
Documenta Math. 911

Norm-Compatible Systems of

Galois Cohomology Classes for GSp6

Antonio Cauchi1 and Joaquin Rodrigues Jacinto2

Received: October 29, 2018

Revised: May 12, 2020

Communicated by Otmar Venjakob

Abstract. We construct global cohomology classes in the middle
degree plus one cohomology group of the Shimura variety of the
symplectic group GSp6 compatible when one varies the level at p.
These classes are expected constituents of an Euler system for the
Galois representations appearing in the middle degree étale cohomo-
logy groups of the aforementioned variety. As an application, we show
how these classes provide elements in the Iwasawa cohomology of these
representations and, by applying Perrin-Riou’s machinery, p-adic L-
functions associated to them.
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1 Introduction

The construction of special elements in the motivic and étale cohomology of
Shimura varieties has contributed to proving cases of Beilinson’s conjectures
on special values of motivic L-functions (e.g. [Bei86], [Kin98], [Lem17] etc.),
the Birch and Swinnerton-Dyer conjecture and the Bloch-Kato conjecture
(e.g. [Kat04], [BDR15], [KLZ17], [LSZ19] etc.), and it constitutes one of the
main tools to study the arithmetic of Galois representations appearing in the
cohomology of Shimura varieties and their relation to special L-values.
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Fix a prime number p. In this article, we construct elements in the cohomology
of the Shimura variety of the symplectic similitude group G =GSp6/Q, which
satisfy the Euler system norm relations in the cyclotomic tower at p. As an ap-
plication, we show how they give rise to elements in the Iwasawa cohomology of
Galois representations appearing in the middle degree p-adic étale cohomology
of the Shimura variety for G. The strategy we adopt here has been inspired by
the work of [LLZ14] on the construction of the Beilinson-Flach Euler system,
which has also successfully been applied in many different contexts ([LLZ17],
[LSZ19] etc.).

1.1 Setting

We consider the subgroup H =GL2×detGL2×detGL2 ⊂G, which, after a suit-
able choice of Shimura datum, induces an embedding ι ∶ ShH = Sh(H,XH) ↪
Sh(G,XG) = ShG. By pulling back Beilinson’s Eisenstein symbol in the mo-
tivic cohomology of the modular curve associated to the first GL2-copy of H,
we get elements in the first motivic cohomology group of ShH. Their push-
forward along ι thus gives elements in the seventh motivic cohomology group
of ShG. One then uses the natural action of G(Af) on the Shimura variety
ShG to perturb these classes and obtain a whole compatible system of coho-
mology classes defined over ramified extensions of the base field. Our setting
is very similar to the one first considered in [Lem10] and later developed in
[LSZ19].

1.2 Motivation

Let π be a cohomological cuspidal automorphic representation of G(Af). After
projecting to the π-isotypic component, the motivic classes that we construct
are expected, according to Beilinson’s conjectures, to be related to special val-
ues of the degree eight spin L-function LSpin(π, s) associated to π. This is
motivated by recent work of Pollack and Shah ([PS18]), who have given (un-
der certain hypotheses on π) an integral representation of the (partial) spin
L-function of π, by integrating over H a GL2-Eisenstein series against a cusp
form ϕ in the space of π.

1.3 Main results

After applying the étale regulator map and employing the action of the Hecke
algebra of G, we prove the following.

Theorem A (Corollary 3.17 and Theorem 3.21). Let λ be a highest weight
of G and let Wλ be the Zp-local system associated to the irreducible algebraic
representation of G of highest weight λ. There exists a family of étale coho-
mology classes

zλn,m ∈ H7
ét(ShG(Kn,0)/Q(ζpm),Wλ(q)),
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for q varying in an explicit finite set I(λ) ⊆ Z depending on λ, which satisfy
the following norm relations:

1. For n ≥ 1, (prKn+1,0

Kn,0
)∗(zλn+1,m) = zλn,m;

2. For n,m ≥ 1, normQ(ζpm+1)

Q(ζpm)
(zλn,m+1) = U

′
p

σ3
p
⋅ zλn,m,

where U ′p is the Hecke operator associated to the double coset of

diag(p−3, p−2, p−2, p−1, p−1,1) ∈ G(Qp) ⊂ G(Af), and σp is the image of
p−1 under the Artin reciprocity map Q∗p ↪A∗f → Gal(Q(ζpm)/Q).
Some words about the theorem above. By Kn,0 we mean a tower of sufficiently
small level subgroups of G(Ẑ) defined by certain congruences modulo powers
of p (cf. §3.4 for precise definitions). We refer to §2.5 for the definitions of Wλ

(Definition 2.16) and the introduction of the appropriate twist q (Definition
2.17), and to Remark 3.10 for the normalisation of the Artin reciprocity map.
As mentioned below, the first relation will allow us to vary our classes in
families, while the second relation allows one to modify the classes zλn,m so that
they satisfy the usual Euler systems relation at p. Finally, it is essential for
Iwasawa theoretic purposes to work with integral coefficients, which renders
the construction of the classes more delicate.

By using the theory of Λ-adic Eisenstein classes developed in [Kin15], we also
show that these classes deform p-adically in families as the weight λ varies
p-adically, thus obtaining a universal class interpolating all the classes zλn,m.
More precisely, we prove the following result.

Theorem B (Theorem 4.8). There exists a class

z̃ ∈H7
Iw(ShG(K ′∞),Zp(4)) ∶= lim←Ð

n,m≥1

H7
ét(ShG(K ′n,m),Zp(4)),

and, for any dominant weight λ, any r ∈ Z and n,m ∈N, natural specialisation
maps

mom
[λ,r]
G,n,m

∶H7
Iw(ShG(K ′∞),Zp(4))→H7

ét(ShG(Kn,0)/Q(ζpm),Wλ(r)),
such that, for any λ = (λ1 ≥ λ2 ≥ λ3), q ∈ I(λ) and n,m ∈N, we have

mom
[λ,q]
G,n,m(z̃) = (σ

3

p

U ′p
)
m

⋅ eord(zλn,m).
Some remarks and clarifications are in order. The tower of sufficiently small
level subgroups K ′n,m is introduced in Definition 2.6 and the interpolating
module H7

Iw(ShG(K ′∞),Zp(4)) is defined precisely in Definition 4.6. The op-
erator eord denotes the ordinary idempotent acting on H7

Iw(ShG(K ′∞),Zp(4))
associated to U ′p (cf. §4.2.4). For the experienced reader, let us point out
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that the definition of the interpolating modules as well as the specialisation
maps are inspired by the work [Kat04], where similar constructions are carried
over for GL2. Finally, we remark that the specialisations mom

[λ,r]
G,n,m

(z̃) for
r /∈ I(λ) provide étale cohomology classes which do not arise as the p-adic
realisation of motivic elements. More precisely, the set I(λ) of geometric
twists of Theorem A corresponds precisely to the set of integers where the
archimedean L-function of the motive underlying our construction vanishes at
order 1 (cf. [CLRJ19, §3.6] for a more detail discussion on this). The different
specialisations of the universal class should conjecturally be related to special
values of the complex L-function at other points, such as the critical ones.

Let us briefly mention some immediate applications of our results. Let π be
a suitable cohomological cuspidal automorphic representation of G(A) such
that π is U ′p-ordinary, in the sense that U ′p, acting on πKn,0 , has an eigenvalue α,
which is a p-adic unit. Let Vp(π) be, up to a twist by the cyclotomic character,
the associated eight dimensional p-adic spin Galois representation (cf. [KS16])
defined over a sufficiently large finite extension L of Qp. Denote OL the ring
of integers of L. Let Tp(π) denote any Galois stable OL-lattice in Vp(π). One
defines the local Iwasawa cohomology of Vp(π) as

H1
Iw(Qp, Vp(π)) ∶= lim←Ð

m

H1(Qp(ζpm), Tp(π))⊗OL
L.

One can then show (cf. Proposition 5.3) that the specialisation at p of the
cohomology classes of Theorem A assemble together into a class

zπIw,α ∈ H1
Iw(Qp, Vp(π)).

In particular, the image of zπIw,α under Perrin-Riou’s logarithm map defines
an arithmetic p-adic spin L-function (cf. Definition 5.5), interpolating the
exponential and dual exponential maps of different twists of the class zπIw,α.
The p-adic L-function thus defined is not a priori related to special values of
the complex spin L-function associated to the automorphic form π but, as we
point out below, a relation between these objects is established in our recent
work [CLRJ19].

1.4 Final remarks and future work

We finally mention that this work should be seen as a first step towards
constructing Euler systems for G. The gap between our Galois cohomology
classes and an Euler system is the absence of the so-called tame norm re-
lations, which compare classes over fields Q(ζmℓ) and Q(ζm), where ℓ does
not divide m. In [LSZ19], the authors introduce a technique for proving
the tame norm relations, which relies on the local Gan-Gross-Prasad con-
jecture for the pair (SO4,SO5). Similar techniques have also been used by
C. Cornut and in [Jet14]. We hope to be able to come back to this in the future.

Documenta Mathematica 25 (2020) 911–954



Norm-Compatible Systems for GSp6 915

There are still many other natural questions yet to be answered concerning
the classes constructed in this article. The relation between the special values
of the arithmetic p-adic spin L-function and the critical values of the complex
spin L-function are still mysterious. We expect an explicit reciprocity law to
hold, relating values of Bloch-Kato’s dual exponential maps of our Iwasawa
class to certain values of the complex spin L-function, which should also show
the non-vanishing of the classes. Progress in this direction has been achieved
in [CLRJ19], where the archimedean regulator of the motivic classes (for trivial
coefficients) has been calculated in terms of the complex spin L-function at non-
critical points, using techniques in [Kin98], [Lem17] and [PS18]. This estab-
lishes a connection between the arithmetic p-adic spin L-function constructed
in this article with the complex spin L-function, in the spirit of Perrin-Riou
conjectures. Moreover, in [CLRJ19], possible generalisations to GSp2n with
n > 3, of the construction of motivic cohomology classes as well as the study
of their archimedean regulator are considered. This work can hence be consid-
ered as our first attempt devoted to the study of the arithmetic of automorphic
forms for symplectic groups.
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2 Preliminaries

2.1 Groups

Let H =GL2×detGL2×detGL2 be the group scheme over Z obtained by taking
the product over the determinant of three copies of GL2, i.e. whose R-points
are

{(A,B,C) ∶ A,B,C ∈GL2(R),detA = detB = detC},
and let G be the group scheme over Z defined by having R-points

G(R) =GSp6(R) = {A ∈GL6(R) ∶ AtJA = ν(A)J, ν(A) ∈Gm(R)},
for any commutative ring R with 1, where we have fixed J to be the matrix

( 0 I′
3

−I′
3

0
), for I ′3 = ( 1

1
1
). In the following, we will consider H as a subgroup of
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G through the embedding defined by

∆∶ (( a1 b1
c1 d1

), ( a2 b2
c2 d2

), ( a3 b3
c3 d3

)) ∈H↦
⎛⎜⎜⎝

a1 b1
a2 b2

a3 b3
c3 d3

c2 d2

c1 d1

⎞⎟⎟⎠
∈G

We denote by ZH and ZG the centers of H and G respectively.

2.2 Shimura varieties

Let S = ResC/RGm and define hGL2
∶S →GL2/R by

hGL2
(a + ib) = 1

a2 + b2
( a b
−b a
)

on the real points. Let XGL2
be the set of GL2(R)-conjugacy classes of hGL2

.
This induces a Shimura datum (GL2,XGL2

), and we denote by ShGL2
the

Shimura variety thus defined, i.e. the usual modular curve. For U a sufficiently
small3 vopen compact subgroup of GL2(Af), we denote by ShGL2

(U) the
varieties of corresponding level, with reflex field Q and whose complex points
are given by

ShGL2
(U)(C) =GL2(Q)/XGL2

×GL2(Af)/U.
The diagonal embedding GL2 → H induces a Shimura datum (H,XH) and
denote by ShH the corresponding Shimura variety. Its reflex field is again
Q. If U ⊆ H(Af) is a fibre product U1 ×det U2 ×det U3 of (sufficiently small)
subgroups of GL2(Af), we have

ShH(U) = ShGL2
(U1) ×Gm

ShGL2
(U2) ×Gm

ShGL2
(U3),

where ×Gm
denotes the fibre product over the zero dimensional Shimura variety

of level D = det(Ui)
π0(ShGL2

)(D) = Ẑ×/D
given by the connected components of ShGL2

. Finally, the embedding ∆ in-
duces another Shimura datum (G,XG), with corresponding Shimura varieties
ShG with reflex field Q. Note that this Shimura datum naturally arises from
a PEL datum of type C (cf. [Mil05, Definition 8.15, Example 8.6]). For suffi-
ciently small U ⊆G(Af), ShG(U) is a smooth quasi-projective scheme over Q
whose complex points are given by

ShG(U)(C) =G(Q)/XG ×G(Af)/U.
3Recall that, for any Shimura datum (G,XG), a compact open subgroup U ⊆ G(Af ) is

said to be sufficiently small if it acts faithfully on ShG(C) ∶= G(Q)/G(Af ) ×XG. For any
such U , G(Q)/G(Af ) ×XG/U is the set of complex points of an algebraic variety ShG(U),
which is defined over a number field E = E(G,XG) called the reflex field of (G,XG).
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We have an embedding ShH ↪ ShG of codimension 3, which for any open
compact subgroup U of G(Af ) gives

ιU ∶ ShH(U ∩H)Ð→ ShG(U).
The following lemma is an adaptation of [LSZ19, Lemma 5.3.1].

Lemma 2.1. Let U be an open compact subgroup of G(Af) such that there exists
a sufficiently small open compact subgroup U ′ of G(Af ) containing U , w1Uw1

and w2Uw2, where w1 = diag(−1,1,1,1,1,−1) and w2 = diag(1,−1,1,1,−1,1).
Then the morphism (of Q-schemes)

ιU ∶ ShH(U ∩H)Ð→ ShG(U)
is a closed immersion.

Proof. We note that it is enough to show it on the complex points of the
Shimura varieties. As it was pointed out before, the map at infinite level
ShH(C) Ð→ ShG(C) is an injection, hence we need to show that if z, z′ ∈
ShH(C) have the same image in ShG(U)(C), then z = z′u for u ∈ U ∩H. This
would follow by showing that for any u ∈ U ∖ (U ∩H), we have ShH(C) ∩
ShH(C)u = ∅ as subsets of ShG(C).
We show the latter as follows. The quotient W = ZH/(H∩ZG) is generated by
the two involutions w1 and w2. An easy calculation shows that the centraliser
CG(Af )({w1,w2}) is H(Af). Note that the action of w1 and w2 on ShG(C)
fixes ShH(C) pointwise. Thus, if z, zu ∈ ShH(C) for u ∈ U , the elements
v1 = u(w1u

−1w1) and v2 = u(w2u
−1w2) fix z. By hypothesis v1, v2 ∈ U ′, which

acts faithfully on ShG(C), thus we conclude that v1 = v2 = 1. This implies that
u centralizes the subgroup generated by w1 and w2 and hence u ∈ U ∩H, which
completes the proof.

Remark 2.2. Let KG(d) denote the kernel of reduction modulo d of G(Ẑ) →
G(Z/dZ), for G ∈ {GL2,G}. If U ⊆KG(d) for some d ≥ 3, then the hypotheses
of the lemma are satisfied with U ′ =KG(d).
We recall that both ShGL2

and ShG admit a description as moduli spaces
of abelian schemes: given sufficiently small open compact subgroups V ⊆
GL2(Af) and U ⊆ G(Af ), ShGL2

(V ) is the moduli of (isomorphism classes
of) elliptic curves with V -level structure, while ShG(U) parametrises (isomor-
phism classes of) principally polarised abelian schemes of relative dimension 3

and U -level structure (see for instance [Lan13, Theorem 1.4.1.11]).
Finally, we recall that, for g ∈G(Af ) and U sufficiently small, we have a map
of schemes over Q

g ∶ ShG(U)→ ShG(g−1Ug)
given by g ⋅[(z, h)] = [(z, hg)]. For g ∈G(Af), we denote by ι

g
U the composition

ShH(gUg−1 ∩H) ιgUg−1
// ShG(gUg−1) g

// ShG(U) .
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Remark 2.3. For U equal to the kernel of reduction modulo d, U -level structures
of an abelian scheme A correspond to bases of the d-torsion points of A. Note
that the right-translation action of g ∈GL2(Ẑ) (or G(Ẑ)) on the variety corre-
sponds, at the level of moduli spaces, to the map g∶ (A,λ,{ei}) → (A,λ,{e′i}),
where (e′i) = g−1 ⋅ (ei), where {ei} forms a basis of the d-torsion points for A.

2.3 Level structures

We introduce next several level structures that we will be using throughout.
The reader is urged to skip this section and come back as the situation demands.

Definition 2.4. Let K(p) ⊂ G(Ẑ(p)) be a compact open subgroup satisfying
the hypotheses of Lemma 2.1. For any n ∈N, let Kn ∶=K(p)Kp

n ⊆G(Ẑ), where

Kp
n ∶= {g ∈G(Zp) ∶ R6(g) ≡ (0, . . . ,0,1) mod pn},

and where R6(g) denotes the sixth row of g.
For any n ∈ N, we let K1(n) = pr1(Kn ∩H), where pr1 ∶ H → GL2 is the
projection to the first GL2-component of H. Observe that its component at p

is given by

K
p
1(n) ∶= {g ∈GL2(Zp) ∣ g ≡ I mod [ 1 1

pn pn ]}.
We will always assume K1(n) is a sufficiently small compact open subgroup of
GL2(Ẑ).
Remark 2.5.

• Note that, at p, the level group Kn ∩H has component

K
p
1(n) ⊠GL2(Zp) ⊠GL2(Zp).

• If K(p) ×G(Zp) = KG(d) for some integer d ≥ 3 coprime to p, then Kn

and K1(n) = (GL2(Ẑ(p)) ×Kp
1(n))∩KGL2

(d) are sufficiently small.

• By Lemma 2.1, ιKn
is a closed immersion and we get

ShGL2
(K1(n)) ShH(Kn ∩H)pr

1oo
ιKn // ShG(Kn),

where pr1 now denotes the morphism of Shimura varieties induced by
the projection to the first GL2-component of H. This diagram will be
fundamental in the definition of the motivic classes underlying our Euler
system construction.

Let η be the co-character of the maximal torus of G defined by

x↦
⎛⎜⎜⎝

x
3

x2

x2

x
x

1

⎞⎟⎟⎠
and let ηp ∶= η(p) ∈G(Qp) ⊆G(Af ).
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Definition 2.6. Recall that we denote by KG(pm) ⊆ G(Ẑ) the kernel of the
reduction modulo pm. For m ∈N, define subgroups of G(Af)

• K ′
n,m(p) ∶=Kn ∩ η

m+1
p Knη

−(m+1)
p ∩KG(pm);

• K ′n,m+1 ∶=K ′n,m(p) ∩KG(pm+1).
Remark 2.7.

• The group K ′
n,0(p) is the largest subgroup of Kn such that right multi-

plication by ηp induces a morphism

ηp ∶ ShG(K ′n,0(p))Ð→ ShG(Kn).
• The definition of these last level groups will be justified by Lemma 3.4.

• In other words, for n >m, these subgroups are defined as follows.

K ′n,m ∶= {g ∈K0 ∣ g ≡ I mod

⎡⎢⎢⎢⎢⎢⎢⎢⎣

pn pm pm p2m p2m p3m

pn pm pm pm pm p2m

pn pm pm pm pm p2m

p
n

p
m

p
m

p
m

p
m

p
m

pn pm pm pm pm pm

pn pn pn pn pn pn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
}.

K ′n,m(p) ∶= {g ∈K0 ∣ g ≡ I mod

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

pn pm+1 pm+1 p2(m+1) p2(m+1) p3(m+1)

pn pm pm pm+1 pm+1 p2(m+1)

pn pm pm pm+1 pm+1 p2(m+1)

p
n

p
m

p
m

p
m

p
m

p
m+1

pn pm pm pm pm pm+1

pn pn pn pn pn pn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
}.

• Observe that we have a tower of inclusions

Kn =K ′n,0 ⊇K ′n,0(p) ⊇K ′n,1 ⊇K ′n,1(p) ⊇K ′n,2 ⊇ . . .

2.4 Representations of algebraic groups

We study now the branching laws for the restriction of an irreducible algebraic
representation of G to some of its subgroups.

2.4.1 Highest weight representations

Recall that every irreducible algebraic representation of GL2 is of the form
Symd

⊗det
k for some d ∈ N, k ∈ Z, where Symd denotes the d-th symmetric

power of the standard GL2-representation. We will next review the highest
weight theory for the groups GSp4 and GSp6.
Let T be the diagonal torus of G (which coincides with the diagonal torus of
H) and denote by χi ∈X●(T ), 1 ≤ i ≤ 6, the characters of T given by projection
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onto the i-th coordinate. We then have χiχ7−i = ν, i = 1,2,3, where ν denotes
the symplectic multiplier. We see GSp4 inside G, through the embedding

g = (A B
C D ) ∈GSp4 ↦ (A B

ν(g)I
C D

) ∈G,

and χi, i ∈ {1,2,5,6}, denote as well the characters of its diagonal torus.
For a, b non-negative integers, let µ = (µ1 ≥ µ2), µ2 = b, µ1 = a + b and denote
by V µ the unique (up to isomorphism) irreducible algebraic representation
of GSp4 with highest weight χ

µ1

1 χ
µ2

2 with central character x ↦ x∣µ∣, where∣µ∣ = µ1+µ2, which has dimension 1
6
(a+1)(b+1)(a+b+2)(a+2b+3). Similarly,

given a, b, c positive integers, let λ = (λ1 ≥ λ2 ≥ λ3), λ3 = c, λ2 = b+c, λ1 = a+b+c
and denote by V λ the unique algebraic irreducible representation of G with
highest weight χλ1

1 χλ2

2 χλ3

3 and central character x↦ x∣λ∣, where ∣λ∣ = λ1+λ2+λ3,
which is of dimension 1

720
(a + 1)(a + 2(b + c) + 5)(a + b + 2)(a + b + 2c + 4)(b +

1)(b + 2c + 3)(a + b + c + 3)(b + c + 2)(c + 1) (cf. [FH13, Equation (24.19)]).

2.4.2 Branching laws

For λ = (λ1 ≥ λ2 ≥ λ3) and µ = (µ1 ≥ µ2) as above, we say that µ doubly
interlaces λ if λ1 ≥ µ1 ≥ λ3 and λ2 ≥ µ2 ≥ 0. We recall the following branching
law result

Proposition 2.8. Let λ = (λ1 ≥ λ2 ≥ λ3 ≥ 0) and V λ be as above. Then

• We have a decomposition of Sp4 ⊠SL2-representations

V λ =⊕
µ

V µ
⊠ (Symr1

⊗Symr2
⊗Symr3),

where the sum is over all µ = (µ1 ≥ µ2 ≥ 0) doubly interlacing λ and
where ri = xi − yi for {x1 ≥ y1 ≥ x2 ≥ y2 ≥ x3 ≥ y3} being the decreasing
rearrangement of {λ1, λ2, λ3, µ1, µ2,0}.

• We have a decomposition of SL2 ⊠ SL2-representations

V µ = µ1−µ2

⊕
x=0

µ2

⊕
y=0

Symµ1−x−y
⊠Symµ2−y+x .

Proof. The first statement is just [WY09, Theorem 3.3]. We sketch a proof
of the second point, which is stated in [LSZ19, Proposition 4.3.1]. For the
parametrization of the special case of GSp4, applying [WY09, Theorem 3.3]
we obtain

V µ = ⊕µ1

s=0(Symr1
⊗Symr2) ⊠ Syms

= ⊕µ1

s=0(Symr1+r2
⊕Symr1+r2−2

⊕⋯⊕ Sym∣r1−r2 ∣) ⊠ Syms .
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Observe that every factor appears with multiplicity one. Dividing the sum for
0 ≤ s ≤ µ2 and µ2 < s ≤ µ1 we see that r1 = µ1 − µ2, r2 = s and r1 = µ1 −

s, r2 = µ2 respectively. Drawing the points (x, y) such that the representation
Symx

⊠Symy appears in the above sum we see that we get every integer pair(x, y) ∈ Z2 with x+y ≡ µ1+µ2 (mod 2) inside the rectangle with vertices (0, µ1−

µ2), (µ1 − µ2,0), (µ2, µ1) and (µ1, µ2). Choosing the right parametrisation of
these points (i.e. taking (µ2, µ1) as the origin) we get the desired expression.

For a fixed k and λ, we are interested in studying how many H-representations
of the form Sym(k,0,0) ∶= Symk

⊠Sym0
⊠Sym0 appear in the decomposition of

the restriction of V λ to H. It will be useful to consider the obvious factorisation
of our embedding H ⊆ G through H′ ∶= GSp4 ⊠ GL2; this is because any
irreducible H′-factor of an irreducible G-representation will have multiplicity
one.

Lemma 2.9. The sum of all irreducible sub-H′-representations of V λ isomor-
phic (up to a twist) to V µ

⊠ Sym0 for some µ is given by

⊕
µ∈A(λ)

(V µ
⊠ Sym0)⊗ ν

∣λ∣−∣µ∣
2 ,

where A(λ) ⊆ Z2 denotes the region of points (µ1, µ2) ∈ Z2 satisfying ∣µ∣ ≡∣λ∣ (mod 2) and lying in the rectangle defined by the inequalities

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

µ1 − µ2 ≤ λ1 − λ2 + λ3,

µ1 − µ2 ≥ ∣λ1 − λ2 − λ3∣,
µ1 + µ2 ≥ λ1 − λ2 + λ3,

µ1 + µ2 ≤ λ1 + λ2 − λ3.

Proof. Applying Proposition 2.8, we obtain a decomposition as Sp4 ⊠ SL2-
representations

V λ = ⊕
µ

V µ
⊠ (Symr1

⊗Symr2
⊗Symr3)

= ⊕
µ

min(r1,r2)

⊕
i=0

V µ
⊠ (Symr1+r2−2i

⊗Symr3)

= ⊕
µ

min(r1,r2)

⊕
i=0

min(r3,r1+r2−2i)

⊕
j=0

V µ
⊠ (Symr1+r2+r3−2i−2j),

where the sum is over all µ = (µ1 ≥ µ2 ≥ 0) doubly interlacing λ and where
ri = xi − yi for {x1 ≥ y1 ≥ x2 ≥ y2 ≥ x3 ≥ y3} being the decreasing rearrangement
of {λ1, λ2, λ3, µ1, µ2,0}.
We deduce that if V µ

⊠ Sym0 appears as a sub-Sp4 ⊠SL2-representation then

r1 + r2 − 2i − j = 0, r3 − j = 0,
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which implies j = r3 and 2i = r1 + r2 − r3 and hence, since 0 ≤ i ≤min(r1, r2),
r1 + r2 ≥ r3 ≥ r1 + r2 − 2min(r1, r2) = ∣r1 − r2∣ (1)

and r1+r2+r3 ≡ 0 (mod 2), which is equivalent to saying that ∣µ∣ ≡ ∣λ∣ (mod 2).
The result follows by unfolding the two inequalities of (1).

Lemma 2.10. The sum of all irreducible sub-H-representations of V λ isomor-
phic (up to a twist) to Sym(k,0,0) for some k ≥ 0 is given by

λ1−λ2+λ3

⊕
k=∣λ1−λ2−λ3 ∣
k≡∣λ∣ (mod 2)

r ⋅ Sym(k,0,0)⊗det
∣λ∣−k

2 ,

for r = λ2 − λ3 + 1.

Proof. This follows immediately from Lemma 2.9. Indeed observe that, by
Proposition 2.8, for any µ, the unique sub-SL2 ⊠ SL2-representation of V µ of
the form Sym(k,0) is Sym(µ1−µ2,0). The result then follows by analysing the
possible values of µ1 − µ2 in the region A(λ) of the above lemma. The value
r is the number of (µ1, µ2) ∈ A(λ) such that µ1 − µ2 = k, i.e. the length of
one of the sides of the rectangle, forming the boundary of A(λ). The twist is
there so that the central characters of Sym(k,0,0) and V λ and the inclusion is
H-equivariant.

Remark 2.11. The values of k and r can be easily deduced by drawing the region
A(λ). For instance, from Figure 1 for λ = (9,6,2), we have that Sym(k,0,0)

appears in the decomposition of the restriction of V λ to H only if k ∈ {1,3,5}
with multiplicity r = 5.

2.4.3 Integral structures

Denote by h,g the Lie algebras of H and G respectively, and write U(h), U(g)
for their universal enveloping algebras. For a ∈ {h,g}, denote by UZ(a) the
Kostant Z-form in U(a) ([Ste16, Chapter 2]), which is some subring of U(a)
generated over Z by an explicit family of ordered monomials given in terms of
the choice of a Chevalley basis of a (which also forms a PBW -basis of U(a)),
so that U(a) is obtained from UZ(a) by base-change.
For an a-module V , an admissible lattice VZ in V is a Z-lattice which is stable
under the action of UZ(a). By [Ste16, Corollary 1], we know that admissible
lattices exist for any representation of a semi-simple Lie group, and that such a
lattice is the direct sum of its weight components. For a weight λ, fix a highest
weight vector vλ of weight λ and consider V λ

Z the maximal admissible lattice
inside V λ whose intersection with the highest weight space is Z ⋅ vλ. Observe
that V λ

Z is also an admissible lattice considered as an H-representation (since
UZ(h) ⊆ UZ(g), which can be seen using [Ste16, Theorem 2] and the fact that
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µ2

µ1

λ3

λ1

λ2

λ1 − λ2 + λ3

λ1 − λ2 − λ3

λ2λ3

λ1 − λ2

Figure 1: The region A(λ) for λ = (9,6,2).
a set of simple roots for h can be extended to a set of simple roots of g and
that their Cartan subalgebras coincide).
Let ⟨e1, e2, e3, f3, f2, f1⟩ be a symplectic basis for the standard G-representation
V (1≥0≥0). Denote Sym

(k,0,0)
Z ⊆ (Sym(k,0,0) ∩V λ

Z ) the minimal admissible

lattice of Sym(k,0,0) such that the intersection Sym(k,0,0) with its highest
weight space is Z ⋅ ek1 (it is isomorphic to the algebra of symmetric tensors
TSymk

Z ⊠TSym
0
Z ⊠TSym

0
Z).

By [Ste16, Corollary 1] (cf. also [Kos66, Corollary 1 to Theorem 1]), the restric-
tion to H of the lattice V λ

Z decomposes as the direct sum of its highest weight
components. In particular, for every µ = (µ1, µ2) ∈ A(λ) and k = µ1 − µ2, we

have that (Sym(k,0,0)⊗det ∣λ∣−k2 ) ∩ V λ
Z ⊆ V λ

Z is non empty. By fixing any high-
est weight vector v[λ,µ] in this sub-lattice, we can define a homomorphism of
H-representations

br
[λ,µ]
Z

∶ Sym
(k,0,0)
Z

⊗det
∣λ∣−k

2 → V λ
Z ,

by sending ek1 to v[λ,µ].

2.5 Gysin morphisms

In the next section, we will define étale and motivic classes in the cohomology
of the G-Shimura variety with coefficients by taking the image under Gysin
morphisms of certain classes in the cohomology of the H-Shimura variety. To
define these maps, we will translate the branching laws for algebraic representa-
tions of H and G described above into a statement for the corresponding étale
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sheaves and relative Chow motives on the Shimura varieties. Let us briefly re-
call the main properties of the functor defined in [Anc15]. For a reductive group
G over Q, denote by RepQ(G) the category of representations of G over Q.
Moreover, for a smooth quasi-projective scheme S over a field of characteris-
tic zero, let CHMQ(S) denote the Q-linear tensor pseudo-abelian category of
relative Chow motives over S. Recall that there is a functor M from the cate-
gory of smooth projective schemes over S to CHMQ(S); let 1S ∶=M(S), and
denote by LS the Lefschetz motive appearing in the decomposition of M(P1

S)
as 1S ⊕LS . For any positive integer m and V ∈ Ob(CHMQ(S)), we denote by
V (−m) and V (m) the tensor products of V with L

⊗m
S and (L∨S)⊗m. In order

to define Ancona’s functor, recall the following.

Proposition 2.12 ([DM91]). Let π ∶ A → S be an abelian scheme of relative
dimension g; there exists a decomposition in CHMQ(S)

M(A) = 2g

⊕
i=0

hi(A),
where [n]∗ acts on hi(A) as multiplication by ni and the ℓ-adic realisation of
hi(A) is Riπ∗Qℓ.

Now, consider a Shimura datum (G,X) of PEL-type. For any sufficiently small
level subgroup U ⊆ G(Af) there is a Shimura variety ShG(U), which admits a
model over the reflex field of (G,X), and a universal abelian scheme A /ShG(U)
with PEL structure.

Proposition 2.13 ([Anc15]). There is a tensor functor

µG
U ∶ RepQ(G)Ð→ CHMQ(ShG(U)),

which respects duals and satisfies the following:

1. If V is the standard representation of G, then µG
U(V ) = h1(A );

2. If ν ∶ G→Gm is the multiplier, then µG
U(ν) = LShG(U);

3. for any prime p, the p-adic étale realisation of µG
U(V ) is the étale sheaf

associated to V ⊗Qp (cf. [Pin92]), with U acting on the left via U ↪
G(Af) → G(Qp).

Remark 2.14. We have adopted conventions used in [LSZ19]. This is coher-
ent with the fact that, in the case of GL2, by Remark 2.3, the p-adic Tate
module TpE of the universal elliptic curve E corresponds to the dual of the
standard representation of GL2(Zp). Thus, TpE gives a lattice in the p-adic
étale realisation of h1(E )∨.
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As explained in [LSZ19, §6.2], there is a canonical G(Af )-equivariant structure
on µG

U(V ) for every V in RepQ(G), which is compatible with the G(Af)-
equivariant structure on the corresponding p-adic étale realisations. Thus, we
have a functor

µG
∶ RepQ(G) Ð→ CHMQ(ShG)G(Af),

where ShG = lim←ÐU
ShG(U). We have the following compatibility.

Proposition 2.15 ([Tor19, Theorem 9.7(i)]). There is a commutative diagram
of functors

RepQ(G) µG

//

●∣H

��

CHMQ(ShG)G(Af)

∆∗

��

RepQ(H) µ
H

// CHMQ(ShH)H(Af),

where ∆∗ denotes pull-back.

Let U ⊆ G(Af) be a sufficiently small open compact subgroup; as in [Lem17,
§4.1], one has motivic cohomology groups H●mot(ShG(U),VQ(m)), for any VQ ∈
Ob(CHMQ(ShG(U)) and any integer m. Suppose U ⊆G(Af) is chosen so that
ιU is a closed immersion (e.g. Lemma 2.1); then, by [CD19, Theorem 7 and
(2.4.39.2)], we have Gysin morphisms

ιU,∗ ∶H
i
mot(ShH(U ∩H),∆∗VQ(m))Ð→Hi+6

mot(ShG(U),VQ(3 +m)).
We want to compose these maps ιU,∗ with the maps in cohomology coming
from the branching laws in RepQ(H) described above.

Definition 2.16.

• Let W
λ
Q be the relative Chow motive µG(Wλ) over ShG, where Wλ is

the algebraic representation of G given by V λ
⊗ ν−∣λ∣.

• Let H
(k,0,0)
Q be the relative Chow motive µH(Sym(k,0,0)⊗det−k) over

ShH.

We will now define our key map in cohomology. Note that by §2.10, we have

Sym(k,0,0)⊗det
∣λ∣−k
2 ↪ V λ.

After twisting it, this gives a map

Sym(k,0,0)⊗det−k ↪ V λ
⊗ ν

−∣λ∣+
∣λ∣−k
2 =Wλ

⊗ ν
∣λ∣−k
2 .

By Proposition 2.15 and Proposition 2.13(2), we get a morphism

br[λ,µ] ∶H
(k,0,0)
Q

Ð→∆∗W λ
Q(− ∣λ∣−k2

).
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Definition 2.17. Let µ = (µ1 ≥ µ2) ∈ A(λ) and let k = µ1 − µ2; we define

ι
[λ,µ]
U,∗ ∶H

●
mot(ShH(U ∩H),H (k,0,0)

Q
(⋆))Ð→H●+6mot(ShG(U),W λ

Q(⋆ + 3 + k−∣λ∣
2
))

to be the composition of the map (corresponding in cohomology to) br[λ,µ]

with ιU,∗.

Remark 2.18.

• Thanks to Proposition 2.13(3), we have étale regulator maps

rét ∶H
j
mot(ShG(U),W λ

Q(⋆)) Ð→H
j
ét
(ShG(U),W λ

Qp
(⋆)),

where W
λ
Qp

is the the p-adic étale sheaf associated to Wλ
Qp

and H⋆ét de-
notes continuous étale cohomology in the sense of [Jan88]. As the étale
realisation functor commutes with the six operation of Grothendieck, we
have a compatibility via rét between motivic and étale Gysin morphisms.

• From §2.4.3, we have "integral" Gysin morphisms in étale cohomology.
Let H(k,0,0)Zp

(resp. Wλ
Zp

) denote the Zp-sheaf associated to the lattice

Sym
(k,0,0)
Z

⊗det−k (resp. V λ
Z ⊗ ν−∣λ∣), then we denote by ι

[λ,µ]
U,∗ the map

H●ét(ShH(U ∩H),H(k,0,0)Zp
(⋆))Ð→H●+6ét (ShG(U),Wλ

Zp
(⋆ + 3 + k−∣λ∣

2
)).

3 Definition of the classes

This is the main section of our text. We give the definition of the zeta classes
and we study their norm compatibility as we vary the level of the Shimura
variety.

3.1 Siegel units

Recall that when U is a sufficiently small open compact subgroup of GL2(Af),
the modular curve ShGL2

(U) is a fine moduli space with universal elliptic
curve E → ShGL2

(U). In particular ShGL2
(K1(n)) is the moduli of iso-

morphism classes of (E,Pn, α), where Pn is an pn-torsion point of the el-
liptic curve E and α is a level pr1(K(p) ∩ H)-structure on E. Denote by(E , en, α)/ShGL2

(K1(n)) the universal object of ShGL2
(K1(n)). For an aux-

iliary positive integer c coprime to 6, let cθE ∈ O(E ∖ E [c])∗ be the norm
compatible unit of [Kat04, Proposition 1.3(1)]. Finally, fix an auxiliary non-
zero torsion section x ∈ E (ShGL2

(K1(0))) of order an integer N > 1 coprime
to p.

Definition 3.1. For n ≥ 0, define cgn ∶= (x + en)∗(cθE ) ∈ O(ShGL2
(K1(n)))∗.
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3.2 Higher weight Eisenstein classes

Let Hk
Q denote the relative Chow motive over ShGL2

(K1(n)) associated to the

GL2-representation Symk
⊗det

−k, for k ≥ 0. For k ≥ 1, Beilinson constructed
motivic Eisenstein classes

Eiskn ∈H1
mot(ShGL2

(K1(n)),Hk
Q(1)).

We refer to [LSZ19, Theorem 7.2.2] for the choice of normalisation of these
classes.

Remark 3.2. For k = 0, H1
mot(ShGL2

(K1(n)),Q(1)) = O(ShGL2
(K1(n)))∗⊗Q

and Eis0n is cgn ⊗
1

c2−1
, for c ≠ 1 an integer coprime to 6 and congruent to 1

modulo pn.

We denote by Eiskét,n the image of the (motivic) Eisenstein class under the
étale regulator. Kings has constructed an underlying integral étale Eisenstein
class. Let Hk

Zp
be the Zp-sheaf associated to the minimal admissible lattice

Symk
Z⊗det

−k of Symk
⊗det

−k.

Proposition 3.3 ([Kin15]). There exists, for any c be coprime with 6p and
k ≥ 0, an element cEis

k
ét,n ∈H1

ét(ShGL2
(K1(n)),Hk

Zp
(1) such that

cEis
k
ét,n = (c2 − c−k ( c 0

0 c )−1)Eiskét,n
as elements of H1

ét(ShGL2
(K1(n)),Hk

Qp
(1)). For k = 0, cEis

0
ét,n = ∂(cgn),

where ∂ denotes the Kummer map.

3.3 The classes at level K ′n,m

We first construct classes in the cohomology of the Shimura variety of level
K ′n,m.
Lemma 3.4 below is the key ingredient for proving the vertical norm relations
of our classes (Theorem 3.21) and, indeed, it constitutes the main motivation
for working with the level K ′n,m.

Lemma 3.4. Let n,m ≥ 1 be such that n ≥ 3m + 3. There exists an element
u ∈G(Af) such that the commutative diagram

ShG(K ′n,m+1)
pr

��

ShH(uK ′n,m+1u−1 ∩H)

ιu
K′

n,m+1

33❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣ pr○ιu
K′

n,m+1
//

πp

��

ShG(K ′n,m(p))
π′p

��

ShH(uK ′n,mu−1 ∩H) ιu
K′n,m

// ShG(K ′n,m)

(2)

has Cartesian bottom square, where πp, π
′
p and pr denote the natural projec-

tions.
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Proof. The proof of Lemma 3.4 is a direct and not very pleasant calculation
and it is given in Appendix A.

Remark 3.5. The choice of u does not depend on either m or m and it is not
unique. We can take u ∈G(Ẑ), whose component at p equals to ( I T

0 I ) , with

T = ( 1 1 0
1 0 1
0 1 1
) ,

and having trivial components elsewhere.

We now define the push-forward classes in the cohomology of the G-Shimura va-
riety of level K ′n,m. Notice that we have a projection pr1,n,m ∶ ShH(uK ′n,mu−1∩

H) Ð→ ShGL2
(K1(n)). Moreover, for any g ∈ G(Af) denote by ι

[λ,µ]
K′

n,m,g,∗ the

composition g∗ ○ ι
[λ,µ]
gK′

n,mg−1,∗.

Definition 3.6. Let V λ be the irreducible representation of G of highest
weight λ = (λ1 ≥ λ2 ≥ λ3), µ = (k + j ≥ j) ∈ A(λ) and let n,m ∈N.

• Let Z̃
[λ,µ]
n,m be the class given by

ι
[λ,µ]
K′

n,m,u,∗ ○ pr
∗
1,n,m(Eiskn) ∈H7

mot(ShG(K ′n,m),W λ
Q(4 + k−∣λ∣

2
)).

• Let z̃
[λ,µ]
n,m be the class

rét(Z̃ [λ,µ]
n,m ) ∈H7

ét(ShG(K ′n,m),Wλ
Qp
(4 + k−∣λ∣

2
)).

The motivic classes defined above are not a priori integral, which is due to a
lack of theory of integral motivic Eisenstein classes. Building on Proposition
3.3, we give an integral construction of the p-adic étale classes as follows. This
is better suited for studying norm relations in the p-cyclotomic tower and p-adic
interpolation properties.

Definition 3.7. Let cz̃
[λ,µ]
n,m be the class given by

ι
[λ,µ]
K′

n,m,u,∗ ○ pr
∗
1,n,m( cEiskét,n) ∈H7

ét(ShG(K ′n,m),Wλ
Zp
(4 + k−∣λ∣

2
)).

3.4 The level groups Kn,m

Let n ∈N and denote by Kn,0 ⊆G(Ẑ) the subgroup of Kn defined by

Kn,0 ∶=Kn ∩ {g ∈G(Zp) ∣ g ≡ I mod

⎡⎢⎢⎢⎢⎢⎢⎣

1 p p p p p
p 1 p p p p
p p 1 p p p
1 1 1 p p p
1 1 1 p p p
1 1 1 p p p

⎤⎥⎥⎥⎥⎥⎥⎦
}.

Remark 3.8. The definition of Kn is motivated by the proof of Theorem 3.21.
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For m,n ∈N, we aim to define classes in the cohomology of

ShG(Kn,0) ×Spec(Q) Spec(Q(ζpm)).
Definition 3.9. Let n,m ∈N. Define subgroups Kn,m ⊆Kn,0 by

Kn,m ∶=Kn,0 ∩ ν
−1(1 + pmẐ) = {g ∈Kn,0 ∶ ν(g) ≡ 1 (mod pmẐ)}.

Remark 3.10. Let
Art ∶Q×

>0/A×f → Gal(Qab/Q)
be the Artin reciprocity map, normalised so that if a ∈ Ẑ× ⊂ A×f , Art(a) acts
on roots of unity by ζ ↦ ζa. As explained in [LSZ19, 5.4], if U ⊆G(Af) is an
open compact subgroup such that

ν(U) ⋅ (1 + pmẐ) = Ẑ×,
then there is an isomorphism of Q-schemes

ShG(U ∩ ν−1(1 + pmẐ)) ≃ ShG(U) ×Spec(Q) Spec(Q(ζpm)),
which intertwines the action of g ∈ G(Af) on the left-hand side with the one
of (g, σg) on the right-hand side, where σg = Art(ν(g)−1)∣Q(ζpm). In particular,
we have

ShG(Kn,m) ≃ ShG(Kn,0) ×Spec(Q) Spec(Q(ζpm)).
3.5 The classes at level Kn,m

For two given integers n,m ≥ 1, take n′ = n+3(m+1) and define the projection

tm ∶ ShG(K ′n′,m) → ShG(Kn,m),
induced by right multiplication by the element

ηmp = diag(p3m, p2m, p2m, pm, pm,1) ∈G(Qp)
defined in §2.3.

Remark 3.11. The map tm is well-defined. Indeed, we need to check that
η−mp K ′n′,mηmp ⊆ Kn,m. Recall that K ′n′,m = Kn′ ∩ η

m
p Kn′η

−m
p ∩ KG(pm) and

Kn,m = Kn,0 ∩ ν
−1(1 + pmẐ), so we have η−mp K ′n′,mηmp = η−mp Kn′η

m
p ∩ Kn′ ∩

η−mp KG(pm)ηmp . This is obviously contained in Kn and in ν−1(1 + pmẐ). Fi-
nally, if g ∈ Kn′ ∩ η

−m
p KG(pm)ηmp , it satisfies the extra conditions modulo p

imposed in the definition of Kn,0.

Before defining the classes we note that the push-forward by tm,∗ makes sense
with our p-adic integral coefficients.
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Lemma 3.12. There is a well defined action of η−1p /pλ2+λ3 on Wλ
Zp

defining a
morphism of sheaves

tλm,♭ ∶Wλ
Zp
→ t∗m(Wλ

Zp
).

In particular, we have a map

tλm,∗ ∶H
7
ét(ShG(K ′n′,m),Wλ

Zp
(4 + k−∣λ∣

2
))→H7

ét(ShG(Kn,m),Wλ
Zp
(4 + k−∣λ∣

2
)),

defined by composing the map in cohomology induced by tλm,♭ with the trace of
tm in étale cohomology.

Proof. We need to show that the matrix η−1p = diag(p−3, p−2, p−2, p−1, p−1,1)
acts on Wλ

Zp
and that its image is contained in pλ2+λ3Wλ

Zp
. Let S be the one

dimensional split torus diag(x3, x2, x2, x, x,1) of G. Then V λ decomposes as
the direct sum of its weight spaces relative to S, with weights between 0 and
3λ1 + 2λ2 + 2λ3. We deduce that S acts on the highest weight subspace of
Wλ = V λ

⊗ ν−∣λ∣ through the character diag(x3, x2, x2, x, x,1) ↦ x−(λ2+λ3) and,
in particular, the action of η−1p on every S-weight space (and hence on all Wλ)
will be divisible by pλ2+λ3 , thus showing the claim.

Remark 3.13. Observe that the normalisation by p−(λ2+λ3) is such that the
action of p−(λ2+λ3)η−1p on the S-highest weight subspace of Wλ is trivial and
divisible by p elsewhere. This optimal normalisation of the map tλm,∗ will be
very helpful (in a rather subtle way) when defining our cohomology classes at
integral level and proving their norm relations (cf. Theorem 3.21).

We are now ready to define the following.

Definition 3.14.

• Let Z
[λ,µ]
n,m ∶= tλm,∗(Z̃ [λ,µ]

n′,m ) ∈ H7
mot(ShG(Kn,m),W λ

Q(4 + k−∣λ∣
2
)).

• Let cz
[λ,µ]
n,m be the class

tλm,∗(cz̃[λ,µ]n′,m ) ∈H7
ét(ShG(Kn,m),Wλ

Zp
(4 + k−∣λ∣

2
)).

3.6 Norm relations at p: varying the level

We now show that the various classes that we constructed are compatible when
we vary the variable n. Denote by

π1,n ∶ ShGL2
(K1(n + 1))→ ShGL2

(K1(n))
the natural projection map. We recall the following standard result.

Lemma 3.15. We have

(π1,n)∗( cEiskét,n+1) =
⎧⎪⎪⎨⎪⎪⎩

cEis
k
ét,n if n ≥ 1,

(1 − pkd∗p) cEiskét,n if n = 0,
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where dp ∈ GL2(Ẑ) denotes any element congruent to ( 1 p ) modulo N , for
N ≥ 1 coprime to p being the order of the auxiliary torsion section x of Defini-
tion 3.1.

Proof. This is well-known (e.g. [Cau20, Proposition 3.26]) and it basically
follows from the compatibility relations that Siegel units satisfy and from noting
that the action of the push-forward of the multiplication by p map on the
coefficient sheaf Hk

Zp
is given by multiplication by pk.

Let
prn ∶ ShG(K ′n+1,m)→ ShG(K ′n,m)

denote the natural projection map.

Proposition 3.16. We have

prn,∗(cz̃[λ,µ]n+1,m) =
⎧⎪⎪⎨⎪⎪⎩
cz̃
[λ,µ]
n,m if n ≥ 1,
(1 − pkD∗p)cz̃[λ,µ]n,m if n = 0,

where Dp ∈H(Ẑ) ⊆G(Ẑ) is any matrix whose first GL2-component is congru-
ent to ( 1 0

0 p ) modulo N , for any N as in Lemma 3.15.

Proof. From commutativity of the diagram

ShH(uK ′n+1,mu−1 ∩H) ιu
K′

n+1,m
//

p̃rn

��

ShG(K ′n+1,m)
prn

��

ShH(uK ′n,mu−1 ∩H) ιu
K′n,m

// ShG(K ′n,m),
where p̃rn ∶ ShH(uK ′n+1,mu−1 ∩H) → ShH(uK ′n,mu−1 ∩H) is the natural pro-
jection map, we obtain

prn,∗(cz̃[λ,µ]n+1,m) ∶= prn,∗ ○ ι
[λ,µ]
K′

n+1,m,u,∗(czkH,n+1,m)
= ι

[λ,µ]
K′

n,m,u,∗ ○ p̃rn,∗(czkH,n+1,m),
where we have denoted by cz

k
H,n,m the class pr∗1,n,m( cEiskét,n). Thus, we are

reduced to studying compatibility relations of cz
k
H,n+1,m with respect to p̃rn,∗,

which follows from Lemma 3.15. Indeed, the Cartesian diagram

ShH(uK ′n+1,mu−1 ∩H)
p̃rn

��

pr
1,n+1,m

// ShGL2
(K1(n + 1))

π1,n

��

ShH(uK ′n,mu−1 ∩H) pr
1,n,m

// ShGL2
(K1(n))
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gives

p̃rn,∗(czkH,n+1,m) = p̃rn,∗ ○ pr
∗
1,n+1,m( cEiskét,n+1)

= pr∗1,n,m ○(π1,n)∗( cEiskét,n+1).
Thus, the result now follows from Lemma 3.15 and by observing that, for any
Dp ∈ H(Ẑ) as in the statement of the proposition, one has a commutative
diagram

ShH(uK ′n,mu−1 ∩H)
Dp

��

pr
1,n,m

// ShGL2
(K1(n))

dp

��

ShH(uK ′n,mu−1 ∩H) pr
1,n,m

// ShGL2
(K1(n)),

which can be easily checked using the moduli space description of the varieties.

This immediately translates into the identical norm relations for the level Kn,m

classes.

Corollary 3.17. Let prn ∶ ShG(Kn+1,m) → ShG(Kn,m) be the natural projec-
tion map. We have

prn,∗(cz[λ,µ]n+1,m) =
⎧⎪⎪⎨⎪⎪⎩
cz
[λ,µ]
n,m if n ≥ 1,
(1 − pkD∗p)cz[λ,µ]n,m if n = 0,

where Dp ∈H(Ẑ) ⊆G(Ẑ) is any matrix whose first GL2-component is congru-
ent to ( 1 0

0 p ) modulo N , for any N as in Lemma 3.15.

3.7 Norm relations at p: cyclotomic variation

In the section we prove our main result stating that our cohomology classes
satisfy the Euler system relations at powers of p.

3.7.1 Hecke operators

We now define the (normalised) Hecke operator which is going to show up in
the norm compatibility relations of our cohomology classes.

Definition 3.18. We define the Hecke operator U ′p acting on

H7
ét(ShG(K ′n,m),Wλ

Zp
(4 + k−∣λ∣

2
)) to be the action of p−(λ2+λ3) ⋅K ′n,mη−1p K ′n,m,

where K ′n,mη−1p K ′n,m is seen as an element of the Hecke algebra
H(K ′n,m/G(Af)/K ′n,m)Zp

of K ′n,m-bi-invariant smooth compactly supported
Zp-valued functions on G(Af).
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In other words, the action of K ′n,mη−1p K ′n,m on cohomology is the one induced
from the following correspondence on ShG:

ShG(K ′n,m(p))
π′p

��

ηp

''P
P
P
P
P
P
P
P
P
P
P

ShG(K ′n,m) // ShG(K ′n,m),
where the vertical arrow is the natural projection π′p and the diagonal one is
induced by right multiplication by ηp, and hence U ′p is given by the composition

H7
ét(ShG(K ′n,m),Wλ

Zp
(q)) (π′p)

∗

ÐÐÐ→ H7
ét(ShG(K ′n,m(p)),Wλ

Zp
(q))

η
λ
p,∗ÐÐ→ H7

ét(ShG(K ′n,m),Wλ
Zp
(q)),

where q = 4 + k−∣λ∣
2

and ηλp,∗ is defined exactly as the map tλm,∗ of Lemma 3.12.

Remark 3.19. The notation chosen for the Hecke operator is motivated by the
fact that U ′p is dual to the Hecke operator Up associated to ηp.

3.7.2 Norm relation for the classes cz̃
[λ,µ]
n,m

Recall that the diagonal matrix ηp ∶= (p3, p2, p2, p, p,1) ∈G(Qp) induces a mor-
phism of Shimura varieties ηp ∶ ShG(K ′n,m(p)) → ShG(K ′n,m) and, by Lemma
3.12, a map

ηλp,∗ ∶H
7
ét(ShG(K ′n,m(p)),Wλ

Zp
(4 + k−∣λ∣

2
))→H7

ét(ShG(K ′n,m),Wλ
Zp
(4 + k−∣λ∣

2
)).

Let m ≥ 1, n ≥ 3(m + 1), and denote by η̃p the composition of the natu-
ral projection map pr ∶ ShG(K ′n,m+1) → ShG(K ′n,m(p)) with the map ηp ∶

ShG(K ′n,m(p)) → ShG(K ′n,m). By the same arguments as in Lemma 3.12, we
can once more define a normalised trace

η̃λp,∗ ∶H
7
ét(ShG(K ′n,m+1),Wλ

Zp
(4 + k−∣λ∣

2
))→H7

ét(ShG(K ′n,m),Wλ
Zp
(4 + k−∣λ∣

2
)),

as the composition the trace of pr with ηλp,∗.
We have the following push-forward compatibility relation.

Theorem 3.20. For m ≥ 1, n ≥ 3(m + 1), we have

η̃λp,∗(cz̃[λ,µ]n,m+1) = U ′p ⋅ cz̃[λ,µ]n,m ,

where U ′p is the Hecke operator defined in Definition 3.18.
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Proof. Denote by cz
k
H,n,m the class pr∗1,n,m( cEiskét,n). The result follows from

Lemma 3.4. Indeed, by the definition of the class cz̃
[λ,µ]
n,m+1 we have

pr∗(cz̃[λ,µ]n,m+1) = pr∗ ○ ι[λ,µ]K′
n,m+1,u,∗

(czkH,n,m+1)
= pr∗ ○ ι[λ,µ]K′

n,m+1,u,∗
○ π∗p(czkH,n,m),

where πp is as in Lemma 3.4. By the Cartesianness of the square of the diagram
of Lemma 3.4, we have that

pr∗ ○ ι
[λ,µ]
K′

n,m+1,u,∗
○ π∗p = (π′p)∗ ○ ι[λ,µ]K′

n,m,u,∗,

so we deduce

pr∗(cz̃[λ,µ]n,m+1) = (π′p)∗ ○ ι[λ,µ]K′
n,m,u,∗(czkH,n,m) = (π′p)∗(cz̃[λ,µ]n,m ),

where the last equality follows by definition. Hence, by applying ηλp,∗ to both
sides, we get

η̃λp,∗(cz̃[λ,µ]n,m+1) = ηλp,∗ ○ (π′p)∗(cz̃[λ,µ]n,m ) = U ′p ⋅ cz̃[λ,µ]n,m

as desired.

3.7.3 Norm relation for the classes cz
[λ,µ]
n,m

Call norm
Q(ζpm+1)

Q(ζpm)
the norm map of the natural projection

ShG(Kn,0)/Q(ζpm+1) → ShG(Kn,0)/Q(ζpm).
Moreover, let σp denotes the image of 1

p
∈Q∗p under the Artin reciprocity map.

Theorem 3.21. For n,m ≥ 1, we have

norm
Q(ζpm+1)

Q(ζpm)
(cz[λ,µ]n,m+1) = U ′pσ3

p
⋅ cz
[λ,µ]
n,m ,

where U ′p is the Hecke operator associated to p−(λ2+λ3) ⋅Kn,mη−1p Kn,m.

Proof. We first deduce the norm relation at levels Kn,m. By Theorem 3.20 and
the commutative diagram

ShG(K ′n,m+1) η
m+1
p

//

η̃p

��

ShG(Kn,m+1)
��

ShG(K ′n,m) ηm
p

// ShG(Kn,m),
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where the right vertical arrow is the natural projection map, it suffices to
show that the Hecke operator U ′p commutes with tλm,∗, i.e. that we have a
commutative diagram

H7(ShG(K ′n′,m),Wλ
Zp
(4 + k−∣λ∣

2
)) tλm,∗

//

U ′p
��

H7(ShG(Kn,m),Wλ
Zp
(4 + k−∣λ∣

2
))

U ′p
��

H7(ShG(K ′n′,m),Wλ
Zp
(4 + k−∣λ∣

2
)) tλm,∗

// H7(ShG(Kn,m),Wλ
Zp
(4 + k−∣λ∣

2
)).

Recall that the Hecke operator U ′p at level Kn,m is defined as the correspondence
pr2,∗ ○ η

λ
p,∗ ○ pr

∗
1 , where pr1, pr2 are natural projections sitting in the diagram

ShG(Kn,m ∩ ηpKn,mη−1p ) ηp
//

pr1

��

ShG(η−1p Kn,mηp ∩Kn,m)
pr2

��

ShG(Kn,m) ShG(Kn,m)
Then, the two Hecke operators commute if ∣Kn,m∩η

−1
p Kn,mηp/Kn,m∣ = ∣K ′n′,m∩

η−1p K ′n′,mηp/K ′n′,m∣. This is indeed the case, since both sizes can be checked to
be p12. Here, we are making an essential use of the extra congruences modulo
p satisfied by the elements in Kn,0. Finally, the result follows after using the
isomorphism

ShG(Kn,m) ≃ ShG(Kn,0) ×Spec(Q) Spec(Q(ζpm)),
which intertwines the Hecke operator U ′p on the cohomology ShG(Kn,m) with
Art(ν(ηp))∣Q(ζpm)U ′p = σ−3p U ′p.

Remark 3.22. For calculating the size of the quotient for Kn,m, one actually
crucially uses the congruences modulo p appearing in the definition of the
level group Kn,0, and the result would not hold if we didn’t impose those
congruences.

4 p-adic interpolation

We show in this section how the compatible systems of elements so far con-
structed can be p-adically interpolated. In §4.2.3, we vary one of the variables of
the weight to interpolate several classes geometrically constructed. In §4.2.4,
we construct a universal class that specialises, under some twisted moment
maps, to all the geometrically constructed classes. The problem with this last
approach is that we do not know how to naturally interpret these twisted mo-
ment maps. As an application, we can consider different specialisations of this
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universal class and thus obtain new classes at finite level that do not a priori
come from a geometric construction.
In this section, we replace the Shimura varieties for G ∈ {GL2,H,G} with their
smooth integral models defined over Z[ 1

S
], for S sufficiently large and divisible

by p.

4.1 p-adic interpolation for GL2

We first recall the p-adic interpolation results that we need from [Kin15]; we
follow the exposition given by [LSZ19]. Fix an open compact subgroup U (p) ⊆
GL2(A(p)f

) and let Un = U (p)Up
n with Up

n = Kp
1(n) (cf. §2.3) and assume that

Un is sufficiently small for every n.

Definition 4.1. We define

Hi
ét(ShGL2

(U∞),Zp(1)) ∶= lim←Ð
n≥1

Hi
ét(ShGL2

(Un),Zp(1)),
where the inverse limit is taken with respect to the natural trace maps.

Recall that, for every k ≥ 0, and n ∈N we have moment maps

momk
GL2,n

∶H1
ét(ShGL2

(U∞),Zp(1))→H1
ét(ShGL2

(Un),H k
Zp
(1)),

defined in [KLZ17, Theorem 4.5.1(2)]: let e, f be a basis for the standard
representation of GL2. If H

k
Z/pnZ

is the reduction modulo pn of H
k
Zp

, we have
a section

ekn ∈ H0
ét(ShGL2

(Un),H k
Z/pnZ)

given by the reduction modulo pn of e⊗k in Symk
Z⊗det

−k. Then, the moment
map momk

GL2,n
is defined by sending any element (vs)s≥1 to (prUs

Un
)∗(vs∪eks)s≥n,

which defines a class in

lim←Ð
s≥n

H1
ét(ShGL2

(Un),H k
Z/psZ(1)) =H1

ét(ShGL2
(Un),H k

Zp
(1)).

Crucially, we have the following interpolation result.

Theorem 4.2 ([Kin15]). The cohomology class

cEisGL2
∶= (∂(cgn))n≥1 ∈H1

ét(ShGL2
(U∞),Zp(1))

is such that, for every k,n ∈N, we have

momk
GL2,n

(cEisGL2
) = cEis

k
ét,n .

4.2 p-adic interpolation for G: varying the weight

In §4.2.2, we discuss interpolation properties of the classes at level Kn,m, which
result in a compatibility with respect to varying the weight of our local sys-
tems in one direction. This reflects the asymmetry of the construction of our
cohomology classes. Proposition 4.5 below is not subject to any U ′p-ordinarity
assumption and it is a direct consequence of Proposition 3.16 and Theorem 4.2.
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4.2.1 Explicit branching laws

It will be useful to construct explicit highest weight vectors of the sub-H-spaces
of V λ given by the branching laws. Only the element W defined below will be
used in §4.2.2 - §4.2.3 and the rest of them will only be useful for §4.2.4, so the
reader is invited to come back to their definition when needed.
Let us first write down the decomposition of the three basic representations
V (1≥0≥0), V (1≥1≥0) and V (1≥1≥1) as a direct sum of H′-representations. Ap-
plying the branching laws we readily get the following decompositions of H′-
representations:

V (1≥0≥0) = (V (0≥0) ⊠ Sym1)⊕ (V (1≥0) ⊠ Sym0),
V (1≥1≥0) = [(V (0≥0) ⊠ Sym0)⊗ ν]⊕ (V (1≥0) ⊠ Sym1)⊕ (V (1≥1) ⊠ Sym0),

V (1≥1≥1) = [(V (1≥0) ⊠ Sym0)⊗ ν]⊕ (V (1≥1) ⊠ Sym1).
Let V be the standard representation of G with its symplectic basis⟨e1, e2, e3, f3, f2, f1⟩. Since we will only be interested in those H-factors of the
form Sym(k,0,0), using the branching laws from H′ to H in the decompositions
above, we fix highest weight vectors for the following H-representations:

W ∶= e1 ∈ Sym(1,0,0) ⊆ V (1≥0) ⊠ Sym0 ⊆ V (1≥0≥0),
X ∶= e1 ∧ f1 − e2 ∧ f2 ∈ Sym(0,0,0)⊗det ⊆ (V (0≥0) ⊠ Sym0)⊗ ν ⊆ V (1≥1≥0),

Y ∶= e2 ∧ f2 − e3 ∧ f3 ∈ Sym(0,0,0)⊗det ⊆ V (1≥1) ⊠ Sym0 ⊆ V (1≥1≥0),
Z ∶= e1 ∧ e2 ∧f2 − e1 ∧ e3 ∧f3 ∈ Sym(1,0,0)⊗det ⊆ (V (1≥0) ⊠Sym0)⊗ν ⊆ V (1≥1≥1).
Observe that, for p, q, r, s ∈N, we have

W p
⋅Xq
⋅ Y r
⋅Zs ∈ Sym(p+s,0,0)⊗detq+r+s

⊆ (V (p+r+s≥r) ⊠ Sym0)⊗ νq+s

⊆ V (p+q+r+s≥q+r+s≥s),

where the operation ⋅ denotes Cartan product.

Lemma 4.3. Let λ = (λ1 ≥ λ2 ≥ λ3) and let µ = (µ1 ≥ µ2) ∈ A(λ) be such that
k ∶= µ1 − µ2 = λ1 − λ2 + λ3. Then

v[λ,µ] ∶=Wµ1−µ2−λ3
⋅Xλ2−λ3−µ2

⋅ Y µ2
⋅Zλ3 ∈ Sym(k,0,0)⊗det

λ2

⊆ (V µ
⊠ Sym0)⊗ νλ2−µ2

⊆ V λ

is an H-highest weight vector.

Proof. The vector v[λ,µ] of the statement is an H-highest weight vector, because
it is a Cartan product of H-highest weight vectors.
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Let µ and k be as in Lemma 4.3. Let w[λ,µ] be the image of v[λ,µ] in Wλ
Z =

V λ
Z ⊗ ν−∣λ∣. We have the H-equivariant inclusion

br
[λ,µ]

∶ Sym
(k,0,0)
Z ⊗det

−k ⊆Wλ
Z ⊗ νλ2 .

This is defined by sending the image of the vector ek1 ∈ Sym
(k,0,0)
Z in

Sym
(k,0,0)
Z

⊗det−k to w[λ,µ] ⊗ ζλ2 , where ζ is a basis of the symplectic mul-

tiplier representation ν. Now, for any integer t ≥ 1, denote by w
[λ,µ]
t and ζt

their reduction modulo pt.

4.2.2 Moment maps

Consider the level groups Kn,m ⊂ G(Af) defined in §2.3. Let us begin by
describing the moment maps from

Hi
ét(ShG(K∞,m),L) ∶= lim←Ð

n≥1

Hi
ét(ShG(Kn,m),L),

where the inverse limit is taken with respect to the natural trace maps, to
Hi

ét(ShG(Kn,m),L′) for certain Zp-local systems L, L′.
Lemma 4.4. Let λ = (λ1 ≥ λ2 ≥ λ3) and κ = (k ≥ 0 ≥ 0). For n ≥ 1, we have a
map

momk
G,n ∶H

i
ét(ShG(K∞,m),Wλ

Zp
) ∼Ð→ lim←Ð

s

Hi
ét(ShG(Ks,m),Wλ

Z/ps)
→ lim←Ð

s

Hi
ét(ShG(Ks,m),Wλ

Z/ps ⊗Wκ
Z/ps))

→ lim←Ð
s

Hi
ét(ShG(Ks,m),Wλ+κ

Z/ps)
→ lim←Ð

s

Hi
ét(ShG(Kn,m),Wλ+κ

Z/ps)
∼Ð→Hi

ét(ShG(Kn,m),Wλ+κ
Zp
),

where the first map is an isomorphism, the second map is obtained by

taking the cup product against the étale section associated to w
[κ,µ]
s in

H0
ét(ShG(Ks,m),Wκ

Z/ps) for µ = (k,0) as in Lemma 4.3, the third one is the
map induced in cohomology by the Cartan product, the fourth one is obtained
by taking the projection to level n, and the last one is an isomorphism again.

Proof. To show that the moment map is well defined, we need to verify that
w
[κ,µ]
s is fixed by Ks,m. Notice that, by the chosen twist in the definition of

Wκ, the vector w[κ,µ] =W k = ek1 is fixed by the subgroup of the Levi factor of
the Klingen parabolic given by

( x A
1
) ,
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where A ∈ GSp4 and x = ν(A). Finally, since w[κ,µ] is fixed by the unipo-
tent of the Borel, it is in particular fixed by the unipotent of the Klingen
parabolic. We deduce then that w[κ,µ]s is fixed by Ks,m and defines an element
in H0

ét(ShG(Ks,m),Wκ
Z/ps), hence the moment map is well defined.

4.2.3 p-adic interpolation

We can now state the main theorem of the section.

Proposition 4.5. There exists an element

czm ∈H7
ét(ShG(K∞,m),Zp(4))

such that, for all n ≥ 1 and k ≥ 0, we have

momk
G,n(czm) = cz

[κ,µ]
ét,n,m

as elements of Hi
ét(ShG(Kn,m),Wκ

Zp
(4)), where κ = (k ≥ 0 ≥ 0) and µ = (k ≥ 0).

Proof. The proof is similar to [LSZ19, Proposition 9.3.3]. First, notice that
from the very definition of the moment map momk

GL2,n
, we can define momk

H,n

to be the map

H1
ét(ShH(uK ′∞,mu−1 ∩H),Zp(1))→H1

ét(ShH(uK ′n,mu−1 ∩H),H(k,0,0)Zp
(1))

given by taking the cup-product with the image wk
t of e⊗k1 ∈ Sym

(k,0,0)
Z

in Sym
(k,0,0)

Z/ptZ
⊗det

−k. Indeed, wk
t defines a section in H0

ét(ShH(uK ′t,mu−1 ∩

H),H(k,0,0)Zp
), because uK ′t,mu−1 ∩H ⊂ uKt,0u

−1
∩H = Kt,0 ∩H fixes wk

t . By
Theorem 4.2, the class czH,m ∶= (pr∗1,n,m)n>>0(cEisGL2

) satisfies

momk
H,n(czH,m) = pr∗1,n,m( cEiskét,n).

Moreover, for κ = (k ≥ 0 ≥ 0), µ = (k ≥ 0), and n′ = n + 3(m + 1), we claim that
we have a commutative diagram

H1
ét(ShH(V∞,m,u),Zp(1))

ι∞,u,∗

��

mom
k

H,n′
// H1

ét(ShH(Vn′,m,u),H(k,0,0)Zp
(1))

ι
[κ,µ]

K′
n′,m

,u,∗

��

H7
ét(ShG(K ′∞,m),Zp(4))

t∞,m,∗

��

H7
ét(ShG(K ′n′,m),Wκ

Zp
(4))

t
κ
m,∗

��

H7
ét(ShG(K∞,m),Zp(4)) momk

G,n
// H7

ét(ShG(Kn,m),Wκ
Zp
(4)),

where Vr,m,u ∶= uK ′r,mu−1 ∩H for r ∈ {∞, n′}, ι∞,u,∗ ∶= (ιK′
n,m,u,∗)n>>0, and

similarly t∞,m,∗ is the collection of pushforward maps of tm ∶ ShG(K ′s′,m) →
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ShG(Ks,m), for s′ = s + 3(m + 1), as s ≥ 1 varies. Indeed, this follows from the
explicit choice of the H-highest weight vector w[κ,µ], as we now explain. Recall
that the branching map br[κ,µ] sends e⊗k1 to w[κ,µ]. Notice that u−1 ⋅w[κ,µ] =
w[κ,µ] lies in the highest weight space relative to the one dimensional torus
S = diag(x3, x2, x2, x, x,1) of G, since S acts trivially on it. As discussed in
Remark 3.13, the map tκm,♭ acts trivially on the S-highest weight subspace, thus
we have that

tκm,♭(u∗w[κ,µ]n′ ) = tκm,♭((u−1)∗w[κ,µ]n′ ) = tκm,♭(w[κ,µ]n′ ) = (tm)∗w[κ,µ]n

as sections of (tm)∗Wκ
Z/pnZ

. This equality is crucially employed in the proof
of the commutativity of the diagram above. Recall that tκm,∗ = tm,∗ ○ t

κ
m,♭, then

for v = (vs′)s≥1 ∈H1
ét(ShH(uK ′∞,mu−1 ∩H),Zp(1)),

(tκm,∗ ○ ι
[κ,µ]
K′

n′,m
,u,∗ ○momk

H,n′)(v) = (tκm,∗ ○ ι
[κ,µ]
K′

n′,m
,u,∗)((prK

′
s′,m

K′
n′,m

)∗(vs′ ∪wk
s′))

s≥n

= (tκm,∗ ○ ι
[κ,µ]
K′

n′,m
,u,∗)(vn′ ∪wk

n′)
= tκm,∗(ιK′

n′,m
,u,∗(vn′) ∪ u∗w[κ,µ]n′ )

= tm,∗(tκm,♭(ιK′
n′,m

,u,∗(vn′)) ∪ (tm)∗w[κ,µ]n )
= (tκm,∗ ○ ιK′

n′,m
,u,∗)vn′ ∪w[κ,µ]n

= (prKs,m

Kn,m
)∗((tκm,∗ ○ ιK′

s′,m
,u,∗)vs′ ∪w[κ,µ]s )s≥n

= (momk
G,n ○ t∞,m,∗ ○ ι∞,u,∗)(v),

where the third equality follows since u∗ = (u−1)∗ distributes over cup products,
while the second, fifth and sixth ones follow by the projection formula. This
shows the claimed commutativity.
Finally, we define

czm ∶= (t∞,m,∗ ○ ι∞,u,∗)(czH,m).
Its interpolation property follows by the commutativity of the diagram and
Theorem 4.2:

momk
G,n(czm) = (tκm,∗ ○ ι

[κ,µ]
K′

n′,m
,u,∗ ○momk

H,n′)(czH,m)
= (tκm,∗ ○ ι

[κ,µ]
K′

n′,m
,u,∗)(pr∗1,n′,m( cEiskét,n′))

= cz
[κ,µ]
ét,n,m

.

4.2.4 Construction of the universal element

It is a natural question to ask whether we can p-adically interpolate a larger
family of geometric classes, improving Proposition 4.5. In order to do so, we
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need to work with the level groups K ′n,m defined before, vary the cyclotomic
coordinate and consider a twisted form of the moment maps to make all con-
structions compatible, as it will be explained below.

Definition 4.6. For any λ = (λ1 ≥ λ2 ≥ λ3) and integers i, j, we define the
groups

Hi
Iw(ShG(K ′∞),Wλ

Zp
(j)) ∶= lim←Ð

n,m≥1

Hi
ét(ShG(K ′n,m),Wλ

Zp
(j)),

where the inverse limit for n is taken with respect to the natural trace maps
and the inverse limit for m is taken with respect to the map η̃λp,∗ of Theorem
3.20.

In order to define the moment maps analogous to those of Lemma 4.4, we need
to introduce some further notation. Together with the vectors W,X,Y, and Z

introduced in §4.2.1, we define, for any λ = (λ1 ≥ λ2 ≥ λ3) and µ ∈ A(λ) as in
Lemma 4.3, the elements

X ′ ∶= 2(e1 ∧ e2) − e1 ∧ e3 ∈W (1≥1≥0)
Z ,

Y ′ ∶= e1 ∧ e2 − e1 ∧ e3 ∈W (1≥1≥0)
Z

,

Z ′ ∶= 2(e1 ∧ e2 ∧ e3) ∈W (1≥1≥1)
Z

,

and set

(w′)[λ,µ] ∶=Wµ1−µ2−λ3
⋅ (X ′)λ2−λ3−µ2

⋅ (Y ′)µ2
⋅ (Z ′)λ3 ∈Wλ

Z .

Denote, for any integer t ≥ 1, by (w′)[λ,µ]t its projection modulo pt. It will
turn out that (w′)[λ,µ] is the projection to the S-highest weight eigenspace of
the image w[λ,µ] in Wλ

Zp
of the element v[λ,µ] defined in Lemma 4.3, where

we recall that S denotes the 1-dimensional split torus diag(x3, x2, x2, x, x,1),
and this is of course the motivation for defining such a vector, as will be clear
during the proof of Theorem 4.8 below.

Lemma 4.7. Let λ = (λ1 ≥ λ2 ≥ λ3) and let µ ∈ A(λ) as in Lemma 4.3. Then,

for m ≥ 1, n ≥ 3(m + 1), and r ∈ Z, there exist maps mom
[λ,µ,r]
G,n,m

defined as the
composition

Hi
Iw(ShG(K ′∞),Zp(4)) ∼Ð→ lim←Ð

s,t

Hi
ét(ShG(K ′s,t), (Z/pt)(4))

→ lim←Ð
s,t

Hi
ét(ShG(K ′s,t), (Z/pt ⊗Wλ

Z/pt)(4 − λ2 − r))
→ lim←Ð

s,t

Hi
ét(ShG(K ′s,t),Wλ

Z/pt(4 − λ2 − r))
→ lim←Ð

t

Hi
ét(ShG(K ′n,m),Wλ

Z/pt(4 − λ2 − r))
∼Ð→Hi

ét(ShG(K ′n,m),Wλ
Zp
(4 − λ2 − r)),
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where the first map is an isomorphism, the second map is obtained by taking

the cup product against the étale section associated to (w′)[λ,µ]t ⊗ ζ
⊗(−λ2−r)
t in

H0
ét(ShG(K ′s,t),Wλ

Z/pt(−λ2−r)), the third one is the Cartan product, the fourth

one is obtained by taking the projection to level K ′n,m, and the last one is an
isomorphism again.

Proof. As in Lemma 4.4, to show that the moment map is well defined, we
only need to verify that the image of (w′)[λ,µ]t ⊗ ζ

⊗(−λ2−r)
t in Wλ

Z/pt(−λ2 − r)
is fixed by K ′s,t, where s ≥ 3(t + 1), so that it gives a well defined element in
H0

ét(ShG(K ′s,t),Wλ
Z/pt(4 − λ2 − r)). This is an immediate consequence of the

fact that K ′s,t is contained in the kernel KG(pt) of reduction modulo pt and
hence acts trivially in the whole representation Wλ

Z/pt(−λ2 − r).
We let

eord ∶= lim
k→∞
U ′pk!

be the ordinary idempotent acting on H7
Iw(ShG(K ′∞),Zp(4)). We can now

state our main result of this section concerning the existence of a class inter-
polating all previous constructions at finite levels.

Theorem 4.8. There exists a class cz̃ ∈ H7
Iw(ShG(K ′∞),Zp(4)) such that, for

any λ = (λ1 ≥ λ2 ≥ λ3), µ ∈ A(λ) as in Lemma 4.3 and n,m ∈N, we have

tλm,∗(mom
[λ,µ,0]
G,n,m(cz̃)) = ( σ3

p

U ′p
)m ⋅ eord(cz[λ,µ]n,m ).

Proof. First, we define the class cz̃ ∈ H7
Iw(ShG(K ′∞),Zp(4)). We denote by

H1
ét(ShGL2

(K1(∞)),Zp(1))bc ⊂ H1
ét(ShGL2

(K1(∞)),Zp(1)) the sub-module
of elements compatible under base-change. Then, let

α ∶H1
ét(ShGL2

(K1(∞)),Zp(1))bc →H7
Iw(ShG(K ′∞),Zp(4))

be the map lim←Ðn,m
U ′p−m ⋅ eord ⋅ ιK′

n,m,u,∗ ○ pr
∗
1,n,m. Explicitly, we have

α((zn)n≥1) = (U ′p−m ⋅ eord(ιK′
n,m,u,∗ ○ pr

∗
1,n,m(zn)))n,m≥1

for any (zn)n≥1 ∈H1
ét(ShGL2

(K1(∞)),Zp(1))bc. The fact that this map is well
defined follows from (the proofs of) Proposition 3.16 (for the compatibility for
varying n) and Theorem 3.20 (for the compatibility for varying m).
We then define

cz̃ = α(cEisGL2
).

We now move to proving the interpolation properties of cz̃. Note that we have
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a diagram

H1
ét(ShGL2

(K1(∞)),Zp(1))bc
α

��

mom
k
GL2,n

// H1
ét(ShGL2

(K1(n)),H(k,0,0)Zp
(1))

β

��

H7
Iw(ShG(K ′∞),Zp(4))

mom
[λ,µ,0]

G,n,m

��

H7
ét(ShG(K ′n,m),Wλ

Zp
(4 − λ2))

γ

��

H7
ét(ShG(K ′n,m),Wλ

Zp
(4 − λ2)) tλm,∗

// H7
ét(ShG(Kn,m),Wλ

Zp
(4 − λ2)),

where β = ι[λ,µ]K′
n,m,u,∗ ○pr

∗
1,n,m and γ = (σ3

p

U ′p
)m ⋅ eord ⋅ tλm,∗, with eord denoting now

the ordinary idempotent limk→∞ U ′pk! acting on H7
ét(ShG(Kn,m),Wλ

Zp
(4−λ2)).

We claim it is commutative. Indeed, as in Proposition 4.5, after translating the
result to a calculation for the algebraic representation corresponding to Wλ

Zp
,

it follows from proving that

tλm,♭(u∗w[λ,µ]m ) = tλm,♭((w′)[λ,µ]m ),
as sections of t∗m(Wλ

Z/pm). Recall, from Remark 3.13, that the map tλm,♭ acts

trivially on the S-highest weight space of Wλ
Z/pm and by a positive power of

pm on all the other eigenspaces, thus tλm,♭ factors through the projection to the
highest weight space relative to S. Notice that

u−1 ⋅W =W
u−1 ⋅X =X − 2(e1 ∧ e2) − e1 ∧ e3 + e2 ∧ e3
u−1 ⋅ Y = Y − 2(e2 ∧ e3) − e1 ∧ e3 + e1 ∧ e2
u−1 ⋅Z = Z − 2(e1 ∧ e2 ∧ e3).

Considering the twisting when moving from V λ
Z to Wλ

Z and the normalisation
of Lemma 3.12, one easily checks that, for any m ≥ 1,

η−mp u−1 ⋅W =W ∈W (1≥0≥0)

Z/pm

p−mη−mp u−1 ⋅X = 2(e1 ∧ e2) − e1 ∧ e3 =X ′ ∈W (1≥1≥0)

Z/pm

p−mη−mp u−1 ⋅ Y = e1 ∧ e3 + e1 ∧ e2 = Y ′ ∈W (1≥1≥0)

Z/pm

p−2mη−mp u−1 ⋅Z = 2(e1 ∧ e2 ∧ e3) = Z ′ ∈W (1≥1≥1)

Z/pm .

We deduce from the above that the image of p−m(λ2+λ3)η−mp acting on w[λ,µ]

in Wλ
Z/pm is given by

p−m(λ2+λ3)η−mp ⋅w[λ,µ] = Wµ1−µ2−λ3
⋅ (X ′)λ2−λ3−µ2

⋅ (Y ′)µ2
⋅ (Z ′)λ3

= (w′)[λ,µ]m ∈Wλ
Z/pm .
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This shows that tλm,♭(u∗w[λ,µ]m ) = tλm,♭(w′)[λ,µ]m , since tλm,♭(w′)[λ,µ]m = (w′)[λ,µ]m .
The theorem is now a consequence of the interpolation properties of the ele-
ments cEisGL2

of Theorem 4.2 and of Theorem 3.21.

Remark 4.9. As one can see from the above proof, the vector (w′)[λ,µ] is pre-
cisely the projection of the vector w[λ,µ] to the S-highest weight eigenspace of
Wλ

Zp
. Notice that the result above will remain true if one modifies the con-

struction of the moment maps of Lemma 4.7, by adding any element in the
complement of the S-highest weight eigenspace to (w′)[λ,µ]. We do not know
whether there is a natural choice for those test vectors.

5 Iwasawa theory

We finish with an application to the construction of a compatible system of
classes in the Galois cohomology of the Galois representation associated to
certain cohomological cuspidal automorphic representations of GSp6.

5.1 Galois representations

Let π = πf ⊗ π∞ be a cuspidal automorphic representation of G(A) of level
U = Kn,0 for some n ∈ N such that U is sufficiently small and satisfies
ν(U) = Ẑ×. We assume throughout the hypotheses (St), (L-coh) and (spin-
reg) appearing in the work [KS16]. These hypotheses assure the existence (cf.
[KS16, Proposition 13.1]) of the eight-dimensional spin Galois representation
Vp(π) ∈ RepL(GQ) with coefficients in a sufficiently large finite extension L of
Qp associated to π (here RepL(GQ) denotes the category of continuous finite
dimensional L-linear representations of the absolute Galois group GQ of Q)
and satisfying the usual expected properties. In particular, this representation
is irreducible, the characterstic polynomial of Frobenius at a finite prime ℓ ≠ p
such that ℓ ∉ Sbad is given by the expected Hecke polynomial associated to
the spin representation of Gspin7(C), and it is de Rham at p (crystalline if
p ∉ Sbad), where Sbad denotes the set of primes containing 2 and those primes
where π is not unramified. We refer to [KS16, Proposition 13.1] for further
details and to [KS16] for the precise definition of (St) and (spin-reg). The hy-
pothesis (L-coh) is defined as follows: π∞ is in the discrete series L-packet for
Wλ, for some weight λ and, in particular, up to twist, the πf -isotypic com-
ponent of the group H6

!,ét(ShG,Q
(U),Wλ

L) is non-zero. Here H6
!,ét(⋯) denotes

interior cohomology.
More precisely, recall that we have the isotypic decomposition with respect to
the Hecke algebra HL(U) of L-valued bi-U -invariant functions on G(Af) (cf.
[BR94, §2.3-4])

H6
!,ét(ShG,Q

(U),Wλ
L) ≃⊕

σf

H6
ét(σf)⊗ σU

f (L),
where H6

ét(σf) = HomHL(U)(σf ,H
6
!,ét(ShG,Q

(U),Wλ
L)), σU

f (L) is a realisation

of σU
f over L, and where σf runs through cohomological cuspidal automorphic
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representations of G(Af). As πf is non-endoscopic (thanks to the running
hypothesis (St), c.f. [KS16, Lemma 2.7, Corollary 2.8]), the πf -isotypic compo-
nent in the above decomposition is a direct summand of H6

ét(ShG,Q
(U),Wλ

L)
(c.f. the proof of [KS16, Proposition 8.2]. Thus, the projection to the πf -
isotypic component yields a map

prπ ∶H
6
ét(ShG,Q

(U),Wλ
L)→H6

ét(πf)⊗ πU
f .

Moreover, note that H6
ét(πf) coincides with Vp(π) as the automorphic multi-

plicity of π is one (cf. [KS16, Theorem 12.1]). Thus, the choice of a vector
v ∈ (π∗f)U gives a map

prπ,v ∶H
6
ét(ShG,Q

(U),Wλ
L) → Vp(π). (3)

5.2 Iwasawa cohomology

The purpose of this section is to show that the classes constructed in Theo-
rem 3.21 give rise to a class in the local Iwasawa cohomology of the Galois
representation Vp(π) associated to π.
Let us start by recalling some general notions of p-adic Hodge theory. Let
L/Qp be a finite extension and denote by RepLGQp

the category of continuous
L-linear representations of the absolute Galois group GQp

= Gal(Qp/Qp) of
Qp. Let V ∈ RepLGQp

and let T ⊆ V be a GQp
-stable OL-lattice. We will

assume through all this section that our Galois representations are crystalline
with negative Hodge-Tate weights. Let

H1
Iw(Qp, V ) ∶= lim←Ð

m

H1(Qp(ζpm), T )⊗OL
L =H1(Qp,OL[[Γ]][1/p]⊗ V )

denote the Iwasawa cohomology of the representation V , where the pro-
jective limit is taken with respect to the corestriction map, where Γ =
Gal(Qp(ζp∞)/Qp) ≅ Z×p , OL[[Γ]] is the Iwasawa algebra of Γ and where the
second isomorphism follows from Shapiro’s lemma.
We suppose that π is U ′p-ordinary, in the sense that U ′p (acting on πU ) has an
eigenvalue α which is a p-adic unit. We deduce, equivalently, that Up (which
is the Hecke operator associated to ηp - cf. Remark 3.19) acts on (π∗f)U with
an eigenvalue the p-adic unit α. Choose a vector vα ∈ (π∗f )U in the (Up = α)-
eigenspace.

Definition 5.1. Denote by Tp(π) the GQ-stable OL-lattice given by the image
of H6

ét(ShG,Q
(U),Wλ

OL
) under the map prπ,vα given in (3).

Lemma 5.2. The edge map of the Hochschild-Serre spectral sequence induces a
natural map

prπ,vα ∶ lim←Ð
m

H7
ét(ShG(Kn,m),Wλ

OL
(4 + q))→ lim←Ð

m

H1(Q(ζpm), Tp(π)(4 + q)).
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Proof. Let U =Kn,0 and π be as in §5.1. Let

αm ∶H
7
ét(ShG(Kn,m),Wλ

OL
(4 + q)) →H7

ét(ShG,Q
(U),Wλ

OL
(4 + q))GQ(ζpm )

denote the edge map of the Hochschild-Serre spectral sequence and denote Mm

its kernel. We then have natural maps

Mm →H1(Q(ζpm),H6
ét(ShG,Q

(U),Wλ
OL
(4 + q))) (4)

and a short exact sequence

Mm ↪H7
ét(ShG(Kn,m),Wλ

OL
(4 + q)) αmÐÐ→H7

ét(ShG,Q
(U),Wλ

OL
(4 + q))GQ(ζpm ) .

(5)
Recall that the trace maps associated to the natural projections

H7
ét(ShG(Kn,m+1),Wλ

OL
(4 + q)) →H7

ét(ShG(Kn,m),Wλ
OL
(4 + q))

correspond to the corestriction maps in Galois cohomology. Taking inverse
limits with respect to m in Equation (4) one obtains a natural map

lim←Ð
m

Mm → lim←Ð
m

H1(Q(ζpm),H6
ét(ShG,Q

(U),Wλ
OL
(4 + q)). (6)

Taking the projection to the πf -isotypic component of the short exact sequence
(5), and observing that inverse limit functor is left exact and that the zeroth
Iwasawa cohomology group

lim←Ð
m

H0(GQ(ζpm),H
7
ét(ShG,Q

(Kn,m),Wλ
OL
(4 + q))[πf ])

vanishes (cf. for instance, [Kat04, (12.2.3)] or [Nek06, Proposition 8.3.5]; ob-
serve that we consider here the πf -isotypic component in order to have finite
rank modules), one gets an isomorphism

lim←Ð
m

Mm[πf ] ∼Ð→ lim←Ð
m

H7
ét(ShG(Kn,m),Wλ

OL
(4 + q))[πf ]. (7)

The composition of the (inverse of) isomorphism (7) with the maps from Equa-
tion (6) and the maps in cohomology induced my prπ,vα gives then the desired
map.

Recall that we have denoted eord ∶= limk→∞ U ′pk!. We can now prove the follow-
ing.

Proposition 5.3. Theorem 3.21 produces naturally a class cz
π
Iw,α ∈

lim←Ðm
H1(Q(ζpm), Tp(π)(4 + q)). In particular, the restriction at p gives

an element in H1
Iw(Qp, Vp(π)(4 + q)).
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Proof. By Theorem 3.21 one has

((σ3

p

U ′p
)m ⋅ eord(cz[λ,µ]n,m ))

m≥1

∈ lim←Ð
m

H7
ét(ShG(Kn,m),Wλ

OL
(4 + q)).

Thus, by Lemma 5.2,

cz
π
Iw,α ∶= prπ,vα ((σ

3

p

U ′p
)m ⋅ eord(cz[λ,µ]n,m ))

m

∈ lim←Ð
m

H1(Q(ζpm), Tp(π)(4 + q)),
giving the desired element.

5.3 The p-adic spin L-function

We finally recall that the work of Perrin-Riou [PR95] allows one to associate
a p-adic L-function to an element of the Iwasawa cohomology. Before stating
the result we need to introduce some more notations. Since we claim no new
results in this section and for the sake of brevity, we will not aim to give any
motivation and we will refer the reader to [RJ18] for it, from where we also
borrow most of the notations.
Let V ∈ RepLGQp

and Γ be as above. From the interpretation of the Iwasawa
cohomology in terms of cohomology classes taking values in V -valued measures,
we easily get, for any j ∈ Z and a locally constant character η ∶ Γ → L×,
specialisation maps

H1
Iw(Qp, V ) →H1(Qp, V (ηχj)), z ↦ ∫

Γ
ηχj
⋅ z.

Recall that we have Bloch-Kato’s exponential and dual exponential maps

exp ∶Dcrys(V (ηχj))→H1(Qp, V (ηχj)),
exp∗ ∶H1(Qp, V (ηχj)) →Dcrys(V (ηχj)),

where Dcrys(−) denotes the functor associating to a p-adic local Galois repre-
sentation its crystalline module. For j ≫ 0 (resp. j ≪ 0) the exponential (resp.
dual exponential) map is an isomorphism of L-vector spaces and we will denote
by

log ∶H1(Qp, V (ηχj))→Dcrys(V (ηχj))
to be either exp∗ (if j < 0) or exp−1 (if j ≫ 0). We can then consider the com-
position of the specialisation maps and the logarithm map to obtain elements
in the crystalline module of some twist of V .
Recall that the one dimensional representation L(ηχj) = L ⋅ eη,j is crystalline
and edRη,j ∶= G(η)t−jeη,j is a basis for the module Dcrys(L(ηχj)), where t ∈Bcris

denotes Fontaine’s ‘2iπ’. Let e
dR,∨
η,j ∶= G(η)−1tjeη−1,−j , which is a basis for

Dcrys(V (η−1χ−j)). Tensor product against e
dR,∨
η,j gives natural identification

maps
Dcrys(V (ηχj)) ∼Ð→Dcrys(V ).
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Putting all this together, we get natural maps

H1
Iw(Qp, V )→Dcrys(V ) ∶ z ↦ log(∫

Γ
η−1χ−j ⋅ z)⊗ e

dR,∨
η−1,−j

.

Finally, let D(Z×p , L) denote the space of L-valued distributions on Z×p , i.e. the
topological L-dual of the space of L-valued locally analytic functions on Z×p .
Recall the following

Proposition 5.4 ([PR95]). Let V ∈ RepL(GQp
) be a crystalline representation.

There exists a map

LogV ∶H
1
Iw(Qp, V )→ D(Z×p , L)⊗L Dcrys(V )

such that, for any z ∈ H1
Iw(Qp, V ), j ∈ Z, j ≥ 0 or j ≪ 0, and η ∶ Z×p → L× a

finite order character of conductor pn, n ≥ 0, we have

∫
Z×p

ηxj
⋅ LogV (z) = ep(n)Γ∗(j + 1)pm(j+1) ⋅ log(∫

Γ
η−1χ−j ⋅ z)⊗ e

dR,∨
η−1,−j

,

where ep(n) = 1 if n ≥ 1 and ep(n) = (1 − p−1ϕ−1) if n = 0 and where

Γ∗(j + 1) =
⎧⎪⎪⎨⎪⎪⎩

j! if j ≥ 0
(−1)j−1

(−j−1)!
if j < 0

is the leading coefficient of the Laurent series of the function Γ(s) at s = j + 1.
The term (1 − p−1ϕ−1) for trivial η is the usual Euler factor appearing in the
interpolation properties of the p-adic L-functions. Recall that, when V is the
Galois representation associated to a modular form, the above theorem applied
to Kato’s Euler system gives, after projecting to a Frobenius eigenline, the
usual p-adic L-funciton of the modular form as constructed, for instance, in
[MTT86]. This should justify the following

Definition 5.5. We define the p-adic spin L-function of π to be

cµ
π
α ∶= LogVp(π)(resp(czπIw,α)) ∈ D(Z×p ,Dcrys(Vp(π)(4 + q))).

Let us make some comments on our constructions. We expect an explicit
reciprocity law to hold, relating values of Bloch-Kato’s dual exponential maps of

∫Γ η−1χ−j ⋅(resp(czπIw,α)) to the values of the complex spin L-function LSpin(π×
η, j) for a certain range of integers j. For the group GSp4 and the classes
constructed in [LSZ19], recent progress on this has been announced by Loeffler
and Zerbes. In [CLRJ19], we have shown that our motivic classes (in the case
of trivial coefficients) are related to non-critical special values of the complex
spin L-function, as predicted by the conjectures of Beilinson and Bloch-Kato,
through Deligne’s regulator taking values in Deligne cohomology. This gives
a link between the special values of the arithmetic p-adic spin L-function at
certain integers and non-critical special values of of the spin L-function.
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A Proof of Lemma 3.4

We finally give a proof of Lemma 3.4. Let u ∈ G(Af) be the element whose

component at p is ( I T
0 I ) , for T = ( 1 1 0

1 0 1
0 1 1
) , and let n,m ≥ 1 be such that n ≥

3m + 3. Then, the commutative diagram

ShG(K ′n,m+1)
pr

��

ShH(uK ′n,m+1u−1 ∩H)

ιu
K′

n,m+1

33❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣ pr○ιu
K′

n,m+1
//

πp

��

ShG(K ′n,m(p))
π′p

��

ShH(uK ′n,mu−1 ∩H) ιu
K′n,m

// ShG(K ′n,m)

(8)

has Cartesian bottom square.
In order to show the Cartesianness of diagram 8, it is enough to check that

1. The map pr ○ ιuK′
n,m+1

is a closed immersion or, equivalently,

uK ′n,m(p)u
−1
∩H = uK ′n,m+1u−1 ∩H;

2. [uK ′n,mu−1 ∩H ∶ uK ′n,m+1u
−1
∩H] = [K ′n,m ∶K ′n,m(p)].

These two facts are shown in the next two lemmas.

Lemma A.1. We have the equality of subgroups of H(Af)
uK ′n,m(p)u

−1
∩H = uK ′n,m+1u−1 ∩H.

Proof. It suffices to show that if g = (A B
C D ) ∈ K ′n,m(p) is such that ugu−1 ∈ H

then g ∈K ′n,m+1, i.e that g ≡ I mod pm+1. Writing down the condition ugu−1 ∈
H, we get that g is of the form

g =
⎛⎜⎜⎜⎝

a1 −c2 −c3 (a1−d3)−c2 (a1−d2)−c3 b1
−c1 a2 −c3 (a2−d3)−c1 b2 (a2−d1)−c3
−c1 −c2 a3 b3 (a3−d2)−c1 (a3−d1)−c2

c3 d3 c3 c3
c2 c2 d2 c2

c1 c1 c1 d1

⎞⎟⎟⎟⎠
.

The congruences of the (1,2) and (1,3) entries give c2 ≡ c3 ≡ 0 mod pm+1.
Moreover, taking a look at the elements off the anti-diagonal of B, we easily
deduce that a1 ≡ a2 ≡ a3 ≡ d3 ≡ d2 ≡ d1 ≡ 1 mod pm+1.

We are left with showing that the degrees of the two vertical maps of the bottom
square of (8) are equal.

Documenta Mathematica 25 (2020) 911–954



950 A. Cauchi, J. Rodrigues Jacinto

Lemma A.2. We have

[uK ′n,mu−1 ∩H ∶ uK ′n,m+1u
−1
∩H] = [K ′n,m ∶K ′n,m(p)].

Proof. Since a system of coset representatives of Q =K ′n,m/K ′n,m(p) determines
one for

uK ′n,mu−1/uK ′n,m(p)u−1,
it suffices to prove that we can find {σi}i∈I system of coset representatives for
Q such that uσiu

−1 ∈H for all i ∈ I. Consider the following set of elements of
K ′n,m whose conjugation by u is in H:

σv =
⎛⎜⎜⎜⎜⎝

1+pma −pmr′ −pmr p2mt
′′′

p2mt
′′

p3mk

1+pmb −pmr pmc pmk′ p2mt

−pmr′ 1+pmd pmk
′′

pme p2mt′

pmr 1+pms pmr pmr

p
m
r
′

p
m
r
′

1+pm
f p

m
r
′

1

⎞⎟⎟⎟⎟⎠
,

where for each vector v ∈ Z/p3Z × (Z/p2Z)4 × (Z/pZ)5 =∶ V we consider one
(and only one) lift

(k, t, t′, t′′, t′′′, k′, k′′, r, r′, s) ∈ Ẑ10

so that σv ∈G(Af), where we have set

a = r′ + s + pmt
′′

, b = r + pmt,

c = r − s + pmt, d = r′ + pmt′,

e = r − s + pm(t′ + t′′ − t′′′), f = r′ − r + s + pm(t′′′ − t′′).
We claim that {σ−1v }v∈V (or a subset of it) is a system of coset representatives
for the quotient Q. We only sketch the proof of this, which consists of a very
long but straightforward calculation. Given g = (A B

C D ) ∈ K ′n,m, we wish to
prove that there exists v ∈ V such that σvg = (E F

G H ) ∈K ′n,m(p).
Writing down carefully the eight equations modulo pm+1, the four modulo
p2(m+1) and the remaining one modulo p3(m+1), we determine v by choosing
ten of those equations and showing, by the use of the symplectic equations,
that the other three equations are redundant. Slightly more precisely, we have,
after reducing the equations modulo pm+1

{ a12 − p
mr′a22 − p

mra32 ≡ 0 [pm+1]
a13 − p

mr′a23 − p
mra33 ≡ 0 [pm+1]

{ d13 + p
mr ≡ 0 [pm+1]

d23 + p
mr′ ≡ 0 [pm+1]⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

b21 + p
m(r − s)d11 + pmk′d21 ≡ 0 [pm+1]

b22 + p
m(r − s)d12 + pmk′d22 ≡ 0 [pm+1]

b31 + p
mk′′d11 + p

m(r − s)d21 ≡ 0 [pm+1]
b32 + p

mk′′d12 + p
m(r − s)d22 ≡ 0 [pm+1]
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From the second pair of equations we get r and r′ and, after replacing pmr and
pmr′, the first pair becomes redundant by the use of the symplectic equations
of g

AtI ′3D −C
tI ′3B = ν(g)I ′3.

Indeed, comparing the entries (2,3) gives

a12d33 + a22d23 + a32d13 − c12b33 + c22b23 + c32b13 = 0,
which reduces modulo pm+1 to

a12 + a22d23 + a32d13 ≡ 0 [pm+1],
which coincides with the first equation after substituting d12 and d23 with
−pmr and −pmr′. Similarly, we get the redundancy of the second equation by
comparing the entries (3,3) modulo pm+1.
To solve s, k and k′′ from the third series of equations, one has to show that
the rank of the matrix

( d11 d21 0 −b21
d12 d22 0 −b22
d21 0 d11 −b31
d22 0 d12 −b32

)
is three. The fact that its rank is at least three follows by the fact that the
determinant of AtI ′3D is invertible modulo pm+1 (all entries of B are divisible
by p) and so

det(D) ≡ d11d22 − d21d12 ≡ d11d22 [pm+1]
is invertible as well. Hence, we can find a 3 × 3 minor with invertible deter-
minant. Finally, the fact that the big determinant is zero follows from an
application of the relation

d12b31 + d22b21 ≡ d11b32 + d21b22 [pm+1],
from the symplectic equations of g

BtI ′3D −D
tI ′3B = 0.

Indeed, unfolding the calculation of the determinant we get

d11 [d22(d22b21 − d11b32) − d21(d22b22 − d12b32)]−
−d12 [d22(d21b21 − d11b31) − d21(d21b22 − d12b31)]

is congruent modulo pm+1 to

d11d22(d22b21 + d12b31 − d11b32 − d21b22)+
+d12d21(d12b32 + d21b22 − d22b21 − d12b31)

which is in turn congruent to

(d11d22 − d12d21)(d22b21 + d12b31 − d11b32 − d21b22) ≡ 0 [pm+1].
The rest of the equations follow more easily.
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