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Abstract. We construct semi-orthogonal decompositions on trian-
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schemes. This provides a categorification of the decomposition the-
orems in Kummer flat K-theory due to Hagihara and Nizio l. Our
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1 Introduction

In this paper we carry forward the study of the derived category of parabolic
sheaves we initiated in [46], where we established the Morita invariance of
parabolic sheaves under logarithmic blow-ups. Our main result is the construc-
tion of a special kind of semi-orthogonal decompositions on derived categories
of parabolic sheaves. This provides in particular a categorification of structure
theorems for the Kummer flat K-theory of log schemes due to Hagihara [20]
and Nizio l [36]. Additionally we generalize Hagihara and Nizio l’s result in two
ways:

• we obtain uniform structure theorems which hold across all (Kummer
flat) invariants of logarithmic schemes, including Hochschild and cyclic
homology;

• our techniques allow us to extend these results to a much larger class
of log schemes (and log stacks) than those considered by Hagihara and
Nizio l.
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Our main results, Theorem A, Theorem B and Corollary C, hold over an arbi-
trary ground ring.

1.1 Parabolic sheaves, log schemes, and infinite root stacks

Parabolic sheaves were defined by Mehta and Seshadri in the 80’s, for Riemann
surfaces with marked points, as coherent sheaves equipped with flags at the
marked points. They are the key ingredient to extend the Narasimhan–Seshadri
correspondence to the non-compact setting. The theory over the last fifty years
has undergone massive generalizations. It was extended first to pairs (X,D)
where D is a normal crossing divisor in any dimension, and more recently to
an even broader class of logarithmic schemes. The work of Borne, Vistoli and
the third author shows that parabolic structures are best viewed within the
framework of log geometry [6], [51], [49] and this is the perspective that we will
adopt throughout the paper.

Logarithmic (log) geometry emerged in the 80’s through the collective efforts
of several authors including Deligne, Faltings, Fontaine, Illusie and Kato [28].
The theory was initially designed for applications to arithmetic geometry, but
over the last twenty years it has become a key organizing principle in areas as
diverse as algebraic geometry, symplectic geometry, and homotopy theory. Log
geometric techniques lie at the core of the Gross–Siebert program in mirror sym-
metry [19], and feature prominently in recent approaches to Gromov-Witten
theory, see [18] and references therein.

One of the main hurdles in working with log schemes is that they encode both
classical geometric and combinatorial data. For this reason transporting famil-
iar geometric constructions to the log setting is often delicate: see for instance
[40], [21] for the definition of the cotangent complex and the Chow groups of
log schemes. A definition of K-theory for log schemes was first proposed by
Hagihara [20] and Nizio l [36]. We will refer to it as Kummer flat (resp. étale)
K-theory, and it is the algebraic K-theory of the Kummer flat (resp. étale)
topos, a logarithmic analogue of the classical flat (resp. étale) topos.

Our main result is a construction of infinite semi-orthogonal decompositions on
categories of parabolic sheaves. This can be viewed as a categorification of an
important structure theorem due to Hagihara and Nizio l for Kummer flat K-
theory: if X is a regular scheme equipped with a simple normal crossing divisor
D ⊂ X , the Kummer flat K-theory of (X,D) splits as an an explicit direct sum
indexed by the strata of D [36, Theorem 1.1]. We will show that our methods
yield, in particular, substantial generalizations of Hagihara and Nizio l’s results.
Before stating our main result we review its two key ingredients: the infinite
root stack, and semi-orthogonal decompositions.

Infinite root stacks

The infinite root stack of a log scheme was introduced in [51]: it is a limit
of tame Artin stacks (Deligne–Mumford in characteristic 0) which encodes log
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information as stacky data. The infinite root stack captures the geometry of
the underlying log scheme, and this point of view informs several recent works
by the authors and their collaborators [9, 46, 52, 50], see also [44] for recent
applications to Hall algebras and quantum groups. If X is a log scheme, we
denote its infinite root stack by

∞
√
X. One of the key properties of the infinite

root stack is that the Kummer flat topos of X is equivalent, as a ringed topos, to
the fppf topos of

∞√
X [51, Theorem 6.16]. In particular Hagihara and Nizio l’s

logarithmic algebraic K-theory of X coincides with the ordinary algebraic K-
theory of the infinite root stack

∞√
X. Thus we can study logarithmic algebraic

K-theory by probing the geometry and the sheaf theory of infinite root stacks.

Semi-orthogonal decompositions

We view the algebraic K-theory of a stack as an invariant of its ∞-category of
perfect complexes. We study the category of perfect complexes of the infinite
root stack, and show that Nizio l’s direct sum decomposition of Kummer flat
K-theory is the shadow of a factorization that holds directly at the categori-
cal level. The appropriate concept of factorization for categories is given by
semi-orthogonal decompositions (sod -s, for short). These were introduced by
Bondal and Orlov in [5]. In the setting of∞-categories, semi-orthogonal decom-
positions (of length two) were considered in [4] under the name of split-exact
sequences of ∞-categories.

The main theorem

Recent work of Ishii and Ueda [25] and Bergh, Lunts, and Schnürer [3] shows
that the categories of perfect complexes of finite root stacks of pairs (X,D),
where X is a scheme (or stack) equipped with a simple normal crossing divisor
D ⊂ X, admit a canonical sod where the summands are labelled by the strata
of D. The infinite root stack is the limit of all finite root stacks, however the
pull-back functors along root maps do not preserve the canonical sod-s. This
issue can be obviated via a recursion that gives rise a sequence of nested sod-s as
the root index grows, and that ultimately yields an infinite sod on Perf(

∞
√
X).

Below we formulate our first main result for log scheme of the form (X,D),
where X is a scheme and D is a simple normal crossing divisor. We refer
the reader to Theorem 3.16 in the main text for a sharper and more general
statement, that applies for instance to all finite type tame algebraic stacks. Let
{Di}i∈I be the set of irreducible components of D. The divisor D determines a
stratification of X where strata are intersections of the irreducible components
of D. Strata are in bijection with the subsets of I: if S is a stratum S = ∩j∈JDj

for some J ⊂ I, and S is the closure, we set |S| := |J |. If N is a natural number
we set (Q/Z)N,∗ := (Q/Z \ {0})N .

Theorem A (Theorem 3.16). The ∞-category of perfect complexes of the in-
finite root stack ∞

√
(X,D) admits a semi-orthogonal decomposition

Perf(
∞
√

(X,D)) = 〈AS , S ∈ SD〉
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such that all objects in AS are supported on S. Additionally, for all S the cat-

egory AS carries a semi-orthogonal decomposition indexed by (Q/Z)|S|,∗ whose
factors are equivalent to Perf(S).

1.2 Additive invariants

Theorem A recovers in particular Hagihara and Nizio l’s results, but is a much
stronger statement. In order to clarify this point let us refer to the notion of
additive invariants of ∞-categories. Let us denote by Catperf∞ the ∞-category
of stable ∞-categories. A functor H: Catperf∞ → P , where P is a stable pre-
sentable ∞-category, is an additive invariant if it preserves zero objects and
filtered colimits, and it maps split exact sequences to cofiber sequences (split
exact sequences are the analogue in the ∞-setting of a sod with two factors).
Most homological invariants of algebras and categories are additive: algebraic
K-theory and non-connective K-theory, (topological) Hochschild homology and
negative cyclic homology are all additive invariants.

The theory of non-commutative motives was developed by Tabuada and others
[48, 11, 4, 41] in analogy with the classical theory of motives. Non-commutative
(additive) motives encode the universal additive invariant, exactly as classical
motives are universal among Weil cohomologies. Noncommutative motives
form a presentable and stable ∞-category Motadd which is the recipient of
the universal additive invariant

U : Catperf∞ −→ Motadd.

Every additive invariant H: Catperf∞ → P factors uniquely as a composition

Catperf∞
H //

U
��

P

Motadd
H

<<②②②②
②②②②

If H is an additive invariant and X is a stack we set U(X) :=
U(Perf(X)), H(X) := H(Perf(X)). Let (X,D) be a scheme equipped
with a normal crossing divisor. Then Theorem A yields a direct product
decomposition of the non-commutative motive of

∞√
X.

Theorem B (Corollary 5.6). There is a canonical direct sum decomposition

U(
∞
√

(X,D)) ≃
⊕

S∈SD

( ⊕

(Q/Z)|S|,∗

U(S)
)
.

The K-theory of root stacks was also studied in [14], although from a different
perspective.
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Kummer étale K-theory

Theorem B implies uniform direct product decompositions across all addi-
tive invariants of infinite root stacks, and recovers in particular Hagihara
and Nizio l’s structure theorems for Kummer flat K-theory. Let X be a
log scheme, and denote XKfl its Kummer flat topos. Let Perf(XKfl) be
its ∞-category of perfect complexes. If H is an additive invariant, we set
HKfl(X) := H(Perf(XKfl)) . When H(−) = K(−) is algebraic K-theory, this
definition recovers Hagihara and Nizio l’s Kummer flat K-theory.
Work of Vistoli and the third author [51] identifies the Kummer flat topos
with the “small fppf topos” of the infinite root stack. As a consequence,
under suitable assumptions, there is an equivalence of stable ∞-categories
Perf(XKfl) ≃ Perf(

∞
√
X). This, together with Theorem B, yields the follow-

ing immediate corollary.

Corollary C. If H: Catperf∞ → P is an additive invariant then there is a
direct sum decomposition

HKfl(X,D) ≃
⊕

S∈SD

( ⊕

(Q/Z)|S|,∗

H(S)
)
.

In particular, the Kummer flat K-theory of (X,D) decomposes as a direct sum
of spectra

KKfl(X,D) ≃
⊕

S∈SD

( ⊕

(Q/Z)|S|,∗

K(S)
)
.

The second half of the statement recovers the first part of Nizio l’s [36, Theo-
rem 1.1] (see Remark 5.9 for some comments about the second part). Nizio l’s
result holds under the restrictive assumption that (X,D) is a log smooth pair
given by a regular scheme X and a simple normal crossing divisor D. Corol-
lary C holds with milder smoothness assumption on X : indeed in the main
body of the paper we work with a finite type algebraic stacks X equipped
with a simple normal crossing divisor D. In particular X needs not be regular
outside of D.
In fact we can extend the the decomposition given by Corollary C to even
more general log stacks. We clarify this by explaining three applications of
our techniques. They require working over a field κ of characteristic zero.
Additionally for the second one we need to assume κ = C.

• General normal crossing divisors . We extend the decomposition of Theo-
rem A and Corollary C to general normal crossing divisors, removing the
simplicity assumption required by Hagihara and Nizio l. An interesting new
feature emerges in this setting. The semi-orthogonal summands appearing
in the analogue of Theorem A for general normal crossing log stacks (X,D)
are no longer equivalent to the category of perfect complexes on the strata:
instead, they are equivalent to perfect complexes on the normalization of the
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strata (see Theorem 4.6 in the main text). This is reflected by the Kummer
flat K-theory of a general normal crossing log stack: it breaks up as a direct
sum indexed by the strata, where the summands compute the K-theory of
the normalization of the strata (see Theorem 5.8).

• Simplicial log structures . We generalize Corollary C to log smooth schemes
with simplicial log structure, i.e. pairs (X,D) where D is a divisor with sim-
plicial singularities. The decomposition formula holds only for the complex-
ification of KKfl(X), and under suitable additional assumptions on (X,D).
The main differences with the normal crossings case is that the formula has
additional summands keeping track of the singularities of D, and that it
depends on the G-theory, rather than the K-theory, of the strata. As the
statement is somewhat technical we do not include it in this introduction,
but refer the reader directly to Proposition 5.10 in the main text.

• Logarithmic Chern character. Having at our disposal a general definition of
additive invariants of log schemes, we introduce a construction of the loga-
rithmic Chern character. The availability of structure theorems valid across
all additive invariants of log schemes allows us to study some of its funda-
mental properties. This includes a Grothendieck–Riemann–Roch statement,
which we establish in the restrictive setting of strict maps of log schemes,
leaving generalizations to future work. These results are contained in Section
5.3 of the text.

1.3 Towards logarithmic DT invariants

Donaldson–Thomas invariants are part of the rich array of enumerative invari-
ants inspired by string theory. One of the outstanding open questions in the
area is to construct a theory of log DT invariants, analogous to the theory of
log GW invariants developed in [18, 10, 1]. This would have applications to
degeneration formulas for DT invariants. DT theory counts Bridgeland stable
objects in triangulated categories. Thus building a theory of log DT invari-
ants requires, first, to introduce a viable concept of derived category for log
schemes; and, second, to define and study stability conditions over it. For the
first requirement, one of the viable options is to try to use parabolic sheaves
on (X,D), which in turn are equivalent to sheaves on

∞√
X . Thus a first step

towards defining log DT invariants consists in constructing Bridgeland stability
condition on Perf(

∞√
X). Results obtained in [12] give a means to glue stability

conditions across semi-orthogonal decompositions. Adapting these techniques
to the sod-s on Perf(

∞
√
X) obtained in Theorem A, we can already obtain sta-

bility conditions in some cases, such as many toric log pairs (X,D). It is too
early to tell wether they will be relevant from the viewpoint of log DT theory,
but this seems an interesting avenue for future investigation.
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1.4 Relation to work of other authors

Several different approaches to the definition of log motives and log invariants
have been considered in the literature.

• A definition of log motives has been proposed in [26], and in [23].

• Constructions of Hochschild homology and topological Hochschild homology
in the log setting have been proposed by Hesselholt and Madsen [22] Rognes,
Sagave, and Schlichtkrull [42], Leip [32] and Olsson [38].

It would be very interesting to compare these approaches to the one we pursue
in this paper, however there is a key difference in perspective between some
of these works and our own. The constructions of log Hochschild homology
considered in [22], [42], and [32] are closely related to the log de Rham complex,
and therefore to the cohomology of the complement of the locus where the log
structure is concentrated. In this paper, on the other hand, we investigate log
schemes through the lenses of their Kummer flat topos and their infinite root
stack.
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Conventions

We work over an arbitrary noetherian commutative ring κ (that could be the
ring of integers Z). In later parts of the paper (Sections 5.2 and 5.3) we will
impose more restrictive assumptions on κ. All algebraic stacks (in the sense of
[47, Tag 026O]) will be of finite type over κ. All monoids will be commutative
and “toric”, i.e. finitely generated, sharp, integral and saturated.

2 Preliminaries

2.1 Log structures from boundary divisors and root stacks

In this section we briefly recall how certain boundary divisors D on a scheme
or algebraic stack X give rise to log structures and root stacks.

Definition 2.1. Let X be a scheme over κ, and D ⊂ X an effective Cartier
divisor. Recall that the divisor D is:

• simple normal crossings if for every x ∈ D the local ring OX,x is regular,
and there is a system of parameters a1, . . . , an ∈ OX,x such that the ideal
of D in OX,x is generated by a1, . . . , ak for some 1 ≤ k ≤ n, and
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• normal crossings if every x ∈ D has an étale neighbourhood where D
becomes simple normal crossings.

Note that if D is a normal crossing divisor on X , then every point of D is a
regular point of X , but away from D the scheme X can well be singular.
If X is an algebraic stack and D ⊂ X is an effective Cartier divisor, we say
that D is (simple) normal crossings if the pull-back of D to some smooth
presentation U → X , where U is a scheme, is a (simple) normal crossing
divisor on U .

Remark 2.2. If κ is a field, then the divisor D ⊂ X is normal crossings if and
only if étale locally around every point x ∈ D, the pair (X,D) is isomorphic to
the pair (An, {x1 · · ·xk = 0}) for some n ∈ N and 0 ≤ k ≤ n.
This is not necessarily true if κ is not a field. For example, if κ = Z the divisor
V (p) ∪ V (x) for a prime number p is simple normal crossings on X = A1 =
SpecZ[x], but X is not étale locally isomorphic to A2 around the point (p, x).

Later on (Section 4.2) we will consider a generalization of this notion, where the
divisor D is allowed to have simplicial singularities. Over a field κ one can define
this by asking that étale locally around every point x ∈ D, the pair (X,D) is
isomorphic to the pair (Specκ[P ]×An,∆P ×An) for some simplicial monoid P
and n ∈ N. Recall that a sharp fine saturated monoid P is simplicial if the
extremal rays of the rational cone PQ ⊂ P gp⊗ZQ are linearly independent, and
we denote by ∆P the toric boundary in the affine toric variety Spec κ[P ], i.e.
the complement of the torus Specκ[P gp], equipped with the reduced subscheme
structure. This weaker notion allows for some kinds of singularities along the
divisor D itself.
It is not clear to us how to formulate this notion in the “absolute” case (i.e. for
schemes over SpecZ), so we will circumvent this problem by using a canonically
defined root stack of a log scheme with simplicial log structure, and reducing
to Definition 2.1 on this root stack (see Definition 4.11).
Next we recall how ((simple) normal crossing) divisors induce associated log
structures and root stacks. We focus on the construction of root stacks, since
the full formalism of logarithmic geometry will not play an important role in
the paper. We refer the reader to [37] for an extensive introduction on log
geometry, and to the appendix of [9] for a quick overview of the basic concepts.
For more on root stacks, the reader can consult [7, 6, 51, 49].
Any effective Cartier divisor D in a scheme X induces a log structure, usually
called the compactifying log structure of the open embedding X \D ⊂ X , as
follows. The sheaf MD = {f ∈ OX | f |X\D ∈ O×

X\D} is a sheaf of submonoids

of OX (seen as a sheaf on the small étale site of X), where the monoid operation
is multiplication of regular functions. The inclusion α : MD → OX gives rise
to a log structure on X . If D is normal crossings, this log structure admits
local charts, and in fact will also be fine and saturated. Morally, the sheaf MD

keeps track of how many branches of D intersect at a point of X , and how their
local equations fit together in the local ring OX,x (more precisely, in its strict
henselization, since we are using the étale topology).
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If X is a stack rather than a scheme, the above procedure gives a log structure
on any given smooth presentation of X , and descent for fine log structures [39,
Appendix] gives a fine saturated log structure on X itself. We will denote the
resulting log scheme or stack by (X,D).

2.1.1 Root stacks along a single regular divisor

Assume that D ⊂ X is a simple normal crossing divisor with only one compo-
nent, i.e. a regular connected divisor, and X is an algebraic stack. Recall that
the quotient stack [A1/Gm] functorially parametrizes pairs (L, t) where L is a
line bundle and t is a global section of L.

As specified above, the effective Cartier divisor D on X induces a canonical log
structure, that in this simple case can be described as follows: the divisor D
determines a line bundle OX(D) on X together with a section σ ∈ Γ(OX(D))
having D as its zero locus, and this yields a tautological morphism s : X −→
[A1/Gm]. This equips X with a log structure by pulling back the canonical
log structure of [A1/Gm] (corresponding to the regular divisor [{0}/Gm] ⊂
[A1/Gm]) via s.

In this case, for r ∈ N the r-th root stack of the pair (X,D) can be de-
scribed as the functor that associates to a scheme T → X over X the groupoid
r
√

(X,D)(T ) of pairs (L, t) consisting of a line bundle on T with a global sec-
tion, and with an isomorphism (OX(D), σ)|T ∼= (L⊗r, t⊗r).

The stack r
√

(X,D) fits in a fiber square

r
√

(X,D) //

gr,1

��

[A1/Gm]

(−)r

��
X

s // [A1/Gm]

(1)

where (−)r is induced by the r-th power maps on A1 and on Gm, or equivalently
is the functor sending a pair (L, t) of a line bundle with a global section to
the pair (L⊗r, t⊗r). The reason for the notation gr,1 will be apparent later

(see Section 2.1.4). The construction of the stack r
√

(X,D) is compatible with
respect to pull-back along smooth morphisms towards X (in particular with
respect to Zariski and étale localization on X), i.e. if Y → X is smooth, we
have a canonical isomorphism r

√
(Y,D|Y ) ≃ r

√
(X,D)×X Y .

We denote by Dr the effective Cartier divisor on r
√

(X,D) obtained by tak-

ing the reduction of the closed substack g−1
r,1 (D) ⊂ r

√
(X,D), and we denote

ir : Dr → r
√

(X,D) the inclusion. We will refer to Dr as the universal effective

Cartier divisor on r
√

(X,D), since it is the universal r-th root of the divisor D
on X .
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Consider the commutative (non-cartesian) diagram

BGm

(−)r

��

// [A1/Gm]

(−)r

��
BGm

// [A1/Gm]

(2)

where the left vertical arrow is induced by the r-th power map (−)r : Gm −→
Gm. As explained in [3], Dr can be defined equivalently as the top left vertex
of the base change of diagram (2) along the tautological map s : X → [A1/Gm]:
in particular, there is a fiber product

Dr
//

fr,1

��

BGm

(−)r

��
D // BGm.

This implies that Dr → D is a µr-gerbe.
Zariski locally on X , where the line bundle OX(D) is trivial, the stack r

√
(X,D)

admits the following explicit description: assume also that X = SpecA is affine,
and let f ∈ A correspond to the section σ of OX(D) (so that D has equation
f = 0). Then we have an isomorphism

r
√

(X,D) ≃ [Spec (A[x]/(xr − f)) / µr]

where µr acts by multiplication on x. The divisor Dr ⊂ r
√

(X,D) is given by
the global equation x = 0, and is therefore isomorphic to [Spec (A/f)/µr] ≃
D ×Bµr.

2.1.2 Root stacks along a simple normal crossings divisor

Assume now that D is a simple normal crossing divisor on X , and denote
by D1, . . . , DN the irreducible components of D. In this case root stacks of
(X,D) are indexed by elements of NN . For ~r = (r1, . . . , rN ) ∈ NN , the root
stack ~r

√
(X,D) parametrizes tuples ((L1, t1), . . . , (LN , tN)), where (Li, ti) is a

ri-th root of (OX(Di), σi). Each pair (OX(Di), σi) determines a morphism
si : X → [A1/Gm], and the stack ~r

√
(X,D) is the fiber product of the diagram

~r
√

(X,D)

��

// [A1/Gm]N

(−)~r

��
X

s // [A1/Gm]N

where s : X → [A1/Gm]N is determined by the si and (−)~r is the map induced
by (−)ri : [A1/Gm]→ [A1/Gm] on the i-th component.
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Equivalently, ~r
√

(X,D) can be constructed by iteration from the previous case:

from X we first construct the stack r1
√

(X,D1) as in the previous section.

The preimages D̃2, . . . , D̃N of D2, . . . , DN to this stack give a simple normal
crossing divisor D̃, and we can replace (X,D) by the log stack ( r1

√
(X,D1), D̃),

and continue the process.
Finally, the stack ~r

√
(X,D) can also be identified with the fibered product of

the diagram

r1
√

(X,D1)

**❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱

r2
√

(X,D2)

$$❏
❏❏

❏❏
❏❏

❏❏
❏

. . . rN
√

(X,DN)

yytt
tt
tt
tt
tt

X

As in the case of one divisor, the construction of ~r
√

(X,D) is compatible with
smooth base change.
On the stack ~r

√
(X,D) there are N universal effective Cartier divisors Di,ri ,

obtained as the reduction of the preimage of Di to ~r
√

(X,D) via the projection
to X , or equivalently as the preimage of the corresponding divisor Di,ri on
ri
√

(X,Di) constructed in the previous section (we abuse notation slightly and
denote the two by the same symbol).
Zariski locally where X = SpecA is affine and each Di has a global equation
fi = 0 we have an isomorphism

~r
√

(X,D) ≃ [SpecA[x1, . . . , xN ]/(f1 − xr1
1 , . . . , fN − xrn

N )/
∏

i

µri ]

where each factor µri acts on xi by multiplication and trivially on the other
variables.

2.1.3 Root stacks for non-simple normal crossings

If D is only normal crossings, then the “correct” notion of root stack of X
along D is not the naive generalization of the simple normal crossings case, but
rather the subtler one put forward in [6]. We refer to that paper and to [49,
Section 2.2] for details about what follows.
We start by explaining with an example why the naive notion of root stacks
along the lines of the previous two cases is not the one that we want to work
with.

Example 2.3. Consider an irreducible nodal cubic D ⊂ P2, and the pair
(P2, D). We could, as in Section 2.1.1, start with the morphism P2 → [A1/Gm]
that classifies the divisor D (i.e. determined by the pair (OP2(D), σD), where
σD is the tautological section of OP2(D) cutting out D), and set r

√
(P2, D) to be

the fibered product of diagram (1). The unpleasant feature of this construction
is that it adds a stabilizer µr along all of D, including at the node, where one
would expect to have a µr × µr accounting for the two branches of D.
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The point here is that the morphism P2 → [A1/Gm] does not induce to the
“correct” logarithmic structure on P2 corresponding to the pair (P2, D), which
is the compactifying log structure briefly mentioned in Section 2.1, and does
distinguish the branches of D at the node.

The trouble with the previous example is remedied by working with sheaves
of weights (as explained in [6]), that allow to locally distinguish the branches
of D at the node, and to locally take roots separately along the branches.
We briefly recall what this entails: in general, the log structure of a fine satu-
rated log scheme X can be seen as a “Deligne–Faltings” structure, a symmetric
monoidal functor L : A→ DivX from a sheaf of saturated sharp monoids A on
the small étale site of X to the symmetric monoidal stack DivX of pairs (L, t)
of line bundles with global section. The monoidal operation of DivX is given
by tensor product.
In the case of simple normal crossings, the canonical (compactifying) log
structure MD → OX induced by D can be completely described in the
language of Deligne–Faltings structures by the symmetric monoidal functor
NN → DivX(X) sending the generator ei to the pair (OX(Di), σi) (this is a
“chart” for the log structure, in the sense of [6, Section 3.3]). If D is only
normal crossings though, the global components of the divisor D will not cap-
ture the geometry of the situation faithfully (as for the nodal cubic of Example
2.3), and the compactifying log structure is not described by the symmetric
monoidal functor NN → DivX(X) defined above.
In both cases (simple and non-simple normal crossings), the sheaf A is the
quotient MD/O×

X of the sheaf MD ⊂ OX consisting of regular functions that
only possibly vanish along D (mentioned in Section 2.1) by the subgroup O×

X

of invertible functions, and the symmetric monoidal functor L : A → DivX is
induced by the inclusion MD ⊆ OX by passing to (stacky) quotients by O×

X ,
obtaining

A = MD/OX → [OX/O×
X ] = [A1/Gm]X = DivX .

If D has simple normal crossings, then the sheaf A is isomorphic to the direct
sum

⊕N
i=1 ji∗NDi , where Di are the irreducible components of D, ji : Di → X

is the inclusion and NDi is the constant (étale) sheaf of monoids with stalk N on
Di. The map A→ DivX in this case sends the generator 1Di of the summand
ji∗NDi to the pair (OX(Di), σi) (where as usual σi is the section that cuts
out Di). If D is only normal crossings but non-simple, this description does
not hold anymore (it only holds étale locally where D becomes simple normal
crossings). For the nodal cubic of Example 2.3, the stalk of the sheaf A at the
node is N2 (accounting for the two branches) rather than just N.
For a general log scheme X and r ∈ N, the root stack

r√
X (in the sense of Borne

and Vistoli) parametrizes lifts of the symmetric monoidal functor L : A→ DivX

to a symmetric monoidal functor 1
rA→ DivX , where we are embedding A into

1
rA
∼= A via the map ·r : A → A. The image of the section 1

ra via this lift is
an r-th root of the pair L(a) = (La, sa). In the case of the nodal cubic D of
Example 2.3, i.e. of P2 equipped with the compactifying log structure induced
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by D, this results in trivial stabilizers outside of D, a stabilizer µr over points
of D that are not the node, and a stabilizer µr × µr at the node.
If D ⊂ X is a normal crossing divisor and U → X is a surjective étale morphism
such that the pull-back D|U is simple normal crossings, then the stack r

√
(X,D)

can be obtained from the root stack ~r
√

(U,D|U ) constructed in the previous
section (where ~r is the vector (r, . . . , r)) by descent.
Moreover, In place of 1

rA one can use an arbitrary Kummer extension A→ B
of sheaves of monoids, an injective morphism such that every section of B
locally has a multiple coming from A. This more general construction of the
root stack

B
√
X for Kummer extensions A→ B, where B is not of the form 1

rA,

will come up only in Section 4.2. In general, the stack
B
√
X is a tame Artin

stack (Deligne–Mumford in characteristic 0), and the projection
B√
X → X is

a coarse moduli space morphism.

2.1.4 The infinite root stack and the Kummer flat topos

In all the cases considered above, the various root stacks of (X,D) form an
inverse system. Let us temporarily use the letter r to denote either a natural
number, or a vector of natural numbers ~r ∈ NN , depending on the context that
we are considering. We write r | r′ to denote divisibility in the first case, and

that r1 | r′1, . . . , rN | r′N in the second case. We also write r′

r for the vector(
r′1
r1
, . . . ,

r′N
rN

)
.

With these conventions, if (X,D) is a pair where D is normal crossings and

r | r′, there is a natural projection gr′,r : r′
√

(X,D)→ r
√

(X,D), roughly defined
by raising the roots parametrized by the source stack to the r′/r-th power.
Since 1

√
(X,D) ≃ X , the map gr,1 : r

√
(X,D) → X is the natural projection.

If D is a regular divisor, then the maps gr′,r restrict to maps fr′,r : Dr′ → Dr

between the universal Cartier divisors on the two stacks (and analogously in
the case where D is simple normal crossings).
Moreover, gr′,r is a “relative root stack” morphism, in the sense that for a

morphism T → r
√

(X,D) where T is a scheme, the pull-back of gr′,r can be
seen as the projection from a root stack of the scheme T . Consequently, the
maps gr′,r have all the properties of a projection to a coarse moduli space of

a tame algebraic stack. More precisely, r′
√

(X,D) is canonically isomorphic to

the r′

r -th root stack of r
√

(X,D). Under this isomorphism gr′,r is identified with
the projection

r′
√

(X,D) ≃
r′

r

√
(

r
√

(X,D), Dr)→ r
√

(X,D).

The maps gr′,r equip the stacks { r
√

(X,D)}r with the structure of an inverse

system. The inverse limit ∞
√

(X,D) := lim←−r

r
√

(X,D) is the infinite root stack

of (X,D) [51]. This, contrarily to the finite root stacks, is not algebraic, but
has a local description as a quotient stack, that allows some control over quasi-
coherent sheaves (and in particular perfect complexes) on it.

Documenta Mathematica 25 (2020) 955–1009



968 S. Scherotzke, N. Sibilla, M. Talpo

It will be convenient for us to work with a directed subsystem of root
stacks which is cofinal in { r

√
(X,D)}r. Namely we will consider the subsystem

{ n!
√

(X,D)}n∈N, where ~n! := (n!, . . . , n!) if D has more than one component.
Note that the restriction of the ordering given by divisibility on N to the subset
{n!}n∈N ⊆ N coincides with the usual ordering of the naturals (i.e. r! | s! if
and only if r ≤ s), and that this subsystem is cofinal, since given an index

~r = (r1, . . . , rN ), we have ~r | ~M ! with M = lcm(ri). Therefore we have a
canonical isomorphism ∞

√
(X,D) ≃ lim←−n

n!
√

(X,D).
Let us also recall that every log scheme X has an associated Kummer flat topos
XKfl. We omit a discussion of this construction, since for the present paper it
can be safely taken as a black box. We refer the reader to [51, Section 6.2] or
[36, Section 2] for the definition and basic properties. One can also define a
“small fppf site” of the infinite root stack

∞
√
X, and as proven in [51, Theorem

6.16], the resulting topos
∞√
X fppf is isomorphic to the Kummer flat topos XKfl

of the fine saturated log scheme X .
We will also consider the Kummer flat topos XKfl for X a log algebraic stack.
To the best of our knowledge this has not been discussed in the literature
before. The conscientious reader can take the equivalence with the small fppf
topos of the infinite root stack

∞
√
X as a definition for XKfl in this setting. One

can also write down a definition for the Kummer flat topos in analogy with
the one for schemes, and use [51, Theorem 6.16] to prove that this is indeed
equivalent to the small fppf topos of the infinite root stack.

2.2 ∞-categories and categories of sheaves

Throughout the paper we will use the formalism of (∞, 1)-categories, the stan-
dard reference is Lurie’s work [34, 35]. The main reason for working with
∞-categories is that additive invariants, and in particular algebraic K-theory,
cannot be computed from the underlying triangulated categories alone: they are
not invariants of triangulated categories but rather of their enhancements. We
will work with stable (∞, 1)-categories as an enhancement of triangulated cate-
gories. We will need very little from the theory of∞-categories, and the reader
could replace stable (∞, 1)-categories with κ-linear dg categories throughout.
From now on we will refer to (∞, 1)-categories just as ∞-categories. If C is
an ∞-category, and A and B are objects in C, we denote by HomC(A,B)
the mapping space between A and B. All limits and colimits of ∞-categories
appearing in the paper are to be understood in the ∞-categorical sense. We
say that a diagram of ∞-categories

C1 F //

G

�� ��

C2
H

��
C3 K // C4

is commutative if there is a natural transformation α : HF ⇒ KG which is an
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equivalence when passing to homotopy categories.
We will be mostly interested in stable idempotent-complete ∞-categories. Sta-
ble∞-categories are an enhancement of triangulated categories: if C is a stable
∞-category its homotopy category Ho(C) is triangulated. An important source
of stable∞-categories are the∞-categorical derived categories of Grothendieck
abelian categories, see [35] Definition 1.3.5.8. We refer the reader to Section 2.2
of [4] for a summary of the theory of stable ∞-categories which contains most
of the facts that we will need in this paper. Small stable idempotent-complete
∞-categories form a presentable ∞-category which is denoted Catperf∞ . In par-
ticular Catperf∞ has all small limits and colimits. As explained in [4] there
is a well-defined notion of tensor product of stable idempotent-complete ∞-
categories. This endows Catperf∞ with a symmetric monoidal structure. If κ is
a commutative ring we denote by Perf(κ) the symmetric monoidal stable ∞-
category of perfect κ-modules: if κ−mod is the abelian category of κ-modules,
Perf(κ) is the subcategory of compact objects in the the ∞-categorical derived
category D(κ − mod) (see Definition 1.3.5.8 of [35]). We denote Catperf∞,κ the
symmetric monoidal ∞-category of idempotent-complete stable ∞-categories
tensored over Perf(κ), see Section 4.1 of [24] for more details on this construc-
tion. We will refer to objects in Catperf∞,κ as κ-linear ∞-categories.
For later reference we recall from [43] a general result on colimits of ∞-
categories.

Proposition 2.4. Let I be a filtered category, {Ci}i∈I be a filtered system of
∞-categories and assume that all the structure maps αi→j : Ci → Cj are fully
faithful. Then the colimit C := lim−→Ci is the ∞-category with

• objects given by the union
⋃

i∈I Ob(Ci), and

• the Hom complex between Ai ∈ Ci and Aj ∈ Cj is given by

HomC(Ai, Aj) = HomCl
(αl→i(Ai), αl→j(Aj))

where l is any object of I that is the source of morphisms j ← l → i.

We will be working with stable categories of quasi-coherent sheaves on schemes
and stacks. A survey of all basic facts and definitions on∞-categories of quasi-
coherent sheaves can be found in Section 2 and 3 of [2]. Let X be a stack. We
denote:

• by qcoh(X) the abelian category of quasi-coherent sheaves on X , and by
Qcoh(X), the stable ∞-category of quasi-coherent sheaves on X ;

• by coh(X) the abelian category of coherent sheaves on X , and by Coh(X)
the stable ∞-category of coherent sheaves on X .

Remark 2.5. Recall from [2] that Qcoh(X) is defined as the limit

Qcoh(X) := lim←−
Spec(A)→X

Qcoh(Spec(A))
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where Spec(A) → X runs over all maps from derived affine schemes with tar-
get X . In general Qcoh(X) is different from the∞-categorical derived category
D(qcoh(X)). By [17, Proposition 2.4.3], however, if X is a quasi-compact and
quasi-separated classical Artin stack the respective subcategories of objects
that are bounded below are equivalent

Qcoh(X)+ ≃ D(qcoh(X))+

The tensor product of quasi-coherent sheaves equips Qcoh(X) with a symmetric
monoidal structure. We define Perf(X), the ∞-category of perfect complexes,
as the full subcategory of dualizable objects in Qcoh(X). As proved in Propo-
sition 3.6 of [2] this is equivalent to the ordinary definition of perfect complexes
as objects that are locally equivalent to complexes of vector bundles. Let I be
a small cofiltered category, and let {Xi}i∈I be a pro-object in stacks.

Definition 2.6. We set Perf({Xi}i∈I) := lim−→i
Perf(Xi) as an ∞-category.

Let X be a log scheme. We will apply Definition 2.6 to the pro-object in stacks
given by the root stacks of X together with the root maps between them,
{ r√

X}r∈N. As we prove in Proposition 2.25 of [46], which we recall below, under
appropriate assumptions there is an equivalence Perf(

∞
√
X) ≃ lim−→r

Perf(
r
√
X).

Although in [46] Proposition 2.25 was stated for the dg categories of perfect
complexes, the proof given there works without variations for ∞-categories of
perfect complexes over an arbitrary ground ring.

Proposition 2.7 ([46, Proposition 2.25]). Let X be a noetherian fine saturated
log algebraic stack with locally free log structure over κ. Then there is an
equivalence of ∞-categories

Perf(
∞√
X) ≃ lim−→

r

Perf(
r√
X).

Proposition 2.8. Let X be a noetherian fine saturated log algebraic stack with
locally free log structure over κ (this holds in particular if the log structure comes
from a normal crossing divisor). Then there is an equivalence of ∞-categories
Perf(XKfl) ≃ Perf(

∞
√
X).

Proof. The proof is very similar to the proof of Proposition 2.7 given in
[46]. By Corollary 6.17 of [51] there is an equivalence of abelian categories
coh(XKfl) ≃ coh(

∞
√
X), which yields an equivalence between the stable ∞-

categories Coh(XKfl) ≃ Coh(
∞
√
X). Also, the structure sheavesOXKfl

andO∞√
X

are coherent, see Proposition 4.9 of [51]. Thus, in the terminology of [16, Sec-
tion 1.5], the ringed topoi XKfl and

∞
√
X are eventually coconnective. As in

the proof of Proposition 1.5.3 in [16], this implies that there are fully-faithful
inclusions

Perf(XKfl) ⊆ Coh(XKfl), Perf(
∞√
X) ⊆ Coh(

∞√
X).
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Further, the categories of perfect complexes are the full subcategories of dual-
izable objects. In formulas, we can write

Perf(XKfl) ≃ Coh(XKfl)dual, Perf(
∞√
X) ≃ Coh(

∞√
X)dual.

We obtain the following chain of equivalences, which implies the statement

Perf(XKfl) ≃ Coh(XKfl)dual ≃ Coh(
∞√
X)dual ≃ Perf(

∞√
X).

Remark 2.9. Let X be a noetherian fine saturated log algebraic stack with
locally free log structure over κ. In this paper we take Perf(

∞√
X) as our chosen

model for the category of perfect complexes over the log scheme X . By Propo-
sition 2.8 this coincides with the category of perfect complexes on the Kummer
flat topos of X and is therefore well suited to our applications to Kummer flat
invariants of X . However we could have obtained an a priori different model of
perfect complexes on X by working with the abelian category of quasi-coherent
parabolic sheaves with rational weights on X , Par(X), and then taking com-
pact objects inside its ∞-categorical derived category D(Par(X)). It turns out
that this actually gives an equivalent category. Let us briefly explain why.

• By Theorem 7.3 of [51] the abelian categories Par(X) and qcoh(
∞√
X) are

equivalent.

• From Remark 2.5 and Proposition 2.7 it easily follows that the subcat-
egories of bounded-below objects in D(Par(X)) ≃ D(qcoh(

∞
√
X)) and

in QCoh(
∞√
X) are equivalent. Since compact objects are bounded, this

implies that the subcategory of compact objects in D(Par(X)) coincides
with Perf(

∞
√
X), as desired.

2.3 Exact sequences of ∞-categories

Let C be a stable∞-category. We say that two objects A and A′ are equivalent
if there is a map A → A′ that becomes an isomorphism in the homotopy
category of C. If ι : C′ → C is a fully faithful functor, we often view C′ as
a subcategory of C: accordingly, we will usually denote the image under ι of
an object A of C′ simply by A rather than ι(A). We will always assume that
subcategories are closed under equivalence. That is, if C′ is a full subcategory
of C, A is an object of C′, and A′ is an object of C which is equivalent to A, we
will always assume that A′ lies in C′ as well.
Recall that if D is a full subcategory of C, (D)⊥ denotes the right orthogonal of
D, i.e. the full subcategory of C consisting of the objects B such that the Hom-
space HomC(A,B) is contractible for every object A ∈ D. Let {C1, . . . , Cn} be
a finite collection of stable subcategories of C such that, for all 1 ≤ i ≤ n− 1,
Ci ⊆ (Ci+1)⊥. Then we denote by 〈C1, . . . , Cn〉 the smallest stable subcategory
of C containing all the subcategories Ci.
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An exact sequence of stable ∞-categories is a sequence

A F−→ B G−→ C (3)

which is both a fiber and a cofiber sequence in Catperf∞ . This concept captures
the classical notion of Verdier localization of triangulated categories in the
setting of∞-categories: as shown in Section 5.1 of [4], (3) is an exact sequence
if and only if the sequence of homotopy categories

Ho(A)
Ho(F )−−−−→ Ho(B)

Ho(G)−−−−→ Ho(C)

is a classical Verdier localization of triangulated categories (up to idempotent-
completion of Ho(C)). This implies in particular that the fully-faithfulness of
a functor between stable∞-categories can be checked at the level of homotopy
categories.
The functor F admits a right adjoint FR exactly if G admits a right adjoint
GR, and similarly for left adjoints. This is proved in [29, Proposition 4.9.1] for
triangulated categories but the extension to ∞-categories is straightforward.
If F (or equivalently G) admits a right adjoint we say that (3) is a split exact
sequence. In this case the functor GR is fully faithful and we have that B =
〈GR(C),A〉. As we indicated earlier, since GR is fully faithful we will drop it
from our notations whenever this is not likely to create confusion: thus we will
denote GR(C) simply by C, and write B = 〈C,A〉.

2.4 Preordered semi-orthogonal decompositions

In this section we introduce preordered semi-orthogonal decompositions of ∞-
categories. This concept was also discussed in [3]. See [31] for a survey of
semi-orthogonal decompositions (sod-s). Let C be a stable ∞-category, and
let P be a preordered set. Consider a collection of full stable subcategories
ιx : Cx −→ C indexed by x ∈ P .

Definition 2.10. We say that the subcategories Cx form a preordered semi-
orthogonal decomposition (psod) of type P if they satisfy the following three
properties.

• For all x ∈ P, Cx is a non-zero admissible subcategory: that is, the
embedding ιx admits a right adjoint and a left adjoint, which we denote
by

rx : C −→ Cx and lx : C −→ Cx.

• If y <P x, i.e. y ≤P x, and x 6= y, then Cy ⊆ C⊥x .

• C is the smallest stable subcategory of C containing all the subcategories
Cx, x ∈ P.

Definition 2.11. If C is equipped with a psod of type (P,≤), we write C =
〈Cx, x ∈ (P,≤)〉.
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Definition 2.12. Let C = 〈Cx, x ∈ (P,≤)〉 and D = 〈Dy, y ∈ (Q,≤)〉 be
categories equipped with psod-s. Let F : C → D be a fully-faithful functor. We
say that F is compatible with the psod-s if for all x ∈ P there exists y ∈ Q such
that F (Cx) = Dy.

Remark 2.13. The definition of psod makes sense also for classical triangulated
categories, and not just for ∞-categories. We mentioned in Section 2.3 that
a sequence of stable ∞-categories is exact if and only if the corresponding
sequence of homotopy categories is a Verdier localization. Also, F : A⇆ B :G
is an adjoint pair of functors between stable ∞-categories if and only if

Ho(F ) : Ho(A) ⇆ Ho(B) :Ho(G)

is an adjoint pair between the homotopy categories. As a consequence psod-s
can be checked at the level of homotopy categories: that is, a collection of
admissible subcategories Cx gives a psod of type P of the ∞-category C if and
only if Ho(Cx) gives a psod of type P of the triangulated category Ho(C).

Definition 2.14. Let P and Q be preordered sets. The join of P and Q is
the preordered set

P ∗Q := (P
∐

Q,≤P∗Q)

defined as follows. Let x and y be in P
∐

Q:

• if x, y ∈ P, then x ≤P∗Q y if and only if x ≤P y;

• if x, y ∈ Q, then x ≤P∗Q y if and only if x ≤Q y;

• if x ∈ P and y ∈ Q, then x ≤P∗Q y.

Lemma 2.15. Let A F−→ B G−→ C be an exact sequence of stable idempotent-
complete ∞-categories. Assume that A is admissible, and that A and C carry
psod-s of type PA and PC , respectively. Then B carries a canonical psod of type
PB := PA ∗ PC such that for all x ∈ PB the component Bx is equivalent to Ax,
if x is in PA, and to Cx, if x is in PC .

Proof. It follows from the assumptions that the functor G has a right adjoint
GR : C → B. The admissible subcategories Cx, x ∈ PC , are admissible sub-
categories of B under the image of GR, and they are all right orthogonal to
the image of A under F . In particular, they are right orthogonal to F (Ax),
x ∈ PA, and this concludes the proof.

2.5 The Chern character

In section 5 we will study the Chern character in the logarithmic setting. For
later reference, we give below an account of the Chern character that follows
closely [4].
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Let S∞ be the ∞-category of spectra. It follows from [4] that the Chern
character can be defined in the abstract setting of ∞-categories as a natural
transformation between additive invariants

ch: K(−)⇒ HH(−) : Catperf∞,κ −→ S∞ (4)

where:

• K(−) is the algebraic K-theory,

• HH(−) is the Hochschild complex viewed as an object in spectra.

As explained in Section 10 of [4] the Chern character (4) is uniquely determined
by the choice of the element 1 ∈ HH(Perf(κ)) ≃ κ. Assume now that κ is a field
of characteristic 0. Then the Chern character (4) captures the ordinary de Rham
Chern character, we refer to [8] for a thorough discussion of these aspects. More
precisely, let X be a smooth and proper scheme over κ. Denote by HdR(X)
be the de Rham cohomology of X, which is the hypercohomology of the de
Rham complex. The HKR theorem gives an isomorphism HH0(Perf(X)) ∼=⊕

k≥0 H2k
dR(X) . Then the composition

chdR : K0(X)
ch−→ HH0(Perf(X))

∼=−→
⊕

k≥0

H2k
dR(X),

recovers the ordinary Chern character taking values in the even de Rham co-
homology of X .

3 Perfect complexes over infinite root stacks

In this section we construct sod-s for infinite root stacks. In 3.1 and 3.2 we
treat separately the case of root stacks of a single Cartier divisor, and of a
simple normal crossing divisor with an arbitrary number of components. We
start by reviewing the results obtained in [25] and [3] for finite root stacks of
simple normal crossing divisors. We construct recursively compatible sod-s for
the ∞-categories of perfect complexes of these root stacks, for a cofinal subset
of indices. This will be key to constructing sod-s on the infinite root stack.
In Section 4 we explain how to extend these results beyond the normal crossing
case: in Section 4.1 we extend our investigation to root stacks of general (not
necessarily simple) normal crossing divisors, and in Section 4.2 we discuss the
case of log stacks with simplicial log structure.

3.1 Root stacks of a regular divisor

Let X be an algebraic stack, and D ⊂ X a regular Cartier divisor. We use
the notations of Section 2.1.1 in the preliminaries. Recall in particular that
we denote by by gr′,r the projection r′

√
(X,D) → r

√
(X,D) for r | r′, by Dr

the universal Cartier divisor on r
√

(X,D), i.e. the reduction of the preimage
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g−1
r,1 (D) ⊂ r

√
(X,D). Further, we denote by ir : Dr → r

√
(X,D) the closed

embedding.

Lemma 3.1. The category Perf(Dr) splits as the direct sum of r copies of
Perf(D). More precisely, if Zr is the Cartier dual of µr, there are natural equiv-
alences

Perf(Dr)
(1)≃

⊕

χ∈Zr

Perf(Dr)χ
(2)≃ Perf(D)⊗Perf(Bµr) ≃ Perf(D)⊗

⊕

χ∈Zr

Perf(κ).

Proof. This is a well-known fact, that applies more generally to gerbes banded
by a diagonalizable group scheme, so we limit ourselves to a brief sketch. Equiv-
alence (1) comes from the character decomposition of Perf(Dr). If χ is in Zr,
let κ(χ) be the corresponding µr-representation. Then equivalence (2) maps
the twisted structure sheaf Oχ

D to OD ⊗ κ(χ).

Lemma 3.2. Let r, r′ ∈ N, and r | r′. Then the pull-back functors

g∗r′,r : Perf(
r
√

(X,D)) −→ Perf(
r′
√

(X,D))

are fully faithful.

Proof. Since gr′,r is a relative coarse moduli space map, the natural map

Or
√

(X,D)
−→ gr′,r,∗Or′

√
(X,D)

is an equivalence in Perf( r
√

(X,D)). This eas-

ily implies that g∗r′,r is fully faithful by the adjunction with gr′,r∗ and the
projection formula (see for instance [3, Lemma 4.4]).

Let Z∗
r = Zr \ {0} be the set of non-trivial characters of µr. In order to keep

track of indices it will be convenient to identify Zr and Z∗
r with subsets of

Q/Z = Q ∩ (−1, 0] as follows:

Zr
∼=

{
−r − 1

r
, . . . ,−1

r
, 0

}
⊂ Q ∩ (−1, 0],

Z∗
r
∼=

{
−r − 1

r
, . . . ,−1

r

}
⊂ Q ∩ (−1, 0].

We equip Zr and Z∗
r with the total order ≤ given by

−r − 1

r
< −r − 2

r
< . . . < −1

r
< 0.

Here −k
r should be thought of as the element r−k in {1, . . . , r}, equipped with

the standard ordering. This (perhaps unusual) identification will be convenient
when we pass to the limit for r →∞.
Following Theorem 4.7 of [3], for every χ ∈ Z∗

r we consider the fully faithful
embedding

Φχ : Perf(D)→ Perf(
r
√

(X,D))
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given by the composite

Perf(D)
≃−→ Perf(Dr)χ

⊂−→ Perf(Dr)
ir,∗−→ Perf(

r
√

(X,D)).

Note that if we see χ as an element of {1, . . . , r}, in the notation of [3] the
objects of the image of Φχ are actually equipped with the action corresponding
to the character −χ ≡ r − χ ∈ Zr.

Remark 3.3. Each individual summand Perf(Dr)χ of Perf(Dr) embeds fully

faithfully in the category Perf( r
√

(X,D)) via Φχ, which is a restriction of ir,∗
to Perf(Dr)χ. However the functor ir,∗ itself is not fully faithful.

We introduce the following notations:

• Let χ be in Zr. If χ 6= 0 we denote by Aχ ⊂ Perf( r
√

(X,D)) the image of

Perf(D) under Φχ, and we denote by A0 ⊂ Perf( r
√

(X,D)) the image of
Perf(X) under g∗r,1.

• We denote by Qr the subcategory of Perf( r
√

(X,D)) generated by the
subcategories Aχ for χ ∈ Z∗

r .

The next theorem is proved in [3] using the language of classical triangulated
categories, but the proof applies without variations to the ∞-setting.

Proposition 3.4 ([3, Theorem 4.7]).

1. The category A0 is an admissible subcategory of Perf( r
√

(X,D)).

2. The right orthogonal of A0 inside Perf( r
√

(X,D)) is the subcategory Qr in-
troduced above. There is a psod of type (Z∗

r ,≤)

Qr = 〈Aχ, χ ∈ (Z∗
r ,≤)〉.

3. By items (1) and (2), the category Perf( r
√

(X,D)) has a psod of type (Zr,≤)

Perf(
r
√

(X,D)) = 〈Qr,A0〉 = 〈Aχ, χ ∈ (Zr ,≤)〉.

Consider the directed system of root stacks { n!
√

(X,D)}n∈N whose indices are
the factorials, with the natural projections

· · · −→ 3!
√

(X,D)
g3!,2!−−−→ 2!

√
(X,D)

g2!,1!−−−→ 1!
√

(X,D) = X.

We point out once again that this subsystem of indices is identified with N with

its standard ordering, i.e. if n ≤ m we have a map m!
√

(X,D)
gm!,n!−−−−→ n!

√
(X,D),

and these are compatible in the obvious sense. We will inductively construct
a tower of compatible sod-s on the categories of perfect complexes on these
root stacks. This is done in Proposition 3.5 below by applying iteratively
Proposition 3.4. For n ≥ 2, the sod-s we will construct on Perf(n!

√
(X,D)) will
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be different from the sod-s on the category of perfect complexes on the root
stacks of (X,D) given directly by Proposition 3.4 (see Example 3.6).
We will equip the set Q/Z = Q∩ (−1, 0] with a total order ≤! which is not the
restriction of the usual ordering of the real numbers. First of all we define the
order ≤! on Zn! recursively, as follows.

• On Z2! = {− 1
2 , 0} we set − 1

2 <! 0.

• Having defined ≤! on Z(n−1)!, let us consider the natural short exact
sequence

0→ Z(n−1)! → Zn!
πn−−→ Zn → 0,

where Zn = {−n−1
n , . . . ,− 1

n , 0} is equipped with the standard order ≤
described above. Given two elements a, b ∈ Zn!, we set a ≤! b if ei-
ther πn(a) < πn(b), or πn(a) = πn(b) and a ≤! b in Z(n−1)!, where we
are identifying the fiber π−1

n (πn(a)) ⊆ Zn! with Z(n−1)! in the canonical
manner.

For example, on Z3! = {− 5
6 ,− 4

6 ,− 3
6 ,− 2

6 ,− 1
6 , 0}, the resulting ordering is de-

scribed by

−5

6
<! −2

6
<! −4

6
<! −1

6
<! −3

6
<! 0.

Now every element in Q ∩ (−1, 0] can be written as − p
n! for some p ∈ N and

n ∈ N\{0}. This expression is unique if we require n to be as small as possible,
and we call this the normal factorial form. Let χ = − p

n! , χ
′ = − q

m! ∈ Q∩(−1, 0]
be in normal factorial form. We write χ <! χ′ if:

• n > m, or

• n = m and − p
n! <

! − q
n! in Zn!.

For example, with this ordering we have − 1
24 <! − 2

6 <! − 4
6 <! − 1

2 .

Proposition 3.5. For every n ∈ N the category Perf(n!
√

(X,D)) has a psod
of type (Zn!,≤!)

Perf(
n!
√

(X,D)) = 〈A!
χ, χ ∈ (Zn!,≤!)〉,

where

• A!
0 ≃ Perf(X), and

• A!
χ ≃ Perf(D) for all χ ∈ Z∗

n!.

Further, for all n ∈ N the functor

g∗(n+1)!,n! : Perf(
n!
√

(X,D)) −→ Perf(
(n+1)!

√
(X,D))

is compatible with the psod-s.
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We remark again that for a given χ ∈ Z∗
n!, it is not necessarily the case that

Aχ = A!
χ as subcategories of Perf(n!

√
(X,D)) (see Example 3.6 below).

Proof. We construct the sod with the desired properties on Perf(n!
√

(X,D))
inductively.
Basis: n = 2. We take the sod on Perf( 2!

√
(X,D)) given by Proposition 3.4.

We take A0 and A 1
2

to be the same as in Proposition 3.4. This clearly gives a

psod of Perf( 2
√

(X,D)) of type (Z2,≤!) satisfying the properties of the claim.
Inductive step: n− 1→ n. Recall that there is a natural identification

n!
√

(X,D) ≃ n

√
(

(n−1)!
√

(X,D), D(n−1)!). (5)

Further, the projection

n!
√

(X,D) ≃ n

√
(

(n−1)!
√

(X,D), D(n−1)!) −→ (n−1)!
√

(X,D)

coincides under this identification with the map gn!,(n−1)!. We then apply
Proposition 3.4 to (5). This yields a psod of type (Zn,≤)

Perf(
n!
√

(X,D)) = 〈Qn,B0〉 = 〈Bζ , ζ ∈ Zn〉,

where:

• the subcategory B0 ≃ Perf( (n−1)!
√

(X,D)) is given by the image of
g∗n!,(n−1)!, and

• the subcategory Bζ ≃ Perf(Dn!)ζ ≃ Perf(D(n−1)!) is given by the image
of Φζ .

Now note that by Lemma 3.1 for all ζ ∈ Z∗
n the category Bζ splits as a direct

sum of categories labelled by characters in Z(n−1)!, that is:

Bζ ≃ Perf(D(n−1)!) ≃
⊕

ξ∈Z(n−1)!

Perf(D)ξ =:
⊕

ξ∈Z(n−1)!

Bζ,ξ.

We identify the subcategories Bζ,ξ with the factors A!
χ for χ ∈ Z∗

n! appearing
in the statement of the proposition by setting

A!
ζ

(n−1)!
+ξ

:= Bζ,ξ.

Note that we can make sense of the expression ζ
(n−1)! + ξ as an element of

Z∗
n! because we have identified the sets of characters Zn!, Z(n−1)! and Zn with

subsets of Q∩ (−1, 0]. It is easy to verify that we can write as sums of the form
ζ

(n−1)! + ξ exactly the elements of Zn! which are in the complement of Z(n−1)!,

that is
{

ζ

(n− 1)!
+ ξ

∣∣∣ ζ ∈ Z∗
n, ξ ∈ Z(n−1)!

}
= Zn! \ Z(n−1)! ⊂ Q ∩ (−1, 0].
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Thus we conclude that the subcategory Qn has a psod of type (Zn!\Z(n−1)!,≤!)

Qn = 〈A!
χ, χ ∈ (Zn! \ Z(n−1)!,≤!)〉,

such that A!
χ ≃ Perf(D) for all χ ∈ Zn! \ Z(n−1)!.

By the inductive hypothesis B0 ≃ Perf( (n−1)!
√

(X,D)) carries a psod of type
(Z(n−1)!,≤!)

B0 ≃ Perf(
(n−1)!

√
(X,D)) = 〈A!

χ, χ ∈ (Z(n−1)!,≤!)〉

such that:

• A!
0 ≃ Perf(X), and

• A!
χ ≃ Perf(D) for all χ ∈ Z∗

(n−1)!.

We can thus write Perf(n!
√

(X,D)) = 〈Qn,B0〉 as

〈〈A!
χ, χ ∈ (Zn! \ Z(n−1)!,≤!)〉, 〈A!

χ, χ ∈ (Z(n−1)!,≤!)〉〉.

Note that the we have a canonical isomorphism of ordered sets

(Zn! \ Z(n−1)!,≤!) ∗ (Z(n−1)!,≤!) ∼= (Zn!,≤!).

Thus, by Lemma 2.15 the category Perf(n!
√

(X,D)) carries a psod of type
(Zn!,≤!),

Perf(
n!
√

(X,D)) = 〈A!
χ, χ ∈ (Zn!,≤!)〉.

The compatibility with the psod-s of the pull-back along root maps follows by
construction. This concludes the proof.

Example 3.6. For n = 2, by construction our psod coincides with the one given
by Proposition 3.4. For n = 3 though, the psod given by that proposition for
3!
√

(X,D) looks like

Perf(
6
√

(X,D)) = 〈A− 5
6
,A− 4

6
,A− 3

6
,A− 2

6
,A− 1

6
,Perf(X)〉 (6)

(where A− k
n

is the factor Φk in Theorem 4.7 of [3]). The psod that was con-

structed in the previous proposition, on the other hand, has the form

〈B− 2
3
,B− 1

3
,Perf(

2
√

(X,D))〉,

where B− k
3
≃ Perf(D2) ≃ Perf(D)− 1

2
⊕ Perf(D)0, and Perf( 2

√
(X,D)) =

〈A!
− 1

2

,Perf(X)〉, embedded in Perf( 6
√

(X,D)) via pullback along the projec-

tion 6
√

(X,D)→ 2
√

(X,D).
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Following the proof of the previous proposition, the first term B− 2
3

gives us

A!
− 5

6

⊕ A!
− 2

6

, the second term B− 1
3

gives A!
− 4

6

⊕ A!
− 1

6

, and A!
− 3

6

is defined as

the image of A!
− 1

2

⊆ Perf( 2
√

(X,D)). Overall, the psod looks like

〈A!
− 5

6
,A!

− 2
6
,A!

− 4
6
,A!

− 1
6
,A!

− 3
6
,Perf(X)〉

(note that this reflects exactly the ordering ≤! on Z3!).
In fact we could swap A!

− 2
6

and A!
− 4

6

, and we have A− k
6

= A!
− k

6

for all values

of k except 3: the subcategory A!
− 3

6

does not contain the structure sheaf of D

equipped with character − 3
6 , but only thickened versions of it.

Set Q/Z∗ := Q/Z \ {0}.

Proposition 3.7. The category Perf(∞
√

(X,D)) has a psod of type (Q/Z,≤!)

Perf(
∞
√

(X,D)) = 〈A!
χ, χ ∈ (Q/Z,≤!)〉,

where:

• A!
0 ≃ Perf(X), and

• A!
χ ≃ Perf(D) for all χ ∈ Q/Z∗.

Proof. Factorials are cofinal in the filtered set of natural numbers ordered by
divisibility. This together with Proposition 2.7 implies that Perf(∞

√
(X,D)) is

the colimit of the directed system of fully-faithful embeddings

Perf(X)
g∗
2!,1!−−−→ Perf(

2!
√

(X,D))
g∗
3!,2!−−−→ Perf(

3!
√

(X,D))
g∗
4!,3!−−−→ · · · (7)

By Proposition 3.5 the n-th category in the directed system (7) carries a psod
of type (Zn!,≤!). Further the structure functors are compatible with the sod-s:
the compatibility is witnessed by the inclusion of preordered sets

(Z(n−1)!,≤!) ⊂ (Zn!,≤!),

which embeds the indexing set of the sod of Perf( (n−1)!
√

(X,D)) into the index-

ing set of the sod of Perf(n!
√

(X,D)).

By Proposition 2.4, Perf(∞
√

(X,D)) is given by the union of the categories

making up the directed system (7). This implies that Perf(∞
√

(X,D)) carries
a psod of type ⋃

n∈N

(Zn!,≤!) = (Q/Z,≤!).

It is immediate to see that this sod satisfies the properties (1) and (2) from the
statement. This concludes the proof.
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3.2 Root stacks of simple normal crossing divisors

As shown in [3], the categories of perfect complexes over the root stacks of
simple normal crossing divisors carry a canonical sod. We review that result
in a slightly different formulation, which is better adapted to our purposes.
Further, we extend it to the infinite root stack. We start by fixing notations.
Let X be an algebraic stack and D be a simple normal crossing divisor on X .
We denote by D1, . . . , DN its irreducible components. As recalled in the pre-
liminaries, this gives rise to a log stack (X,D). Denote by I the set {1, . . . , N}.
The stack X carries a canonical stratification, given by the closed substacks
of D obtained as intersections of the Di. If J is a subset of I, we denote
DJ := ∩j∈JDj if J 6= ∅, and we set D∅ := X otherwise. Let SI := {J ⊆ I}
be the power set of I, and S∗

I denote the subset SI \{∅}. We often equivalently
regard I as the set of irreducible components of D, SI as the set of strata of
(X,D), and S∗

I as the set of the strata of positive codimension. We equip SI

with a preorder ≤ that keeps track of the inclusions of strata, but it is finer
than that. Namely we let ≤ be the coarsest preorder on SI with the following
two properties:

• if J ⊆ J ′, then J ′ ≤ J , and

• if d is the dimension of X , then the assignment (SI ,≤)→ (N,≤) mapping
a subset J to d − |J | is an order-reflecting map.

By “order-reflecting map” we mean a map between preordered sets f : P → Q
such that f(p) ≤ f(p′) implies p ≤ p′. Note in particular that these conditions
impose both J ≤ J ′ and J ′ ≤ J if |J | = |J ′|.
Recall that the root stacks of (X,D) are indexed by multi-indices ~r =

(r1, . . . , rN ) ∈ NN . For elements ~r, ~r′ of NN we write ~r = (r1, . . . , rN ) |
(r′1, . . . , r

′
N ) = ~r′ if r1 | r′1, . . . , rN | r′N . Recall also that the root stack ~r

√
(X,D)

in this case can be realized as the limit of the diagram of stacks

r1
√

(X,D1)

**❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱

r2
√

(X,D2)

$$❏
❏❏

❏❏
❏❏

❏❏
❏

. . . rN
√

(X,DN )

vv♠♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠

X

If ~r, ~r′ ∈ NN , ~r | ~r′, we denote the natural maps between root stacks by

g~r′,~r :
~r′
√

(X,D) −→ ~r
√

(X,D).

3.2.1 Root stacks and the strata of (X,D)

Let ~r ∈ NN . We will use the following notation.

• Let J = {j1, . . . , jk} ⊆ I be non-empty. We denote by ~rJ ∈ NN the index
vector obtained from ~r by setting to 1 all the entries whose index is not
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in J . In formulas, letting ~ej be the size N vector with j-th entry 1 and
all other entries equal to 0, we can write

~rJ =
∑

j∈J

rj ~ej +
∑

j /∈J

~ej.

Note that ~rJ | ~r.

• With slight abuse of notation, for all i ∈ I, we denote by Di,ri both the

universal effective Cartier divisor on the stack ri
√

(X,Di) (obtained as

reduction of the preimage of Di), and its pull-back to ~r
√

(X,D). Whenever
we use this notation we will specify which of the two meanings is the
intended one.

We denote by DJ,~r the limit of the diagram of stacks

Dj1,rj1

**❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚

❚
Dj2,rj2

$$❏
❏❏

❏❏
❏❏

❏❏
. . . Djk−1,rjk−1

xxqqq
qq
qq
qq

Djk,rjk

tt❤❤❤❤
❤❤❤

❤❤❤
❤❤❤

❤❤❤
❤❤❤

❤❤❤

~r
√

(X,D)

(8)

where the arrows are the embeddings Djl,rjl
⊂ ~r

√
(X,D). In general DJ,~r is

not a gerbe over DJ , as DJ,~r will have larger isotropy groups along the higher
codimensional strata S ∈ SI contained in DJ . However DJ,~rJ is always a gerbe

over DJ . We denote by iJ,~r : DJ,~r → ~r
√

(X,D) the embedding.
We set |J,~r| :=

∏
j∈J rj , and

µJ,~r :=
⊕

j∈J

µrj , ZJ,~r :=
⊕

j∈J

Zrj , Z∗
J,~r :=

⊕

j∈J

(
Zrj \ {0}

)
,

(Q/Z)J :=
⊕

j∈J

Q/Z, (Q/Z)∗J :=
⊕

j∈J

(
Q/Z \ {0}

)
.

Note that ZJ,~r is the Cartier dual of µJ,~r.

Remark 3.8. By definition, the set of strata of a pair (X,D), where D is simple
normal crossing, is the disjoint union of the intersections of the irreducible
components of D. Thus strata are in bijection with the subsets of I. However it
is sometime convenient to label the index sets we have introduced above via the
strata themselves, without making an explicit reference to the corresponding
subsets J ⊂ I. Thus if Z is a stratum of (X,D), then Z = ∩j∈JDj for some
J ⊂ I, and we will sometime denote by

µZ,~r, ZZ,~r, Z∗
Z,~r , (Q/Z)Z , (Q/Z)∗Z

the index sets µJ,~r , ZJ,~r , Z∗
J,~r , (Q/Z)J , and (Q/Z)∗J .

Documenta Mathematica 25 (2020) 955–1009



Parabolic SODs and Kummer Flat Invariants 983

Lemma 3.9. Let J ⊆ I be a non-empty subset. Then the category Perf(DJ,~rJ )
splits as the direct sum of |J,~r| copies of Perf(DJ). More precisely there are
natural equivalences

Perf(DJ,~rJ ) ≃
⊕

χ∈ZJ,~r

Perf(DJ,~r)χ ≃ Perf(DJ )⊗ Perf(BµJ,~r)

and
Perf(DJ)⊗ Perf(BµJ,~r) ≃ Perf(DJ )⊗

⊕

χ∈ZJ,~r

Perf(κ).

Proof. The proof is similar to the proof of Lemma 3.1.

3.2.2 The main theorem

Similarly to what we did in Section 3.1 for every J ⊂ I we identify ZJ,~r, Z
∗
J,~r

with subsets of (Q/Z)I = QI ∩ (−1, 0]I via

Z∗
J,~r ⊂ ZJ,~r =

⊕

j∈J

Zrj ⊂
⊕

i∈I

Zri = ZI,~r ⊂
⊕

i∈I

Q/Z = QI ∩ (−1, 0]I ,

where, on each factor, the inclusion of sets Zri ⊂ Q/Z = Q ∩ (−1, 0] is the one
we considered in Section 3.1. We also consider the inclusions

(Q/Z)∗J ⊂ (Q/Z)J ⊂
⊕

j∈J

Q/Z ⊂
⊕

i∈I

Q/Z = QI ∩ (−1, 0]I .

The following lemma is immediate.

Lemma 3.10. We have decompositions as disjoint union of sets

ZI,~r =
∐

J⊂I

Z∗
J,~r (Q/Z)I =

∐

J⊂I

(Q/Z)∗J .

By Lemma 3.10 if χ is in ZI,~r there is a unique J ⊂ I such that χ is in Z∗
J,~r,

and similarly for (Q/Z)I and (Q/Z)∗J .

Definition 3.11. We equip (Q/Z)I = QI ∩ (−1, 0]I with the product partial
order ≤: let

χ = (χ1, . . . , χN ) and χ′ = (χ′
1, . . . , χ

′
N ) be in QI ∩ (−1, 0]I

then we set χ ≤ χ′ if χl ≤ χ′
l for all l = 1, . . . , N for the restriction of

the standard ordering of the real numbers. This restricts to a preorder on
ZJ,~r, Z

∗
J,~r, (Q/Z)J and (Q/Z)∗J .

We introduce the following notations:

• Let ~0 = (0, . . . , 0) ∈ ZI,~r. We denote by A~0 ⊂ Perf( r
√

(X,D)) the image
of Perf(X) under g∗~r,1.
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• Let J ∈ S∗
I and let χ be in Z∗

J,~r. We denote by AJ
χ ⊂ Perf( ~r

√
(X,D))

the image of Perf(DJ ) under the functor ΦJ,χ, which is defined as the
composite

Perf(DJ )
(a)≃ Perf(DJ,~r)χ

(b)

��
Perf(DJ,~rJ )

(iJ,~rJ )∗

��

Perf( ~rJ
√

(X,D))

(g~r,~rJ )∗

��

Perf( ~r
√

(X,D))

where equivalence (a) and inclusion (b) are explained in Lemma 3.9.

• We denote by AJ the subcategory of Perf( ~r
√

(X,D)) generated by the
subcategories AJ

χ for χ ∈ Z∗
J,~r.

The following statement is a rephrasing of [3, Theorem 4.9].

Proposition 3.12.

1. The category Perf( ~r
√

(X,D)) has a psod of type SI , Perf( ~r
√

(X,D)) =
〈AJ , J ∈ SI〉 , such that:

• For all J , the subcategory AJ is admissible.

• For all J ∈ S∗
I , the subcategory AJ has a psod of type (Z∗

J,~r,≤)

AJ = 〈AJ
χ, χ ∈ (Z∗

J,~r ,≤)〉

and, for all χ ∈ Z∗
J,~r, there is an equivalence AJ

χ ≃ Perf(DJ ).

2. The category Perf( ~r
√

(X,D)) has a psod of type (ZI,~r,≤)

Perf(
~r
√

(X,D)) = 〈AJ
χ, χ ∈ (ZI,~r,≤)〉,

where A~0 ≃ Perf(X) and for all χ ∈ Z∗
J,~r there is an equivalence AJ

χ ≃
Perf(DJ).

We will equip the set (Q/Z)I = QI ∩ (−1, 0]I with a total order ≤! (different
from the one of Definition 3.11) which generalizes the preorder (Q/Z,≤!) that
we introduced in Section 3.1. We can write every element χ in QI ∩ (−1, 0]I as

χ =
(
−p1
n!

, . . . ,−pN
n!

)

for some p1, . . . , pN in N and n ∈ N. This expression is unique if we require n
to be as small as possible, and we call this the normal factorial form.
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Definition 3.13. Let

χ =
(
−p1
n!

, . . . ,−pN
n!

)
, χ′ =

(
− q1
m!

, . . . ,−qN
m!

)
∈ QI ∩ (−1, 0]I

be in normal factorial form. We write χ ≤! χ′ if:

• n > m, or

• n = m and − pi

n! ≤! − qi
n! in Zn! for all i = 1, . . . , N , where ≤! is the

ordering defined in Section 3.1.

For all ~r ∈ NN we obtain an induced ordering ≤! on ZI,~r and Z∗
I,~r.

If n ∈ N we set ~n := (n, . . . , n) and ~n! := (n!, . . . , n!) ∈ NN .

Proposition 3.14.

1. The category Perf( ~n!
√

(X,D)) has a collection of subcategories A!
J , J ∈ SI ,

such that:

• For all J , the subcategory A!
J is admissible.

• For all J ∈ S∗
I , the subcategory A!

J has a psod of type (Z∗
J,~n!,≤!)

A!
J = 〈AJ,!

χ , χ ∈ (Z∗
J,~n!,≤!)〉

and, for all χ ∈ Z∗
J,~n!, there is an equivalence AJ,!

χ ≃ Perf(DJ).

2. The category Perf( ~n!
√

(X,D)) has a psod of type (ZI,~n!,≤!)

Perf(
~n!
√

(X,D)) = 〈AJ,!
χ , χ ∈ (ZI,~n!,≤!)〉,

where A!
~0
≃ Perf(X) and for all χ ∈ Z∗

J,~n! there is an equivalence AJ,!
χ ≃

Perf(DJ).

3. For all n ∈ N, g∗−−−−→
(n+1)!,−→n !

: Perf( ~n!
√

(X,D)) −→ Perf(
−−−−→
(n+1)!

√
(X,D)) is com-

patible with the psod-s.

The proof of Proposition 3.14 that we give below depends on a somewhat
involved inductive argument. A much simpler proof is possible, at the price of
a mild reduction of generality which still covers most examples of interest. We
sketch it in Remark 3.15 below.

Proof. By Lemma 3.10 ZI,~r =
∐

J⊂I Z
∗
J,~r and thus the Proposition gives a

description of all the factors appearing in the psod of Perf( ~n!
√

(X,D)).
It is actually more convenient to prove first part (2) of the Proposition, and
deduce from there part (1). The compatibility with the psod-s, part (3), follows
automatically. The proof involves a nested induction, first on the number N
of irreducible components of D, and then on the index n appearing in the
statement of Proposition 3.14. Let us clarify the structure of the induction.
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(a) The basis step of the induction on N consists in the proof of the state-
ment of Proposition 3.14 for N = 1 and arbitrary n. This is given by
Proposition 3.5.

(b) The inductive step involves proving Proposition 3.14 in the case of a
divisor D with N irreducible components: as inductive hypothesis we
assume that Proposition 3.14 holds, for all n ∈ N, in the case of a divisor
D with M irreducible components, where M is any integer smaller than
N .

(c) We establish inductive step (b) via a second induction, this time on the
index n. We will spend the rest of the proof explaining the basis step
n = 2 and the inductive step n − 1 → n. This will imply inductive step
(b) and conclude the proof.

Basis: n = 2. We have the sod on Perf(
~2!
√

(X,D)) given by Proposition 3.12,
with the required subcategories A!

J for J ∈ S∗
I and AJ,!

χ with χ ∈ ZI,~2.
Inductive step: n − 1 → n. The proof is similar to the one of Proposition
3.5, thus we limit ourselves to an abbreviated treatment of the argument. We
use the natural identification

~n!
√

(X,D) ≃ ~n

√(−−−−→
(n−1)!

√
(X,D), D−−−−→

(n−1)!

)
. (9)

Applying Proposition 3.12 to (9) yields a psod of type (SI ,≤)

Perf(
~n
√

(X,D)) = 〈BJ , J ∈ (SI ,≤)〉.

Additionally each summand BJ for J ∈ S∗
I carries a psod

BJ = 〈Bζ , ζ ∈ (Z∗
J,~n,≤)〉,

where for all ζ ∈ Z∗
J,~n there is an equivalence Bζ ≃ Perf

(
D

J,
−−−−→
(n−1)!

)
. We will

realize the summands AJ,!
χ appearing in the statement of Proposition 3.14 as

semi-orthogonal factors of the categories Bζ.
Fix J in S∗

I . If DJ = ∅ then BJ = 0, and we set AJ,!
χ := 0 for all χ ∈ Z∗

J,~n!.
Assume next that DJ is non-empty. Set L := I \J and M := |L|. The stratum
DJ carries a simple normal crossing divisor 1

DL :=
⋃

i∈L

(Di ∩DJ) ⊂ DJ

Denote by
−−−−→
(n− 1)!L ∈ NL the diagonal vector with entries all equal to (n− 1)!

−−−−→
(n− 1)!L := ((n− 1)!, . . . , (n− 1)!) ∈ NL.

1Some, or even all, the intersections Di ∩DJ , i ∈ L, might be empty. We can nonetheless

argue as if DL had M distinct irreducible components: the empty strata will give rise to zero

categories, and therefore will give no contribution to the psod-s.
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The substack D
J,
−−−−→
(n−1)!

is a µ
J,
−−−−→
(n−1)!

-gerbe over the
−−−−→
(n− 1)!L-th root stack of

DJ with respect to DL. Thus by Lemma 3.9 we have a decomposition

Perf(D
J,
−−−−→
(n−1)!

) ≃
⊕

Z
J,

−−−−→
(n−1)!

Perf

(
−−−−→
(n−1)!L

√
(DJ , DL)

)
=:

⊕

ξ∈Z
J,

−−−−→
(n−1)!

Bζ,ξ.

Additionally, since M < N , we can assume by the inductive hypothesis that

Proposition 3.14 applies to the root stack
−−−−→
(n−1)!L

√
(DJ , DL). This gives us a

psod

Bζ,ξ ≃ Perf

(
−−−−→
(n−1)!L

√
(DJ , DL)

)
=

〈
Bζ,ξ,ρ, ρ ∈

(
Z
L,

−−−−→
(n−1)!

,≤!
)〉

.

Similarly to the proof of Proposition 3.5, we identify the subcategories Bζ,ξ,ρ
with factors AJ,!

χ for χ ∈ ZI,~n! appearing in the statement of the proposition
by setting

AJ,!
ζ

(n−1)!
+ξ+ρ

:= Bζ,ξ,ρ

where we are identifying ζ, ξ and ρ with elements of ZI,~n! in the natural manner.

Note the value of ζ
(n−1)! + ξ + ρ ranges exactly over the set ZI,−→n ! \ZI,

−−−−→
(n−1)!

for

ζ ∈ Z∗
J,~n, ξ ∈ Z

J,
−−−−→
(n−1)!

and ρ ∈ Z
L,

−−−−→
(n−1)!

.

Now, by the inductive hypothesis B~0 ≃ Perf
(−−−−→

(n−1)!
√

(X,D)
)

carries a psod of

type (Z
I,
−−−−→
(n−1)!

,≤!)

B~0 ≃ Perf
(−−−−→

(n−1)!
√

(X,D)
)

= 〈AJ,!
χ , χ ∈ (Z

I,
−−−−→
(n−1)!

,≤!)〉,

such that:

• A!
~0
≃ Perf(X), and

• AJ,!
χ ≃ Perf(DJ) for all χ ∈ Z∗

J,
−−−−→
(n−1)!

.

As in the proof of Proposition 3.5 we conclude the categoriesAJ,!
χ , χ ∈ ZI,~n! that

we have just constructed make up a psod of Perf( ~n!
√

(X,D)) of type (ZI,~n!,≤!)
and this concludes the proof of part (2) of the Proposition.
Now it is easy to proceed backwards and prove part (1). For every J ∈ SI we
define A!

J as the subcategory of Perf( ~n!
√

(X,D)) generated by the subcategories
AJ,!

χ as χ varies in Z∗
J,~n! ⊂ ZI,~n!. By construction the subcategories A!

J have
the properties required by part (1) of the Proposition, and this concludes the
proof.

Remark 3.15. It is possible to give a much simpler proof of Proposition 3.14
leveraging formal properties of the category of perfect complexes established in
[2]. This however requires to reduce generality, and assume that X is a perfect

Documenta Mathematica 25 (2020) 955–1009



988 S. Scherotzke, N. Sibilla, M. Talpo

stack [2, Definition 3.2]: this is a large class of stacks containing for instance
all quasi-compact schemes with affine diagonal.
Let us sketch the argument assuming for simplicity that D = D1 ∪D2 has two
components. Recall that there is an equivalence

~n!
√

(X,D) ≃ n!
√

(X,D1)×X
n!
√

(X,D2).

Since X is perfect, so are its root stacks. Then by [2, Theorem 1.2] there is an
equivalence of categories

Perf
(

~n!
√

(X,D)
)
≃ Perf

(
n!
√

(X,D1)
)
⊗Perf(X) Perf

(
n!
√

(X,D2)
)
. (10)

Now by Proposition 3.12 we have psod-s

Perf
(

n!
√

(X,D1)
)

= 〈B!
ξ, ξ ∈ (Zn!,≤!)〉, (11)

Perf
(

n!
√

(X,D2)
)

= 〈C!ξ′ , ξ′ ∈ (Zn!,≤!)〉.

Equivalence (10) then implies that Perf
(

~n!
√

(X,D)
)

carries a psod whose semi-

orthogonal factors are the tensor products of the factors appearing in (11):
more precisely, for all χ = (ξ, ξ′) ∈ Zn! ⊕ Zn! set Aχ := Bξ ⊗Perf(X) Cξ′ . Then

Perf
(

~n!
√

(X,D)
)

carries a psod with the categories Aχ as factors

Perf
(

~n!
√

(X,D)
)

= 〈Aχ = Bξ ⊗Perf(X) Cξ′ , χ = (ξ, ξ′) ∈ (Zn! ⊕ Zn!,≤!)〉 (12)

For all ξ, ξ′ ∈ Zn! Theorem 1.2 of [2] yields equivalences

• A(0,0) = B0 ⊗Perf(X) C0 = Perf(X)⊗Perf(X) Perf(X) ≃ Perf(X),

• A(ξ,0) = Bξ ⊗Perf(X) C0 ≃ Perf(D1)⊗Perf(X) Perf(X) ≃ Perf(D1),

• A(0,ξ′) = B0 ⊗Perf(X) Cξ′ ≃ Perf(X)⊗Perf(X) Perf(D2) ≃ Perf(D2),

• A(ξ,ξ′) = Bξ ⊗Perf(X) Cξ′ ≃ Perf(D1)⊗Perf(X) Perf(D2) ≃ Perf(D{12}).

Thus psod (12) has the same properties required by Proposition 3.14 and in
fact it is easy to see that it coincides with it.

Theorem 3.16.

1. The category Perf(∞
√

(X,D)) has a collection of subcategories A!
J , J ∈ SI ,

such that:

• For all J , the subcategory A!
J is admissible.

• For all J ∈ S∗
I the category A!

J has a psod of type ((Q/Z)∗J ,≤!)

A!
J = 〈AJ,!

χ , χ ∈ ((Q/Z)∗J ,≤!)〉,

and, for all χ ∈ (Q/Z)∗J , there is an equivalence AJ,!
χ ≃ Perf(DJ ).
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2. The category Perf(∞
√

(X,D)) has a psod of type ((Q/Z)I ,≤!)

Perf(
∞
√

(X,D)) = 〈AJ,!
χ , χ ∈ ((Q/Z)I ,≤!)〉,

and for all χ ∈ (Q/Z)∗J there is an equivalence AJ,!
χ ≃ Perf(DJ ).

Proof. The proof is the same as the one of Proposition 3.7.

Remark 3.17. The psod-s constructed in Proposition 3.7 and Theorem 3.16
depend on the choice of a directed system which is cofinal in NN preordered
by divisibility. We chose the set of diagonal vectors with factorial entries, but
different choices were possible and would have given rise to different psod-s.
At the level of additive inviariants, and in particular K-theory, all choices yield
identical splitting formulas. All these different psod-s should be connected via
mutation patterns which give rise to canonical identifications of semi-orthogonal
factors: we leave this to future investigation.

4 Beyond simple normal crossing divisors

In this section we study sod-s of infinite root stacks of general normal crossing
divisors, and of divisors with simplicial singularities. In both cases we will
be able to reduce to the simple normal crossing setting. At the same time
genuinely new phenomena will arise.
In the general normal crossing case, the factors making up the psod on the
infinite root stacks are not equivalent to the category of perfect complexes on
the strata, but on the normalization of the strata. In [46] it is proven that
the categories of perfect complexes on infinite root stacks are invariant under
some class of log blow-ups. This is the key ingredient in the construction of
these psod-s. However since the results in [46] require working over a field of
characteristic 0, we are bound to make the same assumption here.
Constructing sod-s for infinite root stacks in the setting of divisors with what
we call “simple simplicial singularities” is more straightforward. We do this in
Section 4.2. The proof depends on a cofinality argument which allows us to
reduce directly to the (simple) normal crossing case.

4.1 Root stacks of normal crossing divisors

Throughout this section we work over a field κ of characteristic zero.
We will establish sod-s for root stacks of normal crossing divisors which are not
necessarily simple. As explained in the preliminaries (Section 2.1.3) root stacks
of non-simple normal crossing divisors cannot be defined via an iterated root
construction, as in [3]. This has to do with the fact that the self-intersections
of the divisors create higher codimensional strata which are not correctly ac-
counted for if we just take iterated roots of the divisors themselves. We rely
instead on the general definition of root stacks of logarithmic schemes intro-
duced by Borne and Vistoli [6].
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Let X be an algebraic stack, and D a normal crossing divisor in X . In this
section we consider the r-th root stacks r

√
(X,D) for r ∈ N described in Section

2.1.3, and the infinite root stack ∞
√

(X,D) = lim←−r

r
√

(X,D) of the log stack

(X,D). Note that if D happens to be simple normal crossings, then r
√

(X,D)

coincides with the root stack ~r
√

(X,D) of the previous section, where ~r is the
vector (r, . . . , r) ∈ NN and N is the number of irreducible components of D.

4.1.1 Strictification of normal crossing divisors

Note that D equips X with a canonical stratification in locally closed substacks.
This stratification is most easily expressed by saying that the locally closed
strata are the connected substacks of X where the rank of the log structure
(i.e. of the sheaf M = M/O×

X , using standard notation for log structures)
remains constant. These are also the connected substacks where the number
of points in the fiber of the normalization map D̃ → D remains constant. We
denote SD the set of the closures of these strata, and we set S∗

D := SD −∅.

Lemma 4.1. Let X be an algebraic stack, and D a normal crossing divisor
in X. Then there exists a finite sequence of log blow-ups

(X̃, D̃) := (Xn, DXn)
πn−−→ . . .

π2−→ (X1, DX1)
π1−→ (X0, DX0) := (X,D)

with the following properties:

1. For all 0 ≤ i ≤ n, Xi is an algebraic stack with a normal crossing divisor
Di.

2. Denote by SDXi
the set of closures of the strata. Then the map πi :

(Xi, DXi)→ (Xi−1, DXi−1) is the blow-up of a regular stratum S ∈ SDi−1 .

3. The divisor D̃ of X̃ is simple normal crossing.

We say that (X̃, D̃) is a strictification of (X,D). A proof of Lemma 4.1 is

given in [13]. Let us explain briefly how to construct a strictification (X̃, D̃),
referring to [13] for further details.
Let S ∈ SD be a stratum of codimension d. We say that S is non simple
if S is not a connected component of the intersection of d distinct irreducible
components of D. Denote by Zd be the substack of X given by the union of
the non simple strata of X of codimension at most d. Let m be the maximal
index such that Zm 6= ∅. The substack Zm is regular. There is a sequence of
inclusions

Zm ⊂ Zm−1 ⊂ . . . ⊂ Z1 = D

Let π1 : (X1, D1) → (X,D) be the blow-up at Zm. The strict trans-

form of Zm−1 under π1 is regular, we denote it by Z̃m−1. We denote by

π2 : (X2, D2) → (X1, D1) the blow-up at Z̃m−1. The strictification (X̃, D̃) is
obtained by iterating this procedure for m− 1 steps.
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Let Ĩ be the set of irreducible components of (X̃, D̃), and let SĨ be the set of
strata. The iterated blow-up

π̃ := πn ◦ . . . ◦ π1 : (X̃, D̃) −→ (X,D)

maps strata of (X̃, D̃) to strata of (X,D). Let S in SD be the image of the

stratum S̃ in SĨ . The restriction of π̃ to S̃

π̃|S̃ : S̃ −→ S

can be described explicitly in terms of the geometry of iterated blow-ups. This
requires some combinatorial book-keeping which, although elementary, quickly
becomes quite intricate.
For simplicity we will limit ourselves instead to give a qualitative description of
the geometry of the strata of (X̃, S̃). We introduce an auxiliary class of stacks
whose geometry is related in a simple way to the geometry of the strata of
(X,D). This is done in Definition 4.2. It will be clear that all strata of (X̃, S̃)
are of this form, and this will be sufficient for our applications.

Definition 4.2. Let Y be an algebraic stack. We define recursively what it
means for Y to be of type Zi, where m ≥ i ≥ 1, starting from i = m:

1. We say that Y is of type Zm if there exists a stratum S ∈ SD, S ⊂ Zm ⊂
X , and maps

Y = Yγ
γ−→ Yβ

β−→ Yα
α−→ S

where α, β, and γ are morphisms of the following type.

(a) Yα is the disjoint union of finitely many copies of the normalization
of S. The map α : Yα → S restricts to the normalization map on
each copy.

(b) β : Yβ → Yα is a projective bundle.

(c) γ : Yγ → Yβ is an iterated blow-up having the following two proper-
ties:

• it factors as a composite of blow-ups along regular centers, and

• each of these centers is isomorphic to a projective bundle over
a stratum S′ ∈ SD such that S′ ⊆ S.

2. We say that X is of type Zi if there exists a stratum S ∈ SD, S ⊂ Zi ,
and maps

Y = Yγ
γ−→ Yβ

β−→ Yα
α−→ S

where α, β are as above, and γ : Yγ → Yβ factors as a composite of blow-
ups along regular centers, and each of these centers is a stack of type Zj

for some m ≥ j > i.

We say that Y is adapted to SD if it is of type Zi for some m ≥ i ≥ 1.
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It follows from the definition that if X is adapted to SD then X is regular.

Lemma 4.3. If X is adapted to SD, Perf(X) admits a sod such that all its semi-
orthogonal factors are of the form Perf(S∨) , where S∨ is the normalization of
a stratum S in SD.

Proof. The category of perfect complexes over a disjoint union decomposes as
a direct sum of the categories corresponding to each connected component.
If E → X is a projective bundle then Perf(E) admits a sod where all semi-
orthogonal factors are equivalent to Perf(X) [31, Example 3.2]. By Orlov
blow-up formula, if X is regular and Y → X is a blow-up along a regular center
Z ⊂ X , Perf(Y ) admits a sod whose factors are equivalent to either Perf(X)
or Perf(Z) [31, Theorem 3.4]. Then the statement follows immediately from
Definition 4.2.

Lemma 4.4. All strata S̃ in SĨ are adapted to SD.

Proof. This follows because the strictification (X̃, D̃) is an iterated blow-up of
(X,D).

4.1.2 Reduction to the simple normal crossing case

The next result, which was proved in [46], allows us to reduce to the simple
normal crossing case, which was studied in Section 3.2. We stress that, as in
[46], we need to assume that the ground ring κ is a field of characteristic zero.

Proposition 4.5 (Proposition 3.9, [46]). Let (X ′, D′)→ (X,D) be a log blow-
up such that (X ′, D′) is a again an algebraic stack with a normal crossing
divisor. Then there is an equivalence of ∞-categories

Perf(
∞
√

(X ′, D′)) ≃ Perf(
∞
√

(X,D)). (13)

Proof. Proposition 3.9 of [46] is formulated in terms of bounded derived cat-
egories and assumes that X is regular: however the same proof works in this
more general setting.

Let X be an algebraic stack and let D be a normal crossing divisor. Let (X̃, D̃)

be the strictification of (X,D) constructed in Section 4.1.1. As before let Ĩ be

the set of divisors of (X̃, D̃), and let SĨ be the preordered set of strata, and
S∗
Ĩ

= SĨ − {∅}.

Theorem 4.6.

1. The category Perf(∞
√

(X,D)) has a collection of subcategories A!
J , J ∈ SĨ ,

such that:

• For all J , A!
J is admissible.

• The category A!
∅ = Perf(X̃) has a psod whose semi-orthogonal factors are
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(a) Perf(X), and

(b) factors of the form Perf(S∨) , where S∨ is the normalization of a
stratum S in S∗

D.

• For all J ∈ S∗
Ĩ
the category A!

J has a psod of type ((Q/Z)∗J ,≤!)

A!
J = 〈AJ,!

χ , χ ∈ ((Q/Z)∗J ,≤!)〉.

Additionally, for all χ ∈ (Q/Z)∗J , AJ,!
χ has a psod whose semi-orthogonal

factors are of the form Perf(S∨) , where S∨ is the normalization of a
stratum S in S∗

D.

2. The category Perf(∞
√

(X,D)) has a psod whose semi-orthogonal factors are

given by the factors of the psod-s of A!
∅ = Perf(X̃) and AJ,!

χ described above.

Proof. By Proposition 4.5 there is an equivalence Perf(
∞

√
(X̃, D̃)) ≃

Perf(∞
√

(X,D)) . Since (X̃, D̃) is simple normal crossing, we can apply
Theorem 3.16. Let us use the notations of Theorem 3.16: recall that the semi-
orthogonal factors AJ,!

χ , J ⊂ Ĩ, considered there are equivalent to Perf(D̃J).

The stack D̃J is a stratum in SĨ and thus, by Lemma 4.4, is adapted to

SD. By Lemma 4.3, Perf(D̃J ) carries a psod whose factors are of the form
Perf(S∨) , where S∨ is the normalization of a stratum S in SD. This concludes
the proof.

4.2 Root stacks of divisors with simplicial singularities

Let X be a log scheme with a simplicial log structure. This means that it is fine
and saturated, and the stalks of the sheaf M = M/O×

X are simplicial monoids.
Recall that a sharp fine saturated monoid P is simplicial if the extremal rays
of the rational cone PQ ⊂ P gp ⊗Z Q are linearly independent.

Proposition 4.7. Let X be a log scheme with simplicial log structure. Then
there is a canonical minimal Kummer extension M ⊆ F where F is a coherent
sheaf of monoids on X with free stalks.

The minimality in the statement means that every Kummer extension M → N
where N is coherent with free stalks factors uniquely as M → F → N .

Proof. Because of the uniqueness part of the statement, it suffices to do the
construction locally. Assume therefore that we have a global chart X →
[Specκ[P ]/D(P gp)] for X (in the sense of [6, Section 3.3]), where P is a sim-
plicial monoid, and D(P gp) denotes the Cartier dual Hom(P gp,Gm) of P gp.
Let p1, . . . , pn be the primitive generators in the lattice P gp of the extremal rays
of the rational cone PQ ⊂ P gp⊗ZQ generated by P . These are indecomposable
elements of P . Let q1, . . . , qm be the remaining indecomposable elements of P .
By simpliciality of P , for every index i = 1, . . . ,m we can express qi uniquely
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as a rational linear combination of the pj . Let us write qi =
∑n

j=1
aij

bij
·pj where

for every pair of indices {i, j}, aij and bij are coprime non-negative integers.
For every j = 1, . . . , n let cj be the lcm of the set {b1j, . . . , bmj}. Consider then
the submonoid of P gp ⊗Z Q generated by the vectors p1/c1, . . . , pn/cn ∈ PQ.
This is a free monoid Nn containing P , and the inclusion P → Nn is a Kummer
morphism. It is easy to check that it is minimal among Kummer morphisms
from P to a free monoid.
Now consider the map P → M(X) corresponding to the chart for the log
structure of X that we fixed above. Recall from [6, Section 3.3] that this map
being a chart exactly means that the induced morphism φ : P → M from the
constant sheaf P is a cokernel, i.e. it induces an isomorphism P/ kerφ ∼= M ,
where kerφ denotes the preimage of the zero section (this is not always true
in the category of monoids). In the same way, the map PQ → M(X)Q gives
a chart for the sheaf MQ over X . For the Kummer extension P ⊆ Nn ⊂ PQ

constructed above, let us consider the image F of the subsheaf Nn ⊂ PQ in

MQ. It is not hard to check that the natural map Nn → F(X) is a chart
for F (i.e. the corresponding Nn → F is a cokernel), and that the induced
morphism M → F is a Kummer extension with the universal property of the
statement.

Remark 4.8. The previous proposition is also true for log algebraic stacks
with simplicial log structure, by passing to a smooth presentation and using
uniqueness of the Kummer extension to produce descent data.

Definition 4.9. Let X be a log algebraic stack with simplicial log structure,
and let M → F be the canonical Kummer extension constructed above. We
call the root stack

F√
X the canonical root stack of X .

Remark 4.10. Assume that κ is a field of characteristic 0. If X = Specκ[P ]
where P is a simplicial monoid, then we can consider the minimal Kummer
extension P ⊆ Nn constructed in the proof of the previous proposition. The
canonical root stack in this case is the quotient [Specκ[Nn]/D(Zn/P gp)]. Note
that the quotient Zn/P gp is a finite group, so this quotient is a smooth Deligne–
Mumford stack. In fact, in this case it coincides with the canonical stack of
Fantechi–Mann–Nironi [15], which justifies its name.

Note that the natural log structure of the canonical root stack
F
√
X is locally

free by construction.

Definition 4.11. Let X be a scheme over κ, and D ⊂ X be an effective Cartier
divisor. We say that D has simple simplicial singularities if:

• the compactifying log structure MD (whose definition is recalled in Sec-
tion 2.1) is simplicial,

• the tautological log structure of the canonical root stack X ′ = F
√

(X,D)
is given by a simple normal crossing divisor D′ ⊂ X ′ (in the sense of
Definition 2.1).
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Remark 4.12. In Definition 4.11 we have made the assumption that D′ ⊂ X ′ is
a simple normal crossing divisor in order to simplify the exposition. However, in
characteristic 0, the results from this section could be formulated more generally
for the case when D′ is a general normal crossing divisor. We leave it to the
interested reader to recast Theorem 4.14 below in this greater generality using
as input the psod constructed in the general normal crossing setting in Theorem
4.6.
In the rest of the paper, for convenience we will abbreviate “simple simplicial
singularieties” by just “simplicial singularities”.

If X is an algebraic stack and D ⊆ X is an effective Cartier divisor, we say that
D has simplicial singularities if the pull-back of D to some smooth presentation
U → X , where U is a scheme, has simplicial singularities in the sense of the
previous definition.

Remark 4.13. Assume that D is an effective Cartier divisor on X and that
for every x ∈ D the pair (X,D) is étale locally around x isomorphic to the pair
(Spec κ[P ]× An,∆P × An) for some simplicial monoid P and n ∈ N. Then D
has simplicial singularities in the sense Definition 4.11.

Now assume that D ⊂ X has simplicial singularities, and consider the canon-
ical root stack (X ′, D′) = F

√
(X,D). Since (X ′, D′) → (X,D) is a root stack

morphism we have a canonical isomorphism ∞
√

(X ′, D′) ≃ ∞
√

(X,D) and there-

fore in order to study the category of perfect complexes on ∞
√

(X,D), we can
pass to (X ′, D′). For future reference we state this as the following theorem.
We will use it in Section 5.2 to obtain a formula for the Kummer flat K-theory
of X .
Let I be the set of irreducible components of D′ and let SI′ be the preorder of
strata of (X ′, D′).

Theorem 4.14.

1. The category Perf(∞
√

(X,D)) has a collection of subcategories A!
J′ , J ′ ∈ SI′ ,

such that:

• For all J ′, the subcategory A!
J′ is admissible.

• For all J ′ ∈ S∗
I′ the category A!

J′ has a psod of type ((Q/Z)∗J′ ,≤!)

A!
J′ = 〈AJ′,!

χ , χ ∈ ((Q/Z)∗J′ ,≤!)〉,

and, for all χ ∈ (Q/Z)∗J′ , there is an equivalence AJ′,!
χ ≃ Perf(DJ′).

2. The category Perf(∞
√

(X,D)) has a psod of type ((Q/Z)I′ ,≤!)

Perf(
∞
√

(X,D)) = 〈AJ′,!
χ , χ ∈ ((Q/Z)I′ ,≤!)〉,

and for all χ ∈ (Q/Z)∗J′ there is an equivalence AJ′,!
χ ≃ Perf(DJ′).
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Proof. This follows immediately from the equivalence Perf(∞
√

(X,D)) ≃
Perf(∞

√
(X ′, D′)) and the fact that by Theorem 3.16 we can equip

Perf(∞
√

(X ′, D′)) with a psod of type SI′ .

Remark 4.15. It would be very interesting to extend Theorem 4.14 to the
general log smooth setting, however new ideas would be required. A promising
avenue for further investigation might come from work of Satriano [45], which
essentially extends the theory of canonical root stacks given in Definition 4.9
to general (non-necessarily simplicial) toric singularities.

5 Non-commutative motives of log schemes

In this section we associate to log stacks objects in the category of non-
commutative motives. We start by giving a brief summary of the theory which
follows closely the treatment given in [24, Section 5]. The reader can find
accounts of the theory of non-commutative motives in [4] and [24].
Let T∞ be the ∞-category of spaces, which is the homotopy coherent nerve of
the simplicial category of Kan complexes. Let S∞ be the∞-category of spectra.
The category S∞ is the stabilization of T∞, and we denote by Σ∞

+ : T∞ → S∞
the stabilization functor.

Definition 5.1. Let C be a small ∞-category. We denote:

• by PSh(C) = Fun(Cop, T∞) the ∞-category of presheaves of ∞-groupoids
over C,
• by PShS∞(C) = Fun(Cop,S∞) the ∞-category of presheaves of spectra over
C,
• by Σ∞

+ : PSh(C) −→ PShS∞(C) the functor given, on objects, by stabilization.

Let (Catperf∞,κ)ω be the subcategory of compact objects in Catperf∞,κ. Let φ be the
composite

φ : Catperf∞,κ −→ PSh((Catperf∞,κ)ω)
Σ∞

+−−→ PShS∞((Catperf∞,κ)ω),

where the first arrow is the restriction of the Yoneda to the subcategory
(Catperf∞,κ)ω.

Definition 5.2. The category of additive motives Motadd is the localization
of PShS∞((Catperf∞,κ)ω) at the class of morphisms φ(B)/φ(A)→ φ(C) which are

induced by split exact sequences A → B → C in Catperf∞,κ.

Let U be the composite Catperf∞,κ
φ→ PShS∞((Catperf∞,κ)ω) → Motadd , where the

second arrow is given by the localization functor. An additive invariant is
a functor H: Catperf∞,κ → P , where P is a stable presentable ∞-category, that
preserves zero objects and filtered colimits, and that maps split exact sequences
to cofiber sequences. The functor U is the universal additive invariant. We
formulate the precise statement below.
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Proposition 5.3 (Theorem 5.12 [24]). Let P be a presentable and stable ∞-
category, and let H: Catperf∞,κ −→ P be an additive invariant. Then H factors
uniquely as a composition

Catperf∞,κ
H //

U
��

P

Motadd
H

<<
②②②②②②②②②

where H is a colimit-preserving functor of presentable categories.

Remark 5.4. Let H: Catperf∞,κ → P be an additive invariant. If A F−→ B G−→ C
is a split exact sequence in Catperf∞,κ, then there is a canonical splitting H(B) ≃
H(A) ⊕H(C) . Indeed, let (F )R be the right adjoint of F. Since H is additive

H(A)
H(F )−→ H(B)

H(G)−→ H(C) (14)

is a fiber sequence in P . Further H((F )R) is a section of H(F ). Thus (14) splits,
and H(B) decomposes as the direct sum of H(A) and H(C).

Lemma 5.5. Let C = 〈Cx, x ∈ P 〉 be a stable ∞-category equipped with a psod
of type P, and assume that P is finite and directed (i.e. it admits an order-
reflecting map to the natural numbers N, ordered in the standard manner).
Then there is an equivalence U(C) ≃

⊕
x∈P U(Cx).

Proof. Note that if P is directed we can choose a numbering {p0, . . . , pm} of
its elements with the property that, if i < j, then Cpi ⊆ C⊥pj

. Thus we can
write down a sod 〈Cp0 , . . . , Cpm〉 for C. Then the second statement is a simple
consequence of Remark 5.4.

5.1 The non-commutative motive of a log stack

We introduce the following notations.

• If X is a stack we set U(X) := U(Perf(X)).

• If X is a log algebraic stack, we denote by XKfl the ringed Kummer flat
topos over X . We set U(XKfl) := U(Perf(XKfl)).

We will apply Lemma 5.5 to the psod-s we constructed in sections 3.2 and 4.1.
Let (X,D) be a log stack given by an algebraic stack X equipped with a normal
crossing divisor D. Let SI be the preorder of strata of (X,D). In the statement
below we use the same notations as in Section 3.2.

Corollary 5.6. Let (X,D) be a log stack given by an algebraic stack X
equipped with a simple normal crossing divisor D. Then there is an equiva-
lence

U((X,D)Kfl) ≃ U(X)
⊕( ⊕

S∈S∗
I

( ⊕

χ∈(Q/Z)∗I

U(S)
))

.
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Proof. Using Lemma 2.8 we obtain an equivalence Perf((X,D)Kfl) ≃
Perf(∞

√
(X,D)). The non-commutative motive of Perf(n!

√
(X,D)) has a

decomposition as in the statement (except the indexing set (Q/Z)∗I has to be
replaced by Z∗

I,n!): this follows from Proposition 3.14 and Lemma 5.5. The

category Perf(∞
√

(X,D)) is a filtered colimit of the categories Perf(n!
√

(X,D)).
Also, by Theorem 3.16, it carries a psod that is the colimit of the psod-s of the
categories Perf(n!

√
(X,D)). The statement follows because, by construction,

U(−) commutes with filtered colimits.

Formulas exactly paralleling Corollary 5.6 can be obtained in the general nor-
mal crossing setting. This is straightforward, as explained in Section 4.1, but
involves messy combinatorics. For this reason we give instead a simplified
statement, which is contained in Corollary 5.7 below.

In the following statement, if S is a stratum of (X,D), we denote by S∨ its
normalization.

Corollary 5.7. Assume that the ground ring κ is a field of characteristic 0.
Let (X,D) be a log stack given by an algebraic stack X equipped with a normal
crossing divisor D. Then for each S ∈ S∗

D there exists an infinite countable set
IS, such that there is an equivalence

U((X,D)Kfl) ≃ U(X)
⊕( ⊕

S∈S∗
D

( ⊕

j∈IS

U(S∨)
))

.

By the universal property of U , Corollary 5.6 and 5.7 imply uniform direct sum
decompositions across all additive invariants. As the case of algebraic K-theory
is especially important we formulate it explicitly in the following corollary: this
generalizes Hagihara and Nizio l’s as we drop the simplicity assumption on D,
X can be a stack, and X need not be regular away from D.

Corollary 5.8.

• Let (X,D) be a log stack given by an algebraic stack X equipped with a
simple normal crossing divisor D. Then there is a direct sum decomposi-
tion of spectra

K((X,D)Kfl) ≃ K(X)
⊕( ⊕

S∈S∗
D

( ⊕

χ∈(Q/Z)∗S

K(S)
))

. (15)

• Assume that the ground ring κ is a field of characteristic 0. Let (X,D) be
a log stack given by an algebraic stack X equipped with a normal crossing
divisor D. Then there is a direct sum decomposition of spectra

K((X,D)Kfl) ≃ K(X)
⊕( ⊕

S∈S∗
D

( ⊕

j∈IS

K(S∨)
))

.
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Remark 5.9. The previous result has an analogue for the Kummer étale topos
of (X,D), parallel to the second part of the statement of Theorem 1.1 of [36]
and the Main Theorem of [20]. In characteristic zero there is no difference, so
this comment is relevant only if κ has positive or mixed characteristic, and,
assuming that D is equicharacteristic as in [36], Q/Z has to be replaced by
(Q/Z)′ = Z(p)/Z (where p is the characteristic over which D lives) in the
formulas above.
This analogous formula for the Kummer étale K-theory follows from our meth-
ods, starting from the analogue of Proposition 2.8 for the Kummer étale site
and a restricted version ∞′√

(X,D) of the infinite root stack, where we take the

inverse limit only of root stacks r
√

(X,D) where r is not divisible by p. This
statement in turn follows from the same argument used in the proof of 2.8,
after proving Theorem 6.16 and Corollary 6.17 of [51] for the Kummer étale
site and this restricted root stack. We leave the details to the interested reader.

5.2 Log schemes with simplicial log structure

Let D be a divisor with simplicial singularities in an algebraic stack X . Con-
sider the associated log stack (X,D) with simplicial log structure and let
F
√

(X,D) be its canonical root stack, which is of the form (X ′, D′), where
D′ is a normal crossing divisor on X ′. Our techniques allow us to derive a
decomposition formula for the Kummer flat K-theory of X in terms of the
geometry of (X ′, D′). In fact, we can formulate two such results.
Let SI′ be the preorder of strata of (X ′, D′). By Theorem 4.14 Perf((X,D)Kfl)
carries a canonical psod of type SI′ , and this yields a decomposition of the
noncommutative motive U((X,D)Kfl). In particular, we obtain an equivalence
of spectra

K((X,D)Kfl) ≃ K((X ′, D′)Kfl) ≃ K(X ′)
⊕( ⊕

J∈S∗
I′

( ⊕

χ∈(Q/Z)∗J

K(S′)
))

. (16)

Under some additional assumptions on (X,D) however, we can do better. We
can refine (16) to a second decomposition formula for the (complexified) Kum-
mer flat K-theory of (X,D) which is formulated in terms of the G-theory of
the strata of X determined by the divisor D via the associated log structure.
We do this in Proposition 5.10 below.
We will make use of results proved in [30]. Let (X,D) be a log scheme where
D has simplicial singularities. We assume that

(⋆) κ = C, X is quasi-projective, and (X,D) has a global chart X →
[SpecC[P ]/D(P gp)] for a simplicial monoid P , which is a smooth mor-
phism.

This implies that the canonical root stack F
√

(X,D) is a quotient stack
[(Y,E)/G] where Y is a smooth quasi-projective scheme, E ⊂ Y is a sim-
ple normal crossing divisor and G is a finite group acting on the pair (Y,E).
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Also, (X,D) is obtained by taking the coarse quotient for the action of G.
We denote F

√
(X,D) by (X ′, D′), where X ′ = [Y/G] and D′ is the induced

simple normal crossing divisor [E/G]. In particular, X ′ is smooth and has a
quasi-projective coarse moduli space.

Let L, I ′ and I be, respectively, the set of irreducible components of the divisors
E ⊂ Y, D′ ⊂ X ′, and D ⊂ X . As usual we denote the corresponding sets of
strata by SL, SI′ and SI . There is a canonical bijection between the sets SI′ and
SI . The group G acts on SL, and there is a map p : SL → SL/G ∼= SI′ ∼= SI

induced by the quotient Y → [Y/G] ≃ X ′. Let F be the disjoint union of
the sets of irreducible components of the fixed loci Y g ⊂ Y, as g ranges over
G \ {1G}. The fixed loci are strata of Y , and this gives a map F → SL. In
general this is not an injection, as the same stratum of Y might appear more
than once in F if it is fixed by several distinct group elements.

If U is a stratum of Y we introduce the following notations,

• FU := {T ∈ F | U ⊆ T } ⊆ F,

• (Q/Z)∗FU
:= (Q/Z)∗U

∐(∐
T∈FU

(Q/Z)∗T

)
, where the index sets on the

right hand side are written according to the convention explained in Re-
mark 3.8 : that is, they are labeled by strata, rather than by subsets of
L. We will follow this convention throughout Section 5.2.

We extend this to X using the map p : SE → SD. Namely, if S is in SD we set:

• FS :=
∐

U∈p−1(S) p(FU ), FS is the disjoint union of the sets p(FU ),

• (Q/Z)∗FS
:= (Q/Z)∗S

∐(∐
T∈FS

(Q/Z)∗T

)
.

If X is an algebraic stack, in the statement of Proposition 5.10, and through-
out its proof, we denote Gi(X) the i-th G-theory group of X with complex
coefficients, i.e. Gi(X) := Ki(Coh(X))⊗ C.

Proposition 5.10. Let (X,D) be a log scheme given by a divisor D with
simplicial singularities, satisfying assumption (⋆). Then for all i ∈ N there is
a direct sum decomposition

Ki((X,D)Kfl)⊗ C ∼= Gi(X)
⊕( ⊕

S∈S∗
I

( ⊕

χ∈(Q/Z)∗FS

Gi(S)
))

. (17)

Proposition 5.10 follows from (16) and an Atiyah–Segal-type formula express-
ing the G-theory of a stack in terms of the G-theory of the coarse moduli of its
inertia. The most general version of such a formula in the literature was ob-
tained in [30] (and holds over C). The assumptions we impose on (X,D) mirror
the assumptions made in [30]: they can be relaxed if more general versions of
the Atiyah–Segal decomposition will become available in the future.
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Proof. For simplicity we assume that X is an affine toric variety with simplicial
singularities. Then Y = An, and G is a finite group acting torically. The proof
in the general case is the same, except the book-keeping of the summands on
the right-hand side of (17) requires some extra care.
Throughout the proof, if X is a stack we denote by IX the inertia of X , and by
ĨX its coarse moduli space. For all i ∈ N, formula (16) yields an isomorphism
of abelian groups

Ki((X,D)Kfl) ∼= Ki(X
′)
⊕( ⊕

S′∈S∗
I′

( ⊕

χ∈(Q/Z)∗
S′

Ki(S
′)
))

(18)

All the strata S′ ∈ SI′ are smooth, and thus their G-theory and K-theory are
the same. By Theorem 1.1 of [30], for all i ∈ N there is an isomorphism

Ki(X
′)⊗ C = Gi(X

′) ∼= Gi(ĨX ′) ∼=
⊕

g∈G

Gi(Y
g/G)

and ⊕

g∈G

Gi(Y
g/G) = Gi(X)

⊕( ⊕

T∈F

Gi(T/G)
)
.

Similarly, if S′ = [U/G] ∈ SI′ is a stratum, we have

Ki(S
′)⊗ C = Gi(S

′) ∼= Gi(ĨS′) ∼=
⊕

g∈G

Gi(Y
g ∩ U/G)

and ⊕

g∈G

Gi(Y
g ∩ U/G) = Gi(U/G)

⊕( ⊕

T∈F

Gi(T ∩ U/G)
)

Thus, if we complexify formula (18), we find that Ki((X,D)Kfl)⊗C is isomor-
phic to

Gi(X)
⊕( ⊕

T∈F

Gi(T/G)
)⊕( ⊕

U∈SL,U 6=Y

( ⊕

χ∈(Q/Z)∗
U

Gi(U/G)
⊕( ⊕

T∈F

Gi(T ∩ U/G)
)))

.

(19)

The main difference between the statement we need to prove and the de-
composition (15) which holds in the simple normal crossings case is that, in
general, the indexing set (Q/Z)∗FS

corresponding to a stratum S ∈ SD is larger
than the indexing set (Q/Z)∗S which appears in (15). The reason is that bigger
strata containing S might split off extra factors of the form Gi(S) owing to the
Atiyah–Segal decomposition encoded in (19). Formula (17) is then obtained by
rearranging the factors on the right-hand side of (19) so as to group together
all factors of the form Gi(S).
More precisely, let S = U/G be a stratum of X. Assume that there exists
a pair T ∈ F, V ∈ SE such that U = T ∩ V. Then the summand of (18)
corresponding to the stratum [V/G] ∈ SD′ is

⊕
χ∈(Q/Z)∗

[V/G]
Ki([V/G])⊗C and

can be rewritten as

Gi(U/G)
⊕

(

⊕

χ∈(Q/Z)∗V

Gi(T ∩ V/G)
)

⊕

(

⊕

χ∈(Q/Z)∗V

(

⊕

T ′∈F,T ′ 6=T

Gi(T
′
∩ V/G)

))

∼=
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∼= Gi(U/G)
⊕

(

⊕

χ∈(Q/Z)∗
V

Gi(S)
)

⊕

(

⊕

χ∈(Q/Z)∗
V

(

⊕

T ′∈F,T ′ 6=T

Gi(T
′
∩ V/G)

))

.

Thus it splits off a summand
⊕

χ∈(Q/Z)∗V
Gi(S). Taking into account the con-

tributions coming from all pairs T ∈ F, V ∈ SE such that U = T ∩ V, yields
the summand

⊕
χ∈(Q/Z)∗FS

Gi(S) which appears in (17). This concludes the

proof.

5.3 Logarithmic Chern character

In this last section we sketch one additional application of our techniques.
Namely, we define a logarithmic Chern character and explain some of its basic
properties. We conclude by formulating a Grothendieck-Riemann-Roch state-
ment for the logarithmic Chern character. For simplicity in this section κ will
be a field of characteristic 0.
Recall from Section 2.5 the definition of the Chern character morphism ch in
the setting of ∞-categories.

Definition 5.11. Let X be a log algebraic stack. We define the logarithmic
Chern character to be the morphism ch: K(XKfl) −→ HH(XKfl).

To emphasize the fact that we are in the logarithmic setting, we will denote the
logarithmic Chern character by chlog. The next statement follows immediately
from Corollary 5.6.

Proposition 5.12. Let (X,D) be a log stack given by an algebraic stack X
equipped with a simple normal crossing divisor D. Let I be the set of irre-
ducible components of D and denote by SI the set of strata. Then there is a
commutative diagram

K((X,D)Kfl)
chlog //

≃

��

HH((X,D)Kfl)

≃

��
K(X)

⊕(⊕
S∈S∗

I

(⊕
χ∈(Q/Z)∗

S
K(S)

)) ⊕ch
// HH(X)

⊕(⊕
S∈S∗

I

(⊕
χ∈(Q/Z)∗

S
HH(S)

))

where ⊕ch denotes the direct sum of the Chern character maps

ch: K(S) −→ HH(S)

for S ∈ SI .

Definition 5.13. Let (X,D) be a log scheme given by a smooth and proper
scheme X together with a simple normal crossing divisor D. Then we define

the de Rham logarithmic Chern character chlog
dR to be the composite

K0((X,D)Kfl)
chlog

//

ch
log
dR ++❲❲❲❲

❲❲❲
❲❲❲

❲❲❲
❲❲❲

❲❲❲
❲❲

HH0((X,D)Kfl)

∼=

��
⊕

k≥0 H
2k
dR(X)

⊕

(

⊕

S∈S∗
I

(

⊕

χ∈(Q/Z)∗
S

⊕

k≥0 H
2k
dR(S)

))

Documenta Mathematica 25 (2020) 955–1009



Parabolic SODs and Kummer Flat Invariants 1003

Remark 5.14. The morphism chlog
dR is closely related to the parabolic Chern

character considered in [27]. One difference is that the authors in [27] work
with finite rather than infinite root stacks.

We conclude by stating a Grothendieck–Riemann–Roch theorem for the log-
arithmic Chern character. We will place ourselves under quite restrictive as-
sumptions. We will return to the problem of extending this logarithmic GRR
formalism to a larger class of log stacks in future work. Let f : (Y,E) −→
(X,D) be a strict map of log schemes having the following properties:

• the underlying schemes Y and X are smooth and proper, and E and D
are simple normal crossing divisors;

• the morphism between the underlying schemes f : Y → X is flat and
proper.

Let L and I be the irreducible components of E and D and denote by SL

and SI the sets of strata. Note that each stratum SY ∈ SL is mapped by
f to a stratum SX ∈ SI . Further, for each stratum SY ∈ SL, the classical
Grothendieck–Riemann–Roch theorem gives a commutative diagram

K0(SY )
chdR

//

��

⊕
k≥0 H2k

dR(SY )

f∗(−∧TdSY/SX
)

��
K0(SX)

chdR
//
⊕

k≥0 H2k
dR(SX)

(20)

where TdSY/SX
is the Todd class of the relative tangent bundle. Taking the

direct sum of the vertical morphism on the right of (20) over all strata we
obtain a morphism

⊕
k≥0 H2k

dR(Y )
⊕(⊕

S∈S∗
L

(⊕
χ∈(Q/Z)∗S

⊕
k≥0 H2k

dR(S)
))

⊕
f∗(−∧Td)

��⊕
k≥0 H2k

dR(X)
⊕(⊕

S∈S∗
I

(⊕
χ∈(Q/Z)∗S

⊕
k≥0 H2k

dR(S)
))

which we denote for simplicity
⊕

f∗(− ∧ Td), dropping the indices from the
Todd classes.

Proposition 5.15. Let f : (Y,E) −→ (X,D) be a map of log schemes satisfying
the properties above. Then:

1. There is a commutative diagram in S∞

K((Y,E)Kfl)
chlog

//

f∗

��

HH((Y,E)Kfl)

f∗

��
K((X,D)Kfl)

chlog
// HH((X,D)Kfl).
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2. There is a commutative diagram of abelian groups

K0((Y,E)Kfl)
ch

log
dR //

f∗

��

⊕

k≥0 H
2k
dR(Y )

⊕

(

⊕

S∈S∗
L

(

⊕

χ∈(Q/Z)∗
S

⊕

k≥0 H
2k
dR(S)

))

⊕
f∗(−∧Td)

��

K0((X,D)Kfl)
ch

log
dR // ⊕

k≥0 H
2k
dR(X)

⊕

(

⊕

S∈S∗
I

(

⊕

χ∈(Q/Z)∗S

⊕

k≥0 H
2k
dR(S)

))

.

Proof. Let us start with the first statement. We will use the equivalence
Perf((X,D)Kfl) ≃ Perf(∞

√
(X,D)) from Proposition 2.8, and the identifications

K((Y,E)Kfl) ≃ K(
∞
√

(Y,E)), K((X,D)Kfl) ≃ K(
∞
√

(X,D)),

HH((Y,E)Kfl) ≃ HH(
∞
√

(Y,E)), HH((X,D)Kfl) ≃ HH(
∞
√

(X,D)).

Let fr : r
√

(Y,E) −→ r
√

(X,D) and f∞ : ∞
√

(Y,E) −→ ∞
√

(X,D), be the maps
between the r-th and the infinite root stacks induced by f. For every r ∈ N, fr is
flat and proper (therefore perfect) and thus by [33, Examples 2.2 (a)] it induces
a push-forward fr,∗ : Perf( r

√
(Y,E)) −→ Perf( r

√
(X,D)). Taking the colimit

over r we obtain the push-forward f∞,∗ : Perf(∞
√

(Y,E)) −→ Perf(∞
√

(X,D)).
Applying ch to f∞,∗ yields the commutative diagram below, which gives state-
ment (1)

K(∞
√

(Y,E))
ch //

f∞,∗

��

HH(∞
√

(Y,E))

f∞,∗

��

K(∞
√

(X,D))
ch // HH(∞

√
(X,D)),

Let us consider the second statement next. For simplicity, we restrict to the
case where D and E are irreducible (and this f−1(D) = E, by strictness). The
general case is similar. We need to prove that the push-forward f∞,∗ functor

preserves the summands of the psod-s of Perf(∞
√

(Y,E)) and Perf(∞
√

(X,D)).
As f is strict the diagram

∞
√

(Y,E)
g∞,1

//

f∞

��

Y

f

��
∞
√

(X,D)
g∞,1

// X

(21)

is cartesian. Further, f is flat and thus base-change yields a commutative
diagram

Perf(Y )

f∗

��

g∗
∞,1

// Perf(∞
√

(Y,E))

f∞,∗

��

Perf(X)
g∗
∞,1

// Perf(∞
√

(X,D)).
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This shows that f∞,∗ maps the semi-orthogonal summand Perf(Y ) ⊂
Perf(∞

√
(Y,E)) to Perf(X). Next, let us turn to the other summands of the

sod of Perf(∞
√

(Y,E)). Again, since f is strict, the square below is cartesian

Er

fr

��

// r
√

(Y,E)

fr
��

Dr
// r
√

(X,D),

where as usual Er and Dr denote the universal Cartier divisors of the two root
stacks. Note that flatness of f implies flatness of fr, and therefore Er is also
the derived fiber product of the diagram.

Base change yields a commutative diagram

⊕
χ∈Zr

Perf(Er)χ ≃ Perf(Er)

fr,∗

��

// Perf( r
√

(Y,E))

fr,∗

��⊕
χ∈Zr

Perf(Dr)χ ≃ Perf(Dr) // Perf( r
√

(X,D)).

Additionally, for every χ ∈ Zr, the restriction of fr,∗ to (Perf(Er))χ coincides
with f∗: more precisely, there is a commutative diagram

(Perf(Er))χ

fr,∗

��

≃ // Perf(E)

f∗

��
(Perf(Dr))χ

≃ // Perf(D).

This shows that f∗ respects the summands of the sod-s of the r-th root stacks
given by Proposition 3.4. We are actually interested in the compatibility with
the sod-s of n!-th root stacks constructed recursively in Proposition 3.5. Note
however that the latter are obtained iterating the construction from Proposition
3.4: thus iterating the argument above also implies that f∗ respects the sod
given in Proposition 3.5.

This implies that the push-forward map f∗ : K((Y,E)Kfl) −→ K((X,D)Kfl)
decomposes as a direct sum of push-forwards along f, which we denote by⊕

f∗,

⊕
f∗ : K(Y )

⊕( ⊕

χ∈(Q/Z)∗

K(E)
)
−→ K(Y )

⊕( ⊕

χ∈(Q/Z)∗

K(D)
)
. (22)

Then the second statement follows by applying the ordinary Grothendiek–
Riemann–Roch to each summand in (22).
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[11] Denis-Charles Cisinski and Gonçalo Tabuada. Non-connective K-theory
via universal invariants. Compos. Math., 147(4):12811320, 2011.

[12] John Collins, Alexander Polishchuk, et al. Gluing stability conditions.
Adv. Theor. Math. Phys., 14(2):563608, 2010.

[13] Brian Conrad. From normal crossings to strict normal crossings.
http://math.stanford.edu/ conrad/249BW17Page/handouts/.. .

[14] Ajneet Dhillon and Ivan Kobyzev. G-theory of root stacks and equivariant
K-theory. Ann. K-Theory, 4(2):151-183, 2019.

[15] Barbara Fantechi, Etienne Mann, and Fabio Nironi. Smooth toric
Deligne-Mumford stacks. J. Reine Angew. Math., 2010(648):201244,
2010.

Documenta Mathematica 25 (2020) 955–1009

http://math.stanford.edu/~conrad/249BW17Page/handouts/crossings.pdf.


Parabolic SODs and Kummer Flat Invariants 1007

[16] Dennis Gaitsgory. Ind-coherent sheaves. Mosc. Math. J., 13(3):399528,
2013.

[17] Dennis Gaitsgory and Nick Rozenblyum. A study in derived algebraic
geometry, volume 1. American Mathematical Soc., 2017.

[18] Mark Gross and Bernd Siebert. Logarithmic Gromov-Witten invariants.
J. Amer. Math. Soc., 26(2):451510, 2013.

[19] Mark Gross, Bernd Siebert, et al. Mirror symmetry via logarithmic de-
generation data, I. J. Differential Geom., 72(2):169338, 2006.

[20] Kei Hagihara. Structure theorem of Kummer étale K-group. K-Theory,
29(2):7599, 2003.

[21] Kei Hagihara. Structure theorem of Kummer étale K-group II. Doc.
Math., 21:13451396, 2016.

[22] Lars Hesselholt and Ib Madsen. On the K-theory of local fields. Ann. of
Math. (2), 158(1):1113, 2003.

[23] Nicholas I. Howell. Motives of log schemes. 2017.
https://scholarsbank.uoregon.edu/xmlui/bitstream/handle/.. . .

[24] Marc Hoyois, Sarah Scherotzke, and Nicolò Sibilla. Higher traces,
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Università di Pisa
Largo Bruno Pontecorvo 5
56127 Pisa (PI)
Italy
mattia.talpo@unipi.it

Documenta Mathematica 25 (2020) 955–1009

http://stacks.math.columbia.edu


1010

Documenta Mathematica 25 (2020)


