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Abstract. We consider the action of a finite subgroup of the map-
ping class group Mod(S) of an oriented compact surface S of genus
g > 2 on the moduli space R(S,G) of representations of π1(S) in a
connected semisimple real Lie group G. Kerckhoff’s solution of the
Nielsen realization problem ensures the existence of an element J in
the Teichmüller space of S for which Γ can be realised as a subgroup
of the group of automorphisms of X = (S, J) which are holomor-
phic or antiholomorphic. We identify the fixed points of the action
of Γ on R(S,G) in terms of G-Higgs bundles on X equipped with a
certain twisted Γ-equivariant structure, where the twisting involves
abelian and non-abelian group cohomology simultaneously. These,
in turn, correspond to certain representations of the orbifold funda-
mental group. When the kernel of the isotropy representation of the
maximal compact subgroup of G is trivial, the fixed points can be de-
scribed in terms of familiar objects on Y = X/Γ+, where Γ+ ⊂ Γ is the
maximal subgroup of Γ consisting of holomorphic automorphisms of
X . If Γ = Γ+ one obtains actual Γ-equivariant G-Higgs bundles on X ,
which in turn correspond with parabolic Higgs bundles on Y = X/Γ
(this generalizes work of Nasatyr & Steer for G = SL(2,R) and Bo-
den, Andersen & Grove and Furuta & Steer for G = SU(n)). If on
the other hand Γ has antiholomorphic automorphisms, the objects
on Y = X/Γ+ correspond with pseudoreal parabolic Higgs bundles.
This is a generalization in the parabolic setup of the pseudoreal Higgs
bundles studied by the first author in collaboration with Biswas &
Hurtubise.
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1 Introduction

Let S be a compact oriented surface of genus greater than one, and G be a real
connected semisimple Lie group. Consider the moduli space of representations
or character variety R(S,G) defined as the space of reductive representations of
the fundamental group of S in G modulo conjugation by elements of G. These
are very important varieties that play a central role in geometry, topology,
higher Teichmüller theory and theoretical physics (see [16] for a survey). A
fundamental problem is that of understanding the action of the mapping class
group or modular group of the surface Mod(S) in R(S,G). In this paper, we
consider the action of a finite subgroup Γ of Mod(S) and give a description of
the fixed-point subvariety.
A crucial step in our study is provided by a theorem of Kerckhoff solving
the Nielsen realization problem [24]. This theorem proves the existence of
a complex structure J on S, such that, if X := (S, J) is the corresponding
Riemann surface, Γ is a subgroup of the group of automorphisms ofX which are
holomorphic or antiholomorphic. We can then use holomorphic methods, and
in particular the theory of G-Higgs bundles overX . To define a G-Higgs bundle,
we consider a maximal compact subgroup H ⊂ G, and a Cartan decomposition
g = h⊕m. AG-Higgs bundle is a pair (E,ϕ) consisting of aHC-bundle E, where
HC is the complexification of H , and a holomorphic section ϕ of E(mC) ⊗K,
where E(mC) is the bundle associated to the complexification of the isotropy
representation of H in m, and K is the canonical line bundle of X . The non-
abelian Hodge correspondence establishes a homeomorphism between R(S,G)
and the moduli space of polystable G-bundles over X = (S, J) for any complex
structure J on S. Now, if J is the complex structure given by Kerckhoff’s
theorem, using the non-abelian Hodge correspondence one can show that the
action of an element of γ ∈ Γ on R(S,G) coincides with the natural action
of γ on M(X,G) via pull-back, if γ is holomorphic, or the combination of this
with the conjugation defined by the reduction of the HC-bundle to H defined
by the solution to the Hitchin equations, if γ is antiholomorphic. Our problem
becomes then that of analysing the fixed points M(X,G)Γ for this action.
The fixed-point subvariety M(X,G)Γ is described in terms of G-Higgs bundles
equipped with a certain twisted Γ-equivariant structure, where the twisting
involves a compact conjugation τ of HC and a group 2-cocycle c ∈ Z2

τ (Γ, Z
′),

where Z ′ is a τ -invariant subgroup of the centre of HC and γ ∈ Γ acts on z ∈ Z ′

trivially if γ is holomorphic and by τ(z) if γ is antiholomorphic. We refer to
this as a (Γ, τ, c)-equivariant structure. These twisted Γ-equivariant structures
generalise at the same time genuine Γ-equivariant structures when Γ consists
entirely of holomorphic automorphisms of X , as well as twisted real structures
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(referred also as pseudoreal structures in the literature) when Γ is the group
generated by an antiholomorphic involution of X (see [7, 8, 9]). When Z ′ is
contained in the kernel of the isotropy representation and Γ is a subgroup of the
group of holomorphic automorphisms of X , these are lifts of true Γ-equivariant
structures on the associated G/Z ′-Higgs bundles.

Assuming that Γ is not a group generated by an antiholomorphic involution
of X (as mentioned above, this case is treated in [7, 8, 9]), it is well-known that
there is only a finite number of points x ∈ X for which the isotropy subgroups
Γx ⊂ Γ for the action of Γ on X are different from the trivial subgroup {1}, and
Γ+
x , the subgroup of Γx consisting of holomorphic automorphisms, is a cyclic

group. At such points, a (Γ, τ, c)-equivariant structure defines an element σx
in the cx-twisted character variety of Γx in HC, where cx ∈ Z2(Γx, Z

′) is the
restriction of c to Γx. Here γ ∈ Γx acts trivially on HC if γ is holomorphic
and by τ if γ is antiholomorphic. Fixing the cocycle c and the elements σx at
the points with Γx 6= {1}, we define the moduli space of (Γ, τ, c)-equivariant
G-Higgs bundles with fixed σx. Our main result is Theorem 4.5, where we
show that the moduli spaces of (Γ, τ, c)-equivariant G-Higgs bundles are in
the fixed-point locus M(X,G)Γ, and more over, a smooth point in M(X,G)Γ

corresponds to a point in a moduli space of (Γ, τ, c)-equivariant G-Higgs bun-
dles for some 2-cocycle c. In fact it is only the cohomology class of c which
is relevant in the parametrization of fixed points. Using Theorem 4.5 and a
twisted equivariant version of the non-abelian Hodge correspondence (Theo-
rem 6.1), we describe in Theorem 6.2 the fix-point locus R(S,G)Γ in terms of
representations of the orbifold fundamental group for the action of Γ on S.

When Γ consists entirely of holomorphic automorphisms of X , generalising a
well-known result for vector bundles [26, 15, 28, 5, 2, 1], and principal bundles
[38, 3], we establish in Theorem 5.1 a correspondence between Γ-equivariant
(that is, without twisting) G-Higgs bundles over X and parabolic G-Higgs
bundles over Y := X/Γ. The weights of the parabolic structure are determined
by the elements σx defined by the equivariant structure, which in this case are
simply elements in the character variety Hom(Γx, H

C)/HC of Γx. In particular,
if Z ′ is contained in the kernel of the isotropy representation there is a map
from the moduli space of G-Higgs bundles over X to the moduli space of G/Z ′-
Higgs bundles and hence a map from the moduli space of (Γ, c)-equivariant
G-Higgs bundles over X (here there is no twisting by τ) to the moduli space of
parabolic G/Z ′-Higgs bundles over Y . In this situation, using the non-abelian
Hodge correspondence between parabolic G-Higgs bundles and representations
of the fundamental group of a punctured surface, proved in [4], we relate in
Theorem 6.3 the representations of the orbifold fundamental group for the
action of Γ on S to the representations of the fundamental group of S/Γ with
punctures at the points corresponding to the elements of S with non-trivial
isotropy subgroup.

If we allow Γ to contain antiholomorphic automorphisms, and Γ+ is the sub-
group of Γ consisting of holomorphic automorphisms, we consider the Riemann
surface Y := X/Γ+. On this surface there is a residual antiholomorphic action
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of Z/2 ∼= Γ/Γ+. Now, if the restriction of c to Γ+ is trivial, (Γ, τ, c)-equivariant
G-Higgs bundles on X are in correspondence with a pseudoreal parabolic G-
Higgs bundles on Y as described in [11]. This is a generalization in the parabolic
set-up of the notion of pseudoreal Higgs bundle studied in [8, 7, 6]. Again, us-
ing the non-abelian Hodge correspondence in [4], we relate in Theorem 6.4 the
representations of the orbifold fundamental group for the action of Γ on S to
the representations of the Z/2-orbifold fundamental group of S/Γ+ with punc-
tures at the points corresponding to the elements of S with non-trivial isotropy
subgroup.

The more general (Γ, τ, c)-equivariant objects on X , correspond to twisted
parabolic objects on Y := X/Γ+ in a more involved way, and will be treated
in a separate paper.

In the process of writing up this paper, we came across the recent related work
[33, 39, 20].

Acknowledgements. We wish to thank Steve Kerckhoff, Jochen Heinloth
and Peter Gothen for useful discussions, and NUS (Singapore), CMI (Chennai),
Bernoulli Center (Lausanne) and ICMAT (Madrid) for hospitality and support.
We also want to thank the referee for the comments and suggestions.

2 Moduli space of representations and the mapping class group

In this section S is an oriented smooth compact surface of genus g > 2.

2.1 Moduli space of representations

Let G be a connected real reductive Lie group. By a representation of π1(S)
in G we mean a homomorphism ρ : π1(S) → G. The set of all such homomor-
phisms, denoted Hom(π1(S), G), is an analytic variety, which is algebraic if G
is algebraic. The group G acts on Hom(π1(S), G) by conjugation:

(g · ρ)(γ) = gρ(γ)g−1

for g ∈ G, ρ ∈ Hom(π1(S), G) and γ ∈ π1(S). If we restrict the action to
the subspace Hom+(π1(S), g) consisting of reductive representations, the orbit
space is Hausdorff. By a reductive representation we mean one that,
composed with the adjoint representation in the Lie algebra of G, decomposes
as a sum of irreducible representations. If G is algebraic this is equivalent
to the Zariski closure of the image of π1(S) in G being a reductive group.
(When G is compact every representation is reductive). The moduli space

of representations or character variety of π1(S) in G is defined to be
the orbit space

R(S,G) = Hom+(π1(S), G)/G.

It has the structure of an analytic variety (see e.g. [18]) which is algebraic if G
is algebraic (see e.g. [30]) and is real if G is real or complex if G is complex.

Documenta Mathematica 25 (2020) 841–868



Mapping Class Group and Higgs Bundles 845

If G is complex then R(S,G) can also be expressed as the GIT quotient

R(S,G) = Hom(π1(S), G) �G.

Let ρ : π1(S) → G be a representation of π1(S) in G. Let ZG(ρ) be the
centralizer in G of ρ(π1(S)). We say that ρ is irreducible if and only if it is
reductive and ZG(ρ) = Z(G), where Z(G) is the centre of G.

2.2 The mapping class group

The mapping class group or modular group of S is defined as

Mod(S) = π0 Diff(S),

where Diff(S) is the group of diffeomorphisms of S. We also consider the
subgroup

Mod+(S) = π0 Diff+(S),

where Diff+(S) is the subgroup of Diff(S) consisting of orientation-preserving
diffeomorphisms. We have an exact sequence

1 → Mod+(S) → Mod(S) → Z/2 → 1. (1)

By the Dehn–Nielsen–Baer theorem, Mod(S) is isomorphic to Out(π1(S)), the
group of outer automorphisms of π1(S), and hence acts in the obvious way on
R(S,G).
Let Γ ⊂ Mod(S) be a finite subgroup. The main goal of this paper is to in-
vestigate the fixed points R(S,G)Γ. A crucial step to do this is provided by
Kerckhoff’s solution of the Nielsen realization problem [24]. To explain
this, let J be an element in the Teichmüller space of S and X = (S, J) be
the corresponding Riemann surface. Denote by Aut(X) the group consisting
of automorphisms of S which are holomorphic or antiholomorphic with respect
to J . If Aut+(X) is the subgroup of Aut(X) consisting of holomorphic auto-
morphisms of X , there is an exact sequence

1 → Aut+(X) → Aut(X) → Z/2 → 1. (2)

Theorem 2.1. Let Γ ⊂ Mod(S) be a finite subgroup. There exists an element J
in the Teichmüller space of S such that Γ ⊂ Aut(X), where X = (S, J). In
particular, if Γ ⊂ Mod+(S), one has Γ ⊂ Aut+(X). Moreover, if X is not
hyperelliptic, Γ = Aut+(X) if Γ ⊂ Mod+(S), and Γ = Aut(X) if Γ is not
contained in Mod+(S) and Γ+ 6= {1}.

Remark 2.2. This had been proved by Nielsen [29] for cyclic groups and by
Fenchel [14] for solvable groups. Thanks to Theorem 2.1 the problem of study-
ing the action of Γ on R(S,G) can be reduced to studying the action of Γ on
the moduli space of G-Higgs bundles on X .

Documenta Mathematica 25 (2020) 841–868



846 O. Garcia-Prada, G. Wilkin

2.3 Moduli space of G-Higgs bundles

Here X is a compact Riemann surface and G is a connected real reductive Lie
group. We fix a maximal compact subgroup H of G. The Lie algebra g of G is
equipped with an involution θ that gives the Cartan decomposition g = h+m,
where h is the Lie algebra of H . We fix a metric B in g with respect to which
the Cartan decomposition is orthogonal. This metric is positive definite on m

and negative definite on h. We have [m,m] ⊂ h, [m, h] ⊂ m. From the isotropy
representation H → Aut(m), we obtain the representation ι : HC → Aut(mC).
When G is semisimple we take B to be the Killing form. In this case B and a
choice of a maximal compact subgroup H determine a Cartan decomposition
(see [25] for details).
A G-Higgs bundle on X consists of a holomorphic principal HC-bundle E
together with a holomorphic section ϕ ∈ H0(X,E(mC) ⊗ K), where E(mC)
is the associated vector bundle with fibre mC via the complexified isotropy
representation, and K is the canonical line bundle of X .
If G is compact, H = G and m = 0. A G-Higgs bundle is hence simply a
holomorphic principal GC-bundle. If G = HC, where now H is a compact
Lie group, H is a maximal compact subgroup of G, and m = ih. In this
case, a G-Higgs bundle is a principal HC-bundle together with a section ϕ ∈
H0(X,E(hC)⊗K) = H0(X,E(g)⊗K), where E(g) is the adjoint bundle. This
is the original definition for complex Lie groups given by Hitchin in [22].
There is a notion of stability for G-Higgs bundles (see [17]). To explain this we
consider the parabolic subgroups of HC defined for s ∈ ih as

Ps = {g ∈ HC : etsge−ts is bounded as t→ ∞}. (3)

A Levi subgroup of Ps is given by Ls = {g ∈ HC : Ad(g)(s) = s},. Their Lie
algebras are given by

ps = {Y ∈ hC : Ad(ets)Y is bounded as t→ ∞},
ls = {Y ∈ hC : ad(Y )(s) = [Y, s] = 0}.

We consider the subspaces

ms = {Y ∈ mC : ι(ets)Y is bounded as t→ ∞}
m0

s = {Y ∈ mC : ι(ets)Y = Y for every t}.

One has that ms is invariant under the action of Ps and m0
s is invariant under

the action of Ls.
An element s ∈ ih defines a character χs of ps since 〈s, [ps, ps]〉 = 0. Conversely,
by the isomorphism (ps/[ps, ps])

∗ ∼= z∗Ls
, where zLs

is the centre of the Levi
subalgebra ls, a character χ of ps is given by an element in z∗Ls

, which gives,
via the invariant metric, an element of sχ ∈ zLs

⊂ ih. When ps ⊂ psχ , we
say that χ is an antidominant character of p. When ps = psχ we say that χ
is a strictly antidominant character. Note that for s ∈ ih, χs is a strictly
antidominant character of ps.
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Let now (E,ϕ) be a G-Higgs bundle overX , and let s ∈ ih. Let Ps be defined as
above. For σ ∈ Γ(E(HC/Ps)) a reduction of the structure group of E from HC

to Ps, we define the degree relative to σ and s, or equivalently to σ and χs in
terms of the curvature of connections using Chern–Weil theory. For this, define
Hs = H∩Ls and hs = h∩ls. Then Hs is a maximal compact subgroup of Ls, so
the inclusions Hs ⊂ Ls is a homotopy equivalence. Since the inclusion Ls ⊂ Ps

is also a homotopy equivalence, given a reduction σ of the structure group of E
to Ps one can further restrict the structure group of E to Hs in a unique way
up to homotopy. Denote by E′

σ the resulting Hs principal bundle. Consider
now a connection A on E′

σ and let FA ∈ Ω2(X,E′
σ(hs) be its curvature. Then

χs(FA) is a 2-form on X with values in iR, and

deg(E)(σ, s) :=
i

2π

∫

X

χs(FA). (4)

We define the subalgebra had as follows. Consider the decomposition h =
z + [h, h], where z is the centre of h, and the isotropy representation ad = ad :
h → End(m). Let z′ = ker(ad|z) and take z′′ such that z = z′ + z′′. Define the
subalgebra had := z′′+[h, h]. The subindex ad denotes that we have taken away
the part of the centre z acting trivially via the isotropy representation ad.

Definition 2.3. We say that a G-Higgs bundle (E,ϕ) is:
semistable if for any s ∈ ih and any holomorphic reduction σ ∈ Γ(E(HC/Ps))
such that ϕ ∈ H0(X,Eσ(ms)⊗K), we have that deg(E)(σ, s) > 0;
stable if for any s ∈ ihad and any holomorphic reduction σ ∈ Γ(E(HC/Ps))
such that ϕ ∈ H0(X,Eσ(ms)⊗K), we have that deg(E)(σ, s) > 0;
polystable if it is semistable and for any s ∈ ihad and any holomorphic reduc-
tion σ ∈ Γ(E(HC/Ps)) such that ϕ ∈ H0(X,Eσ(ms)⊗K) and deg(E)(σ, s) = 0,
there is a holomorphic reduction of the structure group σL ∈ Γ(Eσ(Ps/Ls)) to
a Levi subgroup Ls such that ϕ ∈ H0(X,EσL

(m0
s)⊗K) ⊂ H0(X,Eσ(ms)⊗K).

We define the moduli space of polystable G-Higgs bundles M(X,G)
as the set of isomorphism classes of polystable G-Higgs bundles on X . A GIT
construction of this space has been given by Schmitt [34].
The notion of stability emerges from the study of the Hitchin equations. The
equivalence between the existence of solutions to these equations and the
polystability of Higgs bundles is given by the following (see [17]).

Theorem 2.4. Let (E,ϕ) be a G-Higgs bundle over a Riemann surface X.
Then (E,ϕ) is polystable if and only if there exists a reduction h of the structure
group of E from HC to H, such that

Fh − [ϕ, τh(ϕ)] = 0 (5)

where τh : Ω1,0(E(mC)) → Ω0,1(E(mC)) is the combination of the anti-
holomorphic involution in E(mC) defined by the compact real form at each
point determined by h and the conjugation of 1-forms, and Fh is the curvature
of the unique H-connection compatible with the holomorphic structure of E.
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A G-Higgs bundle (E,ϕ) is said to be simple if Aut(E,ϕ) = Z(HC) ∩ ker(ι)
where Z(HC) the centre of HC. A G-Higgs bundle (E,ϕ) is said to be in-

finitesimally simple if the infinitesimal automorphism space aut(E,ϕ) is
isomorphic to H0(X,E(ker dι∩Z(hC)) where Z(hC) denotes the Lie algebra of
Z(HC).
Thus a G-Higgs bundle is (infinitesimally) simple if its (infinitesimal) automor-
phism group is as small as possible. It is clear that a simple G-Higgs bundle
is infinitesimally simple. If G is complex then ι is the adjoint representation
and (E,ϕ) is simple (resp. infinitesimally simple) if Aut(E,ϕ) = Z(G) (resp.
aut(E,ϕ) = Z(g)).
The basic link between representations of π1(S) and Higgs bundles is given
by the non-abelian Hodge correspondence due to Hitchin, Donaldson,
Simpson, Corlette and others (see [17] and references there).

Theorem 2.5. Let S be a compact surface and X = (S, J) be the Riemann
surface defined by any complex structure J on S. Let G be a real connected

semisimple Lie group. There is a homeomorphism R(S,G)
∼=−→ M(X,G),

where the image of the irreducible representations is the subspace of stable and
simple G-Higgs bundles.

A key step to go from a polystable G-Higgs bundle (E,ϕ) over X to a repre-
sentation ρ of π1(S) in G is given by the relation

∇ = ∂̄E − τh(∂̄E) + ϕ− τh(ϕ), (6)

where ∇ is the flat connection corresponding to ρ, ∂̄E is the Dolbeault operator
of E and τh is provided by the solution to the Hitchin equations in Theorem
2.4. The converse construction is provided by the Donaldson–Corlette theorem
on the existence of harmonic metrics on a reductive flat bundle given in [13, 12].

Remark 2.6. Theorem 2.5 can also be extended to (non-connected) reductive
groups. The presence of a continuous centre in G requires replacing the funda-
mental group of S by its universal central extension.

From Theorems 2.1 and 2.5 we conclude the following.

Proposition 2.7. Let Γ ⊂ Mod(S) be a finite subgroup and Γ+ = Γ∩Mod+(S).
Let J be a complex structure given by Kerckhoff’s theorem and X = (S, J) be
the corresponding Riemann surface. Under the non-abelian Hodge correspon-
dence R(S,G) ∼= M(X,G) given by Theorem 2.5, the action of Γ on R(S,G)
coincides with the following action of Γ on M(X,G):

γ · (E,ϕ) =
{
(γ∗E, γ∗ϕ) if γ ∈ Γ+

(γ∗τh(E), γ∗τh(ϕ)) if γ /∈ Γ+

where τh is given by Theorem 2.4, τh(E) := E ×τh (HC) and τh(ϕ) is as in
Theorem 2.4. We thus have that for this action R(S,G)Γ and M(X,G)Γ are
in bijective correspondence.
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Proof. Given any γ ∈ Γ ⊂ Mod(S), Kerckhoff’s theorem [24, Thm. 5] guar-
antees a unique diffeomorphism f in the isotopy class of γ such that f∗J = J
if γ ∈ Γ+ or f∗J = −J if γ /∈ Γ+. The action of γ on R(S,G) is defined by
γ · [ρ] = [f∗ρ] = [ρ ◦ f∗], which induces an action on the space of equivalence
classes of flat connections given by γ · [∇] = [f∗∇] if γ ∈ Γ+ or γ · [∇] = [−f∗∇]
if γ /∈ Γ+. To find the induced action of γ on M(X,G) via Theorem 2.5 (which
is well-defined since f∗J = ±J) we recall that the flat connection ∇ associated
to a polystable G-Higgs bundle (E,ϕ) is given by (6), and observe that τh(∂̄E)
is the Dolbeault operator of τh(E). Thus proving the statement.

3 Twisted equivariant structures on principal bundles and asso-

ciated vector bundles

In this section X is a compact Riemann surface of genus bigger than one, Γ ⊂
Aut(X), G is a connected complex reductive Lie group, and τ is a conjugation
of G (not necessarily the compact conjugation). We will write Γ = Γ+ ∪ Γ−,
where Γ+ is the subgroup of Γ consisting of holomorphic automorphisms and
Γ− is the coset consisting of antiholomorphic automorphisms.

3.1 Twisted equivariant structures on a principal bundle

Let Z := Z(G) be the centre of G. Consider the action of τ on Z and let
Z ′ ⊂ Z be a subgroup invariant under this action. Consider the action of Γ
on Z ′ given by

zγ =

{
z if γ ∈ Γ+

τ(z) if γ ∈ Γ−.
(7)

Let c ∈ Z2
τ (Γ, Z

′) be a 2-cocycle for this action. This is a map c : Γ×Γ → Z ′

satisfying the cocycle condition

c(γ′, γ′′)γc(γ, γ′γ′′) = c(γγ′, γ′′)c(γ, γ′).

These objects emerge in the study of “lifts” to G of non-abelian 1-cocycles

in Z1(Γ, G/Z ′) for the action of Γ on G given by gγ = g if γ is holomorphic
and gγ = τ(g) if γ is antiholomorphic. In particular, if Γ = Γ+, the action
of Γ on G is trivial and Z1(Γ, G/Z ′) = Hom(Γ, G/Z ′), that is the 1-cocycles
are simply representations of Γ in G/Z ′.
Let E be a holomorphic G-bundle over X . Let c ∈ Z2

τ (Γ, Z
′). A (Γ, τ, c)-

equivariant structure on E (or simply twisted Γ-equivariant struc-

ture if there is no need to specify τ and c) consists of a collection of maps
γ̃ : E → E covering γ : X → X for every γ ∈ Γ, satisfying

γ̃(eg) =

{
γ̃(e)g and γ holomorphic if γ ∈ Γ+

γ̃(e)τ(g) and γ antiholomorphic if γ ∈ Γ−,

γ̃γ′ = c(γ, γ′)γ̃γ̃′,
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and ĨdX = IdE . This imposes the condition c(γ, 1) = 1 for every γ ∈ Γ.
When c is the trivial cocycle 1 we will refer to a (Γ, τ, 1)-equivariant structure as
a (Γ, τ)-equivariant structure or a τ -twisted Γ-equivariant structure. If Γ = Γ+,
we take τ to be the identity and we refer to a (Γ, 1, c)-equivariant structure as
a (Γ, c)-equivariant structure. If, moreover c = 1, then we obtain a genuine
Γ-equivariant structure on E.
Let Aut(E) be the group of holomorphic automorphisms of E covering the
identity of X , and let AutΓ,τ (E) be the group of bijective maps f : E → E
defined by

f(eg) =

{
f(e)g and f holomorphic if f covers γ ∈ Γ+

f(e)τ(g) and f antiholomorphic if f covers γ ∈ Γ−.
(8)

There is an exact sequence

1 → Aut(E) → AutΓ,τ (E) → Γ. (9)

A (Γ, τ, c)-equivariant structure on E is simply a twisted representation Γ →
AutΓ,τ (E) with cocycle c, that is a map σ : Γ → AutΓ,τ (E) such that

σ(γγ′) = c(γ, γ′)σ(γ)σ(γ′).

This is clear since, if E′ is the G/Z ′-principal bundle associated to E via the
projection G → G/Z ′, a (Γ, τ, c)-equivariant structure on E defines a (Γ, τ)-
equivariant structure on E′, and we have an exact sequence

1 → Z ′ → AutΓ,τ (E) → AutΓ,τ (E
′) → 1.

Two twisted Γ-equivariant structures on E for the same τ and for two cocycles c
and c′ define the same (Γ, τ)-equivariant structure on E′ if and only if there ex-
ists a function f : G→ Z ′ such that the corresponding twisted representations
σ and σ′ of Γ in AutΓ,τ (E) are related by σ′ = fσ, and

c′(γ, γ′) = f(γγ′)f(γ)−1f(γ′)−1c(γ, γ′). (10)

This defines a natural equivalence relation in the set of (Γ, τ, c)-equivariant
structures on E, whose equivalence classes are parametrised by the cohomology
group H2(Γ, Z ′).

Remark 3.1. Of course if Z ′ = Z, G/Z ′ = Ad(G) and E′ = P (E) := E/Z.

There is an alternative way of thinking of a (Γ, τ, c)-equivariant structure as a
τ -twisted equivariant structure on E for the action of a larger group. Namely,
the 2-cocycle c defines an extension of groups

1 → Z ′ → Γc → Γ → 1.

Two cocycles are cohomologous if and only if the corresponding extensions are
equivalent, i.e. equivalence classes of extensions of Γ by Z ′ with the action of
Γ on Z ′ given by 7 are parametrised by H2

τ (Γ, Z
′).

We have the following.
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Proposition 3.2. (Γ, τ, c)-equivariant structures on E are in bijection with
central (Γc, τ)-equivariant structures on E, where Γc acts on X and on Z ′ via
the projection Γc → Γ, and by central we mean that the action of Z ′ in the
kernel of the extension above is the natural action of Z ′ on E.

Proof. It follows from group representation theory (see [31] for example) that
a twisted representation Γ → AutΓ,τ (E) with cocycle c is equivalent to a rep-
resentation ρ : Γc → AutΓc,τ (E) fitting in the following commutative diagram,
where ρ̃ is the induced representation

0 −−−−→ Z ′ −−−−→ Γc −−−−→ Γ −−−−→ 1

Id

y ρ

y ρ̃

y

1 −−−−→ Z ′ −−−−→ AutΓc,τ (E) −−−−→ AutΓ,τ (E
′) −−−−→ 1.

This completes the proof.

Recall that a G-bundle E is said to be simple if Aut(E) ∼= Z. We have the
following.

Proposition 3.3. Let E be a simple G-bundle over X such that

E ∼=
{
γ∗E for every γ ∈ Γ+

γ∗τ(E) for every γ ∈ Γ−.
(11)

Then E admits a (Γ, τ, c)-equivariant structure with c ∈ Z2
τ (Γ, Z).

Proof. Condition (11) implies the existence of an exact sequence

1 → Aut(E) → AutΓ,τ (E) → Γ → 1.

Now, since E is simple Aut(E) ∼= Z and hence we have an extension

1 → Z → AutΓ,τ (E) → Γ → 1.

This extension is determined by a cocycle c ∈ Z2
τ (Γ, Z), which is precisely the

obstruction to having a (Γ, τ)-equivariant structure on E, i.e. a homomorphism
Γ → AutΓ,τ (E) splitting the exact sequence. However we have a twisted ho-
momorphism of Γ in AutΓ,τ (E) with cocycle c, that is, a (Γ, τ, c)-equivariant
structure.

3.2 Isotropy subgroups associated to a (Γ, τ, c)-equivariant struc-

ture

We will assume that Γ+ 6= {1}. The case Γ+ = {1} has been extensively studied
in [7, 8, 9] and corresponds to the study of twisted real structures on E.
Let x ∈ X , and

Γx := {γ ∈ Γ+ : γ(x) = x}
be the corresponding isotropy subgroup. Let P = {x ∈ X : Γx 6= {1}}.
The following is well-known (see [28] for example).
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Proposition 3.4. (1) P consists of a finite number of points {x1, . . . , xr} ⊂
X.
(2) For each xi ∈ P, Γxi

is cyclic.

Let cx ∈ Z2(Γx, Z
′) be the restriction of c to Γx (note that the action of Γx on

Z ′ is trivial since Γx ⊂ Γ+). Define the cx-twisted character variety of
Γx in G as the set

Rcx(Γx, G) := Homcx(Γx, G)/G,

where

Homcx(Γx, G) := {σ : Γx → G | σ(γγ′) = cx(γ, γ
′)σ(γ)σ(γ′)},

and two elements σ, σ′ ∈ Homcx(Γx, G) are equivalent under the action of G if

σ′(γ) = g−1σ(γ)g for some g ∈ G.

Proposition 3.5. A (Γ, τ, c)-equivariant structure on a G-bundle π : E → X
defines for every x ∈ P an element σx ∈ Rcx(Γx, G).

Proof. For each x ∈ P and e ∈ E such that π(e) = x, a straightforward
computation shows that the map σe : Γx → G given by

γ̃(e) = eσe(γ) (12)

defines an element in Homcx(Γx, G). Moreover, if e′ ∈ π−1(x), with e′ = eg for
g ∈ G, then σe′ (γ) = g−1σe(γ)g, proving the assertion.

Remark 3.6. The composition of σe with the projection G → G/Z ′, defines
a homomorphism ρe : Γx → G/Z ′. Of course, c restricted to Γ+ is trivial,
i.e., if the restriction of the action of Γ to Γ+ defines a genuine Γ+-equivariant
structure on E, then σe itself is a homomorphism, and σx is an element of the
character variety R(Γx, G) := Hom(Γx, G)/G.

The following is clear.

Proposition 3.7. Let c and c′ be 2-cocycles in Z2
τ (Γ, Z

′). Let σx ∈ Rcx(Γx, G)
and σ′

x ∈ Rc′x
(Γx, G) be corresponding classes. Then the projections of σx and

σ′
x in R(Γx, G/Z

′) coincide.

The next result shows that the Γ action defines a bijection between spaces
of twisted representations of isotropy groups over points in X related by the
action of Γ.

Proposition 3.8. (1)The action of Γ on X induces an action of Γ (and in
particular of Γ+) on P.
(2) Let Q = P/Γ+. If x and x′ are in the same class in Q there is an
isomorphism Rcx(Γx, G) ∼= Rcx′

(Γx′ , G) (as pointed sets) under which σx and
σx′ are in correspondence. This isomorphism induces a canonical isomorphism
R(Γx, G/Z

′) ∼= R(Γx′ , G/Z ′).
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(3) If two points y, y′ ∈ Q are in correspondence under the residual action
of Z/2 ∼= Γ/Γ+ on Q, then Rcx(Γx, G) and Rcx′

(Γx′ , G) are in a bijective
correspondence given by σx 7→ τσx′ for any representatives x, x′ ∈ P of y, y′ ∈
Q respectively.

Proof. Statement (1) follows from the fact that two points on X connected by
the action of Γ must have conjugate isotropy subgroups. To prove (2), if two
points x, x′ ∈ P are in the same class in Q, then there exists γ0 ∈ Γ+ such
that x′ = γ0 ·x and so Γx′ = γ0Γxγ

−1
0 . Let γ̃0 denote the lift of γ0 to AutΓ+(E),

where AutΓ+(E) is the preimage of Γ+ in the exact sequence (9). Given any
ex in the fibre Ex, let ex′ := γ̃0(ex). For any γ ∈ Γx, let γ′ = γ0γγ

−1
0 be the

corresponding element of Γx′ and let γ̃ and γ̃′ = γ̃0γ̃γ̃
−1
0 denote the respective

lifts to AutΓ(E). Using (12) we have

γ̃(ex) = exσex(γ) and γ̃′(ex′) = ex′σex′
(γ′).

Therefore

ex′σex′
(γ′) = γ̃′(ex′) = γ̃0γ̃γ̃

−1
0 (ex′) = γ̃0γ̃(ex) = γ̃0exσex(γ) = ex′σex(γ)

and so σex′
(γ′) = σex′

(γ0γγ
−1
0 ) = σex(γ). Therefore we see that σex determines

σex′
and vice versa, and so the same is true for σx and σx′ .

Therefore, a choice of γ0 such that x′ = γ0 · x determines a bijection
Rcx(Γx, G) → Rcx′

(Γx′ , G) sending σ 7→ σ′ with σ′(γ′) := σ(γ−1
0 γ′γ0), and

this bijection maps σx to σx′ .
An element σ ∈ Homcx(Γx, G) descends to a homomorphism σ̄ : Γx → G/Z ′.
The bijection σ 7→ σ′ defined above induces a map σ̄ 7→ σ̄′ defined by

σ̄′(γ′) := σ̄(γ−1
0 γ′γ0).

Given any other choice γ1 such that Γx′ = γ1Γxγ
−1
1 , we have γ1γ

−1
0 ∈ Γx′ and

so (since σ̄ is a homomorphism) for any γ′ ∈ Γx′ we have

σ̄(γ−1
1 γ′γ1) = σ̄(γ−1

1 γ0)σ̄(γ
−1
0 γ′γ0)σ̄(γ

−1
1 γ0)

−1.

Therefore the conjugacy class of σ̄′ in R(Γx′ , G/Z ′) is well-defined and inde-
pendent of the choice of γ0 such that Γx′ = γ0Γxγ

−1
0 .

(3) follows from a straightforward computation.

Remark 3.9. Note that if in (3) y ∈ Q is a fixed point under the residual action
of Z/2 then the twisted representation σx must lie in the real group Gτ .

3.3 Twisted Γ-equivariant structures on associated vector bun-

dles

Let now V be a rank n holomorphic complex vector bundle over X . Let τV be
a conjugation on the fibre V of V . Consider the action of Γ on C∗ given by

zγ =

{
z if γ ∈ Γ+

z if γ ∈ Γ−.
(13)
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Given a cocycle c ∈ Z2(Γ,C∗) for this action, similarly as for G-bundles one
can define a (Γ, τV, c)-equivariant structure on V as a c-twisted representation
of Γ in AutΓ,τV(V ), where AutΓ,τV(V ) is defined in a similar fashion to the
G-bundle case.
Now, let E be a principal G-bundle and ρ : G→ GL(V) a representation of G
in a complex vector space V. Consider the associated vector bundle V := E(V).
Let τ and τV be conjugations of G and V, respectively Let c ∈ Z2

τ (Γ, Z
′) and

cρ ∈ Z2(Γ,C∗) be the cocycle induced by ρ|Z′ : Z ′ → C∗ ∼= Z(GL(V)). If ρ
is compatible with the conjugations τ and τV, then there is a homomorphism
AutΓ,τ (E) → AutΓ,τV(V ), and it is clear that a (Γ, τ, c)-equivariant structure
on E defines a (Γ, τV, cρ)-equivariant structure on V . In particular if Z ′ ⊂ ker ρ,
then cρ is trivial and hence we obtain (Γ, τV)-equivariant structure on V . If
moreover Γ = Γ+, this is a genuine Γ-equivariant structure on V .

4 Twisted equivariant structures on Higgs bundles

In this section X is a compact Riemann surface of genus bigger than one, Γ is
a subgroup of Aut(X), the group of holomorphic or antiholomorphic automor-
phisms of X , and G is a connected real reductive Lie group. As in Section 2.3,
we fix a maximal compact subgroupH of G. The Lie algebra g of G is equipped
with an involution θ that gives the Cartan decomposition g = h ⊕ m, where h

is the Lie algebra of H . We choose a complex conjugation τ of HC, and a con-
jugation τmC of mC, such that the isotropy representation ι : HC → Aut(mC) is
compatible with τ and τmC . This is the case if for example G is a real form of
a complex reductive group GC and we choose a complex conjugation τ̃ of GC

commuting with the Cartan involution of G extended to GC. The conjugation
τ and τmC induced by τ̃ satisfy the compatibility condition with ι. As proved
by Cartan, we can always choose a compact conjugation τ̃ commuting with the
Cartan involution. This is the choice which is relevant in connection to the
study of Γ on the moduli space of representations R(S,G).

4.1 Twisted Γ-equivariant structures on G-Higgs bundles

Let (E,ϕ) be a G-Higgs bundle over X . We will define now twisted Γ-
equivariant structures on (E,ϕ). To do this, let Z = Z(HC), and let Z ′ ⊂ Z be
a subgroup invariant under the action of τ . Choose a 2-cocycle c ∈ Z2

τ (Γ, Z
′).

Recall from Section 3.3, that this defines a 2-cocycle cι ∈ Z2(Γ,C∗), via the
isotropy representation ι : HC → GL(mC).
If the HC-bundle E is equipped with a (Γ, τ, c)-equivariant structure, from Sec-
tion 3.3, the vector bundle E(mC) inherits a (Γ, τmC , cι)-equivariant structure.
On the other hand, the canonical bundle K over X has a natural (Γ, τC)-
equivariant structure induced by the action of Γ on X . We conclude then that
the bundle E(mC) ⊗ K has a (Γ, τmC , cι)-equivariant structure (where we are
omitting τC in the notation). In fact, we will abuse notation, and use τ to refer
to both τ and τmC in the sequel.
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A (Γ, τ, c)-equivariant structure on (E,ϕ) is a (Γ, τ, c)-equivariant struc-
ture on E, such that for every γ ∈ Γ the following diagram commutes:

E(mC)⊗K
γ̃−→ E(mC)⊗Kxϕ

xϕ
X

γ−→ X

,

where γ̃ is the collection of maps defining the (Γ, τ, cι)-equivariant structure on
E(mC)⊗K defined above.
The notion of stability for G-Higgs bundles given in Section 2.3 (see [17]) can be
extended in a natural way to G-Higgs bundles equipped with twisted equivari-
ant structures. This is done in a similar way to that in the study of pseudoreal
Higgs bundles [8, 6]. To explain this, we consider the adjoint bundle of groups
associated to the HC-bundle E. This is defined as Ad(E) = E ×HC HC, where
HC acts on E ×HC by

(e, g) · h = (eh, h−1gh) for h, g ∈ HC and e ∈ E.

We define now for γ ∈ Γ a map γ̃Ad : E ×HC → E ×HC given by

γ̃Ad(e, g) = (γ̃(e), γ(g)) for γ ∈ Γ, e ∈ E and g ∈ HC, (14)

where, recall

γ(g) =

{
g if γ ∈ Γ+

τ(g) if γ ∈ Γ−.

Proposition 4.1. The maps {γ̃Ad}γ∈Γ define a Γ-equivariant structure on
Ad(E).

Proof. First we have to check that the maps (14) descend to Ad(E). Let e ∈ E
and g, h ∈ HC. We have

γ̃Ad(eh, h−1gh) = (γ̃(eh), γ(h−1gh)) = (γ̃(e)γ(h), γ(h)−1γ(g)γ(h)),

but (γ̃(e)γ(h), γ(h)−1γ(g)γ(h)) is equivalent to (γ̃(e), γ(g)) via the action of
γ(h), and we thus have well-defined maps γ̃Ad : Ad(E) → Ad(E).
Since the action of the centre of HC by inner automorphisms on HC is trivial,
the 2-cocycle c has no effect, and one checks that

γ̃γ′
Ad

= γ̃Adγ̃′
Ad
.

As studied in [8, 6], the main change in the definition of stability for a G-Higgs
bundle equipped with a twisted equivariant structure, in relation to the usual
stability condition for the underlying G-Higgs bundle given in Section 2.3, is
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that we must consider only holomorphic reductions EPs
⊂ E of E from HC to

Ps such that

γ̃Ad(Ad(EPs
)) = Ad(EPs

) for every γ ∈ Γ. (15)

To define the moduli space of twisted Γ-equivariant G-Higgs bundles, we fix
the cocycle c ∈ Z2

τ (Γ, Z
′) and the elements σi ∈ Rcxi

(Γxi
, HC) for every point

xi ∈ P defined by Proposition 3.5. We will need at some point the projection
of σi in R(Γxi

, HC/Z ′) that we will denote by [σi]. Let σ = (σ1, · · · , σr).
We define M(X,G,Γ, τ, c) to be the moduli space of polystable (Γ, τ, c)-
equivariant G-Higgs bundles. An analytic construction of these spaces
can be given using slices. The subvariety of M(X,G,Γ, τ, c) with fixed classes
σ will be denoted by M(X,G,Γ, τ, c, σ).
We will assume now that the conjugation τ of HC commutes with the compact
conjugation of HC defining a maximal compact subgroup H ⊂ HC, in other
words, that H is invariant under τ , This is indeed a condition satisfied in
connection to our application to the study of fixed points in the moduli space
of representations of the fundamental group of the surface in G. Under this
assumption we have the following.

Proposition 4.2. Let E be a HC-bundle over X equipped with a (Γ, τ, c)-
equivariant structure, where c ∈ Z2

τ (Γ, Z
′), and let H ⊂ HC be a maximal

compact subgroup preserved by τ , so that Z ′ ⊂ H. Then the twisted equivari-
ant structure on E induces a group action of Γ on the space of reductions of
structure group of E to H.

Proof. Note that since τ preserves H , the action of Γ on HC induces an action
of Γ on M := HC/H . So we have actions of HC and Γ on M satisfying that

γ · (gm) = γ(g)(γ ·m) for γ ∈ Γ, g ∈ HC and m ∈M := HC/H. (16)

Recall that a reduction of structure group of E to H is a section of E(M), the
M -bundle associated to E via the natural action of HC on M := HC/H on the
left. Such a section is equivalent to a HC-antiequivariant map ψ : E →M , i.e.,
ψ(eg) = g−1ψ(e), for e ∈ E and g ∈ HC. For such a map ψ, and γ ∈ Γ, define
a map γ · ψ : E →M given by

(γ · ψ)(e) := γ−1 · ψ(γ̃(e)),

where γ̃ is given by the (Γ, τ, c)-equivariant structure on E. We need to check
first that γ · ψ is HC-antiequivariant.

(γ · ψ)(eg) = γ−1 · ψ(γ̃(eg)) = γ−1 · ψ(γ̃(e)γ(g)) = γ−1 · (γ(g)−1ψ(γ̃(e))).

But from (16), we deduce that

γ−1 · (γ(g−1)ψ(γ̃(e))) = g−1(γ−1 · ψ(γ̃(e))) = g−1((γ · ψ)(e)),
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proving the antiequivariance of γ · ψ. To check that this defines an action of Γ
on the space of sections of E(M), we consider for γ, γ′ ∈ Γ

((γγ′) · ψ)(e) = (γγ′)−1 · ψ(γ̃γ′(e))
= (γ′)−1γ−1 · (ψ(γ̃(γ̃′(e))c(γ, γ′))
= (γ′)−1γ−1 · (c(γ, γ′)−1ψ(γ̃(γ̃′(e))).

But, since Z ′ ⊂ H , the action of c(γ, γ′)−1 is trivial, and we see that

(γγ′) · ψ = γ′ · (γ · ψ),

completing the proof.

Given a (Γ, τ, c)-equivariant G-Higgs bundle (E,ϕ) such that Z ′ ⊂ H and H is
invariant by τ , by Proposition 4.2 we can consider the action of Γ on the space
of metrics on E, that is on the space of sections of E(HC/H). The analysis
done for the Hitchin–Kobayashi correspondence given in Section 2.3 can be
extended to this equivariant situation to prove the following (see [8, 6]).

Theorem 4.3. Let (E,ϕ) be a G-Higgs bundle over a Riemann surface X
equipped with a (Γ, τ, c)-equivariant structure, with cocycle c ∈ Z2(Γ, Z ′), where
Z ′ ⊂ H, and H is invariant by τ . Then (E,ϕ) is polystable as a (Γ, τ, c)-
equivariant Higgs bundle if and only if there exists a Γ-invariant reduction h
of the structure group of E from HC to H, such that

Fh − [ϕ, τh(ϕ)] = 0. (17)

From Theorems 4.3 and 2.4 we conclude the following.

Proposition 4.4. Let Z ′ ⊂ Z∩H and c ∈ Z2(Γ, Z ′), and assume that H is in-
variant by τ . Then the forgetful map defines a morphism M(X,G,Γ, τ, c, σ) →
M(X,G).

4.2 Γ-action on the moduli space of G-Higgs bundles

Consider the action of Γ on the moduli space of G-Higgs bundles M(X,G)
given by the rule:

γ · (E,ϕ) =
{
(γ∗E, γ∗ϕ) if γ ∈ Γ+

(γ∗τ(E), γ∗τ(ϕ)) if γ /∈ Γ+.

We have the following.

Theorem 4.5. Let Z ′ ⊂ Z ∩ H and assume that H is invariant by τ . Let
M̃(X,G,Γ, τ, c, σ) be the image of the morphism in Proposition 4.4. Then
(1) If c and c′ are cohomologous cocycles in Z2

τ (Γ, Z
′)

M̃(X,G,Γ, τ, c, σ) = M̃(X,G,Γ, τ, c′, σ′).
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(2) For any Z ′ ⊂ Z, any σ, and any cocycle c ∈ Z2
τ (Γ, Z

′)

M̃(X,G,Γ, τ, c, σ) ⊂ M(X,G)Γ.

(3) Let M∗(X,G) ⊂ M(X,G) be the subvariety of G-Higgs bundles which are
stable and simple and let Z ′ = Z ∩ ker ι, then

M(X,G)Γ∗ ⊂
⋃

[c]∈H2
τ(Γ,Z

′),σ:[σi]∈R(Γxi
,HC/Z′)

M̃(X,G,Γ, τ, c, σ).

Proof. To prove (1), we consider the function f : G → Z ′ such that c and
c′ are related by (10). This function defines an automorphism of a G-Higgs
bundle (E,ϕ) which sends the twisted equivariant structure with cocycle c and
isotropy σ to a twisted equivariant structure with cocycle c′ and isotropy σ′.
The proof of (2) follows immediately from the definition of twisted equivariant
structure. The proof of (3) follows a similar argument to that of Proposition
3.3: The condition (E,ϕ) ∼= (γ∗E, γ∗ϕ) if γ ∈ Γ+ or (E,ϕ) ∼= (γ∗τ(E), γ∗τ(ϕ)
if γ ∈ Γ− implies the existence of an exact sequence

1 → Aut(E,ϕ) → AutΓ,τ (E,ϕ) → Γ → 1,

where Aut(E,ϕ) is the group of automorphisms of (Aut(E,ϕ) covering the
identity and and AutΓ,τ (E,ϕ) is the subgroup of AutΓ,τ (E) defined by 8 defined
by elements which send ϕ to ϕ if γ ∈ Γ+ and ϕ to τ(ϕ) if γ ∈ Γ−.
Since we are assuming that (E,ϕ) is simple Aut(E,ϕ) ∼= Z ′ = Z ∩ ker ι and
hence we have an extension

1 → Z ′ → AutΓ,τ (E,ϕ) → Γ → 1.

This extension defines a cocycle c ∈ Z2
τ (Γ, Z

′), and a c-twisted homomorphism
Γ → AutΓ(E,ϕ) with cocycle c, i.e., a (Γ, τ, c)-equivariant structure on (E,ϕ).
It follows from (1) that the union should run over [c] ∈ H2

τ (Γ, Z
′) and [σi] ∈

R(Γxi
, HC/Z ′), where, recall that [σi] is the projection of σi in R(Γxi

, HC/Z ′).

5 Equivariant structures and parabolic Higgs bundles

As in the previous section, letX be a compact Riemann surface, let Γ ⊂ Aut(X)
be a finite subgroup. We will assume here that Γ = Γ+. let Y := X/Γ and
πY : X → Y be the associated ramified covering map. The set of points P ⊂ X
maps by πY to a set S ⊂ Y . In this section we establish a correspondence
between Γ-equivariant G-Higgs bundles over X and parabolic G-Higgs bundles
over Y with parabolic points S . This extends the well-known correspondences
for vector bundles [26, 15, 28, 5, 2, 1], and principal bundles [38, 3]. In particular
this implies that if Z ′ = Z∩ker ι and a G-Higgs bundle (E,ϕ) is equipped with
a (Γ, c)-equivariant structure with c ∈ Z2(Γ, Z ′), then (E′, ϕ) with E′ := E/Z ′

Documenta Mathematica 25 (2020) 841–868



Mapping Class Group and Higgs Bundles 859

is a G′ = G/Z ′-Higgs bundle with a Γ-equivariant structure and hence is in
correspondence with a parabolic G′-Higgs bundle over Y . It would be very
interesting to give a parabolic description of the twisted equivariant structure
on (E,ϕ).

5.1 Parabolic G-Higgs bundles

In this section Y is a compact Riemann surface, and G is a connected real
reductive Lie group. We keep the same notation as in the previous sections for
a maximal compact subgroup, isotropy representation, etc.
Let T ⊂ H be a Cartan subgroup, and t be its Lie algebra. We consider a Weyl
alcove A ⊂ t (see [4]). Recall that if W is the Weyl group we have

A ∼= T/W ∼= Conj(H),

where Conj(H) is the set of conjugacy classes of H . Note that in contrast to
the definition of alcove in [4], here A may contain some walls so that it is a
fundamental domain for the action of the affine Weyl group.
Let S = {y1, . . . , ys} be a finite set of distinct points of Y and D = y1+ · · ·+ys
be the corresponding effective divisor.
An element α ∈

√
−1A defines a parabolic subgroup of Pα ⊂ HC given by

(3). Fix for every point yi ∈ S an element αi ∈
√
−1A , and denote α =

(α1, · · · , αs).
A parabolic G-Higgs bundle over (Y,S ) with weights α is a pair (E,ϕ)
consisting of a holomorphic HC-bundle E over Y equipped with a reduction of
Eyi

to Pαi
and ϕ is a holomorphic section of PE(mC)⊗K(D)), where PE(mC)

is the sheaf of parabolic sections of E(mC) (see [4] for details). There are
notions of stability, semistability and polystability similar to the ones we have
already seen in previous sections ([4]).
To define a moduli space one has to fix for every point yi ∈ S the projection Li

of the residue of ϕ in m0
αi
/Lαi

, where m0
αi

and Lαi
are defined as in Section 2.3.

Denote L = (L1, · · · ,Ls). We define M(Y,S , G, α,L ) to be the moduli

space of parabolic G-Higgs bundles on (Y,S ) with weights α =
(α1, · · · , αs) and residues L = (L1, · · · ,Ls).

5.2 Γ-equivariant Higgs bundles and parabolic Higgs bundles

In this section we describe the correspondence between parabolic G-Higgs bun-
dles on Y and Γ-equivariant G-Higgs bundles on X . For holomorphic vector
bundles over a compact Riemann surface, this correspondence originated in
[15] and was generalised to higher dimensions in [5]. The extension to Higgs
vector bundles was carried out in [28], and for holomorphic principal bundles
this correspondence is contained in [38] and [3].
First we begin with the data of a compact Riemann surface X and a finite
subgroup Γ ⊂ Aut(X) consisting entirely of holomorphic automorphisms. Ap-
plying the smoothing process of [10, Sec. 2] to the orbifold X/Γ determines a
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compact Riemann surface Y and a holomorphic map πY : X → Y such that Γ
is the group of deck transformations of the ramified cover π. Let {x1, . . . , xr}
denote the ramification points of π and let D = y1+ · · ·+ ys denote the branch
divisor. Each ramification point xj has a non-trivial isotropy group denoted
Γxj

⊂ Γ which is cyclic of order Nj. Let N = |Γ| denote the order of the
ramified cover πY : X → Y .
Let E → X be a principal HC bundle, and choose a lift of Γ to the group of
C∞ automorphisms of E. Via this lift, each isotropy group Γxj

∼= ZNj
acts on

the fibre Exj
which determines a representation σj ∈ R(Γxj

, HC) (note that
since we are considering equivariant rather than twisted equivariant bundles
then the cocycle c ∈ Z2(Γ, Z ′) is trivial).
Let Cxj

∈ Conj(H) denote the conjugacy class of the generator γxj
of Γxj

, which
is determined by the representation σj . Under the bijection between Conj(H)
and a Weyl alcove A of H (see [4]) we thus have that each conjugacy class Cxj

corresponds to a weight αj ∈
√
−1A . Since |Γxj

| = Nj then e2πiNjαj = id ∈
HC. In the following we will always choose the weights αj in the interior of the
Weyl alcove

√
−1A .

Given a branch point y ∈ Y and two points x, x′ ∈ π−1(y), there is a deck
transformation γ ∈ Γ such that x′ = γ · x, and the lift of γ to the group of
automorphisms of E determines a map on the fibres γ : Ex → Ex′ . Moreover,
the isotropy groups are conjugate Γx′ = γΓxγ

−1 and so the conjugacy classes
Cx and Cx′ are equal, and hence so are the weights in

√
−1A associated to

these classes.
Now consider a Γ-equivariant Higgs structure onE, i.e. a holomorphic structure
on E together with a Higgs field ϕ such that (E,ϕ) is preserved by the action
of Γ. For each ramification point xj , choose a small neighbourhood Uj such
that the bundle is trivial E|Uj

∼= Uj ×HC and the Γ-action is trivial

e
2πi
Nj · (z, g) = (e

2πi
Nj z, e2πiαj · g) (18)

(as explained in [38], the existence of this trivialisation follows from the equiv-
ariant Oka principle of [19]). We now show that after gauging by z−Njαj on
each trivialisation for j = 1, . . . , r then the Higgs pair (E,ϕ) descends to a
parabolic Higgs bundle on the quotient (X r P)/Γ, where the weight at the
branch point π(xj) is αj . This is known for holomorphic vector bundles (cf.
[15], [5]) and holomorphic principal bundles (cf. [38], [3]), and so to describe
the correspondence for Higgs bundles it only remains to describe the residue
of the Higgs field at each branch point in Y , which is a local computation on
each neighbourhood Uj. This was worked out for Higgs vector bundles in [28],
however this has not appeared in the literature for general G-Higgs bundles
and so we include the details below.
Locally, the Higgs field on E has the form ϕ(z) = f(z)dz, where f(z) : Uj → mC

is holomorphic. The action of Ade2πiαj decomposes mC into eigenspaces

mC =
⊕

β

mC

β
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where mC

β denotes the eigenspace with eigenvalue e2πiβ. Note that each Njβ

is an integer since e2πiNjαj = id, and since αj is in the interior of the Weyl
alcove then each eigenvalue is strictly less than one. Let f =

⊕
β fβ be the

corresponding decomposition of f . Since each fβ is holomorphic then we can
write it as a power series

fβ(z) =
∞∑

k=0

aβkz
k

with aβk taking values in mC

β . The induced action of e
2πi
Nj on ϕ is given by

e
2πi
Nj · ϕ(z) = Ade2πiαj

(
f
(
e

2πi
Nj z

))
e

2πi
Nj dz.

Therefore, the action on the component ϕβ = fβdz is

e
2πi
Nj · fβ(z)dz = e2πiβ

∞∑

k=0

aβke
2πik
Nj zk e

2πi
Nj dz =

∞∑

k=0

aβke
2πi(k+1)

Nj e2πiβzk dz.

If ϕ is invariant under the action of ZNj
∼= Γxj

then we see that aβk 6= 0 implies
that k = Njℓ−Njβ − 1 for some ℓ ∈ Z. Therefore

fβ(z)dz =

{
z−Njβ

∑∞
ℓ=0 a

β
Njℓ−Njβ−1z

Njℓ z−1dz if β < 0

z−Njβ
∑∞

ℓ=1 a
β
Njℓ−Njβ−1z

Njℓ z−1dz if 0 6 β < 1

where the two distinct cases come from the requirement that fβ is holomorphic
and hence the power series has non-negative powers of z. To simplify the nota-
tion, we will use bβℓ = aβNjℓ−Njβ−1 in the sequel. On the punctured disk Ujr{0},
apply the meromorphic gauge transformation g(z) = zNjαj = eNjαj log z (note
that this is well-defined on the punctured neighbourhood Uj r {xj} since
e2πiNjαj = id). We have g(z) · ϕ(z) = ∑

β g(z) · fβ(z)dz where

g(z) · fβ(z)dz =
{∑∞

ℓ=0 b
β
ℓ z

Njℓ z−1dz if β < 0∑∞
ℓ=0 b

β
ℓ+1z

Njℓ zNj−1dz if 0 6 β < 1

Therefore, after applying the meromorphic gauge transformation g(z), the

residue of g(z) · fβ(z) is zero if β > 0 and equal to bβ0 if β < 0. Now let
V = π(Uj) ⊂ Y and note that (18) implies that π : Uj → V is given by
z 7→ zNj . Then w = zNj satisfies w−1dw = Njz

−1dz and so g(z) · fβ(z) can be
written as a function of w, i.e. it descends to the quotient (Uj r {xj})/Γxj

g(z) · fβ(z) = f ′
β(w) =

{∑∞
ℓ=0 b

β
ℓw

ℓ 1
Nj
w−1dw if β < 0

∑∞
ℓ=0 b

β
ℓ+1w

ℓ 1
Nj
dw if 0 6 β < 1

Therefore the Γ-invariant Higgs bundle (E,ϕ) on X defines a parabolic Higgs
bundle (E′, ϕ′) on Y with Higgs field ϕ′ ∈ Γ

(
PE′(mC)⊗K(D)

)
. In particular,
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the residue of the Higgs field ϕ′(w) = f ′(w)dw is
⊕

β<0 b
β
0 which is nilpotent

and so the projection to m0
αi
/Lαj

is zero.
Therefore the Γ-equivariant Higgs bundle (E,ϕ) on X with isotropy represen-
tations σ corresponding to weights αj ∈

√
−1A in the interior of the Weyl

alcove determines a parabolic Higgs bundle (E′, ϕ′) on Y with parabolic points
{y1, . . . , ys} = π({x1, . . . , xr}), conjugacy classes C ′

π(xj)
= Cxj

determined by

αj and a parabolic Higgs field with nilpotent residues. Moreover, gauge equiv-
alent Γ-equivariant Higgs bundles on X descend to parabolic gauge-equivalent
parabolic Higgs bundles on Y .
Conversely, given a parabolic G-Higgs bundle (E′, ϕ′) on Y with nilpotent
residues at each parabolic point, as above let V be a neighbourhood of a branch
point y such that the bundle is trivial over V r {y} with weight αj ∈

√
−1A

such that e2πiNjαj = id. Since the residues are nilpotent then the Higgs field
ϕ′ ∈ Γ

(
PE′(mC)⊗K(D)

)
has the form

f ′
β(w) =

{∑∞
ℓ=0 c

β
ℓw

ℓ w−1dw if β < 0∑∞
ℓ=0 c

β
ℓw

ℓ dw if 0 6 β < 1

After pulling back by the ramified covering map z 7→ zNj = w, the Higgs field
ϕ(z) = f(z)dz upstairs has the form

fβ(z) =

{∑∞
ℓ=0 c

β
ℓ z

NjℓNjz
−1dz if β < 0∑∞

ℓ=0 c
β
ℓ z

NjℓNjz
Nj−1dz if 0 6 β < 1

Applying the gauge transformation g(z) = z−Njαj (once again, e2πiNjαj = id
implies that this is well-defined on the punctured neighbourhood Uj r {xj})
gives us

g(z) · fβ(z) =
{
z−Njβ

∑∞
ℓ=0 c

β
ℓ z

NjℓNjz
−1dz if β < 0

z−Njβ
∑∞

ℓ=0 c
β
ℓ z

NjℓNjz
Nj−1dz if 0 6 β < 1

and the same argument as before shows that this is holomorphic and invariant
under the action of ZNj

determined by αj ∈
√
−1A. Therefore the parabolic

Higgs bundle on Y determines a Γ-equivariant Higgs bundle on X .
Now that we have established the correspondence, it only remains to show that
the notions of stability, semistability and polystability are also in correspon-
dence. In the case of holomorphic principal bundles, the results of [38, Sec.
2.2] show that, via the correspondence described above, a stable Γ-equivariant
bundle upstairs on X corresponds to a stable parabolic bundle on Y . Moreover,
the degree of any parabolic reduction of structure group on E → X is related
to the parabolic degree of a parabolic reduction of structure group on E′ → Y
by a factor of 1

|Γ| .

For Higgs bundles, the only modification is to restrict to reductions of structure
group which are compatible with the Higgs field as described in [4, Sec. 3.2].
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For the Higgs bundle (E,ϕ) over X , given s ∈
√
−1h and a Γ-invariant holo-

morphic reduction η ∈ Ω0(E(HC/Ps)) such that ϕ ∈ H0(X,Eη(ms)⊗K), the
Γ-invariance of the Higgs field ϕ implies that the induced reduction of struc-
ture group on the parabolic bundle (E′, ϕ′) over Y rS is compatible with the
Higgs field, i.e. ϕ′|Y rS

∈ H0(Y r S , E′
η(ms) ⊗K). Conversely, a reduction

of structure group on the parabolic bundle (E′, ϕ′) over Y r S which is com-
patible with the Higgs field ϕ′ lifts to a reduction of (E,ϕ) over X compatible
with ϕ. Since the degree on X is related to the parabolic degree on Y by a
factor of 1

|Γ| (cf. [38, Sec. 2.3]) then the notion of Γ-equivariant Higgs stability

(resp. semistability and polystability) upstairs on X corresponds to the notion
of parabolic Higgs stability (resp. semistability and polystability) downstairs
on Y .

Therefore we have proved the following bijection of moduli spaces.

Theorem 5.1. The correspondence described above defines a bijection

M(X,G,Γ, id, σ) → M(Y,S , G, α, 0).

5.3 τ-Twisted Γ-equivariant structures and pseudoreal parabolic

Higgs bundles

In this section we assume that Γ contains antiholomorphic automorphisms Γ
contains antiholomorphic automorphisms of X , that is, Γ is given by an exten-
sion

1 → Γ+ → Γ → Z/2 → 1

defined by (2). We also assume that the (Γ, τ, c)-equivariant structures on the
G-Higgs bundles over X are such that the restriction of the cocycle c to Γ+ is
trivial. In this situation c defines a cocycle c̃ ∈ Z2

τ (Z/2, Z
′) where the action

of Z/2 = Γ/Γ+ is the one induced by (7). The cocycle c̃ defines a pseudo-
real structure on the parabolic G-Higgs bundle on Y := X/Γ+ constructed
in the previous section. Pseudoreal structures of parabolic G-Higgs bundles
are studied in [11], generalising the theory of pseudoreal G-Higgs bundles is
well-understood [8, 7, 6]. One thus has a correspondence similar to the one in
Theorem 5.1 also in this situation.

6 Twisted equivariant structures and representations

In this section, S is an oriented smooth compact surface of genus g > 2, X is a
Riemann surface, whose underlying smooth surface is S. The Lie group G is a
real form of a complex semisimple Lie group GC, and τ is a conjugation of GC

defining a compact real form of GC, and preserving G. Finally, Γ is a subgroup
of Aut(X).
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6.1 Twisted equivariant Higgs bundles and the orbifold funda-

mental group

Exploiting Proposition 2.7 and Theorem 4.5, we will give an interpretation
of the fix-point locus R(S,G)Γ in terms of representations of the Γ-orbifold
fundamental group π1(S,Γ) of S (see [8], for example, for a definition). This
group fits into a short exact sequence

1 → π1(S) → π1(S,Γ) → Γ → 1.

Let c ∈ Z2
τ (Γ, Z) be a 2-cocycle, where Z is the centre of G. Recall that Γ acts

on G as gγ = g if γ ∈ Γ+ and gγ = τ(g) if γ ∈ Γ−, for g ∈ G, inducing an
action on Z. Let also

τγ =

{
Id if γ ∈ Γ+

τ if γ ∈ Γ−.

We consider a group Ĝ = Ĝ(Γ, τ, c), whose set is G×Γ, and the group structure
is defined by

(g1, γ1) · (g2, γ2) = (g1τ
γ1 (g2)c(γ1, γ2), γ1γ2),

for g1, g2 ∈ G and γ1, γ2 ∈ Γ.
Let R(S,G,Γ, τ, c) be the set of G-conjugacy classes of representations ρ̂ :

π1(S,Γ) → Ĝ, which extend reductive representations ρ : π1(S) → G, making
the following diagram commutative

0 −−−−→ π1(S) −−−−→ π1(S,Γ) −−−−→ Γ −−−−→ 1

ρ

y ρ̂

y Id

y

1 −−−−→ G −−−−→ Ĝ −−−−→ Γ −−−−→ 1.

We will denote by R̃(S,G,Γ, τ, c) the image of R(S,G,Γ, τ, c) in R(S,G), for
the map given by sending ρ̂ to ρ.
Following the arguments in [8] (see also [7, 6]), we can extend the non-abelian
Hodge correspondence to the twisted equivariant case and prove the following.

Theorem 6.1. Under the non-abelian Hodge correspondence given by Theorem
2.5 one has the homeomorphism

R(S,G,Γ, τ, c)
∼=−→ M(X,G,Γ, τ, c).

Fixing the elements σi at the points xi ∈ P to define the moduli space
M(X,G,Γ, τ, c, σ) with σ = (σ1, · · · , σr), corresponds to fixing a cyclic el-
ement for the image under the representation of a loop around the point
xi. The moduli space corresponding to M(X,G,Γ, τ, c, σ) will be denoted

by R(S,G,Γ, τ, c, σ), and its image in R(S,G) by R̃(S,G,Γ, τ, c, σ).
As a corollary of Theorems 4.5 and 6.1 we have the following.
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Theorem 6.2. (1) For any cocycle c ∈ Z2
τ (Γ, Z)

R̃(S,G,Γ, τ, c) ⊂ R(S,G)Γ.

(2) Let R∗(S,G) ⊂ R(S,G) be the subvariety of irreducible representations,
then

R∗(S,G)
Γ ⊂

⋃

[c]∈H2
τ (Γ,Z)

R̃(S,G,Γ, τ, c).

6.2 The orbifold fundamental group and punctured surfaces

Assume now, as in Section 5.2, that Γ = Γ+ and that the cocycle c is trivial.
Let S be the set of points in S/Γ corresponding to the points P ⊂ S (see Sec-
tion 5.2). Then, combining Theorems 5.1 and 6.1 with the non-abelian Hodge
correspondence for punctured surfaces, proved in [4], we have the following.

Theorem 6.3. There is a bijection between R(S,G,Γ, τ, c = 1, σ) and R(S/Γr
S , G) with conjugacy classes around the points in S determined by σ.

We now assume, as in Section 5.3, that Γ contains antiholomorphic automor-
phisms and that the restriction of the cocycle c to Γ+ is trivial. As mentioned
in Section 5.3, in this situation c defines a cocycle c̃ ∈ Z2

τ (Z/2, Z) where the
action of Z/2 = Γ/Γ+ is the one induced by (7). We can then consider the
Z/2-orbifold fundamental group π1(S/Γ

+ r S ,Z/2) for the residual action of
Z/2 = Γ/Γ+ on S/Γ+, which fits in a short exact sequence

1 → π1(S/Γ
+
r S ) → π1(S/Γ

+
r S ,Z/2) → Z/2 → 1.

Here S is the set of points S/Γ+ corresponding to the set P ⊂ S.

We define the group Ĝ = Ĝ(τ, c), whose set is G×Z/2, and the group structure
is defined by

(g1, e1) · (g2, e2) = (g1τ
e1 (g2)c̃(e1, e2), e1e2),

for g1, g2 ∈ G and e1, e2 ∈ Z/2. Here τe1 = Id if e1 = 1 and τe1 = τ if e1 = −1.
Define

R(S/Γ+
r S , G, τ, c)

as the set G-conjugacy classes of homomorphisms ρ̂ : π1(S/Γ
+ rS ,Z/2) → Ĝ

extending homomorphisms ρ : π1(S/Γ
+ r S ) → G, with ρ reductive, and

making the the following diagram commutative

0 −−−−→ π1(S/Γ
+ r S ) −−−−→ π1(S/Γ

+ r S ,Z/2) −−−−→ Z/2 −−−−→ 1

ρ

y ρ̂

y Id

y

1 −−−−→ G −−−−→ Ĝ −−−−→ Z/2 −−−−→ 1.

From the discussion in Section 5.3 we conclude the following.

Theorem 6.4. There is a bijection between the moduli spaces R(S,G,Γ, τ, c, σ)
and R(S/Γ+

r S , G, τ, c) with conjugacy classes around the points in S de-
termined by σ.
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