(r)

are r-effective) if and only if Mk,Λ(E) belongs to DMeff
Λ (k)(r). Moreover,

we establish a certain “thom-connective” version of this statement. Assuming
that p is invertible in Λ whenever it is positive, we immediately deduce the
“infinite effectivity” of objects in the compact motivization kernel, and also say
when Mk,Λ(E) ∈ DMΛ(k)tDM

Λ ≥r+1 for E ∈ SHΛ(k)tSH
Λ ≥r.

We also note that continuity arguments similar to ones applied in this paper
can be useful for the study of a wide range of motivic questions. For this
reason we discuss these continuity matters in a rather detailed and “axiomatic”
manner.
Let us now describe the contents of the paper. Some more information of this
sort can be found at the beginnings of sections.
In §1 we recall some basics on (general) triangulated categories, SH(−) and
DM(−), on the cohomological dimension of fields and their Grothendieck-Witt
rings of quadratic forms. We also introduce the Λ-linear versions of SH(−) and
DM(−) and discuss certain continuity arguments.
In §2 we recall some more results on motivic categories (we formulate them in
the Λ-linear setting). They enable us to generalize certain results of Bachmann
(as well as Theorem 2.2.1 of [Aso17]) to the case of arbitrary non-orderable
base fields. We also prove that the restriction of M c

k,Λ to 2-torsion objects is
conservative over any perfect k.
In §3 we prove that the compact motivization functor M c

k,Λ “strictly respects”
the slice filtrations (on SHc

Λ(k) and DM c
Λ(k), respectively) as well as the (more

precise) homotopy t-structure analogue of this result. These statements give
an alternative method for proving Theorem 2.3.1(i) (that is the central result
of this paper); so we sketch an argument deducing it from the results of [Lev13]
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814 M. V. Bondarko

(under the additional assumption that p is invertible in Λ whenever it is posi-
tive; note that [Bac18] relies on the results of M. Levine as well). Lastly, we
explain that in all our results the categories DMΛ(−) may be replaced by the
categories DMGl

Λ (−) of “cobordism-modules”.
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1 Preliminaries

In §1.1 we introduce some notation and a few conventions that we will use
throughout the paper.
In §1.2 we discuss compactly generated triangulated categories along with their
Λ-linear versions (for Λ ⊂ Q, i.e., we invert some set S of primes in a triangu-
lated category C to obtain the corresponding CΛ).
In §1.3 we recall some basics on the motivic categories SH(−) and DM(−). We
also note that these statements generalize to SHΛ(−) and DMΛ(−). Moreover,
we describe (abstract versions of) our basic continuity arguments.
In §1.4 we recall some well-known properties of the cohomological dimension
of (essentially finitely generated) fields and relate the Grothendieck-Witt ring
of k to SH(k)(S0, S0).

1.1 Some notation and terminology

• For categories C,D we write D ⊂ C if D is a full subcategory of C.

For a category C and X,Y ∈ ObjC, the set of C-morphisms from X
to Y will be denoted by C(X,Y ).

• Below C will always denote a triangulated category.

For E ∈ ObjC we will say that it is 2-torsion if there exists t > 0 such
that 2t idE = 0.

We will use the term exact functor for a functor of triangulated cate-
gories (i.e., for a functor that preserves the structures of triangulated
categories).

• For a triangulated category C and some D ⊂ ObjC we will call the
smallest subclass D′ of ObjC that contains D and is closed with respect
to all C-extensions and retractions the envelope of D (thus it is thick if
D[1] = D).

• Below k and F will always be perfect fields of characteristic p (and the
case p = 0 will be the most interesting for us); k will usually denote
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Infinite Effectivity of Motivic Spectra 815

"the base field" for the motivic categories that we consider at the given
moment (whereas F will often run through all perfect fields). L will
denote a field of characteristic p also; we will not assume L to be perfect
(by default).
The category of all perfect fields will be denoted by PFi.

• When writing k = lim−→ ki we will always assume that ki form a directed
system of perfect fields (so, this is an inductive limit).

• Now let F be a 2-functor from PFi into a certain 2-category of categories
(that will actually be the 2-category of tensor triangulated categories for
all the examples of this paper). Then for a PFi-morphism m : k → k′

and E ∈ ObjF(k) the object F(m)(E) of F(k′) will often be denoted by
Ek′ . If an object E′ of F(k′) is isomorphic to Ek′ (for some E ∈ ObjF(k))
then we will say that E′ is defined over k.

• We will say that the continuity property for morphisms is fulfilled for F
if F(k)(M0

k , N
0
k ) ∼= lim−→i

F(ki)(M
0
ki
, N0

ki
) whenever k = lim−→i

ki, all these
fields are extensions of a certain perfect field k0, whereas M0 and N0 are
some objects of F(k0).
This assumption is (an important) part of the following continuity prop-
erty for F (cf. §4.3 of [CiD19]): we will say that F is continuous if we have
F(k) ∼= lim−→F(ki) whenever k = lim−→ ki (i.e., we consider the 2-category
colimit with the transition functors being the result of applying F to the
corresponding PFi-morphisms).

• We will say that k is non-orderable whenever −1 is a sum of squares in
it.

• SmVar will denote the set of (not necessarily connected) smooth k-
varieties (and in some occasions we will consider SmVar as a category).
More generally, SmVar(F ) will denote the set of smooth F -varieties.
pt will always denote the point Spec k (over k); P1 will denote the pro-
jective line P1(k), and A1 = A1(k) is the affine line.

1.2 On compactly generated categories and localizing coeffi-
cients for them

In this subsection C will denote a triangulated category closed with respect
to all small coproducts. We recall the following (more or less) well-known
definitions.

Definition 1.2.1. 1. We will say that an object M of C is compact whenever
the functor C(M,−) respects coproducts.
2. We will say that a class C = {Ci} ⊂ ObjC generates a subcategory D ⊂ C
as a localizing subcategory if D equals the smallest full strict triangulated sub-
category of C that is closed with respect to small coproducts and contains C.
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816 M. V. Bondarko

3. We will say that C = {Ci} compactly generates C (or that the Ci compactly
generate C) if C is a set, all Ci are compact (in C), and C generates C as its
own localizing subcategory.
We will say that C is compactly generated whenever there exists some set of
compact generators of this sort.

Remark 1.2.2. Recall (see Lemma 4.4.5 of [Nee01]) that if C compactly gen-
erates C then the full subcategory Cc of compact objects of C is the smallest
thick subcategory of C containing C (i.e., if ObjCc is the envelope of ∪j∈ZC[j]
in the sense described in §1.1). Moreover, Cc is idempotent complete, i.e., any
idempotent endomorphism gives a splitting in it.
In the current paper we use the "homological convention" for t-structures (fol-
lowing [Mor03] and [Bac18]). Thus a t-structure t for C gives homological
functors Ht

j from C to the heart Ht of t such that Ht
j = Ht

0 ◦ [−j] for any
j ∈ Z. If t is non-degenerate (i.e., the collection {Ht

j} for j ∈ Z is conservative;
we will call these functors t-homology) then E ∈ Ct≤0 (resp. E ∈ Ct≥0) if and
only if Ht

j(E) = 0 for all j > 0 (resp. j < 0).
We recall the following existence statement.

Proposition 1.2.3. Let C ⊂ ObjC be a set of compact objects. Then there
exists a unique t-structure t for C such that Ct≥0 is the smallest subclass of
ObjC that contains C and is stable with respect to extensions, the suspension
[+1], and arbitrary (small) coproducts.

Proof. This is Theorem A.1 of [AJS03].

Remark 1.2.4. 1. Recall that E ∈ ObjC determines its t-decomposition trian-
gle Et≥0 → E → Et≤−1 (with Et≥0 ∈ Ct≥0 and Et≤−1 ∈ Ct≤−1 = Ct≤0[−1])
in a functorial way.
Moreover, for the t-structure given by Proposition 1.2.3 the corresponding func-
tors −t≥0 and −t≤−1 respects C-coproducts; see Proposition A.2 of ibid.
2. Under the assumptions of the proposition we will say that the t-structure t
is generated by C.
3. If C is suspension-stable (i.e., {Ci}[1] = {Ci}) then the classes Ct≥0 and
Ct≤0 are suspension-stable as well. Thus Ct≥0 is the class of objects of the
localizing subcategory D generated by {Ci}, and E 7→ Et≥0 yields the right
adjoint to the embedding D → C. This functor is clearly exact; this setting is
called the Bousfield localization one (in [Nee01]).
We also recall some basics on "localizing coefficients" in a triangulated category.
Below S ⊂ Z will always be a set of prime numbers; the ring Z[S−1] will
be denoted by Λ. We will often assume that S contains p whenever p is the
characteristic of our base field k and p > 0.

Proposition 1.2.5. Assume that C is compactly generated by a small sub-
category C ′. Denote by CS−tors the localizing subcategory of C (compactly)
generated by Cone(c′

×s→ c′) for c′ ∈ ObjC ′, s ∈ S.
Then the following statements are valid.
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Infinite Effectivity of Motivic Spectra 817

1. CS−tors also contains all cones of c ×s→ c for c ∈ ObjC and s ∈ S.

2. The Verdier quotient category CΛ = C/CS−tors exists (i.e., the morphism
groups of the localization are sets); the localization functor l : C → CΛ

respects all coproducts and converts compact objects into compact ones.
Moreover, CΛ is generated by l(ObjC ′) as a localizing subcategory.

3. For any c ∈ ObjC, c′ ∈ ObjC ′, we have CΛ(l(c′), l(c)) ∼= C(c′, c)⊗Z Λ.

4. l possesses a right adjoint G that is a full embedding functor. The es-
sential image of G consists of those M ∈ ObjC such that s · idM is an
automorphism for any s ∈ S (i.e, G(C) is essentially the maximal full
Λ-linear subcategory of C).

5. Assume that D is also a compactly generated (triangulated) category;
define DΛ, lD and GD as the D-versions of CΛ, l, and G, respectively.
Then any functor F : C → D that respects coproducts can be canonically
completed to a diagram

C
l−−−−→ CΛ

G−−−−→ CyF yFΛ

yF
D

lD−−−−→ DΛ

GD−−−−→ D

where FΛ is a certain exact functor respecting coproducts.

Proof. See Proposition 5.6.2(I) of [Bon16] (cf. also Proposition A.2.8 and Corol-
lary A.2.13 of [Kel12], Appendix B of [Lev13], or [Bon20]).

Remark 1.2.6. For S = {l} (i.e., consisting of a single prime) we will write
C[l−1] instead of CZ[ 1

l ].
Moreover, for a triangulated category C that is a value of a 2-functor D from
PFi (i.e., if C = D(F ) for some perfect field F ) its Λ-linear version will be
denoted by DΛ(F ) instead of D(F )Λ.

1.3 On motivic categories and continuity

Now we recall some basics properties of triangulated motivic categories (that
were defined by Voevodsky and Morel). For our purposes it will be sufficient to
consider them over perfect fields only; yet note that a much more general theory
is currently available (thanks to the works of Ayoub, Cisinski, and Déglise).
Respectively, instead of morphisms of base schemes we will consider morphisms
of fields. The tensor product operations on our categories will be denoted by ⊗.

Proposition 1.3.1. 1. There exist covariant 2-functors k 7→ SH(k) and
k 7→ DM(k) (see §4.2 of [Deg11] for the latter) from PFi into the 2-
category of tensor triangulated categories.
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818 M. V. Bondarko

The categories SH(k) and DM(k) are closed with respect to arbitrary
small coproducts and the tensor products for them respect coproducts
(when one of the arguments is fixed). Moreover, for a morphism m :
k → k′ the functors SH(m) and DM(m) also respect all coproducts and
the compactness of objects.

2. There exist functors SmVar→ SH(k) : X 7→ Σ∞T (X+) (one may consider
this as a notation) and Mgm : SmVar→ DM(k); they factor through the
corresponding subcategories of compact objects SHc(k) and DM c(k),
respectively. Moreover, these two functors convert the products in SmVar
into the tensor products in SH(k) and DM(k), respectively, and convert
the projection A1 → pt into isomorphisms.

3. For any k there is an exact tensor functor Mk : SH(k) → DM(k) (the
motivization functor) that respects coproducts and the compactness of
objects; we have Mk(Σ∞T (X+)) ∼= Mgm(X) for any X ∈ SmVar. More-
over, for any PFi-morphism m : k → k′ the diagram

SmVar(k)
Σ∞

T (−+)−−−−−−→ SH(k)
Mk−−−−→ DM(k)yX 7→Xk′

ySH(m)

yDM(m)

SmVar(k′)
Σ∞

T k′ (−+)−−−−−−−→ SH(k′)
Mk′−−−−→ DM(k′)

is commutative.

4. Mk possesses a right adjoint Uk that respects coproducts. Furthermore,
the functor Uk ◦Mk is isomorphic to − ⊗HZ for a certain object HZ of
SH(k).

5. The objects S0 = Σ∞T (pt+) and Z = Mgm(pt) (we omit k in this notation)
are tensor units of the corresponding motivic categories, and we have
DM(k)(Z,Z) ∼= Z.

6. Denote by T the complement to Σ∞T (pt+) in Σ∞T (P1
+) (with respect to

the natural splitting), and denote by Z(1)[2] the complement toMgm(pt)
in Mgm(P1). Then these objects are ⊗-invertible in the corresponding
categories, and Mk(T ) ∼= Z(1)[2].

The ith iterates of the functors −⊗ (T [−1]) and −⊗ (Z(1)[1]) will (abu-
sively) be denoted by −{i} for all i ∈ Z. 2

7. The category SH(k) (resp. DM(k)) is compactly generated (see Def-
inition 1.2.1) by the objects Σ∞T (X+){i} (resp. Mgm(X){i}) for X ∈
SmVar, i ∈ Z.

2Note here that the "usual" Tate twist −(1) (in the convention introduced by Voevodsky)
clearly equals −{1} ◦ [−1].
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Infinite Effectivity of Motivic Spectra 819

8. For any k there exists a canonical idempotent SH(k)-endomorphism ε of
S0 (see §6.1 of [Mor03]) such that Mk(ε) = − idZ.

9. The 2-functors SHc(−) and DM c(−) are continuous in the sense de-
scribed in §1.1 (i.e., SHc(k) ∼= lim−→i

SHc(ki) andDM c(k) ∼= lim−→i
DM c(ki)

whenever k = lim−→ ki).

Proof. All of these assertions are rather well-known except possibly the first
part of the last one, that can be found in Example 2.6(1) of [CiD15] (see also
§6.1 and Remark 6.3.5 of [Mor03] for assertion 8).

Now we introduce the Λ-linear versions of our motivic triangulated categories.
As we will briefly explain, these categories are easily seen to fulfil the natural
analogues of the properties listed in Proposition 1.3.1. For the convenience
of the readers we note that the following proposition is not necessary for the
understanding of §2.1.

Proposition 1.3.2. Choose a set of primes S, set Λ = Z[S−1], and consider the
2-functors SHΛ and DMΛ from PFi into the 2-category of tensor triangulated
categories (see Proposition 1.2.5(2,5) and the convention introduced in Remark
1.2.6).
Then the following statements are valid.

1. The functors of the type SHΛ(m) and DMΛ(m) (where m is a morphism
of perfect fields) respect the compactness of objects and all coproducts.

Moreover, the tensor products in these categories respect coproducts
(when one of the arguments is fixed).

2. The natural Λ-linear versions of Proposition 1.3.1(2–9) are also valid.

3. The functors F 7→ {0} ⊂ ObjDM c
Λ(F ) and F 7→

{Mgm,Λ(SmVar(F )){r}[j]} (for F being a perfect field and any fixed
r, j ∈ Z) are DM c

Λ-continuous.

Proof. These statements mostly easily follow from Proposition 1.3.1 combined
with Proposition 1.2.5. However, one should also invoke Remark 1.2.2 to obtain
that the functors in question respect the compactness of objects along with the
Λ-linear version of Proposition 1.3.1(9) and assertion 3.

Remark 1.3.3. We will now discuss some more notation and properties for the
2-functors SHc

Λ and DM c
Λ; certainly, they can be applied in the case Λ = Z

(i.e., for S = ∅).
1. The restriction ofMk,Λ to the subcategory SHc

Λ(k) of compact objects (with
its image being the corresponding DM c

Λ(k)) will be denoted by M c
k,Λ.

2. We will need a certain property of continuity for families of subsets of
ObjDM c

Λ(−). To avoid (minor) set-theoretical difficulties, till the end of the
section will assume that DM c

Λ(F ) is a small category for any perfect field F .
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820 M. V. Bondarko

This technical assumption is easily seen not to affect the results below (and we
may actually adopt it in the rest of this paper as well).
So, let O be a subfunctor of the functor ObjDM c

Λ from PFi to the category of
sets (i.e., O(F ) ⊂ ObjDM c

Λ(F ) for all perfect F , and O(m) for a morphism m :
k → k′ of perfect fields is given by the restriction of DMΛ(m) to O(k)). Then
we will say that O is DM c

Λ-continuous if it satisfies the following condition: for
k = lim−→ ki and any M ∈ O(k) there exists some k0 ∈ {ki} and M0 ∈ O(k0)

such that M ∼= M0
k (i.e., M ∼= O(m0)(M0) for the corresponding m0 : k0 → k;

see §1.1). Note that latter condition is clearly fulfilled if and only if the set
of DM c

Λ(k)-isomorphism classes in O(k) equals the direct limit of the sets of
DM c

Λ(ki) -isomorphism classes in O(ki).
3. Below we will apply the following consequence of continuity: for any
DM c

Λ-continuous O the property that for some E ∈ ObjSHc
Λ(k) the ob-

ject M c
k,Λ(E) ∈ ObjSHc

Λ(k) belongs to O(k) is "continuous" as well. This
means the following: if k = lim−→ ki, E ∈ ObjSHc

Λ(k), and Mk,Λ(E) ∈ O(k),
then there exists some kj ∈ {ki} along with Ej ∈ ObjSHc

Λ(kj) such that
Mkj ,Λ(Ej) ∈ O(kj) and Ejk ∼= E (see §1.1).
Indeed, the continuity property for SHc

Λ(−) allows us to choose some k0 ∈ {ki}
such that E is defined over it (i.e., such that there exists E0 ∈ ObjSHc

Λ(k0)
with E ∼= E0

k). Next, the DM
c
Λ-continuity of O gives the existence of k1 ∈ {ki}

and M1 ∈ O(k1) such that M1
k
∼= Mk,Λ(E). Furthermore, the continuity

property for morphisms in DM c
Λ(−) (see §1.1) gives the existence of k2 ∈ {ki}

that contains both k0 and k1 such that (Mk0,Λ(E0))k2
∼= M1

k2
. Thus we can

take kj = k2, Ej = E0
k2

(since Mk2,Λ(E0
k2

) ∼= M1
k2
∈ (O(k1))k2 ⊂ O(k2)).

4. Now we describe some "tools" for constructing DM c
Λ-continuous functors;

we will apply them along with Proposition 1.3.2(3).
Firstly, the functors F 7→ {0} ⊂ ObjDM c

Λ(F ) and F 7→
{Mgm,Λ(SmVar(F )){r}[j]} (for F being a perfect field and any fixed r, j ∈ Z)
are obviously DM c

Λ-continuous.
Next, the "union" of any set of continuous functors is easily seen to be contin-
uous.
Lastly, if O is DM c

Λ-continuous then the functor sending F into the envelope of
O(F ) (inDM c

Λ(F )) isDM c
Λ-continuous as well (recall that we assumeDM c

Λ(F )
to be small).

1.4 On cohomological dimensions and Grothendieck-Witt rings

As we have said in §1.1, L always denotes some (not necessarily perfect) char-
acteristic p field. We recall the following well-known facts.

Proposition 1.4.1. Let L be a finitely generated field (i.e., L is finitely gen-
erated over its prime subfield). Then the following statements are valid.
1. If L is non-orderable then its cohomological dimension (at any prime) is
finite.
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2. The cohomological dimension of L (whether it is finite or not) equals the
one of the perfect closure Lperf of L.

Proof. 1. See [Ser13], §II.3.3 and II.4.2.
2. It suffices to note that the absolute Galois group of L equals the one of its
perfect closure.

The following easy lemma follows immediately.

Corollary 1.4.2. If k is non-orderable then it may be presented as a filtered
direct limit of perfect fields of finite cohomological dimension.

Proof. It suffices to present k (recall that we assume it to be perfect) as the
direct limit of the perfect closures of its finitely generated subfields, and apply
the previous proposition.

Remark 1.4.3. 1. Note however that below (everywhere except in §3.2) it
will actually be sufficient to present k as the direct limit of fields of finite
cohomological 2-dimension.
2. Recall that the virtual cohomological 2-dimension of a field L of characteris-
tic 6= 2 may be defined as the cohomological 2-dimension of L[

√
−1]. Thus any

finitely generated field of characteristic 6= 2 is of finite virtual cohomological
2-dimension.

Now we recall some basics on Grothendieck-Witt rings and their relation to
SH(−).

Remark 1.4.4. 1. As shown in §6.3 of [Mor03] (see Theorem 6.3.3 and Lemma
6.3.8 of ibid.), SH(k)(S0, S0) ∼= GW (k) (the Grothendieck-Witt ring of k). If
p 6= 2 then the latter is the Grothendieck group of non-degenerate k-quadratic
forms. It is isomorphic to the kernel of W (k)

⊕
Z → Z/2Z, where W (k) is

the Witt ring of (quadratic forms over k) and the projection W (k)→ Z/2Z is
given by the parity of the dimension of quadratic forms. In the case p = 2 one
should consider symmetric bilinear forms instead of quadratic ones here.
As mentioned in the beginning of §2 of [ArE01], if p 6= 2 then the group
W (k) is an extension of the free abelian group whose generators correspond to
orderings on k by a torsion group. Thus the kernel of Mk∗ : SH(k)(S0, S0)→
DM(k)(Z,Z) is torsion if and only if k is non-orderable (at least, in the case
p 6= 2; note that below we will apply this statement in the case p = 0 only).
2. It is no wonder that structural results on Witt rings of fields play a very
important role in motivic homotopy theory. In particular, they were crucial for
[Bac18], [Lev13], and [Aso17]. Information of this sort was also actively used
in the previous version of the current paper; yet the corresponding arguments
were essentially incorporated in the current version of [Bac18] (resulting in
Lemma 19 of ibid.).
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2 Main conservativity of motivization results

The main result of this section is that (the "compact version" (b) of) Theo-
rem 16 of [Bac18] can be extended to the case when k is an arbitrary non-
orderable field. Moreover, the restriction of M c

k to 2-torsion objects is conser-
vative for any k.
So, in §2.1 we prove the "triangulated parts" of these results. We deduce
them from similar results of ibid. (where certain cohomological dimension
finiteness was assumed) using a simple continuity argument (that is a particular
case of the reasoning described in Remark 1.3.3(3)). We also note that the
conservativity of M c

k never extends to "the whole" Mk; moreover, M c
k is never

conservative if k is not non-orderable (i.e., if it is formally real).
In §2.2 we study the homotopy t-structures and (Voevodsky’s) slice filtrations
for SHΛ(−) and DMΛ(−) (for a coefficient ring Λ ⊂ Q); their properties follow
from their well-known Z-linear versions.
In §2.3 we prove the Λ-linear version of (the stronger part of) Bachmann’s the-
orem over an arbitrary non-orderable k, stating that the m-homotopy connec-
tivity of Mk,Λ(E) for E ∈ ObjSHc

Λ(k) ensures the m-homotopy connectivity
(with respect to the homotopy t-structure tSHΛ ) of E itself. We also give the
following immediate applications of our results (for k being any non-orderable
perfect field): we prove the corresponding generalization of Theorem 2.2.1 of
[Aso17], and prove that Theorem 33 of [Bac17] (on the ⊗-invertibility of certain
motives of affine quadrics) may be carried over to motivic spectra.

2.1 On ”Z-linear triangulated conservativity”

Now we prove the weaker versions of our conservativity results.

Theorem 2.1.1. I. Assume that k is a non-orderable field. Then the following
statements are valid.

1. There exists N ≥ 0 such that 2N (1 + ε) = 0 in SH(k) (see Proposition
1.3.1(8)) and 2Nη = 0, where η is the (Morel’s) stable algebraic Hopf
map S0{1} → S0.

2. The restriction M c
k : SHc(k)→ DM c(k) of the motivization functor Mk

to compact objects is conservative.

II. Let E be a 2-torsion (see §1.1) object of SHc(k), where k is an arbi-
trary perfect field. Then E = 0 whenever M c

k(E) = 0.

Proof. I.1. By Lemma 6.7 of [Lev13], the assertion is fulfilled if p > 0. Thus
we can assume p 6= 2.
Now, 1 + ε belongs to the image in SH(k)(S0, S0) ∼= GW (k) of the class
[x2] − [−x2]; see Remark 1.4.4(1). Hence the first part of the assertion easily
follows from Proposition 1.4.1. The second part of the assertion follows from
the first one immediately by Lemma 6.2.3 of [Mor03].

Documenta Mathematica 25 (2020) 811–840



Infinite Effectivity of Motivic Spectra 823

2. According to Theorem 16 of [Bac18] (see version (b) of the first part of the
theorem), the statement is valid if the cohomological 2-dimension of k is finite.
Next, in the general case Corollary 1.4.2 enables us to present k as lim−→ ki
(recall here the conventions described in §1.1) so that the cohomological 2-
dimensions of ki are finite. Thus to finish the proof it suffices to recall that
the correspondence F 7→ {0} ⊂ ObjDM c(F ) is DM c-continuous (see Remark
1.3.3(4); here we take Λ = Z and apply part 3 of this remark).
Now we explain this continuity argument in our concrete situation (for the sake
of those readers that have problems with Remark 1.3.3).
Assume that Mk(E) = 0 for some E ∈ ObjDM c(k). By the continuity prop-
erty for SHc(−) (see Proposition 1.3.1(9)) there exists k0 ∈ {ki} such that E is
defined over k0 (i.e., there exists E0 ∈ ObjSHc(k0) such that E0

k
∼= E; cf. §1.1).

Next, the continuity property for the morphisms in DM c(−) (see §1.1) gives
the existence of k1 ∈ {ki} such that k1 is an extension of k0 andMk1

(E0
k1

) = 0.
Hence applying Theorem 16 of [Bac18] to E0

k1
we obtain E0

k1
= 0. Thus the

object E ∼= (E0
k1

)k is zero as well.
II. The proof is rather similar to that of assertion I.2. Firstly, that assertion
enables us to assume that k is formally real; so, we restrict ourselves to the
case p = 0.
Then k = lim−→ ki, where ki are finitely generated extensions of Q. Similarly to
the previous proof, the continuity property for SHc(−) gives the existence of
k0 ∈ {ki} and E0 ∈ ObjSHc(k0) such that E0

k
∼= E. Moreover, the continuity

property for morphisms in SHc(−) enables us to assume that E0 is 2-torsion.
Thus it suffices to prove our assertion for k being an orderable finitely gener-
ated field. Hence it remains to apply Lemma 19 of ibid. (along with Remark
1.4.3(2)).

Remark 2.1.2. Now we give some examples demonstrating that the assumptions
of our theorem are necessary.
1. The "whole"Mk is not conservative for any (perfect) k. Indeed, consider the

homotopy colimit S0[η−1] of the sequence of morphisms S0 η{−1}→ S0{−1} η{−2}→
S0{−2} → . . . (originally considered in Definition 2 of [ANL15]; note yet that
the definition of η in ibid. differs from our one by −{1}). Since Mk(η) = 0,
we have Mk(S0[η−1]) = 0 (see Lemma 1.6.7 of [Nee01]). On the other hand,
Theorem 1 of [ANL15] easily implies that S0[η−1] 6= 0.
Now let us assume that k is non-orderable. Then part I.1 of our theorem easily
implies that S0[η−1] is a 2-torsion object (cf. part II of the theorem). Moreover,
we obtain that the kernel of ("the whole") Mk is not generated by the one of
M c
k (as a localizing subcategory of SH(k)) in this case.

2. Furthermore, SH(k)[ 1
2 ] may be considered as a subcategory of SH(k) (see

Proposition 1.2.5(4)). Next, recall that SH(k)[ 1
2 ] naturally splits as the product

of certain triangulated categories SH+(k) and SH−(k); see the text preceding
Lemma 6.7 of [Lev13]. Moreover, the objects of SH−(k) inside SH(k)[ 1

2 ] are
characterized by the condition ε = − id (see Proposition 1.3.1). Since the func-
tor Mk kills 1 + ε (see part 8 of the proposition), we obtain that it annihilates
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SH−(k).
Now, if k is formally real (i.e., not non-orderable) then the image of S0(k) in
SH−(k) is not torsion. Indeed, recall that SH+(k)Q ∼= DM(k)Q (see Theorem
16.2.13 of [CiD19]) whereas SH(k)(S0, S0)⊗Q 6∼= DM(k)(Z,Z)⊗Q in this case
(see Remark 1.4.4(1)).
On the other hand, SH+(k) = SH(k)[ 1

2 ] if −1 is a sum of squares in k, i.e., if
k is unorderable. Indeed, in the case char k > 0 this fact is given by Lemma 6.8
of [Lev13]; for char k = 0 this statement can be easily extracted from the proof
of Lemma 6.7 of ibid. Yet the author does not know whether the kernel of Mk

can consist of torsion objects only in this case (here the answer may certainly
depend on k).
3. If −1 is a not a sum of squares in k (i.e., k is formally real) then the ker-
nel of M c

k is non-zero as well. Indeed, the object C = Cone(2 idS0(k) +ε)
is clearly compact, and the long exact sequence · · · → SH(k)(S0, S0) ∼=
GW (k)

×(2[x2]−[−x2])−→ SH(k)(S0, C) → SH(k)(S0, S0[1]) = {0} (see Remark
1.4.4(1)) easily implies that C 6= 0 (since considering the split surjection of
GW (k) to Z corresponding to any ordering on k one obtains SH(k)(S0, C) ⊃
Z/3Z). Yet Mk(C) = 0 since Mk(2 idS0(k) +ε) = idZ.

4. Clearly, for any E ∈ ObjSHc(k) a cone E/2 of the morphism E
2 idE→ E

is a 2-torsion object (that is surely annihilated by 4). Thus part II of the
proposition above implies that Mk(E) can vanish only if (the endomorphism
ring of) E is uniquely 2-divisible. Hence it seems reasonable to conjecture that
M c
k(E) vanishes only if E is an odd torsion object.

On the other hand, the odd torsion in the kernel of M c
k may be quite "large" if

k is formally real. In particular, Mk kills C⊗ObjSH(k), where C is the object
constructed above. Note that one can also easily construct l-torsion objects
"similar to C" for l being any odd integer.
More generally, note that the elements of the kernel of M c

k,Λ are uniquely 2-
divisible (i.e., are Z[ 1

2 ]-linear) for any choice of S (and so, of Λ) by Corollary
2.3.2 below. We conjecture that this kernel consists of odd torsion elements
only whenever 2 /∈ S.
5. Theorem 2.1.1(I.1) is certainly not quite new; cf. Remark 1.2.8(2) of [Deg13].

2.2 More auxiliary results: homotopy t-structures, slice filtra-
tions, and their continuity

As always, S will denote some set of primes, Λ = Z[S−1]. Starting from this
section we will freely use the notation and results of §1.3.

Definition 2.2.1. 1. Denote by tSHΛ (resp. tDMΛ ) the t-structure on SHΛ(k)
(resp. on DMΛ(k)) generated by Σ∞T,Λ(X+){i} (resp. by Mgm,Λ(X){i}) for
X ∈ SmVar, i ∈ Z (see Remark 1.2.4(2)). We will call these t-structures
homotopy ones.
We will say that E ∈ ObjSHΛ(k) is homotopy connective if it belongs to
SHΛ(k)tSH

Λ ≥i for some i ∈ Z.
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2. Denote by SHeff
Λ (k) (resp. DMeff

Λ (k)) the localizing subcategory of
SHΛ(k) (resp. of DMΛ(k)) generated by Σ∞T,Λ(X+) (resp. by Mgm,Λ(X);
so, we follow the convention introduced in Remark 1.2.6).
Obviously, SHeff

Λ (k){1} = SHeff
Λ (k)(1) ⊂ SHeff

Λ (k) and DMeff
Λ (k){1} =

DMeff
Λ (k)(1) ⊂ DMeff

Λ (k); we will call the filtration of SHΛ(k) by
SHeff (k){i} (resp. of DM(k) by DMeff (k){i}) for i ∈ Z the slice fil-
tration. We will say that the elements of ∩i∈Z ObjSHeff (k){i} and of
∩i∈Z ObjDMeff (k){i} are infinitely effective.
We will say that E ∈ ObjSHΛ(k) is slice-connective if it belongs to
ObjSHeff

Λ {i} for some i ∈ Z.

We will omit Λ in this notation if Λ = Z.

Remark 2.2.2. 1. For any X ∈ SmVar we have Σ∞T,Λ(X+) ∈ ObjSHeff
Λ (k) ∩

SHΛ(k)tSH
Λ ≥0 andMgm,Λ(X) ∈ ObjDMeff

Λ (k)∩DMΛ(k)tDM
Λ ≥0. Hence for any

compact object E of SHΛ(k) (resp. of DMΛ(k)) there exists r ∈ Z such that
E belongs to ObjSHeff

Λ (k){r} ∩ SHΛ(k)tSH
Λ ≥r (resp. to ObjDMeff

Λ (k){r} ∩
DMΛ(k)tDM

Λ ≥r); here we apply Remark 1.2.2.
2. Our description of tSHΛ is somewhat different from (the Λ-linear version of)
Definition 5.2.1 of [Mor03]. However, the equivalence of these definitions can
be easily deduced from Example 5.2.2 of ibid.; see Theorem 2.3 of [Hoy15] for
the proof.
3. In [Bac18] the objects that we call homotopy connective were said to be just
connective.

Now let us establish some more basic properties of these filtrations (and recall
that the category SHc(k)[ 1

p ] is rigid).

Proposition 2.2.3. Let r ∈ Z, m : k → k′ is an embedding of perfect fields.
Then the following statements are valid.

1. SHΛ(m) sends SHeff
Λ (k){r} into SHeff

Λ (k′){r} and maps SHΛ(k)tSH
Λ ≥r

into SHΛ(k′)tSH
Λ ≥r.

2. DMΛ(m) sends DMeff
Λ (k){r} into DMeff

Λ (k′){r} and maps
DMΛ(k)tDM

Λ ≥r into DMΛ(k′)tDM
Λ ≥r.

3. Mk,Λ sends SHeff
Λ (k){r} into DMeff

Λ (k){r} and maps SHΛ(k)tSH
Λ ≥r into

DMΛ(k)tDM
Λ ≥r.

4. ObjSHeff
Λ (k){r} ⊗ ObjSHeff

Λ (k) ⊂ ObjSHeff
Λ (k){r} and

SHΛ(k)tSH
Λ ≥r ⊗ SHΛ(k)tSH

Λ ≥0 ⊂ SHΛ(k)tSH
Λ ≥r; ObjDMeff

Λ (k){r} ⊗
ObjDMeff

Λ (k) ⊂ ObjDMeff
Λ (k){r} and DMΛ(k)tDM

Λ ≥r ⊗
DMΛ(k)tDM

Λ ≥0 ⊂ DMΛ(k)tDM
Λ ≥r.
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5. The correspondences F 7→ ObjDMeff
Λ (F ){r} ∩ ObjDM c

Λ(F ) and F 7→
DMΛ(F )tDM

Λ ≥r ∩ObjDM c
Λ(F ) for F ∈ ObjPFi are DM c

Λ-continuous in
the sense of Remark 1.3.3(2).3

6. The t-structures tSHΛ and tDMΛ are non-degenerate.

7. The "forgetful" functors FSH : SHΛ(k) → SH(k) and FDM :
DMΛ(k) → DM(k) provided by Proposition 1.2.5(4) are "strictly right
t-exact", i.e., for M ∈ ObjSHΛ(k) (resp. M ∈ ObjDMΛ(k)) we
have FSH(M) ∈ SH(k)tSH

hom≥0 if and only if M ∈ SHΛ(k)tSH
Λ ≥0 (resp.

FDM (M) ∈ DM(k)tDM
hom≥0 if and only if M ∈ DMΛ(k)tDM

Λ ≥0).

8. In the case p > 0 assume in addition that p ∈ S. Then any infinitely
effective object of DM c

Λ(k) (see Definition 2.2.1(2)) is zero.

9. Assume once again that S contains p if p > 0. Then the categories
SHc

Λ(k) and DM c
Λ(k) are rigid (i.e., all their objects are dualizable).

Moreover, SHc
Λ(k) is the smallest thick subcategory of SHΛ(k) containing

all Σ∞T,Λ(P+){i} for P being smooth projective over k and i ∈ Z; DM c
Λ(k)

is the smallest thick subcategory of DMΛ(k) containing allMgm,Λ(P ){i}.

10. All morphisms from S0
Λ into SHΛ(k)tSH

Λ ≥1 are zero ones.

Proof. 1, 2, 3. By definitions of the corresponding classes (see Definition
1.2.1(2) and Proposition 1.2.3), it suffices to note that SHΛ(m), DMΛ(m),
and Mk,Λ are exact functors that respect small coproducts.
4. Since the tensor product bi-functors for SHΛ(k) and DMΛ(k) respect
co-products when one of the arguments is fixed and also "commute with
−{i}", it suffices to note that Σ∞T,Λ(−+)(SmVar) ⊗ Σ∞T,Λ(−+)(SmVar) ⊂
Σ∞T,Λ(−+)(SmVar) and Mgm,Λ(SmVar)⊗Mgm,Λ(SmVar) ⊂Mgm,Λ(SmVar).
5. Obviously, we can assume r = 0. Next, for any perfect field F Remark
1.2.2 implies that DMeff

Λ (F )∩ObjDM c
Λ(F ) is the smallest thick subcategory

of DMΛ(F ) containing Mgm,Λ(X) for all X ∈ SmVar(F ). Moreover, Theorem
3.7 of [PoS16] (as well as the more general Theorem 3.2.1(2) of [Bon19]) im-
plies that DMΛ(F )tDM

Λ ≥0 ∩ ObjDM c
Λ(F ) is the DMΛ(F )-envelope (see §1.1)

of Mgm,Λ(X){j}[l] for X running through SmVar(F ), j ∈ Z, and l ≥ 0. Hence
the assertion follows from Remark 1.3.3(4).
6. The statement easily reduces to the case Λ = Z in which it is well-known
(see Lemma 5.5(2) of [Deg11] and §5.2 of [Mor03]; cf. also Corollary 3.3.7(1)
of [BoD17]).
7. The assertion is rather easy; it follows immediately from Proposition
5.6.2(II.3) of [Bon16].

3I.e., if k = lim−→ ki and E ∈ ObjDMeff
Λ (k){r}∩ObjDMc

Λ(k) (resp. E ∈ DMΛ(k)tDM
Λ ≥r∩

ObjDMc
Λ(k)) then there exists k0 ∈ {ki} along with some E0 ∈ ObjDMeff

Λ (k0){r} ∩
ObjDMc

Λ(k0) (resp. E0 ∈ DMΛ(k0)tDM
Λ ≥r ∩ObjDMc

Λ(k0)) such that E0
k
∼= E.
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8. Immediate from Theorem 2.2 of [Bon18a] (see also Remark 2.3(2) of ibid.
and Proposition 2.2.5(4) below).
9. Immediate from Theorem 2.4.8 of [BoD17] (that relies on Appendix B of
[LYZR19]); cf. also Lemma 2.3.1 of [Bon11] and Proposition 5.5.3 of [Kel12]
where independent proofs of the DM c

Λ(k)-part of the assertion were given.
10. This is a well-known statement that can be easily obtained from Example
5.2.2 of [Mor03].

We will also need the effective versions of our homotopy t-structures along with
some of their properties.

Definition 2.2.4. 1. Denote by tSH
eff

Λ (resp. tDM
eff

Λ ) the t-structure on
SHeff

Λ (k) (resp. on DMeff
Λ (k)) generated by Σ∞T,Λ(X+) (resp. by Mgm,Λ(X))

for X ∈ SmVar.
2. Denote by iSHΛ = iSHΛ,k (resp. by iDMΛ = iDMΛ,k ) the embedding SHeff

Λ (k) →
SHΛ(k). Their right adjoints (see Remark 1.2.4(3)) will be denoted by wSHΛ

and wDMΛ , respectively.
Omitting k, let us denote the compositions iSHΛ ◦wSHΛ and iDMΛ ◦wDMΛ by ν≥0

SHΛ

and ν≥0
DMΛ

, respectively. Moreover, for any r ∈ Z we will consider the functors
ν≥rSHΛ

= (ν≥0
SHΛ

(−{−r})){r} and ν≥rDMΛ
= ν≥0

DMΛ
(−{−r})){r}.

3. For a homological functor H from SHΛ(k) (resp. from DMΛ(k)) with values
in some abelian category the symbol FilrTateH will (similarly to [Lev13]) denote
the functor E 7→ Im(H(ν≥rSHΛ

(E)) → H(E)) (resp. E 7→ Im(H(ν≥rDMΛ
(E)) →

H(E)); here the connecting morphisms are induced by the corresponding counit
transformations).

The following statements appear to be (quite easy and) rather well-known.

Proposition 2.2.5. 1. The functors iSHΛ and iDMΛ are right t-exact with respect
to the corresponding t-structures, whereas their right adjoints are t-exact.
Moreover, the compositions ν≥0

SHΛ
and ν≥0

DMΛ
respect coproducts.

2. Denote ν≥1
SHΛ

(S0
Λ) by H ′Λ. Then H

′
Λ belongs to SHeff

Λ (k)
tSHeff

Λ ≥0
, and there

exists a distinguished triangle H ′Λ → S0
Λ → HΛ → H ′Λ[1], where HΛ is the

image of HZ (see Proposition 1.3.1(3)) in SHΛ.
3. The Λ-linear analogue Uk,Λ of Uk sends DMeff

Λ (k){r} into SHeff
Λ (k){r}

and maps DMΛ(k)tDM
Λ ≥r into SHΛ(k)tSH

Λ ≥r (for any r ∈ Z).
4. Assume in addition that S contains p whenever p > 0. Then for any
M ∈ ObjDM c

Λ(k) there exists r ∈ Z such that ν≥rDMΛ
(M) = 0.

Proof. 1. The first part of the statement is obvious (cf. the proof of Proposition
2.2.3(2)).
Its second part can be proved similarly to Corollary 3.3.7(2) of [BoD17] (and
follows from it in "most" cases; in the remaining cases the arguments of loc.
cit. may be combined with Theorem 5.2.6 of [Mor03]).
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Lastly, Remark 1.2.4(1) (cf. also part 3 of that remark) immediately yields
that the functors ν≥0

SHΛ
and ν≥0

DMΛ
respect coproducts in the corresponding

categories.
2. ν≥1

SHΛ
(S0

Λ) belongs to SHeff
Λ (k)

tSHeff

Λ ≥0
immediately from the previous as-

sertion.
Next, in the case Λ = Z the (existence and the) properties of the distinguished
triangle in question immediately follow from Theorem 10.5.1 of [Lev08]; clearly,
the general case follows from this one.
3. Similarly to the proof of Proposition 2.2.3, it suffices to "control"
Uk,Λ(Mgm,Λ(X)) for X ∈ SmVar. We clearly have Uk,Λ(Mgm,Λ(X)) ∼=
HΛ ⊗ Σ∞T,Λ(X+). The previous assertion obviously implies that HΛ ∈
SHeff

Λ (k)
tSHeff

Λ ≥0
; thus Proposition 2.2.3(4) yields the result.

4. Immediate from Lemma 2.7 of [Bon18a] (whose proof is based on an argu-
ment from [Ayo17]).

2.3 On the ”homotopy conservativity” of motivization

Now we are able to prove that certain restrictions of M c
k,Λ "strictly respect

homotopy connectivity"; this statement significantly strengthens Theorem
2.1.1(I.2,II). The reader may consult sections 1.3 and 2.2 for the correspond-
ing definitions. Note also that one can certainly take Λ = Z in the following
theorem.

Theorem 2.3.1. Let E ∈ ObjSHc
Λ(k) \ SHΛ(−)tSH

Λ ≥r for some r ∈ Z. Then
Mk,Λ(E) /∈ DMΛ(k)tDM

Λ ≥r (one may say that E is not r− 1-homotopy connec-
tive) whenever either (i) k is non-orderable or (ii) E is 2-torsion.

Proof. First we assume that k is non-orderable. Then once again (by Corollary
1.4.2; cf. the proof of Theorem 2.1.1(I.2)) we can present k as lim−→ ki, where
the cohomological (2)-dimensions of ki are finite. Now recall that the functor
F 7→ DMΛ(F )tDM

Λ ≥r ∩ObjDM c
Λ(F ) (from PFi into sets) is DM c

Λ-continuous;
see Proposition 2.2.3(5). Hence Remark 1.3.3(3) (combined with Proposition
2.2.3(1)) enables us to assume that the cohomological dimension of k is finite.
Now, under this additional assumption the Λ = Z-case of our assertion is given
by Theorem 16(b) of [Bac18]. In the general case we note that E may be con-
sidered as an object of SH(k) via the embedding G mentioned in Proposition
1.2.5(4); G(E) is clearly homotopy connective and slice-connective in SH(k)
(see Remark 2.2.2(1)). Hence this case of our assertion follows from version (i)
of loc. cit. combined with Proposition 2.2.3(7).
Lastly, in the case (ii) we argue similarly to the proof of Theorem 2.1.1(II).
Consequently, we can (and will) assume that k is a finitely generated field of
characteristic 0. Once again, E yields a (2-torsion) homotopy connective and
slice-connective object of SH(k). So (after we invoke Proposition 2.2.3(7)) it
remains to apply Lemma 19 of ibid.
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Corollary 2.3.2. If k is non-orderable then the motivization functor M c
k,Λ is

conservative. Moreover, the restriction of M c
k,Λ to the subcategory of 2-torsion

objects is conservative for any (perfect) k.

Proof. Obviously, this statement is equivalent to the Λ-linear version of Theo-
rem 2.1.1(I.2,II). Hence for E ∈ ObjSHc

Λ(k) such that Mk,Λ(E) = 0 we should
check that E = 0 whenever either k is non-orderable or E is 2-torsion. Now, if
E 6= 0 then Proposition 2.2.3(6) gives the existence of an integer r such that
E /∈ SHΛ(−)tSH

Λ ≥r. Hence the assertion follows from Theorem 2.3.1.

Combining this corollary with a theorem from [Bac17], we easily obtain the
following result (slightly generalizing another Bachmann’s statement).

Proposition 2.3.3. Assume p 6= 2, k is non-orderable, and S contains p if
p > 0. Let φ be a non-zero k-quadratic form and a ∈ k\{0}. Then for the affine
variety X given by the equation φ = a the object C = Cone(Σ∞T,Λ(X+)→ S0

Λ)
(corresponding to the structure morphism for X) is ⊗-invertible in SHΛ(k).

Proof. Firstly note that φ may be assumed to be non-degenerate. Indeed, if
the kernel of (the symmetric bilinear form corresponding to) φ is of dimension
j ≥ 0 and φ′ is the corresponding non-degenerate form then X is isomorphic to
the product of the zero set X ′ of φ′ − a by the affine space Aj . Thus we have
Σ∞T,Λ(X ′+) ∼= Σ∞T,Λ(X+) (see Proposition 1.3.1(2)).
Next, C ∈ ObjSHc

Λ(k); hence it is dualizable (see Proposition 2.2.3(9)). Thus
we should check whether the evaluation morphism C ⊗ C∨ → S0

Λ is invertible
(where C∨ is the dual to C). Since M c

k,Λ is symmetric monoidal and also
conservative (in this case), it suffices to verify that a similar fact is valid in
DM c

Λ(k). The latter is immediate from Theorem 33 of [Bac17] (where φ was
assumed to be non-degenerate).

Remark 2.3.4. 1. Certainly, it does not make much sense to consider S 6⊂ {p}
in this statement.
2. Actually, in the introduction to [Bac18] it is said that C is ⊗-invertible in
SH(k) also in the case of a formally real k; this statement appears to follow
from the results of ibid. easily. Clearly, our continuity arguments reduce this
fact to the case where k is a finitely generated field.

The following generalization of Theorem 2.2.1 of [Aso17] follows easily as well.

Proposition 2.3.5. Assume that k is non-orderable; let X/k be a smooth
variety. Then the following statements are equivalent.

1. The morphism Σ∞T,Λ(X+) → S0
Λ (induced by the structure morphism

X → Spec k) gives HtSH
Λ

0 (Σ∞T,Λ(X+)) ∼= H
tSH
Λ

0 (S0
Λ).

2. We have a similar isomorphism H
tSHeff

Λ
0 (Σ∞T,Λ(X+)) → H

tSHeff

Λ
0 (S0

Λ)

(here we consider Σ∞T,Λ(X+) and S0
Λ as objects of SHeff

Λ (k)).
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3. HtDM
Λ

0 (Mgm,Λ(X)) ∼= H
tDM
Λ

0 (Λ).

4. HtDMeff

Λ
0 (Mgm,Λ(X)) ∼= H

tDMeff

Λ
0 (Λ).

Proof. Note that Σ∞T,Λ(X+) and S0
Λ belong to SHeff

Λ (k)
tSHeff

Λ ≥0
, whereas

Mgm,Λ(X) and Λ belong to DMeff
Λ (k)

tDMeff

Λ ≥0
. Thus Proposition 2.2.5 easily

implies that condition 1 is equivalent to condition 2, and 3 is equivalent to 4.

Now assume that HtDM
Λ

0 (Mgm,Λ(X)) ∼= H
tDM
Λ

0 (Λ). Applying Theorem 2.3.1
(version (i)) in the case r = 1, E = Cone(Σ∞T,Λ(X+) → S0

Λ), we obtain
that E ∈ SHΛ(k)tSH

Λ ≥1. Applying Proposition 2.2.3(10) (and considering
the exact sequence · · · → SHΛ(k)(S0

Λ,Σ
∞
T,Λ(X+)) → SHΛ(k)(S0

Λ, S
0
Λ) →

SHΛ(k)(S0
Λ, E) = {0}) we obtain a splitting Σ∞T,Λ(X+) ∼= S0

Λ

⊕
E[1]. Thus

the application of Theorem 2.3.1 to our E also yields that our condition 3
implies condition 1.
Lastly, applying this splitting argument we easily obtain that condition 1 im-
plies condition 3; one should only apply Proposition 2.2.3(3) instead of Theorem
2.3.1.

Remark 2.3.6. 1. Surely, for E as in this proof one can also apply Theorem
2.3.1 to the spectrum E/2 = Cone(E

×2→ E) (without having to assume that k
is non-orderable).
2. Now assume in addition that X is (also) proper.
Then one can easily see (cf. Lemma 2.1.3 of [Aso17]; here k may be any perfect
field) that condition 4 (and 3) of our Proposition is fulfilled if and only if the
kernel of the degree homomorphism Chow0(XL) → Z is S-torsion and XL

contains a zero-cycle whose degree is a product of elements of S for any field
extension L/k. Obviously, it suffices to verify the latter condition for L = k
only.
3. Under the assumption that p belongs S whenever it is positive one may
formulate a much more general result of this sort. Indeed, Corollary 3.3.2 of
[BoS14] gives for M ∈ ObjDMeff,c

Λ (k) several conditions equivalent to M ∈
DMeff

Λ (k)
tDMeff

Λ ≥0
(note that in ibid. the cohomological convention for t-

structures is used). Most of these conditions are formulated in terms of the so-
called Chow-weight homology of M . Thus assuming that E ∈ ObjSHeff,c

Λ (k)
is 2-torsion whenever k is formally real, one obtains an answer to the question
whether Mk,Λ(E) belongs to SHeff

Λ (k)
tSHeff

Λ ≥0
in terms of certain complexes

of Chow groups corresponding to E.
4. Clearly, in the case Λ = Z and X being proper we could have deduced
(most of) our proposition directly from Theorem 2.2.1 of [Aso17] (using the
DM c-continuity of DM(−)tDM

hom≥0 ∩ObjDM c(−)).
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3 On infinite effectivity and other supplements

This section is dedicated to those results on the motivization kernel that are
not (closely) related to the ones in the literature.
In §3.1 we prove that the compact motivization functorM c

k,Λ "strictly respects"
the slice filtrations (on SHc

Λ(k) and DM c
Λ(k), respectively); it also "detects"

the filtration Fil∗Tate (see Definition 2.2.4) on the lower thom-homology of an
object of SHc

Λ(k).
In §3.2 we describe an alternative method of the proof of Theorem 2.3.1(i) (un-
der the additional assumption that p is invertible in Λ whenever it is positive).
In §3.3 we explain that in all our results the categories DMΛ(−) may be re-
placed by the (Λ-linearized) categories DMGl

Λ (−) of (strict) modules over the
Voevodsky’s motivic cobordism spectrum MGl.

3.1 The effectivity description of the ”compact motivization
kernel”

Now we prove "the most original" result of this paper. Recall that Λ is the
coefficient ring for our motivic categories (it is an arbitrary localization of
Z), Mk,Λ denotes the Λ-linear version of the "motivization" functor from the
motivic stable homotopy category SH toDM , SHeff

Λ (k){r} andDMeff
Λ (k){r}

denote the r-th levels of the slice filtrations on the corresponding categories,
whereas tSHΛ and tDMΛ are the corresponding homotopy t-structures.

Theorem 3.1.1. Let r,m ∈ Z, and E is an object of SHΛ.
I. Denote by SHΛ(k)

{r}
tSH
Λ ≥m the smallest class of objects of SHΛ(k) that is

stable with respect to extensions and arbitrary (small) coproducts, and contains
Σ∞T,Λ(X+){j}[i] whenever i > m or if i = m and j ≥ r.
1. For any r′,m′ ∈ Z we have SHΛ(k)

{r}
tSH
Λ ≥m ⊗ SHΛ(k)

{r′}
tSH
Λ ≥m′ ⊂

SHΛ(k)
{r+r′}
tSH
Λ ≥m+m′ .

2. SHΛ(k)
{r}
tSH
Λ ≥m ⊂ SHΛ(k)tSH

Λ ≥m, and SHΛ(k)
{r}
tSH
Λ ≥m contains the classes

SHΛ(k)tSH
Λ ≥m+1 and SHeff

Λ (k)
tSHeff

Λ ≥m{r} = ν≥rSHΛ
(SHΛ(k)tSH

Λ ≥m) (see Def-
inition 2.2.4).
3. The following conditions are equivalent.
(i) E belongs to SHΛ(k)

{r}
tSH
Λ ≥m.

(ii) E belongs to SHΛ(k)tSH
Λ ≥m and FilrTateH

tSH
Λ
m (E) (see Definition 2.2.4(3))

equals the whole object HtSH
Λ
m (E).

(iii) E is an extension of an element of SHΛ(k)tSH
Λ ≥m+1 by an element of

SHeff
Λ (k)

tSHeff

Λ ≥m{r}.

4. Define DMΛ(k)
{r}
tDM
Λ ≥m as the smallest class of objects of DMΛ(k) that is

stable with respect to extensions and arbitrary (small) coproducts, and contains
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Mgm,Λ(X){j}[i] whenever i > m or if i = m and j ≥ r.
Then an object M of DMΛ belongs to DMΛ(k)

{r}
tDM
Λ ≥m if and only if M ∈

DMΛ(k)tDM
Λ ≥m and FilrTateH

tDM
Λ
m (M) = H

tDM
Λ
m (Mk,Λ(M)).

Moreover, these conditions are fulfilled if and only if M is an extension of an
element of DMΛ(k)tDM

Λ ≥m+1 by an element of DMeff
Λ (k)

tDMeff

Λ ≥m{r}.

5. Mk,Λ(SHΛ(k)
{r}
tSH
Λ ≥m) ⊂ DMΛ(k)

{r}
tDM
Λ ≥m and Uk,Λ(DMΛ(k)

{r}
tDM
Λ ≥m) ⊂

SHΛ(k)
{r}
tSH
Λ ≥m.

II. Assume that E is slice-connective (i.e., belongs to ObjSHeff
Λ {i} for some

i ∈ Z).
Then the following statements are valid.
1. E ∈ ObjSHeff

Λ (k){r} if and only if Mk,Λ(E) ∈ ObjDMeff
Λ (k){r}. In

particular, E ∈ ∩j∈Z ObjSHeff
Λ (k){j} (i.e., it is infinitely effective) if and only

if Mk,Λ(E) also is.
2. Assume that E ∈ SHΛ(k)tSH

Λ ≥m. Then E also belongs to SHΛ(k)
{r}
tSH
Λ ≥m

(see assertion I.1) if and only if FilrTateH
tDM
Λ
m (Mk,Λ(E)) = H

tDM
Λ
m (Mk,Λ(E)) (cf.

assertion I.4).
III. Assume in addition that E ∈ ObjSHc

Λ(k); if p > 0 then suppose also that
p ∈ S.
1. Then E is infinitely effective if and only if Mk,Λ(E) = 0.
2. If E ∈ SHΛ(k)tSH

Λ ≥m then Mk,Λ(E) ∈ DMΛ(k)tDM
Λ ≥m+1 if and only if E

also belongs to SHΛ(k)
{s}
tSH
Λ ≥m for all s ∈ Z.

Proof. I. Obviously, one can assume m = r = 0.
1. It suffices to recall that the tensor product on SHΛ(k) ⊂ SH(k) respects
coproducts and distinguished triangles, and Σ∞T,Λ(X+)⊗Σ∞T,Λ(Y+) ∼= Σ∞T,Λ(X×
Y+) for any smooth k-varieties X and Y .
2. SHΛ(k)tSH

Λ ≥1 ⊂ SHΛ(k)
{0}
tSH
Λ ≥0

⊂ SHΛ(k)tSH
Λ ≥0 immediately from the de-

scription of SHΛ(k)tSH
Λ ≥0 provided by Proposition 1.2.3 (see also Definition

2.2.1(1)). Similarly, the class SHΛ(k)
{0}
tSH
Λ ≥0

contains SHeff
Λ (k)

tSHeff

Λ ≥0
; see

Definition 2.2.4(1).
Lastly, recall that ν≥0

SHΛ
= iSHΛ ◦ wSHΛ . The functor wSHΛ is t-exact by Propo-

sition 2.2.5(1); hence wSHΛ (SHΛ(k)tSH
Λ ≥0) ⊂ SHeff

Λ (k)
tSHeff

Λ ≥0
. It remains

to recall that the restriction of the functor wSHΛ to SHeff
Λ (k) ⊂ SHΛ(k) is

the identity; hence the class SHeff
Λ (k)

tSHeff

Λ ≥0
{0} equals ν≥0

SHΛ
(SHΛ(k)tSH

Λ ≥0)

indeed.
3. Applying assertion I.2 we immediately obtain that condition (iii) implies
condition (i).
Now assume that E fulfils condition (ii). Assertion I.2 says that ν≥0

SHΛ
(E) ∈
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SHeff
Λ (k)

tSHeff

Λ ≥0
. We take the obvious distinguished triangle

ν≥0
SHΛ

(E)→ E → C → ν≥0
SHΛ

(E)[1]; (3.1.1)

and obtain that that E satisfies condition (iii) whenever C ∈ SHΛ(k)tSH
Λ ≥1.

Consider the long exact sequence · · · → H
tSH
Λ

0 (ν≥0
SHΛ

(E))
f→ H

tSH
Λ

0 (E) →
H
tSH
Λ

0 (C) → H
tSH
Λ
−1 (ν≥0

SHΛ
(E)) → . . . coming from (3.1.1). Condition (ii) im-

plies that f is epimorphic. Since HtSH
Λ
−1 (ν≥0

SHΛ
(E)) = 0, we obtain that HtSH

Λ
0 (C)

is zero as well. Since (3.1.1) also implies that C ∈ SHΛ(k)tSH
Λ ≥0, we obtain

that C ∈ SHΛ(k)tSH
Λ ≥1 indeed.

Lastly, to prove that all elements of SHΛ(k)
{0}
tSH
Λ ≥0

satisfy condition (ii) (i.e.,
to prove that (i) implies (ii)) it clearly suffices to prove that this condition is
fulfilled for all elements of SHΛ(k)tSH

Λ ≥1 and SHeff
Λ (k)

tSHeff

Λ ≥0
, and the class

of spectra satisfying condition (ii) is closed with respect to coproducts and
extensions. Now, the first of these statements is obvious, and the second one
immediately follows from the fact that the functors HtSH

Λ
0 and ν≥0

SHΛ
(E) respect

coproducts (see Remark 1.2.4(1) and Proposition 2.2.5(1)).
Thus it remains to verify for any SHΛ-distinguished triangle

A→ B → C → A[1] (3.1.2)

such that A and C satisfy condition (ii) that the spectrum B satisfies this
condition as well. Since the class Ct≥0 is extension-closed for any t-structure

on a triangulated category C, it is sufficient to check that HtSH
Λ

0 (ν≥0
SHΛ

(B))

surjects onto H
tSH
Λ

0 (B). Now, we apply H
tSH
Λ

0 to the distinguished triangle
(3.1.2) and its image under the exact endofunctor ν≥0

SHΛ
to obtain the following

commutative diagram with exact rows:

H
tSH
Λ

0 (ν≥0
SHΛ

(A)) −−−−→ H
tSH
Λ

0 (ν≥0
SHΛ

(B)) −−−−→ H
tSH
Λ

0 (ν≥0
SHΛ

(C)) −−−−→ H
tSH
Λ
−1 (ν≥0

SHΛ
(A))yc yd ye y

H
tSH
Λ

0 (A) −−−−→ H
tSH
Λ

0 (B) −−−−→ H
tSH
Λ

0 (C) −−−−→ H
tSH
Λ
−1 (A).

Now, the spectrum ν≥0
SHΛ

(A) belongs to SHΛ(k)
{0}
tSH
Λ ≥0

⊂ SHΛ(k)tSH
Λ ≥0 accord-

ing to assertion I.2; hence HtSH
Λ
−1 (ν≥0

SHΛ
(A)) = 0. Thus the surjectivity of c and

e implies that of d, and we conclude the proof.
4. The proof is the obvious DMΛ-version of that of assertion I.3.
5. The statement immediately follows from the two previous asser-
tions since Mk,Λ(SHΛ(k)tSH

Λ ≥m) ⊂ DMΛ(k)tDM
Λ ≥m, Mk,Λ(SHeff

Λ (k){r}) ⊂
DMeff

Λ {r}, Uk,Λ(DMeff
Λ {r}) ∈ SHeff

Λ (k){r}, and Uk,Λ(DMΛ(k)tDM
Λ ≥m+1) ⊂

SHΛ(k)tSH
Λ ≥m+1; see Proposition 2.2.3(3) and Proposition 2.2.5(3).
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II.1. Proposition 2.2.3(3) immediately gives the "only if" implication.
Now we prove the "if" part of the assertion; so we assume that Mk,Λ(E) ∈
ObjDMeff

Λ (k){r}.
By the definition of slice-effectivity, E belongs to ObjSHeff

Λ (k){r′} for some
r′ ∈ Z; take the maximal r′ ≤ r such that this inclusion is fulfilled (in particular,
we take r′ = r if E belongs to ObjSHeff

Λ (k){r′′} for some r′′ ≥ r, since
SHeff

Λ (k){r} ⊂ SHeff
Λ (k){r′′} in this case).

Consider the distinguished triangle

H ′Λ ⊗ E → E → HΛ ⊗ E = Uk,Λ(Mk,Λ(E))→ H ′Λ ⊗ E[1]; (3.1.3)

see Proposition 2.2.5(2). Recall that H ′Λ = ν≥1
SHΛ

(S0
Λ) ∈ ObjSHeff

Λ (k){1};
hence H ′Λ ⊗ E ∈ ObjSHeff

Λ (k){r′ + 1} (see Proposition 2.2.3(4)). Since
Uk,Λ(Mk,Λ(E)) ∈ ObjSHeff

Λ (k){r} (see Proposition 2.2.3(3)), we obtain that
E ∈ ObjSHeff

Λ (k){r′ + 1} whenever r′ < r. Thus r′ = r.
2. The "only if" statement is given by assertion I.5.
The proof of the converse implication is similar to that of the previous assertion.
There clearly exists r′ ∈ Z such that Filr

′

TateH
tSH
Λ
m (E) = H

tSH
Λ
m (E) and r′ ≤ r,

and we choose the maximal r′ ≤ r such that this equality is fulfilled. According
to assertion I.3, E belongs to SHΛ(k)

{r′}
tSH
Λ ≥m.

Now we look at the triangle (3.1.3). Since H ′Λ = ν≥1
SHΛ

(S0
Λ) (see Proposition

2.2.5(2)) and S0
Λ ∈ SHΛ(k)tSH

Λ ≥0, we obtain H ′Λ ∈ SHΛ(k)
{1}
tSH
Λ ≥0

by assertion

I.2; hence H ′Λ ⊗ E ∈ SHΛ(k)
{r′+1}
tSH
Λ ≥m according to assertion I.1. Next, the

spectrum HΛ ⊗ E = Uk,Λ(Mk,Λ(E)) belongs to SHΛ(k)
{r}
tSH
Λ ≥m according to

assertion I.5. Thus if r′ < r then E belongs to SHΛ(k)
{r′+1}
tSH
Λ ≥m since this class is

extension-closed by definition. Therefore r′ = r (see assertion I.3 once again).
III.1. If Mk,Λ(E) = 0 then E is infinitely effective according to assertion II.1.
Conversely, since Mk,Λ(ObjSHeff

Λ (k){s}) ⊂ ObjDMeff
Λ (k){s} for any s ∈ Z,

we obtain that Mk,Λ respects infinite effectivity. Lastly, Proposition 2.2.3(8)
says that there are only zero infinitely effective compact objects in DMΛ.
2. According to assertion II.2, for any s ∈ Z we have FilsTateH

tSH
Λ
m (E) =

H
tSH
Λ
m (E) if and only if FilsTateH

tDM
Λ
m (Mk,Λ(E)) = H

tDM
Λ
m (Mk,Λ(E)). Now, by

Proposition 2.2.5(4), the latter is equivalent to H
tDM
Λ
m (Mk,Λ(E)) = 0 (if we

take s to be large enough); combined with Proposition 2.2.3(3) this yields the
result.

Remark 3.1.2. 1. So we obtain thatM c
k,Λ induces an exact conservative functor

from the localization of SHc
Λ(k) by its subcategory of infinitely effective objects

into DM c
Λ(k) (under the assumption that p ∈ S).

Now, recall that the same restriction on S ensures the existence of an exact
conservative weight complex functor DM c

Λ(k) → Kb(ChowΛ(k)) (that was es-
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sentially constructed in [Bon10] for p = 0 and in [Bon11] in the case p > 0;
see [BoI15, Propositions 3.1.1, 2.3.2] for the Λ-linear formulation). Thus the
composition functor is conservative as well; if k is non-orderable this is actually
a functor SHc

Λ(k)→ Kb(ChowΛ(k)) (by Corollary 2.3.2).
Note also that one can compose Mk,Λ with the natural functors from the
category of unstable motivic spaces and from the S1-stable motivic category
SHS1

(k) into SHΛ(k). Now, the recent Theorem 1.3 and Corollary 4.13 of
[Bac20] give interesting conservativity statements for these functors (in the
case Λ = Z; yet note that Proposition 1.2.5(4) gives an embedding of the
corresponding category SHS1

Λ (k) into SHS1

(k)); thus one can describe even
longer chains of (composable) conservative functors between various motivic
categories.
2. Note however that η 6= 0 unless 2 ∈ S (by Theorem 6.3.3 of [Mor03]); hence
there cannot exist a Chow weight structure on SHc

Λ(k) in this case (i.e., the
motivic spectra of smooth projective varieties cannot belong to the heart of
any weight structure on SHc

Λ(k); see the easy Remark 5.2.7(6) of [Bon18b])
and the aforementioned composed version of the weight complex functor does
not come from a weight structure (cf. Remark 3.6 of [Sos19]).
On the other hand, in [BoK18] an interesting weight structure weffChow on
DMeff

Λ (k) that is generated by motives of all smooth varieties was consid-
ered. weffChow "naturally" extends to DMΛ(k); the heart of the resulting weight
structure wChow naturally contains the category of Chow motives. Now, it
may make sense to consider similar definitions for SHeff

Λ (k) ⊂ SHΛ(k); yet
the hearts of the resulting weight structures probably will not be closely related
to Chow motives.
3. It appears that some of the parts of our theorem can be extended to certain
filtrations on SHΛ(k) and DMΛ(k) distinct from that given by SHΛ(k)

{r}
tSH
Λ ≥m

and DMΛ(k)
{r}
tDM
Λ ≥m; cf. §3.3 and Remark 5.3.3(8) of [BoS14].

3.2 An alternative argument for Theorem 2.3.1 (i)

Now we describe an alternative proof of version (i) of Theorem 2.3.1 that relies
on the paper [Lev13] instead of [Bac18] (that is more complicated and based on
related results of M. Levine as well). This reasoning requires us to assume that
p ∈ S whenever p > 0. Note also that this version of our theorem obviously
implies the Z[ 1

p ]-linear version of Theorem 2.1.1(I.2).
So, we suppose that k is non-orderable. Then the continuity argument used in
the proof of Theorem 2.3.1 allows us to assume (once again) that the cohomo-
logical dimension of k is finite.
According to Theorem 3.1.1(III.2) (combined with Remark 2.2.2 and Propo-
sition 2.2.3(3)), it suffices to prove (under our assumption on S and for
some m ∈ Z) that the filtration Fil∗Tate on H

tSH
Λ
m (E) is non-trivial (i.e., that

H
tSH
Λ
m (E) does not lie in its own FilsTate for all s ∈ Z) for any E belonging to
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ObjSHc
Λ(k) ∩ SHΛ(k)tSH

Λ ≥m \ SHΛ(k)tSH
Λ ≥m+1.

Next, the well-known Proposition 5.1.1(5) of [Bon18b] (that is an easy conse-
quence of [Mor03, Lemma 4.2.7]) implies the following: it suffices to verify that
the filtration in question is "separated at function field stalks", i.e., that for any
finitely generated field L/k and j ∈ Z the filtration induced by Fil∗TateH

tSH
Λ
m (E)

on the result of the "evaluation of E{j} at L" (see §3.2.1 of [Deg13]) is sepa-
rated.
Once again, we consider E as an object of SH(k) using the embedding G
described in Proposition 1.2.5(4). Then it is cohomologically finite in the sense
of Definition 6.1 of [Lev13]. Indeed, E satisfies condition (ii) of loc. cit. since
it is homotopy connective (see Remark 2.2.2). It satisfies condition (i) of the
definition according to Proposition 6.9(3) of ibid. combined with Proposition
2.2.3(9) above. Hence the separatedness in question is given by Theorem 7.3
of [Lev13]; this finishes the proof.
Remark 3.2.1. 1. The "yoga" of this argument (as well as of Theorem 2.3.1
itself) is that certain types of assertions concerning compact objects of SHΛ

can be reduced to the case where the (virtual) cohomological dimension of k is
finite. Now, under this additional assumption one can apply the appropriate
properties (as studied Bachmann and Levine) of certain subcategories of SH(k)
that are bigger than SHc(k) (or SHc

Λ(k) for the corresponding Λ). So, in our
main statements we restrict ourselves to compact motivic spectra; this enables
us to establish them over a wide class of base fields. This method appears to
be quite useful since (most of) motivic spectra "coming from geometry" are
compact. Also, one "usually" does not apply Mk to non-compact objects of
SH (that are mostly used for representing various cohomology theories).
2. One may also apply some of the arguments of [Lev13] for proving version
(ii) of Theorem 2.3.1.

3.3 On cobordism-module versions of the main results

Now recall that the categoryDM(k) is closely related to the homotopy category
of highly structured modules over the ring object HZ in the model category of
motivic symmetric spectra underlying SH (see Proposition 38 of [OsR08]).
The goal of this section is to explain that our main results are also valid if
we replace Mk (and Mk,Λ) by the corresponding functor MMGl

k : SH(k) →
DMGl(k), where the latter is the (stable) homotopy category of the category
MGl−Mod of (strict left) modules over the Voevodsky’s spectrum MGl (see
§1.3 of [BoD17]). Similarly to [OsR08], one can verify the existence of MMGl

k

given by the "free MGl-module functor"; the corresponding forgetful functor
yields the right adjoint UMGl

k to MMGl
k . For S ⊂ P we will also consider the

corresponding DMGl
Λ (−).

Now assume that S contains p if p > 0 (the author is not sure whether this is
really necessary).
Then there are three possible ways of proving Theorem 2.3.1 withMk,Λ replaced
by MMGl

k,Λ (and for the corresponding homotopy t-structure for DMGl
Λ (k)).
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Firstly, one may prove that in all the results of §2.2 one may replaceDMΛ(−) by
DMGl

Λ (−). The key points here are the following ones: MGl ∈ SH(k)tSH
hom≥0 (see

Corollary 3.9 of [Hoy15]); the corresponding analogue of Proposition 2.2.3(9) is
given by Theorem 5.2.6 of [Mor03], whereas the MGl-analogue of Proposition
2.2.5(4) follows from the vanishing of SH(F )(S0,MGl{j}[i]) for any i ∈ Z,
j < 0, and any perfect field F (that follows from Theorem 8.5 of [Hoy15]).
Having these statements one can easily verify that the corresponding analogue
of Theorem 3.1.1 is valid as well (probably one can also deduce this statement
from Lemma 7.10 of ibid.). The latter allows to deduce the result in question
from its DMΛ(−)-analogue (i.e., from Theorem 2.3.1) immediately.
Another possibility is to deduce the DMGl

Λ -analogue of Theorem 2.3.1 from the
corresponding version of Theorem 12 of [Bac18]; the latter statement easily
follows from Remark 4.3.3 of [BoD17].
Lastly, one hopes (see Remark 1.3.4 of [BoD17]) that there exists an (impor-
tant) commutative diagram

SHΛ(k)
MMGl

k,Λ−−−−→ DMGl
Λ (k)y y

DA1,Λ(k)
MD

k,Λ−−−−→ DMΛ(k)

of functors; here we use the notation of (Example 1.3.3 of) ibid. for the lower
left hand corner of this diagram; cf. also §1 of [Bac18]. Certainly, this conjec-
ture implies its "compact" analogue, and it can be applied to the study of the
conservativity of connecting functors.
This diagram (along with Proposition 2.3.7 of [BoD17]) also implies that one
may replace all M−,Λ in our statements by MD

−,Λ.
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