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Abstract. Affine Deligne-Lusztig varieties are closely related to the
special fibre of Newton strata in the reduction of Shimura varieties or
of moduli spaces of G-shtukas. In almost all cases, they are not quasi-
compact. In this note we prove basic finiteness properties of affine
Deligne-Lusztig varieties under minimal assumptions on the associ-
ated group. We show that affine Deligne-Lusztig varieties are locally
of finite type, and prove a global finiteness result related to the natural
group action. Similar results have previously been known for special
situations.
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1 Introduction

Let F be a local field, OF its ring of integers, and kF = Fq its residue field, a
finite field of characteristic p. We denote by L the completion of the maximal
unramified extension of F , and by OL its ring of integers. Then the residue
field k of L is an algebraic closure of Fq. We denote by ǫ a uniformizer of F ,
which is then also a uniformizer of L. Let σ be the Frobenius of k over kF and
also of L over F . We denote by I the inertia group of F .
We consider a smooth affine group scheme G over OF with reductive generic
fibre. Let P = G (OL) and let G = GF .

1The authors were partially supported by ERC Consolidator Grant 770936: NewtonStrat.
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900 P. Hamacher, E. Viehmann

We denote by FℓG the base change to k of the affine flag variety (over kF )
associated with G as in [PR08, § 1.c] and [BS17, Def. 9.4]. In particular, FℓG

is a sheaf on the fpqc-site of k-schemes (charF = p) resp. of perfect k-schemes
(charF = 0) with

FℓG (k) = G(L)/P,

which is representable by an inductive limit of finite type schemes (charF =
p) resp. of perfectly of finite type schemes (charF = 0); see [PR08,
Thm. 1.4],[BS17, Cor. 9.6]. Hence we can define an underlying topological
space of FℓG , which is Jacobson. This means that by mapping a subset of
FℓG to its intersection with the subset of closed points FℓG (k) ⊂ FℓG we
obtain a bijection between the open subsets of FℓG and the open subsets of
FℓG (k) (same for closed and for locally closed subsets). Moreover, being a base
change from kF , we have an action of σ on FℓG .

To define affine Deligne-Lusztig varieties we fix an element b ∈ G(L) and a
locally closed subscheme Z of the loop group LG which is stable under P -σ-
conjugation. Then we consider the functor on reduced k-schemes resp. reduced
perfect k-schemes with

XZ(b)(S) = {g ∈ FℓG (S) | g
−1
x bσ(gx) ∈ Z(κx) for every geom. point x of S}.

Remark 1.1. The functor XZ(b) defines a locally closed reduced sub-indscheme
of FℓG : Consider the functor X̃Z(b) on reduced k-schemes resp. perfect k-
schemes with

X̃Z(b)(S) = {g ∈ LG(S) | g−1
x bσ(gx) ∈ Z(κx) for every geom. point x of S}.

Then X̃Z(b) is the inverse image of Z under the morphism LG → LG with
g 7→ g−1bσ(g). Since Z is locally closed, also X̃Z(b) defines a locally closed
reduced sub-ind-scheme of LG. Furthermore, XZ(b) is the image of X̃Z(b)
under the quotient map LG → FℓG , which is an L+G -torsor. Hence it is again
a locally closed sub-ind-scheme.

Let Jb be the reductive group over F whose R-valued points for any F -algebra
R are given by

Jb(R) = {g ∈ G(R ⊗F L) | gb = bσ(g)}.

Then for every Z there is a natural action of Jb(F ) on XZ(b) given by left
multiplication. Our main result is

Theorem 1.2. Assume in addition that Z is bounded (see Section 3 for the
definition of boundedness).
(1) XZ(b) is a scheme which is locally of finite type in the case that charF = p

and locally perfectly of finite type in the case charF = 0.
(2) The action of Jb(F ) on the set of irreducible components of XZ(b) has

finitely many orbits.
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This theorem is related to the fact that they are the underlying reduced sub-
scheme of moduli spaces of local G-shtukas and to the general expectation for
the arithmetic case that (at least in the minuscule case) affine Deligne-Lusztig
varieties are the reduction modulo p of integral models of local Shimura varie-
ties. Their cohomology is conjectured to decompose according to the local
Langlands and Jacquet-Langlands correspondences. In order to be able to
apply the usual methods, one needs the cohomology groups to be finitely gen-
erated Jb(F )-representations, and thus the “infinite level” cohomology groups
to be admissible. This follows from the above theorem by a formal argument
once the integral model is constructed (see for example [Mie20, Thm. 4.4],
[RV14, Prop. 6.1]).
Many particular cases of the theorem have been considered before. For the
particular case of affine Deligne-Lusztig varieties arising as the underlying re-
duced subscheme of a Rapoport-Zink moduli space of p-divisible groups with
additional structure of PEL type, questions as in Theorem 1.2 have been con-
sidered by several people. A recent general theorem along these lines is shown
by Mieda [Mie20]. Also, the (rare) cases where an affine Deligne-Lusztig variety
is even of finite type have been classified, compare [Gör10, Prop. 4.13].
In the case where G is reductive over OF and Z is a single P -double coset,
a complete description of the set of Jb(F )-orbits of irreducible components of
XZ(b) is known. The present work was motivated by our own results in this
direction in [HV18]. Recently, complete descriptions were given by Zhou and
Zhu [ZZ20] and by Nie [Nie].
The main tool to prove Theorem 1.2 is to relate the claimed finiteness state-
ments to finiteness properties of certain subsets of the extended Bruhat-Tits
building of G, using previous work of Cornut and Nicole [CN16].

Acknowledgement. We are grateful to G. Prasad for pointing out some of his
work on Bruhat-Tits theory to us. We thank the referee for his/her helpful
comments.

2 Reduction to the parahoric case

As a first step, we reduce to the case that G is a parahoric group scheme.
While most assertions in the following still hold true in the general setup, the
assertion that G is parahoric will simplify the proofs and the notation.
By the fixed point theorem [Tit79, 2.3.1] the group P ⋊ 〈σ〉 has a fixed point x
in the extended Bruhat-Tits building of GL. We refer to the subsequent section
for the relation between the extended Bruhat-Tits building and the “classical”
Bruhat-Tits building. By definition the stabiliser Px of x is σ-stable and con-
tains P . We denote by Gx the corresponding group scheme over OF in the
sense of [Prab, 1.9] and [Praa, 2].

Lemma 2.1. The fpqc quotient L+Gx/L
+G is representable by a finitely presen-

ted (resp. perfectly finitely presented) scheme.
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Proof. We denote Px,n := ker(Gx(OL) → Gx(OL/ǫ
n)). Since the Px,n form a

neighbourhood basis of the unit element in G(L) we have Px,n ⊂ P for some n.
Thus the positive loop group L+P contains the kernel of the reduction map into
the truncated positive loop group L+Px → L+

nPx. Indeed, we have just shown
that this is true on geometric points and the kernel is an infinite dimensional
affine space by Greenberg’s structure theorem [Gre63, p. 263], thus in particular
reduced. Hence we get L+Gx/L

+G ∼= L+
nGx/L

+
nG . Since the latter is a quotient

of linear algebraic groups over kF , the claim follows.

Since LG → FℓG is an L+G -torsor, we get that FℓG is étale locally isomorphic
to FℓGx

× L+Gx/L
+G . In particular, the canonical projection FℓG → FℓGx

is relatively representable and of finite type. Thus Theorem 1.2 holds true for
G if and only if it is true for Gx, as it is enough to prove the theorem after
enlarging Z so that becomes stable under Px-σ-conjugation. Let G ◦

x ⊂ Gx be
the parahoric group scheme associated to x. Repeating the argument above,
we see that it suffices to prove Theorem 1.2 for G ◦

x instead of G .
Therefore we can (and will) assume from now on that G is a parahoric group
scheme.

3 Some properties of Bruhat-Tits buildings

We consider the following group theoretical setup. Let S0 ⊂ G be a maximal L-
split torus defined over F , let T0 be its centraliser and let N0 be the normaliser
of T0 in G. Then T0 is a torus because G is quasi-split over L. Thus W =
N0(L)/T0(L) is the relative Weyl group of G over L. We denote by PT0 the
unique parahoric subgroup of T0. The extended affine Weyl group is defined as

W̃ := N0(L)/PT0
∼= X∗(T0)Gal(L/L) ⋊W,

whereX∗(T0)Gal(L/L) denotes the group of Galois convariants ofX∗(T0) over L.
We may choose S0 such that P stabilises a facet in the apartment of S0 and
denote W̃P = (N0(L) ∩ P )/PT0 ⊂ W̃ . By [PR08, Appendix, Prop. 9] the
embedding N0 →֒ G induces a bijection

W̃P \W̃/W̃P 1:1
−−→ P\G(L)/P. (3.1)

We call a subset X̃ ⊂ G(L) bounded if it is contained in a finite union of
P -double cosets. The bounded subsets form a bornology on G(L), which does
not depend on the choice of P .
Let Be(G,L) be the extended Bruhat-Tits building of G over L, that is

Be(G,L) = B(G,L)× V0(G,L)

where B(G,L) is the “classical” Bruhat-Tits building of G and V0(G,L) :=

X∗(G
ab)

Gal(L/L)
R

∼= X∗(Z(G))
Gal(L/L)
R with Z(G) denoting the center of G.

The extended apartment Ae(S,G) ⊂ Be(G,L) of a maximal L-split torus S
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Finiteness Properties of ADLVs 903

is defined as A(S,G;L) × V0(G,L) where A(S,G;L) denotes the apartment
of S. We recall from Landvogt [Lan00, § 1.3] that Be(G,L) is a polysimplicial
complex with a metric d and a G(L)⋊ 〈σ〉-action by isometries. Moreover, one
can canonically identify Be(G,F ) with the set of σ-invariants Be(G,L)〈σ〉.
We consider the canonical map

i : G(L) → Isom(Be(G,L)),

where Isom(Be(G,L)) denotes the space of self-isometries of Be(G,L). A set
M ⊂ Isom(Be(G,L)) is called bounded if for some (or equivalently every)
non-empty bounded set A ⊂ Be(G,L) the set {f(x) | f ∈ M,x ∈ A} ⊂
Be(G,L) is bounded. We have the following statement about the compatibility
of bornological structure.

Proposition 3.2 ([BT84, Prop. 4.2.19]). A subset X̃ ⊂ G(L) is bounded if
and only if its image under i is.

We consider the following maps between extended Bruhat-Tits buildings. Let
f : G → G′ be a morphism of reductive F -groups. A G(L)-equivariant map
g : Be(G,L) → Be(G′, L) is called toral if for every maximal L-split torus S ⊂
GL there exists a maximal L-split torus S′ ⊂ G′

L such that f(S) ⊂ S′ and g
restricts to an X∗(S)R-translation equivariant map between the apartments of
S and S′. In [Lan00], Landvogt proves that there always exists a G(L) ⋊ 〈σ〉-
invariant toral map, which becomes an isometry after normalising the metric
on Be(G′, L). However, this map depends on an auxiliary choice. We give a
precise formulation of the result in the form and context that we need later
on. For this consider the fixed element b ∈ G(L) and denote by νb ∈ X∗(G)Q
the Newton point of b (see [Kot85, § 4] for its precise definition). We fix an
integer s ≫ 0 such that s · νb ∈ X∗(G). Denote by Mb ⊂ G the Levi subgroup
centralising νb (and thus s · νb). Then Jb is the inner form of Mb obtained by
twisting the action of the Frobenius by b. We can thus use the following result
to relate the buildings of G and Jb. A similar result is also shown in [CN16].

Proposition 3.3 ([Lan00, Prop. 2.1.5],[Rou77, Lemme 5.3.2]). Let f : Mb →֒
G. Then there exists a toral Mb(L)⋊ 〈σ〉-equivariant injective map

f∗ : B
e(Mb, L) → Be(G,L).

Moreover, f∗ is injective and unique up to translation by an element of
V0(G,L)〈σ〉. In particular, its image is the same for every choice of f∗ and

equal to Be(G,L)(s·νb)(O
×

L
). After a suitable normalisation of the metric on

Be(G,L), this map becomes an isometry.

Remark 3.4. Since Jb,L ∼= Mb,L, we obtain an identification of Be(Jb, L) with

Be(G,L)(s·νb)(O
×

L
). However, since Jb is an inner twist of a Levi subgroup

of G, this identification will not respect the action of the Frobenius in gen-
eral. In order to distinguish it from the action on Be(G,L), we denote the
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Frobenius action on Be(Jb, L) (and Jb(L)) by σb. More explicitely, we have
σb = bσ|B(Jb,L)

× σ|V0(Jb,L)
. Indeed, by [Lan96, Lemma 3.3.1], the Frobenius

action on the “classical” Bruhat-Tits building B(Jb, L) is uniquely determined
by the equation σb(j.x) = σb(j).σb(x) = (bσ(j)b−1).σb(x) and thus has to be
equal to bσ. It follows from the explicit description in [Lan96, (3.3.2)], that the
Frobenius action on V0(Jb, L) remains the same.

Now assume that we have an embedding of reductive groups f : G →֒ G′. The
following statement is the main result of [Lan00].

Proposition 3.5 ([Lan00, Thm. 2.2.1]). There exists a G(L) ⋊ 〈σ〉-invariant
toral map f∗ : Be(G,L) → Be(G′, L). Furthermore the metric on Be(G,L) can
be normalised in a way such that f∗ becomes isometrical.

To simplify the notation, we identify G with its image in G′. Now b, considered
as element of G′, induces a group J ′

b which is an inner form of the centraliser of
νb inG′. Since f∗ preserves the fixed points of νb(O

×
L ), we obtain a commutative

diagram by Proposition 3.3 and Remark 3.4,

Be(Jb, L) Be(J ′
b, L)

Be(G,L) Be(G′, L).

f∗

f∗

(3.6)

Lemma 3.7. The restriction f∗|Be(Jb,L)
is σb-equivariant.

A related statement is [CN16], 3.5. For the convenience of the reader, we
provide the details of the proof here.

Proof. We denote by σ′
b the canonical Frobenius action on Be(J ′

b, L). Note
that the action of bσ and the actions of σb, σ

′
b differ by the translations tb, t

′
b

induced by the action of b on V0(Jb, L) and V0(J
′
b, L) respectively. Since f∗ is

bσ-equivariant, it suffices to show that f∗ ◦ tb = t′b ◦ f∗.
To prove this, consider the composition of f∗ with the canonical projection
Be(J ′

b, L) ։ V0(J
′
b, L). We claim that this map factors through V0(Jb, L). This

can be checked on extended apartments. Let S ⊂ Jb, S
′ ⊂ J ′

b be maximal
split tori over L with f(S) ⊂ S′ and f∗(Ae(S, Jb;L)) ⊂ Ae(S′, J ′

b;L). For the
intersections with the derived groups of G,G′ we have Sder ⊂ S′der. Hence the
composition Ae(S, Jb;L) →֒ Ae(S′, J ′

b;L) ։ V0(J
′
b;L) is S

der(L)-invariant and
thus factors through Ae(S, Jb;L)/Ae(Sder, Jder

b ;L) = V0(Jb, L).
Thus we obtain a commutative diagram

Be(Jb, L) Be(J ′
b, L)

V0(Jb, L) V0(J
′
b, L)

f∗

p p′

fab
∗
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Finiteness Properties of ADLVs 905

Since p, p′ and f∗ commute with the action of b, so does fab
∗ . Thus fab

∗ ◦ tb =
t′b ◦ f

ab
∗ , proving f∗ ◦ tb = t′b ◦ f∗.

4 Boundedness properties on the affine flag variety

We denote by wG : G(L) → π1(G)I the Kottwitz homomorphism. For any
subset X ⊂ G(L) and ω ∈ π1(G)I , we define X

ω := X ∩w−1
G ({ω}). We remark

that by [PR08, Thm. 5.1] and [Zhu17, Prop. 1.21] the connected components
of FℓG are precisely the subsets of the form FℓωG .
For further considerations, it will be useful to fix a presentation of FℓredG as a
limit of schemes. For any w ∈ W̃P \W̃/W̃P we denote by

S◦
w := PwP/P

Sw :=
⋃

w′≤w

Sw′

the Schubert cell and the Schubert variety associated with w, respectively.
Here, ≤ denotes the Bruhat order on W̃ induced by any fixed choice of an
Iwahori subgroup of P . By [PR08, § 8] and [BS17, Thm. 9.3] each Schubert
variety (resp. cell) is a closed (resp. locally-closed) quasi-compact subscheme
of FℓG , which is of finite type in the case charF = p and perfectly of finite
type in the case charF = 0. Note that by (3.1), we have that FℓG =

⋃
S◦
w is a

decomposition into locally closed subsets, hence we can write FℓredG = lim−→Sw.
We equip FℓG (k) with the bornology induced by the canonical projection
G(L) ։ G(L)/P = FℓG (k), that is a subset X ⊂ FℓG (k) is bounded, if it
is contained in a finite union of Schubert varieties. We obtain the following
geometric characterisation of bounded subsets.

Lemma 4.1. A subset X ⊂ FℓG (k) is bounded if and only if it is relatively
quasi-compact (i.e. contained in a quasi-compact subset). In this case X is
even quasi-compact itself.

Proof. Since the Sw are quasi-compact, any bounded subset of FℓG is relatively
quasi-compact. The Sw are Noetherian, thus their subsets are quasi-compact
themselves.
On the other hand, assume that X is not bounded. We prove that X is not
quasi-compact by constructing an infinite discrete closed subset Y ⊂ X . By
definition, the set T := {w ∈ W̃ | X ∩ S◦

w 6= ∅} is infinite. For each w ∈ T ,
choose an element xw ∈ X ∩ S◦

w. Then Y := {xw | w ∈ T } is infinite and

discrete. Its intersection with every Sw for w ∈ W̃ is closed, hence Y is closed.

Lemma 4.2. Let X ⊂ FℓG be a locally closed reduced sub-ind-scheme. Then X
is a scheme if and only if every point of X(k) has an open neighbourhood
which is bounded as subset of FℓG (k). In this case X is locally of finite type if
charF = p, respectively locally of perfectly finite type if charF = 0.
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Proof. The “only if” direction follows from the previous lemma because every
point of a scheme has a quasi-compact open neighbourhood.
To prove the “if” direction, we may assume that X is bounded, since its repres-
entability is a Zariski-local property. Then the embeddingX(k) →֒ FℓG factors
through some finite union of Schubert varieties by the previous lemma, in par-
ticular X(k) is a locally closed subvariety of this union. Since the Schubert
varieties are (perfectly) of finite type, so is X .

Remark 4.3. The analogous assertions of Lemmas 4.1 and 4.2 in LG(k), the
loop group of G, also hold true (with the exception of the last statement of
Lemma 4.2). Indeed, since a set X ⊂ G(L) is bounded if and only if X · P
is bounded, it suffices to prove the assertion in the case that X is right P -
invariant. Then the claim follows from the above lemmas since LG → FℓG is
an L+G -torsor and thus relatively representable and quasi-compact.

5 Affine Deligne Lusztig varieties

We now prove that the first part of Theorem 1.2 implies the second. By
Lemma 4.2 together with the first part of the theorem, its second assertion
is equivalent to the following proposition, which we prove below.

Proposition 5.1. Let Z a bounded subset of G(L) and denote

X̃Z(b) := {g ∈ G(L) | g−1bσ(g) ∈ Z}.

Then there exists a bounded subset X̃0 ⊂ X̃Z(b) such that X̃Z(b) = Jb(F ) · X̃0.

For the proof of the proposition we need some preparation.

Lemma 5.2. The σ-conjugacy class of b ∈ G(L) has a decent representative for
which Be(Jb, F ) ∩ Be(G,F ) 6= ∅ (viewed as subspaces of Be(G,L)).

Here, an element b ∈ G(L) is called decent if there is a natural number s with
(bσ)s = sν(ǫ)σs.

Proof. In Remark 3.4 we identified the extended Bruhat-Tits building Be(Jb, L)
with Be(Mb, L). We fix a maximal L-split torus S ⊂ Mb, denote by T its cent-
raliser and by W̃Mb

the associated extended affine Weyl group of Mb. Since
any reductive group over F is residually quasi-split by [BT87, Thm. 4.1], there
exists a σ-stable alcove a in A(S,Mb, L). The Kottwitz homomorphism maps
the stabiliser Ω ⊂ W̃Mb

of a isomorphically onto π1(G)I . Since any basic σ-
conjugacy class is uniquely determined by its Kottwitz point, we may assume
that b (after replacing it by a Mb(L)-σ-conjugate if necessary) is a represent-
ative in Mb(L) of an element of Ω. By [Kim19, Lemma 2.2.10] we may assume
this representative to be decent. It now follows from the explicit description
of σb in Remark 3.4 that we may take p0 := (pb, pv) where pb ∈ B(Mb, L)
is the barycenter of a and pv ∈ V0(Mb, L) is any point fixed by σ. Then
p0 ∈ Be(Jb, F ) ∩ Be(G,F ).
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Thus after replacing b by a σ-conjugate if necessary, we fix p0 ∈ Be(Jb, F ) ∩
Be(G,F ). In order to relate the bornologies on G(L) and on Be(G,L) directly,
we consider the map

ι : G(L) → Be(G,L), g 7→ g.p0.

By the choice of p0, the map ι is G(L)⋊ 〈σ〉-equivariant and the restriction to
Jb(L) is moreover σb-equivariant, cf. Remark 3.4. By Proposition 3.2, for any
C′ > 0 the set ZC′ := {g ∈ G(L) | d(p0, ι(g)) < C′} is a bounded set and for
any bounded Z ⊂ G(L) the constant cZ := sup{d(p0, ι(y)) | y ∈ Z} is finite.
The following lemma translates the results of [CN16] into our terms.

Lemma 5.3. Let G be a reductive group over F and b ∈ G(L).
(a) For any c > 0 there exists a C > 0 such that if x ∈ Be(G,L) satisfies

d(x, bσ(x)) < c then there exists x0 ∈ Be(Jb, F ) with d(x, x0) < C.
(b) For any c > 0 there exists a C > 0 such that if x ∈ ι(G(L)) satisfies

d(x, bσ(x)) < c then there exists x0 ∈ ι(Jb(F )) with d(x, x0) < C.

Proof. Assertion (a) is proven in [CN16] by an elegant geometrical argument.
By Theorem 3.3 of loc. cit. f∗ identifies Be(Jb, F ) with the set

Min(bσ) := {x ∈ Be(G,L) | d(x, bσ(x)) attains its minimal possible value.},

Thus the statement (a) claims that if d(x, bσ(x)) is bounded, so is the distance
to Min(bσ). This (together with an upper bound for C) is proven in [CN16,
Prop. 8].
To show that (a) implies (b), we have to show that the distance of a point
x ∈ Be(G,L) to ι(G(L)) is bounded above, or equivalently that there exists a
bounded subset M ⊂ Be(G,L) such that G(L) · M = Be(G,L) as well as the
analogous assertion for Jb(F ). For this, we fix an isomorphism X∗(Z)I ∼= Z

r,
which yields an identification V0(G,L) = R

r. Then we may choose M =
a× [0, 1]r, where a is any alcove of the usual Bruhat-Tits building B(G,L).

Proof of Proposition 5.1. Let Z ⊂ G(L) be bounded. We fix g ∈ X̃Z(b) and
denote x := ι(g). Then

d(x, bσ(x)) = d(g−1.x, g−1.bσ(x)) = d(p0, g
−1bσ(g).p0) < cZ .

By Lemma 5.3(b), there exist a CZ > 0 depending only on Z and a j ∈ Jb(F )
such that

d((j−1 · g).p0, p0) = d(x, j.p0) < CZ ,

i.e. j−1 · g ∈ ZCZ
. Hence X̃Z(b) = Jb(F ) · (X̃Z(b) ∩ ZCZ

).

It remains to prove the first part of Theorem 1.2. By Lemma 4.2 it is equivalent
to the following proposition.

Proposition 5.4. Every x0 ∈ XZ(b)(k) has a bounded open neighbourhood.
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Proof. The proof follows by an analogous argument as the last part of [HV11,
Thm. 6.3]. Since the situation simplifies a lot by considering only the reduced
structure, and since in loc. cit. only split groups, hyperspecial P , and certain Z
are considered, we give the complete proof for the reader’s convenience.
Let ω = wG(x0) and let again XZ(b)

ω = XZ(b) ∩ w−1
G (ω). Since XZ(b)

ω ⊂
XZ(b) is open and closed, it suffices to prove the claim for XZ(b)

ω. We can
define a G(L)- and σ-invariant semi-metric d : G(L)ω → N ∪ {0} by

d(g, h) ≤ n ⇐⇒ h−1g ∈ Pρ∨(ǫ2n)P =
⋃

w≤2nρ∨

PwP

where ρ∨ denotes the half-sum of the positive coroots and w ∈ W̃P \W̃/W̃P .
Obviously this semi-metric descends to FℓωG. Then a subset is bounded with
respect to the bornology defined before Lemma 4.1 if and only if it is bounded
with respect to d.
We choose b as in Lemma 5.2. Let s ∈ N be as in the decency equation, i.e.
(bσ)s = (s · ν)(ǫ). Enlarging s and Z if necessary, we assume that ω and Z
are both σs-invariant. Then XZ(b)

ω is σs-stable and thus is defined over the
extension ks of degree s of kF . The closed point x0 defined over some finite
extension of kF . By enlarging ks further if necessary, we assume that x0 is a
ks-rational point. We denote by M the model of XZ(b)

ω over ks and for every
n ∈ N we define the closed sub-ind-scheme

Mn(k) := {x ∈ M(k) | d(x, x0) ≤ n}.

Note that Mn is actually a (perfectly) finite type scheme by Lemma 4.2 and
moreover defined over ks since d is σ-invariant. Also note that M = lim−→Mn.
The decency of b implies that Jb(F ) ⊂ G(Fs) where Fs is the unramified
extension of F of degree s. Thus the Jb(F )0-action stabilises M(ks). Together
with Proposition 5.1 (which we proved independently of the first assertion
of Theorem 1.2) we obtain that there exists an N0 ∈ N such that for every
x ∈ M(k) there exists a y0 ∈ M(ks) with d(x, y0) ≤ N0. For every y0 ∈ M(ks)
define the closed subscheme Mn(y0) ⊂ Mn by

Mn(y0)(k) := {y ∈ Mn(k) | d(y0, y) ≤ N0}.

Now consider the open subset of Mn

Un := Mn(x0) \
⋃

y∈M(ks)
d(x0,y)>N0

Mn(y).

The union on the right hand side is indeed finite (and hence closed): By the
triangular inequality Mn(y) is empty unless y ∈ MN0+n(ks); the latter set is
finite since MN0+n is (perfectly) of finite type. We claim that the chain U1 ⊆
U2 ⊆ · · · stabilises at U2N0 at the latest. To prove this, let x ∈ Un(k) for some n.
We choose a rational point y0 ∈ M(ks) with d(x, y0) ≤ N0. By definition of
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Un, we must have d(x0, y0) ≤ N0. Thus d(x, x0) ≤ d(x, y0) + d(y0, x0) ≤ 2N0,
i.e. x ∈ U2N0 .
Since M = lim

−→
Mn, the subset U2N0 = lim

−→
Un is open in M. It is moreover

bounded and contains x0. It is thus a bounded open neighbourhood of x0.
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